
Pacific
Journal of
Mathematics

COMPARING SEMINORMS ON HOMOLOGY

JEAN-FRANÇOIS LAFONT AND CHRISTOPHE PITTET

Volume 259 No. 2 October 2012



PACIFIC JOURNAL OF MATHEMATICS
Vol. 259, No. 2, 2012

dx.doi.org/10.2140/pjm.2012.259.373

COMPARING SEMINORMS ON HOMOLOGY

JEAN-FRANÇOIS LAFONT AND CHRISTOPHE PITTET

We compare the l1-seminorm ‖·‖1 and the manifold seminorm ‖·‖man on
n-dimensional integral homology classes. Crowley and Löh showed that for
any topological space X and any α ∈ Hn(X;Z), with n 6= 3, the equality
‖α‖man = ‖α‖1 holds. We compute the simplicial volume of the 3-dimen-
sional Tomei manifold and apply Gaifullin’s desingularization to establish
the existence of a constant δ3 ≈ 0.0115416, with the property that for any X
and any α ∈ H3(X;Z), one has the inequality

δ3‖α‖man ≤ ‖α‖1 ≤ ‖α‖man.

1. Introduction

Let X be a topological space and let K be either the field of rational numbers
or the field of real numbers. Let α ∈ Hn(X, K ) be a class in the n-dimensional
singular homology of X with coefficients in K . By definition there is a finite linear
combination of continuous maps σi :1→ X defined on the standard n-dimensional
simplex, with coefficients ai in K , which represents α. The l1-(semi)norm on
singular homology is defined as

‖α‖1 = inf
{∑
|ai | :

[∑
aiσi

]
= α

}
;

see [Gromov 1982, 0.2].
If α ∈ Hn(X,Z) is an integral class, we may apply to it the natural change-of-

coefficients morphism
H∗(X,Z)→ H∗(X,R)

and view it as a real class (which may vanish) and consider its l1-norm, also denoted
‖α‖1. This measures the optimal “size” (in the l1-norm) of a real representative
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for the integral class. When M is a closed oriented manifold, the l1-norm of its
fundamental class [M] ∈ Hn(M;Z) is called the simplicial volume of M , and will
be denoted by ‖M‖.

Rather than looking at all chains representing the class α, one could instead
restrict oneself to chains which satisfy some additional geometric constraint. To this
end, let us consider the set of all closed smooth oriented manifolds and continuous
maps (M, f : M→ X) such that f sends the fundamental class of M to α. Recall
[Thom 1954, Théorème III.9] that if n ≥ 7, this set may be empty, even if X is a
finite polyhedron. On integral homology, we consider the subadditive function

µ(α)= inf{‖M‖ : f∗[M] = α},

(with the usual convention that the infimum of the empty set is +∞) and the
corresponding manifold (semi)norm

‖α‖man = inf
m∈N

{
µ(m ·α)

m

}
.

Thom [1954, Théorème III.4] has shown that the manifold norm is finite when X is
a finite polyhedron. Since any homology class can be represented as the image of a
finite polyhedron, it follows from Thom’s result that the manifold norm is finite for
any topological space.

It is immediate from the definitions that ‖ · ‖1 ≤ ‖ · ‖man holds on Hn(X,Z), for
any n, and any topological space X .

Theorem 1.1. For each degree n, there exists a constant δn > 0, such that for any
topological space X and any class α ∈ Hn(X,Z), we have

δn‖α‖man ≤ ‖α‖1 ≤ ‖α‖man.

One can take δn = 1 if n 6= 3, and δ3 ≈ 0.0115416.

After some preliminary material in Sections 2 and 3, we provide a proof of
Theorem 1.1 in Sections 4 and 5. Section 4 shows the existence of the δn , whereas
Section 5 is devoted to identifying the optimal values of the δn . It is straightforward
to show that the norms are equal if n ≤ 2 (that is, one can take δ2= 1). Crowley and
Löh [2012, Proposition 4.3] showed that for degree n ≥ 4, one can take δn = 1 (see
Proposition 5.1 below). So in all cases except possibly in degree = 3, one actually
has the equality ‖α‖1 = ‖α‖man. We do not know if the optimal value of δ3 is 1.

Shortly after this paper was written, Gaifullin posted a preprint [2012a] containing
some closely related results. In fact, our Theorem 1.1 can be deduced from the
results in [Gaifullin 2012a, Section 6], though without an explicit estimate for δ3.
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2. Gluing simplices along their faces

Our first goal is to realize an integral class β as the image of a 1-complex [Hatcher
2002, Section 2.1] which is a disjoint union of n-dimensional pseudomanifolds
[Spanier 1981, Chapter 3, Example C] whose number of n-simplices is controlled
in terms of β. The precise statement we need is the following.

Proposition 2.1. Let X be a topological space and β ∈ Hn(X,Z) an integral class
on X of degree n represented by a singular cycle

∑
i miσi , mi ∈ Z. Then there is a

1-complex Q and a continuous map g : Q→ X with the following properties.

(1) The number of n-dimensional simplices of Q is
∑

i |mi |.

(2) The 1-complex Q is topologically a finite disjoint union of oriented n-dimen-
sional pseudomanifolds without boundary.

(3) g∗[Q] = β, that is, with appropriate orientations on each pseudomanifold, g
sends the sum of the fundamental classes of the pseudomanifolds forming Q to
the class β.

Remark 2.2. If n ≤ 2, we can choose Q so that the pseudomanifolds are manifolds.

All this is well-known and can be deduced from [Hatcher 2002, Chapter 2]. We
sketch the proof for the convenience of the reader.

Proof. The statement is trivial if n = 0, hence we assume n ≥ 1. In the cycle∑
i miσi , we consider each singular n-simplex σi whose coefficient mi is negative.

We precompose σi with an affine automorphism of the standard n-simplex that
reverses the orientation and changes the sign of mi . This leads to a representative
of the same class β with positive coefficients mi ∈ N. Let us define

T =
∑

i

mi ,

and let U be the disjoint union of T standard n-simplices. Repeating mi times each
singular simplex σi , we write our cycle

T∑
i=1

σi

and we obtain a continuous map

σ :U → X

whose restriction to the i-th copy of the standard n-simplex is σi . Each term of the
boundary

∂

( T∑
i=1

σi

)
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is the restriction of some σi to an (n− 1)-face of the i-th n-simplex of U (times a
coefficient which is either 1 or−1 because we repeat the terms). If two such singular
(n−1)-simplices are equal (as maps defined on the standard (n−1)-simplex) and if
their coefficients are opposite, they form what we call a canceling pair. We choose
a maximal collection of canceling pairs, and for each pair we identify the two
(n− 1)-faces of U on which the two terms of the pair coincide. The topological
space defined as the quotient of U with respect to the equivalence relation defined
by these identifications has a 1-complex structure Q with T n-simplices. It has
no boundary because we chose a maximal family of canceling pairs and because∑T

i=1 σi is a cycle. This also implies that each connected component of Q is an
n-dimensional oriented pseudomanifold. The map σ : U → X factors through
Q. The quotient map g : Q→ X is continuous and g∗[Q] = β. This proves the
proposition.

If n ≤ 2, one checks that each link of each vertex of Q is a sphere. This proves
the remark. �

3. Gaifullin’s desingularization

We need a result of Gaifullin, which provides a constructive desingularization of an
oriented pseudomanifold (see [[2008]; 2012b] for a more detailed explanation). Let
us briefly describe this result. Gaifullin establishes the existence, in each dimension
n, of a closed oriented n-manifold M having the following universal property. Given
any oriented n-dimensional pseudomanifold P with K top-dimensional simplices,
and with a regular coloring of the vertex set by (n+ 1) colors (that is, any adjacent
vertices are of different colors), there exists

• a finite cover π : M̂→ M , of degree 1
2 K 5ω |Pω|,

• a map f : M̂→ P with the property that

f∗[M̂] = 2n−15ω |Pω| · [P] ∈ Hn(P;Z).

The degrees of the maps involve the integer 5ω|Pω| (which is the product of
the cardinalities of the finite sets Pω), whose precise definition [Gaifullin 2008,
page 563] we will not need. We merely point out that the term 5ω|Pω| depends
solely on the combinatorics of P , and appears in the expressions for both the degree
of the covering map π , and of the “desingularization” map f .

The universal manifolds M are explicitly described, and are the Tomei manifolds.
For the convenience of the reader, we provide some discussion of the Tomei
manifolds in the Appendix, which also establishes some specific properties of the
3-dimensional Tomei manifold which are used in the proof of Proposition 5.2.

Finally, we make a brief comment concerning simplicial complexes versus 1-
complexes. The difference between these two classes is that, for 1-complexes,
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one does not restrict the gluing of simplices to be along a single face of distinct
simplices. While Gaifullin’s result is stated in the setting where P is a simplicial
complex, the constraint on the gluings of simplices is not used in his proofs. As such,
his desingularization process works equally well when applied to 1-complexes
(assuming of course that there exists a regular vertex (n+ 1)-coloring). We thank
the anonymous referee for pointing this out to us.

4. Existence of the δn

In this section, we show that there exist constants δn satisfying the conclusion of
Theorem 1.1.

Let α ∈ Hn(X,Z) and let ε > 0. The change-of-coefficients morphism

Hn(X,Z)→ Hn(X,R)

factors through Hn(X,Q), and the map

Hn(X,Q)→ Hn(X,R)

is an isometric injection. Hence we can find a representative∑
i

riσi

of α with ri ∈Q such that

(1)
∑

i

|ri | ≤ ‖α‖1+ ε.

Let m be the least common multiple of all the denominators of the reduced fractions
of the ri . The chain ∑

i

mriσi

is an integral chain representing the class

β = mα ∈ Hn(X,Z).

Now we apply Proposition 2.1 to the integral class β. This gives us a 1-complex
Q and a continuous map g : Q→ X with the following properties:

(i) The number of n-dimensional simplices of Q is

m
∑

i

|ri | ≤ m(‖α‖1+ ε).

(ii) Q consists of a finite disjoint union of oriented n-dimensional pseudomanifolds
without boundary.
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(iii) g maps the sum of the fundamental classes of the pseudomanifolds in Q to
the class β, that is, g∗[Q] = β.

Notice that in the case where Q is a manifold (that is automatic if n=2, as explained
at the end of the proof of Proposition 2.1), the inequality

‖α‖man ≤ ‖α‖1

follows, since for any ε > 0 we have

‖Q‖/m ≤ ‖α‖1+ ε.

If Q is not a manifold — that is, if at least one of the connected components of
Q is not a manifold but only a pseudomanifold — a desingularization process is
needed to produce a manifold. We first consider the case when Q is connected. Let
P denote the first barycentric subdivision of the 1-complex Q. The number of
n-dimensional simplices of the barycentric division of the standard n-simplex is
(n+ 1)!, so the number K of top-dimensional simplices in P is

K = (n+ 1)!m
∑

i

|ri |.

Moreover, the vertex set of P clearly has a regular coloring by (n+ 1) colors: each
vertex v lies in the interior of a unique cell σv from the original 1-complex Q, and
we can color the vertex v with the color 1+ dim(σv) ∈ {1, . . . , n+ 1}. So we can
now apply Gaifullin’s desingularization process to the pseudomanifold P , obtaining
the following diagram of spaces and maps:

M M̂
πoo f // P

g // X .

We also know that

(a) g∗[P] = β = m ·α ∈ Hn(X;Z),

(b) f∗[M̂] = 2n−15ω |Pω| · [P] ∈ Hn(P;Z).

The map π is a covering map of degree 1
2 K 5ω |Pω|, so we can also compute the

simplicial volume of M̂ :

‖M̂‖ = 1
2 K 5ω |Pω| ‖M‖.

Combining (a) and (b), we see that the composite map g ◦ f : M̂→ X allows us to
represent the homology class [m · 2n−15ω|Pω|] ·α ∈ Hn(X;Z) as the image of the
fundamental class of the oriented manifold M̂ . From the definition of the manifold
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seminorm, we obtain

‖α‖man ≤
1

m ·2n−15ω|Pω|
‖M̂‖ =

1
2 K 5ω |Pω|

m · 2n−15ω |Pω|
‖M‖

=
(n+ 1)!m

∑
i |ri |

m · 2n ‖M‖ ≤ ‖M‖ (n+1)!
2n (‖α‖+ ε).

Letting ε go to zero completes the proof, with the explicit value

δn =
2n

(n+1)! ‖M‖

where M is the n-dimensional Tomei manifold appearing in Gaifullin’s desingu-
larization procedure. In the case where P =

⊔
i Pi has several connected com-

ponents Pi , let d be the least common multiple of the 5ω|(Pi )ω|, and for each
i , let mi = d/5ω|(Pi )ω|. Exactly the same proof applies with M̂ =

⊔
i
⊔

mi
M̂i ,

f =
⊔

i
⊔

mi
fi , and π =

⊔
i
⊔

mi
πi .

5. Estimating the δn

In this section, we complete the proof of Theorem 1.1 by estimating the δn . As
explained in the previous section, one can take δ2 = 1. Crowley and Löh [2012]
have shown that for n ≥ 4, one can take δn = 1. Their result is stated in the a priori
more restrictive setting of finite CW-complexes, but it is straightforward to deduce
the general case from that special case. For completeness, we include a proof of
this result.

Proposition 5.1. In degrees n ≥ 4, we can take δn = 1, that is, for any topological
space X and any class α ∈ Hn(X,Z) of degree n ≥ 4, one has the equality

‖α‖1 = ‖α‖man.

Proof. The inequality ‖α‖1 ≤ ‖α‖man is immediate from the definitions, so let us
focus on the converse. Proceeding as in the proof of Theorem 1.1, given any ε > 0,
we can find a corresponding integral chain∑

i

mriσi

representing a class

β = mα ∈ Hn(X,Z)

and where the rational numbers ri satisfy

(2)
∑

i

|ri | ≤ ‖α‖1+ ε/2
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Now apply Proposition 2.1 to the integral class β, obtaining a 1-complex Q and
a continuous map g : Q → X such that g∗[Q] = β. As Q itself is a finite CW-
complex of dimension n ≥ 4, [Crowley and Löh 2012, Prop. 4.3] implies that
‖[Q]‖1 = ‖[Q]‖man. Since we have a realization of Q as a 1-complex with exactly
m
∑

i |ri | top-dimensional simplices, we obtain

‖[Q]‖man = ‖[Q]‖1 ≤ m
∑

i

|ri |.

Consider the positive real number mε/2> 0. From the definition of the manifold
norm, we can find a closed oriented manifold N , and a continuous map h : N→ Q
of degree d , with the property that h∗[N ] = d · [Q], and satisfying

(3)
‖N‖

d
≤ ‖Q‖man+mε/2≤ m

∑
i

|ri | +mε/2.

The composite map g◦h : N→ X sends the fundamental class [N ] to d ·β = d ·mα.
Using this map to estimate the manifold norm of α, we obtain

‖α‖man ≤
‖N‖
d m

≤
1
m

(
m
∑

i

|ri | +mε/2
)

≤

∑
i

|ri | + ε/2

≤ ‖α‖1+ ε,

where the second inequality was deduced from (3), and the last inequality from
(2). Finally, letting ε > 0 go to zero, we obtain ‖α‖man ≤ ‖α‖1, completing the
proof. �

It is tempting to guess that the optimal value of δ3 is also 1. Our method of proof
gives a substantially lower value of δ3, which is explicitly given by the following.

Proposition 5.2. The optimal value of δ3 is ≥ V3/(24V8)≈ 0.0115416, where V3

and V8 are the volumes of the 3-dimensional regular ideal hyperbolic tetrahedron
and octahedron, respectively.

Proof. The proof of Theorem 1.1 yields the general value

δn =
2n

(n+1)! ‖M‖

where M is the n-dimensional Tomei manifold. Specializing to dimension n = 3,
and using the fact that ‖M3

‖ = 8V8/V3 (see Lemma A.2 below), we obtain the
claim. �
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Appendix: Tomei manifolds

The universal manifolds M used in Gaifullin’s desingularization are the Tomei
manifolds. For the convenience of the reader, we provide a brief description of
these manifolds. We also establish some results concerning the 3-dimensional
Tomei manifold that are used in estimating the constant δ3 arising in our proof of
Theorem 1.1 (see Proposition 5.2).

A matrix A = [ai j ] is tridiagonal if ai j = 0 for all indices satisfying |i − j |> 1.
The n-dimensional Tomei manifold consists of all (n+ 1)× (n+ 1) real symmetric
tridiagonal matrices, with fixed simple spectrum λ0 < λ1 < · · ·< λn (the manifold
is independent of the choice of simple spectrum). These manifolds were introduced
by Tomei [1984] and further studied by Davis [1987]. An important result of Tomei
is that these manifolds support a very natural cellular decomposition, which we
now describe.

First, recall the definition of the n-dimensional permutahedron 5n . The per-
mutahedron is an n-dimensional, simple, convex polytope, obtained as the convex
hull of a specific configuration of points in Rn+1. If the symmetric group Sn+1

acts on Rn+1 by permuting the coordinates, the permutahedron 5n is defined to be
the convex hull of the Sn+1-orbit of the point (1, 2, . . . , n+ 1) ∈ Rn+1. Denote by
S this specific Sn+1-orbit, so that 5n

= Conv(S) (see Figure 1 for an illustration
of 53).

The facets (codimension one faces) of the permutahedron 5n are indexed by the
2n+1
− 2 nonempty proper subsets ω ( {1, . . . , n+ 1}, as follows. Given a subset

ω, define the subset Sω ⊂ S by

Sω := {Ex ∈ S | ∀i ∈ ω,∀ j 6∈ ω, xi < x j }.

Figure 1. The 3-dimensional permutahedron 53.
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In other words, a vertex Ex ∈S lies in Sω if the integers {1, . . . , |ω|} occur precisely
in the coordinates whose index lies in ω. The facet Fω is then defined to be the
convex hull Conv(Sω). From this, it easily follows that two distinct facets Fω1, Fω2

intersect if and only if ω1 ( ω2 or ω2 ( ω1. One also has that any codimension k
face of 5n , being of the form Fω1 ∩ · · · ∩ Fωk for some choice of distinct facets,
corresponds (after possibly reindexing) to a unique length k chainω1 (ω2 ( · · ·(ωk

of nonempty proper subsets of {1, . . . , n+ 1}.
Tomei [1984] showed that the n-dimensional Tomei manifold M has a particularly

simple tiling by 2n copies of the n-dimensional permutahedron 5n . Let e1, . . . , en

be the standard generators for Zn
2 . Then the n-dimensional Tomei manifold can be

identified with (Zn
2 ×5

n)/∼, where the equivalence relation is given by (g, x)∼
(e|ω|g, x) whenever x ∈ Fω.

Example. For a concrete example, when n = 3, the permutahedron 53 is the
truncated octahedron (see Figure 1). It has 6 square facets (parametrized by subsets
ω ( {1, 2, 3, 4} with |ω| = 2) and 8 hexagonal facets (parametrized by the ω with
|ω| = 1, 3). Figure 2 includes some vertex coordinates and labels some of the facets
with the corresponding subset of {1, 2, 3, 4}.

In the corresponding Tomei manifold M3, tessellated by eight copies of 53, one
can easily see that each edge of the tessellation lies on exactly four copies of 53.
Now consider the 24 squares appearing in the tessellation of M . The union of all
these squares forms a collection of six tori embedded in M , each tessellated by
four squares. Note that, from the definition of the gluings, each square bounds two
copies of 53, whose indices in Z3 differ in the middle coordinate (corresponding to
the generator e2). This implies that the collection of six tori separate M3 into two
copies of a manifold N . Each of the two copies of N is tessellated by four copies
of 53, and there is a Z2-involution on M3 which fixes the collection of tori and
interchanges the two copies of N . The involution can be easily described in terms
of the description M = (Z3

2×5
3)/∼: it sends each element (g, x) to (e2 · g, x).

A nice consequence of Gaifullin’s work is the following elementary result.

Lemma A.1. If M is a Tomei manifold, ‖M‖> 0.

Proof. Let N be a closed hyperbolic manifold of the same dimension as M . It
follows from work of Gromov and Thurston that ‖N‖ > 0 (see [Thurston 1980,
Chapter 6]). Take an arbitrary triangulation of N , pass to the barycentric subdivision,
and apply Gaifullin’s desingularization. This gives us a finite cover M̂→ M with
a map f : M̂ → N , of degree d 6= 0. Since ‖N‖ > 0, the obvious inequality
‖M̂‖/d ≥ ‖N‖ immediately forces ‖M̂‖ > 0. But the simplicial volume scales
under covering maps, so we conclude that ‖M‖> 0, as desired. �

In general, the computation of the exact value of the simplicial volume is an ex-
tremely difficult problem. For the 3-dimensional Tomei manifold, we can, however,
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give an exact computation. Let V8 denote the volume of a regular ideal hyperbolic
octahedron and V3 the volume of a regular ideal hyperbolic tetrahedron. These
volumes can be expressed in terms of the Lobachevsky function

3(θ) := −

∫ θ

0
log |2 sin t | dt

and are exactly equal to V8 = 83(π/4) and V3 = 23(π/6) (see [Thurston 1980,
Section 7.2]). Up to five decimal places, V8 ≈ 3.66386 and V3 ≈ 1.01494.

Lemma A.2. The 3-dimensional Tomei manifold M3 has simplicial volume ‖M‖=
8V8/V3 (which is ≈ 28.8794).

Proof. Closed 3-manifolds are one of the few classes of manifolds for which the
simplicial volume is known. Recall that for hyperbolic 3-manifolds, the simplicial
volume is proportional to the hyperbolic volume, with constant of proportionality
1/V3. For Seifert fibered 3-manifolds, the existence of an S1-action immediately
implies that the simplicial volume is zero. For a general closed, orientable 3-
manifold, the validity of Thurston’s geometrization conjecture (recently established

3124

3214

4123
4213

4312

4321

3421

24311432

1342

1243

1324

1423

2413

3412

2314

1234

2134

{3}

{1}

{1,2,3}

{2,3}

{3,4}

{1,3}

{1,3,4}

Figure 2. A portion of 53. Vertices are labeled by their coordi-
nates in R4 (parentheses and commas omitted to avoid cluttering
the picture). Facets are labeled with the corresponding subset
ω ⊂ {1, 2, 3, 4}.
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by Perelman) implies that there is a decomposition into geometric pieces. Since
simplicial volume is additive under connected sums (in dimensions ≥ 3) and under
gluings along tori (see [Gromov 1982, Section 3.5]), this implies that the simplicial
volume of any closed, orientable 3-manifold is proportional (with constant 1/V3)
to the sum of the (hyperbolic) volumes of the hyperbolic pieces in its geometric
decomposition.

Let us apply this procedure to the Tomei manifold M . Recall that M is the
double of a 3-manifold N with ∂N consisting of four tori. From the gluing formula
we deduce that ‖M‖ = 2‖N‖. To compute ‖N‖, recall that N is tessellated by four
copies of the 3-dimensional permutahedron 53, with the collection of square faces
of all the 53 forming the boundary tori of N . This implies that the interior of N
is tessellated by copies of 53 with the square boundary faces removed. Next we
claim that Int(N ) supports a finite volume hyperbolic metric.

Under this tessellation, each interior edge of N lies on exactly four of the53. Let
O⊂ H3 denote the regular ideal hyperbolic octahedron. This octahedron has all six
vertices on the boundary at infinity of H3, and has all incident pairs of faces forming
angles of π/2. A copy of the permutahedron53 can be obtained by removing small
horoball neighborhoods of each of the ideal vertices. Each hexagonal face of 53

corresponds to a triangular face of O. So one can form a manifold N 0 by gluing
together four copies of O, using the same gluing pattern as in the formation of N .
Using isometries to glue together the sides of O, one obtains a metric on N 0 which
is hyperbolic, except possibly along the 1-skeleton of N 0. To check whether or not
one has a singularity along the edges of N 0, one just needs to calculate the total
angle transverse to the edge. But recall that along each edge in N 0, one has four
copies of O coming together. Since each edge in O has an internal angle of π/2,
the total angle transverse to each edge of N 0 is equal to 2π . We conclude that N 0

supports a complete hyperbolic metric, with hyperbolic volume = 4V8.
N is obtained from N 0 by removing a neighborhood of the ideal vertices in each

O in the tessellation of N 0. This means that N is obtained from the noncompact,
finite volume, hyperbolic manifold N 0 by truncating the cusps. It follows that
Int(N ) is diffeomorphic to N 0. Since cutting M open along the collection of tori
results in two copies of Int(N )= N 0, a manifold supporting a hyperbolic metric, we
have that this is exactly the geometric decomposition of M predicted by Thurston’s
geometrization conjecture (cf. [Davis 1987, page 105, footnote 2]). Our discussion
above implies that ‖M‖ = 2 Vol(N 0)/V3 = 8V8/V3, completing the proof. �
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