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We make two additions to recent results of Mendel and Naor on nonlinear
versions of Dvoretzky’s theorem. We consider the cases of metric spaces
with infinite Hausdorff dimension and countably infinite metric spaces.

1. Introduction and the statement of the results

We say that a metric space X is embedded with distortion D ≥ 1 in a metric space
Y if there exist a map f : X→ Y and a constant r > 0 such that

r dX (x, y)≤ dY ( f (x), f (y))≤ Dr dX (x, y) for all x, y ∈ X.

Such a map f is called a D-embedding.
Dvoretzky’s theorem [1961] states that for every ε > 0, every n-dimensional

normed space contains a k(n, ε)-dimensional subspace that embeds into a Hilbert
space with distortion 1+ ε. This theorem was conjectured by Grothendieck [1953].
See [Milman 1971; 1992; Milman and Schechtman 1999; Schechtman 2006; 2011]
for the estimates of k(n, ε) and the further developments related to this theorem.

Bourgain, Figiel, and Milman proved a natural nonlinear variant of Dvoretzky’s
theorem:

Theorem 1.1 [Bourgain et al. 1986]. There exists two universal constants c1, c2> 0
such that for every ε>0, every finite metric space X contains a subset S that embeds
into a Hilbert space with distortion 1+ ε and

|S| ≥
c1ε

log(c2/ε)
log |X |.

See [Bartal et al. 2005; Mendel and Naor 2007; Naor and Tao 2012] for further
discussion. It is natural to try to get some versions of the above theorem in the case
where |X | =∞. In this paper we prove the following.
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Theorem 1.2. For every ε > 0, every countable infinite metric space X has an
infinite subset which embeds into an ultrametric space with distortion 1+ ε.

Recall that a metric space (U, ρ) is called an ultrametric space if for every
x, y, z ∈ X we have ρ(x, y)≤max{ρ(x, z), ρ(z, y)}. Since every separable ultra-
metric space isometrically embeds into a Hilbert space [Vestfrid and Timan 1979],
we verify that Theorem 1.1 holds in the case where |X | =∞.

Recently Mendel and Naor [2012] proved another variant of Dvoretzky’s theorem,
answering a question by T. Tao. For a metric space X we denote its Hausdorff
dimension by dimH X . A subset of a complete separable metric space is called an
analytic set if it is an image of a complete separable metric space under a continuous
map. Note that analytic sets are not necessarily complete. For example, any Borel
subset of a complete separable metric space is an analytic set (refer to [Kechris
1995] for analytic sets).

Theorem 1.3 (compare [Mendel and Naor 2012, Theorem 1.7]). There exists a
universal constant c ∈ (0,∞) such that for every ε ∈ (0,∞), every analytic set X
whose Hausdorff dimension is finite has a closed subset S ⊆ X that embeds with
distortion 2+ ε in an ultrametric space, and

dimH S ≥ cε
log(1/ε)

dimH X.

Mendel and Naor [2012] stated this theorem only for compact metric spaces. As
remarked in their introduction, the theorem is valid for more general metric spaces.
For example, the theorem holds for every analytic set X , since the problem can be
reduced to the case of a compact subset of X with the same Hausdorff dimension
(see [Carleson 1967; Howroyd 1995, Corollary 7]).

In the following theorem we consider the case where dimH X =∞.

Theorem 1.4. For every ε ∈ (0,∞), every analytic set X whose Hausdorff dimen-
sion is infinite has a closed subset S that can be embedded into an ultrametric space
with distortion 2+ ε and has infinite Hausdorff dimension.

It follows from the proof of Theorem 1.3 in [Mendel and Naor 2012] that if
dimH X =∞, then X contains an arbitrary large-dimensional closed subset that
embeds into an ultrametric space. Combining Theorem 1.3 with Theorem 1.4 we
find that a nonlinear Dvoretzky theorem holds for all analytic sets.

The following theorem asserts that the distortion in Theorems 1.3 and 1.4 cannot
be strictly less than two.

Theorem 1.5 [Mendel and Naor 2012, Theorem 1.8]. For every α > 0 there exists a
compact metric space (X, d) of Hausdorff dimension α, such that if S ⊆ X embeds
into a Hilbert space with distortion strictly smaller than 2 then dimH S = 0.
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Theorem 1.5 immediately implies that the same result holds in the case α =∞.
It is known that `2 does not embed into `p with finite distortion for any p in
[1,∞) \ {2} [Albiac and Kalton 2006, Corollary 2.1.6]. In particular, an infinite-
dimensional analogue of Dvoretzky’s theorem is no longer true in the linear setting.
In contrast to this fact, Theorem 1.4 asserts that an infinite-dimensional Dvoretzky
theorem holds in the nonlinear setting.

2. Proof

Lemma 2.1. Let X be a separable metric space such that dimH X =∞. Then there
exists a sequence {Ki }

∞

i=1 of mutually disjoint closed subsets of X such that

lim
i→∞

diam Ki = 0 and lim
i→∞

dimH Ki =∞.

Proof. For every x ∈ X we take a closed neighborhood Kx of x with diam Kx ≤ 1.
Since X is separable, applying the Lindelöf covering theorem we get a countable
subset F ⊆ X such that X =

⋃
x∈F Kx . Since

dimH

(⋃
x∈F

Kx

)
= sup

x∈F
dimH Kx ,

there exists x1 ∈ F such that dimH Kx1 =∞ or there exists a sequence {yi }
∞

i=1 ⊆ F
such that {dimH K yi }

∞

i=1 is strictly increasing and limi→∞ dimH K yi =∞.
We first consider the latter case. We put K1 := K y1 . By the monotonicity

of dimH K yi we have dimH (K yi \
⋃i−1

j=1 K y j ) = dimH K yi for i ≥ 2. Covering
K yi \

⋃i−1
j=1 K y j by countably many closed subsets of diameter ≤ 1/ i , we thus

find a closed subset Ki ⊆ K yi \
⋃i−1

j=1 K y j such that dimH Ki = dimH K yi and
diam Ki ≤ 1/ i . This {Ki }

∞

i=1 is the desired sequence.
We now consider the former case. Covering Kx1 by countably many closed

subsets {K 1
y }y∈F1 so that diam K 1

y ≤ 2−1 diam Kx1 , we have two cases: There exists
x2 ∈ F1 such that dimH K 1

x2
= ∞ or there exists a sequence {yi }

∞

i=1 ⊆ F1 such
that {dimH K 1

yi
}
∞

i=1 is strictly increasing and limi→∞ dimH K 1
yi
= ∞. Since we

have already proved the lemma in the latter case, we consider the former case.
Continuing this process we may assume there is a chain K 1

x2
⊇ K 2

x3
⊇ K 3

x4
⊇ · · · of

closed subsets of X such that

dimH K i−1
xi
=∞ and diam K i

xi+1 ≤ 2−1 diam K i−1
xi
.

Since K i−1
xi
\
⋃
∞

j=i (K
j−1
x j
\ K j

x j+1) consists of at most one point, we get

lim sup
i→∞

dimH (K i−1
xi
\ K i

xi+1
)=∞.
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By taking a subsequence we may assume that limi→∞ dimH (K i−1
xi
\ K i

xi+1
)=∞.

Taking a closed Ki ⊆ K i−1
xi
\ K i

xi+1
such that dimH Ki ≥ 2−1 dimH (K i−1

xi
\ K i

xi+1
)

we easily see that this {Ki }
∞

i=1 is the desired sequence. �

We first prove Theorem 1.4. It turns out that Theorem 1.2 follows from the proof
of Theorem 1.4.

Proof of Theorem 1.4. We take a sequence {Ki }
∞

i=1 of closed subsets of X in
Lemma 2.1. For each i we fix an element xi ∈ Ki . Note that closed subsets of
analytic sets are also analytic sets. By Theorem 1.3 there exist Ai ⊆ Ki such that
limi→∞ dimH Ai =∞ and Ai embeds into some ultrametric space (Ui , ρi ) with
distortion 2+ ε, i.e., there exist fi : Ai →Ui satisfying

(2-1) d(x, y)≤ ρi ( fi (x), fi (y))≤ (2+ ε)d(x, y) for any x, y ∈ Ai .

We divide the proof into three cases.

Case 1. {xi }
∞

i=1 is not bounded.

By taking a subsequence we may assume that limn→∞ d(x1, xi )=∞ and that
diam Ki ≤ 1/(2+ ε). By taking a further subsequence we may also assume that

(2-2) 1≤min
{ √

1+ε−1
√

1+ε
√

1+2−1ε
,

√
1+ε−

√
1+2−1ε

√
1+2−1ε

,

√
1+2−1ε−1

2

}
d(A1, A2)

and

(2-3) d(A1, Ai−1)≤min
{ √

1+ ε− 1
√

1+ ε
√

1+ 2−1ε
,

√
1+ ε−

√
1+ 2−1ε

√
1+ 2−1ε

}
d(A1, Ai )

for any i ≥ 2. Put Ri := d(Ai , A1) for i ≥ 2. Note that diam fi (Ai ) ≤ 1 since fi

satisfies (2-1) and diam Ai ≤ diam Ki ≤ 1/(2+ ε).
For each i ≥ 2 we take a point ui,0 not in fi (Ai ) and put Yi := fi (Ai )∪ {ui,0}.

Define the distance function ρ̃i on Yi as follows: ρ̃i (u, ui,0) := Ri for u ∈ fi (Ai ) and
ρ̃i (u, v) := ρi (u, v) for u, v ∈ fi (Ai ). Since diam fi (Ai )≤ 1≤ Ri , each (Yi , ρ̃i ) is
an ultrametric space. Let us consider the space

(2-4) U :=
{
(ui ) ∈

∞∏
i=2

Yi

∣∣∣ ui 6= ui,0 only for finitely many i
}

and define the distance function ρ on U by

(2-5) ρ((ui ), (vi )) := sup
i
ρ̃i (ui , vi ).

It is easy to verify that (U, ρ) is an ultrametric space. For each x ∈ Ai we put

(2-6) f (x) := (u2,0, u3,0, . . . , ui−1,0, fi (x), ui+1,0, ui+2,0, . . . ).
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We shall prove that f is a (2+ ε)-embedding from the closed subset
⋃
∞

i=2 Ai ⊆ X
to the ultrametric space (U, ρ). Note that dimH (

⋃
∞

i=2 Ai )=∞.
We take two arbitrary points x ∈ Ai and y ∈ A j (i < j) and fix z ∈ A1. By (2-2)

and (2-3), we get

d(x, z)≤ Ri + diam A1+ diam Ai ≤ Ri + 2≤
√

1+ 2−1εRi .

Combining this inequality with (2-2) and (2-3) also implies

d(x, y)≥ d(y, z)− d(x, z)≥ R j −
√

1+ 2−1εRi

≥
1

√
1+ε

R j =
1

√
1+ε

ρ( f (x), f (y)),

and

d(x, y)≤ d(x, z)+ d(y, z)≤
√

1+ 2−1εRi +
√

1+ 2−1εR j

≤
√

1+ εR j =
√

1+ ερ( f (x), f (y)).

Hence f is a (2+ ε)-embedding.

Case 2. {xi }
∞

i=1 is bounded but not totally bounded.

By taking a subsequence, we may assume that there exist two constants c1, c2> 0
such that

c1 ≤ d(xi , x j )≤ c2 for any distinct i, j.

For any δ > 0 we divide [c1, c2] =
⋃m

j=1 I j so that diam I j < δ for any j .
Pick j1 ∈ {1, 2, . . . ,m} such that d(xi , x1) ∈ I j1 holds for infinitely many i . Put

X1 := {xi | d(xi , x1) ∈ I j1} = {xk1(1), xk1(2), . . . }.

We then choose j2 ∈ {1, 2, . . . ,m} so that d(xk1(i), xk1(1)) ∈ I j2 holds for infinitely
many i and put

X2 := {xk1(i) ∈ X1 | d(xk1(i), xk1(1)) ∈ I j2} = {xk2(1), xk2(2), . . . }.

Repeatedly we obtain a sequence { ji }∞i=1 whose terms are elements of the set
{1, 2, . . . ,m} and X i = {xki (1), xki (2), . . . }. By a pigeonhole argument we find a
subsequence { jh(i)}∞i=1 ⊆ { ji }

∞

i=1 that is monochromatic, i.e., jh(i) ≡ l for some
l ∈ {1, 2, . . . ,m}. We then get d(xkh(i)(i), xkh( j)( j)) ∈ Il . Since diam Il < δ and
limi→∞ diam Ai = 0, by choosing sufficiently small δ and taking a subsequence,
we see that there exists a number α ≥ c1 such that

(2-7) α ≤ d(u, v)≤ (1+ ε)α for any u ∈ Ai and v ∈ A j (i 6= j)

and diam Ai ≤ (2+ ε)−1α. As in Case 1 we take a point ui,0 not in fi (Ai ) and put
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Yi := fi (Ai )∪ {ui,0}. We define the distance function ρ̃i on Yi by

ρ̃i (u, ui,0) := α and ρ̃i (u, v) := ρi (u, v)

for u, v ∈ fi (Ai ). Since diam fi (Ai ) ≤ (2+ ε) diam Ai ≤ α, each (Yi , ρ̃i ) is an
ultrametric space. From these (Yi , ρ̃i ) we construct an ultrametric space (U, ρ)
by (2-4) and (2-5). Then a map f :

⋃
∞

i=2 Ai → (U, ρ) defined by (2-6) is a
(2+ ε)-embedding.

Case 3. {xi }
∞

i=1 is totally bounded.

The proof is similar to Case 1. From total boundedness, by taking a subsequence,
we may assume that {xi }

∞

i=1 is a Cauchy sequence. Since limi→∞ diam Ai = 0,
the sequence {Ai }

∞

i=1 Hausdorff converges to a point x∞. Let δ > 0 be specified
later. Note that x∞ 6∈ Ai for any sufficiently large i since Ai are mutually disjoint
closed subsets of X . Hence, by taking a subsequence, we may also assume that
d(Ai , x∞)/d(Ai−1, x∞) ≤ δ for each i . Covering Ai by countably many closed
subsets {Bi j } j of diameter≤ δd(Ai , x∞)we find a subset Bi j such that dimH (Bi j )≥

2−1 dimH (Ai ) and
diam Bi j

d(Bi j , x∞)
≤

diam Bi j

d(Ai , x∞)
≤ δ.

Hence by replacing Ai with Bi j , we may assume that diam Ai/d(Ai , x∞)≤ δ for
every i .

As in Cases 1 and 2 we add a point ui,0 to fi (Ai ) and put Yi := fi (Ai )∪ {ui,0}.
Define the distance function ρ̃i on Yi by

ρ̃i (u, ui,0) := d(Ai , x∞) and ρ̃i (u, v) := ρi (u, v)

for u, v ∈ fi (Ai ). If δ ≤ (2+ ε)−1, then we have

diam fi (Ai )≤ (2+ ε) diam Ai ≤ d(Ai , x∞),

which implies that each (Yi , ρ̃i ) is an ultrametric space. From these (Yi , ρ̃i ) we
define an ultrametric space (U, ρ) by (2-4) and (2-5). If we trace the proof of Case 1
by replacing Ri with d(Ai , x∞), then we easily see that a map f :

⋃
∞

i=2 Ai→ (U, ρ)
defined by (2-6) is a (2+ ε)-embedding, provided that δ > 0 is small enough. �

Proof of Theorem 1.2. Let X := {x1, x2, . . . }. Apply the proof of Theorem 1.4 by
identifying each xi with Ki . Note that the loss of the distortion in the proof only
comes from (2-1), which we can ignore in the case where Ai = xi . Hence the space
X can be embedded into an ultrametric space with distortion 1+ ε. �

Remark 2.2. After this work was completed, the author proved in [Funano 2012]
that every proper ultrametric space isometrically embeds into `p for any p ≥ 1. In
particular the subset S in Theorem 1.3 also embeds into `p. Theorems 1.2 and 1.4
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also hold in the case where the target metric space is `p instead of an ultrametric
space. In fact, in the proof of Theorem 1.4, observe that we may assume that Ai is
compact [Carleson 1967; Howroyd 1995, Corollary 7]. Since

⋃
∞

i=2 Ai is a proper
subset which embeds into an ultrametric space in the case of Cases 1 and 3, we
consider only Case 2. Since we have (2-7) in Case 2 we easily see that

⋃
∞

i=2 Ai

embeds into `p. It was mentioned in [Funano 2012, Proposition 3.4] that an `p

analogue of Theorem 1.5 also holds.
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