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TUNNEL ONE, FIBERED LINKS

MATT RATHBUN

For a fibered link of tunnel number one in S3, with fiber F and unknotting
tunnel τ , we show that τ can be isotoped to lie in F.

1. Introduction and motivation

The study of fibered knots and links is as important today as ever. Giroux’s corre-
spondence [2002] between open book decompositions and contact structures min-
gles classical fibered links with more modern contact geometry. Sutured manifold
theory continues to reveal information about fibrations (see, for instance, [Ni 2009;
Scharlemann and Thompson 2009]). And fibered links are related to the newest
advances in Floer homology, as knot Floer homology detects fibered links [Ni
2007] and sutured Floer homology intersects both contact geometry and sutured
manifold theory.

Tunnel number one links are among the most studied links. Much of the work on
tunnel number one links revolves around trying to isotope the tunnel to sit nicely
with respect to some additional structure in the 3-manifold, including a hyper-
bolic metric [Adams 1995; Adams and Reid 1996; Akiyoshi et al. 1997; Cooper
et al. 2010], polyhedral decompositions [Sakuma and Weeks 1995; Heath and Song
2005], bridge decompositions [Goda et al. 2000; Lackenby 2005], Seifert surfaces
[Scharlemann and Thompson 2003], and fibrations [Sakuma 1996]. These studies,
and others, have led to the classification of tunnels for many classes of knots and
links, including torus knots [Boileau et al. 1988], satellite knots [Morimoto and
Sakuma 1991], nonsimple links [Eudave Muñoz and Uchida 1996], 2-bridge knots
[Morimoto and Sakuma 1991; Kobayashi 1999], and 2-bridge links [Morimoto
1994; Jones 1995].

Further, the Berge conjecture states that if a knot admits a lens space Dehn
surgery, then it is in one of the families of knots classified by John Berge. Many
are working on this long-standing conjecture, with recent progress contributed by
Ozsváth and Szabó [2005], Hedden [2007], Baker, Grigsby, and Hedden [2008],
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Saito [2007], and Williams [2007], among others. Yi Ni [2007] recently proved
that if a knot admits a lens space surgery, then it is a fibered knot. Additionally, all
Berge knots are both fibered and tunnel number one, so further understanding of
tunnel one, fibered knots could have profound impacts on the conjecture.

Jesse Johnson [2008] investigated genus-2 Heegaard splittings of closed surface
bundles over the circle. This paper looks at the relationship between unknotting
tunnels and fibrations for link complements.

Theorem 1.1. Let K be an oriented, fibered, tunnel number one link in S3, with
fiber F , and unknotting tunnel τ . Then τ can be isotoped to lie in F.

2. Background and definitions

3-manifolds.

Notation 1. Let A be subset of a 3-manifold M . We fix some notation. Let n(A)
denote a small open neighborhood of A in M . If F is a properly embedded surface
in M, let M |F = M \ n(F). If S is the boundary of M , we will refer to S|∂F =
S \ n(∂F). For convenience, we will also sometimes refer to this as S|F .

Definition 2.1. Let F be a surface properly embedded in a 3-manifold M . Then F
is said to be compressible if there exists a disk D embedded in M with ∂D= D∩F
an essential curve in F , and D is called a compressing disk for F . If F is not
compressible, and is not a 2-sphere, then it is called incompressible. The surface
F is said to be boundary compressible if there exists a disk D embedded in M
with D ∩ F = α ⊂ ∂D, D ∩ ∂M = β ⊂ ∂D, where α is an essential arc in F ,
α∩β= ∂α= ∂β, and α∪β= ∂D. In this case, D is called a boundary compression
disk. If F is not boundary compressible, it is called boundary incompressible.

Definition 2.2. A compression body V is the result of taking the product of a
surface with [0, 1], attaching 2-handles along S×{0}, and then attaching 3-handles
along any resulting 2-sphere components. The surface S× {1} is called ∂+V , and
∂V \ ∂+V is called ∂−V . A handlebody is a compression body where ∂−V = ∅.
A Heegaard splitting is a triple (S, V,W ), where S is a surface, V and W are
compression bodies, ∂+V = ∂+W = S, and M = V ∪S W .

Definition 2.3. Let K be a knot in a 3-manifold M , and let λ be an essential closed
curve in ∂n(K ). Let M ′ be the manifold obtained from M by removing n(K ), and
attaching a solid torus S1

×D2 to M\n(K ) via a homeomorphism of the boundaries
such that {pt.}×∂D2 is identified with the curve λ. Then M ′ is said to be the result
of λ-sloped Dehn surgery on M .
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Tunnels.

Definition 2.4. A link L in S3 is called a tunnel number one link if there exists
an arc τ properly embedded in S3

\ n(L) such that S3
\ n(L ∪ τ) is a handlebody.

Then τ is called a tunnel for L .

Observe that the complement of a tunnel number one link has a genus-2 Hee-
gaard splitting. Also, note that a tunnel one link has at most two components,
and if it has two components, then any tunnel must have one endpoint on each
component.

More generally, a knot is tunnel number n if n is the smallest number such that
there exists a collection of arcs {τ1, . . . , τn} such that S3

\ n(L ∪ τ1 ∪ · · · ∪ τn) is a
handlebody.

Fibered links.

Definition 2.5. Let L ⊂ S3 be a link. A Seifert surface for L is a compact, ori-
entable surface F embedded in S3 with no closed components such that ∂F = L .

Definition 2.6. A map f : E→ B is a fibration with fiber F if for every point p∈ B,
there is a neighborhood U of p and a homeomorphism h : f −1(U )→U × F such
that f =π1◦h, where π1 :U×F→U is projection to the first factor. The space E
is called the total space, and B is called the base space. Each set f −1(b) is called
a fiber, and is homeomorphic to F .

Definition 2.7. A link L ⊂ S3 is said to be fibered if there is a fibration of S3
\n(L)

over S1, and the fibration is well-behaved near L . That is, each component L i of
L has a neighborhood S1

×D2, with L i ∼= S1
×{0} such that f

∣∣
S1×(D2\{0}) is given

by (x, y)→ y/|y|.

Each fiber of a fibered link is a Seifert surface for the link. The complement
of a fibered link is foliated by copies of this Seifert surface. Cutting along one of
these Seifert surfaces produces a surface cross the interval.

Definition 2.8. Let K be a fibered link in S3. Then S3
\ n(K ) can be obtained

from F × I , with F a fiber, by identification (x, 0) ∼ (h(x), 1), for x ∈ F , where
h : F → F is an orientation-preserving homeomorphism which is the identity on
∂F . We call h a monodromy map.

Theorems. Our starting point is the following theorem.

Theorem 2.9 [Scharlemann and Thompson 2003]. Suppose K is a knot in S3, and
τ an unknotting tunnel for K . Then τ may be slid and isotoped until it is disjoint
from some minimal-genus Seifert surface for K .
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The proof consists of arranging K , τ , and a compressing disk for S3
\n(K ∪ τ)

in some minimal fashion, and showing that if K ∩ τ 6= ∅, this would lead to a
contradiction with those minimality assumptions. The result still holds for two-
component fibered links.

Theorem 2.10. Suppose K is an oriented, fibered link, and τ is an unknotting
tunnel for K . Then τ may be slid and isotoped until it is disjoint from a fiber of K .

Our proof will largely mimic [Scharlemann and Thompson 2003].

Proof. By Theorem 2.9, if K has just one component, then an unknotting tunnel
can be isotoped and slid to be disjoint from a minimal-genus Seifert surface. But
in a fibered knot complement, a fiber is the unique minimal-genus Seifert surface,
so the result follows. Henceforth, let us assume that K is a two-component link,
and let the two components of K be K1 and K2. Observe that τ has one endpoint
on each of the components of K . Choose a fiber F , and slide and isotope τ , so
as to minimize the number of intersections between τ and F . Our goal will be to
prove that τ ∩ F =∅.

Suppose, to the contrary, that after the slides and isotopies above, τ ∩ F is
nonempty. Let E be an essential disk in the handlebody S3

\ n(K ∪ τ), chosen to
minimize the number |E ∩ F | of components in E ∩ F . If |E ∩ F | = 0, then the
incompressible F would lie in a solid torus, namely (a component of) S3

\ n(K ∪
τ ∪ E), and so be an annulus. The only fibered link with fiber an annulus is the
Hopf link, in which case the result holds. So we may assume that |E ∩ F | > 0.
Furthermore, since F is incompressible, we may assume that E∩F consists entirely
of arcs.

Let e be an outermost arc of E ∩ F in E , cutting off a subdisk E0 from E . If
e were inessential in F \ τ , then we could surger E along the trivial subdisk cut
off by e. The result would be two disks, at least one of which is also essential in
S3
\n(K∪τ), but with one fewer intersection with F , contradicting our assumption

of minimality. Thus, the arc e is essential in F \ τ . Let f = ∂(E0) \ e, an arc in
∂n(K ∪ τ) with each end either on a longitude ∂F ⊂ ∂n(K ) or a meridian disk of
τ corresponding to a point of τ ∩ F .

Now, either no meridian of τ is incident to an end of f , a meridian of τ is
incident to exactly one end of f , or there is a meridian which is incident to both
ends of f .

(1) If no meridian of τ is incident to an end of f , then both ends of f lie on
∂F ⊂ ∂n(K ). If the interior of f runs over τ , we have finished, for f is
disjoint from F . Otherwise, the interior of f lies entirely in ∂n(K ), and e is
either essential in F , or it is inessential.
(a) If e is essential in F , then E0 would be a boundary compression disk for

F , contradicting the minimality of the genus of F .
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(b) If e is inessential in F , then the disk D0 that it cuts off from F necessarily
contains points of τ (since e is essential in F \ τ ). But then we could
replace D0 by E0, and the loop formed by f and ∂D0 \e is either a trivial
loop on one of the torus components of ∂n(K ), or it is an essential loop.

(i) If the loop formed by f and ∂D0 \e is a trivial loop on the torus, say,
∂n(K1), then the new surface would, again, be a Seifert surface for
K , consistent with the orientation of K (and so be a fiber), but with
fewer points of intersection F ∩ τ .

(ii) If the loop formed by f and ∂D0 \ e is essential in ∂n(K1), then the
original disk E0 could be slid across D0 to show that K1 is unknotted.
But the interior of the disk D0 is disjoint from K2, so K must be a
split link, and split links do not fiber.

(2) If a meridian of τ is incident to exactly one end of f , then we can use E0

to describe a simple isotopy of τ by sliding τ along E0 which reduces the
number of intersections between τ and F .

(3) If both ends of f lie on the same meridian of τ , then e forms a loop in F , and
the ends of f adjacent to e both run along the same subarc τ0 of τ . Since f
is disjoint from F , τ0 terminates on, say, ∂n(K1).

Then since the interior of f is disjoint from F , f must intersect ∂n(K1)

either in an inessential arc in the torus or in a longitudinal arc. That is, if
τ0 ∩ ∂n(K1) were collapsed to a point p, then f would either represent a
trivial loop in π1(∂n(K1), p), or a nontrivial element. The former case is
impossible, because the trivial disk cut off by f cannot contain the other
end of τ (since the other end of τ is on ∂n(K2)). Thus, the disk could be
isotoped away, reducing |E∩F |. It follows that f intersects the torus ∂n(K1)

in a longitudinal arc. Then, n(τ0 ∪ E0) is a thickened annulus A, defining
a parallelism in S3 between K1 and the loop e on F . Now, the boundary
component of A on ∂n(K1) can be slid across ∂n(K1), away from e, onto F ,
parallel to ∂F in F . Since K is a fibered link, the image of A, call it A′, is a
product annulus in S3

\ n(K ∪ F)∼= F × I . But then this demonstrates that e
itself is parallel to ∂F in F . Then, substituting A for the annulus between e
and ∂F in F would create a Seifert surface of the same genus, still consistent
with the orientation of K , and thus a fiber, but with fewer intersections with τ .

In all cases, we obtain contradictions, and conclude that τ and F can be arranged
to be disjoint. �

Another theorem that we will find useful is also given by Scharlemann and
Thompson. Ni [2009] proves a more general result, though we will not need it
here.
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Theorem 2.11 [Scharlemann and Thompson 2009]. Suppose F is a compact ori-
entable surface, L is a knot in F × I , and (F × I )surg is the 3-manifold obtained
by some nontrivial surgery on L. If F × {0} compresses in (F × I )surg, then L is
parallel to an essential simple closed curve in F×{0}. Moreover, the annulus that
describes the parallelism determines the slope of the surgery.

The proof relies on sutured manifold theory, and a theorem of Gabai [1989].
Gabai proves the result for an annulus cross the interval. The idea of Scharlemann
and Thompson’s proof is to find product disks or annuli in (F× I ) disjoint from the
knot, and cut along these product pieces to reduce the complexity of the surface
in question. This, with some additional work, allows them to apply the results
of Gabai.

3. Pushing a tunnel into a fiber

Proof of Theorem 1.1. By Theorem 2.10, τ can be isotoped and slid to be disjoint
from a fiber. Let F = F ′ \ n(K ). Cut S3

\ n(K ) along F , to obtain N ∼= F × I , a
handlebody. Then τ ⊂ N .

Now, as τ is an unknotting tunnel, there exists a compressing disk for ∂n(K ∪τ)
in S3

\ n(K ∪ τ), say D′. Note that D′ ∩ F 6= ∅, for otherwise F would be an
essential surface in the solid torus (S3

\ n(K ∪ τ))|D′, and thus a disk.
Consider D′ ∩ F . Since F is incompressible and N is irreducible, by standard

innermost disk arguments we may assume there are no simple closed curves of
intersection. Let α be an arc of intersection which is outermost in D′, cutting off
a subdisk D. Then, D is a disk in N with boundary consisting of three types of
arcs: a single essential arc in F = F × {0}, α; (several) arcs in ∂n(K ), call them
νi ; and (several) arcs in ∂n(τ ), λ j . We may assume that every arc of D∩ ∂n(τ ) is
an essential spanning arc of the annulus ∂n(τ ), for trivial arcs can be removed by
isotopy.

Now, consider the double of N , along the vertical boundary ∂F × I . In other
words, let N̂ be the result of gluing two copies of N together by the identity along
∂F × I . Similarly, let τ̂ be the result of gluing two copies of τ , one in each copy
of N , along the boundary points; let D̂ come from two copies of D, one in each
copy of N , glued along the νi ; and let α̂ come from two copies of α in the same
way.

Then D̂ is a planar surface with one boundary component corresponding to α̂,
and several components coming from λ̂ j , the doubles of λ j (see Figure 1).

Then,
⋃

j λ̂ j is a collection of (parallel) simple closed curves on the torus ∂n(τ̂ ).
Call the slope determined by these curves λ. If we perform λ-surgery on τ̂ , the
result is to cap off D̂ with disks. Since α was essential in F , α̂ is essential in F̂ ,
so our capped-off surface is a compression disk for F̂ in N̂ ∼= F̂ × I .
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Figure 1. D̂.

By Theorem 2.11, τ̂ is parallel to an essential closed curve in F̂ ×{0}. That is,
there exists an annulus A properly embedded in F̂× I with one boundary compo-
nent on F̂ × {0}, say ψ , and the other boundary component on ∂n(τ̂ ), parallel to
τ̂ , say φ.

Since φ is parallel to τ̂ , it must be a longitude of ∂n(τ̂ ), and in particular,
|φ ∩ (∂F × I )| = 2. So there are only two possibilities for arcs of intersection
between A and ∂F × I incident to φ. Either there is one arc of intersection which
is trivial in A, or there are two arcs of intersection, both of which are essential in
A (see Figure 2). The former case is impossible, because then the subdisk of A
cut off by the arc would show that τ was parallel into ∂n(K ), which would imply
that K was trivial. Therefore, there are exactly two arcs of A∩ (∂F × I ), both of
which are essential in A.

If there were trivial arcs incident to ψ , then an outermost such arc in A would
give rise to a boundary compression for F × {0} in S3

\ n(K ). This is impossible
as well, so ∂F × I intersects A in precisely two essential arcs, with no trivial
arcs. Cutting A along these arcs provides a parallelism between τ and the arc
ψ ∩ (F ×{0})⊂ F̂ ×{0}. Thus, τ can be isotoped to lie in the fiber. �

ψ ψ

φ φ

AA

Figure 2. Arcs of A∩ ∂F × I incident to φ.
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