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Here we extend our previous work on the inverse σk problem. The inverse σk

problem is a fully nonlinear geometric PDE on compact Kähler manifolds.
Given a proper geometric condition, we prove that a large family of non-
linear geometric flows converges to the desired solution of the given PDE.

1. Introduction

We study general flows for the inverse σk-curvature problem in Kähler geometry.
This is a continuation of our previous work [Fang et al. 2011].

Geometric curvature flow has been a central topic in the recent development of
geometric analysis. The σk-curvature problems and inverse σk-curvature problems,
fully nonlinear in nature, have appeared in several geometric settings. Andrews
[1994; 2007] studies the curvature flow of embedded convex hypersurfaces in the
Euclidean space. Several authors study the σk-equation in conformal geometry;
see, for example, [Viaclovsky 2000; Chang et al. 2002; Guan and Wang 2003;
Brendle 2005] and references therein. It is thus interesting to explore the corre-
sponding problem in Kähler geometry.

In Kähler geometry, special cases of the σk-problem have appeared in earlier
literature. Among them, one important example is Yau’s seminal work on the
complex Monge–Ampère equations in the Calabi conjecture. The general case has
been studied recently in [Hou 2009; Hou et al. 2010]. There exist, however, some
analytical difficulties in completely solving this problem for k < n.

Another important example is Donaldson’s J -flow [1999], which gives rise to an
inverse σ1-type equation. J -flow is fully studied in [Chen 2000; 2004; Weinkove
2004; 2006; Song and Weinkove 2008]. The general case is described and treated
in [Fang et al. 2011], via a specific geometric flow. In contrast to the σk-problem,
we can pose nice geometric conditions to overcome the analytical difficulties in
the inverse σk-problem. Here we construct more general geometric flows to solve
this problem.
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We now describe the problem in more detail.
Let (M, ω) be a compact Kähler manifold without boundary. Let χ be a Kähler

metric in the class [χ ] other than [ω]. For a fixed integer 1≤ k ≤ n, we define

σk(χ)=

(
n
k

)
χ k
∧ωn−k

ωn .

It is easy to see that σk(χ) is a global defined function on M , and pointwise it is
the k-th elementary symmetric polynomial on the eigenvalues of χ with respect to
ω. Define

ck :=

∫
M σn−k(χ)∫

M σn(χ)
=

(
n
k

)
[χ ]n−k

· [ω]k

[χ ]n
,

a topological constant depending only on cohomology classes [χ ] and [ω].

Problem [Fang et al. 2011]. Let (M, ω), χ and ck be given as above. Is there a
metric χ̃ ∈ [χ ] satisfying

(1-1) ck χ̃
n
=

(
n
k

)
χ̃n−k

∧ωk?

To tackle this problem, we consider the geometric flow

(1-2)


∂

∂t
ϕ = c1/k

k −

(σn−k(χϕ)

σn(χϕ)

)1/k
,

ϕ(0)= 0

in the space of Kähler potentials of χ :

Pχ :=

{
ϕ ∈ C∞(M)

∣∣χϕ := χ + √−1
2

∂∂̄ϕ > 0
}
.

It is easy to see that the stationary point of the flow corresponds to the solution
of (1-1).

When k= 1, Equation (1-2) is Donaldson’s J -flow [1999], defined in the setting
of the moment map; see [Chen 2000]. In this case, Song and Weinkove [2008]
provide a necessary and sufficient condition for the flow to converge to the critical
metric. For general k, this problem is solved in [Fang et al. 2011] with an analogous
condition, which we now describe.

We define Ck(ω) to be

(1-3) Ck(ω)=
{
[χ ]> 0

∣∣ there exists χ ′ ∈ [χ ] such that

nckχ
′ n−1
−

(
n
k

)
(n− k)χ ′ n−k−1

∧ωk > 0
}
.

Here the inequality indicates that the left-hand side is a positive (n−1, n−1) form.
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For k = n, condition (1-3) holds for any Kähler class. Hence Cn(ω) is the entire
Kähler cone of M .

The need for the cone condition (1-3) is easy to see once we write (1-1) locally
as

σn−k(χ)

σn(χ)
= σk(χ

−1)= ck .

Here χ−1 denotes the inverse matrix of χ under local coordinates. Since χ−1 > 0,
we necessarily have, for all i ,

σk(χ
−1
| i) < ck .

This condition is equivalent to the cone condition (1-3). See [Fang et al. 2011,
Proposition 2.4].

In this note, we generalize the following result:

Theorem 1.1 [Fang et al. 2011]. Let (M, ω) be a compact Kähler manifold. Let
k be a fixed integer 1 ≤ k ≤ n. Assume χ ∈ [χ ] is another Kähler form and
[χ ] ∈ CK (ω); then the flow

(1-4) ∂

∂t
ϕ = c1/k

k −

(
σn−k(χϕ)

σn(χϕ)

)1/k

,

with any initial value χ0 ∈ [χ ], has long-time existence and converges to a unique
smooth metric χ̃ ∈ [χ ] satisfying

(1-5) ck χ̃
n
=

(
n
k

)
χ̃n−k

∧ωk .

Specifically, we study an abstract flow on M of the form

(1-6)

{ ∂
∂t
ϕ = F(χϕ)−C,

ϕ(0)= 0,

where, for f ∈ C∞(R>0,R),

F(χϕ)= f
[
σn−k(χϕ)

σn(χϕ)

]
, C = f (ck).

Note that (1-2) is a special case of (1-6) for f (x)=−x1/k .
Abusing notation, we also regard F as a symmetric function on

0n := {χ ∈ Rn
| χ1 > 0, χ2 > 0, . . . , χn > 0}

by writing F(χϕ)= F(χ1, . . . , χn), where (χi ) are eigenvalues of χϕ with respect
to ω. Then by carefully examining the proof of Theorem 1.1 in [Fang et al. 2011],
we observed that the following structure conditions on F are necessary:
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• Ellipticity: Fi > 0.

• Concavity: Fi j ≤ 0.

• Strong concavity: Fi j + (Fi/χ j )δi j ≤ 0.

Here Fi = ∂F/∂χi and Fi j = ∂
2 F/∂χi∂χ j . Concavity of F follows from strong

concavity and ellipticity of F .
It is easy to check that F(χ1, . . . , χn) := −

(
σn−k(χ)/σn(χ)

)1/k satisfies these
conditions.

We prove the following:

Theorem 1.2 (Main theorem). Let (M, ω) be a compact Kähler manifold and let
k be a fixed integer, 1≤ k ≤ n. Let χ be another Kähler metric such that [χ ] ∈Ck .
Assume that f ∈ C∞(R>0,R) satisfies the conditions

(1-7) f ′ < 0, f ′′ ≥ 0, f ′′+
f ′

x
≤ 0.

Then the flow (1-6) with any initial value χ0 ∈ [χ ] has long-time existence and the
metric χϕ converges in C∞-norm to the critical metric χ̃ ∈ [χ ] that is the unique
solution of (1-1).

Remark 1.3. The novelty of our theorem is that there exists a large family of
nonlinear geometric flows that yields the convergence towards the solution of the
inverse σk problem (1-1). For example, the function f can be chosen as f (x) =
− ln x or f (x)=−x p, for 0< p≤ 1. For the special case f (x)=− ln x and k= n,
we get an analogue of the Kähler–Ricci flow. For f (x)=−x and k = n, a similar
flow was studied in [Cao and Keller 2011].

Remark 1.4. Theorem 1.2 is inspired by, and can be viewed as a Kähler analogue
of, Andrews’ result [2007] on pinching estimates of evolutions of convex hyper-
surfaces. In fact, our structure conditions are very similar to his.

This paper is organized as follows: in Section 2, we discuss the conditions on
f and strong concavity of F ; in Section 3, we give the proof of the main result.

2. Strong concavity

Here we explore concavity properties for functions involving the quotient of ele-
mentary symmetric polynomials.

Proposition 2.1. Let χ ∈ 0n and f : R>0→ R, define

ρ(χ1, . . . , χn)= f
(
σn−k(χ)/σn(χ)

)
,

and suppose f satisfies the conditions

(2-1) f ′ < 0, f ′′ ≥ 0, f ′′+
f ′

x
≤ 0.
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Then ρ satisfies:

• Ellipticity: ρi > 0 for all i .

• Concavity: ρi j ≤ 0.

• Strong concavity: ρi j + (ρi/χ j )δi j ≤ 0.

We refer to the conditions in (2-1) as the structure conditions on f .
The proof is based on the following two propositions:

Proposition 2.2. Let g(χ1, . . . , χn)= log σk(χ) and χ ∈ 0n . Then

• gi > 0,

• gi j ≤ 0, and

• gi j + (gi/χ j )δi j ≥ 0.

Proposition 2.3. Let h(χ1, . . . , χn) := −g(1/χ1, . . . , 1/χn)=− log σk(χ
−1) and

χ ∈ 0n . Then

• hi > 0,

• hi j ≤ 0, and

• hi j + (hi/χ j )δi j ≤ 0.

We refer the reader to the appendix of [Fang et al. 2011] for a detailed proof of
Propositions 2.2 and 2.3.

Proof of Proposition 2.1. Direct computation shows

ρi =− f ′σk−1(χ
−1
| i) 1
χ2

i
> 0.

Concavity of ρ follows from strong concavity and ρi > 0, and hence it suffices to
show that

ρi j +
ρi

χ j
δi j ≤ 0.

Direct computation yields

(2-2) ρi j +
ρi

χ j
δi j = f ′′σk−1(χ

−1
| i)σk−1(χ

−1
| j) 1

χ2
i

1
χ2

j

+ f ′σk−2(χ
−1
| i, j) 1

χ2
i

1
χ2

j
(1− δi j )+ σk−1(χ

−1
| i) 1
χ3

i
δi j .

Since f ′′+ f ′/x ≤ 0 and f ′′ ≥ 0, we have

(2-3) ρi j +
ρi

χ j
δi j ≤ f ′′

{
σk−1(χ

−1
| i)σk−1(χ

−1
| j)

χ2
i χ

2
j

− σk(χ
−1)

[
σk−2(χ

−1
| i, j)

χ2
i χ

2
j

(1− δi j )+
σk−1(χ

−1
| i)

χ3
i

δi j

]}
≤ 0.
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The last inequality follows from Proposition 2.3 and the equality

(2-4) hi j +
hi
χ j
δi j =

1
σk(χ−1)2

{
σk−1(χ

−1
| i)σk−1(χ

−1
| j)

χ2
i χ

2
j

− σk(χ
−1)

[
σk−2(χ

−1
| i, j)

χ2
i χ

2
j

(1− δi j )+
σk−1(χ

−1
| i)

χ3
i

δi j

]}
. �

For a hermitian matrix A = (ai j̄ ), let its eigenvalues be χ = (χ1, . . . , χn). For
f ∈ C∞(R>0,R), we define

F(A) := ρ(χ1, . . . , χn)= f
(σn−k(χ)

σn(χ)

)
.

Define

F i j̄
:=

∂F
∂ai j̄

, F i j̄,kl̄
:=

∂2 F
∂ai j̄ akl̄

.

It is a classical result that the properties of F(A) follow from those of ρ(χ);
see, for example, [Spruck 2005, Theorem 1.4]. In particular, Proposition 2.1 leads
to the following:

Proposition 2.4. Let F(A) be defined as above, and let f ∈ C∞(R>0,R) satisfy
(2-1). Then F satisfies:

• Ellipticity: F i j̄ > 0.

• Concavity: F i j̄,kl̄
≤ 0.

• Strong concavity: at A= diag(χ1, . . . , χn), we have F i ī, j j̄
+ (F i ī/χ j )δi j ≤ 0.

3. Proof of the main theorem

Long-time existence. Differentiating the flow (1-6), we get

∂

∂t
(∂ϕ
∂t
)
= F i j̄ (χ)∂i∂ j̄

(∂ϕ
∂t
)
.

By Proposition 2.4, ∂ϕ/∂t satisfies a parabolic equation. By the maximum princi-
ple, we have

min
t=0

∂ϕ

∂t
≤
∂ϕ

∂t
≤max

t=0

∂ϕ

∂t
,

and thus
min F(χ0)≤ F(χϕ)= f (σk(χ

−1
ϕ ))≤max F(χ0).

By the monotonicity of f , there exist two universal positive constants λ1 and λ2

such that

(3-1) λ1 ≤ σk(χ
−1
ϕ )≤ λ2.
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This implies that χϕ remains Kähler; that is, χϕ > 0. Also, with the bound (3-1),
regarding the estimate aspect, f , f ′, and f ′′ are all bounded.

Concerning the behavior of the flow (1-6) for arbitrary triple data (M, ω, χ), we
have:

Theorem 3.1. Let (M, ω, χ) be given as above; the general inverse σk flow (1-6)
has long-time existence.

Proof. Following [Chen 2004], we derive time-dependent C2-estimates for the
potential ϕ. Since χϕ > 0, it suffices to derive an upper bound for G := trωχϕ =
g pq̄χpq̄ . By a straightforward computation, we get

(3-2) ∂G
∂t
= g pq̄ F i j̄,kl̄χi j̄,pχkl̄,q̄ + g pq̄ F i j̄χi j̄,pq̄

= F i j̄ (g pq̄χpq̄)i j̄ + g pq̄ F i j̄,kl̄χi j̄,pχkl̄,q̄ + g pq̄ F i j̄ (χmq̄ Rm
pi j̄ −χm j̄ Rm

piq̄).

The second term is nonpositive by the concavity of F . For the last term, by
choosing normal coordinates, it is easy to see that

(3-3) g pq̄ F i j̄ (χmq̄ Rm
pi j̄ −χm j̄ Rm

piq̄)≤ C3+C4G,

for two universal positive constants.
Now the upper bound of G follows from the standard maximum principle. Con-

sequently, we have long-time existence for the flow (1-6). �

In what follows, we give the proof of the main theorem. Following [Fang et al.
2011], we first derive a partial C2-estimate for the potential ϕ depending on the
C0-norm of ϕ when the condition [χ ] ∈ Ck(ω) holds. Then we follow the method
developed in [Song and Weinkove 2008] to get a uniform C0-estimate and the
convergence of the flow.

Partial C2-estimate. Without loss of generality, we can assume the initial metric
χ0 is the metric χ ′ in [χ ] satisfying cone condition (1-3). Since different initial
data differ by a fixed potential function, the same estimates carry over. Again, since
χϕ > 0, it suffices to bound χϕ from above. Take G(x, t, ξ) := log(χi j̄ξ

iξ j̄ )− Aϕ,
for x ∈ M and ξ ∈ T(1,0)x M with gi j̄ξ

iξ j̄
= 1. A is a constant to be determined.

Assume G attains its maximum at (x0, t0) ∈ M × [0, t], along the direction ξ0 .
Choose normal coordinates of ω at x0 , such that ξ0 = ∂/∂z1 and (χi j̄ ) is diagonal at
x0 . By the definition of G, it is easy to see that χ11̄=χ1 is the largest eigenvalue of
{χi j̄ } at x0 . We can assume t0 > 0; otherwise we would be done. Thus, locally, we
consider H := logχ11̄− Aϕ instead, which also achieves its maximum at (x0, t0).

For simplicity, we write χ = χϕ . At x0 , assume that χ = diag(χ1, . . . , χn) with
χ1 ≥ χ2 · · · ≥ χn > 0. We use χ to denote the hermitian matrix (χi j̄ ) or the set of
the eigenvalues of χϕ interchangeably when no confusion arises.
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We compute the evolution of H :

∂H
∂t
=
χ11̄,t

χ11̄
− A

∂ϕ

∂t
=

F i j̄χi j̄,11̄+ F i j̄,kl̄χi j̄,1χkl̄,1̄

χ11̄
− A

∂ϕ

∂t
,

Hi ī =
χ11̄,i ī

χ11̄
−
|χ11̄,i |

2

χ2
11̄

− Aϕi ī .

By the maximum principle, at (x0, t0) we have

(3-4) 0≤ ∂H
∂t
−

n∑
i=1

F i ī Hi ī =
1
χ11̄

F i ī (χi ī,11̄−χ11̄,i ī )− A∂ϕ
∂t
+ AF i īϕi ī + B,

where

B = 1
χ11̄

∑
1≤i, j,k,l≤n

F i j̄,kl̄χi j̄,1χkl̄,1̄+

n∑
i=1

F i ī |χ11̄,i |
2

χ2
11̄

is the collection of all terms involving third-order derivatives.
We claim that B ≤ 0; the proof is presented at the end of this section. Assuming

that, (3-4) leads to

(3-5) 1
χ11̄

F i ī (χi ī,11̄−χ11̄,i ī )≥ A∂ϕ
∂t
− AF i īϕi ī .

We simplify the left-hand side of (3-5) by the Ricci identity:

(3-6) LHS=
1
χ11̄

n∑
i=1

F i ī (χi ī Ri ī11̄−χ11̄ R11̄i ī )

≤
C1
∑n

i=1 F i īχi

χ11̄
−

n∑
i=1

F i ī R11̄i ī ≤
C0

χ11̄
+C2

n∑
i=1

F i ī .

For the bound on
∑n

i=1 F i īχi , we used (3-1) and the following computation:

(3-7)
n∑

i=1

F i īχi =− f ′
n∑

i=1

σk−1(χ
−1
|i) 1
χ2

i
χi

=− f ′
n∑

i=1

σk−1(χ
−1
|i) 1
χi
=−k f ′σk(χ

−1)≤ C.

To deal with the right-hand side of (3-5), we divide into two cases:

Case 1: k< n. In this case, we have the following technical lemma due to the cone
condition.

Lemma 3.2. For k < n, assume that χ0 = χ
′
∈ [χ ] is a Kähler form satisfying

the cone condition (1-3), and that C1 ≤ σk(χ
−1)≤ C2 for two universal constants.
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Then there exists a universal constant N such that if χ1/χn ≥ N , then there exists
a universal constant θ > 0 such that

(3-8) σ
1/k
k

(χ0i ī

χ2
i

)
≥ (1+ θ)c−1/k

k σ
2/k
k (χ−1).

We refer the reader to [Fang et al. 2011, Theorem 2.8] for a proof.

Case 1a: χ1/χn ≥ N , where N is given in Lemma 3.2. Applying Lemma 3.2, we
claim that there exists a universal constant ε > 0 such that

(3-9)
∂ϕ

∂t
− F i īχi ī + (1− ε)F

i īχ0i ī ≥ 0.

Indeed, by direct computation, we have

(3-10)

n∑
i=1

F i īχ0i ī =− f ′
n∑

i=1

σk−1(χ
−1
| i)
χ0i ī

χ2
i

≥−k f ′σ 1−1/k
k (χ−1)σ

1/k
k

(χ0i ī

χ2
i

)
≥−k f ′σ 1−1/k

k (χ−1)(1+ θ)c−1/k
k σ

2/k
k (χ−1).

The first inequality follows from Gårding’s inequality.
Therefore, by taking ε such that (1− ε)(1+ θ) = 1, Equation (3-9) is reduced

to

(3-11)
∂ϕ

∂t
− F i īχi ī − k f ′σ 1+1/k

k (χ−1)c−1/k
k ≥ 0.

By scaling, we can assume ck = 1, and modifying f by adding a constant, we
can further assume that f (1)= 0. Plugging in F i ī and letting x = σk(χ

−1), (3-11)
is equivalent to

(3-12) f (x)+ k f ′(x)x − k f ′(x)x1+1/k
≥ 0.

The inequality above holds provided f ′′+ f ′/x ≤ 0 and f (1)= 0.
Combining (3-5), (3-6) and (3-9), we have

(3-13) Aε
n∑

i=1

F i īχ0i ī ≤
C1

χ1
+C2

n∑
i=1

F i ī .

Since χ0 is a fixed form, there exists a universal constant λ > 0 such that

Aλ
n∑

i=1

F i ī
≤ Aε

n∑
i=1

F i īχ0i ī .
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Hence, in (3-13), taking A such that Aλ−C2 = 1, an upper bound for χ1 will
follow once we have shown

∑n
i=1 F i ī is bounded from below. For that we have

(3-14)
n∑

i=1

F i ī
=− f ′

∑
σk−1(χ

−1
| i) 1
χ2

i

≥−k f ′σ 1−1/k
k (χ−1)σ

1/k
k

( 1
χ2

i

)
≥ C̃σ 1+1/k

k (χ−1)≥ C.

Case 1b: χ1/χn ≤ N . In this case, the upper bound for χ1 follows directly from
the lower bound (3-1) on σk(χ

−1). Since

(3-15) λ1 ≤ σk(χ
−1)≤

(
n
k

)
1
χ k

n
,

we get an upper bound for χn , and thus an upper bound for χ1, because χ1 ≤ Nχn .

Case 2: k = n. In this case, we continue on (3-5) directly. Since we are only
concerned with f on the closed interval [λ1, λ2], we can assume that f is positive
by adding a constant. By (3-6), we have that

(3-16) LHS of (3-5)≤
C0

χ1
+C2

n∑
i=1

F i ī
≤ C3

n∑
i=1

1
χi
.

For the right-hand side, we have

(3-17) RHS of (3-5)≥ A
(
− f (ck)+ n f ′σn(χ

−1)
)
+ AεC4

n∑
i=1

1
χi
.

Combining (3-16) and (3-17) and taking A such that AεC4 −C3 = 1, we find
there exists a universal constant C such that

(3-18)
n∑

i=1

1
χi
≤ C.

Consequently, we have a lower bound on χi for all i , and thus an upper bound for
χ1 by (3-1).

Thus we have proved that there exists a universal constant C such that

χ1 ≤ C.

This leads to:

Theorem 3.3. Let the notation be as above; we have

|∂∂̄ϕ|C0 ≤ CeAϕ−infM×[0,t] ϕ

for two universal constants A and C and any time interval [0, t].
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Finally, we prove the claim that

B = 1
χ11̄

∑
1≤i, j,k,l≤n

F i j̄,kl̄χi j̄,1χkl̄,1̄+

n∑
i=1

F i ī |χ11̄,i |
2

χ2
11̄

≤ 0.

We divide B into three groups:

X = 1
χ11̄

∑
1≤i, j≤n

F i ī, j j̄χi ī,1χ j j̄,1̄+ F11̄ |χ11̄,1|
2

χ2
11̄

.

That X is nonpositive follows from the strong concavity of F in Proposition 2.4.

Y = 1
χ11̄

n∑
i=2

F i 1̄,1īχi 1̄,1χ1ī,1̄+

n∑
i=2

F i ī |χ11̄,i |
2

χ2
11̄

.

One sees by direct computation that F i 1̄,1ī
+ F i ī/χ1 ≤ 0 for all i , and thus Y ≤ 0.

Z = 1
χ11̄

∑
i 6= j, j>1,k 6=l,k>1

F i j̄,kl̄χi j̄,1χkl̄,1̄.

Again by direct computation, each term is nonpositive. We have thus finished the
proof of the claim.

C0-estimate and convergence of the flow. Following the method in [Song and
Weinkove 2008], we introduce two functionals. The monotonic behavior of these
functionals along the flow (1-6) yields the C0-estimate and convergence of the flow.
Define functionals in Pχ0 by

(3-19) Fk,χ0
(φ)= Fk(φ)=

∫ 1

0

∫
M
φ̇tχ

k
φt
∧ωn−k dt,

where φt is an arbitrary smooth path in Pχ0
connecting 0 and φ, and φ̇t denotes

a time derivative. One can readily check that this definition is independent of the
choice of the path ϕt . Moreover, define

(3-20) Fk,n(φ)=

(
n
k

)
Fk(φ)− cn−kFn(φ).

The first variation of Fn−k,n is

d
dt

Fn−k,n(φ)=

∫
M
φ̇t

((
n
k

)
χn−k
φt
∧ωk
− ckχ

n
φt

)
.

It follows that the Euler–Lagrange equation of Fn−k,n is precisely the critical equa-
tion (1-1):

ckχ
n
φ =

(
n
k

)
χn−k
φ ∧ωk .
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We have the following properties, the first of which is shown in [Fang et al.
2011, Theorem 4.1].

Proposition 3.4 (uniqueness). The solution to the critical equation (1-1) is unique
up to a constant.

Proposition 3.5 (monotonicity of Fn−k,n). The functional Fn−k,n is decreasing
along the flow (1-6).

Proof. By direct computation, we have

(3-21) d
dt

Fn−k,n(ϕt)=

∫
M
ϕ̇t

((
n
k

)
χn−k
ϕ ∧ωk

− ckχ
n
ϕ

)
=

∫
M

(
f (σk(χ

−1
ϕ ))− f (ck)

)
(σk(χ

−1
ϕ )− ck)χ

n
ϕ < 0.

The integrand is of the form ( f (a) − f (b))(a − b), which is negative because
f ′ < 0. �

Proposition 3.6 (monotonicity of Fn−k). The functional Fn−k is nonincreasing
along the flow (1-6).

Proof. First define g(x) = f (1/x). It follows that g is concave if and only if
f ′′+ f ′/x ≤ 0. Then by Jensen’s inequality, we have

(3-22) 1∫
M χ

n−k∧ωk

∫
M

f (σk(χ
−1))χn−k

∧ωk

=
1∫

M χ
n−k∧ωk

∫
M

g
(
σn(χ)

σn−k(χ)

)
χn−k

∧ωk

≤ g
(

1∫
M χ

n−k∧ωk

∫
M

σn(χ)

σn−k(χ)
χn−k

∧ωk
)

= g
( 1

ck

)
= f (ck).

Hence

(3-23) ∂

∂t
Fn−k =

∫
M

(
f (σk(χ

−1
ϕ ))− f (ck)

)
χn−k
ϕ ∧ωk

≤ 0. �

Finally, we single out the essential steps for the rest of the proof. By [Fang et al.
2011, Theorem 4.5], we have uniform bounds for the oscillation of ϕt , that is,

‖supϕt − infϕt‖ ≤ C.

Then using the functional Fn−k , we obtain a suitable normalization ϕ̂t of ϕt ,
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for which we can get uniform C0-estimates, and thus uniform C2-estimates by
Theorem 3.3. Higher-order estimates follow from the Evans–Krylov and Schauder
estimates. The corresponding metric thus converges to the critical metric solving
the inverse σk problem (1-1).
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