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FLAG SUBDIVISIONS AND γ -VECTORS

CHRISTOS A. ATHANASIADIS

The γ -vector is an important enumerative invariant of a flag simplicial
homology sphere. It has been conjectured by Gal that this vector is non-
negative for every such sphere 1 and by Reiner, Postnikov and Williams
that it increases when 1 is replaced by any flag simplicial homology sphere
that geometrically subdivides 1. Using the nonnegativity of the γ -vector in
dimension 3, proved by Davis and Okun, as well as Stanley’s theory of sim-
plicial subdivisions and local h-vectors, the latter conjecture is confirmed in
this paper in dimensions 3 and 4.

1. Introduction

This paper is concerned with the face enumeration of an important class of simplicial
complexes, that of flag homology spheres, and their subdivisions. The face vector
of a homology sphere (more generally, of an Eulerian simplicial complex) 1 can
be conveniently encoded by its γ -vector [Gal 2005], denoted by γ (1). Part of our
motivation comes from the following two conjectures. (We refer to Section 2 for
all relevant definitions.) The first, proposed by Gal [2005, Conjecture 2.1.7], can
be thought of as a generalized lower-bound conjecture for flag homology spheres;
it strengthens an earlier conjecture by Charney and Davis [1995]. The second,
proposed by Postnikov, Reiner and Williams [Postnikov et al. 2008, Conjecture 14.2],
is a natural extension of the first.

Conjecture 1.1 [Gal 2005]. For every flag homology sphere 1 we have γ (1)≥ 0.

Conjecture 1.2 [Postnikov et al. 2008]. For all flag homology spheres 1 and 1′

for which 1′ geometrically subdivides 1, we have γ (1′ )≥ γ (1).

These statements are trivial for spheres of dimension 2 or less. Conjecture 1.1
was proved for 3-dimensional spheres by Davis and Okun [2001, Theorem 11.2.1]
and was deduced from that result for 4-dimensional spheres in [Gal 2005, Corollary
2.2.3]. Conjecture 1.2 can be thought of as a conjectural analogue of the fact [Stanley
1992, Theorem 4.10] that the h-vector (a certain linear transformation of the face
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vector) of a Cohen–Macaulay simplicial complex increases under quasigeometric
simplicial subdivision (a class of topological subdivisions that includes all geometric
simplicial subdivisions). The main result of this paper proves its validity in three
and four dimensions for a new class of simplicial subdivisions, which includes all
geometric ones.

Theorem 1.3. For every flag homology sphere 1 of dimension 3 or 4 and for every
flag vertex-induced homology subdivision 1′ of 1, we have γ (1′ )≥ γ (1).

This result naturally suggests the following stronger version of Conjecture 1.2:

Conjecture 1.4. For every flag homology sphere 1 and every flag vertex-induced
homology subdivision 1′ of 1, we have γ (1′ )≥ γ (1).

The following structural result on flag homology spheres, which may be of
independent interest, will also be proved in Section 4. It implies, for instance,
that Conjecture 1.4 is stronger than Conjecture 1.1. Throughout this paper, we
will denote by 6d−1 the boundary complex of the d-dimensional cross-polytope
(equivalently, the simplicial join of d copies of the 0-dimensional sphere).

Theorem 1.5. Every flag (d−1)-dimensional homology sphere is a vertex-induced
(hence quasigeometric and flag) homology subdivision of 6d−1.

The proof of Theorem 1.3 relies on the theory of face enumeration for simplicial
subdivisions, developed by Stanley [1992]. Given a simplicial complex 1 and a
simplicial subdivision 1′ of 1, the h-vector of 1′ can be expressed in terms of
local contributions, one for each face of 1, and the combinatorics of 1 [Stanley
1992, Theorem 3.2]. The local contributions are expressed in terms of the key
concept of a local h-vector, introduced and studied in [Stanley 1992]. When 1 is
Eulerian, this formula transforms into one involving γ -vectors (Proposition 5.3)
and leads to the concept of a local γ -vector, introduced in Section 5. Using the
Davis–Okun theorem [Davis and Okun 2001] mentioned earlier, it is shown that the
local γ -vector has nonnegative coefficients for every flag vertex-induced homology
subdivision of the 3-dimensional simplex. Theorem 1.3 is deduced from these
results in Section 5.

The proof of Theorem 1.5 is motivated by that of [Athanasiadis 2011, Theorem
1.2], stating that the graph of any flag simplicial pseudomanifold of dimension d−1
contains a subdivision of the graph of 6d−1.

We now briefly describe the content and structure of this paper. Sections 2 and 3
provide the necessary background on simplicial complexes, subdivisions and their
face enumeration. The notion of a homology subdivision, which is convenient for
the results of this paper as well as those of a flag subdivision and vertex-induced (a
natural strengthening of quasigeometric) subdivision, are introduced in Section 2C.
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Section 3C includes a simple example (see Example 3.4) that shows that there exist
quasigeometric subdivisions of the simplex with nonunimodal local h-vector.

Section 4 proves Theorem 1.5 and another structural result on flag subdivisions
(Proposition 4.6), stating that every flag vertex-induced homology subdivision of the
(d−1)-dimensional simplex naturally occurs as a restriction of a flag vertex-induced
homology subdivision of 6d−1. These results are used in Section 5.

Local γ -vectors are introduced in Section 5, where examples and elementary
properties are discussed. It is conjectured there that the local γ -vector has non-
negative coordinates for every flag vertex-induced homology subdivision of the
simplex (Conjecture 5.4). This statement can be considered as a local analogue of
Conjecture 1.1. It is shown to imply both Conjectures 1.1 and 1.4 and to hold in
dimension 3. Section 5 concludes with the proof of Theorem 1.3.

Section 6 discusses some special cases of Conjecture 5.4. For instance, the
conjecture is shown to hold for iterated edge subdivisions (in the sense of [Charney
and Davis 1995, Section 5.3]) of the simplex.

2. Flag complexes, subdivisions and γ -vectors

This section reviews background material on simplicial complexes, in particular
on their homological properties and subdivisions. For more information on these
topics, the reader is referred to [Stanley 1996]. Throughout this paper, k will be a
field that we will assume to be fixed. We will denote by |S| the cardinality, and by
2S the set of all subsets, of a finite set S.

2A. Simplicial complexes. All simplicial complexes we consider will be abstract
and finite. Thus, given a finite set �, a simplicial complex on the ground set � is a
collection1 of subsets of� such that F ⊆G ∈1 implies F ∈1. The elements of1
are called faces. The dimension of a face F is defined as one less than the cardinality
of F . The dimension of 1 is the maximum dimension of a face and is denoted by
dim(1). Faces of 1 of dimension 0 or 1 are called vertices or edges, respectively.
A facet of 1 is a face that is maximal with respect to inclusion. The complex 1 is
called pure if all its facets have the same dimension. All topological properties of
1 we mention in the sequel will refer to those of the geometric realization ‖1‖ of
1 [Björner 1995, Section 9], uniquely defined up to homeomorphism. For example,
we say that 1 is a simplicial or topological ball or sphere if ‖1‖ is homeomorphic
to a ball or sphere, respectively.

The open star of a face F ∈1, denoted by st1(F), is the collection of all faces of
1 that contain F . The closed star of F ∈1, denoted by st1(F), is the subcomplex
of 1 consisting of all subsets of the elements of st1(F). The link of the face F ∈1
is the subcomplex of 1 defined as link1(F) = {G r F : G ∈ 1, F ⊆ G }. The
simplicial join 11 ∗12 of two collections 11 and 12 of subsets of disjoint ground
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sets is the collection whose elements are the sets of the form F1∪F2, where F1 ∈11

and F2 ∈ 12. If 11 and 12 are simplicial complexes, then so is 11 ∗12. The
simplicial join of1 with the zero-dimensional complex {∅, {v}} is denoted by v∗1
and called the cone over 1 on the (new) vertex v.

A simplicial complex 1 is called flag if every minimal nonface of 1 has two
elements. The closed star, the link of any face of a flag complex and the simplicial
join of two (or more) flag complexes are also flag complexes. In particular, the
simplicial join of d copies of the zero-dimensional complex with two vertices is
a flag complex (in fact, a flag triangulation of the (d − 1)-dimensional sphere),
which will be denoted by 6d−1. Explicitly, 6d−1 can be described as the simplicial
complex on the 2d-element ground set �d = {u1, u2, . . . , ud} ∪ {v1, v2, . . . , vd}

whose faces are those subsets of �d that contain at most one element from each of
the sets {ui , vi } for 1≤ i ≤ d.

2B. Homology balls and spheres. Let 1 be a simplicial complex of dimension
d−1. We call 1 a homology sphere (over k) if for every F ∈1 (including F =∅)
we have

H̃i (link1(F), k)=
{
k if i = dim link1(F),
0 otherwise,

where H̃∗(0, k) denotes reduced simplicial homology of 0 with coefficients in k.
We call 1 a homology ball (over k) if there exists a subcomplex ∂1 of 1, called
the boundary of 1, so that the following hold:

• ∂1 is a (d − 2)-dimensional homology sphere over k.

• For every F ∈1 (including F =∅) we have

H̃i (link1(F), k)=
{
k if F /∈ ∂1 and i = dim link1(F),
0 otherwise.

The interior of 1 is defined as int(1) = 1 if 1 is a homology sphere and as
int(1) = 1r ∂1 if 1 is a homology ball. For example, the simplicial complex
{∅, {v}} with a unique vertex v is a 0-dimensional homology ball (over any field)
with boundary {∅} and interior {{v}}. If 1 is a homology ball of dimension d − 1,
then ∂1 consists exactly of the faces of those (d − 2)-dimensional faces of 1 that
are contained in a unique facet of 1.

Remark 2.1. It follows from standard facts [Björner 1995, (9.12)] on the homology
of simplicial joins that the simplicial join of a homology sphere and a homology
ball or of two homology balls is a homology ball and that the simplicial join of
two homology spheres is again a homology sphere. Moreover, in each case the
interior of the simplicial join is equal to the simplicial join of the interiors of the
two complexes in question.
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2C. Subdivisions. We will adopt the following notion of homology subdivision
of an abstract simplicial complex. This notion generalizes that of topological
subdivision of [Stanley 1992, Section 2]. We should point out that the class of
homology subdivisions of simplicial complexes is contained in the much broader
class of formal subdivisions of Eulerian posets, introduced and studied in [Stanley
1992, Section 7].

Definition 2.2. Let 1 be a simplicial complex. A (finite, simplicial) homology
subdivision of1 (over k) is a simplicial complex1′ together with a map σ :1′→1

such that the following hold for every F ∈ 1: (a) the set 1′F = σ
−1(2F ) is a

subcomplex of 1′ that is a homology ball (over k) of dimension dim(F), and
(b) σ−1(F) consists of the interior faces of 1′F .

Such a map σ is said to be a topological subdivision if the complex 1′F is
homeomorphic to a ball of dimension dim(F) for every F ∈1.

Let σ :1′ →1 be a homology subdivision of 1. From the defining properties,
it follows that the map σ is surjective and that dim(σ (E)) ≥ dim(E) for every
E ∈1′ . Given faces E ∈1′ and F ∈1, the face σ(E) of 1 is called the carrier
of E ; the subcomplex 1′F is called the restriction of 1′ to F . The subdivision
σ is called quasigeometric [Stanley 1992, Definition 4.1(a)] if there do not exist
E ∈1′ and face F ∈1 of dimension smaller than dim(E) such that the carrier of
every vertex of E is contained in F . Moreover, σ is called geometric [Stanley 1992,
Definition 4.1(b)] if there exists a geometric realization of 1′ that geometrically
subdivides a geometric realization of 1 in the way prescribed by σ .

Clearly, if σ :1′ →1 is a homology or topological subdivision, then the restric-
tion of σ to 1′F is also a homology or topological subdivision of the simplex 2F

for every F ∈ 1, respectively. Moreover, if σ is quasigeometric or geometric,
respectively, then so are all its restrictions 1′F for F ∈ 1. As part (c) of the
following example shows, the restriction of σ to a face F ∈1 need not be a flag
complex even when 1′ and 1 are flag complexes and σ is quasigeometric.

Example 2.3. Consider a 3-dimensional simplex 2V with V = {a, b, c, d} and
set F = {b, c, d}.

(a) Let 0 be the simplicial complex consisting of the subsets of V and the subsets
of {b, c, d, e}, and let σ : 0→ 2V be the subdivision (considered in part (h) of
[Stanley 1992, Example 2.3]) that pushes 0 into the simplex 2V so that the face F
of 0 ends up in the interior of 2V and e ends up in the interior of 2F . Formally, for
E ∈ 0 we let σ(E) = E if E ∈ 2V r {F}, we let σ(E) = V if E contains F and
otherwise we let σ(E)= F . Then 0 is a flag complex and the restriction 0F of σ
is the cone over the boundary of 2F (with new vertex e), which is not flag. See left
half of Figure 1.
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Figure 1. Two nonflag subdivisions of a triangle. Left: see parts
(a) and (b) of Example 2.3. Right: see part (c) of Example 2.3.

(b) Let 0′ be the simplicial complex consisting of the faces of the simplex 2V

and those of the cone on a vertex v over the boundary of the simplex with vertex
set {b, c, d, e}. (Note that 0′ is not flag.) Consider the subdivision σ ′ : 0′→ 2V

that satisfies σ ′(E)= V for every face E ∈ 0′ containing v and otherwise agrees
with the subdivision σ of part (a). Then σ ′ is quasigeometric, and its restriction
0′F = 0F is again the nonflag complex shown in the left half of Figure 1.

(c) Let 00 be the simplicial complex on the ground set F ∪ {b′, c′, d ′} whose faces
are F and those of the simplicial subdivision of 2F , shown in Figure 1, right. Let
0′′ consist of the faces of 2V and those of the cone over 00 on a new vertex v. We
leave to the reader to verify that 0′′ is a flag simplicial complex and that it admits
a quasigeometric subdivision σ ′′ : 0′′→ 2V (satisfying σ ′′(v) = σ ′′(F) = V ) for
which the restriction 0′′F is the nonflag simplicial complex shown in Figure 1, right.

The previous examples suggest the following definitions:

Definition 2.4. Let 1′ and 1 be simplicial complexes, and let σ : 1′ → 1 be a
homology subdivision.

(i) We say that σ is vertex-induced if for all faces E ∈1′ and F ∈1 the following
condition holds: if every vertex of E is a vertex of 1′F , then E ∈1′F .

(ii) We say that σ is a flag subdivision if the restriction 1′F is a flag complex for
every face F ∈1.

For homology or topological subdivisions, we have the hierarchy of properties:
geometric⇒ vertex-induced⇒ quasigeometric. The subdivision 0 of Example 2.3
is not quasigeometric while 0′ and 0′′ are quasigeometric but not vertex-induced.
(None of the three subdivisions is flag.) Thus, the second implication above is strict.
An example discussed in [Chan 1994, p. 468] shows that the first implication is strict
as well. We also point out here that if σ :1′ →1 is a vertex-induced homology
subdivision and the simplicial complex 1′ is flag, then σ is a flag subdivision.
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Joins and links. The notion of a (vertex-induced or flag) homology subdivision
behaves well with respect to simplicial joins and links, as we now explain. Let
σ1 :1

′
1→11 and σ2 :1

′
2→12 be homology subdivisions of two simplicial com-

plexes 11 and 12 on disjoint ground sets. The simplicial join 1′ 1 ∗1′ 2 is naturally
a homology subdivision of 11 ∗12 with subdivision map σ :1′ 1 ∗1′ 2→11 ∗12

defined by σ(E1∪E2)= σ1(E1)∪σ2(E2) for E1 ∈1
′
1 and E2 ∈1

′
2. Indeed, given

faces F1 ∈11 and F2 ∈12, the restriction of 1′ 1 ∗1′ 2 to the face F = F1 ∪ F2 ∈

11 ∗12 is equal to (1′ 1)F1 ∗ (1
′
2)F2 , which, by Remark 2.1, is a homology ball of

dimension equal to that of F1 ∪ F2. Moreover, σ−1(F)= σ−1
1 (F1) ∗ σ

−1
2 (F2), and

hence, σ−1(F) is the interior of this ball.
Similarly, let σ :1′→1 be a homology subdivision, and let F be a common face

of 1 and 1′ (such as a vertex of 1) that satisfies σ(F)= F . An easy application of
part (ii) of Lemma 4.1 shows that link1′ (F) is a homology subdivision of link1(F)
with subdivision map σF : link1′ (F)→ link1(F) defined by σF (E)=σ(E∪F)rF .
We will refer to this subdivision as the link of σ at F ; its restriction to a face
G ∈ link1(F) satisfies (link1′ (F))G = link1′ F∪G (F).

The following statement is an easy consequence of the relevant definitions; the
proof is left to the reader:

Lemma 2.5. The simplicial join of two vertex-induced or flag homology subdivi-
sions is also vertex-induced or flag, respectively. The link of a vertex-induced or
flag homology subdivision is also vertex-induced or flag, respectively.

Stellar subdivisions. We recall the following standard way to subdivide a simplicial
complex. Given a simplicial complex 1 on the ground set �, a face F ∈1 and an
element v not in �, the stellar subdivision of 1 on F (with new vertex v) is the
simplicial complex

1′ = (1r st1(F))∪ ({v} ∗ ∂(2F ) ∗ link1(F))

on the ground set�∪{v}, where ∂(2F )=2F r{F}. The map σ :1′→1, defined by

σ(E)=
{

E if E ∈1,
(E r {v})∪ F otherwise

for E ∈1′ , is a topological (and thus a homology) subdivision of 1. We leave to
the reader to check that if 1 is a flag complex and F ∈1 is an edge, then the stellar
subdivision of 1 on F is again a flag complex.

3. Face enumeration, γ -vectors and local h-vectors

This section reviews the definitions and main properties of the enumerative invariants
of simplicial complexes and their subdivisions that will appear in the following
sections, namely the h-vector of a simplicial complex, the γ -vector of an Eulerian
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simplicial complex and the local h-vector of a simplicial subdivision of a simplex.
Some new results on local h-vectors are included.

3A. h-vectors. A fundamental enumerative invariant of a (d − 1)-dimensional
simplicial complex 1 is the h-polynomial, defined by

h(1, x)=
∑
F∈1

x |F |(1− x)d−|F |.

The h-vector of 1 is the sequence h(1) = (h0(1), h1(1), . . . , hd(1)), where
h(1, x)=

∑d
i=0 hi (1)x i . The number

(−1)d−1hd(1)=
∑
F∈1

(−1)|F |−1

is the reduced Euler characteristic of 1 and is denoted by χ̃(1). The polynomial
h(1, x) satisfies hi (1)= hd−i (1) [Stanley 1997, Section 3.14] if 1 is an Eulerian
complex, meaning that

χ̃(link1(F))= (−1)dim link1(F)

holds for every F ∈ 1. For the simplicial join of two simplicial complexes 11

and 12 we have h(11 ∗ 12, x) = h(11, x) h(12, x). For a homology ball or
sphere 1 of dimension d − 1 we set

h(int(1), x)=
∑

F∈int(1)

x |F |(1− x)d−|F |

and recall the following well known statement (see, for instance, Theorem 7.1
in [Stanley 1996, Chapter II] and [Athanasiadis 2012, Section 2.1] for additional
references).

Lemma 3.1. Let 1 be a (d − 1)-dimensional simplicial complex. If 1 is either a
homology ball or a homology sphere over k, then xdh(1, 1/x)= h(int(1), x).

3B. γ -vectors. Let h = (h0, h1, . . . , hd) be a vector with real coordinates, and
let h(x) =

∑d
i=0 hi x i be the associated real polynomial of degree at most d. We

say that h(x) has symmetric coefficients and that the vector h is symmetric if
hi = hd−i holds for 0 ≤ i ≤ d. It is easy to check [Gal 2005, Proposition 2.1.1]
that h(x) has symmetric coefficients if and only if there exists a real polynomial
γ (x)=

∑bd/2c
i=0 γi x i of degree at most bd/2c satisfying

(3-1) h(x)= (1+ x)dγ
( x
(1+ x)2

)
=

bd/2c∑
i=0

γi x i (1+ x)d−2i .

In that case, γ (x) is uniquely determined by h(x) and called the γ -polynomial
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associated with h(x); the sequence (γ0, γ1, . . . , γbd/2c) is called the γ -vector asso-
ciated with h. We will refer to the γ -polynomial associated with the h-polynomial
of an Eulerian complex 1 as the γ -polynomial of 1 and will denote it by γ (1, x).
Similarly, we will refer to the γ -vector associated with the h-vector of an Eulerian
complex 1 as the γ -vector of 1 and will denote it by γ (1).

3C. Local h-vectors. We now recall some of the basics of the theory of face
enumeration for subdivisions of simplicial complexes [Stanley 1992; 1996, Section
III.10]. The following definition is a restatement of [Stanley 1992, Definition 2.1]
for homology (rather than topological) subdivisions of the simplex:

Definition 3.2. Let V be a set with d elements, and let 0 be a homology subdivision
of the simplex 2V . The polynomial `V (0, x)= `0+ `1x + · · ·+ `d xd defined by

(3-2) `V (0, x)=
∑
F⊆V

(−1)d−|F |h(0F , x)

is the local h-polynomial of 0 (with respect to V ). The local h-vector of 0 (with
respect to V ) is the sequence `V (0)= (`0, `1, . . . , `d).

The following theorem, stated for homology subdivisions, summarizes some of the
main properties of local h-vectors (see Theorems 3.2 and 3.3 and Corollary 4.7 in
[Stanley 1992]):

Theorem 3.3. (i) For every homology subdivision1′ of a pure simplicial complex
1 we have

(3-3) h(1′ , x)=
∑
F∈1

`F (1
′

F , x) h(link1(F), x).

(ii) The local h-vector `V (0) is symmetric for every homology subdivision 0 of
the simplex 2V .

(iii) The local h-vector `V (0) has nonnegative coordinates for every quasigeometric
homology subdivision 0 of the simplex 2V .

Proof. Parts (i) and (iii) follow from the proofs of Theorems 3.2 and 4.6, respectively,
in [Stanley 1992]. Moreover, Lemma 3.1 implies that every homology subdivision
of a simplicial complex is a formal subdivision in the sense of [Stanley 1992,
Definition 7.4]. Thus, parts (i) and (ii) are special cases of Corollary 7.7 and
Theorem 7.8, respectively, in [Stanley 1992]. �

Example 3.4. The local h-polynomial of the subdivision in part (a) of Example 2.3
was computed in [Stanley 1992] as `V (0, x)=−x2. This shows that the assumption
in Theorem 3.3(iii) that 0 is quasigeometric is essential. For part (b) of Example 2.3
we can easily compute that `V (0

′, x) = x + x3. Since 0′ is quasigeometric, this
disproves [Stanley 1992, Conjecture 5.4] (see also [Chan 1994, Section 6; Stanley
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1996, p. 134]), stating that local h-vectors of quasigeometric subdivisions are
unimodal.

The previous example suggests the following question:

Question 3.5. Is the local h-vector `V (0) unimodal for every vertex-induced ho-
mology subdivision 0 of the simplex 2V ?

We now show that local h-vectors also enjoy a locality property. (This will be
useful in the proof of Proposition 6.1.)

Proposition 3.6. Let σ : 0→ 2V be a homology subdivision of the simplex 2V . For
every homology subdivision 0′ of 0 we have

(3-4) `V (0
′, x)=

∑
E∈0

`E(0
′

E , x) `V (0, E, x),

where

(3-5) `V (0, E, x)=
∑

σ(E)⊆F⊆V

(−1)d−|F |h(link0F (E), x)

for E ∈ 0.

Proof. By assumption, 0′F is a homology subdivision of 0F for every F ⊆ V .
Thus, using the defining Equation (3-2) for `V (0

′, x) and (3-3) to expand h(0′F , x)
for F ⊆ V , we get

`V (0
′, x)=

∑
F⊆V

(−1)d−|F |h(0′F , x)

=

∑
F⊆V

(−1)d−|F |
∑

E∈0F

`E(0
′

E , x) h(link0F (E), x)

=

∑
E∈0

`E(0
′

E , x)
∑

F⊆V :σ(E)⊆F

(−1)d−|F |h(link0F (E), x),

and the proof follows. �

Remark 3.7. We call the polynomial `V (0, E, x) defined by (3-5) the relative local
h-polynomial of 0 (with respect to V ) at E . This polynomial reduces to `V (0, x)
for E =∅ and shares many of the important properties of `V (0, x), established in
[Stanley 1992]. For instance, using ideas of [Stanley 1992] and their refinements in
[Athanasiadis 2012], one can show that `V (0, E, x) has symmetric coefficients in
the sense that

xd−|E |`V (0, E, 1/x)= `V (0, E, x)

for every homology subdivision 0 of 2V and E ∈ 0 and that `V (0, E, x) has
nonnegative coefficients for every quasigeometric homology subdivision 0 of
2V and E ∈ 0. As a consequence of the latter statement and (3-4), we have
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`V (0
′, x)≥ `V (0, x) for every quasigeometric homology subdivision 0 of 2V and

every quasigeometric homology subdivision 0′ of 0. Since these results will not
be used in this paper, detailed proofs will appear elsewhere.

4. Flag subdivisions of 6d−1

This section proves Theorem 1.5 as well as a result on flag subdivisions of the
simplex (Proposition 4.6), which will be used in Section 5.

The following lemma gives several technical properties of homology balls and
spheres (over the field k). We will only sketch the proof, which is fairly straightfor-
ward and uses standard tools from algebraic topology.

Lemma 4.1. (i) If 1 is a homology sphere or ball of dimension d − 1, then
link1(F) is a homology sphere of dimension d − |F | − 1 for every F ∈1 or
interior face F ∈1, respectively.

(ii) If1 is a homology ball of dimension d−1 and F ∈1 is a boundary face, then
link1(F) is a homology ball of dimension d − |F | − 1 with interior equal to
link1(F)∩ int(1).

(iii) If 1 is a homology sphere or ball, then the cone over 1 is a homology ball
whose boundary is equal to 1 or the union of 1 with the cone over the
boundary of 1, respectively.

(iv) Let 11 and 12 be homology balls of dimension d. If 11 ∩12 is a homology
ball of dimension d−1 that is contained in or equal to the boundary of both11

and12, then11∪12 is a homology ball or sphere of dimension d , respectively.

(v) Let 1 be a homology sphere of dimension d − 1. If 0 is a subcomplex of 1
that is a homology ball of dimension d−1, then the complement of the interior
of 0 in 1 is also a homology ball of dimension d − 1 whose boundary is equal
to that of 0.

Proof. We first observe that for all faces F ∈1 and E ∈ link1(F), the link of E in
link1(F) is equal to link1(E ∪ F). Moreover, if 1 is a homology ball and F is an
interior face, then so is E ∪ F . Part (i) follows from these facts and the definition
of homology balls and spheres. Part (ii) is an easy consequence of part (i) and the
relevant definitions. Part (iii) is an easy consequence of the relevant definitions and
the fact that cones have vanishing reduced homology. Part (iv) follows by an easy
application of the Mayer–Vietoris long exact sequence [Munkres 1984, §25].

For the last part, we let K denote the complement of the interior of 0 in 1 and
note that the pairs (‖0‖, ‖∂0‖) and (‖1‖, ‖K‖) are compact triangulated relative
homology manifolds that are orientable over k. Applying the Lefschetz duality
theorem [Munkres 1984, §70] and the long exact homology sequence [Munkres
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1984, §23] to these pairs shows that K has trivial reduced homology over k. Similar
arguments work for the links of faces of K. The details are omitted. �

Remark 4.2. Although not all parts of Lemma 4.1 remain valid if homology balls
and spheres are replaced by topological balls and spheres, they do hold for the
subclasses of PL balls and PL spheres. (We refer the reader to [Björner et al. 1999,
Section 4.7 (d)] for this claim, for a short introduction to PL topology and for
additional references.) Thus, the results of this paper remain valid when homology
balls and spheres are replaced by PL balls and spheres and the notion of homology
subdivision is replaced by its natural PL analogue.

The following lemma will also be essential in the proof of Theorem 1.5. A
similar result has appeared in [Barmak 2010, Lemma 3.2].

Lemma 4.3. Let 1 be a flag (d − 1)-dimensional homology sphere. For every
nonempty face F of 1, the subcomplex

⋃
v∈F st1(v) is a homology (d − 1)-

dimensional ball whose interior is equal to
⋃
v∈F st1(v).

Proof. We set F = {v1, v2, . . . , vk},
⋃k

i=1 st1(vi ) = K and
⋃k

i=1 st1(vi ) = L and
proceed by induction on the cardinality k of F . For k = 1, the complex K is the
cone over link1(v1) on the vertex v1. Since 1 is a homology sphere, the result
follows from parts (i) and (iii) of Lemma 4.1. Suppose that k ≥ 2. We will also
assume that d ≥ 3 since the result is trivial otherwise. (We note that the assumption
that 1 is flag is essential in the case d = 2.) Since by Lemma 4.1(i) links of flag
homology spheres are also flag homology spheres, the complex 0 = link1(vk)

is a flag homology sphere of dimension d − 2 and {v1, . . . , vk−1} is a nonempty
face of 0. Thus, by the induction hypothesis, the union 01 =

⋃k−1
i=1 st0(vi ) is a

homology ball of dimension d − 2. Let 00 denote the boundary of 01, and let
02 denote the complement of the interior of 01 in 0. Thus, 00 is a homology
sphere of dimension d − 3, and, by part (v) of Lemma 4.1, 02 is a homology ball
of dimension d − 2 whose boundary is equal to 00.

Consider the union K1=
⋃k−1

i=1 st1(vi ) and the cones K2=vk∗02 and K0=vk∗00.
It is straightforward to verify that K= K1 ∪K2 and that K1 ∩K2 = K0. We note
that K1 is a homology ball of dimension d − 1 by the induction hypothesis and
that K2 and K0 are homology balls of dimension d − 1 and d − 2, respectively, by
part (iii) of Lemma 4.1. By the induction hypothesis, the interior of 01 is equal to⋃k−1

i=1 st0(vi ). Therefore, none of the faces of 00 contains any of v1, . . . , vk−1, and
hence, the same holds for K0. Since by the induction hypothesis the interior of K1

is equal to
⋃k−1

i=1 st1(vi ), we conclude that K0 is contained in the boundary of K1.
Moreover, K0 is also contained in the boundary of K2 since 00 is contained in the
boundary of 02. It follows from the previous discussion and Lemma 4.1(iv) that K
is a homology (d − 1)-dimensional ball.
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We now verify that the interior of K is equal to L. This statement may be derived
from the previous inductive argument since the interior of K is equal to the union of
the interiors of K1, K2 and K0. We give the following alternative argument: Since
K is a homology ball, its boundary consists of all faces of the (d − 2)-dimensional
faces of K that are contained in exactly one facet of K. The validity of the statement
for k = 1 implies that these (d − 2)-dimensional faces of K are precisely those
that do not contain any of the vi and that are not contained in more than one of
the subcomplexes link1(vi ). However, since 1 is (d − 1)-dimensional and flag, no
(d− 2)-dimensional face of 1 may be contained in more than one of the link1(vi ).
Thus, the boundary of K consists precisely of its faces that do not contain any of
the vi , and the proof follows. �

Proof of Theorem 1.5. Let 1 be a flag simplicial complex of dimension d − 1
and 6d−1 be the simplicial join of the zero-dimensional spheres {∅, {ui }, {vi }} for
1≤ i ≤ d . We fix a facet {x1, x2, . . . , xd} of 1, and for E ∈1 we define

(4-1) σ(E)= { ui : xi ∈ E } ∪ { vi : E /∈ st1(xi ) }.

Clearly, σ(E) cannot contain any of the sets {ui , vi }. Thus, we have σ(E)∈6d−1 for
every E ∈1, and hence, we get a map σ :1→6d−1. We will prove that this map is
a homology subdivision of 6d−1 if1 is a homology sphere. Given a face F ∈6d−1,
we need to show that σ−1(2F ) is a subcomplex of 1 of dimension dim(F) that is a
homology ball with interior σ−1(F). We denote by S the subset of {x1, x2, . . . , xd}

consisting of all vertices xi for which F ∩ {ui , vi } =∅ and distinguish two cases:

Case 1: S =∅. We may assume that F = {u1, . . . , uk} ∪ {vk+1, . . . , vd} for some
k ≤ d . Setting E0 = {x1, . . . , xk}, the defining Equation (4-1) shows that σ−1(2F )

is equal to the intersection of
⋂k

i=1 st1(xi ) with the complement of
⋃d

i=k+1 st1(xi )

in 1 and that σ−1(F) consists of those faces of σ−1(2F ) that contain E0 and do not
belong to any of the link1(xi ) for k+1≤ i≤d . Consider the complex0= link1(E0),
and let K denote the complement of the union

⋃d
i=k+1 st0(xi ) in 0. Since links

of homology spheres are also homology spheres (see part (i) of Lemma 4.1), the
complex 0 is a homology sphere of dimension d − |F | − 1. By Lemma 4.3 and
part (v) of Lemma 4.1, K is a homology ball of dimension d−|F |−1 whose interior
is equal to the set of those faces of K that do not belong to any of the link0(xi ) for
k+ 1≤ i ≤ d . From the above we conclude that σ−1(2F ) is equal to the simplicial
join of the simplex 2E0 and K and that σ−1(F) is equal to the simplicial join of
{E0} and the interior of K. The result now follows from part (iii) of Lemma 4.1
and the previous discussion.

Case 2: S 6=∅. Then σ−1(2F ) is contained in link1(S). As a result, replacing 1
by link1(S) reduces this case to the previous one.
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Finally, we note that (4-1) may be rewritten as σ(E)=
⋃

x∈E f (x), where

f (x)=
{
{ui } if x = xi for some 1≤ i ≤ d ,
{ vi : x /∈ link1(xi ) } otherwise

for every vertex x of 1. This implies that for every E ∈1, the carrier of E is equal
to the union of the carriers of the vertices of E . As a result, σ is vertex-induced
and the proof follows. �

Corollary 4.4. Given any flag homology sphere 1 of dimension d − 1, there exist
simplicial complexes 0F , one for each face F ∈6d−1, with the following properties:
(a) 0F is a flag vertex-induced homology subdivision of the simplex 2F for every
F ∈6d−1, and (b) we have

(4-2) h(1, x)=
∑

F∈6d−1

`F (0F , x)(1+ x)d−|F |.

Proof. We apply (3-3) to the subdivision of 1 guaranteed by Theorem 1.5 and note
that for every F ∈6d−1, the restriction 0F of this subdivision to F has the required
properties and that h(link6d−1(F), x)= (1+ x)d−|F |. �

Remark 4.5. Due to (4-2) and Theorem 3.3(iii), h(1, x) ≥ (1+ x)d for every
flag (d − 1)-dimensional homology sphere 1. This inequality was proved, more
generally, for every flag (d − 1)-dimensional doubly Cohen–Macaulay simplicial
complex 1 in [Athanasiadis 2011, Theorem 1.3].

We now fix a d-element set V = {v1, v2, . . . , vd} and a homology subdivision
0 of 2V with subdivision map σ : 0 → 2V . We let U = {u1, u2, . . . , ud} be a
d-element set that is disjoint from V and consider the union 1 of all collections of
the form 2E

∗0G , where E = { ui : i ∈ I } and G = { v j : j ∈ J } are subsets of U
and V , respectively, and (I, J ) ranges over all ordered pairs of disjoint subsets of
{1, 2, . . . , d}. Clearly, 1 is a simplicial complex that contains as a subcomplex 0
(set I =∅) and the simplex 2U (set J =∅).

We let6d−1 be as in the proof of Theorem 1.5 and define the map σ0 :1→6d−1

by σ0(E ∪ F) = E ∪ σ(F) for all E ⊆ U and F ∈ 0 such that E ∪ F ∈ 1. The
second result of this section is as follows:

Proposition 4.6. Under the established assumptions and notation, we have:

(i) The complex 1 is a (d − 1)-dimensional homology sphere.

(ii) Endowed with the map σ0, the complex 1 is a homology subdivision of 6d−1.

(iii) If 0 is flag and vertex-induced, then 1 is a flag simplicial complex and a flag,
vertex-induced homology subdivision of 6d−1.

Proof. We first verify (ii). We consider any face W ∈6d−1 so that W = E ∪G for
some E ⊆U and G⊆ V and recall that 0G is a homology ball of dimension dim(G).
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We have σ−1
0 (2W )= 2E

∗0G and σ−1
0 (W )= {E} ∗σ−1(G)= {E} ∗ int(0G) by the

definition of σ0. Thus, it follows from part (iii) of Lemma 4.1 that σ−1
0 (2W ) is a

homology ball of dimension dim(W ) and that its interior is equal to σ−1
0 (W ).

Part (i) may be deduced from part (ii) as follows. Let F0, F1, . . . , Fm be a linear
ordering of the facets of 6d−1 such that Fi ∩U ⊂ F j ∩U implies i < j . Thus,
we have m = 2d , F0 = V and Fm = U . By assumption, 1F0 = 0V is a (d − 1)-
dimensional homology ball. Moreover, 1F j is equal to the simplicial join of a
face of 2U with the restriction of 0 to a face of 2V for 1 ≤ j ≤ m and hence a
(d−1)-dimensional homology ball by part (iii) of Lemma 4.1, and1F j ∩

⋃ j−1
i=0 1Fi

is equal to the simplicial join of the boundary of this face with the same restriction
of 0. It follows from part (iv) of Lemma 4.1 by induction on j that

⋃ j
i=01Fi is a

(d − 1)-dimensional homology ball for 0≤ j ≤ m− 1 and a (d − 1)-dimensional
homology sphere for j = m. This proves (i) since 1=

⋃m
i=01Fi .

To verify (iii), assume that 0 is flag and vertex-induced. It is clear from the
definition of σ0 that the subdivision 1 is also vertex-induced. Since the restriction
of 1 to any face of 6d−1 is the join of a simplex with the restriction of 0 to a face
of 2V , the subdivision1 is flag as well. To verify that1 is a flag complex, let E∪F
be a set of vertices of 1 that are pairwise joined by edges, where E = { ui : i ∈ I }
for some I ⊆ {1, 2, . . . , d} and F consists of vertices of 0. We need to show that
E ∪ F ∈1. We set J = {1, 2, . . . , d}r I and G = { v j : j ∈ J } and note that the
elements of F are vertices of 0G by definition of 1. Since the elements of F are
pairwise joined by edges in 0, our assumptions that 0 is vertex-induced and flag
imply that F ∈ 0G . Therefore, E ∪ F belongs to 2E

∗0G , which is contained in 1,
and the result follows. �

Remark 4.7. The conclusion in Proposition 4.6 that 1 is a flag complex does
not hold under the weaker hypothesis that 0 is quasigeometric rather than vertex-
induced. For instance, let 0 be the simplicial complex consisting of the subsets of
V = {v1, v2, v3} and {v2, v3, v4}, and let σ : 0→ 2V be the subdivision that pushes
0 into 2V so that the face F = {v2, v3} of 0 ends up in the interior of 2V and v4

ends up in the interior of 2F . Then 0 is quasigeometric and flag, but the simplicial
complex 1 is not flag since it has {u1, v2, v3} as a minimal nonface.

5. Local γ -vectors

This section defines the local γ -vector of a homology subdivision of the simplex,
lists examples and elementary properties, discusses its nonnegativity in the special
case of flag subdivisions and concludes with the proof of Theorem 1.3. This proof
comes as an application of the considerations and results of the present and the
previous sections.
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Definition 5.1. Let V be a set with d elements, and let 0 be a homology subdivision
of the simplex 2V . The polynomial ξV (0, x)=ξ0+ξ1x+· · ·+ξbd/2cxbd/2c defined by

(5-1) `V (0, x)= (1+ x)dξV

(
0,

x
(1+ x)2

)
=

bd/2c∑
i=0

ξi x i (1+ x)d−2i

is the local γ -polynomial of 0 (with respect to V ). The local γ -vector of 0 (with
respect to V ) is the sequence ξV (0)= (ξ0, ξ1, . . . , ξbd/2c).

Thus, ξV (0, x) is the γ -polynomial associated with `V (0, x), and ξV (0) is the
γ -vector associated with `V (0) in the sense of Section 3B. All formulas in the next
example follow from corresponding formulas in [Stanley 1992, Example 2.3] or
directly from the relevant definitions.

Example 5.2. (a) For the trivial subdivision 0 = 2V of the (d − 1)-dimensional
simplex 2V we have

(5-2) ξV (0, x)=
{

1 if d = 0,
0 if d ≥ 1.

(b) Let ξV (0) = (ξ0, ξ1, . . . , ξbd/2c), where 0 and V are as in Definition 5.1. As-
suming that d ≥ 1, we have ξ0 = 0 and ξ1 = f ◦0 , where f ◦0 is the number of interior
vertices of 0. Assuming that d ≥ 4, we also have ξ2 = −(2d − 3) f ◦0 + f ◦1 − f̃0,
where f ◦1 is the number of interior edges of 0 and f̃0 is the number of vertices of
0 that lie in the relative interior of a (d − 2)-dimensional face of 2V .

(c) Suppose that d ∈ {2, 3}. As a consequence of (b) we have ξV (0, x) = t x for
every homology subdivision 0 of 2V , where t is the number of interior vertices of 0.

(d) Let 0 be the cone over the boundary 2V r {V } of the simplex 2V (so 0 is the
stellar subdivision of 2V on the face V ). Then `V (0, x)= x+ x2

+· · ·+ xd−1, and
hence, ξ2 is negative for d ≥ 4. For instance, we have ξV (0, x)= x − x2 for d = 4.

(e) For the subdivisions of parts (b) and (c) of Example 2.3 we can compute that
`V (0

′, x)= `V (0
′′, x)= x + x3 and hence that ξV (0

′, x)= ξV (0
′′, x)= x − 2x2.

The following proposition shows the relevance of local γ -vectors in the study of
γ -vectors of subdivisions of Eulerian complexes:

Proposition 5.3. Let1 be a pure Eulerian simplicial complex. For every homology
subdivision 1′ of 1 we have

(5-3) γ (1′ , x)=
∑
F∈1

ξF (1
′

F , x)γ (link1(F), x).

Proof. Since 1 is Eulerian, so is link1(F) for every F ∈1. Thus, applying (3-1)
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to the h-polynomial of link1(F) we get

h(link1(F), x)= (1+ x)d−|F |γ
(

link1(F),
x

(1+ x)2

)
,

where d − 1= dim(1). Using this and (5-1), Equation (3-3) may be rewritten as

h(1′ , x)= (1+ x)d
∑
F∈1

ξF

(
1′F ,

x
(1+ x)2

)
γ
(

link1(F),
x

(1+ x)2

)
.

The proposed equality now follows from the uniqueness of the γ -polynomial
associated with h(1′ , x). �

The following statement is the main conjecture of this paper:

Conjecture 5.4. For every flag vertex-induced homology subdivision 0 of the
simplex 2V we have ξV (0)≥ 0.

Parts (d) and (e) of Example 5.2 show that the conclusion of Conjecture 5.4 fails
under various weakenings of the hypotheses. We do not know of an example of
a flag quasigeometric homology subdivision of the simplex for which the local
γ -vector fails to be nonnegative.

We now discuss some consequences of Theorem 1.5 and Proposition 5.3 related
to Conjecture 5.4.

Corollary 5.5. For every flag homology sphere 1 of dimension d − 1 we have

(5-4) γ (1, x)=
∑

F∈6d−1

ξF (0F , x),

where 0F is as in Corollary 4.4 for each F ∈ 6d−1. In particular, the validity of
Conjecture 5.4 for homology subdivisions 0 of dimension at most d − 1 implies the
validity of Conjecture 1.1 for homology spheres 1 of dimension at most d − 1.

Proof. Setting `F (0F , x)=
∑

i ξF,i x i (1+ x)|F |−2i in (4-2) and changing the order
of summation results in (5-4). Alternatively, one can apply (5-3) to the subdivision
guaranteed by Theorem 1.5 and note that γ (link6d−1(F), x)= 1 for every F ∈6d−1.
The last sentence in the statement of the corollary follows from (5-4). �

Corollary 5.6. The validity of Conjecture 5.4 for homology subdivisions 0 of di-
mension at most d−1 implies the validity of Conjecture 1.4 for homology spheres1
and subdivisions 1′ of dimension at most d − 1.

Proof. We observe that the term corresponding to F=∅ in the sum of the right-hand
side of (5-3) is equal to γ (1, x). Thus, the result follows from (5-3), Corollary 5.5
and the fact that the link of every nonempty face of a flag homology sphere is also
a flag homology sphere of smaller dimension. �
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Proposition 5.7. Conjecture 5.4 holds for subdivisions of the 3-dimensional simplex.

Proof. Let 0 be a flag vertex-induced homology subdivision of the (d − 1)-
dimensional simplex 2V , and let 1 be the homology subdivision of 6d−1 con-
sidered in Proposition 4.6. Applying (5-3) to this subdivision and noting that
γ (link6d−1(F), x)= 1 for every F ∈6d−1, we get

γ (1, x)=
∑

F∈6d−1

ξF (1F , x).

By definition of 1, the restriction 1F is a cone over the restriction of 1 to a
proper face of F for every F ∈6d−1 that is not contained in V . Since every such
subdivision has a zero local h-vector [Stanley 1992, p. 821], the previous formula
can be rewritten as

(5-5) γ (1, x)=
∑
F⊆V

ξF (0F , x).

Assume now that d = 4 so that ξ(0, x)= ξ0+ξ1x+ξ2x2 for some integers ξ0, ξ1

and ξ2. Since ξ0 = 0 and ξ1 ≥ 0 by part (b) of Example 5.2, it suffices to show that
ξ2 ≥ 0. For that, we observe that the only contribution to the coefficient of x2 in the
right-hand side of (5-5) comes from the term with F = V . As a result, ξ2 is equal to
the coefficient of x2 in γ (1, x). Since 1 is a 3-dimensional flag homology sphere
(by Proposition 4.6), this coefficient is nonnegative by the Davis–Okun theorem
[Davis and Okun 2001, Theorem 11.2.1], and the result follows. �

Proof of Theorem 1.3. For 3-dimensional spheres the result is due to Proposition 5.7
and Corollary 5.6. Assume now that 1 and 1′ have dimension 4. Then we can
write γ (1, x) = 1+ γ1(1)x + γ2(1)x2 and γ (1′ , x) = 1+ γ1(1

′ )x + γ2(1
′ )x2.

Since γ1(1) = f0(1)− 8 and γ1(1
′ ) = f0(1

′ )− 8, where f0(1) and f0(1
′ ) are

the number of vertices of 1 and 1′ , respectively, it is clear that γ1(1
′ ) ≥ γ1(1).

As the computation in the proof of [Gal 2005, Corollary 2.2.2] shows, we also have

2γ2(1)=
∑

v∈vert(1)

γ2(link1(v)),

where vert(1) is the set of vertices of 1. Similarly, we have

2γ2(1
′ )=

∑
v′∈vert(1′ )

γ2(link1′ (v′)),

where we may assume that vert(1) ⊆ vert(1′ ). Since link1′ (v) is a flag vertex-
induced homology subdivision of link1(v) for every v ∈ vert(1), by Lemma 2.5,
we have γ2(link1′ (v))≥ γ2(link1(v)) by the 3-dimensional case, treated earlier, for
every such vertex v. Since link1′ (v′) is a 3-dimensional flag homology sphere, we
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also have γ2(link1′ (v′))≥ 0 by the Davis–Okun theorem for every v′ ∈ vert(1′ )r
vert(1). Hence, γ2(1

′ )≥ γ2(1), and the result follows. �

Question 5.8. Does γ (1′ ) ≥ γ (1) hold for every flag homology sphere 1 and
every flag homology subdivision 1′ of 1?

6. Special cases

This section provides some evidence in favor of the validity of Conjecture 5.4 other
than that provided by Proposition 5.7.

Simplicial joins. Let 0 be a homology subdivision of the simplex 2V and 0′ be a
homology subdivision of the simplex 2V ′ , where V and V ′ are disjoint finite sets.
Then 0 ∗0′ is a homology subdivision of the simplex 2V

∗ 2V ′
= 2V∪V ′ , and given

subsets F ⊆V and F ′⊆V ′, the restriction of 0∗0′ to the face F∪F ′ of this simplex
satisfies (0 ∗0′)F∪F ′ = 0F ∗0

′

F ′ . Since h(0F ∗0
′

F ′, x)= h(0F , x) h(0′F ′, x), the
defining Equation (3-2) and a straightforward computation show that

`V∪V ′(0 ∗0
′, x)= `V (0, x) `V ′(0

′, x).

This equation and (5-1) imply that

(6-1) ξV∪V ′(0 ∗0
′, x)= ξV (0, x) ξV ′(0

′, x).

From the previous formula and Lemma 2.5 we conclude that if 0 and 0′ satisfy the
assumptions and the conclusion of Conjecture 5.4, then so does 0 ∗0′.

Edge subdivisions. Following [Charney and Davis 1995, Section 5.3], we refer to
the stellar subdivision on an edge of a simplicial complex 0 as an edge subdivision.
As mentioned in Section 3B, flagness of a simplicial complex is preserved by
edge subdivisions. The following statement describes a class of flag (geometric)
subdivisions of the simplex with nonnegative local γ -vectors:

Proposition 6.1. For every subdivision 0 of the simplex 2V that can be obtained
from the trivial subdivision by successive edge subdivisions, we have ξV (0)≥ 0.

Proof. Let 0 be a subdivision of 2V and 0′ be the edge subdivision of 0 on
e = {a, b} ∈ 0. Thus, we have 0′ = (0r st0(e))∪ ({v} ∗ ∂(e) ∗ link0(e)), where v
is the new vertex added and ∂(e)= {∅, {a}, {b}}.

By appealing to (3-4) and noticing that the right-hand side of this formula
vanishes except when E ∈ {∅, e} (or by direct computation), we find that

`V (0
′, x)= `V (0, x)+ x`V (0, e, x).

Thus, it suffices to prove the following claim: if the γ -polynomial corresponding to
`V (0, E, x) has nonnegative coefficients for every face E ∈0 of positive dimension
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(meaning that `V (0, E, x) can be written as a linear combination of the polynomials
x i (1+ x)d−|E |−2i with nonnegative coefficients for every |E | ≥ 2), then the same
holds for 0′. We consider a face E ∈ 0′ of positive dimension and distinguish
the following cases. (We note that E cannot contain e and that if E ∈ 0, then the
carrier σ(E)⊆ V of E is the same, whether considered with respect to 0 or 0′.)

Case 1: E ∈ 0r link0(e). The links link0′F (E) and link0F (E) are then combina-
torially isomorphic for every F ⊆ V that contains the carrier of E (since these
two links are equal if E ∪ e /∈ 0) and the defining Equation (3-5) implies that
`V (0

′, E, x)= `V (0, E, x).

Case 2: E ∈ link0(e). For F ⊆ V that contains the carrier of E , the link link0′F (E)
is equal to either link0F (E) or to the edge subdivision of link0F (E) on e in case F
does not or does contain the carrier of e, respectively. It follows from this and (3-3)
that (see also [Gal 2005, Proposition 2.4.3])

h(link0′F (E), x)=
{

h(link0F (E), x) if σ(e) 6⊆ F ,
h(link0F (E), x)+ xh(link0F (E ∪ e), x) if σ(e)⊆ F

and then from (3-5) that `V (0
′, E, x)= `V (0, E, x)+ x`V (0, E ∪ e, x).

Case 3: E /∈ 0. Then we must have E ∈ {v} ∗ ∂(e) ∗ link0(e) and, in particular,
v ∈ E . We distinguish two subcases:

Suppose first that E intersects e, and set E ′ = (E r {v}) ∪ e. Then for every
F ⊆ V that contains the carrier of E in 0′, link0′F (E)= link0F (E

′) (and the latter
coincides with the carrier of E ′ in 0), and hence, `V (0

′, E, x)= `V (0, E ′, x).
Suppose finally that E∩e=∅, and set E ′= (E r{v})∪e. Then for every F ⊆ V

that contains the carrier of E in 0′, link0′F (E) = link0F (E
′) ∗ ∂(e). Therefore,

we have h(link0′F (E), x)= (1+ x) h(link0F (E
′), x) for every such F , and hence,

`V (0
′, E, x)= (1+ x) `V (0, E ′, x).

The expressions obtained for `V (0
′, E, x) and our assumption on 0 show that,

indeed, the corresponding γ -polynomial has nonnegative coefficients in all cases. �

Barycentric and cluster subdivisions. As a special case of Proposition 6.1, the
(first) barycentric subdivision of the simplex 2V has nonnegative local γ -vector.
Several combinatorial interpretations for its entries are given in [Athanasiadis and
Savvidou 2011]. Similar results appear there for the simplicial subdivision of a
simplex defined by the positive part of the cluster complex associated with a finite
root system.

The following special case of Conjecture 5.4 might also be interesting to explore.
The notion of a CW-regular subdivision can be defined by replacing the simplicial
complex 1′ in the definition of a topological subdivision (Definition 2.2) by a
regular CW-complex; see [Stanley 1992, p. 839].
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Question 6.2. Does Conjecture 5.4 hold for the barycentric subdivision of any
CW-regular subdivision of the simplex?
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[Gal 2005] Ś. R. Gal, “Real root conjecture fails for five- and higher-dimensional spheres”, Discrete
Comput. Geom. 34:2 (2005), 269–284. MR 2006c:52019 Zbl 1085.52005

[Munkres 1984] J. R. Munkres, Elements of algebraic topology, Addison-Wesley, Menlo Park, CA,
1984. MR 85m:55001 Zbl 0673.55001

[Postnikov et al. 2008] A. Postnikov, V. Reiner, and L. Williams, “Faces of generalized permutohedra”,
Doc. Math. 13 (2008), 207–273. MR 2010j:05425 Zbl 1167.05005 arXiv math/0609184

[Stanley 1992] R. P. Stanley, “Subdivisions and local h-vectors”, J. Amer. Math. Soc. 5:4 (1992),
805–851. MR 93b:52012 Zbl 0768.05100

[Stanley 1996] R. P. Stanley, Combinatorics and commutative algebra, 2nd ed., Progress in Mathe-
matics 41, Birkhäuser, Boston, 1996. MR 98h:05001 Zbl 0838.13008

[Stanley 1997] R. P. Stanley, Enumerative combinatorics, vol. 1, Cambridge Studies in Advanced
Mathematics 49, Cambridge University Press, Cambridge, 1997. MR 98a:05001 Zbl 0889.05001

Received January 11, 2012. Revised May 28, 2012.



278 CHRISTOS A. ATHANASIADIS

CHRISTOS A. ATHANASIADIS

DIVISION OF ALGEBRA-GEOMETRY

DEPARTMENT OF MATHEMATICS

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

PANEPISTIMIOUPOLIS

15784 ATHENS

GREECE

caath@math.uoa.gr



PACIFIC JOURNAL OF MATHEMATICS
http://pacificmath.org

Founded in 1951 by
E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

V. S. Varadarajan (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pacific@math.ucla.edu

Darren Long
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

long@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Alexander Merkurjev
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

merkurev@math.ucla.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

Jonathan Rogawski
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

jonr@math.ucla.edu

PRODUCTION
pacific@math.berkeley.edu

Silvio Levy, Scientific Editor Matthew Cargo, Senior Production Editor

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or pacificmath.org for submission instructions.

The subscription price for 2012 is US $420/year for the electronic version, and $485/year for print and electronic.
Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Pacific Journal of
Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. Prior back issues are obtainable from Periodicals Service Company,
11 Main Street, Germantown, NY 12526-5635. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt
MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 969 Evans
Hall, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704,
and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA
94704-0163.

PJM peer review and production are managed by EditFLOW™ from Mathematical Sciences Publishers.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS
at the University of California, Berkeley 94720-3840

A NON-PROFIT CORPORATION
Typeset in LATEX

Copyright ©2012 by Pacific Journal of Mathematics

http://pacificmath.org/
mailto:chari@math.ucr.edu
mailto:finn@math.stanford.edu
mailto:liu@math.ucla.edu
mailto:pacific@math.ucla.edu
mailto:long@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:merkurev@math.ucla.edu
mailto:popa@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:jonr@math.ucla.edu
mailto:pacific@math.berkeley.edu
http://pacificmath.org/
http://www.periodicals.com/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.emis.de/ZMATH/
http://www.inist.fr/PRODUITS/pascal.php
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/


PACIFIC JOURNAL OF MATHEMATICS

Volume 259 No. 2 October 2012

257Flag subdivisions and γ -vectors
CHRISTOS A. ATHANASIADIS

279Rays and souls in von Mangoldt planes
IGOR BELEGRADEK, ERIC CHOI and NOBUHIRO INNAMI

307Isoperimetric surfaces with boundary, II
ABRAHAM FRANDSEN, DONALD SAMPSON and NEIL

STEINBURG

315Cyclic branched coverings of knots and quandle homology
YUICHI KABAYA

349On a class of semihereditary crossed-product orders
JOHN S. KAUTA

361An explicit formula for spherical curves with constant torsion
DEMETRE KAZARAS and IVAN STERLING

373Comparing seminorms on homology
JEAN-FRANÇOIS LAFONT and CHRISTOPHE PITTET

387Relatively maximum volume rigidity in Alexandrov geometry
NAN LI and XIAOCHUN RONG

421Properness, Cauchy indivisibility and the Weil completion of a group of
isometries

ANTONIOS MANOUSSOS and POLYCHRONIS STRANTZALOS

445Theta lifts of strongly positive discrete series: the case of (S̃p(n), O(V ))
IVAN MATIĆ
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