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NONLOCAL UNIFORM ALGEBRAS ON THREE-MANIFOLDS

ALEXANDER J. IZZO

The existence of nonlocal uniform algebras was first proven by Eva Kallin
in 1963. Here we prove that on every compact C∞-manifold of dimension
greater than or equal to three, there exists a nonlocal uniform algebra gen-
erated by C∞-smooth functions.

Dedicated to the memory of Walter Rudin

1. Introduction

Let A be a uniform algebra on a compact Hausdorff space X . A function f in C(X)
is said to belong locally on X to A if for each point x in X , there are a neighborhood
N of x and a function g in A coinciding with f on N . The algebra A is said to be
local on X if every function that belongs locally on X to A is in A. The algebra A
is said to be local if it is local on its maximal ideal space MA. It was conjectured
for some time that every uniform algebra is local in this sense. This conjecture was
disproved by Kallin [1963], who gave an example of a compact set X in C4 such
that P(X) (the uniform closure on X of the polynomials in z1, . . . , z4) is nonlocal.

In [Izzo 2010], we studied localization for uniform algebras generated by smooth
functions on two-manifolds. The results there suggest that perhaps these uniform
algebras are always local. However, it is also shown there that not every uniform
algebra generated by smooth functions on a manifold is local. Specifically, on
every compact manifold of dimension greater than or equal to four, there exists a
nonlocal uniform algebra generated by smooth functions. The question thus arises
whether there exist nonlocal uniform algebras generated by smooth functions on
manifolds of lower dimension. Here we show that such algebras exist on every
three-manifold. No such uniform algebras exist on one-manifolds because if J is
a compact one-manifold (possibly with boundary) and A is a uniform algebra on
J generated by smooth functions and with maximal ideal space J , then A=C(J ).
(Proof: By the Stone–Weierstrass theorem, it suffices to show the real-valued func-
tions in A separate points. Given p 6= q in J , choose a smooth function f in A
whose real part separates p from q. Then f (J ) has two-dimensional Lebesgue
measure zero in C. Hence, by the Hartogs–Rosenthal theorem [Gamelin 1984,
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II.8.4], the real coordinate function x is a uniform limit on f (J ) of rational func-
tions with poles off f (J ). Because MA = J , it follows that the real part of f is
in A.) The question whether a uniform algebra generated by smooth functions and
whose maximal ideal space is a two-manifold must be local remains open.

The space on which Kallin’s nonlocal uniform algebra is defined cannot be em-
bedded in a three-manifold, so the approach used to construct nonlocal uniform
algebras on four-manifolds in [Izzo 2010] does not work for three-manifolds. In-
stead we use an approach to nonlocal uniform algebras due to Sidney [1968]. Our
proof is also related to the Beurling–Rudin theorem on the closed ideals in the disc
algebra [Rudin 1957] (or see [Hoffman 1962, pp. 82–89]).

It is with a mixture of joy and sorrow that I dedicate this paper to the memory
of Walter Rudin. Sorrow, of course, that he is no longer with us; joy that, through
his work and his influence on others, he will in some sense always be with us.
The breadth of Rudin’s research contributions has been a great inspiration to me
and many other mathematicians. In addition, Rudin had a profound impact on my
mathematical development and view of the subject. My first exposure to analysis
was with his Principles of mathematical analysis [Rudin 1976]; I learned real and
complex analysis from his Real and complex analysis [Rudin 1974] and functional
analysis from his Functional analysis [Rudin 1973]; and it was his book Func-
tion theory in the unit ball of Cn [Rudin 1980] that first interested me in uniform
algebras.

2. The theorem and its proof

Theorem 2.1. On every compact C∞-manifold M of dimension greater than or
equal to 3, there exists a nonlocal uniform algebra with maximal ideal space M
generated by C∞-smooth functions.

Before proving the theorem, we establish some technical lemmas that are used
to prove the smoothness assertion. Throughout the paper D will denote the open
unit disc {z ∈C : |z|< 1} and L will denote the open annulus {z ∈C : 3< |z|< 4}.

Lemma 2.2. There exists a C∞-smooth map 8 : R2
→ R2 that takes the closed

unit disc D one-to-one onto itself and satisfies 8(x, 0)= (1, 0) for all x ≥ 1.

Proof. Let U = {(x, y) ∈ R2
:

1
2 < x and − 1

2 < y < 1
2}, and define ϕ : U → R2

by ϕ(x, y)= (x − 1+
√

1− y2 , y). Then ϕ is a diffeomorphism of U onto the
neighborhood ϕ(U ) of the point ϕ(1, 0)= (1, 0).

Let α :R→R be a C∞-function that is strictly increasing on the interval (−∞, 1]
and that satisfies

α(x)=
{

x for x ≤ 3
4 ,

1 for x ≥ 1.
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Let β : R→ [0, 1] be a C∞-function such that

β(y)=
{

0 for y = 0,
1 for |y| ≥ 1

4 .

Define σ : U → R by σ(x, y) = (1− β(y))α(x)+ β(y)x . Then the reader can
verify that the map 9 :U →U given by

9(x, y)= (σ (x, y), y)

is well-defined (that is, it takes U into U ) and satisfies

(1) 9(x, 0)= (1, 0) for all x ≥ 1,

(2) 9(1
2 , y)= (1

2 , y) for all y,

(3) 9(1, y)= (1, y) for all y, and

(4) 9(x, y)= (x, y) whenever either x ≤ 3
4 or |y| ≥ 1

4 .

Regarded as a function of the first variable, σ is strictly increasing on the interval[ 1
2 , 1

]
for each fixed y, so (2) and (3) imply that9 maps the square

[ 1
2 , 1

]
×
[
−

1
2 ,

1
2

]
one-to-one onto itself.

Define 8 : ϕ(U )→ R2 by 8= ϕ ◦9 ◦ ϕ−1. Then by (1), 8 takes the constant
value (1, 0) on {(x, y) : x≥1, y=0}. Also,8maps ϕ(U )∩D=ϕ

([1
2 , 1

]
×
[
−

1
2 ,

1
2

])
one-to-one onto itself. Of course 8 is of class C∞. By (4), outside of the closed
subset ϕ

([3
4 ,∞

)
×
[
−

1
4 ,

1
4

])
of ϕ(U ), the map 8 is the identity. Hence, 8 can

be extended to a C∞-map on all of R2 by making 8 the identity outside of ϕ(U ).
Then 8 takes D one-to-one onto itself and satisfies 8(x, 0)= (1, 0) for all x ≥ 1.

�

Lemma 2.3. There exists a C∞-smooth map F : R2
→ R2 that takes the closed

disc {(x, y) : (x − 2)2 + y2
≤ 1} homeomorphically onto D, takes the closed disc

{(x, y) : (x−5)2+y2
≤1} homeomorphically onto D as well, and takes the constant

value (1, 0) on the set {(x, y) : 3≤ x ≤ 4, y = 0}.

Proof. Let 8 be the map in Lemma 2.2. Define F1, F2 : R
2
→ R2 by F1(x, y) =

8(x−2, y) and F2(x, y)=8(5−x, y). Let {ϕ1, ϕ2} be a C∞-partition of unity on
R2 subordinate to the cover consisting of {(x, y) : x<3+ 2

3} and {(x, y) : x>3+ 1
3},

and define F :R2
→R2 by F=ϕ1 F1+ϕ2 F2. Then F has all the required properties.

�

Proof of Theorem 2.1. We divide the proof into steps.

Step 1. We define a certain uniform algebra U from which the desired uniform al-
gebra will be obtained, and we determine the maximal ideal space MU and Gelfand
transform for U.

Let A(D) denote the disc algebra on the disc (the algebra of continuous functions
on D that are holomorphic on D), and let Rb(L) denote the annulus algebra on ∂L
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(the algebra of continuous functions ∂L that have holomorphic extension to the
annulus L). Let S be the singular inner function given by

S(z)= exp
( z+1

z−1

)
,

and let
I = {Sg : g ∈ A(D) and g(1)= 0}.

Then I is a proper closed ideal in A(D). (See [Hoffman 1962, pp. 83–84].)
For uniform algebras F and G on spaces X and Y respectively, we take the

tensor product F ⊗G to be the linear span of the functions of the form

( f ⊗ g)(x, y)= f (x)g(y),

with f ∈ F and g ∈ G. Now let U be the uniform algebra on ∂L × D generated
by C(∂L)⊗ I and Rb(L)⊗ A(D), or, equivalently, set

U= (C(∂L)⊗ I )+ (Rb(L)⊗ A(D)).

We now apply the material from [Sidney 1968, p. 135] with A′=C(∂L), B= A(D),
X =MA′ = ∂L , Y =MB = D, and A= Rb(L). As in that reference, let τ : A→U

and η : B→U be the isometric isomorphisms τ(a)= a⊗1 and η(b)= 1⊗b, and
define π :MU→MA×MB by π(ϕ)= (τ∗(ϕ), η∗(ϕ)), where τ∗ :MU→MA and
η∗ :MU→MB are the dual maps. Then by [Sidney 1968, Theorem 3.3], π maps
MU homeomorphically onto (MA × hull(I )) ∪ (X × Y ). Because the function
(z − 1)S is in I and vanishes at no point of D other than 1, the hull of I is {1}.
Thus, since MA = L , we get that the maximal ideal space of U can be identified
with

(L ×{1})∪ ((∂L)× D)⊂ C2.

Under the identification, each point of (∂L)×D is identified with the corresponding
point evaluation functional, so the Gelfand transform of a function f ∈U gives an
extension of f to the annulus L ×{1}. The reader can check that this extension is
the holomorphic extension of the annulus algebra function x 7→ f (x, 1) to L .

Step 2. We show that U is nonlocal by showing that the function

h ∈ C
(
(L ×{1})∪ ((∂L)× D)

)
,

given by

h(w, z)=
{

0 for (w, z) ∈ (L ×{1})∪ ({|w| = 4}× D),
z− 1 for (w, z) ∈ (L ×{1})∪ ({|w| = 3}× D),

is locally in U but not in U.
That h is locally in U is clear because the interiors (relative to MU) of the sets

(L × {1})∪ ({|w| = 4} × D) and (L × {1})∪ ({|w| = 3} × D) cover MU and the
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functions 0 and z−1 each lie in U. To show that h is not in U, we exhibit a measure
on (∂L)× D that annihilates U but does not annihilate h. Because the function
that is 1 on the circle {|w| = 3} and 0 on the circle {|w| = 4} is not in Rb(L), there
is a measure µ on ∂L that annihilates Rb(L) but does not annihilate this function.
Also, because the function z − 1 is not in the ideal I , there is a measure ν on D
that annihilates I but such that

∫
D (z−1) dν(z)= 1. Now for f ∈C(∂L) and g ∈ I ,∫

(∂L)×D
f (w)g(z) d(µ× ν)(w, z)=

∫
∂R

f dµ ·
∫

D
g dν = 0,

and the same equation holds also for f ∈ Rb(L) and g ∈ A(D). Consequently,
µ× ν annihilates (C(∂L)⊗ I )+ (Rb(L)⊗ A(D))=U. However,∫
(∂L)×D

h(w, z) d(µ× ν)(w, z)

=

∫
{|w|=3}×D

h(w, z) d(µ× ν)(w, z)+
∫
{|w|=4}×D

h(w, z) d(µ× ν)(w, z)

=

∫
{|w|=3}

∫
D
(z− 1) dν(z) dµ(w)+

∫
{|w|=4}

∫
D

0 dν(z) dµ(w)

=

∫
{|w|=3}

1 dµ+
∫
{|w|=4}

0 dµ 6= 0.

Thus h is not in U.

Step 3. We show that there is a dense set of functions in I that extend to C∞-
functions on C.

Let A∞(D) denote the algebra of functions in A(D) whose complex derivatives
to all orders also lie in A(D). The boundary function of each function in A∞(D)
belongs to C∞(∂D), and A∞(D) is a topological algebra with the topology in-
duced by C∞(∂D). Each function in A∞(D) extends to a C∞-function on C.
(This follows from Whitney’s extension theorem [Boggess 1991, Theorem 2 in
Section 5.3].)

Let J = {Sg : g ∈ A∞(D) and Sg ∈ A∞(D)}. Note that J is an ideal in A∞(D).
Consider the closure J of J in the disc algebra A(D). One easily checks that J
is a (closed) ideal in A(D). By [Taylor and Williams 1970, Theorem 3.3], there
is an outer function h in A∞(D) with h(n)(1) = 0 for all n = 0, 1, 2, . . . (that is,
vanishing to infinite order at 1) with no other zeros on D. Then by [Taylor and
Williams 1970, Theorem 4.7], the function Sh is in J . Because Sh vanishes only
at z = 1, we conclude from the Beurling–Rudin theorem [Rudin 1957] (or see
[Hoffman 1962, pp. 82–89] that

J =
{

g exp
(

r z+1
z−1

)
: g ∈ A(D) and g(1)= 0

}
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for some r ≥ 0. Obviously

J ⊂
{

g exp
( z+1

z−1

)
: g ∈ A(D) and g(1)= 0

}
,

so r ≥ 1. Because h is outer, Sh is not of the form g exp [r(z + 1)/(z − 1)] for
any r > 1. Thus r = 1, that is, J = I . Because the functions in J extend to
C∞-functions on C, this completes Step 3.

Step 4. We show that there is a dense set of functions in U, regarded as a uniform
algebra on MU = (L ×{1})∪ ((∂L)× D), that extend to C∞-functions on C2.

Recall that U, as a uniform algebra on (∂L)× D, is the closed linear span of
the functions of the form ( f ⊗ g)(x, y)= f (x)g(y), where either f ∈ Rb(L) and
g ∈ A(D), or else f ∈ C(∂L) and g ∈ I . Thus, it suffices to show that each of
these functions f ⊗ g can be uniformly approximated on (∂L)× D by functions
C∞ on C2 that lie in U on MU. For f ∈ Rb(L) and g ∈ A(D), we trivially obtain
sequences ( fn) and (gn) of functions C∞ on C with fn|L ∈ R(L) and gn|D ∈ A(D)
such that fn→ f and gn→ g uniformly on ∂L and D respectively. Then fn⊗ gn

gives the required approximation of f ⊗ g. For f ∈ C(∂L), there is a sequence
( fn) of functions C∞ on C with fn → f uniformly on ∂L , and for g ∈ I , there
is, by Step 3, a sequence (gn) of functions C∞ on C with gn|D ∈ I and gn → g
uniformly on D. Then fn ⊗ gn is of course C∞ on C and in U on (∂L)× D, and
fn ⊗ gn→ f ⊗ g uniformly there. Also, because gn(1)= 0, we have fn ⊗ gn = 0
on L ×{1}, so fn ⊗ gn is in U on MU.

Step 5. We show that there is a C∞-map G : R3
\{x1 = x2 = 0} → C2 that takes

some subset K of R3 homeomorphically onto MU = (L ×{1})∪ ((∂L)× D).
Let K = KL ∪ K1 ∪ K2, where

KL =
{
(x1, x2, x3) ∈ R3

: 3≤
√

x2
1 + x2

2 ≤ 4, x3 = 0
}
,

K1 =
{
(x1, x2, x3) ∈ R3

:
(√

x2
1 + x2

2 − 2
)2
+x2

3 ≤ 1
}
, and

K2 =
{
(x1, x2, x3) ∈ R3

:
(√

x2
1 + x2

2 − 5
)2
+ x2

3 ≤ 1
}
.

Let ρ : R→ R be a C∞-function such that ρ([1, 3]) = {3}, on the interval [3, 4]
the function ρ strictly increases from 3 to 4, and ρ([4, 6])= {4}. Let F be the map
in Lemma 2.3 and define G : R3

\{x1 = x2 = 0} → C2 by

G(x1, x2, x3)=

(
ρ
(√

x2
1 + x2

2
)(x1+ x2i)
√

x2
1 + x2

2

, F
(√

x2
1 + x2

2 , x3
))
.

Clearly, G is of class C∞. One checks easily that G takes KL one-to-one onto
L × {1}, takes K1 one-to-one onto {|z| = 3} × D, and takes K2 one-to-one onto
{|z| = 4}× D. Thus, G takes K onto MU, and a little more thought shows that G
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is one-to-one on K . Since K is compact, we conclude that G takes K homeomor-
phically onto MU.

Step 6. We complete the proof of the theorem.
The uniform algebra B = { f ◦G : f ∈U} on K is clearly isomorphic to U. By

Step 2, B is nonlocal, and by Step 4, B is generated by functions that extend to be
C∞ on R3

\{x1 = x2 = 0}.
Given an arbitrary compact C∞-manifold M of dimension greater than or equal

to 3, choose an embedding of a neighborhood of K into M , identify K with its
image in M , and define a uniform algebra A on M by taking all continuous func-
tions on M whose restrictions to K lie in B. Then the maximal ideal space of A is
M by [Bear 1959, Theorem 4], A is nonlocal by [Izzo 2010, Lemma 2.5], and A
is generated by C∞-smooth functions by [Izzo 2009, Lemma 2.1]. �
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