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SOME FINITE PROPERTIES FOR VERTEX OPERATOR
SUPERALGEBRAS

CHONGYING DONG AND JIANZHI HAN

Vertex operator superalgebras are studied and various results on rational
vertex operator superalgebras are obtained. In particular, the vertex oper-
ator super subalgebras generated by the weight 1

2 and weight 1 subspaces
are determined. It is also established that if the even part V0̄ of a vertex
operator superalgebra V is rational, so is V .

1. Introduction

Vertex operator superalgebras, which are natural generalizations of vertex operator
algebras, have been studied extensively in [Dong and Zhao 2005; 2006; Kac and
Wang 1994; Li 1996b; 1996a; Xu 1998]. In this paper, we study certain finite
properties of vertex operator superalgebras following [Dong et al. 1998b; Dong
and Mason 2004; 2006; Mason 2011].

A vertex operator superalgebra V = V0̄⊕ V1̄ has even part V0̄ and odd part V1̄,
where V0̄ consists of vectors of integral weights and V1̄ consists of vectors whose
weights are half integers but not integers. So there is a canonical automorphism
σ of V acting on Vī as (−1)i and V0̄ is a vertex operator algebra which is also a
fixed point subalgebra of V . So a better understanding of the relationship between
representation theories of V and V0̄ is definitely useful for the study of orbifold
theory; see [Dijkgraaf et al. 1989; Dong et al. 2000]. Even the orbifold theory for
vertex operator algebras with order 2 automorphism has not been understood fully.

Rationality, which is an analogue of semisimplicity of associative and Lie alge-
bras, is probably the most important concept in the representation theory of vertex
operator superalgebra. We first establish that if V0̄ is rational, V is rational, al-
though we believe that the rationalities of V and V0̄ are equivalent from the orbifold
theory. The main tool consists of the associative algebras Ag,n(V ) for n ∈ 1

2 Z+,
which are generalizations of Ag,n(V ) as introduced and studied in [Dong et al.
1998b] (also see [Zhu 1996; Kac and Wang 1994; Dong et al. 1998a; Dong et al.
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1998c]), where g is an automorphism of V of finite order. It is established that V is
g-rational if and only if Ag,n is a finite dimensional semisimple associative algebra
for large n. This is the key result to prove the rationality of V from the rationality
of V0̄. Another characterization of rationality is given through the Ext functor.

Our investigation next centers around the vertex operator super subalgebras of
V generated by homogeneous subspaces of small weights. The vertex operator
subalgebra generated by V1

2
is a holomorphic vertex operator superalgebra U as-

sociated to an infinite dimensional Clifford algebra built from a finite dimensional
vector space with a nondegenerate symmetric bilinear form. This enables us to
decompose V as a tensor product U ⊗U c where U c, whose weight 1

2 subspace is
zero, is the commutant of U in V [Frenkel and Zhu 1992; Lepowsky and Li 2004].
Moreover, the module categories of V and U c are equivalent. To study V1, we first
need to understand the algebraic structure of V1. Under the assumption that V is
rational or σ -rational together with C2-cofiniteness, we are able to show that V1 is
a reductive Lie algebra, using the modular invariance results from [Dong and Zhao
2005; Zhu 1996], and the fact that E2(τ ) is not modular. Also, the rank of V1 and
the dimension of V1

2
are controlled by the effective central charge. Furthermore, for

any simple Lie subalgebra g of V1, the vertex operator subalgebra generated by g is
isomorphic to the vertex operator algebra L(k, 0), which is the integrable highest
weight module for the affine Kac–Moody algebra ĝ. We also give a rational vertex
operator subalgebra, which is a tensor product of affine vertex operator algebras
and a lattice vertex operator algebra, and whose weight one subspace is exactly V1.

We should point out that most of the results in this paper have been obtained
in the case where V is a vertex operator algebra in [Dong et al. 1998b; Dong and
Mason 2004; 2006; Mason 2011]. So the results of this paper can be regarded as
a “super” analogues of results presented in [Dong et al. 1998b; Dong and Mason
2004; 2006; Mason 2011]. The main ideas and the broad outlines also follow from
these papers. A lot of arguments are omitted if they are the same as in the case
of vertex operator algebras. On the other hand, there is a new phenomenon in the
super case. Namely, either rationality together with C2-cofiniteness or σ -rationality
together with C2-cofiniteness implies that V1 is reductive. This gives strong evi-
dence that rationality, σ -rationality of V , and rationality of V0̄ are equivalent. But
we have no idea how to establish this.

This paper is organized as follows. In Section 2, we recall various notions
of twisted modules for a vertex operator superalgebra and g-rationality for any
automorphism of finite order from [Frenkel et al. 1988; Zhu 1996; Dong et al.
1998a; Dong and Zhao 2006]. In Section 3, we define a series of associative
algebras Ag,n(V ) for a vertex operator superalgebra V and n ∈Z+. We exhibit how
to use An(V ) to prove rationality of V from the rationality of V0̄. It is also shown
that if V is C2-cofinite or rational, V is finitely generated and the automorphism
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group Aut(V ) is an algebraic group. Section 4 is devoted to the study of vertex
operator super subalgebras generated by V1

2
. In Section 5 we show that if V is

rational or σ -rational together with C2-cofiniteness then the weight one subspace
V1 is a reductive Lie algebra whose rank is bounded above by the effective central
charge c̃. Consequently, dim V1

2
is bounded above by 2c̃+ 1. Section 6 deals with

the vertex operator subalgebra of V generated by V1.
We make the assumption that the reader is familiar with the theory of vertex

operator algebras as presented in [Borcherds 1986; Dong and Lepowsky 1993;
Frenkel et al. 1988; Lepowsky and Li 2004].

2. Basics

In this section we give the definition of a vertex operator superalgebra and several
notions of modules; cf. [Dong et al. 1997; Dong and Zhao 2006; Feingold et al.
1991; Frenkel et al. 1988; Li 1996b; Zhu 1996].

We first recall that a super vector space is a Z2-graded vector space V = V0̄⊕V1̄.
The elements in V0̄ (respectively V1̄) are called even (respectively odd). Let ṽ be
0 if v ∈ V0̄, and 1 if v ∈ V1̄.

Definition 2.1. A vertex operator superalgebra (VOSA) is a 1
2 Z-graded vector

space
V =

⊕
n∈ 1

2 Z

Vn = V0̄⊕ V1̄

with V0̄=
∑

n∈Z Vn and V1̄=
∑

n∈Z Vn+ 1
2

satisfying all the axioms in the definition
of vertex operator algebra except that the Jacobi identity is replaced by

z−1
0 δ

(
z1− z2

z0

)
Y (u, z1)Y (v, z2)− (−1)ũṽz−1

0 δ

(
−z2+ z1

z0

)
Y (v, z2)Y (u, z1)

= z−1
2 δ

(
z1− z0

z2

)
Y (Y (u, z0)v, z2).

Throughout the paper we always assume that V is a vertex operator superalgebra
unless otherwise stated.

Definition 2.2. An automorphism g of a VOSA V is a linear automorphism of V
preserving the vacuum vector 1 and the conformal vector ω such that the actions
of g and Y (v, z) on V are compatible in the sense that

gY (v, z)g−1
= Y (gv, z)

for v ∈ V .

Denote by Aut(V ) the set consisting of all automorphisms of V . Observe that
any automorphism of V commutes with L(0) and hence preserves each homoge-
neous subspace Vn . As a consequence, any automorphism preserves both V0̄ and
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V1̄. There is a canonical automorphism σ of V with σ | Vī = (−1)i associated to
the Z2-grading of V .

Let g ∈Aut(V ) with finite order T . Then we can decompose V into eigenspaces
of g:

V =
T−1⊕
r=0

V r ,

where V r
= {v ∈ V | gv = e−2π ir/T v}.

Definition 2.3. A weak g-twisted V -module M is a Z2-graded vector space equip-
ped with a linear map

YM : V → (End M)[[z, z−1
]],(2-1)

v 7→ YM(v, z)=
∑

n∈(1/T )Z

vnz−n−1,(2-2)

such that, for all u ∈V r (0≤ r ≤ T−1), v∈V , andw∈W , the following conditions
hold:

YM(u, z)=
∑

n∈r/T+Z

unz−n−1, unw = 0 for n� 0,

YM(1, z)= IdM ,

and

z−1
0 δ

(
z1− z2

z0

)
YM(u, z1)YM(v, z2)−(−1)ũṽz−1

0 δ

(
−z2+ z1

z0

)
YM(v, z2)YM(u, z1)

= z−1
2 δ

(
z1− z0

z2

)−r/T

δ

(
z1− z0

z2

)
YM(Y (u, z0)v, z2).

Definition 2.4. An admissible g-twisted V -module is a weak g-twisted V -module
M which carries a (1/T )Z+-grading

M =
⊕

n∈(1/T )Z+

M(n)

satisfying

vm M(n)⊆ M(n+wt v−m− 1)

for homogeneous v ∈ V and m ∈ 1
T Z.

Definition 2.5. An ordinary g-twisted V -module is a weak g-twisted V -module

M =
⊕
λ∈C

Mλ

such that dim Mλ is finite and for fixed λ, Mn/T+λ= 0 for all small enough integers
n, where Mλ = {w ∈ M | L(0)w = λw} and YM(ω, z)=

∑
n∈Z L(n)z−n−2.
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We say V is g-rational if every admissible g-twisted V -module is completely
reducible, that is, a direct sum of simple admissible g-twisted V -modules. V is
g-regular if the category of weak g-twisted V -modules is semisimple, namely,
every weak g-twisted V -module is a direct sum of irreducible weak g-twisted V -
modules. If g = 1, we have the definitions of rationality and regularity for vertex
operator superalgebras.

The following definitions are given for vertex operator algebras in [Dong and
Mason 2006; Zhu 1996] and we extend these to vertex operator superalgebras here.

A vertex operator superalgebra V is said to be of CFT type if the L(0)-grading
on V has no negative weights and the degree-zero homogeneous subspace V0 is
one-dimensional: in symbols, V =

⊕
n∈ 1

2 Z+
Vn and V0=C1. We say V is of strong

CFT type if V satisfies the further condition L(1)V1=0. V is said to be C2-cofinite
in the case where C2(V ) has finite codimension in V , where C2(V ) is the subspace
of V linearly spanned by all elements of the form u−2v for u, v ∈ V .

For convenience, let us introduce the term strongly g-rational for a simple vertex
operator superalgebra V which satisfies the following conditions:

(1) V is of strong CFT type.

(2) V is C2-cofinite.

(3) V is g-rational.

Definition 2.6. A bilinear form ( · , · ) on a V -module M is said to be invariant
[Frenkel et al. 1993] if it satisfies the condition

(Y (a, z)u, v)=
(
u, Y (ezL(1)(eπ i z−2)L(0)a, z−1)v

)
for a ∈ V and u, v ∈ M.

It is proved in [Li 1994; Xu 1998] that there exists a linear isomorphism from
the space of invariant bilinear forms on V to HomC(V0/L(1)V1,C). This implies
that there is a unique, up to multiplication by a nonzero scalar, nondegenerate
symmetric invariant bilinear form on V if V is simple and of strong CFT type.

3. Rationality

In this section we give a characterization of the rationality of a vertex operator
superalgebra V in terms of the rationality of a vertex operator subalgebra V0̄. We
will show that if V0̄ is rational, V is rational. We certainly believe that the converse
is also true, that is, if V is rational, V0̄ is also rational. This is similar to a well-
known conjecture in orbifold theory: Let V be a rational vertex operator algebra,
and g is an order 2 automorphism of V . Then the fixed point vertex operator
subalgebra is also rational. We will establish some other results on rationality. We
also discuss the generators of V .
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The tool we use to prove the main result is the associative algebras An(V ), which
is defined in [Dong et al. 1998c] for vertex operator algebra. Let V be a vertex
operator superalgebra. Let On(V ) be the subspace of V linearly spanned by all
L(−1)u+ L(0)u and u ◦n v where, for homogeneous u ∈ V and v ∈ V ,

u ◦n v =


Resz

(1+ z)wt u+n

z2n+2 Y (u, z)v, if u ∈ V0̄,

Resz
(1+ z)wt u+n− 1

2

z2n+1 Y (u, z)v, if u ∈ V1̄.

Define another operation ∗n on V by

u ∗n v =


n∑

m=0

(−1)m
(

m+ n
n

)
Resz

(1+ z)wt u+n

zn+m+1 Y (u, z)v, if u, v ∈ V0̄,

0, if u ∈ V1̄ or v ∈ V1̄.

Set An(V )=V/On(V ). Then A0(V ) is the A(V ) studied in [Kac and Wang 1994].
Let M be a weak V -module. Define the “n-th lowest weight vector” subspace of
M as

�n(M)= {w ∈ M | uwt u+n+iw = 0, u ∈ V, i ≥ 0}.

As in [Dong et al. 1998c] we have the following results.

Theorem 3.1. (1) Suppose that M is a weak V -module. Then �n(M) is an
An(V )-module such that a acts as o(a) for a ∈ V0̄, where o(a) is defined
to be awt a−1 for homogeneous a ∈ V0̄ and extends it linearly.

(2) Suppose M =
⊕

i∈ 1
2 Z+

M(i) is an admissible V -module. Then

(a) �n(M)⊃
⊕

i≤n M(i);
(b) assuming M is simple, �n(M) =

⊕
i≤n M(i), and each M(i) is a simple

An(V )-module for i = 0, 1
2 , . . . , n.

(3) M 7→ M(0) gives a bijection between irreducible admissible V -modules and
simple A(V )-modules.

(4) The identity map induces an epimorphism from An(V ) to Am(V ) for any
n ≥ m.

(5) If V is g-rational, there are only finitely many irreducible admissible g-twisted
V -modules up to isomorphism, and each irreducible admissible g-twisted V -
module is ordinary.

Note that part (3) of the theorem was obtained in [Kac and Wang 1994].
The next lemma will be used as a characterization of the rationality of V in

terms of semisimplicity of An(V ) for large enough n.

Lemma 3.2. Suppose that A(V ) is finite dimensional. Then any admissible V -
module is a direct sum of generalized eigenspaces for L(0).
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Proof. Let M =
⊕

i∈ 1
2 Z+

M(i) be an admissible V -module with M(0) 6= 0. Let W
be a maximal subspace of M which is a direct sum of generalized eigenspaces with
respect to L(0). Then it is not hard to see that W is a submodule of M . Consider
the A(V )-module M(0). By our assumption on finite dimension of A(V ), we see
that there exists a nonzero simple A(V )-submodule of M(0), on which L(0) acts
as a scalar by Schur’s lemma. This shows that W 6= 0. We shall show W = M .
Suppose M/W 6=0. Choose the minimal n∈ 1

2 Z+ such that M(n)/W (n) 6=0, where
W (n)=W ∩M(n). Then, by similar argument as above, we see that M(n)/W (n)
contains a nonzero simple A(V )-submodule, say W(n)/W (n) 6= 0, where W(n)
is a subspace of M(n). Since both W(n)/W (n) and W (n) are a direct sum of
generalized eigenspaces for L(0), so is W(n). Thus W(n)⊂W and W(n)=W (n),
a contradiction. �

Assume that A(V ) is finite dimensional. Let

f (x)= (x − λ1)(x − λ2) · · · (x − λr ) ∈ C[x]

be the monic polynomial of least degree such that f ([w]) = 0 in A(V ). Then,
on any given simple A(V )-module, L(0) must act as a constant λi for some i .
Note from Theorem 3.1 that V has exactly r inequivalent irreducible admissible
modules M i

=
∑

n∈ 1
2 Z+

M i
λi+n for i = 1, · · · , r . Then there exists mi > 0 such

that M i
λi+n 6= 0 for all n ≥ mi . Let N be a positive integer greater than |λi − λ j |,

|λi | + 1, and mi for i, j = 1, . . . , r .
Note that the rationality is defined from the representation theory. It is always

believed that such a property, which is analogous to the semisimplicity of Lie and
associative algebras, should have its own internal characterization. The following
result can be regraded as an internal characterization of rationality.

Theorem 3.3. V is rational if and only if An(V ) is finite dimensional and semisim-
ple for some n ≥ N.

Proof. The proof of [Dong et al. 1998c, Theorem 4.10] shows that if V is rational,
An(V ) is semisimple and finite dimensional for all n. Now we assume that An(V )
is semisimple for some n ≥ N . By Theorem 3.1, Am(V ) is semisimple for all
m ≤ n. Let M =

⊕
i∈ 1

2 Z+
M(i) be an admissible V -module with M(0) 6= 0. By

Lemma 3.2, we can write

M =
∑

λ∈{λ1,...,λr }

⊕
n∈ 1

2 Z+

Mλ+n,

where Mλ+n is the generalized eigenspace for L(0) with eigenvalue λ+ n. Note
that, for each λ ∈ {λ1, . . . , λr }, the subspace

⊕
n∈ 1

2 Z+
Mλ+n is an admissible sub-

module of M . Without loss of generality, we may assume that M =
⊕

n∈ 1
2 Z+

M(n)
for some λ ∈ {λ1, . . . , λr }, where M(n)= Mλ+n .
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We assert that the submodule W generated by
⊕

n≤N , n∈ 1
2 Z+

M(n) is equal to
the entire M . Otherwise, 0 6= M/W =

⊕
n>N , n∈ 1

2 Z+
M(n)/W (n), where W (n)=

W ∩M(n). Let n0 ∈
1
2 Z+ be minimal such that M(n0)/W (n0) 6= 0. Then n0 > N

and M(n0)/W (n0) is an A(V )-module by Theorem 3.1. Since A(V ) is semisimple,
there exists a nonzero simple A(V )-submodule of M(n0)/W (n0) on which L(0)
acts as the constant λ+ n0 ∈ {λ1, . . . , λr }, which implies |λ− λ j | = n0 for some
j . But this is impossible by our choice on N . Thus we must have W = M .

We next show that if X is a simple A(V )-submodule, X generates an irreducible
V -module U . Denote by J =

⊕
n∈ 1

2 Z+
J (n) the maximal submodule of U such that

J (0)= 0, where J (n)= J ∩U (n). Then the quotient W =U/J is irreducible and
W (0) = X . Since

⊕
0≤n≤N U (n) is a semisimple AN (V )-module we can regard

each W (n) as an AN (V )-submodule of U (n) for n ≤ N . From the choice of N ,
we know that W (N ) 6= 0. Then the admissible V -submodule of U generated by
W (N ) contains W (0)= X . Thus W (N )=U (N ), so J (N )= 0. By our choice of
N , again we see that J must be trivial. This implies that U =W is irreducible.

It follows that the admissible V -submodule W of M generated by M(0) is com-
pletely reducible. Note that M(1) =W(1)⊕ P , where P is a semisimple A(V )-
module. Again the admissible submodule of M generated by P is completely
reducible. Continuing in this way completes the proof. �

Remark 3.4. Even in the case where V is a vertex operator algebra, Theorem 3.3
strengthens [Dong et al. 1998c, Theorem 4.11], where we require that An(V ) is
semisimple for all n.

Remark 3.5. There is a twisted analogue Ag,n(V ) (cf. [Dong et al. 1998b]) of
An(V ). One can similarly define the positive integer Ng. Then Theorem 3.3 still
holds, that is, V is g-rational if and only if Ag,n(V ) is finite dimensional and
semisimple for some n ≥ Ng.

We now use Theorem 3.3 to prove the following result.

Proposition 3.6. Let V = V0̄⊕ V1̄ be a VOSA. If V0̄ is rational, V is rational.

Proof. Suppose V0̄ is rational. Then, by Theorem 3.3, An(V0̄) is a finite dimen-
sional semisimple associative algebra if n is sufficiently large. This implies that
An(V ) is semisimple as An(V ) is a quotient of An(V0̄). Applying Theorem 3.3
again yields that V is rational. �

We remark that we do not know how to prove the rationality of V from the
rationality of V0̄ without using An(V ). It is certainly a very interesting problem to
find a different approach that does not use An(V ). Although we can not show the
converse of Proposition 3.6, we strongly believe that rationalities of V and V0̄ are
equivalent.
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In the rest of this section we use the extension functor to consider the rationality
of a vertex operator superalgebra V . This approach has been studied in [Abe 2005]
for vertex operator algebra, but our rationality result is different from that given in
[ibid.].

First let us describe the set Ext1V (M
2,M1) for any weak V -module M1 and M2.

We call a weak V -module M an extension of M2 by M1 if there is a short exact
sequence 0→ M1

→ M→ M2
→ 0. Two extensions M and N of M2 by M1 are

said to be equivalent if there exists a V -homomorphism f : M→ N such that the
following diagram commutes:

0 −−−→ M1 φ
−−−→ M

ϕ
−−−→ M2

−−−→ 0 (exact)∥∥∥ y f
∥∥∥

0 −−−→ M1 φ′

−−−→ N
ϕ′

−−−→ M2
−−−→ 0 (exact).

Define Ext1V (M
2,M1) to be the set of all equivalent classes of M2 by M1. It is

well known that Ext1V (M
2,M1) carries the structure of an abelian group such that

the equivalent class of M1
⊕M2 is the zero element.

Here is another equivalent condition of rationality.

Proposition 3.7. Let V be a vertex operator superalgebra. Then V is rational if
and only if the following two conditions hold.

(a) Every admissible V -module contains a nontrivial irreducible admissible sub-
module.

(b) For any irreducible V -modules M and N , Ext1V (M, N )= 0.

Proof. It is clear that rationality implies both (a) and (b). Now we assume that (a)
and (b) hold. Let M=

⊕
n∈ 1

2 Z+
M(n) be a nonzero admissible V -module. Let W be

the sum of irreducible admission V -submodules of M . Then W =
⊕

i∈I W i , where
each W i is an irreducible admissible V -module. By condition (a), W 6= 0. We
assert that W =M . Otherwise consider the quotient module M/W . It follows from
condition (a) again that there exists a weak V -submodule M ′ such that M ′ ! W
and M ′/W is an irreducible admissible V -module. Then by condition (b) and the
properties of Ext, we have

Ext1V (M
′/W,W )=

⊕
i∈I

ExtV (M ′/W,W i )= 0,

that is, M ′ = M ′/W ⊕W as V -modules, contradicting the maximality of W . So
the assertion is true and M is a direct sum of irreducible admissible V -modules. �

We now turn our attention to the generators of vertex operator superalgebras.
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Proposition 3.8. Let V be a vertex operator superalgebra.

(a) If V is rational or C2-cofinite, V is finitely generated.

(b) If V is finitely generated, Aut(V ) is an algebraic group.

These results were obtained in the case of vertex operator algebras in [Dong and
Zhang 2008; Karel and Li 1999]; see also [Gaberdiel and Neitzke 2003; Dong and
Griess 2002]. The same proof works here.

4. Vertex operator subalgebra generated by V1
2

In this section we study the vertex operator super subalgebra U of V generated by
V1

2
, and decompose V as a tensor product U ⊗U c, where U is holomorphic in

the sense that U is the only irreducible module for itself and U c, whose weight 1
2

subspace is 0, is the commutant of U in V . This decomposition reduces the study of
vertex operator superalgebras to the study of vertex operator superalgebras whose
weight 1

2 subspaces are 0.
Let V be a simple vertex operator superalgebra of strong CFT type. Then there

is a unique invariant, symmetric, and nondegenerate bilinear form ( · , · ) such that

(4-1) (1, 1)=
√
−1;

see [Li 1994; Xu 1998]. Then, for u, v ∈ V1
2
, one has

(4-2) u0v = (u, v)1

and

(4-3) [u(m), v(n)]+ = (u, v)δm+n+1,0.

Note that the restriction of ( · , · ) to V1
2

is still nondegenerate. Let {a1, a2, . . . , al
}

be an orthonormal basis of V1
2

with respect to the form ( · , · ), where l = dim V1
2
.

Let U be the vertex super subalgebra of V generated by V1
2
. Then, using (4-3),

we see that

U = Span
{
u1
−n1

u2
−n2
· · · ur

−nr
1
∣∣ ui
∈ V1

2
, n1 ≥ n2 ≥ · · · ≥ nr > 0 and r ∈ Z+

}
.

In fact, U carries the structure of a vertex operator superalgebra with conformal
vector

ω′ = 1
2

l∑
i=1

ai
−2ai
−11.

Define operators L ′(n) for n ∈ Z by

Y (ω′, z)=
∑
n∈Z

w′nz−n−1
=

∑
n∈Z

L ′(n)z−n−2.
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Then the weight n subspace Un for L ′(0) is given by

Un =

〈
u1
−n1

u2
−n2
· · · ur

−nr
1
∣∣∣ ui
∈ V1

2
, n1 ≥ n2 ≥ · · · ≥ nr > 0, r ∈ Z+,

and n1+ n2 · · · + nr = n+ r
2

〉
.

It is well known (cf. [Kac and Wang 1994]) that the vertex operator algebra
U generated by V1

2
is holomorphic. So for any admissible V -module M , we can

decompose M into irreducible U -modules as follows

M =U ⊗M,

where M = {w ∈ M | unw = 0 for all u ∈U and n ∈ Z+} is the multiplicity space
of U in M . If M = V , the multiplicity space M is denoted by U c and is called the
commutant of U in V . In particular, V = U ⊗U c. The U c is a vertex operator
superalgebra (see [Frenkel and Zhu 1992; Lepowsky and Li 2004]) with ω−ω′ as
its conformal vector and U c

1
2
= 0.

Let Irr(V ) and Irr(U c) denote the sets of the isomorphism classes of admissi-
ble irreducible V -modules and U c-modules, respectively. The following result is
straightforward.

Proposition 4.1. Let V be a vertex operator superalgebra.

(a) For any admissible V -module M. M is an admissible U c-module. Moreover,
M is irreducible if and only if M is irreducible.

(b) The map U ⊗∗ : Irr(U c)→ Irr(V ) is a bijection.

(c) V is rational if and only if U c is rational.

5. The structure of weight 1 subspace

In this section we will investigate the Lie algebra structure of weight 1 subspace
V1 and show that V1 is a reductive Lie algebra if V is σ -rational, using the modular
invariance results obtained in [Dong and Zhao 2006]. We also find an upper bound
for the rank of V1 in terms of effective central charge. Similar results for vertex
operator algebras were given previously in [Dong and Mason 2004], and the proof
presented here is a modification of that used in [ibid.]. We also apply these results
to estimate the dimension of weight 1

2 subspace V1
2

of V .
First, we need to discuss vertex operator superalgebras on the torus [Zhu 1996;

Dong and Zhao 2005], vector-valued modular forms [Knopp and Mason 2003],
and the modular invariance of trace functions [Zhu 1996; Dong and Zhao 2005].

Let V be a vertex operator superalgebra. The vertex operator superalgebra

(V, Y [v, z], 1, ω̃)
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on a torus (see [Zhu 1996; Dong and Zhao 2005]) is defined as follows:

Y [v, z] = Y (v, ez
− 1)ewtv

=

∑
n∈Z

v[n]z−n−1,

Y [w̃, z] =
∑
n∈Z

L[n]z−n−2

for homogeneous v and ω̃ = ω− c/24.
We denote the eigenspace of L[0] with eigenvalue n ∈ 1

2 Z by V[n]. If v ∈ V[n],
we write wt[v] = n.

A holomorphic vector-valued modular form of weight k (where k is any real
number) on the modular group 0 = SL(2,Z) may be described as follows: for
any integer p ≥ 1 it is a tuple (T1(τ ), . . . , Tp(τ )) of functions holomorphic in the
complex upper half-plane together with a p-dimensional complex representation
ρ : 0→ GL(p,C) satisfying the following conditions.

(a) For all γ ∈ 0 we have

(T1, . . . , Tp)
t
|k γ (τ)= ρ(γ )(T1(τ ), . . . , Tp(τ ))

t

(where t refers to the transpose of vectors and matrices).

(b) Each function T j (τ ) has a convergent q-expansion holomorphic at infinity:

T j (τ )=
∑
n≥0

an( j)qn/N j

for positive integer N j . (Here and below, q = exp 2π iτ ).

The following result plays an important role in this section.

Proposition 5.1 [Knopp and Mason 2003]. Let (T1, . . . , Tp) be a holomorphic
vector-valued modular form of weight k associated to a representation ρ of 0.
Then there is a nonnegative constant α depending only on ρ such that the Fourier
coefficients an( j) satisfy the polynomial growth condition an( j) = O(nk+2α) for
every 1≤ j ≤ p.

Fix automorphisms g, h of V of finite orders. Let M be a simple gσ -twisted
V -module. Then

M =
∞⊕

n=0

Mλ+n/T ′

for some λ called the conformal weight of M (Mλ 6= 0), where T ′ is the order of
gσ . Suppose M is σh-stable, which is equivalent to the existence of a linearly
isomorphic map φ(σh) : M→ M such that

φ(σh)YM(v, z)φ(σh)−1
= YM((σh)v, z)
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for all v ∈ V . From now on we assume that V is C2-cofinite. Then a function FM

which is linear in v ∈ V is defined for homogeneous v ∈ V as follows:

(5-1) FM(v,τ )=qλ−c/24
∞∑

n=0

trMλ+n/T o(v)φ(σh)qn/T
= trM o(v)φ(σh)q L(0)−c/24,

which is a holomorphic function in the upper half-plane [Dong and Zhao 2005].
Here and below we write FM(τ ) rather than FM(1, τ ) for simplicity. Then for any
u, v in V such that gv = hv = v, we have

(5-2) trM o(u)o(v)φ(σh)q L(0)−c/24

= FM(u[−1]v, τ )−
∑
k≥1

E2k(q)FM(u[2k− 1]v, τ );

see [Dong and Zhao 2005; Zhu 1996]. The functions E2k(τ ) are the Eisenstein
series of weight 2k:

E2k(q)=
−B2k

2k!
+

2
(2k−1)!

∞∑
n=1

σ2k−1(n)qn,

where σk(n) is the sum of the k-powers of the divisors of n, and B2k is a Bernoulli
number. The E2(τ ) enjoys an exceptional transformation law. Namely, its trans-
formation with respect to the matrix

S =
( 0 −1

1 0

)
,

has the form

(5-3) E2

(
−1
τ

)
= τ 2 E2(τ )−

τ

2π i
.

We also need results on 1-point functions on the torus [Dong and Zhao 2005].
Let g, h be automorphisms of V of finite order. The space of (g, h) 1-point func-
tions C(g, h) is the C-linear space consisting of functions

S : V ×H→ C

(where H is the upper half-plane) satisfying certain conditions; see [Dong and Zhao
2005] for details. The following results can be found in [ibid.].

Theorem 5.2. Let V be C2-cofinite and g, h ∈ Aut(V ) of finite orders.

(1) For S ∈ C(g, h) and

γ =
( a b

c d

)
∈ 0,

we define

S|γ (v, τ )= S|k(v, τ )= (cτ + d)−k S(v, τ )
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for v ∈ V[k], and extend linearly. Then S|γ ∈ C((g, h)γ )), where (g, h)γ =
(gahc, gbhd).

(2) Let M be a simple gσ -twisted V -module such that M is h and σ -stable. Then
FM(v, τ ) ∈ C(g, h).

(3) Suppose that V is gσ -rational and M1, . . . ,Mm are the inequivalent, simple
gσ -twisted V -module such that M i is h and σ -stable. Let F1, . . . , Fm be the
corresponding trace functions defined by (5-1). Then F1, . . . , Fm form a basis
of C(g, h).

We now assume that V is of strong CFT type. Recall from [Frenkel et al. 1993]
that the weight 1 subspace V1 of V carries a natural Lie algebra structure, the Lie
bracket being given by [u, v] = u0v for u, v ∈ V1. Then any weak V -module is
automatically a V1-module such that v ∈ V1 acts as v0. Note that there is a unique
nondegenerate symmetric invariant bilinear form 〈 · , · 〉 such that 〈1, 1〉 = −1 and
the restriction of 〈 · , · 〉 to V1 endows V1 with a nondegenerate, symmetric, invariant
bilinear form such that u1v = 〈u, v〉1 for u, v ∈ V1.

The following two theorems are extensions of similar results from vertex oper-
ator algebras [Dong and Mason 2004] to vertex operator superalgebras.

Theorem 5.3. Let V be strongly rational or strongly σ -rational. Then the Lie
algebra V1 is reductive.

Proof. We first deal with the case where V is σ -rational. We have to show that
the nilpotent radical N of the Lie algebra V1 is zero. Suppose not, and take any
nonzero element u ∈ N . Each Vi for i ∈ 1

2 Z is a finite dimensional V1-module and
has a composition series 0 = W 0

⊂ W 1
⊂ W 2

⊂ W 3
⊂ · · · ⊂ such that u0 acts

trivially on each composite factor W i/W i−1(i = 1, 2, · · · ). Note that we can take
φ(σ)= σ on V . Thus V is σ -stable. In fact, any irreducible V -module is σ -stable;
see [Dong and Zhao 2005, Lemma 6.1]. As a result, trVi o(u)o(v)σ = 0 for all
v ∈ V1 and i ∈ 1

2 Z. It follows from (5-2) that

(5-4) FV (u[−1]v, τ )=
∑
k≥1

E2k(τ )FV (u[2k− 1]v, τ ),

where (g, h)= (σ, 1) and FV ∈ C(σ, 1), by Theorem 5.2.
Note that if k>1 is an integer, the element u[2k−1]v has L[0]-weight 2−2k<0

and hence is 0. The nondegeneracy of the bilinear form 〈 · , · 〉 guarantees that there
exists v ∈ V1 such that 〈u, v〉 = 1. With this choice of v, (5-4) simplifies to read

(5-5) FV (u[−1]v, τ )= E2(τ )FV (τ ).

By Theorem 3.1, V has finitely many irreducible σ -twisted V -modules up to
isomorphism. We denote these modules by M1, . . . ,Mm . Note from Theorem 5.2
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that the

S =
( 0 1
−1 0

)
∈ 0

maps C(σ, 1) to C(1, σ ). By Theorem 5.2 again we see that

FV

(
u[−1]v,−1

τ

)
= τ 2

m∑
i=1

si FM i (u[−1]v, τ )

and

FV

(
−

1
τ

)
=

m∑
i=1

si FM i (τ )

for some si ∈ C. Similar to equality (5-5), we also have

FM i (u[−1]v, τ )= E2(τ )FM i (τ ) for i = 1, . . . ,m.

Thus

τ 2
m∑

i=1

si FM i (u[−1]v, τ )= FV

(
u[−1]v, −1

τ

)
= E2

(
−1
τ

)
FV

(
−1
τ

)
=

(
τ 2 E2(τ )−

τ

2π i

) m∑
i=1

si FM i (τ )

= τ 2
m∑

i=1

si FM i (u[−1]v, τ )− τ

2π i

m∑
i=1

si FM i (τ ).

Of course, the equality (5-3) is involved in the calculations above. Canceling
the term τ 2∑m

i=1 si FM i (u[−1]v, τ ) gives rise to the identity
∑m

i=1 si FM i (τ ) = 0,
which in turn implies FV (−1/τ)= 0. But this is clearly not true, since

FV

(
−1
τ

)
= q−c/24

(∑
n∈Z

(dim Vn)qn
−

∑
n∈ 1

2+Z

(dim Vn)qn
)
6= 0.

So N = 0 and V1 is reductive.
Now we assume that V is rational. As before we need to show that the nilpotent

radical N of the Lie algebra V1 is zero. This time we use C(σ, σ ) instead of C(σ, 1)
and C(1, σ ). In this case, the S ∈ 0 maps C(σ, σ ) to itself. A similar argument
applies. �

Remark 5.4. It is proved in [Dong and Mason 2004] that if a vertex operator
algebra is strongly rational, weight one subspace is reductive. If one can prove the
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rationality of V0̄ from the rationality and σ -rationality of V , Theorem 5.3 follows
immediately. Unfortunately, none of these results have been established.

The following result will be used in the next section.

Lemma 5.5. Let V be a vertex operator superalgebra.
(a) If V is strongly rational, any admissible V -module is a completely reducible

V1-module. This is also equivalent to saying the action of any Cartan sub-
algebra of the Lie algebra V1 is semisimple on any admissible V -module.

(b) If V is strongly σ -rational, any admissible σ -twisted V -module is a com-
pletely reducible V1-module.

(c) If V is either strongly rational or strongly σ -rational, any irreducible σ i -
twisted V -module is a completely reducible V1-module for i = 0, 1.

Proof. Since the proof of (b) is similar to that of (a), we only show (a) and (c) for
strongly rational vertex operator superalgebra V . Let H be a Cartan subalgebra of
V1. It is enough to show that H acts semisimply on any irreducible σ i -twisted V -
module for i =0, 1. Since the homogeneous subspaces of an irreducible σ i -twisted
V -module are always finite dimensional, there is a common eigenvector of H on
the irreducible module. So it is enough to show that H acts on V semisimply.

First we show that for any nonzero u ∈ H , h0 is not nilpotent. Note that the
restriction of the bilinear form 〈 · , · 〉 to H is nondegenerate. If u0 is nilpotent
for some nonzero u ∈ H , we can take v ∈ H such that 〈u, v〉 = 1. The proof of
Theorem 5.3 then gives a contradiction.

We now prove that u0 is semisimple on V . Since Aut(V ) is an algebraic group
by Proposition 3.8, and {etu0 | t ∈ C} is a one-dimensional algebraic subgroup of
Aut(V ), we immediately see that {etu0 | t ∈C} is isomorphic to the one-dimensional
multiplicative algebraic group Cm as u0 is not nilpotent; cf. [Mason 2011]. �

Now that V1 is reductive, there are two extreme cases: V1 is a semisimple Lie
algebra, and V1 is abelian. The vertex operator subalgebra generated by V1 will be
extensively investigated in Section 6. We study the rank of V1 in the rest of this
section. Let l be the rank of V1, that is, l is the dimension of a Cartan subalgebra H
of V1. Similar to the case of vertex operator algebras in [Dong and Mason 2004], l
is closely related to the effective central charge c̃, which is defined as follows: Let
{M1, . . . ,Mm

} be the irreducible σ -twisted V -modules up to isomorphism. Then
there exist λi ∈ C such that M i

=
∑

n∈ 1
2 Z+

M i
λi+n with M i

λi
6= 0. The λi is called

the conformal weight of M i . By [Dong and Zhao 2005, Theorem 8.9], λi and the
central charge c of V are rational numbers for all i . Define λmin to be the minimum
of the conformal weights λi , and set

c̃ = c− 24λmin, λ̃i = λi − λmin.

Theorem 5.6. Let V be strongly σ -rational. Then l ≤ c̃.
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Proof. Let H be a Cartan subalgebra of V1. Note that the component operators of
the vertex operators Y (u, z) on V for u ∈ H form a Heisenberg Lie algebra. This
amounts to saying that for u, v ∈ H the following relations hold:

(5-6) [um, vn] = mδm,−n〈u, v〉.

In fact, these relations also hold true on any σ -twisted V -module M .
Consider (g, h)= (1, 1). Let Fi = FM i be as defined in (5-1). Then Fi ∈C(1, 1).

Recall that

η(τ)= q1/24
∞∏

n=1

(1− qn)

is a modular form of weight 1
2 . Then

η(τ)c̃ Fi (τ )= q λ̃i

∞∏
n=1

(1− qn)c̃
∞∑

n=0

trMλi+n/2φ(σ)q
n/2

is holomorphic in H∪{i∞}. Now it follows from the transformation law for η(τ)
and Theorem 5.2 that the m-tuple(

η(τ)c̃ F1(τ ), . . . , η(τ )
c̃ Fm(τ )

)
is a holomorphic vector-valued modular form of weight c̃/2. So the Fourier coef-
ficients of η(τ)c̃ Fi (τ ) have polynomial growth by Proposition 5.1.

The Stone–von Neumann theorem provides us a somewhat different way to look
more closely at Fi (τ ). Namely, M i has the following tensor decomposition:

(5-7) M i
= M(1)⊗C�M i ,

where M(1)= C[um | u ∈ H, m > 0] is the Heisenberg vertex operator algebra of
rank l generated by H and �M i = {w ∈ M i

| unw= 0 for u ∈ H and n > 0}. Then
the trace function Fi (τ ) corresponding to the decomposition (5-7) is equal to

q(l−c)/24η(τ)−l tr�iφ(σ)q
L(0),

as trM(1)φ(σ)q L(0)
= ql/24η(τ)−l . Thus

(5-8) η(τ)c̃ Fi (τ )= q(l−c)/24η(τ)c̃−l tr�iφ(σ)q
L(0).

We know the Fourier coefficients of the left side of (5-8) have polynomial growth.
This forces the same to be true on η(τ)c̃−l . Then one has c̃− l ≥ 0, as η(τ)s has
exponential growth of Fourier coefficients whenever s < 0; cf. [Knopp 1970]. �

We now use Theorem 5.6 to do an estimation on the dimension of V1
2
.

Corollary 5.7. Let V be strongly σ -rational. Then dim V1
2
≤ 2c̃+ 1.
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Proof. Let d be a nonnegative integer such that 2d ≤ dim V1
2
≤ 2d+1. Then there

exists a unique (up to a constant) nondegenerate bilinear form satisfying (4-1). We
point out that the restriction of ( · , · ) to V1

2
is still nondegenerate. So we can choose

elements bi , bi ∗
∈ V1

2
such that (bi , b j ∗)= δi j and (bi , b j )= 0= (bi ∗, b j ∗) for all

1≤ i, j ≤ d. Set hi
= bi
−1(b

i )∗
−11 for i = 1, . . . , d . Then hi

∈ V1 and hi
1h j
= δi, j .

hi
0h j
= 0 for i, j ∈ {1, · · · , d}. As a result,

∑d
i=1 Chi

⊂ V1 is contained in a Cartan
subalgebra of V1. By Corollary 5.7, d ≤ l ≤ c̃, and the proof is complete. �

6. C2-cofiniteness and integrability

We continue our discussion on the weight 1 subspace V1. We will determine the
vertex operator subalgebra 〈V1〉 of V generated by V1 following the approach in
[Dong and Mason 2006]. It turns out that 〈V1〉 is isomorphic to

Lg1(k1, 0)⊗ · · ·⊗ Lgs (ks, 0)⊗M(1),

where V1 = g1 ⊕ · · · ⊕ gs ⊕ Z(V1), gi are simple, ki ≥ 1 are integers, and M(1)
is the Heisenberg vertex operator algebra built up from Z(V1) (see below for the
definition of Lg(k, 0)). Moreover, 〈V1〉 is contained in the rational vertex operator
subalgebra Lg1(k1, 0) ⊗ · · · ⊗ Lgs (ks, 0) ⊗ VL for some positive definite lattice
L ⊂ Z(V1) satisfying rank(L)= dim Z(V1).

Here we need to review the construction of untwisted affine Kac–Moody Lie
algebras ĝ associated with simple Lie algebras g and relevant results from [Kac
1990]. Let h be a Cartan subalgebra of g and 8 the corresponding root system.
Fix a nondegenerate symmetric invariant bilinear form ( · , · ) on ĝ such that the
square length of a long root is 2, where we have identified h with its dual via the
bilinear form. Then the affine Kac–Moody algebra associated to g is given by

ĝ= g⊗C[t, t−1
]⊕CK

with the bracket relations

(6-1) [u(m), v(n)] = [u, v](m+ n)+m(u, v)δm+n,0K and [K , ĝ] = 0

for u, v ∈ g and m, n ∈ Z, where u(m) = u ⊗ tm . Let L(λ) be the irreducible
g-module with highest weight λ ∈ h. Consider L(λ) as a g⊗ C[t]-module with
g⊗Ct[t] acting trivially and with K acting as the scalar k ∈C. Then the generalized
Verma module

V (k, λ)= Indĝ
gL(λ)=U (ĝ)⊗U (g⊗C[t]⊕CK ) L(λ)

has the unique irreducible quotient L(k, λ). It is well known that L(k, λ) is inte-
grable if and only if k is a nonnegative integer and λ is a dominant integral weight
such that (λ, θ)≤ k, where θ ∈8 is the maximal root.
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Let V be a VOSA of strong CFT type and let 〈 · , · 〉 be the unique nondegenerate
bilinear form satisfying 〈1, 1〉 = −1. Suppose that g ⊂ V1 is a simple subalgebra.
Then both bilinear forms ( · , · ) and 〈 · , · 〉 on g are symmetric and invariant, so
they must be proportional, that is,

(6-2) 〈 · , · 〉 = k( · , · ) for some k ∈ C.

Then, for any u, v ∈ V1 and integers m, n, one has

[um, vn] = [u, v]m+n +mu1vδm+n,0.

Comparing this with (6-1) shows that the map

u(m)→ um for u ∈ g and m ∈ Z

together with K → k gives rise to a representation of ĝ of level k.
Now we are going to state our main result related to C2-integrability, which

has already been proved to be true in [Dong and Mason 2006] for vertex operator
algebras satisfying C2-cofiniteness. But given a vertex operator superalgebra V =
V0̄⊕V1̄ which satisfies the C2-cofinite condition, generally, we can not prove that
the even part V0̄ also has such a property. So in this sense, the following result
sharpens [Dong and Mason 2006, Theorem 3.1], although the idea is similar.

Theorem 6.1. Let V be a simple vertex operator superalgebra which is C2-cofinite
of strong CFT type, with g ⊂ V1 a simple Lie subalgebra, k the level of V as ĝ-
module, and the vertex operator subalgebra U of V generated by g. Then:

(a) The restriction of 〈 · , · 〉 to g is nondegenerate.

(b) U ∼= L(k, 0).

(c) k is a positive integer.

(d) V is an integrable ĝ-module.

Proof. Let h be a Cartan subalgebra of g, and g= h⊕
∑

α∈8 gα the corresponding
Cartan decomposition of g. Since g is generated by subalgebras isomorphic to
sl(2,C), it is good enough to show the theorem for g= sl(2,C). Let {h, x, y} be the
standard basis of g. Then (α, α)= 2 and k=〈α, α〉/2 from this and Equation (6-2).

Clearly, U = 〈g〉 is a quotient of V (k, 0). So U is a ĝ-integrable module if and
only if U= L(k, 0) for some k ∈ Z+. This is also equivalent to the existence of a
positive integer r such that

(6-3) (x−1)
r 1= 0.

The proof of (6-3) is similar to the same result in [Dong and Mason 2006] and
we omit the proof. (b) then immediately follows. Also note that g ⊂ U , so U
can not be a one-dimensional trivial module. Thus k 6= 0 and k must be a positive
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integer, proving (c) and (a). Since L(k, 0) is rational (cf. [Dong et al. 1997]), V
is a direct sum of irreducible L(k, 0)-modules, each of which is integrable as ĝ-
module. Hence V is an integrable ĝ-module. This proves (d). �

Next we consider a toral subalgebra of V1. Let V be strongly rational or strongly
σ -rational, and let h ⊂ V1 be a toral subalgebra such that the restriction of 〈 · , · 〉
to h remains nondegenerate. Notably, any Cartan subalgebra of V1 automatically
satisfies such a condition.

Theorem 6.2. Suppose V is strongly rational or strongly σ -rational. Let h⊂ V1

be a toral subalgebra such that the restriction of 〈 · , · 〉 to h is nondegenerate.
Then there exists a positive-definite even lattice L ⊂ h with rank dim h and a vertex
operator super subalgebra U of V such that h⊂U ∼= VL .

This theorem has been proved in [Dong and Mason 2006] for vertex operator
algebras; see also [Mason 2011]. The same argument using Lemma 5.5 is also
valid for vertex operator superalgebras.

We now assume that
V1 = g1⊕ · · ·⊕ gs ⊕ h,

where gi are simple Lie algebras and Z(V1) = h. By Theorems 5.3, 6.1, and 6.2
we have the following; see [Dong and Mason 2006; Mason 2011].

Corollary 6.3. The V contains a strongly rational vertex operator subalgebra

U = Lg1(k1, 0)⊗ · · ·⊗ Lgs (ks, 0)⊗ VL ,

where the commutant U c of U in V is a vertex operator superalgebra such that
U c

1 = 0.
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