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EXTENSION THEOREMS FOR EXTERNAL CUSPS WITH
MINIMAL REGULARITY

GABRIEL ACOSTA AND IGNACIO OJEA

Sobolev functions defined on certain simple domains with an isolated sin-
gular point (such as power type external cusps) can not be extended in
standard, but in appropriate weighted spaces. In this article we show that
this result holds for a large class of domains that generalizes external cusps,
allowing minimal boundary regularity. The construction of our extension
operator is based on a modification of reflection techniques originally de-
veloped for dealing with uniform domains. The weight involved in the ex-
tension appears as a consequence of the failure of the domain to comply with
basic properties of uniform domains, and it turns out to be a quantification
of that failure. We show that weighted, rather than standard spaces, can
be treated with our approach for weights that are given by a monotonic
function either of the distance to the boundary or of the distance to the tip
of the cusp.

1. Introduction

Let � be an open connected set in Rn and let ω :Rn
→R≥0 be a locally integrable

nonnegative function. For k ∈ N and 1 ≤ p ≤ ∞, the weighted Sobolev space
W k,p
ω (�) (W k,p(�) if ω ≡ 1) is the space of functions defined on � that have

weak derivatives of order α, for |α| ≤ k, and satisfy

‖ f ‖W k,p
ω (�)

:=

∑
|α|≤k

‖ωDα f ‖L p(�) <∞.

For �( Rn , an extension operator is a linear bounded operator

(1-1) 3 :W k,p(�)→W k,p(Rn) such that 3 f |� = f.

If such an operator exists, then� is called an extension domain for Sobolev spaces
(or an EDS).
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It is well known that smooth domains are EDS. In fact, since the boundary of
a smooth domain can be locally flattened by means of a regular transformation,
3 can be constructed in that case by applying a simple reflection method (see
[Adams and Fournier 2003; Maz’ya 2011]). On the other hand, by using the so
called Sobolev representation formula in a cone and singular integrals, Calderón
[1961] showed that Lipschitz domains are also EDS for 1 < p <∞. This result
was extended to the range 1 ≤ p ≤ ∞ by Stein [1970] by using an appropriate
averaged reflection procedure.

Reflection type techniques are a natural approach to deal with extension of func-
tions and more complex ways of reflection are needed in order to handle more gen-
eral domains. In this context Jones [1981] introduced the (broader than Lipschitz)
class of (ε, δ) domains, also called locally uniform domains and showed, thanks to
a subtle reflection method, that every (ε, δ) domain is indeed an EDS. In terms of
the Whitney decompositions W and Wc of � and (�c)o, respectively, Jones’s idea
hinges on the fact that (ε, δ) domains enjoy the following properties:

(a) Whitney cubes Q ∈Wc near� have a “reflected” cube of similar size Q∗ ∈W.

(b) Reflected cubes Q∗1, Q∗2 ∈W of neighboring cubes Q1, Q2 ∈Wc can be joined
by a bounded chain of touching cubes in W.

Thank to this, an appropriate polynomial approximation of f in Q∗ can be used to
define 3( f ) in Q.

Even while (ε, δ) domains allow very rough boundaries, simple domains such as

(1-2) �= {x ∈ R2
: 0< x2 < 1, |x1|< xγ2 }

fail to be EDS for γ > 1. This is a shared feature among general domains having
outer peaks. In this regard Maz’ya and Poborchi [1997] introduced:

Definition A. Let�⊂Rn (n≥2) be a domain with compact boundary ∂�. Assume
that 0 ∈ ∂� and that ∂� \ {0} is locally the graph of a Lipschitz function. We say
that� has an external cusp at the origin if there exists a neighborhood of the origin,
U ⊂ Rn , such that

U ∩�= {(y, z) ∈ Rn−1
×R : y ∈ ϕ(z)$ },

where $ ⊂Rn−1 is a bounded domain and ϕ :R+→R+ is a Lipschitz increasing
function such that ϕ(t)/t→ 0 (t→ 0+) and ϕ(0)= 0.

Remark 1.1. In Definition A, ϕ defines the profile of the cusp; that is,�’s behavior
toward the origin is depicted exactly by ϕ. Every “horizontal” section of � has the
same shape as $ , scaled by ϕ.

For the class of domains given by Maz’ya and Poborchi, Sobolev functions can
not be extended in standard, but in weighted spaces. To be more precise:
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Theorem A [Maz’ya and Poborchi 1997; Maz’ya 2011]. Let �⊂Rn be a domain
with an external cusp in the origin (in the sense of Definition A).

(a) If kp < n− 1, or k = n− 1 and p = 1, and ϕ satisfies that

(1-3) ϕ(t)/t is a nondecreasing function,

then there exists an extension operator

3 :W k,p(�)→W k,p
σ (R),

where

σ(x)=

 1 if x ∈�,(
ϕ(|x |)
|x |

)k
if x ∈�c.

(b) If kp > n− 1, and ϕ is such that

(1-4) there exists Cϕ constant such that ϕ(2t)≤ Cϕϕ(t),

then there exists an extension operator

3 :W k,p(�)→W k,p
σ (R),

where

σ(x)=

 1 if x ∈�,(
ϕ(|x |)
|x |

)(n−1)/p
if x ∈�c.

(c) In either case (a) or (b), assuming (1-4) holds, if σ̃ is such that there is an
extension operator 3̃ :W k,p(�)→W k,p

σ̃
(Rn), then

σ̃ (x)≤ Cσ(x) for all x ∈U \�.

Remark 1.2. Under the same hypotheses of Theorem A, and for the critical case
kp= n−1, with ϕ satisfying a condition similar to (1-4) (but slightly weaker), the
authors show that there exists an extension operator

3 :W k,p(�)→W k,p
σ (R),

where

σ(x)=
(
ϕ(|x |)
|x |

)k
∣∣∣∣ log ϕ(|x |)

|x |

∣∣∣∣1− 1
p

.

Observe that property (1-4) excludes exponential cusps with profiles given by
functions such as ϕ(t) = ae−b/t . This property is not necessary for the existence
of the extension operator in the case kp < n− 1, but it is used in the proof of the
optimality of the weight σ (item (c)). Throughout this work the weight given in
item (a) (respectively (b)) is called derivative (respectively dimensional) weight.
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Among several applications [Acosta et al. 2007; Acosta and Armentano 2011],
Theorem A allows us to handle convergence issues in the context of finite element
approximations of elliptic partial differential equations. External cusps can not be
exactly fitted by polygonal discretizations and the finite element mesh needs to be
graded according to σ(x) in order to get optimal order error estimates. On the other
hand, weighted Sobolev spaces in external cusps are of interest in linear elasticity.
Indeed, the classical Korn inequality, fundamental to proving existence of solutions
of the linearized elasticity equations, does not hold in domains with outer peaks,
but a variant involving weights depending on the distance to the boundary or the
distance to the tip of the cusp does hold. Similar results hold for the divergence op-
erator for which a continuous right inverse can be defined on this kind of weighted
spaces [Acosta et al. 2006; 2012; Durán and López García 2010a; 2010b]. In this
context it is clear that a version of Theorem A for weights of the type described
can also be useful in applications.

In this paper we present a twofold generalization of Theorem A: a first involving
a broader class of domains and a second allowing weighted spaces. Concerning
the former, and loosely speaking, we prove, in terms of Maz’ya and Poborchi’s
definition, that the extension can be performed even in a context in which ϕ does
not give the precise profile of �, but just an approximate description of the nar-
rowing toward the origin, as long as the boundary of� satisfies minimal regularity
conditions. We also show that the extension is possible with either the derivative
or the dimensional weight regardless the relationship between the parameters k, p
and n (although we do not treat the critical case kp = n − 1). On the other hand
we also present some results for the weighted case. Even while Chua [1992; 1994]
has shown that Jones’s technique can also be applied to handle extensions in W k,p

ω

for very general weights (essentially if ω is doubling and if functions in W k,p
ω can

be well approximated in cubes by polynomials), in our context, for several reasons
pointed out later, we need to restrict our study to weights that are mainly given by
monotonic functions of the distance to the boundary or the distance to the tip of
the cusp.

Our arguments can be summarized as follows. We introduce a general definition
of external cusps, that includes those domains satisfying Definition A (see Defi-
nitions 2.6 and 2.7). Our definition is given in terms of (a) a representative chain
(called the spine of the cusp) of central cubes belonging to W and (b) certain local
variable uniformity property. The latter property ensures that any cube Q ∈ Wc

close enough to � has a reflected cube Q∗ ∈ W of the type needed in Jones’s
arguments. Therefore, in a first stage, a local unweighted extension à la Jones is
carried out. In a second stage, and for cubes T ∈Wc that are not too close to �,
we define a reflected set T ∗ that is not necessarily a single, but a finite union of
cubes belonging to the central spine. We show that T ∗ can be essentially taken
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in two different ways, where either the cardinal of T ∗ is large and the size of the
cubes in T ∗ is much smaller than that of T , or T ∗ has a single cube of the same
size of T but the distance from T to T ∗ is much larger than the size of T . In each
case our arguments lead to a proper weight required in the extension process. Our
reflection procedure makes the treatment of the weighted case easy, for weights of
the type described before.

The paper is organized in the following way. In Section 2 we introduce some
notation, recall basic aspects of uniform domains and Whitney decompositions,
and finally give our definition of normal and curved cusps. Section 3 is devoted
to proving some preliminary lemmas on polynomials. In Section 4 we present a
detailed proof of the extension theorem for normal cusps (Theorem 4.1) and the
adaptation for curved cusps is developed in Section 5 (Theorem 5.1). Section 6
is just an appendix to Sections 4 and 5, where some accessory results are proved.
In Section 7 we treat the weighted case. Finally, in Section 8 we summarize the
results presented in the paper, add some comments, and show a few examples.

2. A general definition of external cusps

Given a rectangle R ⊂ Rn with edges parallels to the coordinate axis (this is the
case for all the rectangles considered in this article), the size vector of R is denoted
by È(R)= (`1(R), `2(R), . . . , `n(R)), where `i (R) is the length of R’s i-th edge.
For a cube Q we use `(Q) to denote the length of any of its edges, and for a
rectangle R, we define `(R) := max1≤i≤n{`i (R)}. We say that two rectangles R1,
R2 are equivalent, and write R1 ∼ R2, if there are constants C1, C2 such that

C1`i (R1)≤ `i (R2)≤ C2`i (R1)

for 1≤ i ≤ n. For a rectangle R, we denote its center by cR . If cR = (c1, . . . , cn),
the upper face Fu

R of R is given by

Fu
R = {(x1, . . . , xn) ∈ R : xn = cn +

1
2`n(R)},

and the lower face F l
R is defined analogously.

Given a rectangle R, we denote by a R (a > 1) the expanded rectangle centered
at cR with edges `i (a R) = a`i (R). For a cube Q, centered at cQ = (c1, . . . , cn)

we set zQ = cn −
1
2`(Q) (the last coordinate of points belonging to F l

Q). We say
that R1 and R2 are touching rectangles if Ro

1 ∩ Ro
2 =∅ and R1∩ R2 = F with F a

face of R1 or R2.
For every collection of sets C, we denote by

⋃
C=

⋃
S∈C S the union of all the

sets in C. Finally, throughout this article x̂n stands for the xn axis, and C denotes
a generic constant that may change from line to line.

Let us recall a definition that plays a crucial role in the sequel.
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Definition 2.1 (locally uniform domains). D is an (ε, δ) domain if for all x, y ∈ D
with |x − y|< δ there is a rectifiable curve γ joining x and y such that

`(γ ) <
|x−y|
ε

,(2-1)

d∂�(z) >
ε|x−z||z−y|
|x−y|

for all z ∈ γ.(2-2)

If δ > diam D, we say that D is a uniform domain (note that then D is connected).

Lemma 2.2 [Jones 1981]. If D is a (ε, δ) domain, then |∂D| = 0.

Uniform domains include Lipschitz domains, but they form a much larger class.
If fact, if � is uniform, ∂� could be very rough. On the other hand, classical
examples of domains with a single singular point that are not uniform are precisely
external cusps of power type, where property (2-2) fails, and also inner cups of the
same kind, where property (2-1) fails.

Below we define cusps in terms of its Whitney decomposition, so we recall:

Theorem 2.3 (Whitney). Let � ⊂ Rn , � 6= Rn , be an open set. Then there is a
collection W=W(�) := {Q j } of (countably) infinite dyadic closed cubes such that
�=

⋃
W, and

• Qo
j ∩ Qo

k =∅ for all Q j , Qk ∈W(�),

• `(Q j )≤ d(Q j , ∂�)≤ 4
√

n`(Q j ) for all Q j ,

• if Q j ∩ Qk 6=∅, then `(Q j )≤ 4`(Qk).

Remark 2.4. The proof of Theorem 2.3 can be found, for instance, in [Stein 1970].
One can easily observe that for any pair of open sets A and B with A ⊂ B, every
cube Q ∈W(A) is contained in some cube Q̃ ∈W(B).

Remark 2.5. Like in Definition A, the cusps defined below are assumed to be
tangential to a certain fixed direction that is taken arbitrarily along x̂n , with the tip
of the cusp placed at the origin 0. Our definition is “intrinsic” to some extent, since
it is based on Whitney cubes and a certain variable uniformity property.

Let us recall that we denote by W and Wc the Whitney decompositions of �
and (�c)o, respectively.

Definition 2.6 (normal cusp). Let � ⊂ Rn be an open set such that 0 ∈ ∂�. Let
ε > 0 and K > 1 be given parameters. We say that � has a (ε, K )-normal external
cusp (or outer peak) at the origin if it satisfies:

(i) There exists a chain S= {Si }
∞

i=1 ⊂W of cubes increasingly numbered towards
the origin (d(Si+1, 0)≤ d(Si , 0)), such that

Si ∩ Si+1 = Fu
Si+1
,(2-3)

d(Si , 0)→ 0 (i→∞).(2-4)
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(ii) Using the abbreviated notation zi := zSi for cubes Si ∈S, denoting by S(z) the
cube at height z > 0 (i.e., S(z) := Si if zi ≤ z < zi−1) and by iz the index of the
cube at height z (i.e., iz = i if Si = S(z)), we have that

(2-5) {x ∈� : xn < z} ⊂
∞⋃

i=iz

�i for any z1 > z > 0,

where �i = K Si ∩�.

(iii) For every pair of points x, y ∈ �i ∪�i+1, there is a rectifiable curve γ ⊂ �,
joining x and y, that satisfies

`(γ )≤
1
ε
|x − y|,(2-6)

d∂�(z)≥ ε
|x−z||z−y|
|x−y|

.(2-7)

(iv) We have

(2-8) `(Si )/zi → 0 (i→∞).

The set S is named the spine of �.

Condition (2-3) means that the spine S is straight, and parallel to x̂n . It also
implies that the chain is decreasing, or `(Si+1)≤ `(Si ). This last fact is not really
necessary but is assumed for the sake of simplicity: the sizes of the cubes in S

could oscillate, as long as its oscillation is controlled by some universal parameter,
depending only on �.

On the other hand, conditions (2-3) and (2-4) imply that every cube Si of S

touches x̂n , while (2-5) guarantees that �’s behavior (its narrowing toward the
origin) is faithfully represented by the behavior of the chain S: a fixed expansion
of the tails of S reaches the whole boundary of � below certain height z, and
consequently ∂� narrows toward the origin as fast as `(S(z)). In other words, the
function `(S(z)) plays the role of ϕ(z) in Definition A.

Finally, conditions (2-6) and (2-7) provide some regularity to the boundary of
� and exclude the existence of non connected components in �.

Condition (2-8) is not necessary at all for the extension process. We include it
in order to exclude cones and other nonsingular domains from our definition of a
cusp. However, it is important to notice that our extension theorems (see Theorems
4.1 and 5.1) hold even for domains on which (2-8) is not fulfilled. In that case the
weight turns to be a constant, and a classical (unweighted) extension is obtained.

Normal cusps are, somehow, “symmetric” with respect to x̂n . More precisely,
normal cusps are those that grow around an axis that is placed approximately at its
center; see Figure 1. The following definition includes cusps that are tangential to
a certain axis, which is not necessarily interior to the domain.
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Figure 1. Cusp of type (1-2) versus normal cusp with its spine.

Definition 2.7 (curved cusp). Let � ⊂ Rn be an open set such that 0 ∈ ∂�. Let
ε > 0 and K > 1 be given parameters. We say that� has an (ε, K )-curved external
cusp (or outer peak) at the origin if there exists a chain of cubes S= {Si }i , Si ∈W,
increasingly numbered toward the origin 0, satisfying

Si ∩ Si+1 6=∅,(2-9)

d(Si , x̂n)≤ C�`(Si ) for some C�,(2-10)

`(Si+1)≤ `(Si ),(2-11)

and if � satisfies conditions (ii), (iii) and (iv) of Definition 2.6.

Conditions (2-9) and (2-10) constitute a relaxation of condition (2-3). Here, the
chain is not forced to be straight and parallel to x̂n , but to approximate it asymptot-
ically. As we remarked earlier, condition (2-11) is not necessary, but comfortable.
Since we abandoned property (2-3), (2-11) is not implicit any more, and so we
include it in the definition of curved cusps.

Remark 2.8. For both normal or curved cusps we add two extra conditions that
are analogous to the ones required by Maz’ya and Poborchi in Theorem A:

`(Si )

zi
≤ C

`(S j )

z j
for all i > j , C constant.(2-12)

`(S j )≤ K`(Si ) for all i > j such that d(Si , 0) > 1
2 d(S j , 0).(2-13)

Property (2-12) is a generalization of (1-3). We use it to prove item (a) in Theo-
rems 4.1 and 5.1. On the other hand, (2-13) is a generalization of (1-4), and it is
necessary for the proof of item (b) in both theorems.

Finally, let us point out some details that arise from the comparison between
Definition A and Definitions 2.6 and 2.7.
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Note that a set satisfying Definition A is a domain that, being cut at different
heights, shows the same shape, scaled according to the height by the function ϕ.
This is clearly not the case in Definition 2.7. On the other hand, since the decreasing
conditions are stated on the spine S, and not on ∂�, our definitions allow small
oscillations in ∂� instead of the monotonic behavior imposed by ϕ. Furthermore,
Definition A asks ∂� \ {0} to be locally Lipschitz, whereas the variable uniform
properties (2-6) and (2-7) constitute a much more relaxed condition. In Section 8
we provide some examples that show in different ways the generalization implicit
in Definitions 2.6 and 2.7.

3. Some preliminary lemmas

For a polynomial P , deg P stands for the degree of P .

Lemma 3.1. Let R be a rectangle, P a polynomial with deg P ≤ k, then

‖P‖L∞(R) ≤
C
|R|1/p ‖P‖L p(R), 1≤ p ≤∞,

with C depending only on k.

Proof. Let Q̂= [−1/2, 1/2]n . Let F : Q̂→ R be the linear application: F : x̂→ x ,
F(x̂)= È(R)·x̂ t

+cR . Observe that |DF |= |R|. We consider another polynomial P̂
defined on Q̂ by P̂(x̂)= P(F(x̂)). Notice that deg P̂=deg P . Changing variables,
we obtain

‖P‖L∞(R) = ‖P̂‖L∞(Q̂) ≤ Ĉ‖P̂‖L p(Q̂)

= Ĉ
(∫

Q̂
|P̂(x̂)|pdx̂

)1/p

≤ Ĉ
(∫

R
|P(x)|p 1

|R|
dx
)1/p

,

where the first inequality follows from the equivalence of norms on the finite di-
mensional space of polynomials of degree ≤ k defined on Q̂. �

Lemma 3.2. Let R and Q be rectangles such that R ⊂ Q, and P a polynomial
with deg P ≤ k. Then there exists a constant C , depending only on k, such that

‖P‖L p(Q) ≤ C
(
|Q|
|R|

)1/p ∑
|α|≤k

‖DαP‖L p(R) È(Q)α.

Proof. We may assume that 0∈ R. Let q ∈ Q be such that ‖P‖L∞(Q)=|P(q)|, then

‖P‖L p(Q) ≤ ‖P‖L∞(Q)|Q|1/p
= |P(q)||Q|1/p

≤ |Q|1/p
∑
|α|≤k

|DαP(0)|
|qα|
α!

≤ C |Q|1/p
∑
|α|≤k

‖DαP‖L∞(R) È(Q)α

≤ C
(
|Q|
|R|

)1/p ∑
|α|≤k

‖DαP‖L p(R) È(Q)α. �
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Corollary 3.3. Let R ⊂ Q be rectangles such that |Q|/|R| ≤ C , and P a polyno-
mial with deg P ≤ k. Then there exists a constant C , depending only on k, such that

‖P‖L p(Q) ≤ C‖P‖L p(R).

Remark 3.4. A version of Corollary 3.3 is proved in [Jones 1981, Lemma 2.1].
In our case we need to compare polynomials in rectangles that are not of similar
size (a fact that eventually leads to the weights involved in the extension) and we
need the less comfortable variant given in Lemma 3.2.

Following Jones [1981], the extension operator is built in terms of polynomials
that approximate a function in certain sets. Let f ∈ W k,p(�), and S ⊂ � a set of
positive measure, we denote by Pk−1(S) (or just P(S) if the degree is clear from
the context) the unique polynomial of degree k− 1 such that∫

S
Dα( f − Pk−1(S))= 0 for all α with |α| ≤ k− 1.

Thanks to the Poincaré inequality one knows that P(R) has good approximation
properties if R is a rectangle (regardless of the eccentricity of R). In the spirit of
Lemma 2.2 in [Jones 1981] we also need such a result for the union of two touching
rectangles of similar size.

Lemma 3.5. Let R1, R2 be rectangles such that R1 ∼ R2. Assume that either R1

and R2 are touching or that R1 ⊆ R2 (renumbering if necessary). Then, for any f
in W k,p(R1 ∪ R2),

‖ f − P(R1 ∪ R2)‖L p(R1∪R2) ≤ C`(R1)
k
∑
|α|=k

‖Dα f ‖L p(R1∪R2).

Proof. Clearly it is enough to prove the result in the case k = 1. If R1 ⊆ R2 (or
vice versa) then the result follows by the Poincaré inequality for convex domains
(or from a fixed cube by scaling arguments). Let us then treat the case of touching
rectangles. Define fR1∪R2 =

1
|R1∪R2|

∫
R1∪R2

f ; then P(R1 ∪ R2)= fR1∪R2 . Write

‖ f − P(R1∪ R2)‖
p
L p(R1∪R2)

=‖ f − P(R1∪ R2)‖
p
L p(R1)

+‖ f − P(R1∪ R2)‖
p
L p(R2)

.

We now show how to deal with the first term (the other follows similarly). We have

‖ f − P(R1 ∪ R2)‖L p(R1)

≤
|R1|

|R1|+|R2|
‖ f − P(R1)‖L p(R1)+

|R2|

|R1|+|R2|
‖ f − P(R2)‖L p(R1),

and the first term is fine. For the other term we write

‖ f − P(R2)‖L p(R1) ≤ ‖ f − P(R1)‖L p(R1)+‖P(R1)− P(R2)‖L p(R1),

and again the first term is all right. In order to treat ‖P(R1)−P(R2)‖L p(R1) observe
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that since R1 and R2 are touching, there exist rectangles R3 and R4 such that
R3 ⊂ R1 ∪ R2 ⊂ R4 and

R1 ∼ R1 ∩ R3 ∼ R2 ∩ R3 ∼ R2 ∼ R3 ∼ R4.

Then (using, for instance, Corollary 3.3)

‖P(R1)− P(R2)‖L p(R1)≤C‖P(R1)− P(R3)‖L p(R1∩R3)+‖P(R3)− P(R2)‖L p(R4)

and

‖P(R1)− P(R3)‖L p(R1∩R3) ≤ ‖P(R1)− f ‖L p(R1)+‖ f − P(R3)‖L p(R3),

while (using again Corollary 3.3)

‖P(R3)− P(R2)‖L p(R4) ≤ C‖P(R3)− P(R2)‖L p(R2∩R3)

≤ C‖ f − P(R2)‖L p(R2)+‖P(R3)− f ‖L p(R3).

The lemma follows. �

4. Extension

The objective of this section is to build an extension operator for cusps in the
unweighted case W k,p, proving the main result of this paper.

Theorem 4.1. Let�⊂Rn be a domain with an external normal cusp at the origin.

(a) If the spine S satisfies (2-12), there is an extension operator

3 :W k,p(�)→W k,p
σ (Rn),

where

σ(x)=

 1 if x ∈�,(
`(S(|x |))
|x |

)k
if x ∈�c.

(b) If the spine S satisfies (2-13), there is an extension operator

3 :W k,p(�)→W k,p
σ (Rn),

where

σ(x)=

 1 if x ∈�,(
`(S(|x |))
|x |

)(n−1)/p
if x ∈�c.

(c) In either case (a) or (b), assuming (2-13) holds, if σ̃ is such that there is an
extension operator 3̃ :W k,p(�)→W k,p

σ̃
(Rn), then

σ̃ (x)≤ Cσ(x) for all x ∈U \�.
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Remark 4.2. Theorem 4.1 states the existence of a general extension operator for
normal cusps. The only difference between items (a) and (b) is the requirement of
properties (2-12) and (2-13) respectively. In contrast to Theorem A, no conditions
on k, p or n are needed in the proof of any of these cases.

Remark 4.3. Condition (2-12) is not necessary if kp 6= 1 (see Remark 4.20). Con-
sequently, since every domain satisfying Definition A is an external cusp (normal
or curved) in our terms (see Corollary 8.6), hypothesis (1-3) is not necessary in
Theorem A when kp 6= 1.

Below we provide a detailed proof for items (a) and (b) of Theorem 4.1. Item (c)
is discussed in the last section of this article. The case of curved cusps requires a
little modification (similar to that needed in [Maz’ya and Poborchi 1997]) of our
arguments and is therefore sketched later in Theorem 5.1.

Let us notice that thanks to item (iii) in Definition 2.6 and the results of Jones
for locally uniform domains, it is clear that it is enough to construct an extension
operator3 for functions u such that supp(u)⊂Dr ={x= (x1, . . . , xn) : |xn|< r/2},
where r �

∑
∞

i=1 `(Si ). Our operator 3 is defined on a set of cubes belonging to
Wc. Let us call W2 ⊂Wc the set of cubes that belong to Wc and are contained in
Dr . We divide W2 into three parts related to three different stages of the extension
process:

W3 =

{
Q ∈W2 : zQ > 0 and `(Q)≤

(
ε

5
√

n
K−1

K

)
`(S(zQ))

}
,(4-1)

W4 =
{

Q ∈W2 \W3 : zQ > 0 and `(Q)≤ zQ/(8
√

N )
}
,(4-2)

W5 =
{

Q ∈W2 \ (W3 ∪W4)
}
.(4-3)

Furthermore, let us denote by Q j the cubes in W3, so W3={Q j } j , and similarly
by {T j } j the cubes in W4 and by {U j } j those in W5. Finally, let {ξ j } j , {ϕ j } j and
{ψ j } j be a partition of unity on

⋃
W2, such that ξ j ∈ C∞0 , ϕ j ∈ C∞0 , ψ j ∈ C∞0 ;

sop(ξ j )⊂
17
16 Q j , sop(ϕ j )⊂

17
16 T j , sop(ψ j )⊂

17
16U j , and∑

j

ξ j (x)+
∑

j

ϕ j (x)+
∑

j

ψ j (x)= 1 for all x ∈
⋃

W2.

As usual, we may also assume that

|Dαξ j (x)| ≤
C

`(Q j )|α|
, |Dαϕ j (x)| ≤

C
`(T j )|α|

, |Dαψ j (x)| ≤
C

`(U j )|α|
.

At each stage of the extension process we define a polynomial for each cube in
each set Wi (in the first stage, a polynomial for each cube in W3, and so on). The
extension operator is finally constructed by using our partition of the unity.

Following Jones’s ideas we define, for each Q ∈W2, some set S(Q) ⊂ �, so
the polynomial for Q will be P(S(Q)).
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First stage. This stage closely follows the reflection method given in [Jones 1981].
It is based on Lemma 4.6, where the existence of a reflected cube for every Q ∈W3

is proved. We need to state a previous lemma.

Lemma 4.4. Given � an external normal cusp with parameters ε, K , there is a
constant K̃ (that could be taken to be K̃ = K (K + 1)/2) such that if x ∈� and

zi −
K−1

2
`(Si )≤ xn ≤ zi +

K+1
2

`(Si ),

then x ∈ K̃ Si .

Proof. Let us take j= ixn . We suppose j< i (the complementary case is analogous).
Property (2-5) implies that K S j 3 x . On the other hand z j ≤ zi +

K+1
2 `(Si ). But,

since `(S j ) ≥ `(Si ), we have `(S j ) = 2N`(Si ) for some N ∈ N0. The largest size
of S j is obtained when the cubes in S grow exponentially between Si and S j . In
that case,

z j − zi =

N−1∑
m=0

2m`(Si )≤
K+1

2
`(Si )

and 2N
≤ (K + 1)/2, which leads us to conclude that

`(S j )≤
K+1

2
`(Si ).

But then x ∈ K K+1
2 Si , since x ∈ K S j . �

Remark 4.5. It is easy to see that properties (2-6) and (2-7) hold for finite unions
of sets �i (and not only for �i ∪�i+1). Therefore we may apply both properties
to �̃i ∪ �̃i+1, where �̃i = K̃ Si ∩�. On the other hand (2-6) implies that the curve
from (2-6) is contained in a finite union of sets �i (or in a universal dilation of Si ).

Lemma 4.6. For each Q ∈W3 there is a cube Q∗ ∈W such that

1
4`(Q)≤ `(Q

∗)≤ `(Q),(4-4)

d(Q∗, Q)≤ C`(Q).(4-5)

Proof. Let i be such that zQ ∈ [zi , zi−1), and x ∈� such that d(Q, x)≤ 5
√

n`(Q).
We may assume that ε/(

√
nK ) < 1/2. In this case, observe that

xn ≥ zQ − 5`(Q)≥ zi − 5ε(K−1)
5
√

nK
`(Si )≥ zi −

K−1
2

`(Si ).

The right hand term of the equation is exactly the floor of the expanded cube K Si .
On the other hand,

xn ≤ zi−1+ 5`(Q)≤ zi−1+ 5ε(K−1)
5
√

nK
`(Si )

≤ zi + `(Si )+
K−1

2
`(Si )= zi +

K+1
2

`(Si ),
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and the right term is the roof of the expanded cube K Si . Consequently, x ∈ �̃i .
Let y ∈ �̃i be such that |x − y| = 5

√
n
ε
`(Q). Note that this is possible because

|x − y| = 5
√

n
ε
`(Q)≤ K−1

K
`(Si ) < diam �̃i .

Then let γ be the curve given by properties (2-6) and (2-7). If ξ ∈ γ is such that
|x−ξ |, |ξ− y| ≥ |x− y|/2, we have d∂�(ξ)≥ ε

4 |x− y| = (5
√

n/4)`(Q). If S ∈W,
S 3 ξ , then

4
√

n`(S)≥ d(S, ∂�)≥ d∂�(ξ)−
√

n`(S)≥ 5
4

√
n`(Q)−

√
n`(S).

Therefore
`(S)≥ 1

4`(Q).

Let us consider all the cubes T ∈W satisfying `(T ) ≥ 1
4`(Q) and take Q∗ to be

the one that minimizes the distance to Q. Then `(Q∗)≤ `(Q). On the other hand

d(Q∗, Q)≤ d(S, Q)≤ 1
ε
|x − y| + d(x, Q)≤

(5
√

n
ε2 + 5

√
n
)
`(Q).

This completes the proof of the lemma. �

Corollary 4.7. If Q1, Q2 ∈W3, Q1 ∩ Q2 6=∅, then d(Q∗1, Q∗2)≤ C`(Q1).

The following lemma is crucial. It is analogous to Lemma 2.8 in [Jones 1981].

Lemma 4.8. Given Q1, Q2 ∈ W3 such that Q1 ∩ Q2 6= ∅, there is a constant
C = C(ε, n, K ) and a chain of cubes F1,2 = {V1 := Q∗1, V2, . . . , Vr := Q∗2} ⊂W

such that r ≤ C and `(Vi )∼ `(Q1) for all i .

Proof. Since Q1∩Q2 6=∅, we may assume that either zQ1, zQ2 ∈ [zi , zi−1) or that
zQ1 ∈ [zi , zi−1) and zQ2 ∈ [zi+1, zi ) for some i . In any case, thanks to Remark 4.5,
Q∗1 and Q∗2 are not far from �i ∪�i+1. Let us then assume, for the sake of sim-
plicity, that Q∗1, Q∗2 ⊂�i ∪�i+1. Then there is a curve γ joining Q∗1 and Q∗2 with
`(γ )≤Cd(Q∗1, Q∗2)≤C`(Q1). Here C denotes different constants, but all of them
independent of the cubes considered. Let us consider the chain

F1,2 = {V1 = Q∗1, V2, . . . , Vr = Q∗2} ⊂W

of cubes touching γ . We need a lower bound for the size of V j , j = 1, . . . , r . We
have `(V2) ≥

1
4`(Q

∗

1) ≥
1

16`(Q1). Analogously, `(Vr−1) ≥ C`(Q1). If 1< j < r ,
let us take z ∈ γ ∩ V j . Then

d∂�(z)≥ ε
|x−z||z−y|
|x−y|

≥ C `(Q1)
2

`(Q1)
≥ C`(Q1).

If follows that no more than C cubes can be placed along γ , and then r ≤ C . �
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For each Q j ∈W3 let us define PQ j = P(Q∗j ). The first term of the extension
operator will be

31 f (x)=
∑

Q j∈W3

PQ j (x)ξ j (x).

Thanks to Lemmas 4.6 and 4.8, and Corollary 4.7, this operator can be bounded
following Jones [1981] and Chua [1992]. We give the details for the sake of com-
pleteness.

Remark 4.9. In this first stage, and in particular during the proof of the next
lemma, we could invoke Corollary 3.3. However, in order to be consistent with the
rest of the stages we show how to use Lemma 3.2 instead.

Lemma 4.10. If Q ∈W3 far from W4 (that is, Q ∈W3 is surrounded by cubes in
W3), then

‖Dα31 f ‖L p(Q) ≤ C
{
`(Q)k−|α|‖∇k f ‖L p(

⋃
F(Q))+‖ f ‖W k,p(Q∗)

}
,

where F(Q) is the set of all the cubes that participate in a chain F j (Q), connecting
Q∗ with Q∗j , for Q j ∩ Q 6=∅.

Proof. We have

‖Dα31 f ‖L p(Q) =

∥∥∥∥Dα
∑

Q j∩Q 6=∅
PQ j ξ j

∥∥∥∥
L p(Q)

≤

∥∥∥∥Dα
∑

Q j∩Q 6=∅
(PQ j − PQ)ξ j

∥∥∥∥
L p(Q)
+‖DαPQ‖L p(Q) =: I+ II.

The second term is easily bounded by means of Lemma 3.2, taking into ac-
count that Q and Q∗ can be included inside an auxiliary cube Q̃, Q ∼ Q̃ ∼ Q∗.
Alternating the derivatives of f we get

II≤ C
∑
|γ+α|<k

`(Q)|γ |‖Dγ+αPQ‖L p(Q∗)

≤ C
∑
|γ+α|<k

`(Q)|γ |
{
‖Dγ+α(PQ − f )‖L p(Q∗)+‖Dγ+α f ‖L p(Q∗)

}
≤ C‖∇k f ‖L p(Q∗)`(Q)k−|α|+‖ f ‖W k,p(Q∗) ≤ C‖ f ‖W k,p(Q∗).

On the other hand,

I≤ C
∑

Q j∩Q 6=∅

∑
β≤α

‖Dα−βξ j Dβ(PQ j − PQ)‖L p(Q)

≤ C
∑

Q j∩Q 6=∅

∑
β≤α

1
`(Q)|α−β|

‖Dβ(PQ j − PQ)‖L p(Q).
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For each j , let us alternate the polynomials associated to the cubes of the chain
between Q∗j and Q∗ given by Lemma 4.8. We set F j ={T1=Q∗, T2, . . . , Tr =Q∗j }
and obtain

‖Dβ(PQ j − PQ)‖L p(Q)

≤

r−1∑
i=1

‖Dβ(P(Ti+1)− P(Ti ))‖L p(Q)

≤

r−1∑
i=1

{
‖Dβ(P(Ti+1)−P(Ti∪Ti+1))‖L p(Q)+‖Dβ((P(Ti∪Ti+1)−P(Ti ))‖L p(Q)

}
≤C

r−1∑
i=1

{
‖Dβ(P(Ti+1)−P(Ti∪Ti+1))‖L p(Ti+1)+‖D

β((P(Ti∪Ti+1)−P(Ti )‖L p(Ti )

}
≤C

r−1∑
i=1

{
‖Dβ(P(Ti+1)− f )‖L p(Ti+1)+‖D

β( f − P(Ti ∪ Ti+1))‖L p(Ti∪Ti+1)

+‖Dβ( f − P(Ti ))‖L p(Ti )

}
≤C

r−1∑
i=1

`(Q)k−|β|‖∇k f ‖L p(Ti∪Ti+1) ≤ `(Q)
k−|β|
‖∇

k f ‖L p(
⋃

F j ).

And then
I≤ C`(Q)k−|α|‖∇k f ‖L p(

⋃
F(Q)). �

Finally, let us observe that from Lemmas 4.6 and 4.8 it follows that∥∥∥∥ ∑
Ql∈W3

Ql∩Q j 6=∅

χ⋃F jl

∥∥∥∥
∞

≤ C <∞ for all Q j ∈W3,(4-6)

∥∥∥∥ ∑
Q j∈W3

χ⋃F(Q j )

∥∥∥∥
∞

≤ C <∞.(4-7)

This means that each cube Q∗j is used at most a fixed number of times. Then

‖Dα31 f ‖p
L p(

⋃
W3)
=

∑
Q∈W3

‖Dα31 f ‖p
L p(Q) ≤ C‖ f ‖p

W k,p(�)
,

therefore

(4-8) ‖Dα31 f ‖L p(
⋃

W3) ≤ C‖ f ‖W k,p(�).

Hence, the operator (31) is bounded far from W4.

Second stage. This stage, where the extension operator is defined over W4, is
the heart of the extension process. The first stage was essentially a translation of
Jones’s theorem, which extends functions to an expanded cusp, where no weight
is needed. The second stage, on the other hand, extends functions to a cone: here
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the cuspidal behavior of � is compensated by a weight. The third stage, in turn,
completes the extension to a neighborhood of the origin, but does not contain any
interesting ideas: we detail it for the sake of completeness.

Let us begin stating some properties of W4 itself. Let T be a cube in W4, and let
Si = S(zT ). Observe that from the definition of W3 we know that `(T ) > C`(Si ),
with the constant C = ε

5
√

n
K−1

K . In order to simplify notation in subsequent calcu-
lations we set C = 1 and assume that `(T )≥ `(Si ).

Let W̃4 denote de Whitney decomposition of Rn
\ x̂n . Observe that the structure

of W̃4 is very simple: cubes grow exponentially as we move away from the axis.
Since the positive semiaxis of x̂n is contained in �, Remark 2.4 implies that for
every cube T ∈W4, there is a cube T̃ ∈ W̃4 such that T ⊂ T̃ . The following lemma
proves that in fact `(T )∼ `(T̃ ) for all T ∈W4.

Lemma 4.11. There is a constant C such that d(T, x̂n)≤ C`(T ) for all T in W4.

Proof. Let x∗∈ ∂� be such that d(T, ∂�)=d(T, x∗). Let γ be the segment joining
T and x∗, and Q ∈W3, the nearest cube to T such that Q ∩γ 6=∅. It is clear that
`(Q) ≤ d(Q, ∂�) ≤ d(T, ∂�) ≤ 4

√
n`(T ). Let us denote by xq

∈ ∂� the point
such that d(Q, ∂�)= d(Q, xq). Then

d(T, x̂n)≤ d(T, Q)+
√

n`(Q)+ d(Q, x̂n)

≤ 4
√

n`(T )+ 4n`(T )+ d(Q, xq)+ d(xq , x̂n)

≤ C`(T )+ d(xq , x̂n)≤ C`(T )+ K̃`(S(zQ)).

Consequently, if `(S(zQ))≤ C`(T ), the result is proved.
Let us set I = izQ . Furthermore, let T1 ∈ W4 be such that T1 ∩ Q 6= ∅ and

T1 ∩ γ 6=∅. Then 1
4`(Q)≤ `(T1)≤ 4`(Q). Suppose that `(Q) < 1

16`(SI ). Then

zT1 ≥ zQ − `(T1)≥ z I − 4`(Q) > z I −
1
4`(SI )≥ z I − `(SI+1)≥ z I+1.

But, since T1 ∈W4,

`(Q)≥ 1
4`(T1)≥

1
4`(S(zT1))≥

1
4`(SI+1)≥

1
16`(SI ),

which is a contradiction. Consequently, `(T ) ≥ C`(Q) ≥ C`(SI ), and the result
follows. �

Remark 4.12. A much simpler proof for this lemma can be provided assuming
property (2-13). However, item (i) in Theorem 4.1 can be proved without (2-13),
and so we prefer to detail the general proof.

As we stated above, Lemma 4.11 shows that `(T )∼ `(T̃ ) for all T ∈W4. This
fact implies that the number of cubes of a certain size in W4 is comparable with
the number of cubes of the same size in W̃4. In some passages of this stage, we
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estimate the number of cubes in W4 by the number of cubes in W̃4, which are
easier to count.

In this second stage a weight is needed in order to bound the norm of the ex-
tension operator: we provide two different versions of the extension to the cubes
in W4, the first one is horizontal (each cube will be associated with a set at the
same height), leading to the weight σ(x)= (`(S(|x |))/|x |)(n−1)/p, corresponding to
Theorem 4.1(b). Property (2-13) is needed in this case. The second version is verti-
cal, giving another possible weight σ(x)= (`(S(|x |))/|x |)k , as in Theorem 4.1(a).
Property (2-13) is not needed for this version.

First version: dimensional-horizontal weight. For each cube T j ∈W4 let us define

S(T j )=
⋃
{Si : zT j ≤ zi < zT j + `(T j )}.

Remark 4.13. S(T j ) is the reflected set of T j and Q∗j is the reflected cube of Q j

in the first stage. Observe that S(T j ) is not a cube, nor a rectangle. However, the
normality property (2-3) implies that it is a tower of cubes, eventually of different
sizes. Since cubes in W4 are far from �, T j will be larger than the Si ’s in S(T j ).
Nevertheless, the dyadic nature of cubes in Whitney decompositions implies that
its height is exactly `(T j ). Finally, if S(T j ) = {SI j , SI j+1 . . . , SI j+N j }, then prop-
erty (2-13) guarantees that `(SI j )/`(SI j+N j ) ≤ C < ∞. Therefore, for each T j

there is a pair of rectangles R1
j and R2

j such that

R1
j ⊂ S(T j )⊂ R2

j ,

È(R1
j )= (`(SI j+N j ), . . . , `(SI j+N j ), `(T j )),

È(R2
j )= (`(SI j ), . . . , `(SI j ), `(T j )),

satisfying `i (R2
j )/`i (R1

j )≤C for all T j and i = 1, . . . , n; in other words, R1
j ∼ R2

j .

TS(T)

Figure 2. Reflected tower: The second stage’s first version.
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Let us define, for each T j ∈W4, PT j = P(R1
j ). Our extension operator is

(4-9) 32 f (x)=
∑

T j∈W4

PT j (x)ϕ j (x)

for x ∈ T ∈W4.
The following lemma is equivalent to Lemma 4.10. However, since W4 is far

from �, a weight is needed.

Lemma 4.14. If T ∈W4 (far from W3 and W5), then

‖Dα32 f ‖L p(T ) ≤ C
(
|T |
|R1|

)1/p
‖ f ‖W k,p(

⋃
F(T )),

where F(T ) is the union of all the S(T j ) with T j ∩ T 6=∅, and R1 is the rectangle
in S(T ) provided by Remark 4.13.

Proof. As we proceeded in Lemma 4.10, we alternate the polynomial PT corre-
sponding to T . We have

‖Dα32 f ‖L p(T ) =

∥∥∥∥Dα
∑

T j∩T 6=∅
PT jϕ j

∥∥∥∥
L p(T )

≤

∥∥∥∥Dα
∑

T j∩T 6=∅
(PT j − PT )ϕ j

∥∥∥∥
L p(T )
+‖DαPT ‖L p(T ) =: I+ II.

Since d(T, S(T )) ≤ C`(T ), the second term can be bounded by means of
Lemma 3.2, by considering an auxiliary cube T̃ ∼ T such that T, S(T ) ⊂ T̃ .
We get

II≤ C
(
|T |
|R1|

)1/p ∑
γ :|γ+α|<k

`(T )|γ |‖Dα+γ PT ‖L p(S(T )).

If we go on as in Lemma 4.10, then we obtain

II≤ C
(
|T |
|R1|

)1/p
‖ f ‖W k,p(S(T )).

On the other hand,

I≤ C
∑

T j∩T 6=∅

∑
β≤α

1
`(T )|α−β|

‖Dβ(PT j − PT )‖L p(T ),

and T ∩T j 6=∅, implies that S(T )∩S(T j ) 6=∅ and R1
∼ R1

j . In fact, S(T )⊂ S(T j )

or S(T j ) ⊂ S(T ) (which imply R1
⊂ R1

j or R1
j ⊂ R1 respectively), or S(T ) and

S(T j ) form a new, longer tower where S(T ) is over S(T j ), or vice versa (which
implies that R1 and R1

j are touching). We only treat the case that leads to touching
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rectangles (the other cases follow similarly):

‖Dβ(PT j − PT )‖L p(T )

≤ ‖Dβ(PT j − P(R1
∪ R1

j ))‖L p(T )+‖Dβ(PT − P(R1
∪ R1

j ))‖L p(T )

≤ C
(
|T |
|R1|

)1/p∑
γ :|γ+β|<k

`(T )|γ |
{
‖Dβ+γ (PT − P(R1

∪ R1
j ))‖L p(R1)

+‖Dβ+γ (PT j − P(R1
∪ R1

j ))‖L p(R1
j )

}
≤ C

(
|T |
|R1|

)1/p∑
γ :|γ+β|<k

`(T )|γ |
{
‖Dβ+γ (PT − f )‖L p(R1)

+‖Dγ+β( f − P(R1
∪ R1

j ))‖L p(R1)

+‖Dβ+γ (PT j − f )‖L p(R1
j )

+‖Dγ+β( f − P(R1
∪ R1

j ))‖L p(R1
j )

}
.

Applying Lemma 3.5 we obtain

‖Dβ(PT j − PT )‖L p(T )

≤ C
(
|T |
|R1|

)1/p∑
γ :|γ+β|<k

`(T )|γ |`(R1)k−|γ |−|β|
∑
τ :|τ |=k

‖Dτ f ‖L p(S(T )∪S(T j )).

Consequently

I≤ C
∑

T j∩T 6=∅

∑
|β|≤|α|

1
`(T )|α−β|

C
(
|T |
|R1|

)1/p

∑
γ :|γ+β|≤k

`(T )|γ |`(R1)k−|γ |−|β|
∑
τ :|τ |=k

‖Dτ f ‖L p(S(T )∪S(T j ))

≤ C
∑

T j∩T 6=∅

∑
|β|≤|α|

`(T )|k|−|α|C
(
|T |
|R1|

)1/p∑
γ :|γ+β|<k

∑
τ :|τ |=k

‖Dτ f ‖L p(S(T )∪S(T j ))

≤ C
(
|T |
|R1|

)1/p
‖ f ‖W k,p(F(T )). �

Lemma 4.10 bounds the norm of the extension operator in all the cubes in W3

far from W4, that is, in all cubes Q ∈ W3 such that all the neighbors of Q are
in W3. Lemma 4.14 does the same thing for cubes in W4, far from W3. Let us
consider now cubes in the frontier of these sets: let Q ∈W3 and T ∈W4 be such
that Q ∩ T 6=∅. Notice that 1

4 ≤ `(Q)/`(T )≤ 4. Furthermore,

4
√

n`(Q)≥ d(Q, ∂�)≥ d(T, ∂�)−
√

n`(Q)≥ `(T )−
√

n`(Q),

and then

`(T )≤ 5
√

n`(Q)≤ C`(SI ),
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where SI is the cube in the spine of � such that zQ ∈ [z I , z I−1). This implies that
`(Q∗)∼ `(T ), and since SI ∩ S(T ) 6=∅, by means of Lemma 4.8, there is a chain
of cubes joining Q∗ and S(T ). Hence, the proof of the following lemma is the
same that the one of Lemmas 4.10 and 4.14.

Lemma 4.15. Let Q ∈W3 and T ∈W4 be such that Q ∩ T 6=∅, then

‖Dα(31+32) f ‖L p(Q) ≤ C‖ f ‖W k,p(F(Q)),

‖Dα(31+32) f ‖L p(T ) ≤ C‖ f ‖W k,p(F(T )).

We need to prove that the norm of the extension is bounded as in Lemma 4.14
all over W4 and not only in a particular cube. Let us pick a cube Si ∈ S. A simple
comparison with W̃4 implies that the number of cubes T j with `(T j ) = 2m`(Si ),
such that Si ⊂ S(T j ), is bounded by a constant independent of Si . Furthermore,
such a comparison allows us to bound the possible values of m, for each i , by
0≤ m ≤ log(zi/`(Si )), where log= log2.

Proposition 4.16. If we set σ(x)= (`(S(|x |))/|x |)(n−1)/p, then

‖σDα f ‖L p(
⋃

W4) ≤ C‖ f ‖W k,p(
⋃

S).

Proof. We can take σ as constant in each cube T ∈W4: σT ∼

(
`(S(zT ))

zT

)(n−1)/p
.

Then

‖σDα f ‖p
L p(

⋃
W4)
=

∑
T∈W4

‖σDα f ‖p
L p(T ) ≤ C

∑
T∈W4

(
`(S(zT ))

zT

)n−1
‖Dα f ‖p

L p(T )

≤ C
∑

T∈W4

(
`(S(zT ))

zT

)n−1 |T |
|R1|
‖ f ‖p

W k,p(
⋃

F(T )) .

Now, since `i (R1)∼ `(S(zT )) for i = 1, . . . , n−1, and `n(R1)= `(T ), we have

‖σDα f ‖p
L p(

⋃
W4)
≤ C

∑
T∈W4

(
`(T )
zT

)n−1
‖ f ‖p

W k,p(
⋃

F(T ))

= C
∑

T∈W4

∑
S∈F(T )

(
`(T )
zT

)n−1
‖ f ‖p

W k,p(S)

= C
∑
S∈S

∑
T :F(T )3S

(
`(T )
zT

)n−1
‖ f ‖p

W k,p(S) .

Given a fixed cube S ∈ S, the cubes T in W4 can be classified by their sizes
`(T )= 2m`(S), where 0≤m ≤M = log(zS/`(S)). Furthermore, zT ∼ zS for every
T ∈ W4 such that S ∈ F(T ). Finally, the comparison between cubes in W4 and
cubes in W̃4 guarantees that, given a cube S ∈ S, there is a bound C , depending
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only on the dimension n, such that

#{T ∈W4 : S ∈ F(T ), `(T )= 2m`(S)} ≤ C.

Then

‖σDα f ‖p
L p(

⋃
W4)
≤ C

∑
S∈S

M−1∑
m=1

∑
T :F(T )3S
`(T )=2m`(S)

(
`(T )
zT

)n−1
‖ f ‖p

W k,p(S)

≤ C
∑
S∈S

z1−n
S `(S)n−1

( M−1∑
m=1

(2n−1)m
)
‖ f ‖p

W k,p(S),

and the result follows by recalling that M = log(zS/`(S)). �

This result concludes the first version of the second stage of the extension.

Second version: derivative-vertical weight. This version of the extension is based
on a different construction of the reflected set of a cube in W4. For each T , we
find some T ∗ ∈ S such that `(T ∗) ∼ `(T ), but T ∗ is far above T . The weight in
this case is due to the distance between T and T ∗.

Let us consider T̃ a cube belonging to W̃4 (the Whitney decomposition of
Rn
\ x̂n) such that T̃ ∩ T 6= ∅ for some T ∈ W4. Thanks to Lemma 4.11 only

a finite number (the number does not depend on T̃ ) of cubes that belong to W4 are
contained in T̃ . We can now pack the elements of W4 into cylinders of the form
η(T̃ ) = Q′ ×R, where Q′ ⊂ Rn−1 is the projected face Fu

T̃
of T̃ onto Rn−1. We

identify cylinders given by cubes T̃ that share a projection Q′. In this way each
cube T ∈ W4 belongs to only one cylinder. Moreover, cubes inside the cylinder
η(T̃ ) are equivalent, that is, T1, T2 ∈ η(T̃ ) implies that T1 ∼ T̃ ∼ T2. For each

T1 T1,1

TN

T1*=T1,1*=...=TN*

Figure 3. Reflected cubes: The second stage’s second version.
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T j ∈W4, we denote by τ(T j ) the set of cubes in W4 that share a cylinder with T j .
The set τ is called a tower.

Let us consider one of the upper cubes T 1 in τ(T 1). We define T ∗ = S(zT 1) for
every T ∈ τ(T 1). This situation is represented in Figure 3.

It is important that, with this definition, for every T ∈W4 we have T ∗ ∈ S, and
T ∗ ∼ T . However, the distance between T and T ∗ could be large, particularly in
the xn direction. In fact, since d(T 1, T N ) ∼ zT 1 , we have d(T 1, T 1∗) ∼ `(T 1),
but d(T N , T N∗) ∼ zT 1 (where T 1 and T N are upper and lower cubes in a certain
tower τ ).

As in the first version of the second stage extension, we define PT j = P(T ∗j ) and

32 f (x)=
∑

T j∈W4

PT j (x)ϕ j (x).

Observe that if T j , T ∈W4 and T j ∩ T 6= ∅, the tops of the towers τ(T ) and
τ(T j ) could be settled at very different heights (and so could the heights of the
reflected cubes T ∗j and T ∗). This is because of the following fact.

Remark 4.17. Suppose S ∈S is the higher cube of a certain size. Let us denote by
c(S) the number of cubes with edges of length exactly `(S). Then, since 0 ∈ ∂�,
zS−c(S)`(S) > 0, and consequently c(S)≤ zS/`(S). However, no better estimate
can be provided (in fact, it is easy to see that for cusps with profile ϕ(z)= zν , there
are ∼ z1−ν cubes with edges zν), so the worst case, that there could be ∼ zS/`(S)
cubes in S with side `(S), should be assumed to hold.

Consequently, the shape of W4 could show long steps. When two towers touch-
ing each other are in the edge of a long step, their heights are very different. This
situation is represented in Figure 4. In this figure, two touching towers are shown,

T1

{ l (S(z))

z

Figure 4. Long steps imply long chains.
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where reflected cubes are far from each other. Therefore, the chain (in S) joining
the reflected cubes for each tower is large.

Lemma 4.18. For every cube T ∈W4,

‖Dα32 f ‖L p(T ) ≤ C`(T )k−|α|
(
`n(τ (T ))
`(T )

)k−1/p
‖ f ‖W k,p(

⋃
F(T )),

where F(T ) is the union of the cubes in all the chains connecting T ∗ and T ∗j for
T j ∩ T 6=∅.

Proof. We have

‖Dα32 f ‖L p(T ) ≤

∥∥∥Dα
∑

T j∩T 6=∅
(PT j − PT )ϕ j

∥∥∥
L p(T )
+
∥∥DαPT

∥∥
L p(T ) =: I+ II.

As usual,

I≤ C
∑
β≤α

1
`(T )|α|−|β|

∑
T j∩T 6=∅

‖Dβ(PT j − PT )‖L p(T ).

Let us denote by F j (T ) = {T ∗ = S1, S2, . . . , T ∗j = SM
} the chain of cubes

joining T ∗ and T ∗j , then

‖Dβ(PT j − PT )‖L p(T ) ≤

M−1∑
l=1

‖Dβ(P(Sl+1)− P(Sl))‖L p(T ).

Now, if we denote by Rl the minimal rectangle containing T and Sl , we have
`i (Rl)∼ `(T ), i = 1, . . . , n− 1, and `n(R)≤ `n(τ (T )). Then

‖Dβ(P(Sl+1)− P(Sl))‖L p(T )

≤ C
{
‖Dβ(P(Sl+1)− P(Sl+1

∪ Sl))‖L p(T )+‖P(Sl+1
∪ Sl)− P(Sl))‖L p(T )

}
≤ C |T |

1
p
{
‖Dβ(P(Sl+1)− P(Sl+1

∪ Sl))‖L∞(Rl+1)

+‖Dβ(P(Sl+1
∪ Sl)− P(Sl))‖L∞(Rl )

}
≤ C |T |

1
p
∑
|γ+β|<k

{
`(Rl)|γ |

|Sl+1|1/p ‖D
β+γ (P(Sl+1)− P(Sl+1

∪ Sl)‖L p(Sl+1)

+
`(Rl)|γ |

|Sl |1/p ‖D
β+γ (P(Sl)− P(Sl+1

∪ Sl)‖L p(Sl )

}
≤ C

∑
|γ+β|<k

`n(τ (T ))|γ |`(Sl)k−|β|−|γ |‖∇k f ‖L p(Sl∪Sl+1).



EXTENSION THEOREMS FOR EXTERNAL CUSPS WITH MINIMAL REGULARITY 25

Consequently,

I≤ C
∑

T j∩T 6=∅

∑
β≤α

1
`(T )|α|−|β|

M−1∑
l=1

∑
|γ+β|<k

`n(τ (T ))|γ |`(Sl)k−|β|−|γ |‖∇k f ‖L p(Sl∪Sl+1)

≤ C`(T )k−|α|
(
`n(τ (T ))
`(T )

)k−1 M−1∑
l=1

‖∇
k f ‖L p(Sl∪Sl+1).

Applying the Hölder inequality gives

I≤ C`(T )k−|α|
(
`n(τ (T ))
`(T )

)k−1
M1/p′

‖∇
k f ‖L p(

⋃
F(T )),

where 1/p+ 1/p′ = 1. But M is the number of cubes in the chain joining T ∗ and
T ∗j , which we saw could be as large as `n(τ (T ))/`(T ), and then

I≤ C`(T )k−|α|
(
`n(τ (T ))
`(T )

)k−1/p
‖∇

k f ‖L p(
⋃

F(T )).

II could be bounded by means of the same ideas. �

A proposition equivalent to Proposition 4.16 can now be easily proved.

Proposition 4.19. If we set σ(x)= (`(S(|x |))/|x |)k , then

‖σDα32 f ‖L p(
⋃

W4) ≤ C‖ f ‖W k,p(
⋃

S).

Proof. As we did in Proposition 4.16, let us observe that the weight σ could be
considered constant in each cube T ∈W4, σT ∼ (`(S(zT ))/zT )

k . Then

‖σDα32 f ‖p
L p(

⋃
W4)

=

∑
T∈W4

‖σDα32 f ‖p
L p(T )

≤ C
∑

T∈W4

(
`(S(zT ))

zT

)kp
‖Dα32 f ‖p

L p(T )

≤ C
∑

T∈W4

(
`(S(zT ))

zT

)kp
`(T )(k−|α|)p

(`n(τ (T ))
`(T )

)kp−1
‖ f ‖p

W k,p(
⋃

F(T ))

= C
∑
S∈S

∑
T :F(T )3S

(
`(S(zT ))

zT

)kp
`(T )(k−|α|)p

(
`n(τ (T ))
`(T )

)kp−1
‖ f ‖p

W k,p(S).

Now, observe that if we fix a cube S ∈S, every cube T ∈W4 such that S ∈F(T )
satisfies `(T )∼ `(S) and `n(τ (T ))≤ zS . By considering this and |α|≤ k, we obtain

‖σDα32 f ‖p
L p(

⋃
W4)
≤ C

∑
S∈S

∑
T :F(T )3S

(
`(S(zT ))

zT

)kp( zS
`(T )

)kp−1
‖ f ‖p

W k,p(S).
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Now, using property (2-12) we obtain

‖σDα32 f ‖p
L p(

⋃
W4)
≤ C

∑
S∈S

∑
T :F(T )3S

(
`(S)
zS

)kp( zS
`(T )

)kp−1
‖ f ‖p

W k,p(S)

≤ C
∑
S∈S

∑
T :F(T )3S

`(S)
zS
‖ f ‖p

W k,p(S).

But, for a fixed S ∈ S, the number of cubes T such that S ∈ F(T ) is at most
CzS/`(S), and then

‖σDα32 f ‖p
L p(

⋃
W4)
≤ C

∑
S∈S

zS
`(S)

`(S)
zS
‖ f ‖p

W k,p(S)

≤ C
∑
S∈S

‖ f ‖p
W k,p(S) = ‖ f ‖p

W k,p(
⋃

S)
. �

Remark 4.20. If kp 6= 1, property (2-12) is not necessary. Using `(S(zT ))≤ `(T ),
an argument similar to the one given in Proposition 4.16 can be applied: at the end
of the proof of Proposition 4.16 the edges of all cubes T such that S ⊂ S(T ) are
classified in terms of `(S). In the last part of the proof of Proposition 4.19, the
same idea can be used in order to classify zT for all cubes T such that S ∈ F(T ).
When kp 6= 1 the summation is bounded and the result follows.

Third stage. This stage is devoted to defining our extension operator in the cubes
of W5. We explain the construction of the reflected sets for each version of the
extension, but we do not enter into details since the ideas are exactly the same as
in Lemmas 4.14 and 4.18 and Propositions 4.16 and 4.19, according to the case.

For the first (dimensional) version of the extension, let us define

S(U )=
⋃
{Si : `(U )≤ zi < 2`(U )}.

It is clear that d(U, S(U ))≤ C`(U ). On the other hand, S(U ) is a tower of cubes
that admits an interior rectangle R1, with `i (R1)∼ `(S(`(U ))) for i = 1, . . . , n−1
and `n(R1) ∼ `(U ). Because of property (2-13), there is an exterior rectangle
R2
⊃ S(U ) such that R2

∼ R1. Hence Remark 4.13 holds for cubes in W5, and so
do Lemma 4.14 and Proposition 4.16. As we did earlier, we define PU j = P(R1

j ).
The last thing to notice is that if T ∈W4 and U ∈W5 are such that T ∩U 6=∅, then
d(S(U ), S(T ))≤ C`(T ), and then there is a finite chain of towers that joins S(U )
and S(T ). This guarantees that the transition between W4 and W5 is smooth.

For the second (derivative) version, let us define U∗ = Si , the cube in S with i
the maximum index such that `(Si ) ≥ `(U ). This implies `(U∗) ∼ `(U ), which
is the essential property of the reflected cube in this case. On the other hand,
d(U,U∗)≤ CzU∗ . Once again, we define PU j = P(U∗j ). It is clear that if T ∈W4

and U ∈W5 are such that T ∩U 6= ∅ and U∗ ∼ T ∗, then d(U∗, T ∗) ≤ CzT ∗ , so
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the norm of the extension can be bounded in the frontier between W4 and W5 as
we did in W4.

As we did in the previous sections, let us define, for both versions,

33 f (x)=
∑

U j∈W5

PU j (x)ψ j (x).

The last matter that we need to deal with is the superposition induced by this
definitions of reflected sets. In the previous stage we introduced W̃4 in order to help
us count some sets of cubes in W4. Similarly, we now introduce W̃5=W(Rn

\{0}).
Thanks to Remark 2.4 we may define, for every U ∈W5, Ũ the cube in W̃5 such
that U ⊂ Ũ . On the other hand the ideas exposed earlier (see Lemma 4.11) lead us
to conclude that U ∼ Ũ . The number of cubes in W̃5 with edges of a certain length
2−l is bounded by a constant depending only on the dimension n. The same holds
for cubes in W5. Consequently, after this third stage, every cube in S is loaded
with at most a bounded quantity of cubes of the exterior of �.

Our complete extension operator is then

3 f (x)=31 f (x)+32 f (x)+33 f (x).

For every x = (x ′, xn) ∈ W4, we have xn ∼ |x |. We use this fact to write the
weight in terms of |x | instead of xn . Since the third term of the extension is also
radial, the weight can be taken as(

`(S(|x |))
|x |

)γ
,

where γ is the exponent corresponding to the case in question.
Except for a few technical details that are treated in Section 6, the proof of

Theorem 4.1 is concluded. �

5. Curved cusps

Theorem 5.1. Let�⊂Rn be a domain with an external curved cusp at the origin.

(a) If the spine S satisfies (2-12), there is an extension operator

3 :W k,p(�)→W k,p
σ (Rn),

where

σ(x)=

 1 if x ∈�,(
`(S(|x |))
|x |

)k
if x ∈�c.
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(b) If the spine S satisfies (2-13), there is an extension operator

3 :W k,p(�)→W k,p
σ (Rn),

where

σ(x)=

 1 if x ∈�,(
`(S(|x |))
|x |

)(n−1)/p
if x ∈�c.

(c) In either case (a) or (b), assuming (2-13) holds, if σ̃ is such that there is an
extension operator 3̃ :W k,p(�)→W k,p

σ̃
(Rn), then

σ̃ (x)≤ Cσ(x) for all x ∈U \�.

We only sketch a proof of Theorem 5.1. We introduce a stage zero, consisting of
an extension of a curved cusp � to a larger domain that includes a normal cusp �̂.
Functions defined on �̂ will be extended as in Theorem 4.1. The most important
fact to mention is that after stage one, the distance from cubes in W4 and W5 to �
is comparable with the distance from them to �̂, and so will be the weights.

Stage zero. Let � be a domain satisfying Definition 2.7, and let S= {Si }
∞

i=1 be its
spine. Then d(Si , x̂n)≤C�`(Si ), and we may take C� ≥ K . Assuming `(Si )≤ 1,
let us consider

�̃=
⋃

i

4(C�+ 1)Si .

Clearly, �⊂
⋃

i C�Si . Even more: Let us take S′i to be the translation of Si to the
axis xn , so S′i ∩ S′i+1= Fu

S′i+1
and zS′i = zSi . Then, if we set �̂=

⋃
i 2C�S′i , we have

�⊂ �̂⊂ �̃.

Lemma 4.6 can be reproduced in order to find a reflected cube for every Q in
W2 such that Q ⊂ �̃, by just changing K for 4(C� + 1). Consequently, a first
(unweighted) extension can be performed as in stage one. Let us denote by 30 f
the extension of f to �̃, and let us take f̂ : �̂→ R, f̂ = 30 f |�̂. Observe that
�̂ is a normal cusp. Then, we can extend f̂ as in Theorem 4.1. Let us denote
by Ŵ3, Ŵ4, Ŵ5, the subsets of the Whitney decomposition of the exterior of �̂
corresponding to stage one, two and three respectively. If we denote by Ŝ= {Ŝi }i

the spine of �̂ (observe that Ŝi is not necessarily S′i , but they are equivalent), we
have Ŝi ∼ Si . Now, if we take T ∈ Ŵ4, such that zi ≤ zT < zi−1, then

(5-1) `(T )≥ C`(Ŝi )≥ C`(Si ).
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Furthermore,

d(T, Si )≤ Cd(T, Ŝi )≤ C`(T ),(5-2)

d(T, ∂�̂)≤ d(T, ∂�)≤ Cd(T, Ŝi )≤ Cd(T, ∂�̂).(5-3)

The weight of the extension operator based on �̂ is expressed in terms of Ŝi ,
but these inequalities allow us to change it for Si , and then Theorem 5.1 is proved
by using the results given in the next section.

6. Density of C∞ functions

Following Jones we prove that certain set of regular functions is dense in W k,p(�).

Proposition 6.1 [Jones 1981]. Let D be a ε-uniform domain, and f ∈ W k,p(D).
For every η > 0 there is a function g ∈ C∞(Rn) such that ‖ f − g‖W k,p(D) < η.

Remark 6.2. The proof of this result relies on the existence of certain chain of
dyadic cubes constructed in [Jones 1981] by means of properties (2-1) and (2-2).
Similar arguments can be carried out using properties (2-6) and (2-7) instead of
(2-1) and (2-2). In this way Proposition 6.1 can be proved for certain sets �̌i ⊂

�i ∪�i+1 defined below.

Theorem 6.3. Let� be a cusp, and f ∈W k,p(�). Given η > 0, there is a function
g ∈ C∞(Rn

+
) such that ‖ f − g‖W k,p(�) < Cη.

Proof. Let us define

�̌i =�∩
{

x = (x ′, xn) : zi −
`(Si+1)

2
≤ xn < zi−1+

`(Si−1)

2

}
,

�̌′i =�∩
{

x = (x ′, xn) : zi −
`(Si+1)

2
≤ xn < zi +

`(Si )

2

}
.

Let us consider gi ∈ C∞ such that ‖ f − gi‖W k,p(�̌i )
< (η/2i )`(Si )

k . Observe that
the existence of such a function is guaranteed by Proposition 6.1 and Remark 6.2.

Let {ψi }i a partition of unity such that

ψi ∈ C∞0
(
[zi − `(Si+1)/2, zi−1+ `(Si−1)/2]

)
,∑

ψi (t)≡ 1 for all t ∈ (0, z1], and |Drψi | ≤ C/`(Si )
r .

Let us define

g(x)=
∞∑

i=2

gi (x)ψi (xn).

Observe that, in �̌′i , ψi +ψi+1 ≡ 1. Then

‖Dα( f − g)‖L p(�̌′i )
≤ ‖Dα( f − (ψi gi +ψi+1gi+1))‖L p(�̌′i )

≤ ‖Dα(ψi ( f − gi ))‖L p(�̌′i )
+‖Dα(ψi+1( f − gi+1))‖L p(�̌′i )

.
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But

‖Dα(ψi ( f − gi ))‖L p(�̌′i )
≤

∥∥∥∥∑
β≤α

Dα−βψi Dβ( f − gi )

∥∥∥∥
L p(�̌′i )

≤

∑
β≤α

C
`(Si )|α|−|β|

‖Dβ( f − gi )‖L p(�̌′i )

≤
C

`(Si )|α|−|β|
η

2i `(Si )
k
≤ C

η

2i .

Consequently

‖ f − g‖p
W k,p(�)

=

∞∑
i=1

‖ f − g‖p
W k,p(�̌′i )

≤

∞∑
i=1

C
ηp

2pi ≤ Cηp. �

Following Jones’s arguments one can show that Dα3 f = Dα f χ�̄+Dα3 f χ�̄c

is in Liploc(R
n
\ {0}) for all α, |α| ≤ k − 1, and for any f ∈ C∞(Rn

+
). Indeed,

taking into account that the first stage of our extension process follows Jones’s
reflection method, we can reproduce the ideas of Lemma 3.5 in [Jones 1981]. The
boundedness of f in the arguments given in that reference is crucial: here we
should use the fact that f is bounded in any compact set K such that 0 /∈ K .

Recalling that |∂�| = 0 we see that Theorems 4.1 and 5.1 are proved by using
density arguments and Theorem 6.3.

7. The weighted case

For all measurable sets S ⊂ Rn , let ω(S) be the measure induced by the weight ω,

ω(S)=
∫

S
ω.

We say ω is doubling if for every cube Q ∈Rn , ω(2Q)≤Cω(Q) with C indepen-
dent of Q.

Chua [1992; 1994] adapts Jones’s techniques for proving an extension theorem
for locally uniform domains in the weighted case. We state a version of his results.

Theorem B. Let � be an (ε, δ) connected domain, 1 ≤ p <∞. Suppose that ω
is doubling, ω−1/(p−1) is locally integrable and Lipk−1

loc Rn is dense on W k,p
ω (�).

Finally, suppose that for every cube Q and every f ∈ Liploc Rn ,

(7-1) ‖ f − fQ,ω‖L p
ω(Q) ≤ C`(Q)‖∇ f ‖L p

ω(Q),

where fQ,ω=
∫

f dω/ω(Q). Then an extension operator3 :W k,p
ω (�)→W k,p

ω (Rn)

exists.

Property (7-1) is just a weighted Poincaré inequality. A simpler but stronger
hypothesis, that implies all the requirements on the weight, is that ω ∈ Ap, the
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class of weights satisfying Muckenhoupt’s condition

sup
cubes Q⊂Rn

1
|Q|

( ∫
Q
ω(x) dx

)( ∫
Q
ω(x)−1/(p−1)dx

)p−1
≤ C <∞.

Chua’s extension operator is constructed as Jones’s one: For each cube Q j ∈Wc

near the domain, a reflected cube Q∗j ∈ W is found (as in Lemma 4.6). Given
f ∈W k,p

ω (�), a suitable polynomial Pj = P(Q∗j , ω), that can be constructed thanks
to (7-1), is associated to Q j . Hence the operator is the smooth summation of all
the {Pj } j .

The doubling condition is crucial for Chua’s arguments to hold. Indeed, since
d(Q, Q∗) ≤ C`(Q), a bounded expansion of Q, Q̃ = cQ, contains both cubes
Q and Q∗. But ω being doubling, ω(Q̃) ≤ Cω(Q). This allows a comparison
between the values of the weight ω over Q and over Q∗. Therefore, the weighted
norm of the extension in Q can be bounded by the weighted norm of the function
in Q∗ just as in Lemma 3.2 in [Jones 1981] or Lemma 4.10 in this paper.

Since the first stage of our extension process agrees with that of uniform do-
mains, Chua’s techniques could be applied. However, the second stage presents a
very different situation. Reflected sets for cubes in W4 do not fulfill properties (4-4)
and (4-5) of Jones’s reflected cube. In the dimensional-horizontal version, the re-
flected set of Q is a rectangle S(Q), not a cube, and whereas d(Q, S(Q))∼ `(Q),
the edges `i (S(Q)) are not equivalent to `(Q), so (4-4) fails. Consequently, the
values of the weight ω over Q cannot be estimated by its values over S(Q). On
the other hand, in the derivative-vertical version, the reflected set of Q is a cube
Q∗, with `(Q∗)∼ `(Q), but it may happen that d(Q, Q∗)� `(Q), so (4-5) fails.
In this case, no bounded fixed expansion of Q could reach Q∗, and the doubling
property of ω is useless.

However, it is noteworthy that some particular weights can be easily integrated
into our extension process. We present here two examples involved in several
applications: weights depending on the distance to the boundary of �, that fit
easily with the derivative version of the extension, and weights depending on the
distance to 0 (the tip of the cusp), that are naturally adapted to the dimensional
version.

We analyze each type of weight separately.

Weights depending on d(x, 0) = |x| — the dimensional case. Observe that near
the origin we have that |x | ∼ xn , for all x ∈ �. Moreover, the same thing holds
close enough to �, and in particular in the sets

⋃
W3 and

⋃
W4. Let ω :Rn

→R,
ω≥0, be a radial weight. We set ω(x)= ω̂(|x |), and we assume that ω̂ :R≥0→R≥0

is a monotonic function that satisfies ω̂(2t)∼ ω̂(t). Notice that the only interesting
case is that either ω̂(t)→0 or ω̂(t)→∞when t→0, since otherwise the weighted
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space agrees with the already treated case of W k,p. Let us mention that W k,p
ω is a

Banach space [Kufner 1985] for any open set �.

Remark 7.1. Observe that for every x, x̃ ∈ Q ∈W3 ∪W4, we have ω(x)∼ ω(x̃),
therefore we can pick a constant ωQ such that ω(x)∼ωQ for all x ∈ Q ∈W3∪W4.

This fact is the key tool for our weighted extension process. We detail the proof
of the first stage: Lemma 4.6 guarantees that d(Q, Q∗)≤ C`(Q), for all Q ∈W3.
This implies zQ∗ ∼ zQ , and consequently ωQ ∼ωQ∗ . Furthermore, it is easy to see
that ωQ ∼ ωS for every S ∈ F(Q).

Lemma 7.2. If Q ∈W3 is far from W4, then

‖Dα3 f ‖L p
ω(Q) ≤ C

{
`(Q)k−|α|‖∇k f ‖L p

ω(F(Q))+‖ f ‖W k,p
ω (Q∗)

}
.

Proof. Just apply the constant approximation of the weight and Lemma 4.10, so

‖Dα3 f ‖L p
ω(Q) = ‖ωDα3 f ‖L p(Q) ≤ CωQ‖Dα3 f ‖L p(Q)

≤ CωQ
{
`(Q)k−|α|‖∇k f ‖L p(F(Q))+‖ f ‖W k,p(Q∗)

}
≤ C

{
`(Q)k−|α|‖∇k f ‖L p

ω(F(Q))+‖ f ‖W k,p
ω (Q∗)

}
. �

For the second stage we use essentially the same idea: the weight, being ap-
proximately constant over every cube, can be pulled in or out of integrals, so the
weighted norm can be estimated using the nonweighted lemmas of Section 4.

It is clear that ωT ∼ ωS(T ), for all T ∈W4. The weighted form of Lemma 4.14
can be proved exactly as Lemma 7.2, so the next proposition follows, completing
the second stage for this version.

Proposition 7.3. If we set σ(x)= (`(S(|x |))/|x |)(n−1)/p, then

‖σDα f ‖L p
ω(W4)

≤ C‖ f ‖W k,p
ω (S)

.

Exactly the same ideas can be used for the third stage.

Weights depending on d∂� — the derivative case. We obviously have

(7-2) d(x, ∂�)∼ `(Q) for all x ∈ Q and all Q ∈W∪Wc.

Let ω̂ : R+ → R+ be a monotonic function such that ω̂(2t) ∼ ω̂(t), and let
ω : Rn

→ Rn be the weight ω(x) = ω̂(d∂�(x)). In this case this implies that ω
can be taken as a constant ωQ over every cube Q ∈W∪Wc.

This leads us to the following corollary of Lemma 4.10 (whose proof is exactly
as the one of Lemma 7.2).

Lemma 7.4. Let � be a domain satisfying Definition 2.6. Then

‖D31 f ‖L p
ω(Q) ≤ C

{
`(Q)k−|α|‖∇k f ‖L p

ω(F(Q))+‖D
α f ‖L p

ω(Q∗)
}
.
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For the second stage, let us recall that in the derivative version, `(Q)∼ `(Q∗),
and then d∂�(Q)∼ d∂�(Q∗). This fact is enough to complete the second stage.

Once again, the third stage follows in the same way.

Theorem 7.5. Let�⊂Rn be a domain with an external normal cusp at the origin.
Let ω̂ :R+→R+ be a monotonic function satisfying ω̂(2t)∼ ω̂(t), and 1≤ p<∞.

(a) Consider the weighted Sobolev space W k,p
ω (�), where ω(x) = ω̂(d∂�(x)) for

all x. Suppose that C∞(�̄∩Rn
+
)∩W k,p

ω (�) is dense in W k,p
ω (�) (see Remark 7.7

below) and that ω−1/(p−1) is locally integrable. If the spine S satisfies (2-12), there
exists an extension operator

3 :W k,p
ω (�)→W k,p

ωσ (R
n),

where

σ(x)=

 1 if x ∈�,(
`(S(|x |))
|x |

)k
if x ∈�c.

(b) Consider the weighted Sobolev space W k,p
ω (�), where ω(x)= ω̂(|x |) for all x.

If the spine S satisfies (2-13), there exists an extension operator

3 :W k,p
ω (�)→W k,p

ωσ (R
n),

where

σ(x)=

 1 if x ∈�,(
`(S(|x |))
|x |

)(n−1)/p
if x ∈�c.

Definition 7.6. For 0≤m≤ n, a set F is called m-regular, if there exists a positive
constant C such that

C−1rm <Hm(B(x, r)) < Crm,

for all x ∈ F and 0< r ≤ diam F . Here Hm stands for the m dimensional Hausdorff
measure and the restriction 0 < r ≤ diam F is eliminated if F is a set with only
one point.

Let us mention that some self similar fractals, such as the well known Koch
curve, are m-regular with m /∈N (in fact m = log(4)/ log(3) in the Koch example).

Remark 7.7. As we stated above, for a uniform domain D, a general and simple
condition that guarantees the density of C∞(D̄) in W k,p

ω (D) is that ω ∈ Ap (see
[Chua 1992]). Under extra assumptions on the boundary of D it is possible to find
conditions under which weights of the type d(·, ∂D)µ belong to Ap. Indeed, that
holds for −(n − m) < µ < (n − m)(p − 1), provided that ∂D is a compact set
contained in an m-regular set (see [Durán and López García 2010a]). In this case
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we can replicate Theorem 6.3 by using a weighted version of Proposition 6.1 and
arguing along the lines given in Remark 6.2 (using Chua’s results). Therefore the
density assumption in item (a) of Theorem 7.5 can be removed.

Let us observe that for a “good” domain D, one expects m = n − 1, therefore
the range −1 < µ < p − 1 is precisely the one for which the extension problem
makes sense and it is nontrivial. Indeed, on one hand if µ≥ p−1, then ω−1/(p−1)

is not in L1
loc(R

n) and the weighted global space can not be defined in the standard
way. On the other, taking for instance D Lipschitz and µ ≤ −1 it can be shown
that C∞0 (D) is dense in W k,p

ω (D) [Kufner 1985], and therefore functions in that
space can be extended by 0.

Remark 7.8. Let us notice that the density is not needed in item (b) since it can
be obtained by using the arguments given in Theorem 6.3 and taking into account
that the weight is essentially constant over every �̌i .

Theorem 7.5 can be reproduced for curved cusps, by means of an easy adaptation
of stage zero.

8. Examples and concluding remarks

Below we show that every domain satisfying Definition A is an external cusp in
the sense of Definition 2.7 (or Definition 2.6). On the other hand our results can
be understood in the following way: the role of the “profile” function ϕ given in
Definition A can be relaxed in the sense that it can describe only the speed of the
narrowing of� towards the origin (if the spine of� decreases as ϕ, `(S(z))∼ϕ(z)),
provided that ∂� \ {0} remains smooth enough. Consequently, the weight σ in
Theorem 5.1 can be expressed as

σ(x)=
(
ϕ(|x |)
|x |

)γ
,

where γ = k or (n− 1)/p, depending on the case.
Let us notice that both extension procedures for Theorems 4.1 and 5.1 — in con-

trast to what happens in Theorem A — are independent of the relationship between
k, p and n. Consequently, we proved that hypothesis (1-3) (or its generalization,
(2-12)) is not necessary in any case as long as (1-4) (or (2-13)) holds, and vice
versa.

First, we present some domains that do not satisfy Definition A but are included
in Definitions 2.6 or 2.7.

The first simple example is given by

�= {(x, y) ∈ R2
: y3 < x < y2

}.
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This domain does not satisfy Definition A, however, it is easy to see that it is an
external curved cusp.

The second example is general, and we devote a few lines to it.

Definition 8.1. Let � ⊂ Rn (n ≥ 2) be a domain with compact boundary ∂�.
Assume that 0 ∈ ∂�. We say that � has a restricted external cusp at the origin if
there exists a neighborhood U ⊂ Rn of 0 such that

U ∩�= {(x, z) ∈ Rn−1
×R : x ∈ ϕ(z)$ },

where $ ⊂ Rn−1 is a bounded uniform domain and ϕ : R+→ R+ is a Lipschitz
increasing function such that ϕ(0)= 0 and ϕ(t)/t→ 0 (t→ 0+).

It is clear that every outer peak satisfying Definition A is a restricted external
cusp.

Claim 8.2. Every restricted cusp satisfies Definition 2.7 (or 2.6).

We sketch the proof of this claim through a series of observations.
Given� a restricted cusp, let us define�z to be the set of points of� at height z,

and the boundary of this set to be ∂�z := {(x, z) ∈ Rn
: x ∈ ϕ(z)∂$ }.

Observe that the distance from a point (x, z) ∈ � to ∂� is equivalent to its
distance to ∂�z . Indeed, it is clear that d((x, z), ∂�) ≤ d((x, z), ∂�z). On the
other hand, let us set x = ϕ(z)ζ , for some ζ ∈$ . Let (x0, z0)= (ϕ(z0)ζ0, z0)∈ ∂�

be such that d((x, z), ∂�) = d((x, z), (x0, z0)). Naturally, x̃0 = (ϕ(z)ζ0, z) is in
∂�z . Then

d((x, z), ∂�z)≤ |x − x̃0| = |ϕ(z)ζ −ϕ(z)ζ0|

≤ |ϕ(z)ζ −ϕ(z0)ζ0| + |ϕ(z0)−ϕ(z)||ζ0|

≤ |ϕ(z)ζ −ϕ(z0)ζ0| +CϕC$ |z0− z|

≤ C(|ϕ(z)ζ −ϕ(z0)ζ0| + |z0− z|)

≤ Cd((x, z), (x0, z0))= Cd((x, z), ∂�),

where Cϕ is the Lipschitz constant of ϕ and C$ = sup{‖ξ‖ : ξ ∈$ }.
Let r$ be the inner radius of $ :

r$ = sup
x∈$

inf
y∈∂$

d(x, y),

and let c$ ∈$ be a point such that B(c$ , r$ )⊂$ .
Let us consider the curve 0 : R+→ Rn , 0(t) = (ϕ(t)c$ , t), that describes the

“center” of �. Let S̃ be the set of all cubes S ∈W=W(�) such that S∩0(t) 6=∅.
Let S = {Si }

∞

i=1 be a subset of S̃ such that Si ∩ Si+1 6= ∅ and zSi+1 < zSi (this is
possible because ϕ(t)/t→ 0). S is the spine of �.
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Since ϕ is Lipschitz, we have

ϕ(z+Cϕ(z))−ϕ(z)≤ Cϕ(z+Cϕ(z)− z)= Cϕ(z).

Then

(8-1) ϕ(z+Cϕ(z))≤ Cϕ(z).

On the other hand d(0(t), ∂�t)=r$ϕ(t), and consequently d(0(t), ∂�)∼ϕ(t).
Taking this into account, (8-1) implies that `(Si )∼ ϕ(zi ).

Properties (2-10) and (2-11) (as well as (2-3) and (2-4) when c$ can be taken
equal to 0) follow easily from the definition of S. The covering property (2-5) is
a consequence of (8-1). Since $ is a fixed bounded domain, there is a radius R$
such that $ ⊂ B(c$ , R$ ). This radius scaled to the section �z is ϕ(z)R$ , but
ϕ(z) is essentially the length `(S(z)). Taking (8-1) into consideration, this implies
that there is a constant K (depending on r$ , R$ and n), such that K Si covers the
slice of � between heights zi and zi + `(Si ), for all i . Thence, (2-5) follows.

The last thing to prove, then, is that uniformity properties (2-6) and (2-7) hold
for every restricted cusp. We use the following result stated by Smith, Stanoyevitch
and Stegenga:

Lemma 8.3 [Smith et al. 1994]. Let �1 and �2 be uniform domains with finite
diameters. Then �1×�2 is a uniform domain.

Remark 8.4. The definition of uniform domain used in [Smith et al. 1994] (for the
proof of this lemma) is slightly different than the one used here. For the equivalence
between the two see [Väisälä 1988] and [Martio 1980].

In Definition 2.6, Properties (2-6) and (2-7) are required for points in�i∪�i+1.
We prove that they hold in every slice between heights z−Cϕ(z) and z+Cϕ(z),
for every fixed constant C . Our proof is based on the following idea: since ϕ is
Lipschitz, �∩{(x, z)∈Rn

: z ∈ (z0−Cϕ(z0), z0+Cϕ(z0))} is almost the cylinder

(8-2) �̂0 := ϕ(z0)$ × (z0−Cϕ(z0), z0+Cϕ(z0)),

which is uniform thanks to Lemma 8.3. In that lemma, the ε parameter of �1×�2

depends on the respective values of the parameters of�1 and�2 and on the quotient
diam�1/diam�2. Since diam�1 ∼ diam�2 in (8-2), we may assume that the
same ε holds for the cylinder for every z0.

Let z0>0 be a fixed number and C0 a constant such that C0< z0/ϕ(z0). Observe
that since t/ϕ(t)→∞ as t → 0, the constant C0 chosen for a certain z0 remains
useful for every z < z0. Let us set

�0 =�∩ {(x, z) ∈� : z0−C0ϕ(z0) < z < z0+C0ϕ(z0)}.
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We want to prove that �0 is uniform. We associate points in �̂0 with points in
�0 at the same heights, so we denote by (̂x, z) the points in �̂0 and by (x, z) those
in �0. Let F : �̂0→�0 be the function

F (̂x, z)=
(
ϕ(z)
ϕ(z0)

x̂, z
)
.

Suppose that ζ ∈ $ is such that ϕ(z0)ζ = x̂ . Then x = ϕ(z)/ϕ(z0)̂x = ϕ(z)ζ ,
and F (̂x, z)= (x, z) ∈�0. F is obviously bijective, with

F−1(x, z)=
(
ϕ(z0)

ϕ(z)
x, z

)
.

Now we prove that both F and F−1 are Lipschitz with constants independent of
z0 (this, in turn, shows that �0 is uniform). We show only the case F−1 since the
proof for F is similar. Let us consider (x, z), (y, w) ∈�0, x = ϕ(z)ζ , y = ϕ(w)ξ
for some ζ, ξ ∈$ . We have

|F−1(x, z)− F−1(y, w)| = |(ϕ(z0)ζ −ϕ(z0)ξ, z−w)|

≤ |ϕ(z0)ζ −ϕ(z0)ξ | + |x −w| =: I+ II,

and
I≤ ϕ(z0)

∣∣∣ϕ(z)
ϕ(z)

ζ −
ϕ(w)

ϕ(w)
ξ

∣∣∣= ϕ(z0)

∣∣∣ϕ(w)x−ϕ(z)y
ϕ(z)ϕ(w)

∣∣∣.
Since z, w ∈ (z0−Cϕ(z0), z0+Cϕ(z0), (8-1) implies that ϕ(z0)∼ ϕ(z), so

I≤ C
∣∣∣ϕ(w)x−ϕ(z)y

ϕ(w)

∣∣∣.
On the other hand,

|ϕ(w)x −ϕ(z)y| ≤ |ϕ(w)x −ϕ(w)y| + |ϕ(w)y−ϕ(z)y|

≤ ϕ(w)|x − y| + |ϕ(w)−ϕ(z)||y|

≤ ϕ(w)|x − y| +Cϕ|w− z||ϕ(w)ξ |

≤ CϕC$ϕ(w){|x − y| + |w− z|}.

Hence I≤ C{|x − y| + |w− z|}, and consequently

|F−1(x, z)− F−1(y, w)| ≤ C{|x − y| + |w− z|} ≤ C |(x, z)− (y, w)|.

So F−1 is Lipschitz with a Lipschitz constant depending only on the constants C0,
Cϕ and C$ .

Remark 8.5. We do not really need �0 to be uniform as a separate domain (with
its floor and its roof as parts of the boundary), we just need to prove that the curve
joining two points in �0 satisfies property (2-7), which is given in terms of the
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distance to the boundary of �. But d∂�(x, z) ≥ d∂�0(x, z), for all (x, z) ∈ �0, so
(2-7) holds.

This completes the proof of Claim 8.2. Since the class of domains given by
Definition 8.1 is broader than that of Definition A, we can state:

Corollary 8.6. Every domain satisfying Definition A is an external cusp in terms
of Definition 2.7 (or Definition 2.6).

Finally, let us observe that items (c) in Theorems 4.1 and 5.1 follow by using
the same arguments given in [Maz’ya and Poborchi 1997, pp. 274 and 295], with
`(S(z)) in the role of ϕ(z).
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