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Delaunay showed in 1841 that any surface of revolution of constant mean
curvature in R3 has as its profile curve a roulette — specifically, the curve
described by the focus of a quadric rolling on a line. Here we introduce a
notion similar to the roulette that we call the treadmill sled, and we use it
to provide a dynamical interpretation for the profile curves of twizzlers —
helicoidal surfaces of nonzero constant mean curvature.

The treadmill sled is connected with a change of variables that allows
us to solve the ordinary differential equation that produces twizzlers in a
fairly easy way. This allows us to prove that all twizzlers are isometric to
Delaunay surfaces; this is similar to work done by do Carmo and Dajczer.

We also provide a moduli space for twizzlers and Delaunay surfaces that
shows the connection of each surface with its dynamical interpretation, and
we explicitly show the foliation of our moduli space by curves of locally
isometric CMC “associated surfaces” analogous to the well-known helicoid-
to-catenoid deformation. Our dynamical interpretation for twizzlers also
allows us to naturally define the notion of a fundamental piece of the profile
curve of a twizzler, which yields the fact that, whenever a twizzler is not
properly immersed, it is dense in the region bounded by two concentric
cylinders if the twizzler does not contain the axis of symmetry, or dense
in the region bounded by a cylinder otherwise.

Using the change of coordinates induced by the notion of the treadmill
sled, we also provide a dynamical interpretation for helicoidal surfaces with
constant Gauss curvature, and we find an easy way to describe Delaunay
surfaces by a relatively simple first integral.

1. Introduction

Delaunay [1841] showed that if one rolls a conic section on a line in a plane and
then rotates about that line the trace of a focus, one obtains a surface of revolution
of constant mean curvature (CMC). When the conic is a parabola we obtain a
catenoid; when the conic is an ellipse, the surface is embedded and it is called an
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Figure 1. Dynamic interpretation of the profile curve of an unduloid.

Nodoid

Figure 2. A nodoid and the construction of its profile curve.

unduloid; and when the conic is a hyperbola the surface is not embedded and it is
called a nodoid. Unduloids and nodoids are called Delaunay surfaces. Figure 1
illustrates the relation between the ellipse and the trace of its focus. Notice that
only one focus is used to get the curve that needs to get rotated in order to generate
an unduloid. Figure 2 illustrates the relation between the hyperbola and the trace
of its foci. Notice that both foci are used to get the curve that needs to get rotated
in order to generate a nodoid.

Using the integrability of the Gauss equation and the Mainardi–Codazzi equa-
tion, Lawson [1970] showed that for any immersion f0 : U → R3 with constant
mean curvature H defined in a simple connected surface U , there exists a 2π -
periodic 1-parametric family of immersions { fθ : U → R3

: θ ∈ [0, 2π ]} with
constant mean curvature H and with the same induced metric. This family is
called the 2π -periodic isometric family associated to f0.

Remark 1.1. The map θ→ fθ is continuous with respect to the parameter θ .
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We can see this family of associated surfaces in the well-known deformation
from a helicoid to a catenoid. See Figure 3.

Figure 3. All these surfaces are isometric.

In this particular helicoid-to-catenoid deformation, the helicoid corresponds to
θ = 0 and the catenoid corresponds to θ =π/2. The images in Figure 3 were taken
by substituting θ = 0, π/10, π/5, 3π/10, 2π/5, π/2 in the parametrization

φθ (u, v)=
(
cos θ sinh v sin u+ cos u sin θ cosh v,

cosh v sin u sin θ − cos u cos θ sinh v, u cos θ + v sin θ
)
.

A direct verification shows that the first and second fundamental form of φθ are
given by

E = G = cosh2 v, F = 0, e =− sin θ, f = cos θ, g = sin θ,

from which we can infer that indeed all the elements in this family of surfaces are
isometric. It is not difficult to show that the surfaces from θ = π/2 to π are, up to
a rigid motion, in the Euclidean space, the same as the surfaces from θ = 0 to π/2.
In this way, up to a rigid motion, all the surfaces in the 2π -periodic Lawson family
of isometric surfaces to a helicoid are contained in those surfaces from θ = 0 to
θ = π/2. We see in this paper that something similar happens for the isometric
associated family to a Delaunay surface.

A surface is called helicoidal with pitch h ∈ (−∞,∞) if it is invariant under
the group gt : R

3
→ R3 of rigid motions

gt(x, y, z)=
(
x cos t + y sin t,−x sin t + y cos t, z+ ht

)
.

When h = 0, the group gt becomes a group of rotations and the helicoidal
surfaces become surfaces of revolution. A twizzler is an immersion of the form

(1-1) φ(s, t)=
(
x(s) cos(wt)+ z(s) sin(wt), t,−x(s) sin(wt)+ z(s) cos(wt)

)
,

with constant mean curvature. Assume that the curve (x(s), z(s)) is parametrized
by arc length and call it the profile curve of the twizzler. Notice that twizzlers
correspond to those helicoidal CMC surfaces with nonzero pitch. Geometrically,
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up to a rotation about the origin, the profile curve of a twizzler is the intersection
of the surface with a plane perpendicular to the axis of symmetry. Here we give an
interpretation of the profile curve of twizzlers similar to the interpretation for the
profile curves of Delaunay surfaces.

To do this, we introduce an operator taking curves into curves (like the roulette
operator), which we call the treadmill sled. Given a curve α, we imagine a movable
plane supporting α rigidly. The trace of the origin of this plane on a stationary plane
will be the new curve β, the treadmill sled of α. We now describe the motion of α
(and its supporting plane).

First, we choose a point of α and place it at the origin of the fixed plane, so that
α has a horizontal tangent there — the x-axis of the fixed plane. Then we move the
supporting plane of α in such a way that α always remains tangent to the x-axis
of the fixed plane at the origin. (Another way of thinking of this motion is to
imagine a treadmill placed under, and aligned with, the x-axis of the fixed plane.
The curve α rolls on the treadmill, always keeping one of its points at the origin.)

As already explained, β is described by the positions of the origin of α’s support-
ing plane in this process. Obviously, the choice of the moving plane’s origin plays
an important role in this definition. For example, if α is a circle of radius R, its
treadmill sled is just a point if the center of α is the origin and it is a circle of radius
r with center at (0, R) if the center of the circle is at a distance r from the origin.

Figure 4 shows the treadmill sled of an ellipse with center at the origin. The
dot represents the center of the ellipse. (The Electronic Supplement to this article
shows this example in motion.)
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Figure 4. Treadmill sled of an ellipse centered at the origin.

We prove that a parametrization of the treadmill sled of an arc-length parame-
trized curve (x(s), z(s)) is given by (ξ(s), ξ2(s)), where (ξ(s), ξ2(s)) are the coor-
dinates of the vector (x(s), z(s)) with respect to the orthonormal basis{

(x ′(s), z′(s)), (−z′(s), x ′(s))
}
.

It turns out that this treadmill sled notion is linked with the change of variables
x(s), z(s) to the variables ξ1(s), ξ2(s), which ends up being very convenient for

http://msp.berkeley.edu/pjm/2012/258-2/pjm-v258-n2-x10.zip
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Figure 5. Contours, for different values ofw, of the integral func-
tion hw(x, y)= x2

+ y2
+ y/
√

1+w2x2.

the study of helicoidal surfaces. This paper shows some of the applications of
this change of variables. We can relatively easily solve the ODE that generates
twizzlers, and as a bonus, we find a dynamical interpretation for their profile curve
similar to the dynamical interpretation of the profile curve of Delaunay surfaces
using conics. For twizzlers we do not use conics, but rather the level sets of the
function

hw(x, y)= x2
+ y2
+

y
√

1+w2x2
,

where w is a constant. It is not difficult to check that the range of the function hw
is the interval [−1

4 ,∞), that h−1
w (−

1
4)= {(0,−

1
2)}, that every M >−1

4 is a regular
value of hw, and that h−1

w (M) is a closed simple curve. We refer to these level sets
as heart-shaped curves. Figure 5 shows some of them.

Let us denote the origin of the profile curve of a twizzler by O; that is, O is
the intersection of the plane that contains the profile curve with the axis symmetry
of the twizzler. We prove that the level sets of the function hw are first integrals
of the ODE for twizzlers with CMC 1 written in the coordinates ξ1 and ξ2, and
therefore geometrically we can say that if we place the profile curve of a twizzler
on a treadmill located at the origin and oriented in the positive direction of the
x-axis, then the trace of the point O is a heart-shaped curve. In other words, the
treadmill sled of the profile curve is a heart-shaped curve. It can be shown that the
inverse of the treadmill sled of a curve is unique up to a rotation about the origin.
Therefore we have a one-to-one correspondence between twizzlers with CMC 1
and the level sets of the function hw. In this way, we can use the two parameters
w and M that define the heart-shaped curves to describe twizzlers with CMC 1.
Once we have all the twizzlers with CMC 1 described in terms of the treadmill
sled of their profile curves, we explicitly describe which twizzlers are in the same
associated family of isometric surfaces. Surprisingly for the author, the proof only
uses the basic fact that, since Gauss curvatures are invariant under isometries, the
quotient between the maximum and minimum of the Gauss curvature is the same
for two isometric surfaces. An interesting fact that showed up is that in each one
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of these families of isometric associated surfaces, there is a twizzler that contains
the axis of symmetry. Since such twizzlers are unique in each family and there is
an easy formula that relates them with the isometric nodoid and unduloid, we call
these twizzlers special twizzlers.

Lawson [1970] showed examples of helicoidal surfaces with nonzero pitch and
constant mean curvature by proving that the family of CMC surfaces associated
to a Delaunay surface is made out of helicoidal surfaces. It was known for a long
time [Graustein 1935] that all the isometric surfaces in the associated family of
a catenoid are helicoidal surfaces, and also that every helicoidal minimal surface
belongs to the associated family of isometric surfaces of a catenoid. This result was
generalized by do Carmo and Dajczer [1982] (see also [Haak 1998]), who showed
that every helicoidal surface with CMC is in the associated family of a Delaunay
surface. Do Carmo and Dajczer provided explicit parametrizations for almost all
helicoidal surfaces with CMC. As we pointed out before, we show here that there
are as many of these surfaces as unduloids, or as many as nodoids, by proving
that there is one in each associated family of a Delaunay surface. The unduloids
admit in their isometry group, besides the rotational symmetries, a discrete group
of translations. This translational group shows up because the profile curve is
periodic, and this periodicity happens because the profile curve is generated by an
ellipse, which is a closed curve. The new dynamical interpretation for twizzlers
allows us to easily visualize that, besides the helicoidal symmetry, twizzlers are in-
variant under a group of rotations about the axis of symmetry because the treadmill
sled of their profile curve is a closed curve — a heart-shaped curve. If we define
the fundamental piece of a twizzler as a connected part of the profile curve with the
property that, when placed on a treadmill, the point O traces a heart-shaped curve
exactly once, then we have that the whole profile curve is a union of fundamental
pieces. Two fundamental pieces differ by a rotation about the origin, and when
the angle made by the rays that connect the initial and final point of a fundamental
piece is a rational multiple of 2π , then the whole profile curve is the union of only
finitely many fundamental pieces, and therefore the twizzler is properly immersed.
Otherwise, the twizzler is dense in either the region bounded by two cylinders or
the region inside a cylinder. For twizzlers that do not contain the axes of symmetry,
this property was shown in [Hitt and Roussos 1991].

2. The treadmill sled of a curve

According to the description given in the introduction, we define the treadmill sled
of an arc-length parametrized curve α : [a, b] → R2 as

TS(α)=
{
Ts(0, 0) : Ts is an oriented isometry of R2,

Ts(α(s))= (0, 0), and dTsα
′(s))= (1, 0)

}
.
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As the following theorem shows, finding a parametrization for the treadmill sled
of a curve is not difficult.

Theorem 2.1. If α(s)= (x(s), z(s)) is a curve parametrized by arc length and

ξ1(s)= x(s) x ′(s)+ y(s) y′(s) and ξ2(s)=−x(s) y′(s)+ y(s) x ′(s),

then the treadmill sled of the curve α is −(ξ1(s), ξ2(s)).

Proof. Let θ(s) be such that α′(s) =
(
cos θ(s), sin θ(s)

)
. A direct computation

shows that the transformation

Ts(X, Y )=
(
cos θ(s) X + sin θ(s) Y,− sin θ(s) X + cos θ(s) Y

)
−
(
cos θ(s) x(s)+ sin θ(s) y(s),− sin θ(s)x(s)+ cos θ(s)y(s)

)
is the only oriented isometry of R that takes the point α(s) to the origin and for
which dTα(s)(α′(s))= (1, 0). From the definition of T S(α), it follows that

Ts(0, 0)=−
(
cos θ(s) x(s)+ sin θ(s) y(s),− sin θ(s) x(s)+ cos θ(s) y(s)

)
must be a point in the treadmill sled of α. When we allow s to move through the
domain of α we obtain the desired parametrization of T S(α). �

Remark 2.2. It easily follows, either from the geometric definition of treadmill
sleds or from Theorem 2.1, that the maximum distance from the origin to a curve
α equals the maximum distance from the origin to its treadmill sled. Likewise, the
minimum distance from the origin to a curve α equals the minimum distance from
the origin to its treadmill sled.

3. Treadmill sled coordinates on twizzlers: solution of the ODE

The following two results provide a solution for the ODE coming from the problem
of finding all twizzlers with CMC 1. As mentioned before, the ODE is greatly
simplified when we use treadmill sled coordinates.

Proposition 3.1. The immersions given by (1-1) have mean curvature 1 if and only
if the functions ξ1 and ξ2 defined in Theorem 2.1 satisfy the ordinary differential
equations ξ ′1(s)= f1(ξ1(s), ξ2(s)) and ξ ′2(s)= f2(ξ1(s), ξ2(s)), where

(3-1)

f1(x1, x2)=
−w2x2+ 2(1+w2x2

1)
3/2

1+w2(x2
1 + x2

2)
x2+ 1,

f2(x1, x2)=
w2x2− 2(1+w2x2

1)
3/2

1+w2(x2
1 + x2

2)
x1.

Moreover, the function hw is constant along all solutions (ξ1(s), ξ2(s)).
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Proof. Since the curve (x(s), z(s)) is parametrized by arc length, we can consider
a function θ(s) such that

x ′(s)= cos θ(s) and z′(s)= sin θ(s).

Let us define the functions ξ1(s) and ξ2(s) by

ξ1 = x cos θ + z sin θ and ξ2 =−x sin θ + z cos θ.

A direct verification shows that

(3-2) x = ξ1 cos θ − ξ2 sin θ, z = ξ1 sin θ + ξ2 cos θ, θ ′ = x ′z′′− z′x ′′.

Moreover, it is not difficult to check that

ξ ′1 = θ
′ξ2+ 1, ξ ′2 =−θ

′ξ1, ξ 2
1 + ξ

2
2 = x2

+ z2.

A direct verification shows that the first fundamental form of φ is given by

E = 〈φs, φs〉 = 1, F = 〈φs, φt 〉 = w(zx ′− xz′)= wξ2,

G = 〈φt , φt 〉 = 1+w2(x2
+ z2)= 1+w2(ξ 2

1 + ξ
2
2 ),

and therefore,

EG− F2
= 1+w2(ξ 2

1 + ξ
2
2 )−w

2ξ 2
2 = 1+w2ξ 2

1 .

The Gauss map of the immersion φ is given by ν= 1
√

EG−F2
φs×φt . A direct

verification shows that

ν(s, t)= 1
√

1+w2ξ 2
1 (s)

(
sin(wt − θ(s)), wξ1, cos(wt − θ(s))

)
.

A direct verification shows that the second fundamental form of φ is given by

e = 〈φss, ν〉 =
θ ′

√

1+w2ξ 2
1

, f = 〈φst , ν〉 =
−w

√

1+w2ξ 2
1

,

g = 〈φt t , ν〉 =
−w2ξ2
√

1+w2ξ 2
1

.

Therefore, if we assume that the mean curvature eG−2 f F+gE
2(EG−F2)

equals 1, we
obtain the ODE

(3-3) θ ′ =
−w2ξ2+ 2(1+w2ξ 2

1 )
3/2

1+w2(ξ 2
1 + ξ

2
2 )

.

Using this expression for θ ′ in the equations ξ ′1 = θ
′ξ2+ 1 and ξ ′2 = −θ

′ξ1, we
obtain that ξ1 and ξ2 satisfy the ODE

(3-4) ξ ′1 = f1(ξ1, ξ2), ξ ′2 = f2(x1, x2),
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where

f1(x1, x2)=
−w2x2+ 2(1+w2x2

1)
3/2

1+w2(x2
1 + x2

2)
x2+ 1,

f2(x1, x2)=
w2x2− 2(1+w2x2

1)
3/2

1+w2(x2
1 + x2

2)
x1.

A direct verification shows that if we define hw : R2
→ R as

hw(x1, x2)=
x2

√

1+w2x2
1

+ x2
1 + x2

2 ,

then hw is a first integral of the ODE for ξ1 and ξ2; that is, for any solution ξ1(s)
and ξ2(s) of this system, we have that hw(ξ1(s), ξ2(s))=M , where M is a constant.
This completes the proof of the proposition. �

As a consequence of the previous proposition, we have:

Theorem 3.2. The treadmill sled of the profile curve of a twizzler with constant
mean curvature 1 is a heart-shaped curve −h−1

w (M) for some M ≥−1
4 . The value

M =− 1
4 is achieved by a cylinder of radius 1

2 .

Figure 6 shows the profile curve of a twizzler and the heart-shaped curve asso-
ciated with it. Figure 7 illustrates that, for this twizzler, the treadmill sled of the
profile curve is indeed the negative of the heart-shaped curve.
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Figure 6. Profile curve, surface, and heart-shaped curve associ-
ated to a twizzler.
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Figure 7. Treadmill sled of the profile curve of a twizzler.
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4. Treadmill sled coordinates on flat surfaces

The following theorem gives us another application of the treadmill sled.

Theorem 4.1. A surface of the form (1-1) is flat if and only if either the treadmill
sled of the profile curve is a point in the y-axis other than the origin (in this case
the surface is a cylinder) or the treadmill sled of the profile curve is contained in
a vertical half-line that starts at a point in the x-axis other than the origin. The
functions x and z can be explicitly computed:

x(s)= 1
2 cos 2

√
as+b
a

+
√

as+ b sin 2
√

as+b
a

,

z(s)=
√

as+ b cos 2
√

as+b
a

−
1
2 sin 2

√
as+b
a

.

Proof. If we define the functions θ , ξ1, and ξ2 as in the previous theorem, then the
equation for Gauss curvature equal to zero, eg− f 2

= 0, reduces to θ ′ = −1/ξ2.
Substituting this equation in the equations ξ ′1= θ

′ξ2+1 and ξ ′2=−θ
′ξ1, we obtain

that ξ1 and ξ2 satisfy the ODE

(4-1) ξ ′1 = 0, ξ ′2 =
ξ1

ξ2
.

It follows that ξ1(s) = a/2 for some real number a. If a = 0, then ξ2 is also a
constant other than zero, and the surface φ is a cylinder. In the case that a is not
zero, then ξ2=±

√
as+ b and θ(s)=∓2

√
as+ b/a. This completes the proof. �

Figure 8 illustrates that the treadmill sled of the profile curve of a flat helicoidal
surface is a vertical half-line.

Figure 8. A surface with helicoidal symmetry is flat when its
treadmill sled is a vertical half-line.
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5. Treadmill sled coordinates on Delaunay surfaces

Extending the parallel between twizzlers and Delaunay surfaces, we now describe
all Delaunay surfaces with CMC 1 using treadmill sled coordinates, and we provide
an expression for the quotient of the maximum and minimum values of the Gauss
curvature. We use this ratio to find out which unduloid-nodoid pairs are isometric.

Theorem 5.1. For every nonzero real number M ∈ (− 1
4 ,∞), the Delaunay sur-

face D(M) generated by the conic {(x, y) : 4x2
− y2/M = 1} has constant mean

curvature 1. The quotient between the maximum value of the Gauss curvature and
the minimum value of the Gauss curvature of D(M) is given by

rs(M)=−
(

1−
√

1+ 4M

1+
√

1+ 4M

)2

.

Proof. Let us assume that D(M) is parametrized as

φ(s, t)=
(
x(s), z(s) sin t, z(s) cos t

)
,

where the profile curve (x(s), z(s)) is parametrized by arc length. A direct veri-
fication shows that if θ(s) is a continuous function such that x ′(s) = cos θ(s) and
z′(s)= sin θ(s), then the mean curvature of D(M) is

1
2

(
θ ′−

cos θ(s)
z(s)

)
.

Since the mean curvature of D(M) is 1, the functions θ(s) and z(s) satisfy

θ ′ = 2+ cos θ
z

and z′ = sin θ.

This ODE has as a first integral the function h(z, θ)= z(cos θ + z). Recall that
the function z(s) is always positive. Since the minimum of the function h is − 1

4 ,
it follows that there exists a nonzero constant k >− 1

4 such that h(z(s), θ(s))= k.
When k < 0, the level sets of h(z, θ) are bounded, and therefore D(M) represents
an unduloid. When k > 0, the level sets are not bounded, and D(M) represents a
nodoid. In any case, the z-values of the level sets of h(z, θ) are bounded. A direct
computation shows that the maximum and minimum of the z-values of the level
set h(z, θ)= k are

1+
√

1+ 4k
2

and
∣∣∣∣1−√1+ 4k

2

∣∣∣∣.
We can prove that k must be equal to M by comparing these critical values of
z(s) with the maximum and the minimum values of the profile curve viewed as
the trace of the focus of a conic when it is rolled on a line. A direct computation
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shows that the Gauss curvature is −(θ ′ cos θ)/z, and since θ ′ = 2+ (cos θ)/z, the
Gauss curvature reduces to

−
cos θ(2z+ cos θ)

z2 .

Using the Lagrange multiplier method, we see that the maximum and the minimum
of the Gauss curvature subject to the constraint h(z, θ)= k are

4
√

1+ 4k

(1+
√

1+ 4k)2
and −

4
√

1+ 4k

(−1+
√

1+ 4k)2
,

respectively. It follows that the quotient between the maximum of the Gauss cur-
vature and the minimum of the Gauss curvature is

−

(
−1+

√
1+ 4k

1+
√

1+ 4k

)2

.

Since k = M , the theorem follows. �

The function rs defines a bijection between the intervals (− 1
4 , 0) and (0, 1),

and it also defines a bijection between the intervals (0,∞) and (0, 1). On the other
hand, each unduloid is isometric to a nodoid [do Carmo and Dajczer 1982]. As a
consequence of Theorem 5.1, we have:

Corollary 5.2. Two Delaunay surfaces with CMC 1 are isometric if and only if
the quotients of the maximum and minimum values of the Gauss curvatures are
the same. In particular, for any u ∈ (0, 1), the unduloid D

(
−
√

u/(1+
√

u)2
)

is
isometric to the nodoid D

(√
u/(1−

√
u)2
)
.

6. Moduli space for twizzlers

If we exclude the cylinder and the value M = − 1
4 , Theorem 3.2 establishes a 1:1

correspondence between pairs (M, w) with M >−1
4 and w> 0 and twizzlers with

mean curvature 1. Therefore, so far we have that the moduli space of all twizzlers
with CMC 1 other than the cylinder is the set {(M, w) :M >− 1

4 , w > 0}. In order
to visualize better the boundary of the moduli space of twizzlers, we replace the
parameterw with the bounded parameter v= 1/(1+w2). Therefore, the parameter
v moves from 0 to 1 when w moves from∞ to 0. Figure 9 shows pictures from an
animation that produces a piece of the twizzler associated with values of M and v.
We refer to this twizzler as T(M, v) when the dependence of M and v is needed.

In [Perdomo 2011], a formula for the inverse of the treadmill sled of a curve
is provided. Therefore we can get a parametrization for all twizzlers if we have a
parametrization for all heart-shaped curves.
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Figure 9. Moduli space of twizzler with mean curvature one.

Lemma 6.1. For any M >−1
4 and w > 0, the curve α(t)= (ρ1(t), ρ2(t)) defined

on the interval [0, 2π ] and given by

ρ1(u)= A cos u and ρ2(u)=
−1+

√
1+ 4M + B cos2 u sin u

2
√

1+w2 A2 cos2 u
,

where

A =

√
−1+Mw2+

√
1+ (1+ 2M)w2+M2w4

√
2w

,

B =
2+ 2M2w4

+w2
+ 2(Mw2

− 1)
√

1+ (1+ 2M)w2+M2w4

w2 ,

is a closed simple regular curve that parametrizes the heart-shaped curve h−1
w (M).

Proof. It is a direct verification. �

Since the maximum and minimum distances from a curve α to the origin agree
with the maximum and minimum distances from its treadmill sled to the origin
[Perdomo 2011], we have the following proposition.

Proposition 6.2. The maximum distance from a special twizzler with CMC 1 to its
axis of symmetry is 1. More generally, the maximum and minimum distances from
the twizzler T(M, v) to its axis of symmetry are given by

r1(M)=
∣∣∣∣√1+ 4M − 1

2

∣∣∣∣ and r2(M)=

√
1+ 4M + 1

2
.

Proof. Since the maximum and minimum distances from a twizzler to its axis of
symmetry are the same as the maximum and minimum distances from its profile
curve to the origin, we only need to show that for any M > − 1

4 , the minimum
and maximum distances from the origin to the heart-shaped curve h−1

w (M) are
r1(M) =

∣∣(√1+ 4M − 1)/2
∣∣ and r2(M) = (

√
1+ 4M + 1)/2, respectively. We
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Figure 10. The maximum and minimum distances from the origin
to the profile curve of T(M, v) change with respect to M .

prove this by using the method of Lagrange multipliers to find the maximum and
minimum values of the function R(x1, x2) = x2

1 + x2
2 , subject to the restriction

hw = M . A direct verification shows that if (x1, x2) and λ1 satisfy the Lagrange
multiplier equations

∂R
∂x1
= λ1

∂hw
∂x1

and
∂R
∂x2
= λ1

∂hw
∂x2

,

then x1 = 0. Once we know that x1 must be zero, we obtain from the equation
hw = M that x2 is either −(

√
1+ 4M+1)/2 or (

√
1+ 4M−1)/2. Now the result

easily follows. �

Remark 6.3. From this proposition we can understand the twizzlers in the moduli
space that are near the boundary line M = −1

4 . Since the limit when M goes to
−

1
4 of the functions r1(M) and r2(M) is 1

2 (see Figure 10), then we have that when
M is near −1

4 , the twizzlers T(M, v) are near the cylinder of radius 1
2 .

7. Fundamental piece of the profile curve of a twizzler
and the immersed versus dense property

The fact that the treadmill sled of the profile curve of a twizzler is a closed curve
allows us to define a fundamental piece of the profile curve as a connected piece
of profile curve with the property that the treadmill sled motion of this piece goes
exactly once over the heart-shaped curve. It is not difficult to see that the whole
profile curve is the union of fundamental pieces. Figure 11 shows the fundamental
piece of the profile curve of a properly immersed twizzler, along with the whole
profile curve made up of four pieces in this case and the graph of the twizzler.

For the sake of comparison, for an unduloid we could define a fundamental piece
as the trace of the focus of the ellipse when this ellipse rolls once. It is clear that
the whole profile curve is the union of fundamental pieces, and therefore Z acts on
the group of isometries of the unduloid in the form of translations. Theorem 7.2
shows that the group Z also acts on the set of isometries of twizzlers.
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Figure 11. Fundamental piece of the profile curve.

Using the parametrization for the heart-shaped curve in Lemma 6.1, we get the
following formula for the length of a fundamental piece of a twizzler. (This formula
was used in the production of Figure 11.)

Lemma 7.1. The length of the fundamental piece of the twizzler T(M, v) is∫ 2π

0

√
λ/µdu,

where λ(u)=
(dρ1

du

)2
+

(dρ2
du

)2
and µ(u)= f 2

1 (ρ1(u), ρ2(u))+ f 2
2 (ρ1(u), ρ2(u)).

The functions ρ1, ρ2, f1, and f2 are defined in Lemma 6.1 and Proposition 3.1.
Recall that w and v are related by the equation v = 1/(1+w2).

Proof. The proof is straightforward, and is actually included in the proof of the
next result, Theorem 7.2. �

In [Perdomo 2011] we showed that two curves with the same treadmill sled differ
only by a rotation about the origin. With this in mind, we have that two consecutive
fundamental pieces of the same twizzler differ by a rotation about the origin, and
therefore the whole profile curve is either a closed curve made out of a finite union
of fundamental pieces or the union of infinitely many disjoint fundamental pieces.
When the latter happens, it is not difficult to see that the profile curve is either
dense in a circle or dense in an annulus depending on whether or not the profile
curve passes through the origin. In order to better understand this property, given a
twizzler, without loss of generality, let us consider a fundamental piece starting at
a point p1 other than the origin and ending in a point p2. We have that |p1| = |p2|,
so in polar coordinates p1= reθ1 and p2= reθ2 . We prove that if θ2−θ1 is a rational
multiple of π , then the profile curve is a closed curve and the twizzler is properly
immersed, for otherwise the twizzler is dense in either the region bounded by two
concentric cylinders or dense in the region bounded by a cylinder.

The next theorem, along with Theorem 8.2 and Theorem 8.4, gives a precise
picture of the moduli space for twizzlers.
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Theorem 7.2. The angle between the final and initial points of a fundamental piece
of the twizzler T(M, v) is given by θ0 =

∫ 2π
0 ψdu, where

ψ(u)=
−w2ρ2(u)+ 2(1+w2ρ2

1(u))
3/2

1+w2(ρ2
1(u)+ ρ

2
2(u))

√
λ(u)
µ(u)

.

T(M, v) is invariant under a group of rotations of the form {R(nθ0) : n ∈ Z}.
If R(mθ0) = R(θ0) for some integer m, then the twizzler is properly immersed;
otherwise it is dense in the interior of a cylinder of radius 1 when M = 0, or dense
in the region bounded by two concentric cylinders of radii

r1(M)=
∣∣∣∣√1+ 4M − 1

2

∣∣∣∣ and r2(M)=

√
1+ 4M + 1

2

when M 6=0. More precisely, we have that T(M, v) is a properly immersed surface
with a profile curve consisting of b fundamental pieces if and only if θ0= 2π(a/b),
with a and b positive relatively prime integers. We also have another type of
density: the set of points (M, v) associated with properly immersed twizzlers is
uncountable and dense.

Proof. That the twizzler is bounded by a cylinder follows from Proposition 6.2.
Let us assume that (x(s), y(s)) are such that the surface (1-1) has constant mean
curvature 1. Since the curve (ρ1, ρ2) defined in Lemma 6.1 is regular, we see that

λ(u)=
(dρ1

du

)2
+

(dρ2

du

)2

is a periodic positive function. Likewise, since f1(x1, x2) and f2(x1, x2) only van-
ish simultaneously at (x1, x2)= (0,− 1

2), we see that

µ(u)= f 2
1 (ρ1(u), ρ2(u))+ f 2

2 (ρ1(u), ρ2(u))

is a positive periodic function. Notice that ξ1(s) = 0 and ξ2(s) = − 1
2 is the only

constant solution of the system (3-4). For any other solution, since hw is a first
integral of the system, there exist M >−1

4 and a function σ(s) such that

ξ1(s)= ρ1(σ (s)) and ξ2(s)= ρ2(σ (s))

is a solution of the system (3-4). From the equations above, we have

(7-1) ξ ′1(s)
2
+ ξ ′2(s)

2
= λ(σ(s)) σ ′(s)2.

On the other hand,

ξ ′1(s)= f1(ξ1(s), ξ2(s))= f1(ρ1(σ (s)), ρ2(s)),

ξ ′2(s)= f2(ξ1(s), ξ2(s))= f2(ρ1(σ (s)), ρ2(s)).
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It follows that σ is either strictly increasing or strictly decreasing; without loss
of generality, we can assume that σ is strictly increasing. Therefore we get

σ ′(s)=

√
µ(σ(s))
λ(σ (s))

.

If κ(u) is the inverse of the function σ(s), we have that

(7-2) κ ′(u)=
1

σ ′(κ(u))
=

√
λ(u)
µ(u)

.

If we change from the variable s to the variable u, that is, if we consider the
functions

θ̃ (u)= θ(κ(u)), ξ̃1(u)= ξ1(κ(u)), ξ̃2(u)= ξ2(κ(u)),

x̃(u)= x(κ(u)), z̃(u)= z(κ(u)),

it follows from (7-2) and (3-3) that θ̃ ′(u)= ψ(u), where

ψ(u)=
−w2ρ2(u)+ 2(1+w2ρ2

1(u))
3/2

1+w2(ρ2
1(u)+ ρ

2
2(u))

√
λ(u)
µ(u)

.

Since the right side of this equation is a periodic function with period 2π , it
follows by the existence and uniqueness theorem of ODEs that if θ̃ (2π)= θ0, then
for any integer j ,

(7-3) θ̃ (u+ 2 jπ)= jθ0+ θ̃ (u).

Since
∣∣(x(s), z(s))

∣∣= ∣∣(ξ1(s), ξ2(s))
∣∣, the piece of profile curve

Cfp = Cfundamental piece = {(x̃(u), z̃(u)) : u ∈ [0, 2π ]}

also satisfies r1(M) = min{|q| : q ∈ Cfp} and r2(M) = min{|q| : q ∈ Cfp}. Using
(3-2) and (7-3), we get

(7-4)
(

x̃(u+ 2 jπ)
z̃(u+ 2 jπ)

)
= R j

θ0

(
x̃(u)
z̃(u)

)
, where Rθ0 =

(
cos θ0 − sin θ0

sin θ0 cos θ0

)
.

This equality implies that the image of the profile curve can be viewed as the
orbit of the group {R j

θ0
} j∈Z acting on Cfp, that is,

(7-5) C = {(x(t), z(t)) : t ∈ R} = {R j
θ0

p : j ∈ Z and p ∈ Cfundamental piece}.

It follows from this equation that if θ0/2π is a rational number, then C is a
properly immersed curve, and if θ0/2π is irrational, then C is dense in the annulus{

(x1, x2) : r1(M)≤
√

x2
1 + x2

2 ≤ r2(M)
}
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when M 6= 0, or dense in the circle of radius 1 when M = 0. Therefore, twizzlers
with constant mean curvature 1 have the following property: they are properly
immersed, or they are dense in the region contained between two concentric cylin-
ders, or they are dense in the interior of a cylinder of radius 1. We can prove that
a surface corresponding to an irrational value θ0/2π is dense by showing that the
profile curve is dense, and we can prove that the profile curve is dense by showing
that the intersection of this curve with a circle centered at the origin is either the
empty set or dense in the circle. The problem of proving this last statement reduces
to that of showing that for any irrational number ι, the set {ι−[nι] : n ∈Z} is dense
in the interval [0, 1], which is a known fact. To finish, we notice that since the
function (x(s), z(s)) is parametrized by arc length, the length of the fundamental
piece is

κ(2π)=
∫ 2π

0

√
λ(u)/µ(u)du.

Also, since θ̃ ′(u)=ψ(u), we have that

θ0 =

∫ 2π

0
ψ(u)du. �

For twizzlers that do not contain the axis of symmetry, the “properly immersed
versus dense” property established in Theorem 7.2 was proved in [Hitt and Roussos
1991]. By numerically solving the equation

∫ 2π
0 ψdu = 2π(a/b) in that theorem,

we can graph profile curves of twizzlers with any desired property.
In Figure 12, we solve the numerical equation

∫ 2π
0 ψdu=2π(a/b), fixing M=0

and taking several integer values for a and b. Since M = 0, these profile curves

Figure 12. Profile curves of properly immersed twizzlers that
contain the axis.
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Figure 13. Profile curves of properly immersed twizzlers that do
not contain their axis.

represent twizzlers that contain the axis of symmetry. In Figure 13, we take several
values for M 6= 0 and a and b integers to produce properly immersed twizzlers that
do not contain the axis of symmetry. In Figure 14, we take a and b such that a/b
is not rational, so that the twizzler is not properly immersed. In Figure 15, we take
a = 5, b = 4 and 4 values of M in order to produce properly immersed examples;
we also show the points (M, w) associated with these twizzlers.

8. Isometric associate family of surfaces

As pointed out before, each nodoid is isometric to an unduloid, and therefore we
can replace the word Delaunay by either the word unduloid or nodoid in the result
proved in [do Carmo and Dajczer 1982]; that is, we can say that each twizzler is
isometric to either a nodoid or an unduloid. Another family of surfaces that holds
the same property is the set of twizzlers that contain the axis of symmetry, that is,
the set of twizzlers corresponding to M = 0 in the moduli space. We call these
surfaces special twizzlers and we denote them by ST(v); that is, ST(v)=T(0, v).
Due to a singularity problem on the coordinates used so far to study helicoidal
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Figure 14. Profile curves of nonproperly immersed twizzlers.

Figure 15. Profile curves of twizzlers consisting of four funda-
mental pieces and their corresponding values M and w.

surfaces, twizzlers that contain the axis of symmetry have been overlooked until
now. The following theorem gives us the quotient of the maximum value and the
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minimum value of the Gauss curvature for special twizzlers. Figure 16 shows two
sets of isometric nodoid-unduloid-special twizzler surfaces.

Figure 16. Isometric nodoid, unduloid and special twizzler.
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Theorem 8.1. For every nonzero real number v ∈ (0, 1), the quotient between the
maximum value of the Gauss curvature and the minimum value of the Gauss cur-
vature of the special twizzler surface ST(v) is −v. Moreover, ST(v) is isometric
to the unduloid D

(
−
√
v/(1+

√
v)2
)

and the nodoid D
(√
v/(1−

√
v)2
)
.

Proof. The proof is contained in the proof of Theorem 8.2. �

We can generalize Theorem 8.1 as follows:

Theorem 8.2. If v = 1/(1 + w2), then the quotient between the maximum and
minimum values of the Gauss curvature of the twizzler surface T(M, v) is

−
2+ (1+ 2M −

√
1+ 4M)w2

2+ (1+ 2M +
√

1+ 4M)w2
.

Moreover, fixing c ∈ (0, 1), all the twizzlers in the set{
T

(
M,

√
1+ 4M − 1− 2M + c(

√
1+ 4M + 1+ 2M)

√
1+ 4M + 1− 2M + c(

√
1+ 4M − 1+ 2M)

)
: M ∈

(
−

√
c

(1+
√

c)2
,

√
c

(1−
√

c)2

)}
are isometric.

Proof. Using the same notation as in the proof of Proposition 3.1, we see that the
Gauss curvature K satisfies

K =
eg− f 2

EG− F2 =−
w2(1+ θ ′ξ2)

(1+w2ξ 2
1 )

2
=−

w2
(
1+ 2 ξ2

√
1+w2ξ 2

1

)
(1+w2ξ 2

1 )(ξ
2
1 + ξ

2
2 )

.

Taking ρ1(u) and ρ2(u) as in Lemma 6.1, we get the following expression for
the Gauss curvature in terms of the parameter u:

−4w2
√

1+ 4M + B cos2 u sin u(
4+w2

+ 4A4w4 cos4 u− 2w2
√

1+ 4M + B cos2 u sin u
+ (1+ 4M)w2 sin2 u+w2(8A2

+ B sin2 u) cos2 u
)

A direct computation shows that the derivative of the function K =K(u) is of the
form cos u po(u), where po(u) is a positive function, and therefore the maximum
of the Gauss curvature occurs when u = 3π/2 and is equal to

2w2
√

1+ 4M

2+ (1+ 2M +
√

1+ 4M)w2
,

and the minimum of the Gauss curvature occurs when u = π/2 and is equal to

−
2w2
√

1+ 4M

2+ (1+ 2M −
√

1+ 4M)w2
.
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We conclude that the quotient of the maximum value of the Gauss curvature and
the minimum value of the Gauss curvature is

−
2+ (1+ 2M −

√
1+ 4M) w2

2+ (1+ 2M +
√

1+ 4M) w2
.

This expression in terms of v transforms into

−
1+ 2M −

√
1+ 4M + v− 2Mv+ v

√
1+ 4M

1+ 2M +
√

1+ 4M + v− 2Mv− v
√

1+ 4M
.

A direct verification shows that this expression reduces to −c when we replace
v by √

1+ 4M − 1− 2M + c(
√

1+ 4M + 1+ 2M)
√

1+ 4M + 1− 2M + c(
√

1+ 4M − 1+ 2M)
,

and therefore, for any c ∈ (0, 1), all the twizzlers{
T

(
M,

√
1+ 4M − 1− 2M + c(

√
1+ 4M + 1+ 2M)

√
1+ 4M + 1− 2M + c(

√
1+ 4M − 1+ 2M)

)
: M ∈

(
−

√
c

(1+
√

c)2
,

√
c

(1−
√

c)2

)}
must be isometric. This follows because every twizzler with CMC 1 must be in
the isometric associated family of a Delaunay surface [Lawson 1970], and it can
be shown that the family of curves

�c =

{(
M,

√
1+ 4M − 1− 2M + c(

√
1+ 4M + 1+ 2M)

√
1+ 4M + 1− 2M + c(

√
1+ 4M − 1+ 2M)

)
: M ∈

(
−

√
c

(1+
√

c)2
,

√
c

(1−
√

c)2

)}
for c ∈ (0, 1) defines a partition of the set (−1

4 ,∞)×(0, 1). Figure 17 shows these
curves �c for different values of c. We know that two twizzlers corresponding
to two points in different curves �c cannot be isometric because their ratios of
maximum to minimum Gauss curvatures are different. Using the continuity of
the curve �c and the fact that the 2π -periodic isometric family is continuous (see
Remark 1.1), we see that all the isometric surfaces of the 2π -periodic associated
family must be contained in a single �c curve, and therefore all twizzlers there are

Figure 17. Points in the moduli space that represent isometric twizzlers.
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isometric. As pointed out in the proof of Theorem 5.1, there are only two isometric
Delaunay surfaces whose quotient between maximum and minimum values of the
Gauss curvature is −c; they are the unduloid D(−

√
c/(1+

√
c)2) and the nodoid

D(
√

c/(1−
√

c)2), and they correspond to the limit surfaces of the twizzlers that
are in �c. �

Remark 8.3. Helicoidal surfaces in the deformation helicoid-catenoid shown in
Figure 3 are only a quarter of the whole 2π -periodic isometric family. All other
elements in the 2π -periodic family are, up to a rigid motion, contained in the
deformation shown in Figure 3. The same situation happens with twizzlers; the
family of twizzlers given by points in �c are only a quarter of the whole 2π -
periodic isometric family. All other elements in the 2π -periodic family are, up to
a rigid motion, contained in the twizzlers given in �c.

Since the curve

αc(M)=
(

M,

√
1+ 4M − 1− 2M + c(

√
1+ 4M + 1+ 2M)

√
1+ 4M + 1− 2M + c(

√
1+ 4M − 1+ 2M)

)
satisfies that αc

(
−
√

c/(1+
√

c)2
)
=
(
−
√

c/(1+
√

c)2, 0
)
, αc(0) = (0, c), and

αc
(√

c/(1−
√

c)2
)
=
(√

c/(1−
√

c)2, 0
)
, as a corollary of Theorems 8.1 and 8.2

and Remark 1.1, we have:

Theorem 8.4. Let�={M+iv ∈C :M ≥−1
4 , M 6= 0 and 0≤ v < 1}. The function

ρ from � to the set of immersions in R3 given by

ρ(M + iv)= T(M, v) for any v > 0 and M 6= − 1
4 ,

ρ(M)= D(M) for any M 6= 0 and M 6= − 1
4 ,

ρ(− 1
4 + iv)= {(x, y, z) ∈ R3

: x2
+ z2
=

1
4}

is continuous in the sense that for every point p in�, there exist a neighborhood U
of p in� and a continuous function f :U×R2

→R3 such that for any M+iv ∈U ,
the map (s, t)→ f (M+iv, s, t) defines a parametrization of the surface ρ(M+iv).
Moreover, the function ρ is one-to-one in the interior of �.

The continuity at the points of form− 1
4+iv follows from Theorem 7.2, because

each twizzler T(M, v) is contained in the region bounded by the two concentric
cylinders of radii r1(M) = |(

√
1+ 4M − 1)/2| and r2(M) = (

√
1+ 4M + 1)/2.

Figure 17 shows the trace of the curve αc for several values of c.

Summary. We collect some important facts on helicoidal surfaces with constant
mean curvature one. Figure 18 shows a picture of the moduli space.
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The origin corresponds

to a union of tangent

spheres

Points along this segment

correspond to unduloids

Points in this half-line that

starts at the origin correspond

to nodoids

Points along this curve correspond to

helicoidal surfaces that are isometric. The

curve starts with an unduloid, passes by a

special twizzler and ends with a nodoid

Points in this segment correspond to special twizzlers,

those that contain the axis of symmetry

All points in this segment

correspond to the cylinder

Figure 18. Moduli space of twizzler with CMC 1 and its boundary.

Dynamical interpretation of Delaunay surfaces. The trace of the focus of each
conic 4x2

− y2/M = 1 with M ∈ (−1
4 , 0) ∪ (0,∞), when it is rolled on a line,

produces the profile curve of a Delaunay surface with constant mean curvature
one. Moreover, every Delaunay surface with CMC 1 but the cylinder corresponds
with one of these conics.

Dynamical interpretation of twizzlers. The treadmill sled of the profile curve of a
twizzler with CMC 1 other than a cylinder is the closed curve

x2
+ y2
−

y
√

1+w2x2
= M

for some M >−1
4 and w > 0.

Moduli space of twizzlers. Denote by ρ(M, v) the twizzler whose treadmill sled
of its profile curve lies on the heart-shaped curve

x2
+ y2
−

y
√

1+w2x2
= M,

where v = 1/(1+w2). Then ρ generates a one-to-one correspondence between
the half-strip

�= {(M, v) : M >−1
4 and 0< v < 1}

and all twizzlers with CMC 1 but the cylinder.
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Boundary of the moduli space of twizzlers. When M goes to −1
4 , the surfaces

ρ(M, v) converge to a cylinder. When v goes to zero, the surfaces ρ(M, v) con-
verge to the Delaunay surface whose profile curve is traced by the focus of the
conic 4x2

− y2/M = 1. When M goes to zero, the Delaunay surface whose profile
curve is traced by the focus of the conic 4x2

− y2/M = 1 converges to a union of
infinitely many tangent spheres [Kapouleas 1990, Appendix A].

Fundamental piece of the profile curve. For every twizzler other than a cylinder,
we can define the fundamental piece of the profile curve as a connected part of
the profile curve whose treadmill sled goes exactly once over the closed curve
x2
+y2
−y/
√

1+w2x2=M . The function θ0(M, v) given in Theorem 7.2 provides
a formula for the angle between the initial and final positions of the fundamental
piece of the profile curve. The function θ0 defined on � is given in terms of an
integral of an expression involving only sine and cosine functions.

Properties of twizzlers. If M is nonzero, then the twizzler ρ(M, v) lies in the re-
gion Cr1r2 bounded by two concentric cylinders of radii r1(M)=|(

√
1+ 4M−1)/2|

and r2(M) = (
√

1+ 4M + 1)/2; also, ρ(M, v) is properly immersed if and only
if θ0(M, v)/2π is a rational number, and otherwise it is dense in Cr1r2 . If M = 0,
then, the twizzler ρ(M, v) contains the axis of symmetry and lies inside a cylinder
of radius 1; moreover, ρ(M, v) is properly immersed if and only if θ0(M, v)/2π
is a rational number, and otherwise it is dense in the interior of this cylinder.

Isometric surfaces. Theorem 8.2 provides an explicit formula for a foliation of the
moduli space � by curves with the property that all the twizzlers in each curve
are isometric. Each one of these curves starts with an unduloid, passes through a
special twizzler (a twizzler that contains the axis of symmetry), and ends with a
nodoid. In particular, every twizzler different other than cylinder is isometric to a
twizzler that contains the axis of symmetry.
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