NOETHER’S PROBLEM FOR \hat{S}_4 AND \hat{S}_5

Ming-chang Kang and Jian Zhou
NOETHER’S PROBLEM FOR \hat{S}_4 AND \hat{S}_5

Ming-chang Kang and Jian Zhou

Let k be a field, let G be a finite group and let $k(x_g : g \in G)$ be the rational function field over k, on which G acts by the k-automorphisms defined by $h \cdot x_g = x_{hg}$ for any $g, h \in G$. Noether’s problem asks whether the fixed subfield $k(G) := k(x_g : g \in G)^G$ is k-rational, that is, purely transcendental over k. If \hat{S}_n is the double cover of the symmetric group S_n, in which the liftings of transpositions and products of disjoint transpositions are of order 4, Serre shows that $\mathbb{Q}(\hat{S}_4)$ and $\mathbb{Q}(\hat{S}_5)$ are not \mathbb{Q}-rational. We will prove that if k is a field such that $\text{char } k \neq 2, 3$, and $k(\zeta_8)$ is a cyclic extension of k, then $k(\hat{S}_4)$ is k-rational. If it is assumed furthermore that $\text{char } k = 0$, then $k(\hat{S}_5)$ is also k-rational.

1. Introduction

Let k be a field, and L be a finitely generated field extension of k. L is called k-rational (or rational over k) if L is purely transcendental over k; that is, L is isomorphic to some rational function field over k. L is called stably k-rational if $L(y_1, \ldots, y_m)$ is k-rational for some y_1, \ldots, y_m that are algebraically independent over L. L is called k-unirational if L is k-isomorphic to a subfield of some k-rational field extension of k. It is easy to see that

$$k \text{-rational} \Rightarrow \text{stably } k \text{-rational} \Rightarrow \text{ } k \text{-unirational}.$$

A notion of retract rationality was introduced in [Saltman 1984] (see also [Kang 2012]). It is known that if k is an infinite field, then

$$\text{stably } k \text{-rational} \Rightarrow \text{retract } k \text{-rational} \Rightarrow \text{ } k \text{-unirational}.$$

Let k be a field and G a finite group. Let G act on the rational function field $k(x_g : g \in G)$ by k-automorphisms defined by $h \cdot x_g = x_{hg}$ for any $g, h \in G$.

Both authors were partially supported by the National Center for Theoretic Sciences (Taipei Office). The work of this paper was finished when the second-named author visited National Taiwan University under the support of the National Center for Theoretic Sciences (Taipei Office).

MSC2010: primary 14E08, 14M20; secondary 12F12, 13A50.

Keywords: Noether’s problem, rationality problem, binary octahedral groups.
Denote by $k(G)$ the fixed subfield, that is, $k(G) = k(x_g : g \in G)^G$. Noether’s problem asks under what conditions is the field $k(G)$ k-rational.

Noether’s problem is related to the inverse Galois problem and the existence of generic G-Galois extensions over k. For the details, see Swan’s survey paper [Swan 1983]. The purpose of this paper is to study Noether’s problem for some double covers of the symmetric group S_n.

It is known that there are four different double covers of S_n when $n \geq 4$, that is, groups G that fit into a short exact sequence $1 \to C_2 \to G \to S_n \to 1$; see, for example, [Serre 1984, p. 653].

Definition 1.1 [Garibaldi et al. 2003, pp. 58, 90; Hoffman and Humphreys 1992, p. 18; Karpilovsky 1985, pp. 177–181]. Let $C_2 = \{ \pm 1 \}$ be the cyclic group of order 2. When $n \geq 4$, the group \hat{S}_n is the unique central extension of S_n by C_2, that is,

$$1 \to C_2 \to \hat{S}_n \to S_n \to 1,$$

satisfying the condition that the transpositions and the product of two disjoint transpositions in S_n lift to elements of order 4 in \hat{S}_n. On the other hand, the group \bar{S}_n is the central extension

$$1 \to C_2 \to \bar{S}_n \to S_n \to 1,$$

such that a transposition in S_n lifts to an element of order 2 of \bar{S}_n, but a product of two disjoint transpositions in S_n lifts to an element of order 4.

Note that we follow the notation of \hat{S}_n and \bar{S}_n adopted by Serre.

Theorem 1.2 (Serre [Garibaldi et al. 2003, p. 90]). Both $\mathbb{Q} (\hat{S}_4)$ and $\mathbb{Q} (\bar{S}_5)$ are not retract \mathbb{Q}-rational. In particular, they are not \mathbb{Q}-rational.

Serre proves this using cohomological invariants and trace forms over \mathbb{Q} — the e-invariant method, in short. In pp. 89–90 of the same book, he proves that Rat(G/\mathbb{Q}) is false for $G = \hat{S}_4$ and \bar{S}_5. Actually he proves a bit more. From Serre’s proof it is easy to find that $\mathbb{Q} (\hat{S}_4)$ and $\mathbb{Q} (\bar{S}_5)$ are not retract \mathbb{Q}-rational (see [Kang 2012, Section 1] for the relationship of the property Rat(G/\mathbb{Q}) and the retract k-rationality of $k(G)$). This is the reason why we formulate Serre’s theorem in the version above. In fact, Theorem 1.2 can be perceived also from Serre’s own remark in [Garibaldi et al. 2003, p. 13, Remark 5.8].

We don’t know whether Theorem 1.2 is valid for fields k other than the field \mathbb{Q}; for example, the field k satisfying the condition that $k(\zeta_8)$ is not cyclic over k. In fact, in a private communication, Serre told us that the e-invariant method remains valid (under the assumption that $k(\zeta_8)$ is not cyclic over k) if k is an algebraic number field of odd degree over \mathbb{Q}, or if $k = \mathbb{Q}(\sqrt{n})$, where $n \equiv 1$ (mod 8). However, if $k = \mathbb{Q}(x, y)$ with $x^2 + y^2 = -1$, the assumption that $k(\zeta_8)$
is not cyclic over \(k \) is valid while the \(e \)-invariant method doesn’t work any more [Serre 2011].

On the other hand, we have:

Theorem 1.3 [Plans 2007; 2009]. (1) For any field \(k \), \(k(\hat{S}_4) \) is \(k \)-rational. Thus, if \(k \) is a field with \(\text{char } k = 0 \), \(k(\hat{S}_5) \) is also \(k \)-rational.

(2) For any infinite field \(k \) with \(\text{char } k \neq 2 \) such that \(\sqrt{-1} \in k \), both \(k(\hat{S}_4) \) and \(k(\hat{S}_5) \) are \(k \)-rational.

The main result of this article is the following rationality criterion for \(k(\hat{S}_4) \) and \(k(\hat{S}_5) \).

Theorem 1.4. Let \(k \) be a field with \(\text{char } k \neq 2 \) or 3, and \(\xi_8 \) be a primitive eighth root of unity in some extension field of \(k \). If \(k(\xi_8) \) is a cyclic extension of \(k \), then \(k(\hat{S}_4) \) is \(k \)-rational; if it is assumed furthermore that \(\text{char } k = 0 \), then \(k(\hat{S}_5) \) is also \(k \)-rational.

When \(k \) is a field with \(\text{char } k = p > 0 \) and \(p \neq 2 \), the assumption that \(k(\xi_8) \) is a cyclic extension of \(k \) is satisfied automatically. Thus \(k(\hat{S}_4) \) is \(k \)-rational provided that \(k \) is any field with \(\text{char } k \neq 2 \) or 3.

Besides the groups \(\hat{S}_4 \) and \(\hat{S}_5 \), Serre shows that \(\mathbb{Q}(G) \) is not retract \(\mathbb{Q} \)-rational if \(G \) is any one of the groups \(\text{SL}_2(\mathbb{F}_7) \), \(\text{SL}_2(\mathbb{F}_9) \) and the generalized quaternion group of order 16; see [Garibaldi et al. 2003, p. 90, Example 33.27]. In case \(G \) is the generalized quaternion group of order 16 and \(k(\xi_8) \) is cyclic over \(k \), it is known that \(k(G) \) is \(k \)-rational [Kang 2005]. We don’t know whether analogous results as Theorem 1.4 are valid when the groups are \(\text{SL}_2(\mathbb{F}_7) \) and \(\text{SL}_2(\mathbb{F}_9) \).

The main idea of the proof of Theorem 1.4 is to use the method of Galois descent, namely we first enlarge the field \(k \) to \(k(\xi_8) \), solve the rationality of \(k(\xi_8)(\hat{S}_4) \), and then descend the ground field to \(k \).

The proof that \(k(\xi_8)(\hat{S}_4) \) is \(k(\xi_8) \)-rational requires at least two techniques. In order to decrease the number of variables (by applying Theorem 2.2), we will construct a 4-dimensional faithful representation \(V \) of \(\hat{S}_4 \) defined over the field \(k \). It seems the representation and the idea to find it are not well-known. Once we have this representation, we adjoin \(\xi_8 \) to the field \(k \) and write \(\pi = \text{Gal}(k(\xi_8)/k) \). We will prove that \(k(\xi_8)(V)^{(\hat{S}_4, \pi)} \) is \(k \)-rational.

The rationality problem of \(k(\xi_8)(V)^{(\hat{S}_4, \pi)} \) is not straightforward. In several steps of computations we use computers to facilitate the process of symbolic computation. However, we emphasize that computers play only a minor role; we don’t use particular codes of data bases such as GAP.

On the other hand, we point out that the first several steps in proving that \(k(\xi_8)(V)^{(\hat{S}_4, \pi)} \) is \(k \)-rational are rather similar to those in [Kang and Zhou 2012,
Section 5). This seems unsurprising because the group \tilde{S}_4 considered in [Kang and Zhou 2012, Section 5] and the group \tilde{S}_4 here have a common subgroup A_4.

For the rationality problem of $k(\tilde{S}_5)$, we apply Theorem 2.5 of Plans, which asserts that $k(\tilde{S}_5)$ is a rational extension of $k(\tilde{S}_4)$, whence the result.

We organize this paper as follows. We recall some preliminaries in Section 2 that will be used in the proof of Theorem 1.4. In Section 3, several low-dimensional faithful representations of \tilde{S}_4 over a field k with char $k \neq 2$ will be constructed (the reader may find another explicit construction in [Karpilovsky 1985, p. 177–179]). Theorem 1.4 will be proved in Section 4. In Section 5 we will consider the rationality problem of $k(G_n)$ (see Definition 5.1 for the group G_n).

Throughout this article, whenever we write $k(x_1, x_2, x_3, x_4)$ or $k(x, y)$ without explanation, it is understood that it is a rational function field over k. We will denote by ζ_8 (or simply by ζ) a primitive eighth root of unity.

2. Preliminaries

We recall several results that will be used in tackling the rationality problem.

Theorem 2.1 [Ahmad et al. 2000, Theorem 3.1]. Let L be any field, $L(x)$ the rational function field of one variable over L and G a finite group acting on $L(x)$. Suppose that for any $\sigma \in G$, $\sigma(L) \subset L$ and $\sigma(x) = a_\sigma \cdot x + b_\sigma$, where $a_\sigma, b_\sigma \in L$ and $a_\sigma \neq 0$. Then $L(x)^G = L^G(f)$ for some polynomial $f \in L[x]$. In fact, if $m = \min\{\deg g(x) : g(x) \in L[x]^G, \deg g(x) \geq 1\}$, any polynomial $f \in L[x]^G$ with $\deg f = m$ satisfies the property that $L(x)^G = L^G(f)$.

Theorem 2.2 [Hajja and Kang 1995, Theorem 1]. Let G be a finite group acting on the rational function field $L(x_1, \ldots, x_n)$ of n variables over a field L. Suppose that:

(i) For any $\sigma \in G$, $\sigma(L) \subset L$.

(ii) The restriction of the action of G to L is faithful.

(iii) For any $\sigma \in G$,

$$
\begin{pmatrix}
\sigma(x_1) \\
\sigma(x_2) \\
\vdots \\
\sigma(x_n)
\end{pmatrix} = A(\sigma) \cdot
\begin{pmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{pmatrix} + B(\sigma),
$$

where $A(\sigma) \in \text{GL}_n(L)$ and $B(\sigma)$ is an $n \times 1$ matrix over L.

Then there exist elements $z_1, \ldots, z_n \in L(x_1, \ldots, x_n)$ that are algebraically independent over L and satisfy $L(x_1, \ldots, x_n) = L(z_1, \ldots, z_n)$ and $\sigma(z_i) = z_i$ for any $\sigma \in G$ and $1 \leq i \leq n$.
Theorem 2.3 [Yamasaki 2009]. Let k be a field with char $k \neq 2$, let $a \in k \setminus \{0\}$, and define a k-automorphism σ of the rational function field $k(x, y)$ by $\sigma(x) = a/x$ and $\sigma(y) = a/y$. Then $k(x, y)^{\sigma} = k(u, v)$, where $u = (x - y)/(a - xy)$ and $v = (x + y)/(a + xy)$.

Theorem 2.4 [Masuda 1955, Theorem 3; Hoshi and Kang 2010, Theorem 2.2]. Let k be a field and let σ be the k-automorphism of the rational function field $k(x, y, z)$ defined by $\sigma : x \mapsto y \mapsto z \mapsto x$. Then $k(x, y, z)^{\sigma} = k(s_1, u, v) = k(s_3, u, v)$, where s_1, s_2, s_3 are the elementary symmetric functions of degree one, two and three in x, y, z and u and v are defined by

$$u = \frac{x^2 y + y^2 z + z^2 x - 3xyz}{x^2 + y^2 + z^2 - xy - yz - zx} \quad \text{and} \quad v = \frac{xy^2 + yz^2 + zx^2 - 3xyz}{x^2 + y^2 + z^2 - xy - yz - zx}.$$

Theorem 2.5 [Plans 2009, Theorem 11]. Let $n \geq 5$ be an odd integer and let k be a field with char $k = 0$. Then $k(\hat{S}_n)$ is rational over $k(\hat{S}_{n-1})$.

Theorem 2.6 [Kang and Plans 2009, Theorem 1.9]. Let k be a field and let G_1 and G_2 be two finite groups. If both $k(G_1)$ and $k(G_2)$ are k-rational, so is $k(G_1 \times G_2)$.

3. Faithful representations of \hat{S}_4

In this and the next section, the field k we consider is of char $k \neq 2$ or 3. We will denote by $\xi_8 = (1 + \sqrt{-1})/\sqrt{2}$ a primitive eighth root of unity.

In [Springer 1977, p. 92] a generating set of \hat{S}_4 is given (where the group is called the binary octahedral group): $\hat{S}_4 = \langle a', b, c \rangle$ with relations $a'^8 = b^4 = c^6 = 1$, $ba'b^{-1} = a'^{-1}$, $cbbc^{-1} = a'^2$ and $(a'c)^2 = -a'^2b$ (here -1 is the element that is equal to $a'^4 = b^2 = c^3$). Note that we have a short exact sequence of groups

$$1 \to \{\pm 1\} \to \hat{S}_4 \to S_4 \to 1,$$

and that $p(a') = (1, 2, 3, 4)$, $p(b) = (1, 4)(2, 3)$ and $p(c) = (1, 2, 3)$. Note that $p(ba') = (1, 4)(2, 3)(1, 2, 3, 4) = (1, 3)$.

If $\xi_8 \in k$, a faithful 2-dimensional representation $\Phi : \hat{S}_4 \to \text{GL}_2(k)$ is given in [Springer 1977, p. 92] as follows (we write $\xi = \xi_8$).

$$\Phi(a') = \begin{pmatrix} \xi & 0 \\ 0 & \xi^7 \end{pmatrix}, \quad \Phi(b) = \begin{pmatrix} 0 & \sqrt{-1} \\ \sqrt{-1} & 0 \end{pmatrix}, \quad \Phi(c) = \frac{1}{\sqrt{2}} \begin{pmatrix} \xi^7 & \xi^7 \\ \xi^7 & \xi \end{pmatrix}.$$

Suppose that $\sqrt{2} \in k$ (but not necessarily that $\sqrt{-1} \in k$). We may obtain a 4-dimensional representation $\hat{S}_4 \to \text{GL}_4(k)$ by making in (3-1) the substitutions

$$\sqrt{-1} \mapsto \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad \alpha \mapsto \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix},$$
where k_0 is the prime field of k and $\alpha \in k_0(\sqrt{2})$. This process is an easy application of Weil’s restriction [Weil 1956; Voskresenskii 1998, p. 38]. Thus we get

$$
(3-2) \quad a' \mapsto \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 0 \\ -1 & -1 \\ 1 & -1 \\ -1 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix}, \quad b \mapsto \begin{pmatrix} 1 & -1 \\ -1 & 1 \\ 1 & 1 \\ -1 & -1 \\ -1 & 1 \\ 1 & 1 \\ -1 & 1 \\ -1 & 1 \end{pmatrix}, \quad c \mapsto \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ -1 & -1 & 1 & 1 \\ -1 & -1 & 1 & 1 \\ -1 & 1 & 1 & 1 \end{pmatrix}.
$$

Similarly, when $\sqrt{-2}$ is in k (but possibly $\sqrt{-1}$ is not in k), write $\sqrt{-2} = \sqrt{-1} \cdot \sqrt{2}$. Thus represent $\sqrt{2}$ as $-\sqrt{-1} \cdot \sqrt{-2}$ and $\zeta = (1 + \sqrt{-1})/\sqrt{2}$ becomes $\sqrt{-2}(1 - \sqrt{-1})/2$. Make in (3-1) the substitutions

$$
\sqrt{-1} \mapsto \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad \alpha \mapsto \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix},
$$

where k_0 is the prime field of k and $\alpha \in k_0(\sqrt{-2})$. We get

$$
(3-3) \quad a' \mapsto \frac{-\sqrt{-2}}{2} \begin{pmatrix} 1 & 1 \\ -1 & -1 \\ -1 & 1 \\ -1 & 1 \end{pmatrix}, \quad b \mapsto \begin{pmatrix} 1 & -1 \\ -1 & 1 \\ 1 & 1 \\ -1 & -1 \end{pmatrix}, \quad c \mapsto \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ -1 & -1 & 1 & 1 \\ -1 & -1 & 1 & 1 \\ -1 & -1 & 1 & 1 \end{pmatrix}.
$$

The same way, if $\sqrt{-1} \in k$ (but possibly $\sqrt{2} \notin k$), make in (3-1) the substitutions

$$
\sqrt{2} \mapsto \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad \alpha \mapsto \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix},
$$

where k_0 is the prime filed of k and $\alpha \in k_0(\sqrt{-1})$. We get

$$
a' \mapsto \begin{pmatrix} 0 & 1 + \sqrt{-1} & 1 + \sqrt{-1} \\ 1 + \sqrt{-1} & 0 & 1 - \sqrt{-1} \\ 0 & 1 - \sqrt{-1} & 0 \end{pmatrix},
$$

$$
(3-4) \quad b \mapsto \begin{pmatrix} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \\ 0 & \sqrt{-1} \end{pmatrix}, \quad c \mapsto \begin{pmatrix} 1 - \sqrt{-1} & 0 & 1 - \sqrt{-1} & 0 \\ 0 & 1 - \sqrt{-1} & 0 & 1 - \sqrt{-1} \\ 1 - \sqrt{-1} & 0 & 1 + \sqrt{-1} & 0 \\ 0 & 1 + \sqrt{-1} & 0 & 1 + \sqrt{-1} \end{pmatrix}.
$$

Finally, from (3-2) we may get a faithful 8-dimensional representation of \hat{S}_4 into $GL_8(k_0)$, where k_0 is the prime field of k. Explicitly, make in (3-2) the substitutions

$$
\sqrt{2} \mapsto \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad \alpha \mapsto \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix},
$$
where $\alpha \in k_0$. We get

$$a' \mapsto \frac{1}{2} \begin{pmatrix} 0 & 2 & 0 & -2 \\ 1 & 0 & -1 & 0 \\ 0 & 2 & 0 & 2 \\ 1 & 0 & 1 & 0 \end{pmatrix},$$

$$b \mapsto \begin{pmatrix} 0 & 2 & 0 & 2 \\ 1 & 0 & 1 & 0 \\ 0 & -2 & 0 & 2 \\ -1 & 0 & 1 & 0 \end{pmatrix},$$

$$c \mapsto \frac{1}{2} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}.$$

4. Proof of Theorem 1.4

By Theorem 2.5, in case $\text{char } k = 0$ and it is known that $k(\hat{S}_4)$ is k-rational, it follows immediately that $k(\hat{S}_5)$ is also k-rational. Hence, in proving Theorem 1.4, it suffices to prove the rationality of $k(\hat{S}_4)$.

By assumption, $k(\xi_8)$ is a cyclic extension of k. Hence at least one of $\sqrt{-1}$, $\sqrt{2}$ or $\sqrt{-2}$ belongs to k.

Case 1: $\xi_8 \in k$. Since $\text{char } k \neq 2$ or 3, the group algebra $k[\hat{S}_4]$ is semisimple. Hence the 2-dimensional faithful representation provided by Equation (3-1) can be embedded into the regular representation whose dual space is $V_{\text{reg}} = \bigoplus_{g \in \hat{S}_4} k \cdot x(g)$, where \hat{S}_4 acts on V_{reg} by $h \cdot x(g) = x(hg)$ for any $g, h \in \hat{S}_4$. By Theorem 2.2, we find that $k(\hat{S}_4) = k(x(g) : g \in \hat{S}_4)\hat{S}_4$ is rational over $k(x, y)\hat{S}_4$, where the actions
given by Equation (3-1) are

\[
\begin{align*}
 a' & : x \mapsto \xi x, & y \mapsto \xi^7 y, \\
 b & : x \mapsto \sqrt{-1} y, & y \mapsto \sqrt{-1} x, \\
 c & : x \mapsto (\xi^7 x + \xi^5 y)/\sqrt{2}, & y \mapsto (\xi^7 x + \xi y)/\sqrt{2}.
\end{align*}
\]

Set \(z = x/y \). Then \(k(x, y) = k(z, x) \). By applying Theorem 2.1 we get that \(k(z, x)^{\hat{S}_4} = k(z)^{\hat{S}_4}(t) \) for some element \(t \) fixed by \(\hat{S}_4 \). The field \(k(z)^{\hat{S}_4} \) is \(k \)-rational by Lüroth’s theorem. Hence \(k(z, x)^{\hat{S}_4} \) and \(k(\hat{S}_4) \) are \(k \)-rational.

Case 2: \(\sqrt{2} \in k \) but \(\sqrt{-1} \notin k \). We will use the 4-dimensional faithful representation of \(\hat{S}_4 \) over \(k \) provided by Equation (3-2). This representation provides an action of \(\hat{S}_4 \) on \(k(x_1, x_2, x_3, x_4) \) given by

\[
\begin{align*}
 a' & : x_1 \mapsto (x_1 + x_2)/\sqrt{2}, & x_2 \mapsto (-x_1 + x_2)/\sqrt{2}, \\
 & x_3 \mapsto (x_3 - x_4)/\sqrt{2}, & x_4 \mapsto (x_3 + x_4)/\sqrt{2}, \\
 b & : x_1 \mapsto x_4 \mapsto -x_1, & x_2 \mapsto -x_3, \\
 & x_3 \mapsto x_2, & \\
 c & : x_1 \mapsto (x_1 - x_2 - x_3 - x_4)/2, & x_2 \mapsto (x_1 + x_2 + x_3 - x_4)/2, \\
 & x_3 \mapsto (x_1 - x_2 + x_3 + x_4)/2, & x_4 \mapsto (x_1 + x_2 - x_3 + x_4)/2.
\end{align*}
\]

Step 1. Apply Theorem 2.2 and use the arguments of Case 1. We find that \(k(\hat{S}_4) \) is rational over \(k(x_1, x_2, x_3, x_4)^{\hat{S}_4} \). It remains to show that \(k(x_1, x_2, x_3, x_4)^{\hat{S}_4} \) is \(k \)-rational.

Step 2. Write \(\pi = \text{Gal}(k(\sqrt{-1})/k) = (\rho) \), where \(\rho(\sqrt{-1}) = -\sqrt{-1} \). Extend the actions of \(\pi \) and \(\hat{S}_4 \) on \(k(\sqrt{-1}) \) and \(k(x_1, x_2, x_3, x_4) \) to \(k(\sqrt{-1})(x_1, x_2, x_3, x_4) \) by requiring that \(\rho(x_i) = x_i \) for \(1 \leq i \leq 4 \) and \(g(\sqrt{-1}) = \sqrt{-1} \) for all \(g \in \hat{S}_4 \). It follows that

\[
k(x_1, x_2, x_3, x_4)^{\hat{S}_4} = k(\sqrt{-1})(x_1, x_2, x_3, x_4)^{(\rho)} (a', b, c)
\]

Define \(y_1, y_2, y_3, y_4 \in k(\sqrt{-1})(x_1, x_2, x_3, x_4) \) by

\[
\begin{align*}
 y_1 & = \sqrt{-1}x_1 + \sqrt{-1}x_2 - x_3 + x_4, & y_2 & = -\sqrt{-1}x_1 + \sqrt{-1}x_2 + x_3 + x_4, \\
 y_3 & = x_1 - x_2 - \sqrt{-1}x_3 - \sqrt{-1}x_4, & y_4 & = x_1 + x_2 - \sqrt{-1}x_3 + \sqrt{-1}x_4.
\end{align*}
\]

Then

\[
k(\sqrt{-1})(x_1, x_2, x_3, x_4) = k(\sqrt{-1})(y_1, y_2, y_3, y_4)
\]
and the actions in (4-1) become

\[
\begin{align*}
 a' : & \quad y_1 \mapsto (y_1 + y_2)/\sqrt{2}, \quad y_2 \mapsto (-y_1 + y_2)/\sqrt{2}, \\
 & \quad y_3 \mapsto (y_3 + y_4)/\sqrt{2}, \quad y_4 \mapsto (-y_3 + y_4)/\sqrt{2}, \\
 b : & \quad y_1 \mapsto \sqrt{-1}y_1, \quad y_2 \mapsto -\sqrt{-1}y_2, \\
 & \quad y_3 \mapsto \sqrt{-1}y_3, \quad y_4 \mapsto -\sqrt{-1}y_4, \\
 c : & \quad y_1 \mapsto \frac{y_1 - \sqrt{-1}y_2}{1 + \sqrt{-1}}, \quad y_2 \mapsto \frac{y_1 + \sqrt{-1}y_2}{1 + \sqrt{-1}}, \\
 & \quad y_3 \mapsto \frac{y_3 - \sqrt{-1}y_4}{1 + \sqrt{-1}}, \quad y_4 \mapsto \frac{y_3 + \sqrt{-1}y_4}{1 + \sqrt{-1}}, \\
 \rho : & \quad y_1 \mapsto -\sqrt{-1}y_4, \quad y_2 \mapsto \sqrt{-1}y_3, \\
 & \quad y_3 \mapsto \sqrt{-1}y_2, \quad y_4 \mapsto -\sqrt{-1}y_1.
\end{align*}
\]

(4-2)

Note that the action of \(a'^2\) is given by

\[
a'^2 : y_1 \mapsto y_2 \mapsto -y_1, \quad y_3 \mapsto y_4 \mapsto -y_3.
\]

The reader might find interesting to compare the actions in (4-2) with those in [Kang and Zhou 2012, Section 4]. It turns out that the formulae for \(b, a'^2, c^2\) are completely the same as those for \(\lambda_1, \lambda_2, \sigma\) in [Kang and Zhou 2012, Formula (4.3)]. As mentioned before, both the subgroups \(\langle b, a'^2, c^2 \rangle\) and \(\langle \lambda_1, \lambda_2, \sigma \rangle\) are isomorphic to \(\tilde{A}_4\) (where \(\tilde{A}_4 = p^{-1}(A_4)\) in the notation of Section 3) as abstract groups.

• Step 3. Define \(z_1 = y_1/y_2, z_2 = y_3/y_4, z_3 = y_1/y_3\). By Theorem 2.1, we find that

\[
k(\sqrt{-1})(y_1, y_2, y_3, y_4)^{(\hat{S}_4, \pi)} = k(\sqrt{-1})(z_1, z_2, z_3)(y_4)^{(\hat{S}_4, \pi)} = k(\sqrt{-1})(z_1, z_2, z_3)^{(\hat{S}_4, \pi)}(z_0),
\]

where \(z_0\) is fixed by the actions of \(\hat{S}_4\) and \(\pi\). There remains to show the \(k\)-rationality of \(k(\sqrt{-1})(z_1, z_2, z_3)^{(\hat{S}_4, \pi)}\) is

Before we find \(k(\sqrt{-1})(z_1, z_2, z_3)^{(\hat{S}_4, \pi)}\), we will find \(k(\sqrt{-1})(z_1, z_2, z_3)^{(b,a'^2)}\).

The method is the same as in Steps 3 and 4 in [Kang and Zhou 2012, Section 4]. We will write down the details for the convenience of the reader.

Define \(u_1 = z_1/z_2, u_2 = z_1z_2, u_3 = z_3\). Then

\[
k(\sqrt{-1})(z_1, z_2, z_3)^{(b)} = k(\sqrt{-1})(u_1, u_2, u_3).
\]

The action of \(a'^2\) is given by

\[
a'^2 : u_1 \mapsto 1/u_1, \quad u_2 \mapsto 1/u_2, \quad u_3 \mapsto u_3/u_1.
\]
Define
\[v_1 = \frac{u_1 - u_2}{1 - u_1 u_2}, \quad v_2 = \frac{u_1 + u_2}{1 + u_1 u_2}, \quad v_3 = u_3 \left(1 + \frac{1}{u_1}\right). \]

Then
\[k\left(\sqrt{-1}\right)(u_1, u_2, u_3)^{(a'^2)} = k\left(\sqrt{-1}\right)(u_1, u_2, v_3)^{(a'^2)} = k\left(\sqrt{-1}\right)(v_1, v_2, v_3) \]

by Theorem 2.3 (note that \(a'^2(v_3) = v_3\)). In summary,
\[k\left(\sqrt{-1}\right)(z_1, z_2, z_3)^{(b, a'^2)} = k\left(\sqrt{-1}\right)(v_1, v_2, v_3). \]

• Step 4. The action of \(c\) on \(v_1, v_2, v_3\) is given by
\[c : v_1 \mapsto 1/v_2, \quad v_2 \mapsto v_1/v_2, \quad v_3 \mapsto v_3(v_1 + v_2)/[v_2(1 + v_1)]. \]

Define \(X_3 = v_3(1 + v_1 + v_2)/[(1 + v_1)(1 + v_2)]\). Then \(c(X_3) = X_3\) and
\[k\left(\sqrt{-1}\right)(v_1, v_2, v_3) = k\left(\sqrt{-1}\right)(v_1, v_2, X_3). \]

Thus we may apply Theorem 2.4 (regarding \(v_1, 1/v_2, v_2/v_1\) as \(x, y, z\) in its statement). More precisely, define
\[
X_1 = (v_1^3 v_2^3 + v_1^3 + v_2^3 - 3v_1^2 v_2^2)/(v_1^4 v_2^2 + v_2^4 + v_1^2 v_2^2 - v_1^3 v_2 - v_1^2 v_2^3 - v_1^2 v_2^3),
\]
\[
X_2 = (v_1 v_2^4 + v_1 v_2 + v_1^4 v_2 - 3v_1^2 v_2^2)/(v_1^4 v_2^2 + v_2^4 + v_1^2 v_2^2 - v_1^3 v_2 - v_1^2 v_2^3 - v_1^2 v_2^3).
\]

By Theorem 2.4 we get \(k\left(\sqrt{-1}\right)(v_1, v_2, X_3)^{(c)} = k\left(\sqrt{-1}\right)(X_1, X_2, X_3). \)

• Step 5. With the aid of computers, we find that the actions of \(a'\) and \(\rho\) on \(X_1, X_2, X_3\) are given by
\[
da' : X_1 \mapsto \frac{X_1}{X_1^2 - X_1 X_2 + X_2^2}, \quad X_2 \mapsto \frac{X_2}{X_1^2 - X_1 X_2 + X_2^2}, \quad X_3 \mapsto X_3,
\]
\[
\rho : X_1 \mapsto \frac{X_2}{X_1^2 - X_1 X_2 + X_2^2}, \quad X_2 \mapsto \frac{X_1}{X_1^2 - X_1 X_2 + X_2^2}, \quad X_3 \mapsto -2A/X_3,
\]

where \(A = g_1 g_2 g_3^{-1}\) and
\[
g_1 = (1 + X_1)^2 - X_2(1 + X_1) + X_2^2,
\]
\[
g_2 = (1 + X_2)^2 - X_1(1 + X_2) + X_1^2,
\]
\[
g_3 = 1 + X_1 + X_2 + X_1^3 + X_2^3 + X_1 X_2(3X_1 X_2 - 2X_1^2 - 2X_2^2 + 2) + X_1^4 + X_2^4.
\]

Note that \(\rho(g_1) = g_2/(X_1^2 - X_1 X_2 + X_2^2)\) and \(a'(g_1) = g_1/(X_1^2 - X_1 X_2 + X_2^2)\).

Define \(Y_1 = X_1/X_2, Y_2 = X_1, Y_3 = X_1 X_3/g_1\). We find that
\[
da' : Y_1 \mapsto Y_1, \quad Y_2 \mapsto Y_2^2/(Y_2(1 - Y_1 + Y_1^2)), \quad Y_3 \mapsto Y_3.
\]
Thus
\[k(\sqrt{-1})(X_1, X_2, X_3)^{(a')} = k(\sqrt{-1})(Y_1, Y_2, Y_3)^{(a')} = k(\sqrt{-1})(Z_1, Z_2, Z_3), \]
where \(Z_1 = Y_1, Z_2 = Y_2 + a'(Y_2), Z_3 = Y_3. \)

- Step 6. Using computers, we find that the action of \(\rho \) is given by
\[\rho : Z_1 \mapsto 1/Z_1, \quad Z_2 \mapsto Z_2/Z_1, \quad Z_3 \mapsto -2Z_1^2/(A'Z_3), \]
where \(A' \) is defined to be
\[-2Z_1^2 + Z_1Z_2 + Z_2^2 + 4Z_1^2 - 2Z_1Z_2^2 - 2Z_1^2Z_2 + Z_1^2Z_2^2 + Z_1^4Z_2 - 2Z_1^3Z_2^2 + Z_1^4Z_2^2.\]

Define \(U_1 = Z_2 + \rho(Z_2), U_2 = \sqrt{-1}(Z_2 - \rho(Z_2)), U_3 = Z_3 + \rho(Z_3) \) and \(U_4 = \sqrt{-1}(Z_3 - \rho(Z_3)). \) We see that \(k(\sqrt{-1})(Z_1, Z_2, Z_3)^{(\rho)} = k(U_1, U_2, U_3, U_4) \) with a relation
\[U_1^2 + U_2^2 + 32(U_1^2 + U_2^2)/B = 0, \]
where \(B = (U_1^2 - 3U_2^2)^2 + 4U_1(U_1^2 - 3U_2^2) + 32U_2^2. \)

Dividing this relation by \(16(U_1^2 + U_2^2)^2/B^2, \) we get
\[(BU_1/(4U_1^2 + 4U_2^2))^2 + (BU_4/(4U_1^2 + 4U_2^2))^2 + 2B/(U_1^2 + U_2^2) = 0. \]

Multiply this relation by \(U_1^2 + U_2^2 \) and use the identity
\[(\alpha^2 + \beta^2)(\gamma^2 + \delta^2) = (\alpha \delta + \beta \gamma)^2 + (\alpha \gamma - \beta \delta)^2 \]
to obtain the simplification
\[(4-3) \quad V_3^2 + V_4^2 + 2B = 0, \]
where
\[V_3 = B \frac{U_1U_3 + U_2U_4}{4U_1^2 + 4U_2^2} \quad \text{and} \quad V_4 = B \frac{U_1U_4 - U_2U_3}{4U_1^2 + 4U_2^2}. \]

Note that \(k(U_1, U_2, U_3, U_4) = K(U_1, U_2, V_3, V_4). \)

Define \(w_1 = 8U_1/(U_1^2 - 3U_2^2), \) \(w_2 = 8U_2/(U_1^2 - 3U_2^2), \) \(w_3 = V_3/(U_1^2 - 3U_2^2), \) \(w_4 = V_4/(U_1^2 - 3U_2^2). \) Then \(k(U_1, U_2, V_3, V_4) = k(w_1, w_2, w_3, w_4) \) and the relation (4-3) becomes
\[w_1^2 + w_2^2 + 2 + w_1 + w_2^2 = 0. \]

Hence \(w_1 \in k(w_2, w_3, w_4). \) Thus \(k(\sqrt{-1})(Z_1, Z_2, Z_3)^{(\rho)} = k(w_2, w_3, w_4) \) is \(k \)-rational.
Case 3: $\sqrt{-2} \in k$ but $\sqrt{-1} \notin k$. We use the 4-dimensional faithful representation of \hat{S}_4 over k provided by (3-3). This representation provides an action of \hat{S}_4 on $k(x_1, x_2, x_3, x_4)$ given by

$$\begin{align*}
a' & : x_1 \mapsto \frac{\sqrt{-2}(x_1 - x_2)}{2}, & x_2 & \mapsto \frac{\sqrt{-2}(x_1 + x_2)}{2}, \\
x_3 & \mapsto \frac{\sqrt{-2}(-x_3 - x_4)}{2}, & x_4 & \mapsto \frac{\sqrt{-2}(x_3 - x_4)}{2}, \\
b & : x_1 \mapsto x_4 \mapsto -x_1, & x_2 & \mapsto -x_3, \\
x_3 & \mapsto x_2, \\
c & : x_1 \mapsto \frac{(x_1 - x_2 - x_3 - x_4)}{2}, & x_2 & \mapsto \frac{(x_1 + x_2 + x_3 - x_4)}{2}, \\
x_3 & \mapsto \frac{(x_1 - x_2 + x_3 + x_4)}{2}, & x_4 & \mapsto \frac{(x_1 + x_2 - x_3 + x_4)}{2}.
\end{align*}$$

The proof of this case is very similar to that of Case 2.

- **Step 1.** Apply Theorem 2.2. We see that $\hat{k} = k(\hat{S}_4)$ is rational over $k(x_1, x_2, x_3, x_4)^{\hat{S}_4}$. Hence the proof is reduced to proving that $k(x_1, x_2, x_3, x_4)^{\hat{S}_4}$ is k-rational.

- **Step 2.** Write $\pi = \text{Gal}(k(\sqrt{-1})/k) = \langle \rho \rangle$, where $\rho(\sqrt{-1}) = -\sqrt{-1}$. Extend the actions of π and \hat{S}_4 to $k(\sqrt{-1})(x_1, x_2, x_3, x_4)$ as in Step 2 of Case 2. We find that

$$\hat{k}(x_1, x_2, x_3, x_4) = k(\sqrt{-1})(x_1, x_2, x_3, x_4)^{(a', b, c, \rho)}.$$

Define $y_1, y_2, y_3, y_4 \in k(\sqrt{-1})(x_1, x_2, x_3, x_4)$ by

$$\begin{align*}
y_1 & = -x_1 - \sqrt{-1}x_2 + x_3 + \sqrt{-1}x_4, & y_2 & = \sqrt{-1}x_1 - x_2 + \sqrt{-1}x_3 - x_4, \\
y_3 & = x_1 - \sqrt{-1}x_2 + x_3 - \sqrt{-1}x_4, & y_4 & = \sqrt{-1}x_1 + x_2 - \sqrt{-1}x_3 - x_4.
\end{align*}$$

We get $k(\sqrt{-1})(x_1, x_2, x_3, x_4) = k(\sqrt{-1})(y_1, y_2, y_3, y_4)$ and the actions are

$$\begin{align*}
a' & : y_1 \mapsto (-y_1 - y_2)/\sqrt{2}, & y_2 & \mapsto (y_1 - y_2)/\sqrt{2}, \\
y_3 & \mapsto (y_3 + y_4)/\sqrt{2}, & y_4 & \mapsto (-y_3 + y_4)/\sqrt{2}, \\
b & : y_1 \mapsto \sqrt{-1}y_1, & y_2 & \mapsto -\sqrt{-1}y_2, \\
y_3 & \mapsto \sqrt{-1}y_3, & y_4 & \mapsto -\sqrt{-1}y_4, \\
c & : y_1 \mapsto \frac{y_1 - \sqrt{-1}y_2}{1 + \sqrt{-1}}, & y_2 & \mapsto \frac{y_1 + \sqrt{-1}y_2}{1 + \sqrt{-1}}, \\
y_3 & \mapsto \frac{y_3 - \sqrt{-1}y_4}{1 + \sqrt{-1}}, & y_4 & \mapsto \frac{y_3 + \sqrt{-1}y_4}{1 + \sqrt{-1}}, \\
(4-4) \quad \rho & : y_1 \mapsto \sqrt{-1}y_4, & y_2 & \mapsto -\sqrt{-1}y_3, \\
y_3 & \mapsto -\sqrt{-1}y_2, & y_4 & \mapsto \sqrt{-1}y_1.
\end{align*}$$

Note that the action of a'^2 is

$$a'^2 : y_1 \mapsto y_2 \mapsto -y_1, \quad y_3 \mapsto y_4 \mapsto -y_3.$$
(Compare with (4-2) and (4-4).) The actions of \(a'^2, b, c \) in both cases are the same.

- Step 3. Define \(z_1 = y_1/y_2, z_2 = y_3/y_4, z_3 = y_1/y_3 \). As in Step 3 of Case 2, it suffices to prove that \(k(\sqrt{-1})(z_1, z_2, z_3)_{(\mathfrak{S}_4, \pi)} \) is \(k \)-rational.

Define \(u_1, u_2, u_3, v_1, v_2, v_3, X_1, X_2, X_3 \) by the same formulae as in Step 3 and Step 4 of Case 2. We find that \(k(\sqrt{-1})(z_1, z_2, z_3)^{(b, a'^2, c)} = k(\sqrt{-1})(X_1, X_2, X_3) \).

- Step 4. The actions of \(a', \rho \) on \(X_1, X_2, X_3 \) are slightly different from Step 5 of Case 2. In the present case, we have

\[
\begin{align*}
a' : X_1 & \mapsto \frac{X_1}{X_1^2 - X_1 X_2 + X_2^2}, & X_2 & \mapsto \frac{X_2}{X_1^2 - X_1 X_2 + X_2^2}, & X_3 & \mapsto -X_3, \\
\rho : X_1 & \mapsto \frac{X_2}{X_1^2 - X_1 X_2 + X_2^2}, & X_2 & \mapsto \frac{X_1}{X_1^2 - X_1 X_2 + X_2^2}, & X_3 & \mapsto -2A/X_3,
\end{align*}
\]

where \(A = g_1 g_2 g_3^{-1} \) and

\[
\begin{align*}
g_1 &= (1 + X_1)^2 - X_2(1 + X_1) + X_2^2, \\
g_2 &= (1 + X_2)^2 - X_1(1 + X_2) + X_1^2, \\
g_3 &= 1 + X_1 + X_2 + X_1^3 + X_2^3 + X_1 X_2 (3X_1 X_2 - 2X_1^2 - 2X_2^2 + 2) + X_1^4 + X_2^4.
\end{align*}
\]

Note that the action of \(\rho \) is the same as in Step 5 of Case 2.

Define \(Y_1 = X_1/X_2, Y_2 = X_1, Y_3 = X_1 X_3/g_1. \) We get

\[
\begin{align*}
a' : Y_1 & \mapsto Y_1, & Y_2 & \mapsto Y_2^2/(Y_2(1 - Y_1 + Y_1^2)), & Y_3 & \mapsto -Y_3.
\end{align*}
\]

Thus \(k(\sqrt{-1})(X_1, X_2, X_3)^{(a')} = k(\sqrt{-1})(Y_1, Y_2, Y_3)^{(a')} = k(\sqrt{-1})(Z_1, Z_2, Z_3), \)

where \(Z_1 = Y_1, Z_2 = Y_2 + a'(Y_2), Z_3 = Y_3(Y_2 - a'(Y_2)). \)

- Step 5. Using computers, we find that the action of \(\rho \) is given by

\[
\begin{align*}
\rho : Z_1 & \mapsto 1/Z_1, & Z_2 & \mapsto Z_2/Z_1, & Z_3 & \mapsto C/Z_3,
\end{align*}
\]

where \(C \) is defined to be

\[
\frac{2Z_1^2(-4Z_1^2 + Z_2^2 - Z_1 Z_2 + Z_1^2 Z_2^2)/(1 - Z_1 + Z_1^2)}{-2Z_1^2 + Z_1 Z_2 + Z_2^2 + 4Z_1^3 - 2Z_1 Z_2^2 - 2Z_1^2 + 3Z_1^2 Z_2^2 + Z_1^4 Z_2 - 2Z_1^3 Z_2^2 + Z_1^4 Z_2^2}.
\]

Define \(U_1 = Z_2 + \rho(Z_2), U_2 = \sqrt{-1}(Z_2 - \rho(Z_2)), U_3 = Z_3 + \rho(Z_3) \) and \(U_4 = \sqrt{-1}(Z_3 - \rho(Z_3)). \) We find that \(k(\sqrt{-1})(Z_1, Z_2, Z_3)^{(\rho)} = k(U_1, U_2, U_3, U_4) \)

with a relation

\[
(4-5) \quad U_3^2 + U_4^2 = 8(U_1^2 + U_2^2)^2(-16 + U_1^2 - 3U_2^2)/B(U_1^2 - 3U_2^2),
\]

where \(B = (U_1^2 - 3U_2^2)^2 + 4U_1(U_1^2 - 3U_2^2) + 32U_2^2. \)
Note that the above formula of B is identically the same as that in Step 6 of Case 2. It remains to simplify the relation (4-5). Dividing both sides by $(U_1^2 + U_2^2)^2$, we get

$$(U_3/(U_1^2 + U_2^2))^2 + (U_4/(U_1^2 + U_2^2))^2 = 8(-16 + U_1^2 - 3U_2^2)/B(U_1^2 - 3U_2^2).$$

Divide both sides of the above identity by $(2(U_1^2 - 3U_2^2)/B)^2$. We get a relation

$$V_3^2 + V_4^2 = 2(1 - V_1^2 + 3V_2^2)(1 + V_1 + 2V_2^2),$$

where

$$V_1 = \frac{4U_1}{U_1^2 - 3U_2^2}, \quad V_3 = \frac{BU_3}{(U_1^2 - 3U_2^2)(2U_1^2 + 2U_2^2)},$$
$$V_2 = \frac{4U_2}{U_1^2 - 3U_2^2}, \quad V_4 = \frac{BU_4}{(U_1^2 - 3U_2^2)(2U_1^2 + 2U_2^2)}.$$

Note that $k(U_1, U_2, U_3, U_4) = k(V_1, V_2, V_3, V_4)$.

Define $w_1 = 1/(1 + V_1)$, $w_2 = V_2/(1 + V_1)$, $w_3 = V_3/(1 + V_1)^2$, $w_4 = V_4/(1 + V_1)^2$. We get $k(V_1, V_2, V_3, V_4) = k(w_1, w_2, w_3, w_3)$ and the relation (4-6) becomes

$$w_3^2 + w_4^2 = 2(-1 + 2w_1 + 3w_2^2)(w_1 + 2w_2^2).$$

Divide the above identity by $(w_1 + 2w_2^2)^2$. We get

$$(w_3/(w_1 + 2w_2^2))^2 + (w_4/(w_1 + 2w_2^2))^2 = 2(-1 + 2w_1 + 3w_2^2)/(w_1 + 2w_2^2).$$

Since $2(-1 + 2w_1 + 3w_2^2)/(w_1 + 2w_2^2)$ is a “fractional linear transformation” of w_1 and it belongs to $k(w_2, w_3/(w_1 + 2w_2^2), w_4/(w_1 + 2w_2^2))$, we find that w_1 is in $k(w_2, w_3/(w_1 + 2w_2^2), w_4/(w_1 + 2w_2^2))$. Thus

$$k(w_1, w_2, w_3, w_4) = k(w_2, w_3/(w_1 + 2w_2^2), w_4/(w_1 + 2w_2^2)).$$

We find that $k(\sqrt{-1})(Z_1, Z_2, Z_3)^{(\rho)}$ is k-rational.

Case 4: $\sqrt{-1} \in k$ but $\sqrt{2} \notin k$. This is similar to Cases 2 or 3, so the detailed proof is omitted. In the case char $k = 0$, we may apply Plans’ result, Theorem 1.3. \hfill \square

5. Other double covers of S_n

In this section we consider the rationality problem of G_n, which is a double cover of the symmetric group and different from both \widetilde{S}_n and \widetilde{S}_n.

There are four double covers of the symmetric group S_n when $n \geq 4$. The trivial case is the split group $S_n \times C_2$. The rationality problem of the group $S_n \times C_2$ is
easy because we may apply Theorem 2.6. It remains to consider the non split cases: they are \tilde{S}_n, \tilde{S}_5, and the group G_n defined below.

Definition 5.1. For $n \geq 3$, consider the group G_n such that the short exact sequence $1 \rightarrow \{\pm 1\} \rightarrow G_n \rightarrow S_n \rightarrow 1$ is induced by the cup product $\varepsilon_n \cup \varepsilon_n \in H^2(S_n, \{\pm 1\})$, (see, for example, [Serre 1984, page 654]) where $\varepsilon_n : S_n \rightarrow \{\pm 1\}$ is the signed map, that is, $\varepsilon_n(\sigma) = -1$ if and only if $\sigma \in S_n$ is an odd permutation. Note that the group G_n is denoted by \tilde{S}_n in [Plans 2009].

The group G_n can be constructed explicitly as follows. Let

$$1 \rightarrow \{\pm 1\} \rightarrow C_4 = \{\pm \sqrt{-1}, \pm 1\} \xrightarrow{p_0} \{\pm 1\} \rightarrow 1$$

be the short exact sequence defined by $p_0(\sqrt{-1}) = -1$. The group G_n can be realized as the pullback of the diagram

$$\begin{array}{ccc}
S_n & \xrightarrow{\varepsilon_n} & C_4 \\
\downarrow & & \xrightarrow{p_0} \\
C_4 & \rightarrow & \{\pm 1\}.
\end{array}$$

Explicitly, as a subgroup of $S_n \times C_4$,

$$G_n = \{(\sigma, (\sqrt{-1})^i) \in S_n \times C_4 : \varepsilon_n(\sigma) = p_0((\sqrt{-1})^i)\}$$

$$= (A_n \times \{\pm 1\}) \cup \{(\sigma, \pm \sqrt{-1}) \in S_n \times C_4 : \sigma \notin A_n\}.$$

If k is a field with $\text{char } k \neq 2$, a faithful $2n$-dimensional representation can be defined as follows. Let $X = \left(\bigoplus_{1 \leq i \leq n} k \cdot x_i\right) \oplus \left(\bigoplus_{1 \leq i \leq n} k \cdot y_i\right)$ and let G_n act on X by, for $1 \leq i \leq n$,

\begin{align*}
t & : x_i \mapsto -x_i, & \quad y_i \mapsto -y_i, \\
\tau & : x_i \mapsto x_{\tau(i)}, & \quad y_i \mapsto y_{\sigma^{-1} \tau \sigma(i)}, \\
\overline{\sigma} & : x_i \mapsto y_i \mapsto -x_i,
\end{align*}

where $t = (1, -1) \in G_n \subset S_n \times C_4$, $\tau \in A_n$ and τ is identified with $(\tau, 1) \in G_n$, $\sigma = (1, 2) \in S_n$ and $\overline{\sigma} = (\sigma, \sqrt{-1}) \in G_n$.

The next result was proved in [Plans 2009, Theorem 14(b)] under the assumptions that $\text{char } k = 0$ and $\sqrt{-1} \in k$. Our proof is different from Plans’ even in the situation when $\text{char } k = 0$.

Theorem 5.2. Assume that k is a field that satisfies:

(i) Either $\text{char } k = 0$ or $\text{char } k = p > 0$ with $p \nmid 2n$.

(ii) $\sqrt{-1} \in k$.

Then $k(G_n)$ is k-rational for $n \geq 3$.
Theorem 2.1, and the action of S for some σ. The reader will find that (i) the assumption $\text{char } k \neq 2$ is used throughout the proof; (ii) the assumption $\text{char } k \nmid n$ is used in Step 2; (iii) the assumption $\sqrt{-1} \in k$ is used in Step 3.

- Step 1. Apply Theorem 2.2. We find that $k(G_n)$ is rational over

$$k(x_i, y_i : 1 \leq i \leq n)^{G_n},$$

where G_n acts on the rational function field $k(x_i, y_i : 1 \leq i \leq n)$ by (5-1).

- Step 2. Define $u_0 = \sum_{1 \leq i \leq n} x_i, v_0 = \sum_{1 \leq i \leq n} y_i$ and $u_i = x_i/u_0$, $v_i = y_i/v_0$ for $1 \leq i \leq n$. Note that $k(x_i, y_i : 1 \leq i \leq n) = k(u_j, v_j : 0 \leq j \leq n)$ with the relations $\sum_{1 \leq i \leq n} u_i = \sum_{1 \leq i \leq n} v_i = 1$. The action of G_n is given by

$$t : u_0 \mapsto -u_0, \quad v_0 \mapsto -v_0, \quad u_i \mapsto u_i, \quad v_i \mapsto v_i,$$

$$v \mapsto v_0 \mapsto v, \quad u_i \mapsto u_i, \quad v_i \mapsto v_{\sigma^{-1} \tau \sigma(i)}.$$

where $1 \leq i \leq n$ and t, τ, σ are defined in (5-1).

Define $w_1 = u_0 v_0, w_2 = u_0/v_0$. Then

$$k(u_j, v_j : 0 \leq j \leq n)^{(t)} = k(u_i, v_i : 1 \leq i \leq n)(w_1, w_2).$$

Note that $\tau(w_i) = w_i$ for $1 \leq i \leq 2$, $\sigma(w_1) = -w_1, \sigma(w_2) = -1/w_2$. By Theorem 2.1,

$$k(u_i, v_i : 1 \leq i \leq n)(w_1, w_2)^{G_n/(t)} = k(u_i, v_i : 1 \leq i \leq n)(w_2)^{G_n/(t)}(w')$$

for some w' fixed by the action of $G_n/(t)$. Moreover, we may identify $G_n/(t)$ with S_n and identify σ (modulo (t)) with σ.

Define $U_i = u_i - (1/n), V_i = v_i - (1/n)$ for $1 \leq i \leq n$. We find that

$$\sum_{1 \leq i \leq n} U_i = \sum_{1 \leq i \leq n} V_i = 0$$

and the action of S_n on $k(U_i, V_i : 1 \leq i \leq n)$ becomes linear. We will consider $k(U_i, V_i : 1 \leq i \leq n)(w_2)^{S_n}$. The action of S_n is given by

$$\tau : U_i \mapsto U_{\tau(i)}, \quad V_i \mapsto V_{\sigma^{-1} \tau \sigma(i)}, \quad w_2 \mapsto w_2,$$

$$\sigma : U_i \mapsto V_i \mapsto U_i, \quad w_2 \mapsto -1/w_2,$$

where $1 \leq i \leq n, \tau \in A_n, \sigma = (1, 2)$ and $\sum_{1 \leq i \leq n} U_i = \sum_{1 \leq i \leq n} V_i = 0$.

- Step 3. Since $\sqrt{-1} \in k$, define $w = (\sqrt{-1} - w_2)/(-\sqrt{-1} + w_2)$. We find that $\tau(w) = w$ for $\tau \in A_n$ and $\sigma(w) = -w$. Apply Theorem 2.1. We find that

$$k(u_i, v_i : 1 \leq i \leq n)(w_2)^{S_n} = k(U_i, V_i : 1 \leq i \leq n)^{S_n}(w'')$$

for some w'' fixed by the action of S_n.

It remains to show that \(k(U_i, V_i : 1 \leq i \leq n)^{S_n} \) is \(k \)-rational. The following proof of this fact is due to the referee.

Define \(W_i^\pm = U_i \pm V_{\sigma(i)} \). It is easy to verify that for \(\tau(W_i^\pm) = W_{\tau(i)}^\pm \) for \(\tau \in A_n \); and that for \(\sigma = (1, 2) \), \(\sigma(W_i^+) = W_{\sigma(i)}^- \) and \(\sigma(W_i^-) = -W_{\sigma(i)}^- \).

Define subspaces \(W \) and \(W' \) by \(W = \sum_{1 \leq i \leq n} k \cdot W_i^+ \) and \(W' = \sum_{1 \leq i \leq n} k \cdot W_i^- \). Note that
\[
\sum_{1 \leq i \leq n} k \cdot U_i \oplus \sum_{1 \leq i \leq n} k \cdot V_i = W \oplus W'.
\]
Moreover, \(W \) is the standard representation of \(S_n \), that is, \(W \cong \sum_{1 \leq i \leq n} k \cdot s_i \) with \(\sum_{1 \leq i \leq n} s_i = 0 \) and \(\lambda(s_i) = s_{\lambda(i)} \) for all \(\lambda \in S_n \), for all \(1 \leq i \leq n \). On the other hand, \(W' \) is the representation space of the tensor product of the standard representation and the linear character \(\varepsilon_n : S_n \to \{ \pm 1 \} \).

- Step 4. Apply Theorem 2.2 to \(k(U_i, V_i : 1 \leq i \leq n)^{S_n} \). We find that
\[
k(U_i, V_i : 1 \leq i \leq n)^{S_n} = k(W \oplus W')^{S_n} = k(W_i^+ : 1 \leq i \leq n-1)^{S_n} (t_1, \ldots, t_{n-1}),
\]
where each \(t_i \) is fixed by \(S_n \). Obviously the field \(k(W_i^+ : 1 \leq i \leq n-1)^{S_n} \) is \(k \)-rational, whence the result.

In the following theorem the assumption \(\sqrt{-1} \notin k \) from Theorem 5.2 will be dropped. The first part of the following theorem was proved by Plans [2009, Theorem 14 (b)]; there he assumed that \(\text{char} \, k = 0 \).

Theorem 5.3. (1) If \(k \) is a field with \(\text{char} \, k \neq 2 \) or \(3 \), then \(k(G_3) \) is \(k \)-rational.

(2) If \(k \) is a field with \(\text{char} \, k \neq 2 \), then \(k(G_4) \) is \(k \)-rational. Moreover, if \(\text{char} \, k = 0 \), then \(k(G_5) \) is also \(k \)-rational.

Proof. Case 1: \(n = 3 \). By Step 2 in the proof of Theorem 5.2, it suffices to consider \(k(U_i, V_i : 1 \leq i \leq 3)(w_2)^{S_3} \), where \(\sum_{1 \leq i \leq 3} U_i = \sum_{1 \leq i \leq 3} V_i = 0 \). Define \(\tau = (1, 2, 3) \in S_3 \). The actions are given by
\[
\tau : U_1 \mapsto U_2 \mapsto -U_1 - U_2, \quad V_2 \mapsto V_1 \mapsto -V_1 - V_2,
\]
\[
\sigma : U_1 \leftrightarrow V_1, \quad U_2 \leftrightarrow V_2.
\]
Define \(w_3 = U_1/V_2, w_4 = U_2/V_1, w_5 = V_1/V_2 \). It follows that
\[
k(U_i, V_i : 1 \leq i \leq 3)(w_2)^{S_3} = k(w_j : 2 \leq j \leq 5)(V_1)^{S_3} = k(w_j : 2 \leq j \leq 5)^{S_3}(w_0)
\]
for some \(w_0 \) by Theorem 2.1.

It remains to show that \(k(w_j : 2 \leq j \leq 5)^{S_3} \) is \(k \)-rational. Note that
\[
\tau : w_2 \mapsto w_2, \quad w_3 \mapsto w_4 \mapsto (w_3 + w_4w_5)/(1 + w_5),
\]
\[
\sigma : w_2 \mapsto -1/w_2, \quad w_3 \mapsto 1/w_4, \quad w_4 \mapsto 1/w_3, \quad w_5 \mapsto w_3/(w_4w_5).
\]
Define $w_6 = (w_3 + w_4 w_5)/(1 + w_5)$. Note that $k(w_3, w_4, w_5) = k(w_3, w_4, w_6)$ and

$$\tau : w_3 \mapsto w_4 \mapsto w_6 \mapsto w_3 \quad \text{and} \quad \sigma : w_6 \mapsto 1/w_6.$$

Define $w_7 = (1-w_3)/(1+w_3)$, $w_8 = (1-w_4)/(1+w_4)$, $w_9 = (1-w_6)/(1+w_6)$. Then $k(w_3, w_4, w_6) = k(w_7, w_8, w_9)$ and

$$\tau : w_7 \mapsto w_8 \mapsto w_9 \mapsto w_7,$$

$$\sigma : w_7 \mapsto -w_8, \quad w_8 \mapsto -w_7, \quad w_9 \mapsto -w_9.$$

By Theorem 2.4 we find that $k(w_2, w_3, w_4, w_5)^{(\tau)} = k(w_2, X_1, X_2, X_3)$, where $X_1 = w_7 + w_8 + w_9$ and

$$X_2 = \frac{w_7^2 w_8^2 + w_8^2 w_9^2 + w_9^2 w_7^2 - 3 w_7 w_8 w_9}{w_7^2 + w_8^2 + w_9^2},$$

$$X_3 = \frac{w_7 w_8^2 + w_8 w_9^2 + w_9 w_7^2 - 3 w_7 w_8 w_9}{w_7^2 + w_8^2 + w_9^2}.$$

Moreover, the action of σ is given by

$$\sigma : w_2 \mapsto -1/w_2, \quad X_1 \mapsto -X_1, \quad X_2 \mapsto -X_2, \quad X_3 \mapsto -X_3.$$

Apply Theorem 2.2. We find that $k(w_2, X_1, X_2, X_3)^{(\sigma)} = k(w_2)^{(\sigma)}(Y_1, Y_2, Y_3)$ for some Y_1, Y_2, Y_3 fixed by σ. Since $k(w_2)^{(\sigma)}$ is k-rational, it follows that $k(w_2, X_1, X_2, X_3)^{(\sigma)}$ is k-rational.

Case 2: $n = 4$. Once again we use Step 2 in the proof of Theorem 5.2. It suffices to consider $k(U_i, V_i : 1 \leq i \leq 4)(w_2)^{S_4}$, where $\sum_{1 \leq i \leq 4} U_i = \sum_{1 \leq i \leq 4} V_i = 0$. Set $\lambda_1 = (1, 2)(3, 4)$, $\lambda_2 = (1, 3)(2, 4)$, $\rho = (1, 2, 3)$ and $\sigma = (1, 2)$ as before. Then S_4 is generated by $\lambda_1, \lambda_2, \rho$ and σ.

Define $t_1 = U_1 + U_2, t_2 = V_1 + V_2, t_3 = U_1 + U_3, t_4 = V_2 + V_3, t_5 = U_2 + U_3$ and $t_6 = V_1 + V_3$. The action of S_4 is given by

$$\lambda_1 : t_1 \mapsto t_1, \quad t_2 \mapsto t_2, \quad t_3 \mapsto -t_3, \quad t_4 \mapsto -t_4, \quad t_5 \mapsto -t_5, \quad t_6 \mapsto -t_6,$$

$$\lambda_2 : t_1 \mapsto -t_1, \quad t_2 \mapsto -t_2, \quad t_3 \mapsto t_3, \quad t_4 \mapsto t_4, \quad t_5 \mapsto -t_5, \quad t_6 \mapsto -t_6,$$

$$\rho : t_1 \mapsto t_5 \mapsto t_3 \mapsto t_1, \quad t_2 \mapsto t_6 \mapsto t_4 \mapsto t_2,$$

$$\sigma : t_1 \mapsto t_2, \quad t_3 \mapsto t_6, \quad t_4 \mapsto t_5.$$

It follows that $k(t_i : 1 \leq i \leq 6)(w_2)^{<\lambda_1, \lambda_2>} = k(T_i : 1 \leq i \leq 6)(w_2)$, where $T_1 = t_1/t_2$, $T_2 = t_3/t_4$, $T_3 = t_5/t_6$, $T_4 = t_2 t_6/t_4$, $T_5 = t_4 t_6/t_2$, $T_6 = t_2 t_4/t_6$.

Moreover, the actions of ρ and σ are given by

\[
\begin{align*}
\rho : T_1 &\mapsto T_3 \mapsto T_2 \mapsto T_1, & T_4 &\mapsto T_5 \mapsto T_6 \mapsto T_4, \\
\sigma : T_1 &\mapsto 1/T_1, & T_2 &\mapsto 1/T_3, & T_3 &\mapsto 1/T_2, \\
T_4 &\mapsto (T_1 T_2/T_3)T_6, & T_5 &\mapsto (T_2 T_3/T_1)T_5, & T_6 &\mapsto (T_1 T_3/T_2)T_4.
\end{align*}
\]

By Theorem 2.2, it suffices to show that $k(T_i : 1 \leq i \leq 3)(w_2)^{<\rho,\sigma>}$ is k-rational. Define $w_3 = (1 - T_1)/(1 + T_1)$, $w_4 = (1 - T_2)/(1 + T_2)$, $w_5 = (1 - T_3)/(1 + T_3)$. Then we find

\[
\begin{align*}
\rho : w_2 &\mapsto w_2, & w_3 &\mapsto w_5 \mapsto w_4 \mapsto w_3, \\
\sigma : w_2 &\mapsto -1/w_2, & w_3 &\mapsto -w_3, & w_4 &\mapsto -w_5, & w_5 &\mapsto -w_4.
\end{align*}
\]

Use Theorem 2.4 to find that $k(T_i : 1 \leq i \leq 3)(w_2)^{<\rho>}$ is k-rational. The remaining part of the proof is very similar to the last part of Case 1. The details are omitted.

Case 3: $n = 5$. By [Plans 2009, Theorem 11], $k(G_5)$ is rational over $k(G_4)$. Since $k(G_4)$ is k-rational by Case 2, we are done. \qed

Acknowledgment

We thank the referee for his or her critical comments. In particular, the referee helped simplify the proof in Theorem 5.2 (Step 3 in the proof). Because of this simplification, one assumption of this theorem has been relaxed from “char $k = p > 0$ with $p \nmid n$!” to “char $k = p > 0$ with $p \nmid 2n$”.

References

Received October 11, 2011. Revised December 26, 2011.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniqueness theorems for CR and conformal mappings</td>
<td>257</td>
</tr>
<tr>
<td>YOUNG-JUN CHOI and JAE-CHEON JOO</td>
<td></td>
</tr>
<tr>
<td>Some finite properties for vertex operator superalgebras</td>
<td>269</td>
</tr>
<tr>
<td>CHONGYING DONG and JIANZHI HAN</td>
<td></td>
</tr>
<tr>
<td>On the geometric flows solving Kählerian inverse σ_k equations</td>
<td>291</td>
</tr>
<tr>
<td>HAO FANG and MUI JIA LAI</td>
<td></td>
</tr>
<tr>
<td>An optimal anisotropic Poincaré inequality for convex domains</td>
<td>305</td>
</tr>
<tr>
<td>GUOFANG WANG and CHAO XIA</td>
<td></td>
</tr>
<tr>
<td>Einstein metrics and exotic smooth structures</td>
<td>327</td>
</tr>
<tr>
<td>MASASHI ISHIDA</td>
<td></td>
</tr>
<tr>
<td>Noether’s problem for \hat{S}_4 and \hat{S}_5</td>
<td>349</td>
</tr>
<tr>
<td>MING-CHANG KANG and JIAN ZHOU</td>
<td></td>
</tr>
<tr>
<td>Remarks on the behavior of nonparametric capillary surfaces at corners</td>
<td>369</td>
</tr>
<tr>
<td>KIRK E. LANCASTER</td>
<td></td>
</tr>
<tr>
<td>Generalized normalulings and invariants of Legendrian solid torus links</td>
<td>393</td>
</tr>
<tr>
<td>MIKHAIL LAVROV and DAN RUTHERFORD</td>
<td></td>
</tr>
<tr>
<td>Classification of singular \mathcal{Q}-homology planes II: C^1- and C^*-rulings.</td>
<td>421</td>
</tr>
<tr>
<td>KAROL PALKA</td>
<td></td>
</tr>
<tr>
<td>A dynamical interpretation of the profile curve of CMC twizzler surfaces</td>
<td>459</td>
</tr>
<tr>
<td>OSCAR M. PERDOMO</td>
<td></td>
</tr>
<tr>
<td>Classification of Ising vectors in the vertex operator algebra V_L^+</td>
<td>487</td>
</tr>
<tr>
<td>HIROKI SHIMAKURA</td>
<td></td>
</tr>
<tr>
<td>Highest-weight vectors for the adjoint action of GL_n on polynomials</td>
<td>497</td>
</tr>
<tr>
<td>RUDOLF TANGE</td>
<td></td>
</tr>
</tbody>
</table>