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L
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Let L be an even lattice without roots. In this article, we classify all Ising
vectors in the vertex operator algebra V +

L associated with L.

Introduction

In vertex operator algebra (VOA) theory, the simple Virasoro VOA L( 1
2 , 0) of

central charge 1
2 plays important roles. In fact, for each embedding, an automor-

phism, called a τ -involution, is defined using the representation theory of L(1
2 , 0)

[Miyamoto 1996]. This is useful for the study of the automorphism group of a
VOA. For example, this construction gives a one-to-one correspondence between
the set of subVOAs of the moonshine VOA isomorphic to L( 1

2 , 0) and that of
elements in certain conjugacy class of the Monster [Miyamoto 1996; Höhn 2010].

Many properties of τ -involutions are studied using Ising vectors, which are ele-
ments of weight 2 generating L(1

2 , 0). For example, the 6-transposition property of
τ -involutions was proved in [Sakuma 2007] by classifying the subalgebra gener-
ated by two Ising vectors. Hence it is natural to classify Ising vectors in a VOA. For
example, this was done in [Lam 1999; Lam et al. 2007] for code VOAs. However,
in general, it is hard to even find an Ising vector.

Let L be an even lattice and VL the lattice VOA associated with L . Then the
subspace V+L fixed by a lift of the −1-isometry of L is a subVOA of VL . There are
two constructions of Ising vectors in V+L related to sublattices of L isomorphic to
√

2A1 [Dong et al. 1994] and
√

2E8 [Dong et al. 1998; Griess 1998].
The main theorem of this article is this:

Theorem 2.3. Let L be an even lattice without roots and e an Ising vector in V+L .
There is a sublattice U of L isomorphic to

√
2A1 or

√
2E8 and such that e ∈ V+U .

This theorem was conjectured in [Lam et al. 2007], and proved there and in [Lam
and Shimakura 2007] in the case that L/

√
2 is even and L is the Leech lattice. We
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note that if L has roots then the automorphism group of V+L is infinite, and V+L
may have infinitely many Ising vectors.

In this article, we prove Theorem 2.3, and hence we classify all Ising vectors in
V+L . Our result shows that the study of τ -involutions of V+L is essentially equivalent
to that of sublattices of L isomorphic to

√
2E8 (see [Griess and Lam 2011; 2012]).

The key is to describe the action of the τ -involution on the Griess algebra B of
V+L . Let e be an Ising vector in V+L and L(4; e) the norm 4 vectors in L which
appear in the description of e with respect to the standard basis of (V+L )2 (see
Section 2 for the definition of L(4; e)). By [Lam and Shimakura 2007], the τ -
involution τe associated to e is a lift of an automorphism g of L . We show in
Lemma 2.1 that g is trivial on {{±v} | v ∈ L(4; e)}. This lemma follows from
the decomposition of B with respect to the adjoint action of e [Höhn et al. 2012],
the action of τe on it [Miyamoto 1996] and the explicit calculations on the Griess
algebra [Frenkel et al. 1988]. By this lemma, we can obtain a VOA V containing e
on which τe acts trivially. By [Lam et al. 2007] e is fixed by the group A generated
by τ -involutions associated to elements in L(4; e). Hence e belongs to the subVOA
V A of V fixed by A. Using the explicit action of A, we can find a lattice N
satisfying e ∈ V+N and N/

√
2 is even. This case was done in [Lam et al. 2007].

1. Preliminaries

VOAs associated with even lattices. In this subsection, we review the VOAs VL

and V+L associated with even lattice L of rank n and their automorphisms. Our
notation for lattice VOAs here is standard (see [Frenkel et al. 1988]).

Let L be a (positive-definite) even lattice with inner product 〈 · , · 〉. Let also
H = C⊗Z L be an abelian Lie algebra and Ĥ = H ⊗C[t, t−1

] ⊕Cc be its affine
Lie algebra. Let Ĥ− = H⊗ t−1C[t−1

] and let S(Ĥ−) be the symmetric algebra of
Ĥ−. Then MH (1)= S(Ĥ−)∼=C[h(m) | h ∈ H,m < 0] ·1 is the unique irreducible
Ĥ -module such that h(m)·1= 0 for h ∈ H , m≥ 0 and c= 1, where h(m)= h⊗tm .
Note that MH (1) has a VOA structure.

The twisted group algebra C{L} can be described as follows. Let 〈κ〉 be a
cyclic group of order 2 and 1 → 〈κ〉 → L̂ → L → 1 a central extension of
L by 〈κ〉 satisfying the commutator relation [eα, eβ] = κ〈α,β〉 for α, β ∈ L . Let
L → L̂, α 7→ eα be a section and ε( , ) : L × L → 〈κ〉 the associated 2-cocycle,
that is, eαeβ = ε(α, β)eα+β . We may assume that ε(α, α) = κ〈α,α〉/2 and ε( , ) is
bilinear by [Frenkel et al. 1988, Proposition 5.3.1]. The twisted group algebra is
defined by

C{L} = C[L̂]/(κ + 1)∼= SpanC{e
α
| α ∈ L},

where C[L̂] is the usual group algebra of the group L̂ . The lattice VOA VL asso-
ciated with L is defined as MH (1)⊗C{L} [Borcherds 1986; Frenkel et al. 1988].
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For any sublattice E of L , let C{E} = SpanC{e
α
| α ∈ E} be a subalgebra of

C{L} and let HE = C⊗Z E be a subspace of H = C⊗Z L . Then the subspace
S(Ĥ−E )⊗C{E} forms a subVOA of VL and it is isomorphic to the lattice VOA VE .

Let O(L̂) be the subgroup of Aut L̂ induced by Aut L . By [Frenkel et al. 1988,
Proposition 5.4.1] there is an exact sequence of groups

1−→ Hom(L ,Z/2Z)−→ O(L̂)−→− Aut L −→ 1.

Note that for f ∈ O(L̂),

(1-1) f (eα) ∈
{
±e f (α)}.

By [Frenkel et al. 1988, Corollary 10.4.8], f ∈ O(L̂) acts on VL as an automor-
phism by

(1-2) f (hi1(n1)hi2(n2) . . . hik (nk)⊗ eα)

= f (hi1)(n1) f (hi2)(n2) . . . f (hik )(nk)⊗ f (eα),

where ni ∈ Z<0 and α ∈ L . Hence O(L̂) is a subgroup of Aut VL .
Let θ be the automorphism of L̂ defined by θ(eα) = e−α for α ∈ L . Then

θ̄ = −1 ∈ Aut L . Using (1-2) we view θ as an automorphism of VL . Let V+L be
the subspace {v ∈ VL | θ(v) = v} of VL fixed by θ . Then V+L is a subVOA of VL .
Since θ is a central element of O(L̂), the quotient group O(L̂)/〈θ〉 is a subgroup
of Aut V+L . Note that V+L is a simple VOA of CFT type.

Later, we will consider the subVOA of V+L generated by the weight 2 subspace.

Lemma 1.1 [Frenkel et al. 1988, Proposition 12.2.6]. Let L be an even lattice
without roots. Let N be the sublattice of L generated by L(4). Then the subVOA
of V+L generated by (V+L )2 is (VN ⊗MH ′(1))+, where H ′ = (〈N 〉C)⊥ in 〈L〉C.

Ising vectors and τ -involutions. In this subsection, we review Ising vectors and
corresponding τ -involutions.

Definition 1.2. A weight 2 element e of a VOA is called an Ising vector if the
vertex subalgebra generated by e is isomorphic to the simple Virasoro VOA of
central charge 1

2 and e is its conformal vector.

For an Ising vector e, the automorphism τe, called the τ -involution or Miyamoto
involution, was defined in [Miyamoto 1996, Theorem 4.2] based on the represen-
tation theory of the simple Virasoro VOA of central charge 1

2 [Dong et al. 1994].
Let V be a VOA of CFT type with V1=0. The first product (a, b) 7→a ·b=a(1)b

provides a (nonassociative) commutative algebra structure on V2. This algebra V2

is called the Griess algebra of V , and τe acts on it as follows:
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Lemma 1.3 [Höhn et al. 2012, Lemma 2.6]. Let V be a simple VOA of CFT type
with V1 = 0 and e an Ising vector in V . Then B = V2 has the decomposition

B = Ce⊕ Be(0)⊕ Be( 1
2)⊕ Be( 1

16)

with respect to the adjoint action of e, where Be(k) = {v ∈ B | e · v = kv}. The
automorphism τe acts on B as

1 on Ce⊕ Be(0)⊕ Be(1
2) and − 1 on Be( 1

16).

In the proof of our main theorem, we need:

Lemma 1.4 [Lam et al. 2007, Lemma 3.7]. Let V be a VOA of CFT type with
V1 = 0. Suppose that V has two Ising vectors e, f and that τe = id on V . Then e
is fixed by τ f , namely e ∈ V τ f .

Let L be an even lattice of rank n without roots, that is,

L(2)= {v ∈ L | 〈v, v〉 = 2} =∅.

Then (V+L )1 = 0, and we can consider the Griess algebra B = (V+L )2 of V+L . Let
{hi |1≤ i ≤n} be an orthonormal basis of the vector space H =C⊗Z L=〈L〉C. Set
L(4)={v∈ L | 〈v, v〉=4}. For 1≤ i≤ j≤n and α∈ L(4), set hi j =hi (−1)h j (−1)1
and xα = eα + e−α = eα + θ(eα). Note that xα = x−α.

Lemma 1.5 [Frenkel et al. 1988, Section 8.9]. (1) The set

{hi j , xα | 1≤ i ≤ j ≤ n, {±α} ⊂ L(4)}

is a basis of B.

(2) The products of the basis vectors of B given in (1) are

hi j · hkl = δikh jl + δilh jk + δ jkhil + δ jlhik,

hi j · xα = 〈hi , α〉〈h j , α〉xα,

xα · xβ =


ε(α, β)xα±β if 〈α, β〉 = ∓2,
α(−1)21 if α =±β,
0 otherwise.

Let α ∈ L(4). Then the elements ω+(α) and ω−(α) of V+L defined by

(1-3) ω±(α)= 1
16α(−1)2 · 1± 1

4 xα

are Ising vectors [Dong et al. 1994, Theorem 6.3]. The following lemma is easy:

Lemma 1.6. The automorphisms τω±(α) of V+L act by

u⊗ xβ 7→ (−1)〈α,β〉u⊗ xβ for u ∈ MH (1) and β ∈ L .
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More generally:

Proposition 1.7 [Lam and Shimakura 2007, Lemma 5.5]. Let L be an even lattice
without roots and e an Ising vector in V+L . Then τe ∈ O(L̂)/〈θ〉.

When L/
√

2 is even, our main theorem reduces to something proved earlier:

Proposition 1.8 [Lam et al. 2007, Theorem 4.6]. Let L be an even lattice and e an
Ising vector in V+L . Assume that the lattice L/

√
2 is even. There is a sublattice U

of L isomorphic to
√

2A1 or
√

2E8 and such that e ∈ V+U .

2. Classification of Ising vectors in V+

L

Let L be an even lattice of rank n without roots and e an Ising vector in V+L . Then
by Lemma 1.5(1),

(2-1) e =
∑
i≤ j

ce
i j hi j +

∑
{±α}⊂L(4)

de
{±α}xα,

where ce
i j , de

{±α} ∈ C. Set L(4; e) = {α ∈ L(4) | de
{±α} 6= 0}, H1 = 〈L(4; e)〉C

and H2 = H⊥1 in H . Note that if α ∈ L(4; e) then −α ∈ L(4; e). Without loss
of generality, we may assume that hi ∈ H1 if 1 ≤ i ≤ dim H1. Then we have
H2 = SpanC{h j | dim H1+ 1≤ j ≤ n}.

By Proposition 1.7, τe ∈ O(L̂)/〈θ〉. Since e ∈ VL , we regard τe as an automor-
phism of VL . Then τe ∈ O(L̂), and set g = τ̄e ∈Aut L . Since τe is of order 1 or 2,
so is g. We now state the key lemma in this article:

Lemma 2.1. Let β ∈ L(4; e). Then g(β) ∈ {±β}.

Proof. By (1-1) and (1-2),

(2-2) τe(xβ) ∈ {±xg(β)}.

On the other hand, τe(e)= e, (1-2) and (2-1) show that

(2-3) τe(de
{±β}xβ)= de

{±g(β)}xg(β).

By (2-2) and (2-3),

(2-4) de
{±g(β)}/d

e
{±β} ∈ {±1}.

Suppose g(β) /∈ {±β}. Then xβ − τe(xβ) is nonzero, and it is an eigenvector of
τe with eigenvalue −1. By Lemma 1.3, we have

(2-5) e · (xβ − τe(xβ))= 1
16(xβ − τe(xβ)).

We calculate the image of both sides of (2-5) under the canonical projection
µ : (V+L )2 → SpanC{hi j | 1 ≤ i ≤ j ≤ n} with respect to the basis given in
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Lemma 1.5(1). By (2-2) the image of the right side of (2-5) under µ is

(2-6) µ
( 1

16(xβ − τe(xβ))
)
= 0.

Let us discuss the left side of (2-5). By Lemma 1.5(2) and (2-4), we have

e · (xβ − τe(xβ))=
(∑

i≤ j

ce
i j hi j +

∑
{±α}⊂L(4)

de
{±α}xα

)
·
(
xβ − τe(xβ)

)
∈ de
{±β}

(
β(−1)21− g(β)(−1)21

)
+SpanC

{
xγ
∣∣ {±γ } ⊂ L(4)

}
.

Thus

µ(e · (xβ − τe(xβ)))= de
{±β}

(
β(−1)21− g(β)(−1)21

)
= de
{±β} (β − g(β)) (−1)(β + g(β))(−1)1.

This is not zero since g(β) /∈ {±β}, which contradicts (2-5) and (2-6). Therefore
g(β) ∈ {±β}. �

For ε ∈ {±}, set

L(4; e, ε)= {v ∈ L(4; e) | g(v)= εv}, Le,ε
= 〈L(4; e, ε)〉Z, H ε

1 = 〈L
e,ε
〉C.

Since g preserves the inner product, H1 = H+1 ⊥ H−1 and g acts on H2 = H⊥1 . Let
H±2 be ±1-eigenspaces of g in H2. For ε ∈ {±}, let W ε be a lattice of full rank in
H ε

2 isomorphic to an orthogonal direct sum of copies of 2A1. Then

(2-7) MH ε
2
(1)⊂ VW ε .

Lemma 2.2. The Ising vector e belongs to the VOA

V+Le,+⊕W+ ⊗ V+Le,−⊕W−,

and τe = id on this VOA.

Proof. By Lemma 2.1, L(4; e)= L(4; e,+)∪L(4; e,−). Hence, by (2-1) and (2-7),

(2-8) e ∈ (VLe,+ ⊗MH+2
(1)⊗ VLe,− ⊗MH−2

(1))+ ⊂ V+Le,+⊕W+⊕Le,−⊕W− .

Since g acts by ±1 on Le,±
⊕W±, the subspace of (2-8) fixed by τe is

V+Le,+⊕W+ ⊗ V+Le,−⊕W− .

Since e is fixed by τe, we have the desired result. �

We now prove the main theorem.

Theorem 2.3. Let L be an even lattice without roots and e an Ising vector in V+L .
There is a sublattice U of L isomorphic to

√
2A1 or

√
2E8 and such that e ∈ V+U .



CLASSIFICATION OF ISING VECTORS IN V+L 493

Proof. Set V = V+Le,+⊕W+⊗V+Le,−⊕W− . By Lemma 2.2, e belongs to V and τe = id
on V . Let A = 〈τω±(β) | β ∈ L(4; e)〉. By Lemma 1.4, e belongs to the subVOA
V A of V fixed by A. Since e is a weight 2 element, it is contained in the subVOA
generated by (V A)2. By Lemmas 1.1 and 1.6 and (2-7) (see (2-8)),

e ∈ V+N+⊕K+ ⊗ V+N−⊕K− ⊂ V+N ,

where for ε ∈ {±}, N ε
= SpanZ{v ∈ L(4; e, ε) | 〈v, L(4; e)〉 ∈ 2Z}, K ε is a lattice

of full rank in (〈N ε
〉C)
⊥
∩ (H ε

1 ⊕ H ε
2 ) isomorphic to an orthogonal direct sum of

copies of 2A1, and N = N+ ⊕ K+ ⊕ N− ⊕ K−. Since N is generated by norm
4 and 8 vectors, and the inner products of the generator belong to 2Z, the lattice
N/
√

2 is even. By Proposition 1.8, there is a sublattice U of N isomorphic to
√

2A1 or
√

2E8 such that e ∈ V+U . It follows from K+(4) = K−(4) = ∅ that
N (4) = N+(4) ∪ N−(4) ⊂ L . Since

√
2A1 and

√
2E8 are spanned by norm 4

vectors as lattices, we have U ⊂ L . Hence V+U is a subVOA of V+L . �

As an application of the main theorem, we count the total number of Ising vec-
tors in V+L for even lattice L without roots.

Let us describe Ising vectors in V+L . The Ising vector ω±(α) associated to α in
L(4) was described in (1-3) as

ω±(α)= 1
16α(−1)2 · 1± 1

4 xα.

Let E be an even lattice isomorphic to
√

2E8 and {ui | 1≤ i ≤ 8} an orthonormal
basis of C ⊗Z E . We consider the trivial 2-cocycle of C{E} for VE . Then for
ϕ ∈ Hom(E,Z/2Z)(∼= (Z/2Z)8),

ω(E, ϕ)= 1
32

8∑
i=1

ui (−1)2 · 1+ 1
32

∑
{±α}⊂E(4)

(−1)ϕ(α)xα

is an Ising vector in V+E [Dong et al. 1998; Griess 1998]. Since E(4) spans E as a
lattice, ω(E, ϕ)=ω(E, ϕ′) if and only if ϕ = ϕ′. Hence V+E has 256 Ising vectors
of form ω(E, ϕ). Thus V+√

2A1
and V+√

2E8
have exactly 2 and 496 Ising vectors,

respectively [Lam et al. 2007, Propositions 4.2 and 4.3].

Corollary 2.4. Let L be an even lattice without roots. Then the number of Ising
vectors in V+L is

|L(4)| + 256×
∣∣{U ⊂ L |U ∼=

√
2E8}

∣∣.
Proof. Set m = |L(4)|+256×|{E ⊂ L | E ∼=

√
2E8}|. Theorem 2.3 shows that the

number of Ising vectors in V+L is less than or equal to m. Let us show that there
are exactly m Ising vectors in V+L , that is, the Ising vectors ω±(α) and ω(E, ϕ) are
distinct. By Lemma 1.5(1), ωε(α) = ωδ(β) if and only if α = β and ε = δ. Also
ωε(α) 6= ω(E, ϕ) for all α ∈ L(4), L ⊃ E ∼=

√
2E8 and ϕ ∈ Hom(E,Z/2Z).
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Let E1, E2 be sublattices of L such that E1 ∼= E2 ∼=
√

2E8. Let ϕi , i = 1, 2,
be two elements of Hom(Ei ,Z/2Z). Then it follows from Lemma 1.5(1) and
〈Ei (4)〉Z = Ei that ω(E1, ϕ1) = ω(E2, ϕ2) if and only if E1 = E2 and ϕ1 = ϕ2.
Therefore, there are exactly m Ising vectors in V+L . �
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