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DEMYSTIFYING A DIVISIBILITY PROPERTY OF THE
KOSTANT PARTITION FUNCTION

KAROLA MÉSZÁROS

We prove a family of identities connected to a divisibility property of the
Kostant partition function. A special case of these identities first appeared
in a paper of Baldoni and Vergne. To prove their identities, Baldoni and
Vergne used residue techniques, and called the resulting divisibility prop-
erty “mysterious.” Our proofs are entirely combinatorial and provide a nat-
ural explanation for why divisibility occurs, both in the Baldoni and Vergne
identities and in their generalizations.

1. Introduction

The objective of this paper is to provide a natural combinatorial explanation of a
divisibility property of the Kostant partition function. The question of evaluating
Kostant partition functions has been the subject of much interest, without a satisfac-
tory combinatorial answer. To mention perhaps the most famous such case: it is
known that

K A+n

(
1, 2, . . . , n,−

( n+ 1
2

))
=

n∏
k=1

Ck, where Ck =
1

k+ 1

( 2k
k

)
denotes the Catalan numbers, yet there is no combinatorial proof of this identity!
While endowed with combinatorial meaning, Kostant partition functions were
introduced in and are a vital part of representation theory: weight multiplicities
and tensor product multiplicities can be expressed in terms of the Kostant partition
function. Kostant partition functions also come up in toric geometry and analytic
residue theory.

Given the lack of understanding of the evaluation of the Kostant partition func-
tion, it seems a worthy proposition to provide a simple explanation for certain of
its divisibility properties. We explore divisibility properties of Kostant partition
functions of types An and Cn+1, noting that such properties in types Bn+1 and Dn+1

are easy consequences of the type Cn+1 case. A significant part of the type An
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family of identities we study first appeared in [Baldoni and Vergne 2008], where
the authors prove the identities using residues, and where they call the divisibility
property “mysterious.” It is our hope that the combinatorial argument we provide
successfully demystifies the divisibility property of the Kostant partition function
and provides a natural explanation for why things happen the way they do.

The outline of the paper is as follows. In Section 2 we define Kostant partition
functions of type An and prove a family of identities, including the Baldoni–Vergne
identities, combinatorially. Our proof is bijective, and as such it also yields an
affirmative answer to a question of Stanley [2000] regarding a possible bijective
proof of a special case of the Baldoni–Vergne identities. In Section 3 we define
Kostant partition functions of type Cn+1, relate them to flows, and show how to
modify our proof of the identities from Section 2 to obtain their analogues for type
Cn+1.

2. A family of Kostant partition function identities

In this section we prove a family of Kostant partition function identities exhibiting
divisibility properties. We start by proving Baldoni–Vergne identities, our proof of
which clearly points to several generalizations of these identities. We provide some
of these generalizations in this section, and some in the next.

The Baldoni–Vergne identities. Before stating the Baldoni–Vergne identities, we
need a few definitions. Throughout this section the graphs G we consider are on the
vertex set [n+ 1], possibly with multiple edges, but no loops. Denote by mi j the
multiplicity of edge (i, j), i < j , in G. To each edge (i, j), i < j , of G, associate
the positive type An root ei − e j , where ei is the i-th standard basis vector. Let
{{α1, . . . , αN }} be the multiset of vectors corresponding to the multiset of edges of
G as described above. Note that N =

∑
1≤i< j≤n+1 mi j .

The Kostant partition function KG evaluated at the vector a ∈ Zn+1 is defined as

(1) KG(a)= #
{
(bi )i∈[N ]

∣∣∣∣ ∑
i∈[N ]

biαi = a and bi ∈ Z≥0

}
.

That is, KG(a) is the number of ways to write the vector a as a nonnegative linear
combination of the positive type An roots corresponding to the edges of G, without
regard to order. Note that in order for KG(a) to be nonzero, the partial sums of the
coordinates of a have to satisfy a1+ · · ·+ ai ≥ 0, i ∈ [n], and a1+ · · ·+ an+1 = 0.

We now proceed to state and prove Theorem 1, which first appeared in [Baldoni
and Vergne 2008]. Baldoni and Vergne gave a proof of it using residues, and
called the result “mysterious”. We provide a natural combinatorial explanation
of the result. Our explanation also answers a question of Stanley [2000] in the
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affirmative, regarding a possible bijective proof of a special case of the Baldoni–
Vergne identities.

For brevity, we write G− e, or G−{e1, . . . , ek}, to mean a graph obtained from
G with the edge e, or the edges e1, . . . , ek , deleted.

Theorem 1 [Baldoni and Vergne 2008]. Given a connected graph G on the vertex
set [n+ 1] with mn−1,n = mn−1,n+1 = mn,n+1 = 1, and such that

m j,n−1+m j,n +m j,n+1

m j,n−1
= c for all j ∈ [n− 2],

for some constant c independent of j , we have

(2) KG(a)=
(

a1+ · · ·+ an−2

c
+ an−1+ 1

)
KG−(n−1,n)(a),

for any a =
(
a1, . . . , an,−

∑n
i=1 ai

)
∈ Zn+1.

Before proceeding to the formal proof of Theorem 1 we outline it, to fully expose
the underlying combinatorics. We introduce the notation

(3) Q(a) :=
a1+ · · ·+ an−2

c
+ an−1+ 1

for the factor in (2). Rephrasing Equation (1), KG(a) counts the number of flows
fG = (bi )i∈N on G satisfying∑

i∈[N ]

biαi = a and bi ∈ Z≥0.

In the proof of Theorem 1, we introduce the concept of partial flows fH , about
which we prove two key statements:

• The elements of the set of partial flows are in bijection with the flows on
G−(n−1, n) that the Kostant partition function KG−(n−1,n)(a) counts. That is,

# partial flows= KG−(n−1,n)(a).

• The elements of the multiset of partial flows fH — whose cardinality is Q(a)
times the cardinality of the set of partial flows — are in bijection with the flows
on G that the Kostant partition function KG(a) counts. That is,

Q(a) (# partial flows)= KG(a).

From these two statements we see that the two Kostant partition functions KG(a)
and KG−(n−1,n)(a) are connected by

KG(a)= Q(a)KG−(n−1,n)(a),

which is Equation (2).
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Proof of Theorem 1. Let {{α1, . . . , αN }} be the multiset of vectors corresponding to
the edges of G. Let αN = en−1− en , αN−1 = en−1− en+1, and αN−2 = en − en+1.
Then (2) can be rewritten as

(4) #
{
(bi )i∈[N ]

∣∣∣∣ N∑
i=1

biαi = a
}
= Q(a) #

{
(bi )i∈[N−1]

∣∣∣∣ N−1∑
i=1

biαi = a
}
,

where Q(a) is defined in (3).
We proceed to prove the equality (4) bijectively. The key concept we use is that

of a partial flow, which we now define.
Consider a flow fH = (bi )i∈[N−3] (bi ∈ Z≥0) on the edges of the graph

H := G−{(n−1, n), (n−1, n+1), (n, n+1)}.

We call fH partial if

(5)
N−3∑
i=1

biαi = (a1, . . . , an−2, xn−1, xn, xn+1),

for some xn−1, xn, xn+1 ∈ Z satisfying xn−1 ≤ an−1 and xn ≤ an .
Note that a given partial flow fH = (bi )i∈[N−3] can be extended uniquely to a flow

fG−{(n−1,n)}= (bi )i∈[N−1] (bi ∈Z≥0) on G−{(n−1, n)} such that
∑N−1

i=1 biαi = a.
Furthermore, each such flow arises from a uniquely determined partial flow. Denote
by f the map that takes a partial flow fH into a flow fG−{(n−1,n)} as just described.
See Figure 1 for an example. The observations above imply:

Claim 1. The map f establishes a bijection between the set of partial flows fH on
H and the set of flows on G−{(n− 1, n)} such that

∑N−1
i=1 biαi = a. In symbols,

(6) #
{
(bi )i∈[N−1]

∣∣∣∣ N−1∑
i=1

biαi = a
}
=

∑
fH

1,

where the summation runs over all partial flows fH .

2 3

1

1 0

0 2

2 3

1

1 0

0 2

3

1

f

Figure 1. Here G is the complete graph on 5 vertices and a =
(4, 3,−1, 1,−7). The flows are written immediately below the
corresponding edges. On the left is a partial flow fH and on the
right is its image under f .
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Note that the left-hand side of (6) is the same as the cardinality on the right-hand
side of (4).

Given a partial flow fH , denote by Yi ( fH ), for i ∈ {n− 1, n, n+ 1}, the total
inflow into vertex i ∈ {n− 1, n, n+ 1} in H , that is, the sum of all the flows bi on
edges of H incident to i ∈ {n− 1, n, n+ 1}. Note that a partial flow fH can be
extended in Yn−1( fH )+ an−1+ 1 ways to a flow fG = (bi )i∈[N ] (bi ∈ Z≥0) of G
such that

∑N
i=1 biαi = a. Furthermore, given a flow fG = (bi )i∈[N ] (bi ∈Z≥0) such

that
∑N

i=1 biαi = a, there is a unique partial flow fH = (bi )i∈[N−3] from which
it can be obtained. Therefore, the above establishes a map g which is a bijection
between the multiset of partial flows M such that each partial flow fH appears
exactly Yn−1( fH )+an−1+1 times in M, and the (multi)set of flows fG = (bi )i∈[N ]

(bi ∈ Z≥0) on G such that
∑N

i=1 biαi = a. See Figure 2 for an example. We thus
obtain

(7) #
{
(bi )i∈[N ]

∣∣∣∣ N∑
i=1

biαi = a
}
=

∑
fH

(
Yn−1( fH )+ an−1+ 1

)
= #M,

where the second summation runs over the set of partial flows fH .

2 3

1

1 0

0 2
2 3

1

1 0

0 2

2

11

2 3

1

1 0

0 2

3

10

2 3

1

1 0

0 2

1

12

2 3

1

1 0

0 2

0

13

g

Figure 2. Again G is the complete graph on 5 vertices and a =
(4, 3,−1, 1,−7). The flows are written immediately below the
corresponding edges. On the left is a partial flow fH and on the
right are the Yn−1( fH )+ an−1 + 1 = 4 images under g of the 4
copies of fH appearing in M.
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Claim 2. The map g just described establishes a bijection between the multiset M of
partial flows fH = (bi )i∈[N−3] and the (multi)set of flows fG = (bi )i∈[N ] (bi ∈ Z≥0)

on G such that
∑N

i=1 biαi = a. Moreover,

(8) #M= Q(a)
∑

fH

1,

where the summation runs over all partial flows fH .

We already showed that g is a bijection; there remains to show (8). Now, by
assumption we have

(9)
m j,n−1+m j,r +m j,n+1

m j,n−1
= c,

where c is independent of j ∈ [n− 2]; hence

(10) c
∑

fH

Yn−1( fH )=
∑

fH

(
Yn−1( fH )+ Yn( fH )+ Yn+1( fH )

)
=

∑
fH

(a1+ · · ·+ an−2),

that is,

(11)
∑

fH

Yn−1( fH )=
∑

fH

a1+ · · ·+ an−2

c
.

Adding an−1+ 1 to both summands and recalling (3) and the second equality in (7)
yields (8), completing the proof of Claim 2.

In light of (4) it is clear that Claims 1 and 2 together provide a bijective proof of
Theorem 1. In terms of equations this can also be seen as follows. Rewrite (7) as

(12) #
{
(bi )i∈[N ]

∣∣∣∣ N∑
i=1

biαi = a
}
= Q(a)

∑
fH

1

= Q(a) #
{
(bi )i∈[N−1]

∣∣∣∣ N−1∑
i=1

biαi = a
}
,

where the first equality uses (7) and (8), and the second equality uses (6). �

Further Kostant partition function identities. Several generalizations are sug-
gested by our proof of the Baldoni–Vergne identities. Here we present an immediate
one, Theorem 2; to ensure clarity we include its proof, which follows that of
Theorem 1. For brevity, we do not explicitly state the analogues of Claims 1 and 2
from the proof of Theorem 1, though it is easy to obtain them from our proof. In the
next section we present further generalizations of other types, but we omit the proofs.
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Theorem 2. Let G be a connected graph on the vertex set [n + 1]. Given k ≤ n,
suppose the graph S = (V (S), E(S)) defined by

V (S)= {k, k+ 1, . . . , n, n+ 1} ⊂ [n+ 1]

and

E(S)= {(i, j) ∈ E(G) | i < j, i ∈ V (S)}

satisfies these conditions: that

• outdegS( j) = 2 and indegS( j) = 0, for some k ≤ j ≤ n, and outdegS(i) = 1
for k ≤ i ≤ n, i 6= j .

• For some constant c independent of l ,

n+1∑
i=k

ml,i

ml, j
= c for all l ∈ [k− 1].

Let ( j, z) be one of the outgoing edges from j in S. Then

(13) KG(a)= Q′(a)KG−( j,z)(a),

for any a=
(
a1, . . . , an,−

∑n
i=1 ai

)
∈Zn+1, where Q′(a)= a1+· · ·+ak−1

c
+a j+1.

The most important cases of Theorem 2 are for k ≥ n− 1, since for k < n− 1
several of the edges of G can be “contracted” and reduced to the case k ≥ n− 1.
For k ≥ n− 1 we obtain four interesting cases from Theorem 2 depending on the
form of the graph S and the edge ( j, z). If we take

V (S)= {n−1, n, n+1} and E(S)= {(n−1, n), (n−1, n+1), (n, n+1)}

and ( j, z)= (n− 1, n), then Theorem 2 specializes to the original Baldoni–Vergne
identities, while other choices of S and ( j, z) lead to new identities.

Proof of Theorem 2. Let {{α1, . . . , αN }} be the multiset of vectors corresponding to
the edges of G such that the multiset of vectors corresponding to the edges of S are
{{αN − (n+ 1− k), . . . , αN }}. Also, let αN correspond to the edge ( j, z).

Consider a flow fH = (bi )i∈[N−(n+2−k)] (bi ∈ Z≥0) of the edges of the graph
H := ([n+ 1], E(G)\E(S)). We call fH partial if

N−(n+2−k)∑
i=1

biαi = (a1, . . . , ak−1, xk, xk+1, . . . , xn+1),

for some xi ∈ Z, k ≤ i ≤ n+ 1 satisfying xi ≤ ai , for k ≤ i ≤ n.
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A given partial flow fH = (bi )i∈[N−(n+2−k)], it can be extended uniquely to a
flow fG−{( j,z)} = (bi )i∈[N−1] (bi ∈ Z≥0) on G−{( j, z)} such that

∑N−1
i=1 biαi = a.

Furthermore, this correspondence is a bijection. Therefore,

(14) #
{
(bi )i∈[N−1]

∣∣∣∣ N−1∑
i=1

biαi = a
}
=

∑
fH

1,

where the summation runs over all partial flows fH .
Given a partial flow fH in H , we denote by Yi ( fH ), where i ∈{k, k+1, . . . , n+1},

the total inflow into vertex i , that is, the sum of all the flows bi on edges of H
incident to i . The partial flow fH can be extended in Y j ( fH )+ a j + 1 ways to a
flow fG = (bi )i∈[N ] (bi ∈ Z≥0) of G such that

∑N
i=1 biαi = a. Furthermore, given

a flow fG = (bi )i∈[N ] (bi ∈ Z≥0) such that
∑N

i=1 biαi = a, there is a unique partial
flow fH = (bi )i∈[N−(n+2−k)] from which it can be obtained. Therefore,

(15) #
{
(bi )i∈[N ]

∣∣∣∣ N∑
i=1

biαi = a
}
=

∑
fH

(
Y j ( fH )+ a j + 1

)
,

where the summation runs over all partial flows fH .
By assumption, we have

n+1∑
i=k

ml,i

ml, j
= c,

where c is independent of l ∈ [k− 1]; hence

c
∑

fH

Y j ( fH )=
∑

fH

n+1∑
i=k

Yi ( fH )=
∑

fH

(a1+ · · ·+ ak−1),

that is,

(16)
∑

fH

Y j ( fH )=
∑

fH

a1+ · · ·+ ak−1

c
.

Thus, (15) can be rewritten as

#
{
(bi )i∈[N ]

∣∣∣∣ N∑
i=1

biαi = a
}
=

∑
fH

(
a1+ · · ·+ ak−1

c
+ a j + 1

)

= Q′(a)
∑

fH

1= Q′(a) #
{
(bi )i∈[N−1]

∣∣∣∣ N−1∑
i=1

biαi = a
}
,

where the first equality uses (15) and (16), and the last equality uses (14). �



DEMYSTIFYING THE DIVISIBILITY OF KOSTANT PARTITION FUNCTIONS 223

3. Type Cn+1 Kostant partition functions and the Baldoni–Vergne identities

We now show two generalizations of Theorem 1 in the type Cn+1 case. We first
give the necessary definitions and explain the notion of flow in the context of signed
graphs. Throughout this section, the graphs G on the vertex set [n+1] we consider
are signed, that is there is a sign ε ∈ {+,−} assigned to each of its edges, with
possible multiple edges, and all loops labeled positive. Denote by (i, j,−) and
(i, j,+), i ≤ j , a negative and a positive edge, respectively. Denote by mε

i j the
multiplicity of edge (i, j, ε) in G, i ≤ j , ε ∈ {+,−}. To each edge (i, j, ε), i ≤ j ,
of G, associate the positive type Cn+1 root v(i, j, ε), where v(i, j,−)= ei−e j and
v(i, j,+)=ei+e j . Let {{α1, . . . , αN }} be the multiset of vectors corresponding to the
multiset of edges of G as described above. Note that N =

∑
1≤i< j≤n+1(m

−

i j +m+i j ).
The Kostant partition function KG evaluated at the vector a ∈ Zn+1 is defined as

KG(a)= #
{
(bi )i∈[N ]

∣∣∣∣ ∑
i∈[N ]

biαi = a and bi ∈ Z≥0

}
.

That is, KG(a) is the number of ways to write the vector a as a nonnegative linear
combination of the positive type Cn+1 roots corresponding to the edges of G,
without regard to order.

Just like in the type An case, we would like to think of the vector (bi )i∈[N ] as a
flow. For this we here give a precise definition of flows in the type Cn+1 case, of
which type An is of course a special case.

Let G be a signed graph on the vertex set [n + 1]. Let {{e1, . . . , eN }} be the
multiset of edges of G, and {{α1, . . . , αN }} the multiset of vectors corresponding
to the multiset of edges of G. Fix an integer vector a = (a1, . . . , an, an+1) ∈ Zn+1.
A nonnegative integer a-flow fG on G is a vector fG = (bi )i∈[N ] (bi ∈ Z≥0) such
that for all 1≤ i ≤ n+ 1, we have

(17)
∑
e∈E

inc(e,v)=−

b(e)+ av =
∑
e∈E

inc(e,v)=+

b(e)+
∑

e=(v,v,+)

b(e),

where b(ei )= bi , inc(e, v)=− if edge e = (g, v,−), g < v, and inc(e, v)=+ if
e = (g, v,+), g < v, or e = (v, j, ε), v < j , and ε ∈ {+,−}.

Call b(e) the flow assigned to edge e of G. If the edge e is negative, one can
think of b(e) units of fluid flowing on e from its smaller to its bigger vertex. If the
edge e is positive, then one can think of b(e) units of fluid flowing away both from
e’s smaller and bigger vertex to infinity. Edge e is then a “leak” taking away 2b(e)
units of fluid.

From the above explanation it is clear that if we are given an a-flow fG such that∑
e=(i, j,+),i≤ j b(e)= y, then a=

(
a1, . . . , an, 2y−

∑n
i=1 ai

)
. It is then a matter of

checking the definitions to see that for a signed graph G on the vertex set [n+1] and
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vector a =
(
a1, . . . , an, 2y−

∑n
i=1 ai

)
∈ Zn+1, the number of nonnegative integer

a-flows on G is equal to KG(a).
Thinking of KG(a) as the number of nonnegative integer a-flows on G, there is

a straightforward generalization of Theorem 1 in the type Cn+1 case:

Theorem 3. Given a connected signed graph G on the vertex set [n + 1] with
m−n−1,n = m−n−1,n+1 = m−n,n+1 = 1, m+j,n−1 = m+j,n = m+j,n+1 = 0, for j ∈ [n + 1],
and such that

m−j,n−1+m−j,n +m−j,n+1

m−j,n−1
= c for all j ∈ [n− 2],

for some constant c independent of j , we have

(18) KG(a)= Q′′(a)KG−(n−1,n)(a)

for any a =
(
a1, . . . , an, 2y−

∑n
i=1 ai

)
∈ Zn+1, where

Q′′(a)=
a1+ · · ·+ an−2− 2y

c
+ an−1+ 1.

The proof of Theorem 3 proceeds analogously to that of Theorem 1. Namely,
define partial flows fH = (bi )i∈[N−3] on

H := G−{(n− 1, n,−), (n− 1, n+ 1,−), (n, n+ 1,−)}

such that
N−3∑
i=1

biαi = (a1, . . . , an−2, xn−1, xn, xn+1),

for some xn−1, xn, xn+1 ∈ Z, such that xn−1 ≤ an−1, xn ≤ an and the sum of flows
on positive edges is y.

Then, one can prove:

• The elements of the set partial flows are in bijection with the nonnegative
integer a-flows on G− (n− 1, n). That is,

# partial flows= KG−(n−1,n)(a).

• The elements of the multiset of partial flows fH , whose cardinality is Q′′(a)
times the cardinality of the set of partial flows, are in bijection with the
nonnegative integer a-flows on G. That is,

Q′′(a) (# partial flows)= KG(a).

Thus,
KG(a)= Q′′(a)KG−(n−1,n)(a).
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We do not have to require that only negative edges are incident to the vertices
n− 1, n, n+ 1 in G, as the following theorem shows. The proof is analogous to
earlier ones.

Theorem 4. Given a connected signed graph G on the vertex set [n + 1] with
m−n−1,n = m−n−1,n+1 = m−n,n+1 = 1, m+i, j = 0, for i, j ∈ {n− 1, n, n+ 1}, and such
that

mε
j,n−1+mε

j,r +mε
j,n+1

mε
j,n−1

= c for all j ∈ [n− 2] and ε ∈ {+,−},

for some constant c independent of j , we have

(19) KG(a)=
(

a1+ · · ·+ an−2− 2y
c

+ an−1+ 1
)

KG−(n−1,n)(a)

for any a =
(
a1, . . . , an, 2y−

∑n
i=1 ai

)
∈ Zn+1.

Of course, Theorem 2 also has type Cn+1 generalizations and variations. We
invite the reader to write these out and check each step of the proof of Theorem 1
and see how they can be adapted.
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