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EINSTEIN METRICS AND EXOTIC SMOOTH STRUCTURES

MASASHI ISHIDA

We prove new existence theorems of 4-manifolds admitting infinitely many
distinct smooth structures for which no Einstein metric exists.

1. Introduction

A Riemannian metric g is called Einstein if its Ricci curvature, considered as a
function on the unit tangent bundle, is constant. It is known that any closed oriented
Einstein 4-manifold X satisfies

(1) 2χ(X)≥ 3|τ(X)|,

where χ(X) and τ(X) denote respectively the Euler characteristic and signature
of X . This is called the Hitchin–Thorpe inequality [Hitchin 1974; Thorpe 1969;
Besse 1987]. Hitchin [1974] proved that any closed oriented Einstein 4-manifold
satisfying 2χ(X)=3|τ(X)| is finitely covered by either a K3 surface or the 4-torus.

On the other hand, by using Seiberg–Witten invariants [Witten 1994], LeBrun
[1996] constructed the first example of a simply connected closed 4-manifold X
without Einstein metrics that nonetheless satisfies the strict Hitchin–Thorpe in-
equality 2χ(X) > 3|τ(X)|. It is now well-known [LeBrun 1995a; 1995b; 2001;
2009] that the existence of monopole classes (see Definition 2 below) gives rise
to obstructions to the existence of Einstein metrics on 4-manifolds. In particular,
any Einstein 4-manifold X with a nonzero special monopole class (see Section 2
below) must satisfy the inequality

(2) χ(X)≥ 3τ(X).

This equality occurs only if X is a compact quotient of the complex hyperbolic
plane equipped with a constant multiple of its standard Kähler–Einstein metric.
For Kähler surfaces, this inequality reduces to the celebrated Miyaoka–Yau in-
equality. We shall call (2) the Miyaoka–Yau–LeBrun inequality. Moreover, an
obstruction found in [LeBrun 1996; 2001] provided the first means of exhibiting
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the dependence of Einstein metrics on smooth structures of underlying topological
4-manifolds [Kotschick 1998]. In particular, we know that there exist infinitely
many topological 4-manifolds which often admit infinitely many smooth structures
for which Einstein metrics do not exist, but nevertheless satisfy the Hitchin–Thorpe
inequality. For instance, see [LeBrun 2001; 2003; Ishida and LeBrun 2002; 2003;
Brunnbauer et al. 2009].

In this article, we shall prove the following general existence theorem of 4-
manifolds without Einstein metrics, which nicely highlights how much there is
to be said about the subject beyond the Hitchin–Thorpe inequality (1) and the
Miyaoka–Yau–LeBrun inequality (2).

Theorem A. For any pair of integers (m, n) satisfying m + n ≡ 0 (mod 2), there
exist infinitely many nonhomeomorphic topological nonspin 4-manifolds with

(χ, τ )= (m, n),

and all such topological nonspin 4-manifolds admit infinitely many distinct smooth
structures for which nonzero special monopole classes exist and Einstein metrics
do not exist. In particular:

(1) If 2m > 3|n|, there are nonspin 4-manifolds admitting infinitely many distinct
smooth structures for which no Einstein metric exists, but that nevertheless
satisfy the strict Hitchin–Thorpe inequality.

(2) If m > 3n, there are nonspin 4-manifolds admitting infinitely many distinct
smooth structures for which nonzero special monopole classes exist and Ein-
stein metrics do not exist, but nevertheless satisfy the strict Miyaoka–Yau–
LeBrun inequality.

Notice that any closed 4-manifold X always satisfies χ(X)+τ(X)≡ 0 (mod 2).
Therefore, m+n≡0 (mod 2) in the above theorem is the best possible. Theorem A
follows from Theorem 11 proved in Section 4. Theorem 11 provides us a way
to construct new examples of 4-manifolds without Einstein metrics. See also
Remark 12 at the end of Section 4.

One of motivations for Theorem A comes from an interesting result due to
Sambusetti [1998]. Using a remarkable inequality of Besson, Courtois, and Gallot
[Besson et al. 1995] concerning the volume entropy, Sambusetti [1998] proved a
topological obstruction to the existence of Einstein metrics on a 4-manifold admit-
ting a nonzero degree map onto compact real or complex hyperbolic 4-manifolds.
By applying the obstruction, Sambusetti proved an interesting existence result for
4-manifolds without Einstein metrics.

Theorem 1 [Sambusetti 1998, Theorem 4.4]. Any pair of integers (m, n) satisfying
m + n ≡ 0 (mod 2) can be realized as the Euler characteristic χ and signature τ
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of infinitely many nonhomeomorphic closed smooth 4-manifolds without Einstein
metrics.

We notice that Sambusetti’s obstruction actually depends only on the homotopy
type of the manifold, and therefore in principle applies to all smooth structures.
However, it appears to be unknown if most of the examples considered by Sam-
busetti actually admit exotic smooth structures. For instance, Theorem 1 is proved
by considering the following connected sum Y p

m,n [Sambusetti 1998, Remarks 4.5]:

(|m| + |n| + p)M # (|m| + |n| − n+ p)CP2 #
(
|m| + |n| − m+n

2
+ 1+ p

)
Y,

where p is any nonnegative integer, M is a Mumford fake projective plane [1979]
and Y := S2

×T 2. We also remark that there is a vanishing theorem of Witten [1994]
which asserts that all the Seiberg–Witten invariants of a connected sum X1#X2 of 4-
manifolds with b+2 (X1)≥ 1 and b+2 (X2)≥ 1 vanish, where b+(X) is the dimension
of a maximal linear subspace of H 2(X,R) on which the cup product pairing is
positive definite. Hence, all the Seiberg–Witten invariants of the connected sum
Y p

m,n vanish in general. At least, the present author does not know how to detect
the existence or nonexistence of monopole classes of Y p

m,n , and, to the best of our
knowledge, it is also unknown whether the underlying topological manifold of
Y p

m,n admits infinitely many smooth structures for which no Einstein metric exists.
Hence, Theorem A can be seen as a natural generalization of Sambusetti’s result
and actually contains several new aspects which were not covered by Sambusetti’s
result. Moreover, our method of proof is totally different from that of Theorem 1.
In particular, we use the Seiberg–Witten monopole equations [Witten 1994] to
prove Theorem A.

We mention that a Seiberg–Witten refinement of Theorem 1 was first proved
by Del Rio Guerra [2002, Theorem D], who showed the existence of non-Einstein
4-manifolds with free fundamental group. Our Theorem A can be seen as a natural
generalization of that result, because our method of proof implies the existence
of topological 4-manifolds with free fundamental group and admitting infinitely
many distinct smooth structures for which Einstein metrics do not exist. (See also
Remark 12 below.)

Theorem A is a result on the nonspin case. The second main result of the present
article tells us that a similar result still holds in the spin case:

Theorem B. For any pair of integers (m, n) satisfying m + n ≡ 0 (mod 2) and
n ≡ 0 (mod 16), there exist infinitely many nonhomeomorphic topological spin
4-manifolds with (χ, τ ) = (m, n) and all such topological spin 4-manifolds ad-
mit infinitely many distinct smooth structures for which nonzero special monopole
classes exist and Einstein metrics do not exist. In particular:
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(1) If 2m > 3|n|, there are spin 4-manifolds admitting infinitely many distinct
smooth structures for which no Einstein metric exists, but nevertheless satisfy
the strict Hitchin–Thorpe inequality.

(2) If m>3n, there are spin 4-manifolds admitting infinitely many distinct smooth
structures for which nonzero special monopole classes exist and Einstein met-
rics do not exist, but nevertheless satisfy the strict Miyaoka–Yau–LeBrun in-
equality.

By Rohlin’s theorem, any spin 4-manifold X must satisfy τ(X) ≡ 0 (mod 16).
Therefore, we cannot remove the condition n ≡ 0 (mod 16) from Theorem B.

2. Obstruction to the existence of Einstein metrics

By using several nice results proved in [LeBrun 2009], we shall prove an obstruc-
tion to the existence of Einstein metrics on 4-manifold; see Theorem 7 below. We
shall use the obstruction to prove the main results.

Let X be a closed oriented Riemannian 4-manifold with b+(X)≥2. Recall that a
spinc-structure 0X on a smooth Riemannian 4-manifold X induces a pair of spinor
bundles S±0X

which are Hermitian vector bundles of rank 2 over X . A Riemannian
metric on X and a unitary connection A on the determinant line bundle L0X :=

det(S+0X
) induce the twisted Dirac operator DA : 0(S+0X

) → 0(S−0X
). Seiberg–

Witten monopole equations over X are the following nonlinear partial differential
equations for a unitary connection A of the complex line bundle L0X and a spinor
φ ∈ 0(S+0X

):

(3) DAφ = 0, F+A = iq(φ),

where F+A is the self-dual part of the curvature of A and q : S+0X
→∧

+ is a certain
natural real-quadratic map satisfying

|q(φ)| = 1
2
√

2
|φ|2,

where ∧+ is the bundle of self-dual 2-forms. We recall some background.

Definition 2 [Kronheimer 1999; Ishida and LeBrun 2003; LeBrun 2009]. Let X
be a closed oriented smooth 4-manifold with b+(X)≥ 2. An element

a ∈ H 2(X,Z)/torsion⊂ H 2(X,R)

is called the monopole class of X if there exists a spinc-structure 0X with

cR
1 (L0X )= a,
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which has the property that the corresponding Seiberg–Witten monopole equations
(3) have a solution for every Riemannian metric on X . Here cR

1 (L0X ) is the image
of the first Chern class c1(L0X ) of the complex line bundle L0X in H 2(X,R).

In what follows, we shall usually denote cR
1 (L0X ) by c1(L0X ) for short. A

monopole class c1(L0X ) of X is called special [Kotschick 2004] if c2
1(L0X ) ≥

2χ(X)+ 3τ(X) holds. We shall also denote the set of all monopole classes on X
by C(X). Then we have the following fundamental result on C(X).

Proposition 3 [Ishida and LeBrun 2003, Proposition 3]. Let X be a closed oriented
smooth 4-manifold with b+(X)≥ 2. Then the set C(X) is a finite set.

Now recall that, for any subset W of a real vector space V , one can consider the
convex hull Hull(W ) ⊂ V , meaning the smallest convex subset of V containing
W . Finiteness of C(X) implies that the convex hull

Hull(C(X))⊂ H 2(X,R)

is compact. Moreover, it is known that the convex hull Hull(C(X)) is symmetric,
that is, Hull(C(X))=−Hull(C(X)). See [LeBrun 2009] for more details.

Since C(X) is a finite set, we are able to write C(X) = {a1, a2, . . . , an}. The
convex hull Hull(C(X)) is then expressed as

(4) Hull(C(X))=
{ n∑

i=1

tiai | ti ∈ [0, 1],
n∑

i=1

ti = 1
}
.

Notice that the symmetric property tells us that Hull(C(X)) contains the zero ele-
ment. Let us consider the self-intersection function

Q : H 2(X,R)→ R,

which is defined by x 7→ x2
:= 〈x ∪ x, [X ]〉, where [X ] is the fundamental class

of X . Since the function Q is a polynomial function, it is a continuous function on
H 2(X,R). Therefore, the restriction Q|H to the compact subset H :=Hull(C(X))
of H 2(X,R) achieves its maximum.

Definition 4 [LeBrun 2009]. Suppose X is a closed oriented smooth 4-manifold
with b+(X) ≥ 2. Let Hull(C(X)) ⊂ H 2(X,R) be the convex hull of the set C(X)
of all monopole classes on X . If C(X) 6=∅, define

β2(X) :=max{Q(x) := x2
| x ∈ Hull(C(X))}.

If instead C(X)=∅, simply define β2(X) := 0.

We are now in a position to recall the following theorem.
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Theorem 5 [LeBrun 2009]. Suppose that X is a closed oriented smooth 4-manifold
with b+(X)≥ 2. If X admits an Einstein metric g,

2χ(X)+ 3τ(X)≥ 2
3β

2(X)

with equality only if both sides vanish, in which case g must be a hyper-Kähler
metric, and X must be diffeomorphic to K3 or T 4.

There are several ways to detect the existence of monopole classes. For any
closed oriented smooth 4-manifold X with b+(X) ≥ 2, one can define the integer
valued Seiberg–Witten invariant SWX (0X ) ∈Z for any spinc-structure 0X by inte-
grating a cohomology class on the moduli space of solutions of the Seiberg–Witten
monopole equations associated with 0X :

SWX : Spin(X)→ Z,

where Spin(X) is the set of all spinc-structures on X . For more details, see [Witten
1994; Morgan 1996]. We call the first Chern class c1(L0X ) a Seiberg–Witten basic
class of X if SWX (0X ) 6= 0 for a spinc-structure 0X . Notice that Seiberg–Witten
basic classes are monopole classes.

On the other hand, there is a sophisticated refinement of the idea of the con-
struction of the Seiberg–Witten invariant due to Bauer and Furuta [2004] (see also
[Bauer 2004a; 2004b]). We call it the stable cohomotopy Seiberg–Witten invariant
and denote it by BFX . This invariant detects the presence of a monopole class via
an element of a certain complicated stable cohomotopy group π0

S1,U
(Q):

BFX (0X ) ∈ π
0
S1,U

(Q).

(See [Bauer 2004a] for the construction of the stable cohomotopy group.) Under
the assumption that b+(X)≥ 2, it is also known that there is the homeomorphism

(5) t BF
: π0

S1,U
(Q)→ Z,

which maps BFX (0X ) to SWX (0X ) [Bauer 2004a, Theorem 4.1 and Proposi-
tion 4.4]. In particular, this map tells us that, if BFX (0X ) = 0 for some spinc-
structure 0X , we have SWX (0X ) = 0. At the same time, it is known that the
nontriviality of BFX (0X ) implies that there are solutions of the following perturbed
equations associated with 0X for all metrics and all self-dual 2-forms η:

DAφ = 0, F+A = iq(φ)+ iη.

Namely, c1(L0X ) is a generic monopole class in the sense of [Kotschick 2004,
Definition 7]. Then, by the standard argument of gauge theory, we know that
c1(L0X ) becomes a special monopole class [Kotschick 2004, Lemma 8]. Hence
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the nontriviality of BFX (0X ) implies the existence of a special monopole class
c1(L0X ). We shall use this fact to prove the main results.

By using BFX , we are able to prove the following result:

Proposition 6. Let X be a closed oriented smooth 4-manifold with b+(X) ≥ 2.
Suppose that SWX (0X ) 6= 0 holds for a spinc-structure 0X . Let N be a closed
oriented smooth 4-manifold with b+(N ) = 0. Then a connected sum M := X # N
has monopole classes and satisfies the bound

(6) β2(M)≥ 2χ(X)+ 3τ(X).

Proof. As was already mentioned, there is a comparison map (5) between BFX and
SWX , where we used the assumption that b+(X)≥2. In particular, if SWX (0X ) 6=0
for some spinc-structure 0X , then BFX (0X ) 6=0. Then the proofs of [Ishida and Le-
Brun 2003, Proposition 6 and Corollary 8] (see also [Bauer 2004a, Theorem 8.8])
tell us that

(7) ±c1(L0X )+

k∑
i=1

± Ei

are monopole classes of the connected sum M := X # N , where c1(L0X ) is the
first Chern class of the complex line bundle L0X associated with 0X . Additionally
E1, E2, . . . , Ek is a set of generators for H 2(N ,Z)/torsion relative to which the
intersection form is diagonal and the ± signs are arbitrary and independent of one
another. In particular, by (7), we have the following two monopole classes of M :

b1 := c1(L0X )+

k∑
i=1

Ei , b2 := c1(L0X )−

k∑
i=1

Ei .

By (4), we obtain
c1(X)= 1

2b1+
1
2b2 ∈ Hull(C(M)).

We therefore get the following bound (see also Definition 4):

(8) β2(M)≥ c2
1(L0X ).

On the other hand, the assumption that SWX (0X ) 6= 0 forces the dimension d of
Seiberg–Witten monopole moduli space to be nonnegative; that is,

d = 1
4(c

2
1(L0X )− 2χ(X)− 3τ(X))≥ 0.

Equivalently, we have

(9) c2
1(L0X )≥ 2χ(X)+ 3τ(X).

It is clear that (8) and (9) imply the desired bound (6). �
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Theorem 5 and Proposition 6 imply the next result, a particular case of which,
for N = kCP2 # `(S1

× S3), was proved in [LeBrun 2001, Theorem 3.3].

Theorem 7. Let X be a closed oriented 4-manifold with b+(X)≥ 2. Suppose that
SWX (0X ) 6= 0 holds for a spinc-structure 0X on X. Let N be a closed oriented
smooth 4-manifold with b+(N ) = 0. Then a connected sum M := X # N cannot
admit any Einstein metric if

(10) 4b1(N )+ b2(N ) > 1
3(2χ(X)+ 3τ(X)).

In particular, suppose that N is not an integral homology 4-sphere whose funda-
mental group has no nontrivial finite quotient. Then a connected sum M := X # N
cannot admit any Einstein metric if

(11) 4b1(N )+ b2(N )≥ 1
3(2χ(X)+ 3τ(X)).

Proof. Suppose that the connected sum M := X # N admits an Einstein metric.
Then Theorem 5 tells us that

2χ(M)+ 3τ(M)≥ 2
3β

2(M).

This bound with (6) implies

(12) 2χ(M)+ 3τ(M)≥ 2
3(2χ(X)+ 3τ(X)).

On the other hand, a direct computation tells us that

(13) 2χ(M)+ 3τ(M)= 2χ(X)+ 3τ(X)− (4b1(N )+ b2(N )).

By the bounds (12) and (13), we have

2χ(X)+ 3τ(X)− (4b1(N )+ b2(N ))≥ 2
3(2χ(X)+ 3τ(X)).

Equivalently,

(14) 4b1(N )+ b2(N )≤ 1
3(2χ(X)+ 3τ(X)).

By contraposition, we are able to conclude that M cannot admit any Einstein metric
if (10) holds.

Now suppose that N is not an integral homology 4-sphere whose fundamental
group has no nontrivial finite quotient. Then the equality cannot occur in (14).
We shall prove this as follows. First of all, notice that Theorem 5 tells us that
the equality can occur only in the case where the connected sum M := X # N is
diffeomorphic to K3 or T 4. Both K3 and T 4 are minimal Kähler surfaces. At
the same time, [Kotschick 1997, Theorem 5.4] tells us that if a minimal Kähler
surface with b+ > 1 admits the connected sum decomposition X # N , then N must
be an integral homology 4-sphere whose fundamental group has no nontrivial finite
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quotient. Hence equality never occurs in (14) as desired. Therefore we conclude
that, in this case, M cannot admit any Einstein metric if (11) holds. �

3. Smooth structures and the geography of spin 4-manifolds

The main result of this section is Proposition 10 below. We start by recalling a nice
result of Park [2002] on the geography of spin symplectic 4-manifolds.

Let X be a simply connected closed 4-manifold. We define the quantities

χh(X) : =
χ(X)+ τ(X)

4
=

b+(X)+ 1
2

,(15)

c(X) : = c2
1(X)= 2χ(X)+ 3τ(X)= 4+ 5b+(X)− b−(X).(16)

Now suppose that X is a spin symplectic 4-manifold with b+ > 1. Then [Taubes
1994] tells us that X must satisfy

(17) c(X)≥ 0.

Moreover, Rohlin’s theorem forces τ(X) ≡ 0 (mod 16). As mentioned in [Park
2002, Lemma 2.1], this is equivalent to

(18) c(X)≡ 8χh(X) (mod 16).

The above facts tell us that the only lattice points (χh, c) satisfying both (17)
and (18) can possibly be realized as (χh(X), c(X)) of a simply connected spin
symplectic 4-manifold X . Such pairs (χh, c) of integers are called allowed lattice
points.

We are now in a position to recall the following result on the geography of the
spin symplectic 4-manifolds:

Theorem 8 [Park 2002, Theorem 1.1]. There is a line c = f (χh) with a slope
> 8.76 in the (χh, c)-plane such that any allowed lattice point satisfying c≤ f (χh)

in the first quadrant can be realized as (χh, c2
1) of a simply connected spin non-

complex symplectic 4-manifold which admits infinitely many distinct smooth struc-
tures, all of which admit a symplectic form. In particular, all allowed lattice points
(χh, c) except finitely many lying in the region 0≤ c ≤ 8.76χh satisfy c ≤ f (χh).

On the other hand, let Kg be a fibered knot in S3 with a punctured genus g
surface as fiber. Let MKg be the 3-manifold obtained by performing 0-framed
surgery on Kg. Let m be a meridional circle to Kg. Then the meridional circle
m can be seen as a circle in MKg . The 3-manifold MKg can be consider as a
fiber bundle over the circle m with a closed Riemann surface 6g as a fiber. In
MKg × S1, there is a smoothly embedded torus Tm =m× S1 of self-intersection 0.
A famous result of Thurston [1976] tells us that the 4-manifold MKg × S1 admits
a symplectic structure with symplectic section Tm . For any symplectic 4-manifold
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X with a symplectically embedded torus T of self-intersection 0, we can consider
the symplectic fiber sum X MKg

of X with MKg × S1 as follows:

X Kg := X #T=Tm (MKg × S1)= [X − (T × D2)] ∪ [(MKg × S1)− (Tm × D2)],

where T × D2 is a tubular neighborhood of the torus T in the manifold X . Under
a certain condition on X , Fintushel and Stern proved that X Kg is homeomorphic to
X and provided a way to compute the Seiberg–Witten invariants of X Kg :

Theorem 9 [Fintushel and Stern 1998, Theorem 1.5]. Let X be a simply connected
symplectic 4-manifold that contains a symplectically embedded torus T of self-
intersection 0 in a cusp neighborhood with π1(X − T ) = 1 and representing a
nontrivial homology class [T ]. If Kg is a fibered knot, X Kg := X #T=Tm (MKg× S1)

is a symplectic 4-manifold which is homeomorphic to X and whose Seiberg–Witten
polynomial is given by

SWKg = SWX ·1X Kg
(t),

where 1X Kg
(t) is the Alexander polynomial of Kg and t = exp(2[T ]).

The polynomial SWX is defined as follows. Let {±β1,±β2, . . . ,±βn} be the
set of nonzero Seiberg–Witten basic classes of X . Then we set b0 = SWX (0),
b j = SWX (β j ), and tβ j = exp(β j ). Then we define the Seiberg–Witten polynomial
SWX as follows:

SWX = b0+

n∑
j=1

b j
(
tβ j + (−1)(χ(X)+τ(X))/4t−1

β j

)
.

Since any two smooth 4-manifolds which have different Seiberg–Witten polyno-
mials are nondiffeomorphic, one can apply Theorem 9 to construct 4-manifolds
admitting infinitely many distinct smooth structures. Indeed, Park [2002] proved
that every symplectic 4-manifold W in Theorem 8 admits infinitely many distinct
smooth structures by showing that the 4-manifold W contains a symplectically
embedded torus T of self-intersection 0 in a cusp neighborhood with π1(X−T )=1
and representing a nontrivial homology class [T ], that is, the 4-manifold W satisfies
the assumption in Theorem 9. See [Park 2002, Claim 1] for more details.

To prove the main results of the present article, we need to refine Park’s result
on the existence of exotic smooth structures:

Proposition 10. Let W be any symplectic 4-manifold in Theorem 8 and let N be
any closed smooth 4-manifold with b+(N ) = 0. Then the underlying topological
4-manifold of W # N admits infinitely many distinct smooth structures.
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Proof. As was already proved in [Park 2002, Claim 1], every symplectic 4-manifold
W in Theorem 8 contains a symplectically embedded torus T of self-intersection 0
in a cusp neighborhood with π1(X−T )=1 and representing a nontrivial homology
class [T ]. On the other hand, for any fibered knot Kg in S3 with a punctured genus
g surface as fiber, consider the 3-manifold MKg obtained by performing 0-framed
surgery on Kg. As was already mentioned above, we are able to consider the
symplectic fiber sum

WKg =W #T=Tm (MKg × S1).

Then, Theorem 9 tells us that WKg is homeomorphic to W . Now, let N be any
closed smooth 4-manifold with b+(N ) = 0. Then we consider a connected sum
WKg #N . Of course, WKg #N is homeomorphic to W #N . Notice that the connected
sum WKg # N is not necessarily symplectic in general.

Next, we show that there are monopole classes of WKg # N . In fact, [Bauer
2004a, Proposition 5.4] tells us that the comparison map (5), that is,

t BF
: π0

S1,U
(Q)→ Z,

becomes an isomorphism for any symplectic 4-manifold M with b+(M) > 1. This
fact and a result of Taubes [1994] on the nontriviality of Seiberg–Witten invariants
of any symplectic 4-manifold M with b+(M) > 1 imply the nontriviality of the
stable cohomotopy Seiberg–Witten invariants of M . In particular, we can conclude
that the symplectic 4-manifold WKg has

±c1(KWKg
)

as its monopole classes, where KWKg
is the canonical line bundle of WKg . Since the

nontriviality of the stable cohomotopy Seiberg–Witten invariants does not change
under the connected sum with N [Ishida and LeBrun 2003, Proposition 6], we can
conclude that the connected sum WKg # N also has monopole classes [Ishida and
LeBrun 2003, Proposition 6 and Corollary 8], that is, the cohomology classes

(19) ±c1(KWKg
)+

k∑
i=1

±Ei

become monopole classes of the connected sum WKg # N , where E1, E2, . . . , Ek

is a set of generators for H 2(N ,Z)/torsion relative to which the intersection form
is diagonal and the ± signs are arbitrary and independent of one another.

On the other hand, following the argument at the beginning of the proof of
[Fintushel and Stern 1998, Corollary 1.7], we are able to express c1(KWKg

) more
explicitly. For the reader, let us explain it here. First of all, notice that the homology
H2(MKg×S1) is generated by the classes of the symplectic curves Tm and6g. This
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tells us that the first Chern class c1(KMKg×S1) of the canonical line bundle KMKg×S1

of the symplectic 4-manifold MKg × S1 has the form

c1(KKg×S1)= α[Tm] +β[6g].

Since we have [Tm]
2
= [6g]

2
= 0 and [Tm] · [6g] = 1,

c1(KKg×S1) · [6g] = α, c1(KWKg
) · [Tm] = β.

These facts and the adjunction formula tell us that α = 2g − 2 and β = 0 hold.
Therefore, we conclude that

c1(KKg×S1)= (2g− 2)[Tm] = (2g− 2)[T ].

On the other hand, c1(KWKg
) = c1(KW )+ c1(KKg×S1)+ 2[T ] holds by the con-

struction of WKg . Therefore,

(20) c1(KWKg
)= c1(KW )+ c1(KKg×S1)+ 2[T ] = c1(KW )+ 2g[T ].

By (19) and (20), we conclude that

±(c1(KW )+ 2g[T ])+
k∑

i=1

± Ei

are monopole classes of WKg # N .
By considering an infinite sequence {Kg`}`∈N of fibered knots with g`≥1, where

the genus g` is strictly increasing with respect to `, that is, g`→∞ when `→∞,
we have an infinite sequence {WKg`

# N }`∈N of smooth 4-manifolds which are
homeomorphic to W # N and, for each `,

(21) ±(c1(KW )+ 2g`[T ])+
k∑

i=1

± Ei

are monopole classes of WKg`
# N . Suppose now that the sequence

{WKg`
# N }`∈N

contains only finitely many diffeomorphism types. Specifically, suppose that there
exists a positive integer `0 such that WKg`0

#N is diffeomorphic to WKg`i
#N for any

`i ≥ `0. Then, by the expression (21) of the monopole classes and taking `i→∞,
we conclude that the set of monopole classes of 4-manifold WKg`0

#N is unbounded.
However, this is a contradiction because the set of monopole classes of any given
smooth 4-manifold with b+ > 1 must be finite by Proposition 3. Therefore, the
sequence {WKg`

# N }`∈N actually contains infinitely many diffeomorphism types.
As was already mentioned above, since each 4-manifold WKg`

#N is homeomorphic
to W # N , the underlying topological 4-manifold of W # N admits infinitely many
distinct smooth structures as desired. �
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4. Proof of Theorem A

Theorem 11. Let Z be a closed oriented smooth 4-manifold satisfying b+(Z)= 0,
b1(Z) 6= 0, and

(22) 0<
b2(Z)
b1(Z)

<
19
50
,

where b1(Z) and b2(Z) denote the first and second Betti numbers of Z , respec-
tively. Let M be any closed oriented smooth 4-manifold with b1(M)= 0, b+(M)=
0, and b2(M)= 1.

For such 4-manifolds as Z and M , and for any pair of integers (m, n) satisfying
m+n ≡ 0 (mod 2), there exist infinitely many nonhomeomorphic topological non-
spin 4-manifolds Xm,n

Z ,M with (χ, τ ) = (m, n), and all such topological nonspin
4-manifolds admit infinitely many distinct smooth structures for which nonzero
special monopole classes exist and Einstein metrics do not exist.

Proof. For any pair of integers (m, n) satisfying m + n ≡ 0 (mod 2), it is easy to
see that there exist infinitely many pairs (k, `) of sufficiently large positive integers
satisfying the following three conditions:

(x, y) :=
(

m+ n+ 2b1(Z)`
4

, 2m+ 3n+ k+ (4b1(Z)+ b2(Z))`
)
∈ D,

n+ k+ b2(Z)`≡ 0 (mod 16),(23)

k+ (4b1(Z)+ b2(Z))` > 1
3 y,(24)

where D is the set of all pairs of integers satisfying the conditions of Theorem 8.
Notice that the condition (23) is equivalent to

y ≡ 8x (mod 16).

Moreover, the condition (22) was already used, that is,

8.76>
(4b1(Z)+ b2(Z))`
(2b1(Z)`)/4

= 8+ 2
b2(Z)
b1(Z)

,

or, equivalently,
b2(Z)
b1(Z)

< 0.38= 19
50
.

By Theorem 8, for each (x, y) above, there is a simply connected spin noncomplex
symplectic 4-manifold W with

(25)

χh(W ) :=
χ(W )+ τ(W )

4
= x =

m+ n+ 2b1(Z)`
4

,

c2
1(W ) := 2χ(W )+ 3τ(W )= y = 2m+ 3n+ k+ (4b1(Z)+ b2(Z))`.
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Hence we obtain

m+ n = χ(W )+ τ(W )− 2b1(Z)`,(26)

2m+ 3n = 2χ(W )+ 3τ(W )− k− (4b1(Z)+ b2(Z))`.(27)

Consider the connected sum

(28) Xm,n
Z ,M =W # M # (k− 1)CP2 # `Z .

Notice that Xm,n
Z ,M is nonspin. On the other hand, by a direct computation, we obtain

χ(M # (k− 1)CP2 # `Z)= k+χ(`Z)= k+ 2+ b2(Z)`− 2b1(Z)`.

Notice that χ(M) = 3 because we assume that b1(M) = 0, b+(M) = 0, and
b2(M)= 1. Therefore we get

(29) χ(Xm,n
Z ,M)=χ(W )+χ(M#(k− 1)CP2)−2=χ(W )+k+b2(Z)`−2b1(Z)`.

Similarly, we have

τ(M # (k− 1)CP2 # `Z)= τ(M)+ τ((k− 1)CP2)+ τ(`Z)

=−1+ (1− k)− b2(Z)`

=−k− b2(Z)`.

Notice that b+(Z)= 0, so we have τ(Z)=−b2(Z). Therefore

(30) τ(Xm,n
Z ,M)= τ(W )+ τ(M # (k− 1)CP2 # `Z)= τ(W )− k− b2(Z)`.

By (29) and (30), we get

χ(Xm,n
Z ,M)+ τ(X

m,n
Z ,M)= χ(W )+ τ(W )− 2b1(Z)`,(31)

2χ(Xm,n
Z ,M)+ 3τ(Xm,n

Z ,M)= 2χ(W )+ 3τ(W )− k− (4b1(Z)+ b2(Z))`.(32)

Then (26), (27), (31), and (32) immediately tell us that

(33) χ(Xm,n
Z ,M)= m, τ (Xm,n

Z ,M)= n.

On the other hand, by b1(W )= b1(M)= b1(CP2)= 0, we have

(34) b1(X
m,n
Z ,M)= b1(Z)`.

Since there are infinitely many choices of `, (33) and (34) tell us that, for (m, n)
satisfying m+ n ≡ 0 (mod 2), there exist infinitely many nonhomeomorphic non-
spin 4-manifolds Xm,n

Z ,M with (χ, τ )= (m, n). Now set N := M # (k− 1)CP2 #`Z .
We write Xm,n

Z ,M =W # N . Notice that N satisfies b+(N )= 0.
By considering an infinite sequence {Kgi }i∈N of fibered knots with gi ≥ 1 as

the proof of Proposition 10 above, we obtain the sequence {WKgi
# N }i∈N which
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contains infinitely many diffeomorphism types by Proposition 10, and every 4-
manifold Xgi := WKgi

# N is homeomorphic to Xm,n
Z ,M = W # N . To prove that

the 4-manifold Xm,n
Z ,M admits infinitely many distinct smooth structures for which

nonzero monopole classes exist and Einstein metrics do not exist, it is enough to
prove that the smooth 4-manifold Xgi has nonzero special monopole classes and
cannot admit any Einstein metric. It is clear that Xgi has nonzero special monopole
classes by the proof of Proposition 10, where the nontriviality of BF implies the
existence of a special monopole class. On the other hand, since any symplectic
4-manifold with b+ > 1 has nontrivial Seiberg–Witten invariants by a result of
Taubes [1994] and N satisfies b+(N )= 0, Theorem 7 tells us that if

(35) k+ (4b1(Z)+ b2(Z))` > 1
3(2χ(WKgi

)+ 3τ(WKgi
)),

the manifold Xgi := WKgi
# N cannot admit any Einstein metric. By Park’s con-

struction of W and Theorem 9, WKgi
is homeomorphic to W and we therefore

have
2χ(WKgi

)+ 3τ(WKgi
)= 2χ(W )+ 3τ(W ).

So the bound (35) is equivalent to

(36) k+ (4b1(Z)+ b2(Z))` > 1
3(2χ(W )+ 3τ(W )).

However, the bound (36) automatically holds because we have (24) and (25).
Therefore, Xgi :=WKgi

# N cannot admit any Einstein metric as desired. �

Theorem A immediately follows from Theorem 11. Indeed, it is enough to find a
smooth closed 4-manifold satisfying (22) and a closed oriented smooth 4-manifold
M with b1(M) = 0, b+(M) = 0, and b2(M) = 1. For example, set M := CP2

and Z := 11K # 4CP2, where K is a secondary Kodaira surface; cf. [Barth et al.
1984]. We have b1(K )= 1, b+(K )= 0, and b2(K )= 0. It is clear that M satisfies
b1(M) = 0, b+(M) = 0, and b2(M) = 1. We also have b1(Z) = 11, b+2 (Z) = 0,
and b2(Z)= 4. Therefore, we get

b2(Z)
b1(Z)

=
4

11
<

19
50
.

Hence Z := 11K # 4CP2 is a 4-manifold satisfying (22). Hence we have proved
Theorem A by considering the connected sum

Xm,n
11K #4CP2, CP2

=W # kCP2 # `(11K # 4CP2);

see (28).

Remark 12. We are able to use another negative definite 4-manifold satisfying
(22) to prove Theorem A. For example, we are able to use another connected sum



342 MASASHI ISHIDA

aT #bY , or aT #bCP2 as Z above by taking a suitable pair of positive integers (a, b)
for which the condition (22) is satisfied. Here Y is a Mumford fake projective plane
[Mumford 1979] with the reversed orientation, and T is S1

× S3, or a secondary
Kodaira surface. If we take Z as a(S1

× S3)# bCP2, then the resulting 4-manifold
Xm,n

Z ,CP2
has a free fundamental group. See also [Del Rio Guerra 2002].

5. Proof of Theorem B

A method similar to that used in the proof of Theorem 11 enables us to prove
Theorem B:

Theorem 13. For any pair of integers (m, n) satisfying m + n ≡ 0 (mod 2) and
n ≡ 0 (mod 16), there exist infinitely many nonhomeomorphic topological spin
4-manifolds with (χ, τ ) = (m, n) and all such topological spin 4-manifolds ad-
mit infinitely many distinct smooth structures for which nonzero special monopole
classes exist and Einstein metrics do not exist.

Proof.
For any pair of integers (m, n) satisfying m+n≡0 (mod 2) and n≡0 (mod 16),

we are able to see that there exist infinitely many, sufficiently large positive integers
` satisfying

(x, y) : =
(m+n+2`

4
, 2m+ 3n+ 4`

)
∈ D,

4` > 1
3 y,(37)

where D is the set of all pairs of integers satisfying the conditions of Theorem 8.
In particular, notice that y ≡ 8x (mod 16) must be satisfied, that is,

2m+ 3n+ 4`≡ 8
(m+n+2`

4

)
(mod 16).

Specifically, we have

2m+ 3n+ 4`≡ 2m+ 2n+ 4` (mod 16).

This is nothing but n ≡ 0 (mod 16). By Theorem 8, for each (x, y) above, there is
a simply connected spin noncomplex symplectic 4-manifold W with

χh(W ) : =
χ(W )+ τ(W )

4
= x =

m+ n+ 2`
4

,

c2
1(W ) : = 2χ(W )+ 3τ(W )= y = 2m+ 3n+ 4`.(38)

We obtain

m+ n = χ(W )+ τ(W )− 2`,(39)

2m+ 3n = 2χ(W )+ 3τ(W )− 4`.(40)
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Let us consider the connected sum

Xm,n
=W # `(S1

× S3).

Notice that Xm,n is spin. We also get

χ(Xm,n)+ τ(Xm,n)= χ(W )+ τ(W )− 2`,(41)

2χ(Xm,n)+ 3τ(Xm,n)= 2χ(W )+ 3τ(W )− 4`.(42)

By (39), (40), (41), and (42), we obtain

(43) χ(Xm,n)= m, τ (Xm,n)= n.

On the other hand, we have b1(W )= 0 and b1(S1
× S3)= 1. Therefore, we get

(44) b1(Xm,n)= `.

Since there are infinitely many choices of `, (43) and (44) implies that, for (m, n)
satisfying m + n ≡ 0 (mod 2) and n ≡ 0 (mod 16), there exist infinitely many
nonhomeomorphic spin 4-manifolds Xm,n with (χ, τ )= (m, n).

We set N := `(S1
× S3) and write Xm,n

= W # N . Notice that N satisfies
b+(N ) = 0. By considering an infinite sequence {Kgi }i∈N of fibered knots with
gi ≥ 1 as proof of Theorem 11, we obtain the sequence {WKgi

# N }i∈N which
contains infinitely many diffeomorphism types. Every 4-manifold Xgi :=WKgi

# N
is homeomorphic to Xm,n

= W # N and has nonzero special monopole classes.
Moreover, Xgi cannot admit any Einstein metric as follows. By Theorem 7, if

(45) 4` > 1
3(2χ(WKgi

)+ 3τ(WKgi
)),

the manifold Xgi :=WKgi
# N cannot admit any Einstein metric. Since

2χ(WKgi
)+ 3τ(WKgi

)= 2χ(W )+ 3τ(W ),

the bound (45) is equal to

(46) 4` > 1
3(2χ(W )+ 3τ(W )).

However, the bound (46) automatically holds because of (37) and (38). Therefore,
we conclude that Xgi :=WKgi

# N cannot admit any Einstein metric as desired. �

6. Remarks on the simply connected case

NonEinstein 4-manifolds constructed in Theorem A, Theorem B, and Theorem 1
are not simply connected. It is natural to ask whether one can prove simply con-
nected versions of these theorems. This is an open problem, and is closely related
to the following.
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Question 14 [LeBrun 2001, Question 3.5]. For every q ∈ (−1, 1) ∩Q, are there
smooth, compact simply connected 4-manifolds with τ/χ = q which do not admit
Einstein metrics?

LeBrun [2001] gives a partial affirmative answer to this question under 0.351≤
|q|<1 [LeBrun 2001, Corollary 3.6]. However, a complete solution to this question
is still unknown.

On the other hand, in the present article, we have seen that 4-manifolds often
admit infinitely many distinct smooth structures for which no Einstein metric ex-
ists. In light of this phenomenon, we would like to consider a generalization of
Question 14:

Question 15. For every q ∈ (−1, 1) ∩ Q, are there compact simply connected
topological 4-manifolds with τ/χ = q which admit infinitely many distinct smooth
structures for which no Einstein metrics exist?

To prove a result in this direction, we need to recall the following:

Theorem 16 [Park 2003, Theorem 1.1]. There is an increasing sequence {mi } with
mi → 9 such that every simply connected closed, nonspin, irreducible smooth 4-
manifold X satisfying 0 ≤ c(X) ≤ miχh(X) and b+(X) ≥ Ci , where Ci is an odd
constant depending on mi , admits infinitely many, both symplectic and nonsym-
plectic, exotic smooth structures.

Applying the idea of the proof of [LeBrun 2001, Corollary 3.6] and the preceding
result, we obtain:

Corollary 17. For any rational number q ∈Q satisfying

1
3 < |q|< 1,

there exist compact simply connected topological 4-manifolds with τ/χ = q admit-
ting infinitely many distinct smooth structures for which no Einstein metric exists.

Proof. We will actually prove that there is an increasing sequence {ni } such that
ni →−1/3 satisfying the following property: For any rational number q with

−1< q ≤ ni ,

there exist compact simply connected topological 4-manifolds with τ/χ = q ad-
mitting infinitely many distinct smooth structures for which no Einstein metrics
exists.

Let α and β be any positive integers satisfying
s
t
∈ (0, mi ],

where mi is an increasing sequence with mi→9 in Theorem 16. Then, Theorem 16
specifically tells us that, for any sufficiently large integers `, there is a simply
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connected nonspin 4-manifold X admitting infinitely many distinct symplectic
structures and with

χh(X)=
χ(X)+ τ(X)

4
= t`,(47)

c2
1(X)= 2χ(X)+ 3τ(X)= s`.(48)

We denote the infinite family of symplectic 4-manifolds which are homeomorphic
to X by {Yn}. For each symplectic 4-manifold Yn which is homeomorphic to X ,
consider the k-times blow-up Mk

n := Yn # kCP2 of Yn where k satisfies

k ≥ 1
3(2χ(Yn)+ 3τ(Yn))=

1
3(2χ(X)+ 3τ(X)).

By (48), this is equivalent to
k
s`
≥

1
3 .

Theorem 7 tells us that Mk
n cannot admit any Einstein metric. Moreover, for each

k, the infinite family {Mk
n } of symplectic 4-manifolds also contains infinitely many

diffeomorphism types because the difference of smooth structures survives under
blow-ups. This means that, for each k, the underlying topological 4-manifold of
Xk := X # kCP2 admits infinitely many smooth structures {Mk

n } without Einstein
metrics.

On the other hand, we have χh(Mk
n )= χh(X) and c2

1(M
k
n )= c2

1(X)− k because
Yn is homeomorphic to X . Using this fact, (47), and (48), we have

c2
1(M

k
n )

χh(Mk
n )
=

c2
1(X)− k
χh(X)

=
s`−k

t`
=

s
t

(
1− k

s`

)
.

Since k/s` ∈ [1/3,∞)∩Q, we get

1− k
s`
∈ (−∞, 2

3 ] ∩Q.

Since we also have s/t ∈ (0,mi ], the following holds.

(49)
c2

1(M
k
n )

χh(Mk
n )
∈ (−∞, 2

3 mi ] ∩Q.

On the other hand, as was already mentioned in the proof of [LeBrun 2001, Corol-
lary 3.6], we get

τ(Mk
n )

χ(Mk
n )
=

(
3− 1

4
c2

1(M
k
n )

χh(Mk
n )

)−1

− 1.

By (49), we have (
3− 1

4
c2

1(M
k
n )

χh(Mk
n )

)−1

∈

(
0, 6

18−mi

]
∩Q.
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This tells us that
τ(Mk

n )

χ(Mk
n )
∈

(
−1,−1+ 6

18−mi

]
∩Q.

Since the sequence mi→9 is increasing, we have an increasing sequence {ni } such
that

ni →−
1
3

by setting

ni := −1+ 6
18−mi

.

Since we have τ(Mk
n ) = τ(Xk) and χ(Mk

n ) = τ(Xk), the above tells us that, for
any rational number q with

−1< q ≤ ni ,

there exist compact simply connected topological 4-manifolds Xk with τ/χ = q
admitting infinitely many distinct smooth structures {Mk

n } for which no Einstein
metrics exists. The case where q is positive then follows by reversing the orienta-
tion of the above examples. �
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