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NEW CONSTRUCTION OF FUNDAMENTAL DOMAINS
FOR CERTAIN MOSTOW GROUPS

TIEHONG ZHAO

In this article, we give a new construction of fundamental polyhedra for cer-
tain Mostow groups in complex hyperbolic space. The shape of fundamental
polyhedra is a natural generalization of the fundamental polyhedron for the
sister of Eisenstein–Picard lattice.

1. Introduction

Mostow [1980] used the construction of fundamental domains to show that certain
subgroups of PU(2, 1) are lattices. More recently, there has been a renewed interest
in the construction of fundamental domains [Deraux et al. 2005; Falbel and Parker
2006; Falbel et al. 2011; Parker 2006; Zhao 2011]. In particular, Deraux, Falbel and
Paupert gave a new construction of fundamental domains for some of the groups
considered in [Mostow 1980]. In this paper we give another construction for the
same groups. Our construction generalizes the fundamental domain we gave for
the sister of the Eisenstein–Picard modular group. This generalization is in the
same spirit as the construction of fundamental domains for Livné’s groups given in
[Parker 2006], which generalizes the construction of the domain for the Eisenstein–
Picard modular group given in [Falbel and Parker 2006].

Mostow groups are generated by three complex reflections R1, R2, R3, each of
order p = 3, 4, 5. The complex lines fixed by three reflections are permuted by
a map J of order 3, equivalently, JRi J−1 = Ri+1 (indices taken cyclically). So
〈R1, R2, R3〉 is a normal subgroup of 〈R1, J 〉 with index at most 3. Moreover, the
complex reflection Ri satisfies the braid relation Ri R j Ri = R j Ri R j . Such groups
are determined up to conjugation by a real parameter, which Mostow [1980] calls a
phase shift, and denotes by ϕ. These groups have the property that Ai = (JR−1

i J )2

is also a complex reflection and there is a one to one correspondence between the
phase shift parameter ϕ and the angle of this reflection Ai . In order for 〈R1, J 〉
to be discrete, the complex reflection Ai should have finite order and we take this
order to be k. Following [Parker 2009], we use p and k rather than ϕ to specify
the group 〈R1, J 〉.
MSC2010: primary 32Q45; secondary 51M10.
Keywords: Mostow groups, Poincaré polyhedron theorem, fundamental domains.

209



210 TIEHONG ZHAO

Most of the paper concerns the case p = 3 and for other values of p we will
only make some remarks about how the construction needs to be modified; see
Section 5. When p = 3 the values of k that lead to a lattice are exactly those
for which there is an integer l so that 1/k+ 1/ l = 1

6 (see also the table in [Parker
2009, page 27]). In [Zhao 2011] we constructed a fundamental domain for the case
k=6. In this paper, we consider the case k≥7 and construct a fundamental domain
whose shape is based on that of the domain for k = 6. The main difference is that
the vertex at ∞ is replaced with a triangle in a complex line and we need to be
careful when constructing geodesic cones to point this triangle. Our construction
is inspired by the construction of Parker [2006], in the case p≥ 7 and k= 2, which
are generalizations of the construction for p = 6 and k = 2 given in [Falbel and
Parker 2006]. Again the main difference is that the vertex of∞ is replaced with a
triangle in a complex line.

Our fundamental polyhedron is a 4-dimensional domain, which is well defined
by its boundary (the union of 3-cells is homeomorphic to S3). Analogously to
[Parker 2006], the basic construction is to take a complex line L0 instead of ∞
fixed by 00 ⊂ 0 (where 0 is the group we consider) and the intersection of a
fundamental domain for 00 and a Dirichlet type domain under 0\00. Specifically,
the Dirichlet type domain D0\00(L0) based at L0 is the set of points in H2

C
that are

closer to L0 than to any other complex line in the 0\00-orbit of L0. The faces of
D0\00(L0) are contained in bisectors, that is, the locus of points equidistant from
a pair of complex lines; see Section 3A. Throughout the paper, the 3-dimensional
(2-, 1- and 0-dimensional) skeletons of a polyhedron are called the sides (faces,
edges and vertices) of the polyhedron, respectively. The vertices of our polyhedron
are intersections of two complex lines. Many, but not all, edges are geodesic arcs.
Most of the sides are contained in bisectors. Only two sides that are not contained
in bisectors will be constructed; they are foliated by 2-dimensional geodesic cones.
Each of the faces is contained either in totally geodesic submanifolds or in a Giraud
disk or in a foliation by geodesics. Consider the group generated by the side-
pairing maps of our polyhedron; we use an appropriate version of the Poincaré
polyhedron theorem to show that our polyhedron is a fundamental domain and
give a presentation for this group.

2. Describing the group

For background on complex hyperbolic geometry, we refer the reader to [Goldman
1999] as a general reference. We consider the complex hyperbolic triangle group
generated by three complex reflections R1, R2, R3 of order p with the property that
there is an element J of order 3 so that

(2-1) J 3 = I, R2 = JR1 J−1, R3 = JR2 J−1 = J−1 R1 J.
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We call 〈R1, R2, R3〉 an equilateral triangle group if condition (2-1) is satisfied.

2A. The group 0k. Consider an equilateral complex hyperbolic triangle group
defined as above. Up to conjugation, it may be parametrized by τ = tr(R1 J ). For
the sake of simplicity, we set u = e2iπ/3p. Using a suitable normalization, we may
take the Hermitian form H to be

(2-2) H =
2− u3− u3 (u2− u)τ (u2− u)τ
(u2− u)τ 2− u3− u3 (u2− u)τ
(u2− u)τ (u2− u)τ 2− u3− u3

 ;
see [Parker and Paupert 2009].

The elements R1, R2, R3 and J then take the form

R1 =
u2 τ −uτ

0 u 0
0 0 u

 , R2 =
 u 0 0
−uτ u2 τ

0 0 u

 ,
R3 =

u 0 0
0 u 0
τ −uτ u2

 , J =
0 0 1

1 0 0
0 1 0

 ,
as matrices in SU(H). As shown in [Parker 2009], having |τ | = 1 is equivalent
to Mostow’s condition that the generators R j and Rk satisfy the braid relation
R j Rk R j = Rk R j Rk for j 6= k. Furthermore, following [Sauter 1990] we define
A j = (JR−1

j J )2 for j = 1, 2, 3, then A j is a complex reflection or is conjugate to a
vertical Heisenberg translation (see Proposition 4.1 of [Parker 2009]). In particular,
if A j is conjugate to a vertical Heisenberg translation then τ =−1.

We focus our attention on considering the groups generated by three complex
reflections of order 3 and so u3 = e2iπ/3 is a cube root of unity. We follow the
notation used in [Parker and Paupert 2009] and write τ = −e−2iπ/3k where k is
an integer (and set τ =−1 when k =∞), and denote the corresponding group by
0k . We now give the generators as R = (JR−1

1 J )2, S = JR−1
1 , T = (JR−1

1 )2 and
I1= JR−1

1 J . Recall that the generators R, S, T, I1 arise from the side-pairing maps
of a fundamental domain constructed in [Zhao 2011], we call them geometrical
generators. So the group 0k may be rewritten as 〈R, S, T, I1〉. Our main result
is the construction of a fundamental domain for 0k acting on complex hyperbolic
space and a presentation of the group 0k .

2B. The stabilizer. In this section we will investigate the stabilizer subgroup of 0k

preserving a complex line, which enables us to obtain the values of k as required.
In the case k = 6 [Zhao 2011], 〈R, S, T 〉 is an isotropy group fixing a bound-

ary point, so it is a cusp group. It is natural to ask what happens to the group
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〈R, S, T 〉 ⊂ 0k for other values of k? To answer this we need to consider the loca-
tion of the common eigenvector of R, S and T in C

2,1
H where C

2,1
H is the Hermitian

symmetric complex vector space corresponding to the Hermitian matrix H .
From the above settings of generators, we see easily that T = S2, which can

simplify the group 〈R, S, T 〉 to 〈R, S〉 = 〈R−1S, S〉 = 〈R3, JR−1
1 〉. It suffices to

find a common eigenvector of R3 and JR−1
1 . As matrices of SU(H),

R3 =
u 0 0

0 u 0
τ −uτ u2

 and JR−1
1 =

 0 0 u
u2 −uτ τ

0 u 0

 .
By simple calculations, the common eigenvector of R3 and JR−1

1 in C
2,1
H is

n=
u2τ

u2τ

−1

 .
In particular, n is the eigenvector of T that corresponds to its nonrepeated eigen-
value. More specifically, we say T is a complex reflection in the complex line
with the polar vector n. A polar vector to the complex line L is a vector v in C

2,1
H

satisfying 〈v, z〉H = 0 for z ∈ L .
Using the Hermitian form (2-2), the following calculations enable us to know

whether the eigenvector n is a negative, null or positive vector in C
2,1
H . We have

〈n, n〉 = [u2τ u2τ −1
]

H

u2τ

u2τ

−1


= 1− u3+ u6τ 3− u3τ 3+ u6τ 3− u3τ 3+ 1− u3

= 2− u3− u3+ (u3− u3)τ 3+ (τ 3− u3)τ 3

= 3+ 2i sin(2π/3)(τ 3− τ 3)

= 3− 2
√

3 sin(2π/k).

From this, we get

〈n, n〉> 0⇐⇒ k > 6,

〈n, n〉 = 0⇐⇒ k = 6,

〈n, n〉< 0⇐⇒ k < 6.

For k > 6, n is a positive vector in C
2,1
H , which turns out to be a polar vector

to a complex line as required. Furthermore, the eigenvector n is a null vector
when k = 6. As 〈n, n〉 tends to 0, the polar vector n degenerates to a point on
the boundary of complex hyperbolic space as well. This limiting configuration
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corresponds to a cusp of the corresponding lattice, which is conjugate to the sister
of Eisenstein–Picard modular group [Zhao 2011].

2C. New normalization of 0k. Calculations in complex hyperbolic space, in terms
of the Hermitian form (2-2), have a tendency to become extremely complicated,
which means that explicit constructions are rather difficult to obtain. We have to
make a good choice of coordinates in order to give simple and explicit geometrical
arguments on 0k . In what follows we choose the Hermitian matrix

H0 =
 1 0 0

0 1 0
0 0 −1

 .
The corresponding Hermitian form in complex vector space C2,1 is defined by

〈z, w〉 = z1w1+ z2w2− z3w3,

where z and w are the column vectors [z1, z2, z3]t and [w1, w2, w3]t respectively.
Thus we obtain, in nonhomogeneous coordinates, the complex ball

H2
C = {(z1, z2) ∈ C2 : |z1|2+ |z2|2 < 1}.

The key point of our normalization is based on a geometric observation of the
complex lines fixed by T and R respectively. In fact, it follows from the braid
relation R1 R3 R1 = R3 R1 R3 that R commutes with T . Thus the complex lines
fixed by T and R (denoted by C1 and C2 respectively) are orthogonal. We choose
a new coordinate system of the complex ball, which makes C1 and C2 be on the
z1- and z2-axis, specifically

C1 = {(z1, 0) ∈ C2 : |z1|< 1},(2-3)

C2 = {(0, z2) ∈ C2 : |z2|< 1}.(2-4)

We now start to normalize the generators of 0k in the new system of coordinates.
Before normalizing, we need to introduce two angle parameters,

φ1 = π/k,(2-5)

φ2 = π/6−π/k,(2-6)

that play an important role in the normalization of the group 0k . Also, we shall
give several numbers related to φ1 and φ2 in order to simplify expressions. We
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remind the readers to keep these numbers in mind for convenience:

x1 =
√

sin(π/6−φ1)

sin(π/6+φ1)
,(2-7)

x2 =
√

sin(π/6−φ2)

sin(π/6+φ2)
,(2-8)

ρ =
√

sin(π/6−φ1/2)
cos(φ1/2) sin(π/6+φ1)

,(2-9)

λ=√tan(φ1/2) tan(π/6−φ1/2),(2-10)

µ=
√

tan(φ1/2)
tan(π/6−φ1/2)

,(2-11)

δ =
√

tan(φ2/2)
tan(π/6−φ2/2)

.(2-12)

As matrices of SU(2, 1), the complex reflections R and T are given by

(2-13)

R =
e4iφ1/3 0 0

0 e−2iφ1/3 0
0 0 e−2iφ1/3

 ,
T =

e−2iφ2/3 0 0
0 e4iφ2/3 0
0 0 e−2iφ2/3

 .
We start by defining the vertices of our polyhedron to be the intersection of two

complex lines. We consider two more complex lines, namely those fixed by R1

and R3, and denote them by L1 and L3 respectively.

(i) The vertices on L1 are

z1 = L1 ∩C2, z2 = L1 ∩L3, z3 = L1 ∩ R(L3).

(ii) The vertices on T (L1) are

z6 = T (L1)∩C2, z4 = T (L1)∩L3, z5 = T (L1)∩ R(L3).

(iii) The vertices on C1 are

z7 = C1 ∩C2, z8 = C1 ∩L3, z9 = C1 ∩ R(L3).

Proposition 2.1. If z j are defined by (i), (ii) and (iii) for j = 1, 2, . . . , 9, then

z3 = R(z2), z5 = R(z4), z9 = R(z8),

z6 = T (z1), z4 = T (z2), z5 = T (z3).
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Proof. The braid relations R1 R2 R1= R2 R1 R2 and R2 R3 R2= R3 R2 R3 imply that R
commutes with R1 and that T commutes with R3, respectively. As a consequence,
we know that R commutes with T R1T−1 and that T commutes with R R3 R−1. It
follows that C1 is orthogonal to L3 and R(L3), and that C2 is orthogonal to L1

and T (L1). Therefore, R preserves C1, L1 and T (L1). Also, T preserves C2, L3

and R(L3). The result now follows easily from definitions. �

We now start by investigating the coordinates of the complex lines L1 and L3

under the symmetry map J . Consider the triangle with the vertices z2, z3, z4. First
observe that J acts on the vertices with the property that J (z j )= z j+1 (with indices
taken cyclically). To see this, note that it follows from R1(z2) = R3(z2) = z2 and
J 3 = 1 that

J (z2)= R R3 R1(z2)= R(z2)= z3,

J (z4)= J T (z2)= J−1 R−1
1 J (z2)= R−1

3 (z2)= z2,

J (z3)= JR(z2)= J−1 R−1
1 R−1

3 (z2)= J−1(z2)= z4.

Thus (z2, z3, z4) is an equilateral triangle whose vertices, as vectors of C2,1,
satisfy

(2-14)
〈z1, z1〉 = 〈z2, z2〉 = 〈z3, z3〉,
|〈z1, z2〉| = |〈z2, z3〉| = |〈z3, z1〉|.

The condition (2-14) gives rise to parametrizations of complex lines L1 and L3,
that are given, in terms of nonhomogeneous coordinates, by

L1 =
{(

z1, x2e−iφ2
) ∈ C2 : |z1|<

√
1− x2

2
}
,(2-15)

L3 =
{(

x1e−iφ1, z2
) ∈ C2 : |z2|<

√
1− x2

1
}
.(2-16)

As vectors of C2,1, these vertices are given by

(2-17)

z1 =
 0

x2e−iφ2

1

 ,
z4 =

x1e−iφ1

x2eiφ2

1

 ,
z7 =

0
0
1

 ,

z2 =
x1e−iφ1

x2e−iφ2

1

 ,
z5 =

x1eiφ1

x2eiφ2

1

 ,
z8 =

x1e−iφ1

0
1

 ,

z3 =
 x1eiφ1

x2e−iφ2

1

 ,
z6 =

 0
x2eiφ2

1

 ,
z9 =

x1eiφ1

0
1

 .
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Recall that given a vector v with 〈v, v〉>0, the complex reflection in the complex
line with the polar vector v is given by

(2-18) Rv,ζ (z)= z+ (ζ − 1) 〈z, v〉〈v, v〉v,

where ζ is a complex number of absolute value one.
Observe that the polar vectors to the complex lines L1 and L3, denoted by n1

and n3 respectively, are given by

n1 =
 0

1
x2eiφ2

 and n3 =
 1

0
x2eiφ1

 .
Since R1 and R3 are complex reflections with order 3, we set ζ = u3 = e2iπ/3 and
then have ζ − 1= i

√
3eiπ/3. Using the formula (2-18) together with the facts that

〈n1, n1〉 = 1− x2
2 and 〈n3, n3〉 = 1− x2

1 , the complex reflections R1 and R3 are
given explicitly as matrices of SU(2, 1) by

R1 =


u 0 0

0 i(u2+u)e−iφ2

2 sinφ2
− i(u2+u)

√
1−4 sin2 φ2 e−iφ2

2 sinφ2

0 i(u2+u)
√

1−4 sin2 φ2 eiφ2

2 sinφ2
− i(u2+u)eiφ2

2 sinφ2

 ,

R3 =


i(u2+u)e−iφ1

2 sinφ1
0 − i(u2+u)

√
1−4 sin2 φ1 e−iφ1

2 sinφ1

0 u 0

i(u2+u)
√

1−4 sin2 φ1 eiφ1

2 sinφ1
0 − i(u2+u)eiφ1

2 sinφ1

 .

The symmetry map J plays an important role in the construction. From the
equality J = R R3 R1 we obtain

J = ei(φ2−φ1+π)/3

eiφ1

2 sinφ1

√
(1−4 sin2 φ1)(1−4 sin2 φ2)

4 sinφ1 sinφ2
−
√

1−4 sin2 φ1
4 sinφ1 sinφ2

0 e−iφ2

2 sinφ2
−
√

1−4 sin2 φ2 e−iφ2

2 sinφ2√
1−4 sin2 φ1 eiφ1

2 sinφ1

√
1−4 sin2 φ2

4 sinφ1 sinφ2
− 1

4 sinφ1 sinφ2


.
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Now define, from the relations S= JR−1
1 , I1=T R1, the remaining generators by

S = e−iφ2/3

2 sinφ1

 1 0 −
√

1− 4 sin2 φ1

0 −2 sinφ1eiφ2 0√
1− 4 sin2 φ1 0 −1

 ,(2-19)

I1 = e−iφ1/3

2 sinφ2

−2 sinφ2eiφ1 0 0
0 1 −

√
1− 4 sin2 φ2

0
√

1− 4 sin2 φ2 −1

 .(2-20)

3. A combinatorial polyhedron

In this section we construct a polyhedron D which we will prove later to be a fun-
damental domain for 0k in complex hyperbolic space. The polyhedron D is defined
to be a 4-dimensional domain bounded by the sides we construct in Sections 3C–
3E. Many (but not all) sides of D are contained in bisectors and the vertices are
the same as defined in the previous section. The main difficulty of the construction
occurs when dealing with the two sides that are not contained in bisectors, each
of which is foliated by 2-dimensional cones. In order to have a global view of the
polyhedron, we refer to Figures 9 and 10.

3A. Bisectors. Recall that a bisector is the locus of points in complex hyperbolic
space that are equidistant from a given pair of points p and q in complex hyperbolic
space and we denote it by Bp,q . Using a normalization of p and q such that
〈 p, p〉 = 〈q, q〉, the bisector Bp,q (see Section 3.3 of [Parker 2006]) is defined as

(3-1) Bp,q = {z ∈ H2
C : |〈z, p〉| = |〈z, q〉|}.

In fact, this definition of a bisector only depends on 〈 p, p〉 = 〈q, q〉 and not on
whether this quantity is positive, negative or zero.

(a) If 〈 p, p〉 = 〈q, q〉 = 0, i.e., the points p and q are on the boundary of complex
hyperbolic space, then we use the Busemann functions with respect to p and q
(as defined in Section 4.1.2 of [Goldman 1999]) instead of the standard distance
function.

(b) If 〈 p, p〉= 〈q, q〉>0, i.e., the points p and q are outside of complex hyperbolic
space, then we say Bp,q is equidistant from the complex lines Cp and Cq with polar
vectors p and q respectively. In other words, for each z ∈ Bp,q the distance from
z to the closest point of Cp is the same as the distance from z to the closest point
of Cq . In Section 3C we will use this characterization of bisectors.

The points p and q lie on a unique complex line 6, called the complex spine
of the bisector Bp,q . There is a geodesic σ in 6 that is equidistant from our
pair of points with respect to the natural Poincaré metric on 6. This geodesic
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is called the spine. This still makes sense when p and q lie on the boundary of
H2

C
or lie outside it: we may define the spine as the locus of points in 6 fixed

by an involution interchanging p and q . In particular, the (complex) spine may
be outside of complex hyperbolic space. Bisectors are not totally geodesic (there
are no totally geodesic real hypersurfaces in complex hyperbolic space), but can
be described in terms of a foliation by totally geodesic subspaces in two different
ways. First there is the slice decomposition; see [Mostow 1980]. Let 56 denote
the orthogonal projection onto 6, then the bisector is the preimage of σ under56 .
Each fiber of this map, i.e., each complex line that is the preimage of a point of σ ,
is a slice of our bisector. Bisectors enjoy another decomposition into totally real,
totally geodesic submanifolds, which we call the meridians; see [Goldman 1999].
Each meridian is a Lagrangian plane that contains the spine σ , the bisector is the
union of all its meridians.

An example in the ball model is the standard bisector

B0 = {(z1, z2) ∈ H2
C : z1 ∈ C, Im z2 = 0}

in nonhomogeneous coordinates, which is equidistant from the points p= (0, i/2)
and q = (0,−i/2), for instance.

Together the slices and meridians give geographical coordinates on the bisec-
tor. In the unit ball model (compare [Falbel and Parker 2006]), in geographical
coordinates, the standard bisector B0 is parametrized by

(3-2)


reiα

s
1

 : α ∈ [−π/2, π/2), s ∈ [−1, 1], r ∈ [−√1− s2,
√

1− s2] .
The spine, slices and meridians of B0 are given in the next proposition in terms

of geographical coordinates.

Proposition 3.1. The standard bisector with coordinates (r, s, α) is given by (3-2).
Furthermore,

(i) the spine of B0 is given by r = 0;

(ii) the slices of B0 are given by s = s0 for fixed s0 ∈ [−1, 1];
(iii) the meridians of B0 are given by α = α0 for fixed α0 ∈ [−π/2, π/2).

The intersection of two or more bisectors can be very complicated, in general
it is not necessarily connected or contained in a totally geodesic subspace. We
adopt the following notation and recall several results that allow us to understand
the intersection of bisectors.

Definition 3.2. Let B1 and B2 denote bisectors with complex spines 61 and 62

respectively.
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(i) We call B1 and B2 cospinal if 61 =62.

(ii) We call B1 and B2 coequidistant if 61 ∩62 does not lie in their real spines.

(iii) We call B1 and B2 cotranchal if they share a common slice.

(iv) We call B1 and B2 comeridional if they share a common meridian.

The following result allows us to understand bisector intersections in terms of
their slice decompositions.

Proposition 3.3 [Mostow 1980]. Let B be a bisector and C be a complex line
such that B ∩ C 6= ∅, then C ⊂ B (in which case C is a slice of B) or C ∩B is
a hypercycle in C. In the ball model a hypercycle is an arc of a Euclidean circle
intersecting the boundary.

We remark that a hypercycle in C is a curve with a constant geodesic curvature
(i.e., the magnitude of the mean curvature is constant). In particular, unless the
two bisectors share a common slice, Proposition 3.3 implies that each connected
component of the intersection B1 ∩B2 is a disk that is foliated by arcs of circles.
It can be proven that the intersection has at most two connected components. If
the bisectors are coequidistant, there is a remarkable result due to Giraud.

Proposition 3.4 [Giraud 1921; Goldman 1999]. Let B1 and B2 be two coequidis-
tant bisectors with complex spines 61 and 62 respectively, then their intersection
is a smooth disk, moreover there exists one (and no more) bisector containing
B1 ∩B2 other than B1 and B2.

This intersection is not totally geodesic. We call it a Giraud disk. We can find the
third bisector passing through a Giraud disk by the following procedure. Suppose
that B1 and B2 is a pair of coequidistant bisectors with respective complex (real
respectively) spines61 and62 (σ1 and σ2 respectively), then we denote61∩62 by
p0 and the images of p0 under the reflections in σ1 and σ2 by p2 and p1. Then the
third bisector equidistant from p1 and p2 passes through the intersection B1∩B2.

Four of the bisectors we use to construct the polyhedron D have a very simple
descriptions. These four bisectors come in two cospinal pairs, the complex spines
being the coordinate axes. We write down these bisectors and some of the points
for (2-17) that are contained in the corresponding bisector:

Bisector Definition Vertices on spine Other vertices

B78 arg (z1)=−φ1 z7, z8 z1, z2, z4, z6

B79 arg (z1)= φ1 z7, z9 z1, z3, z5, z6

B17 arg (z2)=−φ2 z1, z7 z2, z3, z8, z9

B67 arg (z2)= φ2 z6, z7 z4, z5, z8, z9
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3B. Orthogonal projection onto C-lines. We need a few technical lemmas about
the orthogonal projection onto a C-line that we shall use in what follows. The
sketch of the proof follows from geometric facts.

Lemma 3.5 [Thompson 2010, Lemma 1.2.17]. Let 5C be the orthogonal projec-
tion of complex hyperbolic space onto a C-line C and γ be a geodesic. Then the
image 5C(γ ) is either

• a single point, or

• an arc of a geometric circle in C.

In particular, if γ ∩ C 6= ∅, then 5C(γ ) is the geodesic segment between the
projection of the endpoints of γ at infinity.

Proof. Using the ball model of H2
C

, we may assume that C={(z1, 0)| z1 ∈C}. This
makes the orthogonal projection linear, that is 5C(z1, z2) = z1. We also assume
that γ is not contained in any complex line z1 = constant, otherwise γ can be
projected to a single point as required.

Recall that a C-line is the nonempty intersection of a complex projective line
with H2

C
and a geodesic is the locus of a quadratic equation with respect to the real

and imaginary parts of coordinates in a C-line. From this, we see that5C(γ ) is the
locus of a quadratic equation with respect to Re z1 and Im z1, which is a geometric
circle in C.

To see this is true for a general C-line, recall that a C-line is an embedded copy
of H1

C
and that an element of PU(2, 1) sending a C-line to another is an isometry

of H1
C

. Holomorphic isometries of H1
C

are Möbius transformations, which send
circles to circles. For the particular case of γ ∩C 6=∅, the result follows from the
fact that a linear projection sends any straight line to another one. �

Lemma 3.6 [Thompson 2010, Lemma 1.2.19]. Let γ be a geodesic and p, q be
two points on γ . Then the geodesic segment [p, q] projects to a shorter arc of a
geometric circle on a coordinate axis.

Proof. Let C0 be a complex line containing the geodesic γ . Using the ball model
of H2

C
, we know that C0 is an embedded copy of Poincaré disk in H2

C
. We consider

the extensions γ and C0 of γ and C0 to projective space. There is an involution
fixing S3 (the boundary of ∂H2

C
) in C2,

(z1, z2)→
(

z1
|z1|2+|z2|2 ,

z2
|z1|2+|z2|2

)
,

which preserves the extension γ and swaps the two parts γ \γ and γ . It follows
(like in Poincaré disk) that γ is shorter than γ \γ with respect to the Euclidean
metric. By Lemma 3.5, the projection of γ is a geometrical circle in a C-line.
Furthermore, the orthogonal projection on a coordinate axis is linear, which implies
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that it preservers angles. As a consequence, the projection sends the geodesic γ to
a shorter arc of a geometric circle. So does each geodesic segment [p, q]. �

3C. The core sides. In this section we define two core sides Sc and S′c of the poly-
hedron D contained in a bisector Bc, called the core bisector, which is equidistant
from two complex lines C1 and I−1

1 (C1) as explained in Section 3A (compare
[Zhao 2011]). We call the union of two sides Sc and S′c the core prism, and denote
it by Pc (see Figure 4 for a schematic view). The other sides of D are foliated by
2-dimensional cones. Four of these sides are contained in the bisectors given in
the previous section. Analogously to the sister of the Eisenstein–Picard lattice (the
case k = 6), the noncompact sides of the fundamental polyhedron arise from the
limiting configuration resulting from the top triangle converging to an ideal vertex.
In other words, the polyhedron is the geodesic cone over the faces of the core prism
to the ideal point which is a cusp of lattice; see [Zhao 2011].

The core bisector and its neighbors. Let n0 denote the polar vector to the complex
line C1 and denote by I−1

1 (n0) its image under by I−1
1 , these are

n0 =
 0

1
0

 and I−1
1 (n0)= eiφ1/3

2 sinφ2

 0
1√

1− 4 sin2 φ2

 .
We denote by Bc the bisector equidistant from n0 and I−1

1 (n0). The condition
that 〈n0, n0〉 = 〈I−1

1 (n0), I−1
1 (n0)〉 = 1 enables us to give the definition of Bc as

characterized in (3-1).

Definition 3.7. The bisector Bc is defined in nonhomogeneous coordinates by

(3-3) Bc =
{
(z1, z2) ∈ H2

C : 2 sinφ2|z2| =
∣∣z2−

√
1− 4 sin2 φ2

∣∣}.
Observe that C2 is the complex spine of Bc spanned by n0 and I−1

1 (n0). Since
the complex lines L1 and T (L1) are both orthogonal to the complex line C2, it
follows that the spine of Bc passes through a pair of vertices z1 and z6 by the slice
decomposition for bisectors; see Figure 1.

We shall explore the spine of Bc in order to give the parametrization in terms of
geographical coordinates (r, s, α). In the coordinate system (x, y) = (Re z, Im z)
in C, the Poincaré disk is {(x, y)| x2+ y2 < 1} and the spine σ0 turns out to be

(3-4)
(
x − 1/

√
1− 4 sin2 φ2

)2+ y2 = 4 sin2 φ2

1−4 sin2 φ2
.

This is a circle centered at(
1√

1−4 sin2 φ2
, 0
)

with radius 2 sinφ2√
1−4 sin2 φ2

.
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Figure 1. Configuration of the spines of the bisector Bc and z1,
z6 on the complex spine C2 for k = 7, 8, 9, 10, 12, 15, 18, 24, 42.
Here the spines get closer to the origin as k gets larger.

The spine σ0 intersects the x-axis at the point (µ, 0). Then we apply a Möbius
transformation ψ mapping (µ, 0) to the origin in the Poincaré disk, for example

ψ(z)= z−µ
1−µz

.

Equation (3-4) becomes |z + µ| = |z − µ| under the map ψ , so it describes the
y-axis. Defining a map C in SU(2, 1) by

C =
e−iπ/6 0 0

0 eiπ/3/(1−µ2) e−iπ/6µ/(1−µ2)

0 eiπ/3µ/(1−µ2) e−iπ/6/(1−µ2)

 ,
we see that C maps the spine of standard bisector B0 to the spine of Bc and fur-
thermore the geographical coordinates on Bc turn out to be obtained from B0.

Definition 3.8. The bisector Bc is given in terms of geographical coordinates
(r, s, α) by

(3-5)



√

1−µ2reiα

µ+ is
1+ iµs

 : α ∈ [−π/2, π/2), s ∈ [−1, 1],
r ∈ [−√1− s2,

√
1− s2

]
 .

We start to define the sides Sc and S′c in geographical coordinates. As described
in [Falbel et al. 2011], we will discuss the triangular face with the vertices z2, z3, z4
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on the intersection Bc ∩ S−1(Bc) in terms of two slice s-parameters. We give the
details for this face on Bc ∩ S−1(Bc) and the others follow similarly.

Proposition 3.9. The part of Bc ∩ S−1(Bc) outside T−1(Bc), R−1S(Bc), S(Bc)

forms a triangular face of the core prism, see Figure 2. In terms of geographical
coordinates (r0, s0, α0) on Bc and (r1, s1, α1) on S−1(Bc) this face is given by

(3-6) −λ≤ s0 ≤ λ, −λ≤ s1 ≤ λ, −2λ≤ s0− s1 ≤ 0.

Moreover, the boundary of this triangle admits the following description in geo-
graphical coordinates.

(i) Points of Bc ∩ S−1(Bc)∩ T−1(Bc) are given by s0 =−λ.

(ii) Points of Bc ∩ S−1(Bc)∩ S(Bc) are given by s1 = λ.

(iii) Points of Bc ∩ S−1(Bc)∩ R−1S(Bc) are given by s0− s1 = 0.

We remark that none of the triple intersections (i)–(iii) in Proposition 3.9 are
contained in a geodesic; refer to Lemma 3.18. Before we prove Proposition 3.9,
we need to explore the intersection Bc∩S−1(Bc) in terms of two slices parameters
s0, s1 and see how it intersects the neighboring bisectors T−1(Bc), R−1S(Bc) and
S(Bc).

Proposition 3.10. Consider the geographical coordinates (r0, s0, α0) on Bc and
(r1, s1, α1) on S−1(Bc). Points on Bc ∩ S−1(Bc) may be uniquely expressed in
terms of s0 and s1; see Figure 2. The range of these parameters is determined by
the inequality∣∣∣∣∣(1+ iµs0)(µ+ is1)− 2 sinφ1eiφ2(1+ iµs1)(µ+ is0)√

(1−µ2)(1− 4 sin2 φ1)(µ+ is1)

∣∣∣∣∣<√1− s2
0 .

z2 z3

z4

Figure 2. Schematic picture of the triangular face F234. The level
sets of s0 are dashed lines and the level sets of s1 are dotted lines.
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The other coordinates are given by

r0eiα0 = (1+ iµs0)(µ+ is1)− 2 sinφ1eiφ2(1+ iµs1)(µ+ is0)√
(1−µ2)(1− 4 sin2 φ1)(µ+ is1)

,(3-7)

r1eiα1 = (1+ iµs1)(µ+ is0)− 2 sinφ1e−iφ2(1+ iµs0)(µ+ is1)√
(1−µ2)(1− 4 sin2 φ1)(µ+ is0)

.(3-8)

Proof. In geographical coordinates, points of Bc ∩ S−1(Bc) are given by 1 0 −
√

1− 4 sin2 φ1

0 −2 sinφ1e−iφ2 0√
1− 4 sin2 φ1 0 −1



√

1−µ2r1eiα1

µ+ is1

1+ iµs1



=


√

1−µ2r1eiα1 −
√

1− 4 sin2 φ1(1+ iµs1)

−2 sinφ1e−iφ2(µ+ is1)√
1− 4 sin2 φ1

√
1−µ2r1eiα1 − (1+ iµs1)

 .
Since this must equal 

√
1−µ2r0eiα0

µ+ is0

1+ iµs0


as homogeneous coordinates, we get the equalities

−2 sinφ1e−iφ2(µ+ is1)√
1− 4 sin2 φ1

√
1−µ2r1eiα1 − (1+ iµs1)

= µ+ is0

1+ iµs0
,(3-9)

√
1−µ2r1eiα1 −

√
1− 4 sin2 φ1(1+ iµs1)

−2 sinφ1e−iφ2(µ+ is1)
=
√

1−µ2r0eiα0

µ+ is0
.(3-10)

Rearranging (3-9) gives

r1eiα1 = (1+ iµs1)(µ+ is0)− 2 sinφ1e−iφ2(1+ iµs0)(µ+ is1)√
(1−µ2)(1− 4 sin2 φ1)(µ+ is0)

.

To find r0eiα0 we just use this formula to substitute for r1eiα1 in (3-10).
In order to be in Bc we must have r2

0 < 1− s2
0 . Using (3-7) we can obtain the

range of s0, s1 as required. �

Analogously, we describe Bc ∩ S(Bc) and Bc ∩ R−1S(Bc).

Proposition 3.11. Consider the geographical coordinates (r0, s0, α0) on Bc and
(r2, s2, α2) on S(Bc). Points on Bc∩ S(Bc) may be uniquely expressed in terms of
s0 and s2. The range of these parameters is determined by the inequality∣∣∣∣∣(1+ iµs0)(µ+ is2)− 2 sinφ1e−iφ2(1+ iµs2)(µ+ is0)√

(1−µ2)(1− 4 sin2 φ1)(µ+ is2)

∣∣∣∣∣<√1− s2
0 .
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The other coordinates are given by

r0eiα0 = (1+ iµs0)(µ+ is2)− 2 sinφ1e−iφ2(1+ iµs2)(µ+ is0)√
(1−µ2)(1− 4 sin2 φ1)(µ+ is2)

,(3-11)

r2eiα2 = (1+ iµs2)(µ+ is0)− 2 sinφ1eiφ2(1+ iµs0)(µ+ is2)√
(1−µ2)(1− 4 sin2 φ1)(µ+ is0)

.(3-12)

Proposition 3.12. Consider the geographical coordinates (r0, s0, α0) on Bc and
(r3, s3, α3) on R−1S(Bc). Points on Bc ∩ R−1S(Bc) may be uniquely expressed in
terms of s0 and s3; see Figure 3. The range of these parameters is determined by
the inequality

∣∣∣∣∣(1+ iµs0)(µ+ is3)− 2 sinφ1e−iφ2(1+ iµs3)(µ+ is0)√
(1−µ2)(1− 4 sin2 φ1)(µ+ is3)

∣∣∣∣∣<√1− s2
0 .

The other coordinates are given by

r0eiα0 = e−2iφ1[(1+ iµs0)(µ+ is3)− 2 sinφ1e−iφ2(1+ iµs3)(µ+ is0)]√
(1−µ2)(1− 4 sin2 φ1)(µ+ is3)

,(3-13)

r3eiα3 = (1+ iµs3)(µ+ is0)− 2 sinφ1eiφ2(1+ iµs0)(µ+ is3)√
(1−µ2)(1− 4 sin2 φ1)(µ+ is0)

.(3-14)

z3

z4 z5

Figure 3. Schematic picture of the triangular face F345. The level
sets of s0 are dashed lines and the level sets of s2 are dotted lines.
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Proof. In geographical coordinates, points of Bc ∩ R−1S(Bc) are given by u2eiφ2 0 −u2
√

1− 4 sin2 φ1eiφ2

0 2u sinφ1 0
−u
√

1− 4 sin2 φ1e−iφ2 0 ue−iφ2



√

1−µ2r3eiα3

µ+ is3

1+ iµs3



=

e−2iφ1[
√

1−µ2r3eiα3 −
√

1− 4 sin2 φ1(1+ iµs3)]
−2 sinφ1eiφ2(µ+ is3)√

1− 4 sin2 φ1
√

1−µ2r3eiα3 − (1+ iµs1)

=

√

1−µ2r0eiα0

µ+ is0

1+ iµs0

 .
The result follows as before. �

Corollary 3.13. In terms of geographical coordinates (r1, s1, α1) on S−1(Bc) and
(r2, s2, α2) on S(Bc), points of Bc ∩ S−1(Bc) ∩ S(Bc) are given by s1 = λ or
s2 =−λ.

Proof. Points of Bc ∩ S−1(Bc)∩ S(Bc) are given by

r0eiα0 = (1+ iµs0)(µ+ is1)− 2 sinφ1eiφ2(1+ iµs1)(µ+ is0)√
(1−µ2)(1− 4 sin2 φ1)(µ+ is1)

= (1+ iµs0)(µ+ is2)− 2 sinφ1e−iφ2(1+ iµs2)(µ+ is0)√
(1−µ2)(1− 4 sin2 φ1)(µ+ is2)

.

From this we find

eiφ2[µ(1− s1s2)+ i(s2+µs1)] = e−iφ2[µ(1− s1s2)+ i(s1+µs2)].
Hence s1+ s2 = 0 and s1 = λ. �

Corollary 3.14. In geographical coordinates (r0, s0, α0) on Bc, (r1, s1, α1) on
S−1(Bc) and (r3, s3, α3) on R−1S(Bc), points of Bc ∩ S−1(Bc) ∩ R−1S(Bc) are
given by s0− s1 = 0 and s0− s3 = 0.

Proof. Points of Bc ∩ S−1(Bc)∩ R−1S(Bc) are given by

r0eiα0 = (1+ iµs0)(µ+ is1)− 2 sinφ1eiφ2(1+ iµs1)(µ+ is0)√
(1−µ2)(1− 4 sin2 φ1)(µ+ is1)

= e−2iφ1[(1+ iµs0)(µ+ is3)− 2 sinφ1e−iφ2(1+ iµs3)(µ+ is0)]√
(1−µ2)(1− 4 sin2 φ1)(µ+ is3)

.

From this we find

eiπ/6(1+iµs1)

µ+is1
− e−iπ/6(1+iµs3)

µ+is3
= i(1+iµs0)

µ+is0
.
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Comparing the real and imaginary parts yields
√

3µ(s1− s3)+ 2s1s3 = s0(s1+ s3),√
3s0(s1− s3)+ 2µs0 = µ(s1+ s3).

Eliminating s3 from the above equations, we obtain a quadratic equation with re-
spect to s1,

(
√

3s0−µ)s2
1 + (2µs0+

√
3µ2−√3s2

0)s1−µs0(
√

3µ+ s0)= 0.

It follows immediately that two solutions are

s1 = s0 and s1 = µ(
√

3µ+s0)

µ−√3s0
.

The latter is impossible since s1 > λ. Thus s0 = s1 = s3. �

Similarly, we state the result on the intersection of Bc ∩ S(Bc).

Proposition 3.15. The part of Bc ∩ S(Bc) outside T (Bc), RS−1(Bc), S−1(Bc)

forms a triangular face of the core prism, see Figure 3. In terms of geographical
coordinates (r0, s0, α0) on Bc and (r2, s2, α2) on S(Bc) this face is given by

(3-15) −λ≤ s0 ≤ λ, −λ≤ s2 ≤ λ, 0≤ s0− s2 ≤ 2λ.

The boundary of this triangle admits the following description in geographical
coordinates:

(i) Points of Bc ∩ S(Bc)∩ T (Bc) are given by s0 = λ.

(ii) Points of Bc ∩ S(Bc)∩ S−1(Bc) are given by s2 =−λ.

(iii) Points of Bc ∩ S(Bc)∩ RS−1(Bc) are given by s0− s2 = 0.

Proof. The map S sends (r0, s0, α0)∈Bc to (r2, s2, α2)∈ S(Bc). So S sends points
on Bc∩ S−1(Bc)∩T−1(Bc) given by s0 =−λ to points on Bc∩ S(Bc)∩ S−1(Bc)

given by s2=−λ. Analogously, the map R preserves the s0-slices of Bc and sends
(r3, s3, α3) ∈ R−1S(Bc) to (r2, s2, α2) ∈ S(Bc). As in the proof of Corollary 3.14,
points of Bc ∩ S−1(Bc)∩ R−1S(Bc) are given by s0− s3 = 0, which implies that
points of Bc ∩ S(Bc)∩ RS−1(Bc) satisfy s0− s2 = 0 as required. �

We now investigate the intersection of Bc with its images under T and T−1.

Lemma 3.16. The bisectors Bc and T−1(Bc) have a common slice corresponding
to s0 =−λ in terms of geographical coordinates (r0, s0, α0) on Bc.

Likewise, Bc and T (Bc) have a common slice s0 = λ in geographical coordi-
nates.
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Proof. Points of Bc are given by 2 sinφ2|z2| = |z2 −
√

1− 4 sin2 φ2| and points
of T−1(Bc) are given by 2 sinφ2|z2| = |z2−

√
1− 4 sin2 φ2e−2iφ2 |. The common

solution of these equations is z2 = x2e−iφ2 . In geographical coordinates this is

µ+is0
1+iµs0

= x2e−iφ2

and since s0 ∈ [−1, 1], we obtain that s0 =−λ. �

The vertices. We have already seen the vertices zi (i = 1, 2, . . . , 6) of D lying on
the slices L1 and T (L1) of Bc. We now list them again as the intersection of Bc

with images of Bc under suitable elements in the stabilizer of C1 and discuss their
nonhomogeneous coordinates and geographical coordinates.

(i) The vertices on the slice L1 =Bc ∩ T−1(Bc) correspond to s =−λ. Let z1 be
the intersection of the spine of Bc with L1. The other vertices are given by

z2 =Bc ∩ T−1(Bc)∩ S−1(Bc)∩ R−1S(Bc),

z3 =Bc ∩ T−1(Bc)∩ S(Bc)∩ RS−1(Bc).

(ii) The vertices on the slice T (L1)=Bc ∩ T (Bc) correspond to s = λ. Let z6 be
the intersection of the spine of Bc with T (L1). The other vertices are given by

z4 =Bc ∩ T (Bc)∩ S−1(Bc)∩ R−1S(Bc),

z5 =Bc ∩ T (Bc)∩ S(Bc)∩ RS−1(Bc).

In nonhomogeneous coordinates and geographical coordinates of the vertices
zi are given as follows, where the parameters φ1, φ2, x1, x2, ρ, λ are defined in
(2-5)–(2-10):

z1 z2 r s α

z1 0 x2e−iφ2 0 −λ
z2 x1e−iφ1 x2e−iφ2 ρ −λ −3φ1/2
z3 x1eiφ1 x2e−iφ2 ρ −λ φ1/2
z4 x1e−iφ1 x2eiφ2 ρ λ −φ1/2
z5 x1eiφ1 x2eiφ2 ρ λ 3φ1/2
z6 0 x2eiφ2 0 λ

The edges. We now characterize the edges of the core prism. Let γ jk = γk j denote
the edge of D with the vertices z j and zk as endpoints. More specifically, we give
them by the intersection of three bisectors:

γ12 =Bc ∩ T−1(Bc)∩B78, γ24 =Bc ∩ S−1(Bc)∩B78,

γ13 =Bc ∩ T−1(Bc)∩B79, γ35 =Bc ∩ S(Bc)∩B79,

γ23 =Bc ∩ T−1(Bc)∩ S−1(Bc), γ34 =Bc ∩ S(Bc)∩ S−1(Bc),
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z7

z8

z9

z6

z3

z4

z5

z1

z2

Figure 4. The core prism Pc contained in Bc and the geodesic
triangle on the complex line C1.

γ46 =Bc ∩ T (Bc)∩B78,

γ56 =Bc ∩ T (Bc)∩B79,

γ45 =Bc ∩ T (Bc)∩ S(Bc).

In what follows, we give them in geographical coordinates. The geodesic edges
are listed in Lemma 3.17 while the nongeodesic edges are given in Lemma 3.18.
We recall the numbers ρ and λ defined in (2-9) and (2-10).

Lemma 3.17. (i) The edge γ16 is contained in the spine of Bc.

(ii) The edge γ12 is a geodesic arc, given in geographical coordinates by

0≤ r0 ≤ ρ, s0 =−λ, α0 =−3φ1/2.

(iii) The edge γ13 is a geodesic arc, given in geographical coordinates by

0≤ r0 ≤ ρ, s0 =−λ, α0 = φ1/2.

(iv) The edge γ46 is a geodesic arc, given in geographical coordinates by

0≤ r0 ≤ ρ, s0 = λ, α0 =−φ1/2.

(v) The edge γ56 is a geodesic arc, given in geographical coordinates by

0≤ r0 ≤ ρ, s0 = λ, α0 = 3φ1/2.

Proof. Part (i) holds by construction. We now prove (ii) and the other parts follow
similarly. The edge γ12 is defined to be the intersection of Bc∩T−1(Bc)∩B78. It
follows that the edge is contained in the slice of Bc with s0 =−λ by Lemma 3.16.
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Following the definition of B78, we see that

arg (z1)= arg
( eiα0

1−i tan(φ1/2)

)
=−φ1,

which implies that α0 = −3φ1/2. Therefore this edge is a geodesic arc since it is
contained in both a Lagrangian plane and a complex line. Moreover, we know that
r0 = 0 at z1 and r0 = ρ at z2. �

We describe the edges that are not contained in geodesics.

Lemma 3.18. (i) The edge γ24 is given in the coordinates (r0, s0, α0) of Bc by

r0eiα0 = 2 sinφ2e−iφ1(1+ iµs0)√
(1−µ2)(1− 4 sin2 φ1)

,

where s0 ∈ [−λ, λ] and it is not contained in a geodesic.

(ii) The edge γ34 is given in the coordinates (r0, s0, α0) of Bc by

r0eiα0 = 2 sinφ2(1− iµs0)√
(1−µ2)(1− 4 sin2 φ1)

,

where s0 ∈ [−λ, λ] and it is not contained in a geodesic.

(iii) The edge γ35 is given in the coordinates (r0, s0, α0) of Bc by

r0eiα0 = 2 sinφ2eiφ1(1+ iµs0)√
(1−µ2)(1− 4 sin2 φ1)

,

where s0 ∈ [−λ, λ] and it is not contained in a geodesic.

(iv) The edge γ23 is given in the coordinates (r0, s0, α0) of Bc by s0 =−λ and

r0eiα0 = (1− iµλ)(µ+ is1)− 2 sinφ1eiφ2(1+ iµs1)(µ− iλ)√
(1−µ2)(1− 4 sin2 φ1)(µ+ is1)

,

where s1 ∈ [−λ, λ] and it is not contained in a geodesic.

(v) The edge γ45 is given in the coordinates (r0, s0, α0) of Bc by s0 = λ and

r0eiα0 = (1+ iµλ)(µ+ is2)− 2 sinφ1e−iφ2(1+ iµs2)(µ+ iλ)√
(1−µ2)(1− 4 sin2 φ1)(µ+ is2)

,

where s2 ∈ [−λ, λ] and it is not contained in a geodesic.

Proof. We now prove (i) and the others follow similarly. Point (i) follows by
substituting s1= s0 in (3-7) and using the fact that z2 and z4 correspond to s0=−λ
and s0 = λ respectively. In particular, we see that neither s0 nor α0 is constant on
this edge. This implies that this edge cannot be contained in a geodesic. �
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The faces. In order to define the sides Sc and S′c contained in Bc, it suffices to
describe their faces. We denote them by Fi jk or Fi jkl , where i, j, k and l are the
indices of the vertices of the face. We repeat the previous result and summarize
them again.

(i) There are two C-planar faces F123 and F456. The boundary of F123 is equal to
γ12 ∪ γ13 ∪ γ23 and the boundary of F456 is γ46 ∪ γ56 ∪ γ45.

(ii) Two triangular faces F234 and F345 are contained in Giraud disks, namely the
intersections Bc ∩ S−1(Bc) and Bc ∩ S(Bc) respectively. The boundary of F234 is
γ23 ∪ γ34 ∪ γ24 and the boundary of F345 is γ34 ∪ γ45 ∪ γ35.

(iii) Three quadrilateral faces F1246,F1346 and F1356 are foliated by geodesics.
More precisely, given a fixed s0 ∈ [−λ, λ], the slice s0 intersects the face F1246

(respectively F1346 and F1356) in a geodesic, one of whose endpoints is lying at
γ16 and the other is lying at γ24 (respectively γ34 and γ35). The boundary of F1246

is γ12 ∪ γ24 ∪ γ46 ∩ γ16, the boundary of F1346 is γ13 ∪ γ34 ∪ γ46 ∩ γ16 and the
boundary of F1356 is γ13 ∪ γ35 ∪ γ56 ∩ γ16.

Remark. The face F1246 (or F1356), by construction, is exactly contained in the
intersection of Bc with B78 (or B79). To prove this, it suffices to show that z ∈Bc

lies in a slice s0 ∈ [−λ, λ] if and only if arg(z2) = constant ∈ [−φ2, φ2]. That
follows immediately from the equation

arg(z2)= arg
(
µ+is
1+iµs

)
.

To this end, we give the definitions of Sc and S′c. These follow from their
boundaries, ∂Sc=F1246∪F1346∪F123∪F234 and ∂S′c=F1346∪F1356∪F456∪F345.

Definition 3.19. The side Sc is made up of those points (r0, s0, α0) of Bc with

(i) −λ≤ s0 ≤ λ,

(ii) arctan(µs0)−φ1 ≤ α0 ≤− arctan(µs0),

(iii) (r0, s0, α0) outside of S−1(Bc).

We have shown that a point (r0, s0, α0) in the intersection Bc∩S−1(Bc) needs to
satisfy the formula (3-7). Comparing with two sides of equality in (3-7), it follows
that the ratio between the imaginary part and real part of the right side of (3-7)
is equal to tanα0, which makes s1 a function f (s0, α0) of s0 and α0. Thus the
condition (iii) can be written in terms of geographical coordinates as

r0 ≤
∣∣∣∣∣(1+ iµs0)(µ+ is1)− 2 sinφ1eiφ2(1+ iµs1)(µ+ is0)√

(1−µ2)(1− 4 sin2 φ1)(µ+ is1)

∣∣∣∣∣
by replacing s1 with f (s0, α0).
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Definition 3.20. The side S′c is made up of those points (r0, s0, α0) of Bc with

(i) −λ≤ s0 ≤ λ,

(ii) − arctan(µs0)≤ α0 ≤ arctan(µs0)+φ1,

(iii) (r0, s0, α0) outside of S(Bc).

Condition (iii) follows from the same argument as (iii) of Definition 3.19.

3D. Sides of prism type. In this section we define four sides of the polyhedron
D. These sides are contained in bisectors, denoted by S17,S67,S78 and S79, each
of whose indices is the same as its corresponding bisector. A simple description
of these sides is a triangular prism whose top and bottom faces are respectively
contained in different slices of a bisector.

The sides S78 and S79. For these sides, we only need to describe the side S78 and
the other follows similarly since B79 = R(B78).

It suffices to define the boundary of S78 which is contained in the bisector B78.

• We define the edge γ78 to be the geodesic segment between z7 and z8 that is
contained in the spine of B78.

• In terms of the slice decomposition, the faces F167 and F248 are respectively
contained in two of the slices of B78.

• In terms of the meridian decomposition, the faces F1278 and F4678 are respectively
contained in two of the meridians of B78. In order to see this, we verify that
arg(z1) = arg(z2) = −φ2 and arg(z4) = arg(z6) = φ2 for the vertices defined in
(2-17). In other words, the vertices z1, z2 lie on a meridian and the vertices z4, z6

lie on another meridian.

• The face F1246 is contained in the intersection of B78 and Bc. A point (z1, z2)

on the intersection of B78 ∩Bc is given in nonhomogeneous coordinates by

arg(z1)=−φ1, 2 sinφ2|z2| =
∣∣z2−

√
1− 4 sin2 φ2

∣∣.
Finally, a point z = (z1, z2) of B78 lies outside of Bc, (the point z is closer to

C1 than to I−1
1 (C1)) if and only if

arg(z1)=−φ1, 2 sinφ2|z2|<
∣∣z2−

√
1− 4 sin2 φ2

∣∣.
From the above we give the definitions of S78 and S79 in nonhomogeneous

coordinates.

Definition 3.21. The side S78 is made up of those points (z1, z2) of B78 with

arg(z1)=−φ1, |z1| ≤ x1, −φ2 ≤ arg(z2)≤ φ2,

2 sinφ2|z2| ≤
∣∣z2−

√
1− 4 sin2 φ2

∣∣.
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Definition 3.22. The side S79 is made up of those points (z1, z2) of B79 with

arg(z1)= φ1, |z1| ≤ x1, −φ2 ≤ arg(z2)≤ φ2,

2 sinφ2|z2| ≤
∣∣z2−

√
1− 4 sin2 φ2

∣∣.
The sides S17 and S67. These two sides are respectively contained in two bisectors
which are cospinal and cotranchal. They have a common slice C1 and a common
complex spine C2.

We begin with defining the common face of S17 and S67, namely the face F789.
We have known that the edges γ78 and γ79 are geodesic segments contained in the
spines of B78 and B79 respectively. We also define the edge γ89 to be the geodesic
segment between z8 and z9. In order to see this, we need to consider the action of
S in the complex line C1. Observe that the map S preserves C1 and S2 = T acts
on C1 as the identity. From this, we see that the map S restricted to C1 is order of
2 and is given explicitly by

S|C1 : z 7−→ z−
√

1−4 sin2 φ1√
1−4 sin2 φ1z−1

.

By calculations, we see that S swaps z8 and z9 and fixes the point (δ, 0). It follows
that S preserves the geodesic passing through z8, z9 and rotates about the point
(δ, 0) with angle π . So we define the face F789 to be the geodesic triangle with
the vertices z7, z8, z9 in the complex line C1; see Figure 5.

In order to define S17 and S67, it remains to describe two faces F2389 and F4589.

Figure 5. The face F789 is the geodesic triangle drawn by thin
black lines. The orthogonal projection of γ23 (and γ45) onto C1 is
the bold arc contained in F789 while the projection of γ34 is the
bold arc outside.



234 TIEHONG ZHAO

• We denote by α= arg(z1) and so the meridians of B17 and B67 correspond to
α being constant.

• The projection of a meridian α onto C1 is a straight line passing through the
origin with angle α.

• For each α ∈ [−φ1, φ1], we denote by pα0 the intersection of this straight line
with the edge γ89. Furthermore, we denote by pα1 and pα2 the intersection of
the meridian α with the edges γ23 and γ45 respectively.

We denote by [z, w] the geodesic segment between z and w in H2
C

and define
the faces F2389 and F4589 as

F2389 = ⋃
α∈[−φ1,φ1]

[ pα0 , pα1 ] and F4589 = ⋃
α∈[−φ1,φ1]

[ pα0 , pα2 ].

The following notation is used to simplify the expressions of S17 and S67. We
call a dihedral angle region the domain enclosed by two different slices and merid-
ians of a bisector. Two dihedral angle regions are defined by

D17 = {(z1, z2) : −φ1 ≤ arg(z1)≤ φ1, arg(z2)=−φ2, |z2| ≤ x2},
D67 = {(z1, z2) : −φ1 ≤ arg(z1)≤ φ1, arg(z2)= φ2, |z2| ≤ x2}.

From the geometric point of view, the face F2389 separates the dihedral angle region
D17 into two components, one of which, containing the spine of B17, is denoted
by C17. Similarly, we denote by C67 the component of D67 separated by F4589 that
contains the spine of B67.

Definition 3.23. The side S17 is made up of those points (z1, z2) of B17 with

−φ1 ≤ arg(z1)≤ φ1, arg(z2)=−φ2, |z2| ≤ x2,

and (z1, z2) is lying in C17.

Definition 3.24. The side S67 is made up of those points (z1, z2) of B67 with

−φ1 ≤ arg(z1)≤ φ1, arg(z2)= φ2, |z2| ≤ x2,

and (z1, z2) is lying in C67.

3E. Sides of wedge type. We define, in this section, two special sides Sg and S′g
that are not contained in bisectors. These sides are foliated by 2-dimensional cones
over arcs of hypercycles contained in Giraud disks.

Projection of the faces F234 and F345. Recall that the orthogonal projection of the
face F234 (and F345) onto C1 is a leaf-shaped region bounded by two arcs of circles,
one of which lies inside the face F789 and the other outside; see Figure 5.
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Figure 6. The leaf-shaped region is separated by γ89 into A and
B. Moreover, A is foliated by lα for α∈[−φ1, φ1] and B is foliated
by the geodesic arcs l ′α.

The edge γ89 separates the leaf-shaped region into two parts, denoted by A and
B; see Figure 6.

For α ∈ [−φ1, φ1], we denote by lα the intersection of a straight line with angle
α passing through the origin with A. So A is foliated by the straight segments lα
for α ∈ [−φ1, φ1]. In particular, the straight line segment reduces to a point for
α = ±φ1 since the preimages of l±φ1 under the orthogonal projection lie in the
edge γ24 (or γ35). Since the map S restricted to C1 is of order 2, S swaps A and
B. It follows that B is foliated by the geodesic arcs l ′α = S(l−α) for α ∈ [−φ1, φ1].
From Lemma 3.25, we see that lα and l ′α have the same common endpoint pα0 .
Therefore, the connected curves lα ∪ l ′α are leaves of a foliation of the leaf-shaped
region A∪ B for α ∈ [−φ1, φ1].
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Lemma 3.25. For each α ∈ [−φ1, φ1], S( p−α0 )= pα0 .

Proof. Using the z-coordinate in C1, the edge γ89 is a geodesic that can be written as∣∣∣∣z− 1√
1−4 sin2 φ1

∣∣∣∣= 2 sinφ1√
1−4 sin2 φ1

,

with |z|< 1. Then the point p−α0 = re−iα on the edge γ89 satisfies

(3-16) r2− 2r cosα√
1−4 sin2 φ1

+ 1= 0.

Since S preserves C1, it suffices to consider the action of S on C1. Thus (3-16)
leads to

S
∣∣
C1
( p−α0 )= re−iα −

√
1− 4 sin2 φ1√

1− 4 sin2 φ1re−iα − 1

=
√

1− 4 sin2 φ1(r2+ 1)− 2r cosα+ 4 sin2 φ1reiα

(1− 4 sin2 φ1)r2− 2r cosα
√

1− 4 sin2 φ1+ 1

= 4 sin2 φ1reiα

4 sin2 φ1
= reiα.

This completes the result. �

Parametrization of the faces F234 and F345. We start to parametrize the triangular
faces F234 and F345 by the meridian α-parameter.

For convenience, we denote by 51 the orthogonal projection onto C1. Recall
that the edge γ89 separates the leaf-shaped region into A and B. There exist
two curves (denoted by `234 and `345) in F234 and F345, respectively, such that
51(`234)=51(`345)= γ89; see Figure 7. Furthermore, the curve `234 (respectively
`345) separates the face F234 (respectively F345) into two parts, one of which is
projected to A and the other is projected to B.

For α ∈ [−φ1, φ1], we consider the preimage of lα ∪ l ′α on F234, denoted by
Lα234. In other words, we have 51(Lα234)= lα ∪ l ′α. Similarly, there is a curve Lα345
in F345 such that 51(Lα345)= lα∪ l ′α. For each α ∈ [−φ1, φ1], we see that Lα234 and
`234 (respectively Lα345 and `345) intersect in a point whose projection to C1 is pα0 .

In order to see this, we construct a family of Lagrangian planes that contain the
geodesic segments connecting pα0 and a point of L234 (or L345).

(a) Analysis of the preimage 5−1
1 (lα) ⊂ Lα234 (the case 5−1

1 (lα) ⊂ Lα345 follows
similarly): For s ∈ [−λ, λ], a slice Cs of Bc corresponds to s being constant. We
denote by ps the intersection of the slice Cs with the edge γ16. The bisector whose
spine is the geodesic passing through 0 and ps in C2 is denoted by Bs . It follows
that Cs and C1 are slices of Bs . For a fixed α ∈ [−φ1, φ1], some meridian Mα,s of
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Figure 7. A foliation of the faces F234 (and F345) and the action
of S on the leaves of this foliation.

Bs containing lα intersects Cs and F234 in a point (denoted by qα,s). For s =−λ,
we see that qα,s = pα1 and 51([ pα1 , pα0 ])= lα. We can take sα ∈ (−λ, λ) such that
51([qα,sα , pα0 ])= pα0 . Thus the locus of points qα,s for [−λ, sα] becomes a curve
5−1

1 (lα)⊂ Lα345; see Figure 7.

(b) Analysis of the preimage 5−1
1 (l ′α)⊂ Lα234: We denote by q ′−α,s the intersection

of M−α,s with Cs and F345. For a fixed α ∈ [−φ1, φ1], we can take s ′α ∈ (−λ, λ)
such that 51([q ′−α,s′α , p−α0 ])= p−α0 and 51([q ′−α,λ, p−α0 ])= l−α. Since the map S
preserves C1, it follows that 51(S−1([q ′−α,s, p−α0 ]))= S−1(51([q ′−α,s, p−α0 ])). In
particular, we see that

51(S−1([q ′−α,s′α , p−α0 ]))= S−1( p−α0 )= pα0 ,

51(S−1([q ′−α,λ, p−α0 ]))= S−1(lα)= l ′α.

Thus the locus of points S−1(q ′−α,s) for [s ′α, λ] turns out to be a curve, which shares
an endpoint with 5−1

1 (lα), namely qα,sα = S−1(q ′−α,s′α ); see Figure 7. In fact, the
geodesic segment S−1([q ′−α,s, p−α0 ]) is contained in the meridian S−1(M−α,s) of
bisector S−1(Bs).

The same construction can be implemented for the face F345. This enables us to
give the following proposition.

Proposition 3.26. For each α ∈ [−φ1, φ1], S(Lα234)= L−α345.
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Sides foliated by 2-dimensional cones. For each α ∈ [−φ1, φ1], we define a sheet
(denoted by Xα234) to be the geodesic cone over Lα234 to the point pα0 . In other
words, we join each point of Lα234 to pα0 by a geodesic segment, that is

Xα234 =
⋃

z∈Lα234

[ pα0 , z].

Analogously, the sheet Xα345 is defined to be the geodesic cone over Lα345 to the
point pα0 , that is

Xα345 =
⋃

z∈Lα345

[ pα0 , z].

Proposition 3.27. For α 6= β ∈ [−φ1, φ1], Xα234 (respectively Xα345) and X
β

234 (re-
spectively X

β

345) are disjoint.

Proof. It suffices to show that the orthogonal projection of Xα234 (or Xα345) onto
C1 is lα ∪ l ′α. From Lemma 3.5, the projection of [z, pα0 ] is a geodesic segment
joining pα0 and 51(z). Observe that both lα and l ′α are geodesic segments with
common endpoint pα0 . For each point z of Lα234, it follows that 51(z) ∈ lα ∪ l ′α,
hence 51([z, pα0 ]), is contained in lα ∪ l ′α. For α 6= β ∈ [−φ1, φ1], therefore,
{lα ∪ l ′α}∩{lβ ∪ l ′β} =∅ which implies Xα234∩X

β

234 =∅ (and Xα345∩X
β

345 =∅). �

We are ready to describe the sides Sg and S′g; refer to Figure 8 for a schematic
view.

S

z2 z3

z4 z5

z8 z9pα
0 p−α

0

pα
1

p−α
2

Lα
234

L−α
345

Xα
234

X−α
345

Figure 8. The schematic view of Sg and S′g that are foliated by
sheets and the action of S on the sheets.
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Definition 3.28. The side Sg is made up of the sheets Xα234 for α ∈ [−φ1, φ1],
namely, Sg =⋃α∈[−φ1,φ1]X

α
234.

Definition 3.29. The side S′g is made up of the sheets Xα345 for α ∈ [−φ1, φ1],
namely, S′g =

⋃
α∈[−φ1,φ1]X

α
345.

Remark. The sides Sg and S′g are real differentiable 3-submanifolds. In fact, these
sides are foliated by 2-dimensional cones. The cones over arcs of hypercycles are
differentiable with respect to the parameter s. It follows from Proposition 3.27
that the sides are unions of disjoint sheets and differentiable with respect to the
parameter α.

3F. Construction of the polyhedron. In the previous sections we constructed eight
3-dimensional cells which are the sides of our polyhedron. In Proposition 3.30 we
show that the union of these 3-cells is embedded, so it bounds a topological ball.
We now define the polyhedron D to be the interior of the union of the eight sides;
see Figure 9. Proposition 3.31 enables us to give a well-defined 4-dimensional
domain.

z1

z2

z3

z4

z5z6

z7

z8

z9

Figure 9. The eight sides of the polyhedron D in complex hyperbolic
space (D is the 4-dimensional domain bounded by these sides).
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Proposition 3.30. The union of the eight sides defined in the previous sections is
homeomorphic to S3.

Proof. Recall the basic geometric fact that S3 can be interpreted as the union of
two 3-balls glued along S2. We see that, up to homotopy, the core prism Pc is a
3-ball with boundary F123 ∪F456 ∪F1246 ∪F1356 ∪F234 ∪F345. In Figure 9, it
seems that the side S67 lies inside the side S17. However, the sides S67 and S17

share the common face F789 and lie both sides of F789 respectively. It follows
that the union of Sg,S′g,S17,S67,S78 and S79 is a 3-ball whose boundary is also
F123 ∪F456 ∪F1246 ∪F1356 ∪F234 ∪F345. This completes the result. �

We also need to ensure that the interior of Sg and S′g cannot intersect the other
sides contained in bisectors. This follows directly from the following proposition.

Proposition 3.31. The interior of Sg and S′g does not intersect the sides contained
in bisectors.

Proof. It suffices to show the interior of each sheet Xα234 (or Xα345) does not meet
the sides contained in bisectors for α ∈ [−φ1, φ1]. We focus on analyzing the sheet
Xα234 and the other follows similarly.

Recall that the bisectors containing the sides come in pairs so that the complex
spines are the coordinate axes. As in Proposition 1.2.28 of [Thompson 2010], the
number of intersection points between a geodesic and a bisector is equal to the
number of intersection points between its spine and the projection of the geodesic
onto its complex spine. Moreover, it follows from Lemma 3.5 that the projection of
a geodesic onto a complex line is an arc of a geometrical circle (and in particular,
this is also a geodesic arc if the intersection of the geodesic and the complex line
is nonempty). In Lemma 3.6, the projection of a geodesic segment [z,w] onto a
coordinate axis is the shorter arc of a geometrical circle with endpoints 5(z) and
5(w) (the images of points under orthogonal projection onto the coordinate axis).

For α ∈ [−φ1, φ1] and z ∈ Lα234, we consider the projection of the geodesic
segment [ pα0 , z] onto the coordinate axes C1 and C2. For convenience, we also
denote by 52 the orthogonal projection onto C2.

(i) The pair of sides S78,S79 is contained in the bisectors B78,B79 whose spines
contain γ78 and γ79. Clearly, 51([ pα0 , z])= lα ∪ l ′α does not intersect γ78 and γ79.

(ii) The pair of sides S17,S67 is contained in the bisectors B17,B67 whose spines
contain the straight segment γ17 and γ67.

• For z ∈ 5−1
1 (lα), the geodesic segment [ pα0 , z] is contained in a meridian of

Bs . Thus 52([ pα0 , z]) is a straight segment with endpoints z7 and a point of γ16

and cannot intersect γ17, γ67.

• For z ∈ 5−1
1 (l ′α), we see that 51(S17) = 51(S67) is the geodesic triangular

face F789 and 51([ pα0 , z])⊂ l ′α. The interior of l ′α does not intersect F789.
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(iii) The pair of sides Sc,S′c is contained in the bisector Bc whose spine con-
tains γ16.

• For z ∈ 5−1
1 (lα), by construction, 52([ pα0 , z]) is a straight segment which

intersects γ16 only at 52(z).
• We denote by ( pα0 ,∞) the geodesic extension of [ pα0 , z]\{ pα0 } such that z

goes to the infinity. For z ∈ 5−1
1 (l ′α), observe that 51( pα0 ,∞) is a geodesic ray

from pα0 to the boundary passing through S(0); see Figure 6. From the fact that
51( pα0 ,∞) does not intersect F789, it follows that52( pα0 ,∞) cannot intersect γ17

and γ67. From the geometric view of point, we claim that 52([ pα0 , z]) intersects
γ16 only at 52(z). In fact, the interior of 52([ pα0 , z]) can only lie inside the angle
region −φ2 ≤ arg(z2) ≤ φ2. Otherwise, it is not a shorter arc of a circle which is
contradiction with Lemma 3.6. Furthermore, if 52([ pα0 , z]) intersects γ16 twice,
then 52( pα0 ,∞) intersects γ17 or γ67, which is a contradiction.

From the above analysis, we see that the interior of [ pα0 , z] for α∈[−φ1, φ1] cannot
intersect the sides contained in bisectors. �

4. The main theorem

Our goal is to show that, by Poincaré’s polyhedron theorem, the polyhedron D is a
fundamental domain and find a presentation, although we already know both that
the group 0k is discrete and know a presentation of it [Deraux et al. 2005; Parker
2009]. We will prove the following result:

Theorem 4.1. Suppose that the ordered pair (k, l) is in the list

(7, 42), (8, 24), (9, 18), (10, 15), (12, 12),

(42, 7), (24, 8), (18, 9), (15, 10),

that is, l = 6k/(k − 6) and k, l are both integers. Then, writing φ1 = π/k and
φ2 = π/ l, the group 0k generated by the side pairings of D is a discrete subgroup
of PU(2, 1) with fundamental domain D and a presentation

(4-1) 0k =
〈

R, S, T, I1

∣∣∣∣ T = S2,

R = I 2
1 ,

Rk = T l = (R−1S)3 = (T−1 I1)
3

= (S−1 I1)
3 = [R, T ] = 1

〉
.

Remark. As the roles of k and l are actually symmetric, there are only 5 different
groups 0k for k = 7, 8, 9, 10, 12. Among them only 09 and 012 are arithmetic, see
the table on page 27 of [Parker 2009].

We will prove this theorem by verifying the conditions of the Poincaré’s poly-
hedron theorem, following the strategy outlined below. For the case k = 6, that is
l = ∞, this makes T turn into a parabolic which gives rise to the disappearance
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of T l in the presentation. Thus the group 06 is exactly the same as G2 (compare
[Zhao 2011]), up to conjugation.

Writing J = S−1 I1, R1 = T−1 I1, A1 = R and A′1 = J T J−1, the presentation of
Theorem 4.1 becomes〈

J, R1, A1, A′1

∣∣∣∣∣ J 3 = R3
1 = Ak

1 = A′1
l = 1,

A1 = (JR−1
1 J )2, A′1 = (J−1 R−1

1 J−1)2,
A1 R1 = R1 A1, A′1 R1 = R1 A′1

〉
.

Note that [A1, R1] = [R, T ] follows from R = I 2
1 and [A′1, R1] = J [T, R]J−1

follows from
T = S2 and R−1S = J−1 R1 J.

This is the presentation in terms of R1, J given in [Parker 2009] with p = 3.

4A. Poincaré’s polyhedron theorem. In this section, we review Poincaré’s poly-
hedron theorem. We will follow the formulation given by Mostow [1980] and
also refer to [Deraux et al. 2005; Falbel and Parker 2006; Parker 2009]. We will
define a combinatorial polyhedron as a cellular space homeomorphic to a compact
polytope, in particular, each of its codimension 2 cells, called faces, is contained in
exactly two codimension 1 cells, called sides. Our polyhedron D is the realization
of a combinatorial polyhedron as a cell complex in complex hyperbolic space. A
polyhedron is smooth if its cells are smooth. For the boundary of D, the sides
contained in bisectors are foliated by a section of slices (or meridians) of bisec-
tors, which are naturally smooth. Nevertheless, the sides that are not contained in
bisectors are foliated by geodesic cones with respect to the meridian parameter α,
which implies their smoothness. Moreover, the faces foliated by geodesics are also
smooth.

Definition 4.2. A Poincaré polyhedron is a smooth polyhedron D in a manifold X
with sides S j and side-pairing maps g j ∈ Isom X satisfying:

(C.1) The sides of the polyhedron are paired by a set 1 of homeomorphisms
gi j :Si −→S j of X called the side-pairing transformations, which respect the cell
structure. We assume that if gi j ∈1, g−1

i j = g j i ∈1.

(C.2) For every gi j ∈1 such that Si = gi j (S j ), we have gi j (D)∩ D = Si .

Remark. If Si =S j (that is, a side-pairing maps one side to itself), then we impose
the restriction that gi i : Si −→ Si is of order two, and we call it a reflection. In
this case, the relation g2

i i = 1 is called a reflection relation.

Let S1 be a side of D and F1 be a face contained in S1. Let S′1 be the other side
containing F1. Let S2 be the side paired to S′1 by g1 and F2= g1(F1). Again, there
exists only one other side containing F2, which we call S′2. We define recursively
gi and Fi , so that gi−1 ◦ · · · ◦ g1(F1)= Fi .
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Definition 4.3. The cyclic condition is that for each pair (F1,S1) (a face contained
in a side), there exists n≥1 such that, in the construction in the previous paragraph,
gn ◦ · · · ◦ g1(S1) = S1 and gn ◦ · · · ◦ g1 restricted to F1 is the identity. Moreover,
writing g = gn ◦ · · · ◦ g1, there exists a positive integer m such that gm = 1 and

g−1
1 (D)∪ (g2 ◦ g1)

−1(D)∪ · · · ∪ g−1(D)∪ (g1 ◦ g)−1(D)

∪ (g2 ◦ g1 ◦ g)−1(D)∪ · · · ∪ (gm)−1(D)

is a tile of a closed neighborhood of the interior of F1 by D and its images.
The relation gm = (gn ◦ · · · ◦ g1)

m = Id is called a cycle relation.

Remark. We call the positive integer n the length of the cycle transformation
gn ◦ gn−1 · · · ◦ g1 and n ·m its total length.

We now state Poincaré’s polyhedron theorem:

Theorem 4.4. Let D be a Poincaré polyhedron with side-pairing transformations
1⊂ Isom HC2 in H2

C
satisfying the cyclic condition. Let 0 be the group generated

by 1. Then 0 is a discrete subgroup of Isom HC2 and D is a fundamental domain
of 0. A presentation of 0 is given by

0 = 〈1 | reflection relations, cycle relations〉.

4B. The side pairing maps. Let R, T, S and I1 be given by (2-13), (2-19) and
(2-20) respectively. In this section we show that these maps are the side-pairings
of our polyhedron D and pair the sides of D as (see Figure 10)

R :S78 −→ S79, T :S17 −→ S67,

S :Sg −→ S′g, I1 :Sc −→ S′c.

We now verify these maps satisfy conditions (C.1) and (C.2) for each side. By
construction, it follows that the side-pairing maps R, S, T satisfy condition (C.1)
and we verify the condition (C.1) for the side-pairing map I1 in Lemma 4.5.

Recall the map I1 defined in (2-20), and that the action of I1 on the bisector Bc

(see (3-5)) is given by

e−iφ1/3

2 sinφ2

−2 sinφ2eiφ1 0 0
0 1 −

√
1− 4 sin2 φ2

0
√

1− 4 sin2 φ2 −1

 ·

√

1−µ2reiα

µ+ is
1+ iµs



=−e−iφ1/3


√

1−µ2rei(α+φ1)

µ− is
1− iµs

 .
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Figure 10. The sides of the polyhedron and the side pairings. The
bold lines denote the spines of bisectors.
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We see that I1 maps Bc to itself, sending the point with coordinates (r, s, α) to the
point with coordinates (r,−s, α + φ1) when −π/2 ≤ α < π/2− φ1 or the point
with coordinates (−r,−s, α+φ1−π) when π/2−φ1 ≤ α < π/2.

We summarize its action on the vertices of prism by

I1 :
z1 −→ z6, z6 −→ z1,

z2 −→ z4, z4 −→ z3, z3 −→ z5.

Lemma 4.5. I1(Sc)= S′c.

Proof. It suffices to verify the statement for the images of the boundary of Sc under
I1 since Sc,S′c are contained in Bc and I1 preserves the bisector Bc.

• By Lemmas 3.17 and 3.18, we see easily that

I1(γ16)= γ16, I1(γ12)= γ46, I1(γ13)= γ56, I1(γ24)= γ34, I1(γ34)= γ35,

which implies I1(F1246)= F1346 and I1(F1346)= F1356 by construction.

• The face F234 is contained in the intersection Bc∩S−1(Bc)=Bc∩ J (Bc), which
is a Giraud disk. We have

J (F234)⊂ J (Bc)∩ J−1(Bc) and J−1(F234)⊂ J−1(Bc)∩Bc

since J is a regular elliptic element of order 3. As J permutes the edges γ23, γ34

and γ24, the triple intersection Bc ∩ J (Bc) ∩ J−1(Bc) contains γ23, γ34 and γ24.
It follows from Proposition 3.4 that J−1(Bc) = I−1

1 S(Bc) is the third bisector
containing the face F234. Obviously, the map I1 sends points of Bc∩ I−1

1 S(Bc) to
points of Bc ∩ S(Bc). Furthermore, the edge γ23 is contained in Bc ∩ I−1

1 S(Bc)

with s0 = −λ and the edge γ45 is contained in Bc ∩ S(Bc) with s0 = λ, which
implies that I1(γ23) = γ45. From the above argument, we obtain I1(F234) = F345

and I1(F123)= F456. �

We give the following lemma to verify condition (C.2) for each side.

Lemma 4.6. If g is one of R, S, T, I1, then g−1(D)∩ D = g(D)∩ D =∅. Also,

R−1(D)∩ D = S78,

R(D)∩ D = S79,

T−1(D)∩ D = S17,

T (D)∩ D = S67,

S−1(D)∩ D = Sg,

S(D)∩ D = S′g,

I−1
1 (D)∩ D = Sc,

I1(D)∩ D = S′c.

Proof. We divide into three cases:

(i) Consider the side S78 (the sides S79,S17,S67 follow similarly). If z ∈ D then
−φ1 ≤ arg(z1) ≤ φ1 with equality only when z ∈ B78 (or B79). Likewise, if
w = R(z) ∈ D then −φ1 ≤ arg(ei2φ1 z1) ≤ φ1. Hence if R(z) ∈ D, or equivalently
z ∈ R−1(D), then −3φ1 ≤ arg(z1) ≤ −φ1. Thus z ∈ D ∩ R−1(D) if and only if
z ∈B78 and precisely z ∈ S78.
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(ii) Consider the core sides Sc and S′c. Observe that I1 preserves Bc and swaps
one side of Bc with the other. If z = (z1, z2) ∈ D then

2 sinφ2|z2| ≤
∣∣z2−

√
1− 4 sin2 φ2

∣∣
with equality only when z ∈ Sc ∪S′c. If z ∈ D, then w = I1(z) satisfying

2 sinφ2|w2|>
∣∣w2−

√
1− 4 sin2 φ2

∣∣
does not intersect D. Only z ∈Sc (respectively z ∈S′c) satisfy I1(z) ∈S′c (respec-
tively I−1

1 (z) ∈ Sc).

(iii) Consider the sides Sg and S′g. By construction, we see that S(Sg) = S′g. It
suffices to show that S-images of the sides (except for Sg) do not intersect the sides
of D.

• The pair S(S78) and S(S79): Observe that the spine of S(S78) (or S(S79)) is
the geodesic segment between S(0) and z8 (or z9) in C1. It follows easily from
their projections in C1 that there is no intersection of the interior of S(S78) (or
S(S79)) with the sides of D.

• The pair S(S17) and S(S67): The fact that the map S preserves C1 implies
51(S(S17))= S(51(S17)) and 51(S(S67))= S(51(S67)), that is, it preserves the
geodesic triangle with vertices z8, z9, S(0) in C1. It follows that the pair doesn’t
intersect the sides S78 and S79. Observe that the complex spine of S(S17) (or
S(S67)) turns into S(C2), that is, the complex line z1 =

√
1− 4 sin2 φ1. Since

the map S restricted to C2 is a Möbius transformation, the spine of S(S17) (or
S(S67)) is the straight line segment between S(0) and S(z1) (or S(z6)). From the
fact that both S(C2) and C2 are orthogonal to C1, we see that the projection of
S(S17) (or S(S67)) is the same as the projection of its spine onto C2. It follows
from S(z1)= 2 sinφ1x2 <µ and S(z6)= 2 sinφ1x2e2iφ2 that the interior of projec-
tion of the spines of S(S17) and S(S67) lie inside or outside the geodesic triangle
F167. Therefore, they don’t intersect S17,S67,Sc and S′c. Finally, it follows from
Proposition 3.31 that S67 ∩S′g =∅ and S17 ∩Sg =∅, which implies that S(S17)

does not intersect Sg and S′g. The side S(S67) follows similarly.

• The pair S(Sc), S(S′c) and the side S(S′g): It follows from Definitions 3.19
and 3.20 that S(Sc) and S(S′c) don’t intersect Sc) and S′c. Moreover, the same
argument by replacing S by S−1 as above implies that S(Sc) and S(S′c) don’t
intersect other sides. In the end, we see that S(S′g)= T (Sg) and T (D)∩D =S67.
Therefore, T (Sg)∩S67 =∅ implies that the side S(S′g) does not intersect D. �

4C. The face cycles. We now write the face cycles induced by the side-pairings
in terms of type of face, and the label of each face reflects the order of vertices.
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• C-planar triangle cycles:

F167
R−→ F167, F123

I1−→ F645
T−1−→ F123,

F789
T−→ F789, F248

S−→ F359
R−1−→ F248.

• R-planar quadrilateral cycles:

F1287
T−→ F6487

R−→ F6597
T−1−→ F1397

R−1−→ F1287.

• Giraud triangle cycles:

F234
I1−→ F453

S−1−→ F342
I1−→ F534

S−1−→ F423
I1−→ F345

S−1−→ F234.

• Generic quadrilateral cycles:

F1246
I1−→ F6431

I1−→ F1356
R−1−→ F1246,

F2398
S−→ F3489

S−→ F4598
T−1−→ F2398.

4D. Verifying the tessellation conditions. In this section we verify the cyclic con-
dition of the Poincaré’s polyhedron theorem; we refer to [Deraux et al. 2005] and
[Parker 2006] for more details. Recall that for a face cycle,

F1
g1−→ F2

g2−→ · · · −→ Fn
gn−→ F1.

The cycle transformation gn ◦ gn−1 ◦ · · · ◦ g1 acts on F1 as the identity and there
is a certain integer m such that (gn ◦ gn−1 ◦ · · · ◦ g1)

m = Id. In order to verify
the cyclic condition we must show that there is a neighborhood U of the interior
of the face such that U is tiled by D and its images under relevant side pairings.
Specifically, for the above face cycle, the images g−1

1 (D), (g2 ◦ g1)
−1(D), . . .,

((gn ◦ gn−1 ◦ · · · ◦ g1)
m)−1 (D) = D of D tessellate a neighborhood of F1. It suf-

fices to consider a neighborhood U of one member of a given face cycle since the
others are images of U under suitable side-pairings.

Tessellation around C-planar faces. In this section we consider the faces contained
in a complex line. These are the faces F123,F456,F789,F167,F248 and F359. They
form four face cycles described again as

F167
R−→ F167 and F789

T−→ F789.

The face F167 is contained in the intersection of two bisectors B78 and B79. If a
point z = (z1, z2) ∈ D, then −φ1 ≤ arg(z1)≤ φ1 and the face F167 is contained in
z1 = 0. We know R acts on the z1-plane as a rotation with angle 2φ1. Therefore,
the union of the images of D under Ri for i = 1, 2, . . . , k covers a neighborhood of
the face F167. Similarly, the union of the images of D under T j for j = 1, 2, . . . , l
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Figure 11. Left: Images of D under powers of R tiling a neigh-
borhood of the face F167. Right: Images of D under powers of T
tiling a neighborhood of the face F789.

covers a neighborhood of the face F789; refer to Figure 11 for a schematic view of
their images. If the group is discrete, these elliptic elements must have finite order
which implies that k, l must be integers. Together with the condition 1/k+1/ l= 1

6 ,
we obtain the pairs (k, l) listed in Theorem 4.1. Otherwise the group is not discrete
[Mostow 1988]. From the geometric point of view, in nondiscrete cases, D may
intersect its image under some nontrivial power of R or T .

Proposition 4.7. The polyhedron D and its images under powers of R (respec-
tively T ) tessellate around the face F167 (respectively F789). The cycle transfor-
mation corresponding to the face F167 (respectively F789) is R (respectively T )
and n = 1, m = k (respectively m = l). This gives the cycle relation Rk = T l = 1.

The remaining two face cycles are

F123
I1−→ F456

T−1−→ F123 and F248
S−→ F359

R−1−→ F248.

Both T−1 I1 and R−1S are complex reflections. The main difference between them
is that the face F123 is in the intersection of two bisectors Bc,B17 and the face F248

is in the intersection of the bisector B78 with the side Sg, which is not contained in
a bisector. The schematic 2-dimensional pictures of coverings of neighborhoods
of F123 and F248 are the same; see Figure 12.

Proposition 4.8. The polyhedron D and its images under I−1
1 , I−1

1 T , I−1
1 T I−1

1 ,
T−1 I1 and T−1 tessellate around the face F123. The cycle transformation corre-
sponding to the face F123 is T−1 I1 and n = 2, m = 3. This gives the cycle relation
(T−1 I1)

3 = 1.
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Figure 12. Left: Images of D covering a neighborhood of the face
F123. Right: Images of D covering a neighborhood of the face
F248. The black points at the center indicate the corresponding
faces.

Proposition 4.9. The polyhedron D and its images under R−1, R−1S, R−1S R−1,
S−1 R and S−1 tessellate around the face F248. The cycle transformation corre-
sponding to the face F248 is R−1S and n = 2, m = 3. This gives the cycle relation
(R−1S)3 = 1.

Tessellation around R-planar faces. In this section we only consider a single face
cycle in which the faces are all contained in Lagrangian planes. The associate face
cycle is

F1278
T−→ F4678

R−→ F5679
T−1−→ F1379

R−1−→ F1278.

The schematic image of the tiling of a neighborhood of the face F1278 is

D R−1(D)

T−1(D) T−1 R−1(D).

The fact that D and its images as above have disjoint interiors follows easily
from Lemma 4.6. Moreover, the bisector B17 separates D and T−1(D), the bi-
sector B78 separates D and R−1(D). Thus applying T−1 to D and R−1(D), we
see that the bisector T−1(B78) separates T−1(D) and T−1 R−1(D). Analogously,
applying R−1 to D and T−1(D), the bisector R−1(B17) separates R−1(D) and
R−1T−1(D)= T−1 R−1(D).

Proposition 4.10. The polyhedron D and its images under T−1, R−1 and T−1 R−1

tessellate around the face F1278. The cycle transformation corresponding to the
face F1278 is R−1T−1 RT and n=4, m=1. This gives the cycle relation [T, R]=1.
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Figure 13. The images of D covering a neighborhood of the face
F234. The black point at the center indicates the face F234.

Tessellation around the face F234. The face F234 is contained in a Giraud disk that
is the intersection of Bc, S−1(Bc) and I−1

1 S(Bc). It is given by an equation of the
form

|〈z, n0〉| = |〈z, I−1
1 (n0)〉| = |〈z, I−1

1 SI−1
1 (n0)〉|.

As in the arguments in Section 7.8 of [Falbel et al. 2011], we see that there are
three regions where the first (respectively second and third) of these quantities as
above is the smallest tessellate around the face F234. Observe that the points of D
around the face F234 locally lie in the corner bounded by Bc and Sg. Similarly the
points of S−1(D) around F234 locally lie in the corner bounded by S−1(Bc) and
the side Sg. Thus the union of D and S−1(D) covers a neighborhood of F234 in the
region where the first quantity is smallest. Applying the elements S−1 I1 and I−1

1 S,
we see that the images I−1

1 (D), I−1
1 S(D), I−1

1 SI−1
1 (D) and S−1 I1(D) cover the

other two regions; see Figure 13. There is a difference around the faces F123 (or
F248) and F234, that is not apparent from the 2-dimensional picture. We give the
difference in the following proposition.

Proposition 4.11. The polyhedron D and its images under I−1
1 , I−1

1 S, I−1
1 SI−1

1 ,
S−1 I1 and S−1 tessellate around the face F234. The cycle transformation corre-
sponding to the face F234 is (S−1 I1)

3 and n = 6, m = 1. This gives the cycle
relation (S−1 I1)

3 = 1.

Tessellation around the generic quadrilateral faces. In this section we consider the
faces of D that are neither contained in a complex line nor in a Lagrangian plane
nor in a Giraud disk. These faces are foliated by geodesics.
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B78 B79

I −1
1 (B79)

Sc S′
c

D

I −1
1 (D) I1(D)

Figure 14. Images of D covering a neighborhood of the face
F1346. The black point at the center indicates the face F1346.

We first consider the face F1346, the associated face cycle is

F1346
I1−→ F1356

R−1−→ F1246
I1−→ F1346.

This is the same situation as in [Zhao 2011].
Observe that F1346 is the common face of Sc and S′c contained in Bc. As it is

known that a bisector separates complex hyperbolic space into two components,
we say D covers the part of a neighborhood of F1346 in the component of H2

C
\Bc

defined by {z ∈ H2
C
: |〈z, n0〉| < |〈z, I−1

1 (n0)〉|}; refer to Figure 14 for the 2-
dimensional view. Observe that I1 swaps one component of Bc with the other.
Also, I−1

1 (D)∩D=Sc, I1(D)∩D=S′c and I−1
1 (D)∩ I1(D)= I−1

1 (S79)= I1(S78).
Therefore D ∪ I−1

1 (D)∪ I1(D) covers a neighborhood of F1346.

Proposition 4.12. The polyhedron D and its images under I−1
1 and I1 tessellate

around the face F1346. The cycle transformation corresponding to the face F1346

is I1 R−1 I1 and n = 3, m = 1. This gives the cycle relation I1 R−1 I1 = 1.

For the face F3489, the associated face cycle is

F3489
S−→ F4589

T−1−→ F2389
S−→ F3489.

The face F3489 is the intersection of Sg and S′g. The union Sg ∪ S′g locally
separates H2

C
into two components, one of which is contained in D. Since the map

S restricted to C1 is of order 2, the image S(D) (or S−1(D)) is contained in the
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Figure 15. Images of D covering a neighborhood of the face
F3489. The black point at the center indicates the face F3489.

other component; see Figure 15. In fact, S−1(D)∩D=Sg and S(D)∩D=S′g by
Lemma 4.6. It is obvious that S−1(D)∩ S(D) = S−1(S67) = S(S17) is contained
in a bisector, and Sg ∩S′g ∩ S−1(S67)= F1346. The result follows from the same
argument as above.

Proposition 4.13. The polyhedron D and its images under S−1 and S tessellate
around the face F3489. The cycle transformation corresponding to the face F3489

is ST−1S and n = 3, m = 1. This gives the cycle relation ST−1S = 1.

This completes the proof of Theorem 4.1 by the Poincaré polyhedron theorem
with Propositions 4.7–4.13.

5. Mostow groups of the second type

We review, in this section, the Mostow groups of the second type. Our review
is based on related materials in [Parker 2009]. It aims to explain briefly how the
previous construction of fundamental domains might be adapted for all Mostow
groups of the second type.

Let 0(p, k) denote the equilateral triangle group 〈R1, R2, R3〉 where each Ri is
of order p. Mostow groups of the second type are the groups 0(p, k) where the
values of p, k and l = 1/(1/2−1/p−1/k) are given as follows, where the values
of k and l can be interchanged.

p 3 3 3 3 3 4 4 4 5 5 6 6
k 7 8 9 10 12 5 6 8 5 5 4 6
l 42 24 18 15 12 20 12 8 20 10 12 6
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We begin with the given geometrical generators (as defined in Section 2A),
R = (JR−1

1 J )2, S = JR−1
1 , T = (JR−1

1 )2, I1 = JR−1
1 J . From (5.3) of [Parker

2009] and the above setting, we obtain the presentation

(5-1) 0(p, k)=
〈

R, S, T, I1

∣∣∣∣ T = S2,

R = I 2
1 ,

Rk = T l = (R−1S)p = (T−1 I1)
p

= (S−1 I1)
3 = [R, T ] = 1

〉
.

This enables us to give the inspiration of the construction of the same shape of
combinatorial polyhedra as in the previous sections.

The key point of construction is to analyze whether the group 〈R, S, T 〉 is the
stabilizer fixing a point in the interior (or in the boundary) or a complex line. As
we computed in § 2.2, the common eigenvector of R and S is

n= [u2τ u2τ −1
]t
.

By an easy calculation, we obtain

〈n, n〉H =
[
u2τ u2τ −1

]
H

u2τ

u2τ

−1


= 1− u3+ u6τ 3− u3τ 3+ u6τ 3− u3τ 3+ 1− u3

= 2
[
1− cos 2π

p − cos
( 4π

p + 2π
k

)+ cos
( 2π

p + 2π
k

)]
, 2N (p, k).

The basic construction requires that the stabilizer fixe a complex line. It suffices
to analyze the norm of n and obtain the positive norm as required.

(i) For p = 4,
N (4, k)= 1−√2 sin

(2π
k − π

4

)
,

then N (4, k)≥ 0 if and only k ≥ 4.

(ii) For p = 5,

N (5, k)= 1− cos 2π
5 + 2 sin

(3π
5 + 2π

k

)
sin π

5 > 0.

(iii) For p = 6,
N (6, k)= 1

2 + cos 2π
k .

then N (6, k)≥ 0 if and only k ≥ 3.

As a matrix of SU(H),

T =
 0 u2 0
−u3τ u2τ 2+ uτ 0

u −τ uτ

 ,
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z1 z2

z3

z4
z5

z6

z7 z8 z9

R

R1

R2

R3

J

T

Figure 16. The construction in two dimensions: the lines indi-
cated are complex and the vertices of polyhedron arise from the
intersections of two complex lines.

so T has the eigenvalue u2τ 2 corresponding to n and a repeated eigenvalue uτ .
Hence the relation T l = 1 implies that

(5-2) 1/ l = 1/2− 1/p− 1/k

Only possible values of k, l satisfying (5-2) are listed in the table.
From the above, we know that T fixes a complex line polar to the vector n. We

draw the complex lines fixed by R, T , R1, R3, R R3 R−1 and T R1T−1 respectively;
see Figure 16. The orthogonality properties of these complex lines come from the
braid relations. Thus the polyhedron can be constructed by following the same
procedures as in the previous sections. A little modification occurs when dealing
with the action of the stabilizer 〈R, S〉 on the complex line fixed by T , that is,
a geodesic hyperbolic triangle 4(k/2, p, p) with angles 2π/k, π/p, π/p. As l
tends to∞, the complex line fixed by T degenerates to an ideal point. The action
of the stabilizer 〈R, S〉 on the boundary is almost Euclidean, in other words, the
triangle 4(k/2, p, p) becomes a Euclidean triangle in a horizontal section of the
Heisenberg group since 1/p+ 1/k = 1/2.

From the above arguments, the construction of fundamental domains for 0(3, k)
can be implemented for all Mostow groups of the second type. Analogous to the
case G2 (that is conjugate to 0(3, 6)), the limiting configuration of fundamental
domains for 0(4, k) and 0(6, k) turns out to be two of the Mostow groups of the
first type. In these cases, T becomes a parabolic element. The presentation may be
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obtained by removing the relation T l = 1. This gives a new approach to construct
fundamental domains for some of the Mostow groups of the first type.
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