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IN MEMORIAM
JONATHAN ROGAWSKI (1955–2011)

I do not ask to see the distant scene, one step enough for me.
John Henry Newman

Jonathan Rogawski is no more. In loving memory, his friends and collaborators
and admirers have contributed to this garland of articles that you will find in the
pages to follow. He was of course a gifted mathematician, one of the earliest
workers on the Langlands Program, but much more. He wrote papers, textbooks,
supervised students, and served for many years with great distinction as an editor
for the Pacific Journal of Mathematics.

During the last 10 years or so of his life he had a fight with cancer which he
faced with great equanimity, but which ended, as it so often does, in his passing
away. He was a source of great inspiration to his friends. A few days before his
death he was still conversing with friends, totally at peace with himself. To us, his
life is epitomized by John Henry Newman’s moving words from his hymn “Lead
kindly light”.

DON BLASIUS

UNIVERSITY OF CALIFORNIA, LOS ANGELES

blasius@math.ucla.edu

DINAKAR RAMAKRISHNAN

CALIFORNIA INSTITUTE OF TECHNOLOGY

dinakar@caltech.edu

V. S. VARADARAJAN

UNIVERSITY OF CALIFORNIA, LOS ANGELES

vsv@math.ucla.edu
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p-ADIC RANKIN L-SERIES AND RATIONAL POINTS
ON CM ELLIPTIC CURVES

MASSIMO BERTOLINI, HENRI DARMON AND KARTIK PRASANNA

Dedicated to the memory of Jon Rogawski

This article presents a new proof of a theorem of Karl Rubin relating values
of the Katz p-adic L-function of an imaginary quadratic field at certain
points outside its range of classical interpolation to the formal group loga-
rithms of rational points on CM elliptic curves. The approach presented
here is based on the p-adic Gross–Zagier type formula proved by the three
authors in previous work. As opposed to the original proof which relied on
a comparison between Heegner points and elliptic units, it only makes use
of Heegner points, and leads to a mild strengthening of Rubin’s original re-
sult. A generalization to the case of modular abelian varieties with complex
multiplication is also included.

1. Introduction

The aim of this article is to present a new proof of a theorem of Karl Rubin
(see [Rubin 1992] and Theorem 1 below) relating values of the Katz p-adic L-
function of an imaginary quadratic field at certain points outside its range of
classical interpolation to the formal group logarithms of rational points on CM
elliptic curves. This theorem has been seminal in providing a motivation for Perrin-
Riou’s formulation 1993; 2000 of the p-adic Beilinson conjectures. The new
proof described in this work is based on the p-adic Gross–Zagier type formula of
[Bertolini et al. 2012b], and only makes use of Heegner points as opposed to the
original proof, which relied on a comparison between Heegner points and elliptic
units. Hence, it should be adaptable to more general situations, for example to the
setting of general CM fields.

Let A be an elliptic curve over Q with complex multiplication by the ring of
integers of a quadratic imaginary field K . A classical result of Deuring identifies
the Hasse–Weil L-series L(A, s) of A with the L-series L(νA, s) attached to a

During the preparation of this article, KP was supported partially by NSF grants DMS-1015173 and
DMS-0854900.
MSC2010: 11G05, 11G40.
Keywords: p-adic L-functions, elliptic curves, rational points.
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Hecke character νA of K of infinity type (1, 0). When p is a prime which splits
in K and does not divide the conductor of A, the Hecke L-function L(νA, s) has
a p-adic analog, namely the Katz two-variable p-adic L-function attached to K .
It is a p-adic analytic function, denoted by ν 7→ Lp(ν), on the space of Hecke
characters equipped with its natural p-adic analytic structure. Section 3A recalls the
definition of this L-function: the values Lp(ν) at Hecke characters of infinity type
(1+ j1,− j2) with j1, j2 ≥ 0 are defined by interpolation of the classical L-values
L(ν−1, 0). Letting ν∗ := ν ◦ c, where c denotes complex conjugation on the ideals
of K , it is readily seen by comparing Euler factors that L(ν, s) = L(ν∗, s). A
similar equality need not hold in the p-adic setting, because the involution ν 7→ ν∗

corresponds to the map ( j1, j2) 7→ ( j2, j1) on weight space and therefore does not
preserve the lower right quadrant of weights of Hecke characters that lie in the range
of classical interpolation. Since νA lies in the domain of classical interpolation, the
p-adic L-value Lp(νA) is a simple multiple of L(ν−1

A , 0)= L(A, 1). Suppose that
it vanishes. (The Birch and Swinnerton-Dyer conjecture predicts then that A(Q) is
infinite; this is known to be true when the order of vanishing is exactly one.) The
value Lp(ν

∗

A) is a second, a priori more mysterious p-adic avatar of the leading
term of L(A, s) at s = 1. Rubin’s theorem gives a formula for this quantity in the
analytic rank-one case:

Theorem 1 [Rubin 1992]. Let νA be a Hecke character of type (1, 0) attached to an
elliptic curve A/Q with complex multiplication, and suppose that L(A, s) vanishes
to order one at the central point s = 1. Then there exists a global point P ∈ A(Q)
of infinite order such that

(1-1) Lp(ν
∗

A)=�p(A)−1 logωA
(P)2 (mod K×),

where

• �p(A) is the p-adic period attached to A as in Section 2C;

• ωA ∈�
1(A/Q) is a regular differential on A over Q, and logωA

: A(Qp)→Qp

denotes the p-adic formal group logarithm with respect to ωA.

(For a more precise statement without the K× ambiguity, see [Rubin 1992].)
Formula (1-1) is peculiar to the p-adic world and suggests that p-adic L-functions
encode arithmetic information that is not readily apparent in their complex counter-
parts.

Rubin’s proof of Theorem 1 breaks up naturally into three parts:

(1) He exploits the Euler system of elliptic units to construct a global cohomology
class κA belonging to a pro-p Selmer group Selp(A/Q) attached to A. The close
connection between elliptic units and the Katz p-adic L-function is then parlayed
into the explicit evaluation of two natural p-adic invariants attached to κA: the p-adic



p-ADIC RANKIN L -SERIES AND RATIONAL POINTS ON CM ELLIPTIC CURVES 263

formal group logarithm logA,p(κA) and the cyclotomic p-adic height 〈κA, κA〉:

logA,p(κA)= (1−β−1
p )−1Lp(ν

∗

A)�p(A),(1-2)

〈κA, κA〉 = (1−α−1
p )−2L′p(νA)Lp(ν

∗

A),(1-3)

where

• αp and βp denote the roots of the Hasse polynomial x2
−ap(A)x+ p, ordered

in such a way that ordp(αp)= 0 and ordp(βp)= 1;

• the quantity L′p(νA) denotes the derivative of Lp at νA in the direction of the
cyclotomic character.

(2) Independently of the construction of κA, the theory of Heegner points can be used
to construct a canonical point P ∈ A(Q), which is of infinite order when L(νA, s)=
L(A, s) vanishes to exact order one at s = 1. The Selmer group Selp(A/Q)⊗Q is
of rank one (by the results of Kolyvagin) and the image κP ∈Selp(A/Q) of P under
the connecting homomorphism of Kummer theory supplies us with a generator
for Selp(A/Q)⊗Q. Furthermore, the p-adic analog of the Gross–Zagier formula
proved by Perrin-Riou [1987] shows that

(1-4) 〈κP , κP〉 = L′p(νA)�p(A)−1 (mod K×).

Finally, a theorem of Bertrand shows that the p-adic height pairing is nondegenerate
in the above situation, that is, 〈κP , κP〉 6= 0. In particular, one concludes from (1-4)
that L′p(νA) 6= 0.

(3) Using that L′p(νA) is nonzero, Rubin shows that κA is nonzero in Selp(A/Q)⊗Q

and therefore is a second generator of this one-dimensional Qp-vector space. (See
Theorem 8.1 and Corollary 8.3 of [Rubin 1992].) Equations (1-2) and (1-3) then
show that Lp(ν

∗

A) 6= 0, and further, for any generator κ of the Qp-vector space
Selp(A/Q)⊗Q, one has

(1-5)
log2

A,p(κ)

〈κ, κ〉
=
(1−β−1

p )−2Lp(ν
∗

A)�p(A)2

(1−α−1
p )−2L′p(νA)

,

since the quantity on the left-hand side does not depend on the choice of κ . Rubin
obtains Theorem 1 by setting κ = κP in (1-5) and using (1-4) to eliminate the
quantities 〈κP , κP〉 and L′p(νA).

The reader will note the key role that is played in Rubin’s proof by both the Euler
systems of elliptic units and of Heegner points. The new approach to Theorem 1
described in this paper relies solely on Heegner points, and requires neither elliptic
units nor Perrin-Riou’s p-adic height calculations. Instead, the key ingredient in this
approach is the p-adic variant of the Gross–Zagier formula, arising from the results
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of [Bertolini et al. 2012b], which is stated in Theorem 3.12. This formula expresses
p-adic logarithms of Heegner points in terms of the special values of a p-adic
Rankin L-function attached to a cusp form f and an imaginary quadratic field K ,
and may be of some independent interest insofar as it exhibits a strong analogy with
Rubin’s formula but applies to arbitrary — not necessarily CM — elliptic curves
over Q. When f is the theta series attached to a Hecke character of K , Theorem 1
follows from the factorization of the associated p-adic Rankin L-function into a
product of two Katz L-functions, a factorization which is a simple manifestation of
the Artin formalism for these p-adic L-series.

One might expect that the statement of Theorem 1 should generalize to the setting
where νA is replaced by an algebraic Hecke character ν of infinity type (1, 0) of a
quadratic imaginary field K (of arbitrary class number) satisfying

(1-6) ν|AQ
= εK · N,

where εK is the quadratic Dirichlet character associated to K/Q and N :A×
Q
→R×

is the adelic norm character. Chapter 3 treats this more general setting, which
(although probably amenable as well to the original methods of [Rubin 1992]) is not
yet covered in the literature. Assumption (1-6) implies that the classical functional
equation relates L(ν, s) to L(ν, 2− s). Assume further that the sign wν in this
functional equation satisfies

(1-7) wν =−1,

so that L(ν, s) vanishes to odd order at s = 1. For technical reasons, it will also be
convenient to make two further assumptions. Firstly, we assume that

(1-8) the discriminant −D of K is odd.

Secondly, we note that assumption (1-6) implies that dK :=
√
−D necessarily

divides the conductor of ν, and we further restrict the setting by imposing the
assumption that

(1-9) the conductor of ν is exactly divisible by dK .

The statement of Theorem 2 below requires some further notions, which we now
introduce. Let Eν be the subfield of C generated by the values of the Hecke character
ν, and let Tν be its ring of integers. A general construction which is recalled in
Sections 2B and 3F attaches to ν an abelian variety Bν over K of dimension [Eν : K ],
equipped with inclusions

Tν ⊂ EndK (Bν), Eν ⊂ EndK (Bν)⊗Q.
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Given λ ∈ Tν , denote by [λ] the corresponding endomorphism of Bν , and set

�1(Bν/Eν)Tν := {ω ∈�1(Bν/Eν) | [λ]∗ω = λω, for all λ ∈ Tν},(1-10)

(Bν(K )⊗ Eν)Tν := {P ∈ Bν(K )⊗Z Eν | [λ]P = λP, for all λ ∈ Tν}.(1-11)

The vector space �1(Bν/Eν)Tν is one-dimensional over Eν .
After fixing a p-adic embedding K ⊂ Qp, the formal group logarithm on Bν

gives rise to a bilinear pairing

〈 , 〉 :�1(Bν/K )× Bν(K )→Qp,

(ω, P) 7→ logω P,

satisfying 〈[λ]∗ω, P〉 = 〈ω, [λ]P〉 for all λ ∈ Tν . This pairing can be extended by
Eν-linearity to an Eν ⊗Qp-valued pairing between �1(Bν/Eν) and Bν(K )⊗ Eν .
When ω and P belong to these Eν-vector spaces, we will continue to write logω(P)
for 〈ω, P〉.

Theorem 2. Let ν be an algebraic Hecke character of infinity type (1, 0) satisfying
(1-6), (1-7), (1-8) and (1-9) above. Then there exists Pν ∈ Bν(K )⊗Q such that

Lp(ν
∗)=�p(ν

∗)−1 logων (Pν)
2 (mod E×ν ),

where �p(ν
∗) ∈ Cp is the p-adic period attached to ν in Definition 2.13, and

ων is a nonzero element of �1(Bν/Eν)Tν . The point Pν is nonzero if and only if
L ′(ν, 1) 6= 0.

Remark 3. Assumptions (1-8) and (1-9) could certainly be relaxed with more work.
For instance, (1-8) is needed since the main theorem of [Bertolini et al. 2012b] is
only proved for imaginary quadratic fields of odd discriminant. Likewise, removing
(1-9) would require generalizing the cited result to the case of Shimura curves
over Q.

Remark 4. In [Bertolini et al. 2012c], we give a conjectural construction of ratio-
nal points on CM elliptic curves (called Chow–Heegner points) using cycles on
higher-dimensional varieties. While this construction of points is contingent on
a certain case of the Tate conjecture, the corresponding construction at the level
of cohomology classes can be made unconditionally. The results of this paper
(especially Theorem 2 above) combined with those of [Bertolini et al. 2012b] are
used in [Bertolini et al. 2012c] to establish that these cohomology classes indeed
correspond to global points via the Kummer map.

The careful reader will notice that the hypothesis in Theorem 2 on the order
of vanishing of L(ν, s) is weaker than that in [Rubin 1992], since L(ν, s) is only
assumed to vanish to odd order rather than to exact order one. In the case that
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the order of vanishing is at least 3, the point Pν (which comes from a Heegner
construction) is torsion, so Theorem 2 just says that Lp(ν

∗)= 0.

Corollary 5. Let ν be an algebraic Hecke character of infinity type (1, 0) satisfying
(1-6), (1-7), (1-8) and (1-9) above. Suppose that Lp(ν

∗) 6= 0. Then

(1) L(ν, s) vanishes to exact order one at the center s = 1.

(2) (Bν(K )⊗ Eν)Tν is one-dimensional over Eν .

(3) The Shafarevich–Tate group X(Bν) is finite.

Indeed, the nonvanishing of Lp(ν
∗) implies that a Heegner point on Aν is

nontorsion, and the conclusion then follows from results of Gross–Zagier and
Kolyvagin (see [Kolyvagin 1990; Kolyvagin and Logachëv 1989]). Corollary 5
appears to be new; it would be interesting to see if it can also be obtained via the
more indirect methods of [Rubin 1992].

Remark 6. The methods used in the proof of Theorem 2 also give information
about the special values Lp(ν

∗) for Hecke characters ν of type (1+ j,− j) satisfying
(1-6) with j ≥ 0. A discussion of this point will be taken up in future work. (See
[Bertolini et al. 2012a].)

The results of this article concern p-adic L-functions for the unitary group U(1);
its proofs rely on p-adic L-functions for the unitary group U(2), as well as the
theorem of Waldspurger relating periods of automorphic forms on U(2) along an
embedded U(1) to central values of Rankin–Selberg L-functions, the latter being
the main ingredient in the proof of the main result of [Bertolini et al. 2012b]. One
should expect fruitful generalizations of the present work to the setting of higher-
dimensional unitary groups. The authors are therefore pleased to dedicate this
article to the memory of Jon Rogawski, whose deep ideas on automorphic forms,
periods and L-functions for unitary groups are destined to play a key role in such
eventual generalizations.

2. Hecke characters and periods

Throughout this article, all number fields that arise are viewed as being embedded
in a fixed algebraic closure Q̄ of Q. A complex embedding Q̄→ C and p-adic
embeddings Q̄→ Cp for each rational prime p are also fixed from the outset, so
that any finite extension of Q is simultaneously realized as a subfield of C and
of Cp.

2A. Algebraic Hecke characters. We will briefly recall some key definitions re-
garding algebraic Hecke characters, mainly to fix notation. The reader is referred
to [Schappacher 1988, Chapter 0] for more details. Let K and E be number fields.
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Given a Z-linear combination

φ =
∑
σ

nσσ ∈ Z[Hom(K , Q̄)]

of embeddings of K into Q̄, we define

αφ :=
∏
σ

(σα)nσ ,

for all α ∈ K×. Let If denote the group of fractional ideals of K which are prime
to a given integral ideal f of K , and let

Jf := {(α) | α >> 0 and α− 1 ∈ f} ⊆ If.

Definition 2.1. An E-valued algebraic Hecke character (or simply Hecke character)
of K of infinity type φ and conductor dividing f is a homomorphism

χ : If→ E×

such that

(2-1) χ((α))= αφ, for all (α) ∈ Jf.

The smallest integral ideal g such that χ can be extended to a Hecke character of
conductor dividing g is called the conductor of χ , and is denoted fχ .

The most basic examples of algebraic Hecke characters are the norm characters
on Q and on K respectively, which are given by

N((a))= |a|, NK := N ◦NK
Q .

Note that the infinity type φ of a Hecke character χ must be trivial on all totally
positive units congruent to 1 mod f. Hence, the existence of such a χ implies
there is an integer w(χ) (called the weight of χ or of φ) such that for any choice of
embedding of Q̄ into C,

nσ + nσ̄ = w(χ), for all σ ∈ Hom(K , Q̄).

Let Uf ⊂U ′f ⊂ A×K be the subgroups defined by

U ′f :=
{
(xv) ∈ A×K

∣∣∣∣ xv ≡ 1 (mod f) for all v |f,
xv > 0 for all real v

}
and

Uf := {(xv) ∈U ′f | xv ∈ O×Kv
, for all nonarchimedean v}.

A Hecke character χ of conductor dividing f may also be viewed as a character on
A×K /Uf (denoted by the same symbol by a common abuse of notation),

(2-2) χ : A×K /Uf→ E×, satisfying χ |K× = φ.
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To wit, given x ∈A×K , we define χ(x) by choosing α ∈ K× such that αx belongs to
U ′f , and setting

(2-3) χ(x)= χ(i(αx))φ(α)−1,

where the symbol i(x) denotes the fractional ideal of K associated to x . This
definition is independent of the choice of α by (2-1). In the opposite direction,
given a character χ as in (2-2), we can set

χ(a)= χ(x) for any x ∈U ′f such that i(x)= a.

The subfield of E generated by the values of χ on If is easily seen to be independent
of the choice of f and will be denoted Eχ .

Definition 2.2. The central character εη of a Hecke character η of K is the finite-
order character of Q given by

η|A×
Q
= εη · Nw(η).

The infinity type φ defines a homomorphism ResK/Q(Gm)→ ResE/Q(Gm) of
algebraic groups, and therefore induces a homomorphism

φA : A
×

K → A×E

on adelic points. Given a Hecke character χ with values in E and a place λ of E
(either finite or infinite), we may use φA to define an idèle class character

χλ : A
×

K /K×→ E×λ ,

by setting
χλ(x)= χ(x)/φA(x)λ.

If λ is an infinite place, the character χλ is a Grossencharacter of K of type A0. If λ
is a finite place, then χλ factors through Gab

K and gives a Galois character (denoted
by ρχ,λ) valued in E×λ , satisfying

ρχ,λ(Frobp)= χ(p)

for any prime ideal p of K not dividing fλ.
Let g be any integral ideal of K . The L-function and L-function with modulus g

attached to χ are defined by

L(χ, s)=
∏
p

(
1−

χ(p)

Nps

)−1
, Lg(χ, s)=

∏
p-g

(
1−

χ(p)

Nps

)−1
.

Note that L(χ, s)= L fχ (χ, s).
The following definition will only be used in Section 3F.
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Definition 2.3. Let E =
∏

i Ei be a product of number fields. An E-valued alge-
braic Hecke character of conductor dividing f is a character

χ : If→ E×

whose projection to each component Ei is an algebraic Hecke character in the sense
defined above.

2B. Abelian varieties associated to characters of type (1, 0). In this section, we
limit the discussion to the case where K is an imaginary quadratic field. Let
τ : K 7→ C be the given complex embedding of K . A Hecke character of infinity
type φ = nτ τ + nτ̄ τ̄ will also be said to be of infinity type (nτ , nτ̄ ).

Let ν be a Hecke character of K of infinity type (1, 0) and conductor fν , let
Eν ⊃ K denote the subfield of Q̄ generated by its values, and let Tν be the ring
of integers of Eν . The Hecke character ν gives rise to a compatible system of
one-dimensional `-adic representations of G K with values in (Eν ⊗Q`)

×, denoted
ρν,`, satisfying

ρν,`(σa)= ν(a), for all a ∈ Ifν`,

where σa ∈ Gal(K̄/K ) denotes the Frobenius conjugacy class attached to a. The
theory of complex multiplication realizes the representations ρν,` on the division
points of CM abelian varieties:

Definition 2.4. A CM abelian variety over K is a pair (B, E) where

(1) B is an abelian variety over K ;

(2) E is a product of CM fields equipped with the structure of a K -algebra and an
inclusion

i : E→ EndK (B)⊗Q

satisfying dimK (E)= dim B;

(3) for all λ∈K ⊂ E , the endomorphism i(λ) acts on the cotangent space�1(B/K )
as multiplication by λ.

The abelian varieties (B, E) over K with complex multiplication by a fixed E form
a category denoted CMK ,E in which a morphism from B1 to B2 is a morphism
j : B1→ B2 of abelian varieties over K for which the diagrams

B1
j //

e
��

B2

e
��

B1
j // B2
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commute, for all e ∈ E which belong to both EndK (B1) and EndK (B2). An isogeny
in CMK ,E is simply a morphism in this category arising from an isogeny on the
underlying abelian varieties.

If (B, E) is a CM abelian variety, its endomorphism ring over K contains a
finite-index subring T 0 of the integral closure T of Z in E . After replacing B by the
K -isogenous abelian variety HomT0(T, B), we can assume that EndK (B) contains
T . This assumption, which is occasionally convenient, will consistently be made
from now on.

Let (B, E) be a CM-abelian variety with E a field, and let E ′ ⊃ E be a finite
extension of E with ring of integers T ′. The abelian variety B⊗T T ′ is defined to
be the variety whose L-rational points, for any L ⊃ K , are given by

(B⊗T T ′)(L)= (B(Q̄)⊗T T ′)Gal(Q̄/L).

This abelian variety is equipped with an action of T ′ by K -rational endomorphisms,
described by multiplication on the right, and therefore (B⊗T T ′, E ′) is an object
of CMK ,E ′ . Note that B⊗T T ′ is isogenous to t := dimE(E ′) copies of B, and that
the action of T on B⊗T T ′ agrees with the “diagonal” action of T on B t .

Let ` be a rational prime. For each CM abelian variety (B, E), let

T`(B) := lim
←,n

B[`n
](K̄ ), V`(B) := T`(B)⊗Z` Q`

be the `-adic Tate module and `-adic representation of G K attached to B. The
Q`-vector space V`(B) is a free E ⊗Q`-module of rank one via the action of E
by endomorphisms. The natural action of G K := Gal(K̄/K ) on V`(B) commutes
with this E ⊗Q`-action, and the collection {V`(B)} thus gives rise to a compatible
system of one-dimensional `-adic representations of G K with values in (E⊗Q`)

×,
denoted ρB,`. We note in passing that for any extension E ′ ⊃ E where T ′ is the
integral closure of T in E ′, we have

T`(B⊗T T ′)= T`(B)⊗T T ′, V`(B⊗T T ′)= V`(B)⊗E E ′.

The following result is due to Casselman (cf. [Shimura 1971, Theorem 6]).

Theorem 2.5. Let ν be a Hecke character of K of type (1, 0) as above, and let ρν,`
be the associated one-dimensional `-adic representation with values in (Eν⊗Q`)

×.
Then:

(1) There exists a CM abelian variety (Bν, Eν) satisfying

ρBν ,` ' ρν,`.

(2) The CM abelian variety Bν is unique up to isogeny over K . More generally, if
(B, E) is any CM abelian variety with E ⊃ Eν satisfying ρB,` ' ρν,`⊗Eν E as
(E⊗Q`)[G K ]-modules, then there is an isogeny in CMK ,E from B to Bν⊗Tν T .



p-ADIC RANKIN L -SERIES AND RATIONAL POINTS ON CM ELLIPTIC CURVES 271

Let ψ be a Hecke character of infinity type (1, 0), and let χ be a finite-order
Hecke character of K , so that ψχ−1 also has infinity type (1, 0). In comparing the
abelian varieties Bψ and Bψχ−1 , it is useful to introduce a CM abelian variety Bψ,χ
over K , which we now describe.

Let Eχ denote the field generated by K and the values of χ . We denote by Eψ,χ
the compositum of Eψ and Eχ , and by Tψ,χ ⊂ Eψ,χ its ring of integers. We also
write Hχ for the abelian extension of K which is cut out by χ viewed as a Galois
character of G K . Consider first the abelian variety over K with endomorphisms by
Tψ,χ :

B0
ψ,χ := Bψ ⊗Tψ Tψ,χ .

The natural inclusion iψ : Tψ → Tψ,χ induces a morphism

(2-4) i : Bψ → B0
ψ,χ

with finite kernel, which is compatible with the Tψ -actions on both sides and is
given by

i(P)= P ⊗ 1.

Lemma 2.6. Let F be any number field containing Eψ,χ . With notations as in
Equation (1-10) of the Introduction, the restriction map i∗ induces an isomorphism

(2-5) i∗ :�1(B0
ψ,χ/F)Tψ,χ →�1(Bψ/F)Tψ

of one-dimensional F-vector spaces.

Proof. The fact that Bψ and B0
ψ,χ are CM abelian varieties over F implies that

the spaces �1(Bψ/F) and �1(B0
ψ,χ/F) of regular differentials over F are free of

rank one over Tψ ⊗OK F and Tψ,χ ⊗OK F respectively. In particular, the source
and target in (2-5) are both one-dimensional over F . The space �1(B0

ψ,χ/F) is
canonically identified with HomTψ (Tψ,χ , �

1(Bψ/F)), and under this identification,
the pullback

i∗ :�1(B0
ψ,χ/F)→�1(Bψ/F)

corresponds to the natural restriction

HomTψ (Tψ,χ , �
1(Bψ/F))→�1(Bψ/F)

sending the function ϕ to ϕ(1). (To see this, consider the map i∗ on tangent spaces
and dualize.) It follows directly from this description that

ker(i∗)∩�1(B0
ψ,χ/F)Tψ,χ = 0;

hence the restriction of i∗ to the one-dimensional F-vector space �1(B0
ψ,χ/F)Tψ,χ

is injective. �
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Fix ωψ ∈�1(Bψ/Eψ)Tψ and define ω0
ψ,χ ∈�

1(B0
ψ,χ/Q̄)

Tψ,χ by

(2-6) i∗(ω0
ψ,χ )= ωψ .

It follows from Lemma 2.6 that such an ω0
ψ,χ exists and is unique (once ωψ has

been fixed), and further that ω0
ψ,χ belongs to �1(B0

ψ,χ/Eψ,χ ).
The character χ−1

: Gal(Hχ/K )→ T×χ can be viewed as a one-cocycle in

H 1(Gal(Hχ/K ), T×ψ,χ
)
⊂ H 1(Gal(Hχ/K ),AutK (B0

ψ,χ )
)
.

Let

(2-7) Bψ,χ := (B0
ψ,χ )

χ−1

denote the twist of B0
ψ,χ by this cocycle. There is a natural identification B0

ψ,χ (K̄ )=
Bψ,χ (K̄ ) of sets, arising from an isomorphism of varieties over Hχ , where Hχ is
the extension of K cut out by χ . The actions of G K on B0

ψ,χ (K̄ ) and Bψ,χ (K̄ ),
denoted ∗0 and ∗ respectively, are related by

(2-8) σ ∗ P = (σ ∗0 P)⊗χ−1(σ ), for all σ ∈ G K .

In particular, for any L ⊃ K , we have

(2-9) Bψ,χ (L)=
{

P ∈ Bψ(Q̄)⊗Tψ Tψ,χ
∣∣ σ P = P ·χ(σ), for all σ ∈Gal(Q̄/L)

}
.

Likewise, the natural actions of G K on �1(B0
ψ,χ/K̄ ) and on �1(Bψ,χ/K̄ ) are

related by

(2-10) σ ∗ω = [χ−1(σ )]∗(σ ∗0 ω) for all σ ∈ G K .

The isomorphism of B0
ψ,χ and Bψ,χ as CM abelian varieties over Hχ gives

natural identifications

�1(B0
ψ,χ/Hχ )=�1(Bψ,χ/Hχ ), �1(B0

ψ,χ/E ′ψ,χ )
Tψ,χ =�1(Bψ,χ/E ′ψ,χ )

Tψ,χ ,

where E ′ψ,χ denotes the subfield of Q̄ generated by Hχ and Eψ,χ .
Let ωψ,χ be any generator of�1(Bψ,χ/Eψ,χ )Tψ,χ as an Eψ,χ -vector space. Since

ω0
ψ,χ (defined in (2-6)) and ωψ,χ both generate �1(Bψ,χ/E ′ψ,χ )

Tψ,χ as an E ′ψ,χ -
vector space, they necessarily differ by a nonzero scalar in E ′ψ,χ . To spell out the
relation between ω0

ψ,χ and ωψ,χ more precisely, it will be useful to introduce the
notion of a generalized Gauss sum attached to any finite-order character χ of G K .
Given such a character, let

E{χ} :=
{
λ ∈ Eχ Hχ

∣∣ λσ = χ(σ)λ for all σ ∈ Gal(Eχ Hχ/Eχ )
}
.
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This set is a one-dimensional Eχ -vector space in a natural way. It is not closed
under multiplication, but

(2-11) E{χ1} · E{χ2} = E{χ1χ2} (mod (Eχ1 Eχ2)
×).

Definition 2.7. An Eχ -vector space generator of E{χ} is called a Gauss sum
attached to the character χ , and is denoted g(χ).

By definition, the Gauss sum g(χ) belongs to E{χ} ∩ (Eχ Hχ )×, but is only
well-defined up to multiplication by E×χ . It follows from (2-11) that
(2-12)

g(χ1χ2)= g(χ1)g(χ2) (mod (Eχ1 Eχ2)
×), g(χ−1)= g(χ)−1 (mod E×χ ).

The following lemma pins down the relationship between the differentials ω0
ψ,χ

and ωψ,χ .

Lemma 2.8. For all Hecke characters ψ and χ as above,

ωψ,χ = g(χ)ω0
ψ,χ (mod E×ψ,χ ).

Proof. Let λ ∈ (Hχ Eψ,χ )× be the scalar satisfying

(2-13) ωψ,χ = λω
0
ψ,χ .

Since ωψ,χ is an Eψ,χ -rational differential on Bψ,χ , for all σ ∈ Gal(K̄/Eψ,χ ) we
have

(2-14) ωψ,χ = σ ∗ωψ,χ = [χ
−1(σ )]∗σ ∗0 ωψ,χ = χ

−1(σ )λσω0
ψ,χ ,

where the second equality follows from (2-10) and the last from the fact that the
differential ω0

ψ,χ belongs to �1(B0
ψ,χ/Eψ,χ )Tψ,χ . Comparing (2-13) and (2-14)

gives λσ = χ(σ)λ, and hence λ= g(χ) (mod E×ψ,χ ). �

The following lemma relates the abelian varieties Bψ,χ and Bν , where ν=ψχ−1.

Lemma 2.9. There is an isogeny defined over K :

iν : Bψ,χ → Bν ⊗Tν Tψ,χ ,

which is compatible with the action of Tψ,χ by endomorphisms on both sides.

Proof. The pair (B0
ψ,χ , Eψ,χ ) is a CM abelian variety having ψ (viewed as taking

values in Eψ,χ ) as its associated Hecke character. The Hecke character attached
to the Galois twist Bψ,χ is therefore ψχ−1

= ν. The second part of Theorem 2.5
implies that Bψ,χ and Bν⊗Tν Tψ,χ are isogenous over K as CM abelian varieties. �
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2C. Complex periods and special values of L-functions. This section recalls cer-
tain periods attached to the quadratic imaginary field K and to Hecke characters of
this field. We begin by fixing:

(1) An elliptic curve A with complex multiplication by OK , defined over a finite
extension F of K . (Note that F necessarily contains the Hilbert class field
of K .)

(2) A regular differential ωA ∈�
1(A/F).

(3) A nonzero element γ of H1(A(C),Q).

The complex period attached to this data is defined by

(2-15) �(A) := 1
2π i

∫
γ

ωA.

Note that �(A) depends on the pair (ωA, γ ). A different choice of ωA or γ has the
effect of multiplying �(A) by a scalar in F×, and therefore �(A) can be viewed
as a well-defined element of C×/F×.

For any Hecke character ψ of K , recall that ψ∗ is the Hecke character defined
as in the Introduction by ψ∗(x)= ψ(x̄). Suppose that ψ is of infinity type (1, 0),
and as before let Eψ ⊂ Q̄ ⊂ C denote the field generated by the values of ψ (or,
equivalently, ψ∗). Choose (arbitrary) nonzero elements

ωψ ∈�
1(Bψ/Eψ)Tψ , γ ∈ H1(Bψ(C),Q),

with Bψ the CM abelian variety attached to ψ by Theorem 2.5, and �1(Bψ/Eψ)Tψ

defined in (1-10). The period �(ψ∗) attached to ψ∗ is defined by setting

�(ψ∗)=
1

2π i

∫
γ

ωψ (mod E×ψ ).

Note that the complex number �(ψ∗) does not depend, up to multiplication by E×ψ ,
on the choices of ωψ and γ that were made to define it.

Lemma 2.10. Ifψ is a Hecke character of infinity type (1, 0), and χ is a finite-order
character, then

(2-16) �(ψ∗χ)=�(ψ∗)g(χ∗)−1 (mod E×ψ,χ ).

Proof. Choose a nonzero generator γ of H1(B0
ψ,χ (C),Q) = H1(Bψ,χ (C),Q)

(viewed as a one-dimensional Eψ,χ vector space via the endomorphism action). By
definition,

�
(
(ψχ−1)∗

)
=

∫
γ

ωψ,χ = g(χ)

∫
γ

ω0
ψ,χ = g(χ)�(ψ∗) (mod E×ψ,χ ),

where the second equality follows from Lemma 2.8. The result now follows after
substituting χ∗−1 for χ . �
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As in [Schappacher 1988, §1.8], one can also attach a period�(ψ) to an arbitrary
Hecke character ψ of K ; these satisfy the following relations:

Proposition 2.11. Let ψ be a Hecke character of infinity type (k, j). Then

(1) The ratio
�(ψ∗)

(2π i) j�(A)k− j

is algebraic.

(2) For all ψ and ψ ′,

�(ψψ ′)=�(ψ)�(ψ ′) (mod E×ψ,ψ ′),

where Eψ,ψ ′ is the subfield of Q̄ generated by Eψ and Eψ ′ .

The following theorem is due to Goldstein and Schappacher [1981] in certain
cases and Blasius [1986] in the general case (even CM fields).

Theorem 2.12. Suppose that ψ has infinity type (k, j) with k > j , and that m is a
critical integer for L(ψ−1, s). Then

L(ψ−1,m)
(2π i)m�(ψ∗)

belongs to Eψ ,

and for all τ ∈ Gal(Eψ/K ),(
L(ψ−1,m)
(2π i)m�(ψ∗)

)τ
=

L
(
(ψ−1)τ ,m

)
(2π i)m�

(
(ψ∗)τ

) .
Here the action of τ ∈ Gal(Eψ/K ) on ψ−1 and ψ∗ is defined by viewing them as
Eχ -valued characters on ideals and applying τ to their values.

2D. p-adic periods. Fix a prime p that splits in K . We will need p-adic analogs
of the periods �(A) and �(ν∗). The p-adic analog �p(A) of �(A) is obtained
by considering the base change ACp of A to Cp (via our fixed embedding of F
into Cp). Assume that A has good reduction at the maximal ideal of OCp , that is,
that ACp extends to a smooth proper model AOCp

over OCp . The p-adic completion
ÂOCp

of A along its special fiber is isomorphic to Ĝm . Following [de Shalit 1987,
II, §4.4], choose an isomorphism ιp : Â→ Ĝm over OCp , and define �p(A) ∈ C×p
by the rule

(2-17) ωA =�p(A) · ι∗p(du/u),

where u is the standard coordinate on Ĝm . The invariant �p(A) ∈ C×p thus defined
depends on the choices of ωA and ιp, but only up to multiplication by a scalar
in F×. Observe also that �(A) and �p(A) each depend linearly in the same way
on the choice of the global differential ωA.
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The p-adic period �p(A) can be used to define p-adic analogs of the complex
periods that appear in the statement of Theorem 2.12.

Definition 2.13. Let ν be a Hecke character of K of type (1, 0). The p-adic period
�p(ν

∗) is defined by

�p(ν
∗) :=�p(A) ·

�(ν∗)

�(A)
.

More generally, for any character ν of infinity type (k, j), we define

�p(ν
∗) :=�p(A)k− j

·
�(ν∗)

(2π i) j�(A)k− j .

It can be seen from this definition that the period �p(ν
∗), like its complex

counterpart �(ν∗), is well-defined up to multiplication by a scalar in E×ν . The
following p-adic analog of Lemma 2.10 is a direct consequence of this lemma
combined with the definition of �p(ψ):

Lemma 2.14. If ψ is a Hecke character of infinity type (1, 0), and χ is a finite
order character, then

(2-18) �p(ψ
∗χ)=�p(ψ

∗)g(χ∗)−1 (mod E×ψ,χ ).

Likewise, Proposition 2.11 implies:

Proposition 2.15. Let ψ be a Hecke character of infinity type (k, j). Then:

(1) The ratio
�p(ψ

∗)

(2π i) j�p(A)k− j

is algebraic.

(2) For all ψ and ψ ′,

(2-19) �p(ψψ
′)=�p(ψ)�p(ψ

′) (mod E×ψ,ψ ′).

3. p-adic L-functions and Rubin’s formula

3A. The Katz p-adic L-function. Throughout this chapter, we will fix a prime p
that is split in K . Let c be an integral ideal of K which is prime to p, and let 6(c)
denote the set of all Hecke characters of K of conductor dividing c. Denote by p

the prime above p corresponding to the chosen embedding K ↪→ Q̄p.
A character ν ∈6(c) is called a critical character if L(ν−1, 0) is a critical value

in the sense of Deligne, that is, if the 0-factors that arise in the functional equation
for L(ν−1, s) are nonvanishing and have no poles at s = 0. The set 6crit(c) of
critical characters can be expressed as the disjoint union

6crit(c)=6
(1)
crit(c)∪6

(2)
crit(c),
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Figure 1. Critical infinity types for the Katz p-adic L-function.

where

6
(1)
crit(c)= {ν ∈6(c) of type (`1, `2) with `1 ≤ 0, `2 ≥ 1},

6
(2)
crit(c)= {ν ∈6(c) of type (`1, `2) with `1 ≥ 1, `2 ≤ 0}.

The possible infinity types of Hecke characters in 6(2)crit(c) lie in the shaded region
in Figure 1 whose reflection about the principal diagonal corresponds likewise to
6
(1)
crit(c). Note in particular that when c= c̄, the regions 6(1)crit(c) and 6(2)crit(c) are inter-

changed by the involution ν 7→ ν∗. The set 6crit(c) is endowed with a natural p-adic
topology as described in Section 5.2 of [Bertolini et al. 2012b]. The subsets 6(1)crit(c)

and 6(2)crit(c) are each dense in the completion 6̂crit(c) relative to this topology.
Recall that p is the prime above p induced by our chosen embedding of K

into Cp. The following theorem on the existence of the p-adic L-function is due to
Katz. The statement below is a restatement of [de Shalit 1987, II, Theorem 4.14]
with a minor correction, and restricted to characters unramified at p. We remark
that since our characters are unramified at p, the Gauss sum in the interpolation
formula in [loc. cit.] is equal to 1.

Theorem 3.1. There exists a p-adic analytic function ν 7→ Lp,c(ν) (valued in Cp)
on 6̂crit(c) which is determined by the interpolation property
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(3-1)
Lp,c(ν)

�p(A)`1−`2
=

(√D
2π

)`2
(`1− 1)!

(
1− ν(p)/p

)(
1− ν−1(p̄)

)Lc(ν
−1, 0)

�(A)`1−`2
,

for all critical characters ν ∈6(2)crit(c) of infinity type (`1, `2).

The right-hand side of (3-1) belongs to Q̄, by part (1) of Proposition 2.11 and
Theorem 2.12 with m = 0. Equation (3-1) should be interpreted to mean that the
left-hand side also belongs to Q̄, viewed as a subfield of Cp under the chosen
embeddings, and agrees with the right-hand side. Note that although both sides of
(3-1) depend on the choice of the differential ωA that was made in the definition of
the periods�(A) and�p(A), the quantity Lp,c(ν), just like its complex counterpart
Lc(ν

−1, 0), does not depend on this choice.

Remark 3.2. Once a choice of c is fixed, we shall often drop the subscript c and
simply write Lp for the p-adic L-function.

The following corollary is the p-adic counterpart of Theorem 2.12.

Corollary 3.3. Suppose that ν ∈6(2)crit(c). Then

Lp,c(ν)

�p(ν∗)
belongs to Eν .

Proof. Suppose that ν has infinity type (`1, `2). By the definition of �p(ν
∗) and

the interpolation property of the Katz p-adic L-function in Theorem 3.1, we have

Lp,c(ν)

�p(ν∗)
=

Lp,c(ν)

�p(A)`1−`2
×
(2π i)`2�(A)`1−`2

�(ν∗)

=
√
−D

`2
· (`1− 1)!

(
1− ν(p)

)(
1− ν−1(p̄)

)Lc(ν
−1, 0)

�(ν∗)
.

The result is now a direct consequence of Theorem 2.12 with m = 0. �

Corollary 3.3 expresses Lp,c(ν) as an Eν-multiple of a p-adic period �p(ν
∗),

when ν lies in the range 6(2)crit(c) of classical interpolation for the Katz p-adic L-
function. On the other hand, the characters in 6(1)crit(c) are outside the range of
interpolation, and so Corollary 3.3 does not directly say anything about these values,
and indeed the main goal of this paper is to obtain analogous results for certain
characters in 6(1)crit(c). It turns out that the methods of this paper only allow us to
study Lp,c(ν) for characters ν in 6(2)crit(c) satisfying the following auxiliary (but not
unnatural) condition:

(3-2) ν is a self-dual Hecke character with εν = εK .

For the benefit of the reader, we now recall this key definition.
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Definition 3.4. A Hecke character ν ∈6crit(c) is said to be self-dual or anticyclo-
tomic if

νν∗ = NK .

The reason for the terminology in Definition 3.4 is that the functional equation
for the L-series L(ν−1, s) relates L(ν−1, s) to L(ν−1,−s), and therefore s = 0 is
the central critical point for this complex L-series. Note that a self-dual character
is necessarily of infinity type (1+ j,− j) for some j ∈ Z. Also the conductor of a
self-dual character is clearly invariant under complex conjugation. If c is an integral
ideal such that c= c̄, we denote by 6sd(c) the set of self-dual Hecke characters of
conductor exactly c, and write

6
(1)
sd (c)=6

(1)
crit(c)∩6sd(c), 6

(2)
sd (c)=6

(2)
crit(c)∩6sd(c).

In particular, the possible infinity types of characters in 6(2)sd (c) correspond to the
black dots in Figure 1.

For convenience, we restate Theorem 3.1 for self-dual characters.

Proposition 3.5. For all characters ν ∈ 6(2)sd (c) of infinity type (1+ j,− j) with
j ≥ 0,

(3-3)
Lp,c(ν)

�p(A)1+2 j =
(
1− ν−1(p̄)

)2
×

j ! (2π) j Lc(ν
−1, 0)

√
D

j
�(A)1+2 j

.

Remark 3.6. In the proposition above, we could equally write L(ν−1, 0) instead
of Lc(ν

−1, 0), since ν has conductor exactly equal to c.

Remark 3.7. The central character of such a ν is very restricted. Indeed, for any
Hecke character ν, it is clear that εν̄ = εν , while εν∗ = εν . Further, if ν is a self-dual
character, it follows that for any x ∈ A×K ,

ν
(
NK

Q(x)
)
= ν(x x̄)= (νν∗)(x)= NK (x)= N

(
NK

Q(x)
)
.

Hence
ν|NK

Q
A×K
= N and εν |NK

Q
A×K
= 1.

This implies that the central character εν of a self-dual character ν is either 1 or εK ,
where εK denotes the quadratic Dirichlet character corresponding to the extension
K/Q. Conversely, it is easy to see that if ν is a Hecke character with w(ν)= 1 and
εν = 1 or εK , then ν is a self-dual character.

We define:

(3-4) 6sd(c)
+
:= {ν ∈6sd(c); εν = 1}, 6sd(c)

−
:= {ν ∈6sd(c); εν = εK }.

The sets 6(1)sd (c)
± and 6(2)sd (c)

± are defined similarly.
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Our approach to studying Lp,c(ν) for characters ν satisfying (3-2), that is, those
ν lying in 6(1)sd (c)

− for some c, relies on a different kind of p-adic L-function. This
latter p-adic L-function is attached to Rankin–Selberg L-series and is recalled in
the following section.

3B. p-adic Rankin L-series. In this section, we consider p-adic L-functions ob-
tained by interpolating special values of Rankin–Selberg L-series associated to
modular forms and Hecke characters of a quadratic imaginary field K of odd
discriminant. We briefly recall the definition of this p-adic L-function that is given
in Section 5 of [Bertolini et al. 2012b], referring the reader to that work for a more
detailed description.

Let Sk(00(N ), ε) denote the space of cusp forms of weight k ≥ 2 and character
ε on 00(N ). Let f ∈ Sk(00(N ), ε) be a normalized newform and let E f denote the
subfield of C generated by its Fourier coefficients.

Definition 3.8. The pair ( f, K ) is said to satisfy the Heegner hypothesis if OK

contains a cyclic ideal of norm N , that is, an integral ideal N of OK with OK /N=

Z/NZ.

Assume from now on that ( f, K ) satisfies the Heegner hypothesis, and let N

be a cyclic OK -ideal of norm N . We write Nε for the unique ideal dividing N of
norm Nε, where Nε is the conductor of ε.

Definition 3.9. A Hecke character χ of K of infinity type (`1, `2) is said to be
central critical for f if

`1+ `2 = k and εχ = ε.

The reason for the terminology of Definition 3.9 is that when χ satisfies these
hypotheses, the complex Rankin L-series L( f, χ−1, s) is self-dual and s = 0 is its
central (critical) point.

Definition 3.10. Let c be a rational integer prime to pN . Then 6cc(c,N, ε) is
defined to be the set of Hecke characters χ of K such that

(1) χ is central critical for f ;

(2) fχ = c ·Nε;

(3) the local sign εq( f, χ−1)=+1 for all finite primes q.

It is easily checked that this agrees with the definition of 6cc(c,N, ε) given in
[Bertolini et al. 2012b, §4.1], where this is just denoted 6cc(N). Further, as in [loc.
cit.], given conditions (1) and (2) above, condition (3) is automatic except possibly
for primes q lying in the set S f defined by

S f := {q : q |(N , D), q - Nε}.
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Figure 2. Critical infinity types for the p-adic Rankin L-function.

The set 6cc(c,N, ε) can be expressed as a disjoint union

6cc(c,N, ε)=6(1)cc (c,N, ε)∪6
(2)
cc (c,N, ε),

where 6(1)cc (c,N, ε) and 6(2)cc (c,N, ε) denote the subsets consisting of characters
of infinity type (k + j,− j), with 1− k ≤ j ≤ −1 and j ≥ 0 respectively. We
shall also denote by 6̂cc(c,N, ε) the completion of 6cc(c,N, ε) relative to the
p-adic compact open topology on 6cc(c,N, ε), which is defined in Section 5.2 of
[Bertolini et al. 2012b]. The infinity types of Hecke characters in 6(1)cc (c,N, ε)
and 6(2)cc (c,N, ε) correspond respectively to the white and black dots in the shaded
regions in Figure 2. We note that the set 6(2)cc (c,N, ε) of classical central critical
characters “of type 2” is dense in 6̂cc(c,N, ε).

For all χ ∈6(2)cc (c,N, ε) of infinity type (k+ j,− j) with j ≥ 0, let E f,χ denote
the subfield of C generated by E f and the values of χ , and let E f,χ,ε be the field
generated by E f,χ and by the abelian extension of Q cut out by ε. The algebraic
part of L( f, χ−1, 0) is defined by the rule

(3-5) Lalg( f, χ−1, 0) := w( f, χ)−1C( f, χ, c) ·
L( f, χ−1, 0)
�(A)2(k+2 j) ,
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where w( f, χ)−1
∈ E f,χ,ε and C( f, χ, c) are respectively the scalar (of complex

norm 1) and the explicit real constant defined in [Bertolini et al. 2012b, (5.1.11)
and Theorem 4.6]; we have

(3-6) C( f, χ, c)=
2k+2 j−2π k+2 j−1 j ! (k+ j − 1)!wK

√
D

k+2 j−1
ck+2 j−1

∏
q|c

q − εK (q)
q − 1

,

where wK = #O×K is the number of roots of unity in K . Theorems 5.5 and 5.10 of
[loc. cit.] show respectively that the values Lalg( f, χ−1, 0) belong to Q̄, and that
they interpolate p-adically:

Proposition 3.11. Let χ 7→ L p( f, χ) be the function on 6(2)cc (c,N, ε) defined by
(3-7)
L p( f, χ) :=�p(A)2(k+2 j)(1−χ−1(p̄)ap( f )+χ−2(p̄)ε(p)pk−1)2Lalg( f, χ−1, 0),

for χ of infinity type (k+ j,− j) with j ≥ 0. This function extends (uniquely) to a
p-adically continuous function on 6̂cc(c,N, ε).

The function χ 7→ L p( f, χ) on 6̂cc(c,N, ε) will be referred to as the p-adic
Rankin L-function attached to the cusp form f .

3C. A p-adic Gross–Zagier formula. In this section, we specialize to the case
where the newform f is of weight k = 2, and assume that χ is a finite-order Hecke
character of K satisfying

χNK belongs to 6(1)cc (c,N, ε).

In particular, the character χNK lies outside the domain 6(2)cc (c,N, ε) of classical
interpolation defining L p( f,− ). The p-adic Gross–Zagier formula alluded to in
the title of this section relates the special value L p( f, χNK ) to the formal group
logarithm of a Heegner point on the modular abelian variety attached to f .

The Eichler–Shimura construction associates to f an abelian variety B f with en-
domorphism by an order in the ring of integers T f ⊂ E f , and a surjective morphism

8 f : J1(N )→ B f

of abelian varieties over Q, called the modular parametrization, which is well-
defined up to a rational isogeny. Let

ω f = 2π i f (τ ) dτ ∈�1(X1(N )/E f
)

be the differential form on X1(N ) attached to f ; we use the same symbol ω f to
denote the associated one-form on J1(N ). Let ωB f ∈�

1(B f /E f )
T f be the unique

one-form satisfying

(3-8) 8∗f (ωB f )= ω f .
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Let A′ be an elliptic curve with endomorphism ring isomorphic to the order
Oc = Z+ cOK of conductor c, defined over the ring class field Hc of conductor c.
The pair (A′, A′[N]) corresponds to a point on X0(N )(Hc). Let t be any generator
of A′[N]. Then the triple (A′, A′[N], t) corresponds to a point in X1(N ), whose
field of definition Hc,N is an abelian extension of K , independent of the choice of t ,
and the finite-order Hecke character χ can be viewed as a character

χ : Gal(Hc,N/K )→ Eχ .

Fix a cusp∞ of X1(N ) which is defined over Q, and let

(3-9) 1= [A′, A′[N], t] − (∞) ∈ J1(N )(Hc,N).

To the pair ( f, χ) we associate a Heegner point by letting G = Gal(Hc,N/K )
and setting

(3-10) P f (χ) :=
∑
σ∈G

χ−1(σ )8 f (1
σ ) ∈ B f (Hc,N)⊗T f E f,χ .

Note that, since P f (χ)
σ
= P f (χ) for any σ ∈Gal(Hc,N/Hχ ), the point P f (χ) lies

in the subspace B f (Hχ )⊗T f E f,χ . The embedding of Q̄ into Cp that was fixed
from the outset allows us to consider the formal group logarithm

logωB f
: B f (Hc,N)→ Cp.

We extend this function to B f (Hc,N)⊗T f E f,χ by E f,χ -linearity.

Theorem 3.12. With notations and assumptions as above,

L p( f, χNK )=
(
1−χ−1(p̄)p−1ap( f )+χ−2(p̄)ε(p)p−1)2 log2

ωB f
(P f (χ)).

Proof. Let

E( f, χ) :=
(
1−χ−1(p̄)p−1ap( f )+χ−2(p̄)ε(p)p−1)2

∈ E×f,χ

be the Euler factor appearing in the statement of Theorem 3.12. Let F ′ denote the
p-adic completion of Hc,N. Theorem 5.13 of [Bertolini et al. 2012b] in the case
k = 2 and r = j = 0, with χ replaced by χNK , gives

(3-11) L p( f, χNK )= E( f, χ)×
(∑
σ∈G

χ−1(σ ) ·AJF ′(1
σ )(ω f )

)2

.

Note that in this context, the p-adic Abel–Jacobi map AJF ′ that appears in (3-11)
is related to the formal group logarithm by

AJF ′(1)(ω f )= logω f
(1).
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Therefore,

(3-12) L p( f, χNK )= E( f, χ)
(∑
σ∈G

χ−1(σ ) logω f
(1σ )

)2

.

Theorem 3.12 follows from this formula and the fact that, by (3-8),

logω f
(1)= log8∗f (ωB f )

(1)= logωB f
(8 f (1)). �

In the special case where f has rational Fourier coefficients and χ = 1 is the
trivial character, the abelian variety B f is an elliptic curve quotient of J0(N ) and
the Heegner point P f := P f (1) belongs to B f (K ). Theorem 3.12 implies in this
case that

(3-13) L p( f, NK )=

(
p+ 1− ap( f )

p

)2

log2(P f ),

where log : B f (Kp)→ Kp is the formal group logarithm attached to a rational
differential on B f /Q. Equation (3-13) exhibits a strong analogy with Theorem 1
of the Introduction, although it applies to arbitrary (modular) elliptic curves and
not just elliptic curves with complex multiplication.

The remainder of Chapter 3 explains how Theorem 3.12 can in fact be used to
prove Theorems 1 and 2 of the Introduction. The key to this proof is a relation
between the Katz p-adic L-function of Section 3A and the p-adic Rankin L-function
L p( f, χ) of Section 3B in the special case where f is a theta series attached to
a Hecke character of the imaginary quadratic field K . This explicit relation is
described in the following section.

3D. A factorization of the p-adic Rankin L-series. This section focuses on the
Rankin L-function L p( f, χ) of f and K in the special case where f is a theta
series associated to a Hecke character of the same imaginary quadratic field K .

More precisely, let ψ be a fixed Hecke character of K of infinity type (k− 1, 0)
with k = r + 2≥ 2. Consider the associated theta series

θψ :=
∑

a

ψ(a)qNa
=

∞∑
n=1

an(θψ)qn,

where the first sum is taken over integral ideals of K . The Fourier coefficients of
θψ generate a number field Eθψ which is clearly contained in Eψ .

The following classical proposition is due to Hecke and Schoenberg. (See [Ogg
1969] or Section 3.2 of [Zagier 2008]).

Proposition 3.13. The theta series θψ belongs to Sk(00(N ), ε), where

(1) the level N is equal to DM , with M = NK
Q

fψ ;

(2) the Nebentypus character ε is equal to εK εψ .
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Lemma 3.14. If the conductor fψ of ψ is a cyclic ideal m of norm M prime to D,
then f := θψ satisfies the Heegner hypothesis relative to K .

Proof. In this case, the modular form θψ is of level N = DM , by Proposition 3.13.
But then the ideal

(3-14) N := dK m,

with dK := (
√
−DK ), is a cyclic ideal of K of norm N . �

We will assume from now on that the condition in Lemma 3.14 is satisfied. Further-
more, we will always take N to be the ideal in (3-14).

The goal of this section is to factor the p-adic Rankin L-function L p(θψ , · ) as a
product of two Katz p-adic L-functions. As a preparation to stating the main result,
we record the following two lemmas:

Lemma 3.15. For f := θψ , the L-function L( f, χ−1, s) factors as

L( f, χ−1, s)= L(ψχ−1, s) · L(ψ∗χ−1, s).

Proof. Let (ρ f,`) denote the compatible system of `-adic Galois representations
associated to f . The factorization above then follows from the fact that L( f, χ−1, s)
is the L-function of the compatible system of Galois representations

ρ f,`|Gal(K̄/K )⊗χ
−1
` = (ψ`⊕ψ

∗

` )⊗χ
−1
` = ψ`χ

−1
` ⊕ψ

∗

`χ
−1
` . �

Lemma 3.16. Let c be an integer prime to pN and let χ be any character in
6cc(c,N, ε).

(1) If χ belongs to 6(2)cc (c,N, ε), then ψ−1χ belongs to 6(2)sd (cdK )
− and ψ∗−1χ

belongs to 6(2)sd (cdK M)−.

(2) If χ belongs to 6(1)cc (c,N, ε), then ψ−1χ belongs to 6(1)sd (cdK )
− and ψ∗−1χ

belongs to 6(2)sd (cdK M)−.

Proof. We first note that when χ is of type (k+ j,− j), then ψ−1χ is of infinity type
(1+ j,− j) andψ∗−1χ is of infinity type

(
k+ j, 1−(k+ j)

)
. Since χ ∈6cc(c,N, ε),

we have
εχ = ε = εψ · εK .

Thus εψ−1χ equals εK and the same holds for εψ∗−1χ since εψ∗ = εψ . It follows
then from Remark 3.7 that ψ−1χ and ψ∗−1χ are self-dual characters.

Let q be a rational prime dividing M . Since m is a cyclic OK -ideal, it follows
that q = qq̄ must be split in K , and exactly one of q, q̄ divides m. From this, it is
easy to see that εψ has conductor exactly M , and hence ε has conductor exactly N
and Nε =N. Thus fχ = cN= cdK m and fψ∗−1χ = cdK mm̄= cdK M . On the other
hand, since εχ = εψεK , it follows that fψ−1χ = cdK .
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The preceding remarks imply that if χ is in 6cc(c,N, ε), then ψ−1χ lies in
6sd(cdK )

− and ψ∗−1χ lies in 6sd(cdK M)−. To finish, we note that if j ≥ 0, then
both ψ−1χ and ψ∗−1χ lie in 6(2)sd , while if −(k− 1)≤ j ≤−1, then ψ∗−1χ is in
6
(2)
sd while ψ−1χ lies in 6(1)sd . �

Theorem 3.17. For all χ ∈6cc(c,N, ε),

(3-15) L p(θψ , χ)

=
w(θψ , χ)

−1wK

2ck+2 j−1

∏
q|c

q − εK (q)
q − 1

×Lp,cdK (ψ
−1χ)×Lp,cdK M(ψ

∗−1χ).

Proof. Since 6(2)cc (c,N, ε) is dense in 6̂cc(c,N, ε), it suffices to prove the formula
for the characters χ in this range, where it follows directly from the interpolation
properties defining the respective p-adic L-functions. More precisely, by (3-7),

(3-16)
L p(θψ , χ)

�p(A)2(k+2 j) =
(
(1−ψχ−1(p̄))(1−ψ∗χ−1(p̄))

)2Lalg(θψ , χ
−1, 0).

Let
δc :=

∏
q|c

q − εK (q)
q − 1

.

By Lemma 3.15 and the definition of Lalg(θψ , χ
−1, 0) given in (3-5) and (3-6),

(3-17) Lalg(θψ , χ
−1, 0)= w(θψ , χ)−1C(θψ , χ, c)

L(θψ , χ−1, 0)
�(A)2(k+2 j)

= w(θψ , χ)
−1wK δc

2r+2 jπ k+2 j−1 j ! (k+ j − 1)!
√

D
k+2 j−1

ck+2 j−1

×
L(ψχ−1, 0)L(ψ∗χ−1, 0)

�(A)2(k+2 j)

=
w(θψ , χ)

−1wK δc

2ck+2 j−1

(
j ! (2π) j L(ψχ−1, 0)
√

D
j
�(A)1+2 j

)

×

(
(k+ j − 1)! (2π)k+ j−1L(ψ∗χ−1, 0)
√

D
k+ j−1

�(A)1+2(k+ j−1)

)
.

Combining (3-16) and (3-17) with the interpolation property of the Katz p-adic
L-function given in Proposition 3.5, we obtain

(3-18)
L p(θψ , χ)

�p(A)2(k+2 j) =
w(θψ , χ)

−1wK δc

2ck+2 j−1 ×
Lp,cdK (ψ

−1χ)

�p(A)1+2 j ×
Lp,cdK M(ψ

∗−1χ)

�p(A)1+2(k+ j−1) .

Clearing the powers of �p(A) on both sides gives the desired result. �
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The Nebentypus character ε can be viewed as a finite-order Galois character
of GQ. Recall that Eψ,χ,ε denotes the smallest extension of Eψ,χ containing the
field through which this character factors.

Corollary 3.18. For all χ ∈6cc(c,N, ε),

L p(θψ , χ)= Lp,cdK (ψ
−1χ)×Lp,cdK M(ψ

∗−1χ) (mod E×ψ,χ,ε).

Proof. This follows from Theorem 3.17 in light of the fact that the constant that
appears on the right-hand side of (3-15) belongs to E×ψ,χ,ε. �

3E. Proof of Rubin’s theorem. The goal of this section is to prove Theorem 2
of the Introduction. Let c= c̄ be an integral ideal in OK invariant under complex
conjugation and let ν ∈6sd(c)

− be a Hecke character of K of infinity type (1, 0).
Since εν = εK , it follows that dK |c. We will also assume that ν satisfies the
following additional conditions:

(i) The sign wν of the functional equation of the L-function L(ν, s) is −1.

(ii) dK ||c. Thus c = (c)dK for a unique positive rational integer c that is prime
to D.

Let p be a rational prime split in K that is prime to c.

Definition 3.19. A pair (ψ, χ) of Hecke characters is said to be good for ν if it
satisfies the following conditions.

(1) The character ψ is of type (1, 0) and has conductor m, where m is a cyclic OK -
ideal prime to pD. Thus θψ is a newform in S2(00(N ), ε), where N = M D
and ε = εψεK is a Dirichlet character of conductor exactly N . Let N :=mdK .

(2) The character χ is of finite order, and χNK belongs to 6(1)cc (c,N, ε). This
implies (on account of Lemma 3.16 applied to χNK ) that ψ−1χNK lies in
6
(1)
sd (c) and ψ∗−1χNK lies in 6(2)sd (cM).

(3) The character ψχ−1 is equal to ν, that is, ψ−1χNK = ν
∗.

(4) The classical L-value L(ψ∗χ−1 N−1
K , 0)= L(ψ∗χ−1, 1) is nonzero, and hence

Lp,cM(ψ
∗−1χNK ) 6= 0.

Remark 3.20. Suppose that a pair (ψ, χ) satisfies (1) and (3) above with m prime
to c. Then such a pair automatically satisfies (2) also. Indeed, the character
χNK = ψν

∗ is of type (1, 1) and its central character is equal to

εχ = εψεν∗ = εψεK = ε,

where ε is the Nebentypus character attached to θψ . Further, fχ = fψ fν∗ =m · cdK .
It follows that the character χNK belongs to 6cc(c,N, ε), with N = dK m. (The
set Sθψ in the discussion below Definition 3.10 is empty, since D |Nε.)
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Remark 3.21. Suppose that a pair (ψ, χ) satisfies conditions (1), (2) and (3) above.
Since χNK lies in6(1)cc (c,N, ε), the sign in the functional equation of L(θψ , χ−1, s)
is −1. As seen previously, this L-function factors as

L
(
θψ , (χNK )

−1, s
)
= L(ψχ−1 N−1

K , s)L(ψ∗χ−1 N−1
K , s)

= L(νN−1
K , s)L(ψ∗χ−1 N−1

K , s).

The normalization here is such that the central point is s = 0. Since the sign of
L(ν, s) is −1, it follows that the sign of L(ψ∗χ−1 N−1

K , s) is +1. Hence condition
(4) would be expected to hold generically.

The modular abelian variety Bθψ attached to ψ is a CM abelian variety in the
sense of Definition 2.4. Hence it is K -isogenous to the CM abelian variety Bψ
constructed in Section 2B. In particular, the modular parametrization 8ψ :=8θψ
can be viewed as a surjective morphism of abelian varieties over K :

(3-19) 8ψ : J1(N )→ Bψ .

Given a good pair (ψ, χ), recall the Heegner divisor 1 ∈ J1(N )(Hc,N) that was
constructed in Section 3C, and the Heegner point

(3-20) Pψ(χ) := Pθψ (χ)=
∑
σ∈G

8ψ(1
σ )⊗χ−1(σ ) ∈ Bψ(Hχ )⊗Tψ Eψ,χ

that was defined in Equation (3-10) of that section with f = θψ . Recall also that
ωψ is an Eψ -vector space generator of �1(Bψ/Eψ)Tψ . Viewing the point Pψ(χ)
as a formal linear combination of elements of Bψ(Hχ ) with coefficients in Eψ,χ ,
we define the expression logωψ (Pψ(χ)) by Eψ,χ -linearity.

In the rest of this section, we will denote by E ′ψ,χ the subfield of Q̄ generated by
Eψ , Eχ , and the abelian extension H ′χ of K cut out by the finite-order characters χ
and χ∗. The motivation for singling out good pairs for a special definition lies in
the following proposition.

Proposition 3.22. For any pair (ψ, χ) which is good for ν,

(3-21) Lp,c(ν
∗)=�p(ν

∗)−1 log2
ωψ
(Pψ(χ)) (mod (E ′ψ,χ )

×),

where �p(ν
∗) is the p-adic period from Definition 2.13.

Proof. By Theorem 3.12 applied to f = θψ ,

(3-22) L p(θψ , χNK )= log2
ωψ
(Pψ(χ)) (mod E×ψ,χ ).

On the other hand, since E ′ψ,χ contains Eψ,χ,ε, Corollary 3.18 implies that

(3-23) L p(θψ , χNK )= Lp,c(ψ
−1χNK )Lp,cM(ψ

∗−1χNK ) (mod (E ′ψ,χ )
×)

= Lp,c(ν
∗)Lp,cM(ψ

∗−1χNK ) (mod (E ′ψ,χ )
×),
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where the second equality follows from condition (3) in the definition of a good
pair. The value Lp,cM(ψ

∗−1χNK ) is nonzero by condition (4) in the definition of
a good pair. Therefore, by Corollary 3.3,

(3-24) Lp,cM(ψ
∗−1χNK )=�p(ψ

−1χ∗NK ) (mod E×ψ,χ ).

Since ψχ−1
= ν, we have

(3-25) �p(ψ
−1χ∗NK )=�p(ν

−1χ−1χ∗NK )

=�p(ν
∗
·χ∗/χ)=�p(ν

∗) (mod (E ′ψ,χ )
×),

where the last equality follows from Lemma 2.14. The proposition now follows by
combining Equations (3-22) through (3-25). �

To go further, we will analyze the expression logωψ (Pψ(χ)) and relate it to
quantities depending solely on ν and not on the good pair (ψ, χ). It will be useful
to view the point Pψ(χ) appearing in (3-21) as an element of B0

ψ,χ (Hc,N) or as
a K -rational point on the abelian variety Bψ,χ that was introduced in Section 2B.
More precisely, after setting

(3-26) Pψ(χ) :=
∑
σ∈G

8ψ(1
σ )⊗χ−1(σ ) ∈ Bψ(K̄ )⊗Tψ Tψ,χ = B0

ψ,χ (K̄ ),

we observe that, for all τ ∈ Gal(K̄/K ),

τ ∗0 Pψ(χ)=
∑
σ∈G

8ψ(1
τσ )⊗χ−1(σ )=

∑
σ∈G

8ψ(1
σ )⊗χ−1(στ−1)= Pψ(χ)χ(τ).

The point Pψ(χ) therefore belongs to Bψ,χ (K ) by (2-9). For the following lemmas,
recall the differentials ω0

ψ,χ ∈�
1(B0

ψ,χ/Eψ,χ )Tψ,χ and ωψ,χ ∈�1(Bψ,χ/Eψ,χ )Tψ,χ .

Lemma 3.23. For all good pairs (ψ, χ) attached to ν = ψχ−1,

logωψ (Pψ(χ))= logω0
ψ,χ
(Pψ(χ)).

Proof. Let G = Gal(Hc,N/K ) and let P =8ψ(1). Also, let i be the map defined
in (2-4). Then

logωψ (Pψ(χ))=
∑
σ∈G

χ(σ)−1 logωψ (P
σ )=

∑
σ∈G

χ(σ)−1 logi∗(ω0
ψ,χ )
(Pσ )

=

∑
σ∈G

χ(σ)−1 logω0
ψ,χ
(Pσ ⊗ 1)=

∑
σ∈G

logχ(σ)−1ω0
ψ,χ
(Pσ ⊗ 1)

=

∑
σ∈G

logω0
ψ,χ
(Pσ ⊗χ(σ)−1)

= logω0
ψ,χ

(∑
σ∈G

Pσ ⊗χ(σ)−1
)
= logω0

ψ,χ
(Pψ,χ ). �
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Lemma 3.24. logω0
ψ,χ
(Pψ(χ))= logωψ,χ (Pψ(χ)) (mod (E ′ψ,χ )

×).

Proof. This follows from Lemma 2.8 since the Gauss sum g(χ) lies in (E ′ψ,χ )
×. �

Lemma 3.25. There exist Pν ∈ Bν(K )⊗Q and ων ∈�1(Bν/Eν)Tν such that

logωψ,χ (Pψ(χ))= logων (Pν) (mod (E ′ψ,χ )
×).

The point Pν is nonzero if and only if L(ν, s) vanishes to exact order one at s = 1.

Proof. Recall from Lemma 2.9 that there is a K -rational isogeny

Bν ⊗Tν Tψ,χ → Bψ,χ .

Composing it with the natural morphism Bν → Bν ⊗Tν Tψ,χ , we obtain a Tν-
equivariant morphism j : Bν → Bψ,χ defined over K with finite kernel. By the
Gross–Zagier theorem (see [Gross and Zagier 1986; Yuan et al. 2011] and the
remark below), the point Pψ(χ) is nonzero if and only if L ′(θψ , χ−1, 1) 6= 0. By
Remark 3.21, we have

L ′(θψ , χ−1, 1)= L ′(ν, 1) · L(ψ∗χ−1, 1).

Since L(ψ∗χ−1, 1) 6= 0, we see that Pψ(χ) is nonzero if and only if L ′(ν, 1) 6= 0.
Thus, if L(ν, s) vanishes to order strictly greater than one (hence order ≥ 3), the
lemma holds with Pν := 0.

We may assume therefore that L(ν, s) has a simple zero at s= 1. This implies (by
[Gross and Zagier 1986] and [Kolyvagin 1990]; see also [Kolyvagin and Logachëv
1989]) that Bν(K )⊗Q is one-dimensional over Eν , and therefore that Bψ,χ (K )⊗Q

is one-dimensional over Eψ,χ . In particular, if Pν is any generator of Bν(K )⊗Q,
we may write

Pψ(χ)= λ j (Pν)

for some nonzero scalar λ ∈ E×ψ,χ . But letting

ων = j∗(ωψ,χ ) ∈�1(Bν/E ′ψ,χ )
Tν ,

we have

logωψ,χ (Pψ(χ))= logωψ,χ (λ j (Pν))= logλ∗ωψ,χ ( j (Pν))= λ logωψ,χ ( j (Pν))

= λ log j∗ωψ,χ (Pν)= λ logων (Pν).

The lemma now follows after multiplying ων by an appropriate scalar in (E ′ψ,χ )
×

so that it belongs to �1(Bν/Eν)Tν . �

Remark 3.26. The original result of [Gross and Zagier 1986] is not general enough
to include the situation above. However, Yuan et al. [2011] have proved a very
general GZ formula with no assumptions on ramification. This formula relates
the height of a Heegner point to a derivative of a Rankin–Selberg L-function, but
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involves some extra local integrals at bad places that depend on particular choices of
test vectors. To deduce that the Heegner point is nontorsion from the nonvanishing
of the derivative of the L-function, one needs in addition to know that the local zeta
integrals are nonzero; this follows in our case from the computations of [Bertolini
et al. 2012b, Section 4.6].

Proposition 3.27. There exist ων ∈�1(Bν/Eν)Tν and Pν ∈ Bν(K )⊗Q such that

(3-27) Lp,c(ν
∗)=�p(ν

∗)−1 log2
ων
(Pν) (mod (E ′ψ,χ )

×),

for all good pairs (ψ, χ) attached to ν. The point Pν is nonzero if and only if
L(ν, s) vanishes to exact order one at s = 1.

Proof. This follows immediately from Proposition 3.22 and Lemmas 3.23 through
3.25. �

While Proposition 3.27 brings us close to Theorem 2 of the Introduction, it is
somewhat more vague in that both sides of the purported equality may differ a priori
by a nonzero element of the typically larger field E ′ψ,χ . The alert reader will also
notice that this proposition is potentially vacuous for now, because the existence of
a good pair for ν has not yet been established! The next proposition repairs this
omission, and directly implies Theorem 2 of the Introduction.

Proposition 3.28. The set Sν of pairs (ψ, χ) that are good for ν is nonempty.
Furthermore,

(3-28)
⋂

(ψ,χ)∈Sν

E ′ψ,χ = Eν .

The proof of Proposition 3.28 rests crucially on a nonvanishing result of Rohrlich
[1984] and Greenberg [1985] for the central critical values of Hecke L-series. In
order to state it, we fix a rational prime ` which is split in K and let

K−
∞
=
⋃

n≥0
K−n

be the so-called anticyclotomic Z` extension of K ; it is the unique Z`-extension of K
which is Galois over Q and for which Gal(K−

∞
/Q)= Z`o (Z/2Z) is a generalized

dihedral group.

Lemma 3.29 [Greenberg 1985; Rohrlich 1984]. Let ψ0 be a self-dual Hecke char-
acter of K of infinity type (1, 0). Assume that the signwψ0 in the functional equation
of L(ψ0, s) is equal to 1. Then there are infinitely many finite-order characters χ of
Gal(K−

∞
/K ) for which L(ψ0χ, 1) 6= 0.

Proof. Let c′ be the conductor of ψ0. In light of the hypothesis that wψ0 = 1,
Theorem 1 of [Greenberg 1985] implies that the Katz p-adic L-function (with
p = `) does not vanish identically on any open `-adic neighborhood of ψ0 in



292 MASSIMO BERTOLINI, HENRI DARMON AND KARTIK PRASANNA

6sd(c
′). (See the discussion in the first paragraph of the proof of Proposition 1 on

p. 93 of [Greenberg 1985].) If U is any sufficiently small such neighborhood, then:

(1) The restriction to U of the Katz p-adic L-function is described by a power
series with p-adically bounded coefficients, and therefore admits only finitely
many zeros by the Weierstrass preparation theorem.

(2) The region U contains a dense subset of points of the form ψ0χ , where χ is a
finite-order character of Gal(K−

∞
/K ).

Lemma 3.29 follows directly from these two facts. �

Proof of Proposition 3.28. Let S̄ν ⊃ Sν be the set of pairs satisfying conditions
(1)–(3) in the definition of a good pair, but without necessarily requiring the more
subtle fourth condition. The proof of Proposition 3.28 will be broken down into
four steps.

Step 1. The set S̄ν is nonempty.
To see this, letψ be any Hecke character of K of infinity type (1, 0) and conductor

m, where m is a cyclic OK -ideal prime to c. Setting χ = ψν−1, the pair (ψ, χ)
satisfies conditions (1) and (3) by construction, and (2) as well on account of
Remark 3.20. Therefore, the pair (ψ, χ) belongs to S̄ν .

Step 2. Given (ψ, χ) ∈ S̄ν , there exist (ψ1, χ1) and (ψ2, χ2) ∈ Sν with

E ′ψ1,χ1
∩ E ′ψ2,χ2

⊂ E ′ψ,χ .

To see this, let ` = λλ̄ be a rational prime which splits in K and is relatively
prime to the class number of K and the conductors of ψ and χ , and which is
unramified in E ′ψ,χ/Q. For such a prime, let

K∞ =
⋃

n≥0
Kn, K ′

∞
=
⋃

n≥0
K ′n

be the unique Z`-extensions of K which are unramified outside of λ and λ̄ respec-
tively, with [Kn : K ] = `n and likewise for K ′n . The condition that ` does not divide
the class number of K implies that the fields Kn and K ′n are totally ramified at λ and
λ̄ respectively. If α is any character of Gal(K∞/K ), the pair (ψ1, χ1) := (ψα, χα)

still belongs to S̄ν , with m in condition 1 replaced by mλn for a suitable n ≥ 0.
Furthermore,

(3-29) L(ψ∗1χ
−1
1 N−1

K , 0)= L
(
ψ∗χ−1 N−1

K · (α
∗/α), 0

)
.

The character α∗/α is an anticyclotomic character of K of `-power order and
conductor, and all such characters can be obtained by choosing α appropriately. The
fact that (ψ, χ) satisfies conditions (1)–(3) of a good pair implies (see Remark 3.21)
that the sign wψ∗χ−1 is equal to +1. Hence, by Lemma 3.29, there exists a choice
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of α for which the L-value appearing on the right of (3-29) is nonvanishing. The
corresponding pair (ψ1, χ1) belongs to Sν and satisfies

E ′ψ1,χ1
⊂ E ′ψ,χ,`,n := E ′ψ,χQ(ζ`n )Kn K ′n

for some n. Note that the extension E ′ψ,χ,`,n/E ′ψ,χ has degree dividing `∞(`− 1).
Repeating the same construction with a different rational prime `′ in place of ` such
that `′ − 1 is prime to ` yields a second pair (ψ2, χ2) ∈ Sν and a corresponding
extension E ′ψ,χ,`′,n′ , whose degree over E ′ψ,χ divides `′∞(`′− 1), and such that

E ′ψ2,χ2
⊂ E ′ψ,χ,`′,n′ .

Let
E ′′ := E ′ψ,χ,`,n ∩ E ′ψ,χ,`′,n′ .

We see then using degrees that E ′′/E ′ψ,χ has degree dividing (`− 1), and hence
E ′′ ⊆ E ′ψ,χQ(ζ`). Since ` is unramified in E ′ψ,χ/Q, the extension E ′′/E ′ψ,χ must
be totally ramified at the primes above `. On the other hand, being a subextension of
E ′ψ,χ,`′,n′/E ′ψ,χ , it is also unramified at the primes above `, and hence E ′′ = E ′ψ,χ .
It follows that E ′ψ1,χ1

∩ E ′ψ2,χ2
⊂ E ′ψ,χ .

Thanks to Step 2, we are reduced to showing that

(3-30)
⋂

(ψ,χ)∈S̄ν

E ′ψ,χ = Eν .

The next step shows that the fields E ′ψ,χ can be replaced by Eψ,χ in this equality.

Step 3. For all (ψ, χ) ∈ S̄ν , there exists a finite-order character α of G K such that
the pair (ψα, χα) belongs to S̄ν and

(3-31) E ′ψ,χ ∩ E ′ψα,χα ⊆ Eψ,χ .

To see this, note that the finite-order character χ has cyclic image, isomorphic to
Z/nZ say. Pick α such that conditions (i)–(iii) below are satisfied:

(i) α has order n and is ramified at a single prime λ of K which lies over a rational
prime ` that is split in K .

(ii) λ is prime to the conductors of χ and χ∗.

(iii) ` is unramified in E ′ψ,χ/Q.

Conditions (i) and (ii) imply:

(iv) The field Hχα/K is totally ramified at λ and unramified at λ∗ while Hχ∗α∗ is
unramified at λ and totally ramified at λ∗.
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Taking
L = Eψ,χ , M1 = Hχ Hχ∗, M2 = HχαHχ∗α∗,

we see from (iii) and (iv) that:

(v) L M1/L is unramified at all primes above `.

(vi) Any subextension of L M2/L is ramified at some prime above λ or λ∗.

Thus, L M1∩L M2= L . But L M1= Eψ,χ Hχ Hχ∗ = E ′ψ,χ . Also, since α has order n,
we have Eψ ′,χ ′ = Eψ,χ and

L M2 = Eψ,χ HχαHχ∗α∗ = Eψ ′,χ ′HχαHχ∗α∗ = E ′ψ ′,χ ′,

so (3-31) follows.

Step 4. We are now reduced to showing

(3-32)
⋂

(ψ,χ)∈S̄ν

Eψ,χ = Eν .

We will do this by showing:

(3-33) There exists a pair (ψ, χ) ∈ S̄ν such that Eψ,χ = Eν .

We begin by choosing an ideal m0 of OK with the property that OK /m0 = Z/MZ is
cyclic, and an odd quadratic Dirichlet character εM of conductor dividing M . Let
ψ0 be any Hecke character satisfying

ψ0((a))= εM(a mod m0)a

on principal ideals (a) of K . Such a ψ0 satisfies condition (1) in Definition 3.19,
and therefore, after letting χ0 be the finite-order character satisfying

ν∗ = ψ−1
0 χ0NK ,

it follows that (ψ0, χ0) belongs to S̄ν . Furthermore, the restriction of ψ0 to the
group of principal ideals of K takes values in K , and therefore

(3-34) χ0(σ ) ∈ Eν, for all σ ∈ G H := Gal(K̄/H).

The character ψ0 itself takes values in a CM field of degree [H : K ], denoted E0,
which need not be contained in Eν in general. To remedy this problem, let H0 be
the abelian extension of the Hilbert class field H cut out by the character χ0. Next,
let H ′0 be any abelian extension of K containing H such that:
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(1) There is an isomorphism u : Gal(H ′0/K )→ Gal(H0/K ) of abstract groups
such that the diagram

(3-35) 0 // Gal(H ′0/H) //

��

Gal(H ′0/K ) //

��

Gal(H/K ) // 0

0 // Gal(H0/H) // Gal(H0/K ) // Gal(H/K ) // 0

commutes, where the dotted arrows indicate the isomorphisms induced by u
and the other arrows are the canonical maps of Galois theory.

(2) The relative discriminant of H ′0 over K is relatively prime to its conjugate (and
therefore to the discriminant of K , in particular).

If the bottom exact sequence of groups in (3-35) is split, then the extension H ′0 is
readily produced, using class field theory. To handle the general case, we follow
an approach that is suggested by the proof of Proposition 2.1.7 in [Serre 1992].
Let 8̃ := Gal(H0/K ) and let 9 : G K → 8̃ be the homomorphism attached to the
extension H0. Since H is everywhere unramified over K , the restriction 9v of
9 to a decomposition group at any prime v of K maps the inertia subgroup Iv
to C := Gal(H0/H). After viewing C as a module of finite cardinality endowed
with the trivial action of G K , let H 1

S (K ,C) := Hom(G K ,S,C) denote the group
of homomorphisms from G K to C which are unramified outside a given finite set
S of primes of K , and let H 1

[S](K ,C
∗) denote the dual Selmer group attached to

H 1
S (K ,C) in the sense of, for example, Theorem 2.18 of [Darmon et al. 1997]. Here

C∗ := Hom(C, Gm) is the Kummer dual of C, which is isomorphic to µn when
C = Z/nZ is cyclic of order n. Kummer theory (along with the nondegeneracy
of the local Tate pairing) identifies H 1

[S](K , µn) with the subgroup of K×/(K×)n

consisting of elements α for which

ordv(α)= 0 (mod n) for all v, resv(α) ∈ (K×v )
n for all v ∈ S.

Let S be any finite set of primes of K at which 9 is unramified, satisfying the
further conditions

(3-36) v ∈ S⇒ v̄ /∈ S and H 1
[S](K ,C

∗)= 0.

The existence of such a set S follows from the statement that for any

α ∈ K×− (K×)n,

there is a set of primes v of K of positive Dirichlet density for which the image of
α in K×v is not an n-th power. (This statement follows in turn from the Chebotarev
density theorem applied to the extension K (µn, α

1/n).) Now let T be any finite set
of places which is disjoint from S. Comparing the statement of Theorem 2.18 of
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[Darmon et al. 1997] in the case M = C and L = S and L = S ∪ T respectively,
and noting that both H 1

[S](K ,C
∗) and (a fortiori) H 1

[S∪T ](K ,C
∗) are trivial, gives

#H 1
S∪T (K ,C)

#H 1
S (K ,C)

=

∏
v∈T

#H 1(Kv,C)

#C
=

∏
v

# Hom(Iv,C).

It follows that the rightmost arrow in the tautological exact sequence

0→ H 1
S (K ,C)→ H 1

S∪T (K ,C)→
∏
c∈T

Hom(Iv,C)

is surjective. Letting T be the set of places at which 9 is ramified, it follows that
there is a homomorphism ε : G K → C satisfying

εv =9v on Iv, for all v /∈ S.

After possibly enlarging the set S satisfying (3-36) and translating ε by a suitable
homomorphism unramified outside S, we may further assume that the homomor-
phism 9ε−1 maps G K surjectively onto 8̃; the field H ′0 can then be obtained as
the fixed field of the kernel of the homomorphism 9ε−1.

With the extension H ′0 in hand, let α : Gal(H ′0/K )→ E×χ be the finite-order
Hecke character given by

α(σ)= χ0(u(σ ))−1,

and set (ψ, χ) = (ψ0α, χ0α). By construction, (ψ, χ) belongs to S̄ν . We claim
that χ and ψ take values in Eν . Since ν∗ = ψ−1χNK , it is enough to prove this
statement for χ . Observe that, for all integral ideals a prime to the conductors of
χ0, χ , and ψ , we have

χ(a)= χ0(σa)/χ0(u(σa))= χ0(σau(σa)
−1).

But the element σau(σa)
−1 belongs to Gal(H0/H) by construction, and hence

χ0(σ
−1
a u(σa)) belongs to Eν by (3-34). It follows that ψ and χ are Eν-valued, and

therefore Eψ,χ = Eν , as claimed in (3-33). �

3F. Elliptic curves with complex multiplication. Theorem 2 of the Introduction
admits an alternate formulation involving algebraic points on elliptic curves with
complex multiplication rather than K -rational points on the CM abelian varieties
Bν of Theorem 2.5. The goal of this section is to describe this variant. As in
the Introduction, we just write Lp for the p-adic L-function Lp,c, where c is the
conductor of ν.

We begin by reviewing the explicit construction of Bν in terms of CM elliptic
curves. The reader is referred to §4 of [Goldstein and Schappacher 1981], whose
treatment we largely follow, for a more detailed exposition. Let F be any abelian
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extension of K for which

(3-37) νF := ν ◦NF/K

becomes K -valued. There exists an elliptic curve A/F with complex multiplication
by OK whose associated Grossencharacter is νF . (See Theorem 6 of [Shimura 1971]
and its corollary on p. 512.) Let

B := ResF/K (A).

It is an abelian variety over K of dimension d := [F : K ]. Let G := Gal(F/K )=
HomK (F, Q̄), where the natural identification between these two sets arises from the
distinguished embedding of F into Q̄ that was fixed from the outset. By definition
of the restriction of scalars functor, there are natural isomorphisms

B/F =
∏
σ∈G

Aσ , B(K̄ )= A(K̄ ⊗K F)=
∏
σ∈G

Aσ (K̄ )

of algebraic groups over F and abelian groups respectively. In particular, a point
of B(K̄ ) is described by a d-tuple (Pτ )τ∈G , with Pτ ∈ Aτ (K̄ ). Relative to this
identification, the Galois group G K acts on B(K̄ ) on the left by the rule

ξ(Pτ )τ = (ξ Pτ )ξτ , for all ξ ∈ G K .

Consider the “twisted group ring”

(3-38) T :=
⊕
σ∈G

HomF (A, Aσ )=
{∑
σ∈G

aσσ
∣∣∣∣ aσ ∈ HomF (A, Aσ )

}
,

with multiplication given by

(3-39) (aσσ)(aτ τ)= aσaστ στ,

where the isogeny aστ belongs to HomF (Aσ , Aστ ) and the composition of isogenies
in (3-39) is to be taken from left to right. The right action of T on B(K̄ ) defined
by

(3-40) (Pτ )τ ∗ (aσσ) := (aτσ (Pτ ))τσ

commutes with the Galois action described in Section 3F, and corresponds to a
natural inclusion T ↪→ EndK (B). The K -algebra E := T ⊗Z Q is isomorphic to a
finite product

E =
∏

i

Ei

of CM fields, and dimK (E)= dim(B). Therefore, the pair (B, E) is a CM abelian
variety in the sense of Definition 2.4. The compatible system of `-adic Galois
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representations attached to (B, E) corresponds to an E-valued algebraic Hecke
character ν̃ in the sense of Definition 2.3, satisfying the relation

(3-41) σa(P)= P ∗ ν̃(a), for all a ∈ If` and P ∈ B(K̄ )`∞,

where σa ∈ Gab
K denotes as before the Artin symbol attached to a ∈ If`.

The element ν̃(a) ∈ T is of the form ϕaσa, where

(3-42) ϕa : A→ Aσa

is an isogeny of degree Na satisfying

(3-43) ϕa(P)= Pσa,

for any P ∈ A[g] with (g, a)= 1. Note that the isogenies ϕa satisfy the following
cocycle condition:

(3-44) ϕab = ϕ
σa

b ◦ϕa.

The following proposition relates the Hecke characters ν̃ and ν.

Proposition 3.30. Given any homomorphism j ∈ HomK (E,C), let ν j := j ◦ ν̃
be the corresponding C-valued Hecke character of K of infinity type (1, 0). The
assignment j 7→ ν j gives a bijection from HomK (E,C) to the set 6ν,F of Hecke
characters ν ′ of K (of infinity type (1, 0)) satisfying

ν ′ ◦NF/K = ν ◦NF/K .

Proposition 3.30 implies that there is a unique homomorphism jν ∈HomK (E,C)

satisfying jν ◦ ν̃ = ν. In particular, jν maps E to Eν and T to a finite-index subring
of Tν . The abelian variety Bν attached to ν in Theorem 2.5 can now be defined as
the quotient B⊗T, jν Tν . In subsequent constructions, it turns out to be more useful
to realize Bν as a subvariety of B, which can be done by setting

(3-45) Bν := B[ker jν].

The natural action of T on Bν factors through the quotient T/ ker( jν), an integral
domain having Eν as field of fractions.

Consider the inclusion

(3-46) iν : Bν(K ) ↪→ B(K )= A(F),

where the last identification arises from the functorial property of the restriction
of scalars. The following proposition gives an explicit description of the image of
(Bν(K )⊗ Eν)Tν in A(F)⊗OK Eν under the inclusion iν obtained from (3-46).
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Proposition 3.31. Let Ẽ be any field containing Eν . The inclusion iν of (3-46)
identifies (Bν(K )⊗ Ẽ)Tν with

(A(F)⊗OK Ẽ)ν :=
{

P ∈ A(F)⊗OK Ẽ such that ϕa(P)= ν(a)Pσa, for all a ∈ If
}
.

Proof. It follows from the definitions that B(K ) is identified with the set of (Pτ ),
with Pτ ∈ Aτ (K̄ ) satisfying

(3-47) ξ Pτ = Pξτ , for all ξ ∈ G K .

Furthermore, if such a (Pτ ) belongs to (Bν(K )⊗ Eν)Tν , then after setting ν̃(a)=
ϕaσa as in (3-42), we also have

(3-48) (ϕτa (Pτ ))τσa = (Pτ )τ ∗ ν̃(a)= (ν(a)Pτ )τ .

Equating the σa-components of these two vectors gives

ϕa(P1)= ν(a)Pσa = ν(a)σa P1,

where 1 is the identity embedding of F and the last equality follows from (3-47).
The proposition follows directly from this, after noting that the identification of
B(K ) with A(F) is simply the one sending (Pτ )τ to P1. �

Given a global field F as in (3-37), let Fν denote the subfield of Q̄ generated by
F and Eν . Recall that ωA ∈�

1(A/F) is a nonzero differential and that �p(A) is
the associated p-adic period.

Theorem 3.32. There exists a point PA,ν ∈ (A(F)⊗OK Eν)ν such that

Lp(ν
∗)=�p(A)−1 log2

ωA
(PA,ν) (mod F×ν ).

The point PA,ν is nonzero if and only if L ′(ν, 1) 6= 0.

Proof. Theorem 2 of the Introduction asserts that

(3-49) Lp(ν
∗)=�p(ν

∗)−1 log2
ων
(Pν),

for some point Pν ∈ Bν(K )⊗Q which is nontrivial if and only if L ′(ν, 1) 6= 0. By
Lemma 2.14, we find

(3-50) �p(ν
∗)−1
=�p(A)−1 (mod F×ν ).

Also, by Proposition 3.31, we can view Pν as a point PA,ν ∈ (A(F)⊗OK Eν)ν , and
we have

(3-51) logων (Pν)= logωA
(PA,ν) (mod F×ν ).

Theorem 3.35 now follows by rewriting (3-49) using (3-50) and (3-51). �
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3G. A special case. This section is devoted to a more detailed and precise treatment
of Theorem 3.32 under the following special assumptions:

(1) The quadratic imaginary field K has class number one, odd discriminant,
and unit group of order two. This implies that K = Q(

√
−D), where D :=

−Disc(K ) belongs to the finite set

S := {7, 11, 19, 43, 67, 163}.

(2) ψ0 is the Hecke character of K of infinity type (1, 0) given by the formula

(3-52) ψ0((a))= εK (a mod dK )a.

The character ψ0 determines (uniquely, up to an isogeny) an elliptic curve
A/Q satisfying

EndK (A)= OK , L(A/Q, s)= L(ψ0, s).

After fixing A, we will also write ψA instead of ψ0. It can be checked that the
conductor of ψA is equal to dK , and that

ψ∗A = ψ̄A, ψAψ
∗

A = NK , εψA = εK .

Remark 3.33. The rather stringent assumptions on K that we have imposed
exclude the arithmetically interesting, but somewhat idiosyncratic, cases where
K =Q(

√
−3), Q(i), and Q(

√
−2).

With the above assumptions, the character ψA can be used to give an explicit
description of the set 6sd(cdK ):

Lemma 3.34. Let c be an integer prime to D, and let ν be a Hecke character in
6sd(cdK ). Then ν is of the form

ν = ψAχ
−1,

where χ is a finite-order ring class character of K of conductor c.

Proof. The fact that ν and ψA both have central character εK implies that χ is a
ring class character that is unramified at dK , and hence has conductor exactly c. �

Given a ring class character χ of conductor c as above with values in a field Eχ ,
let

(3-53)
(

A(Hc)⊗OK Eχ
)χ

:=
{

P ∈ A(Hc)⊗OK Eχ such that σ P =χ(σ)P, for all σ ∈Gal(Hc/K )
}
.

Finally, choose a nonzero differential ωA ∈ �
1(A/K ), and write �p(A) for the

p-adic period attached to this choice as in Section 3A. Since A= Bψ0 is the abelian
variety attached to ψ0, it follows that �p(ψ

∗

A)=�p(A).
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The following theorem is a more precise variant of Theorem 3.32.

Theorem 3.35. Let χ be a ring class character of K of conductor prime to dK .
Then there exists a point PA(χ) ∈

(
A(Hχ )⊗OK Eχ

)χ such that

Lp(ψ
∗

Aχ)=�p(A)−1g(χ) log2
ωA
(PA(χ)) (mod E×χ ).

The point PA(χ) is nonzero if and only if L ′(ψAχ
−1, 1) 6= 0.

Proof. By Theorem 2 of the Introduction,

(3-54) Lp(ψ
∗

Aχ)= Lp(ν
∗)=�p(ν

∗)−1 log2
ων
(Pν) (mod E×ν ),

for some point Pν ∈ Bν(K )⊗Q which is nontrivial if and only if L ′(ψAχ
−1, 1) 6= 0.

Since χ∗−1
= χ and Eν = Eχ , we find from Lemma 2.14 that

(3-55) �p(ν
∗)−1
=�p(ψ

∗

Aχ
∗−1)−1

=�p(A)−1g(χ)−1 (mod E×χ ).

After noting that, as in (2-7), Bν = Bψ,χ = (A⊗OK Tχ )χ
−1

as abelian varieties over
K , we observe that ων = ωψ,χ and that the point Pν ∈ Bν(K ) can be written as

Pν =
∑
σ∈G

Pσ ⊗χ−1(σ ),

for some P ∈ A(Hc)⊗Q. Letting PA,χ be the corresponding element in

A(Hc)⊗OK Eχ

given by
PA,χ =

∑
σ∈G

χ−1(σ )Pσ ,

we have
(3-56)

log2
ων
(Pν)= log2

ωψ,χ
(Pν)= g(χ)2 log2

ω0
ψ,χ

(Pν)= g(χ)2 log2
ωA
(PA,χ ) (mod E×χ ),

where the second equality follows from Lemma 2.8 and the last from Lemma 3.23.
Theorem 3.35 now follows by rewriting (3-54) using (3-55) and (3-56). �

In the special case where χ is a quadratic ring class character of K , cutting out
an extension L = K (

√
a) of K , we obtain

(3-57) Lp(ψ
∗

Aχ)=�p(A)−1√a log2
ωA
(P−A,L) (mod K×),

where P−A,L is a K -vector space generator of the trace 0 elements in A(L)⊗Q.
Since in this case ψAχ is the Hecke character attached to a CM elliptic curve
over Q, from (3-57) one recovers Rubin’s Theorem 1 of the Introduction.
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THE SYNTOMIC REGULATOR FOR K4 OF CURVES
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Dedicated to the memory of Jon Rogawski

Let C be a curve defined over a complete discrete valuation subfield of C p.
Assuming that C has good reduction over the residue field, we compute the
syntomic regulator on a certain part of K (3)

4 (C). The result can be expressed
in terms of p-adic polylogarithms and Coleman integration. We also com-
pute the syntomic regulator on a certain part of K (3)

4 (F) for the function
field F of C. The result can be expressed in terms of p-adic polylogarithms
and Coleman integration, or by using a trilinear map (“triple index”) on
certain functions.

1. Introduction

Let K be a complete discrete valuation field of characteristic zero, R its valuation
ring, and κ its residue field. Assume κ is of positive characteristic p. If X/R is a
scheme, smooth and of finite type, then, after tensoring with Q, one can decompose
the algebraic K-theory of X according to the Adams weight eigenspaces, that is,

Kn(X)⊗Z Q=
⊕

j

K ( j)
n (X),

where K ( j)
n (X) consists of those α in Kn(X)⊗Z Q such that ψk(α) = k jα for all

Adams operators ψk ; see [Soulé 1985, Proposition 5]. The cup product on K∗(X)
results in cup products K (i)

m (X)× K ( j)
n (X)→ K (i+ j)

m+n (X). There is a regulator map

regp : K
( j)
n (X)→ H 2 j−n

syn (X, j) ;

see [Besser 2000b]. In many interesting cases the target group of the regulator
is isomorphic to the rigid cohomology group of the special fiber Xκ , in the sense
of Berthelot, H 2 j−n−1

rig (Xκ/K ). We shall be interested in the situation where X

is a proper, irreducible, smooth curve C over R with a geometrically irreducible
generic fiber C , and the K -group is K (3)

4 (C). K (3)
4 (C) is known to be isomorphic

MSC2010: primary 11G55, 14F42, 19E08, 19F27; secondary 11G20, 14F30, 19E20.
Keywords: algebraic K-theory, syntomic regulator, p-adic polylogarithm.
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to K (3)
4 (C) under localization; see Section 2.2. The target group for the regulator in

this case is H 1
rig(Cκ/K )∼= H 1

dR(C/K ). The cup product gives a pairing

H 1
dR(C/K )× H 1

dR(C/K )
∪
−→ H 2

dR(C/K )∼= K ,

where the last isomorphism is given by the trace map. We will denote this pairing
by ∪ as well. If α is an element of K (3)

4 (C) and ω is an element of H 1
dR(C/K ), we

want to compute ω∪ regp(α) ∈ K .
To achieve this goal, we first of all need to be able to write elements in the above

mentioned K -group. We do this using an integral version of the motivic complexes
introduced by the second named author. The complex M(3)(F) was defined in
[de Jeu 1995, Section 3] for any field F of characteristic zero. It consists of three
terms in cohomological degrees 1, 2 and 3:
(1.1) M3(F)→ M2(F)⊗ F∗Q→ F∗Q⊗

∧2 F∗Q ,

with F∗
Q
= F∗⊗ZQ, and Mn(F) a Q-vector space on symbols [x]n for x in F\{0, 1},

modulo nonexplicit relations depending on n. The maps in the complex are given by

(1.2)
d[x]3 = [x]2⊗ x,

d
(
[x]2⊗ y

)
= (1− x)⊗ (x ∧ y).

There are maps

H i (M(3)(F))→ K (3)
6−i (F)

for i = 2, 3, and for i = 3 this is an isomorphism. Quotienting out by a suitable
subcomplex (see Section 2.4.2) one obtains the complex
(1.3) M̃(3)(F) : M̃3(F)→ M̃2(F)⊗ F∗Q→

∧3 F∗Q ,

which is quasiisomorphic to M(3)(F) in degrees 2 and 3. Its shape is more in line
with conjectures (see for instance [Goncharov 1994, Conjecture 2.1]) and it is easier
to work with for explicit examples. Each M̃i (F) is a quotient of Mi (F), and the
image of [x]i in M̃i (F) is still denoted [x]i .

We can apply this with F the function field K (C) of C , but as the syntomic
regulator needs some information over the residue field, we have to use an analo-
gous complex.

Notation 1.4. For the curve C as above with generic fiber C/K , we let O⊂ F be
the local ring consisting of functions that are generically defined on the special
fiber Cκ .

In Section 2.5.2 we shall construct a complex

(1.5) M(3)(O) : M3(O)→ M2(O)⊗O∗Q→ O∗Q⊗
∧2O∗Q ,
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with, in this case, Mn(O) a Q-vector space on symbols [u]n for u in O[, the special
units of O, namely those u in O∗ for which 1 − u is also in O∗, again modulo
nonexplicit relations depending on n, and O∗

Q
= O∗⊗Z Q. The maps in the complex

are given by (1.2) as before, and there is a natural map M(3)(O)→ M(3)(F) of
complexes. In fact, one may view M2(O)⊆ M2(F); see Remark 2.45. The complex
comes with maps

(1.6) H i (M(3)(O))→ K (3)
6−i (O)

for i = 2 and 3.
Similar constructions, satisfying in particular (1.6), can be made in the following

situation.

Notation 1.7. Suppose k ⊂ K is a number field and let R′ be the local ring R ∩ k.
For C′ a smooth, proper, geometrically irreducible curve over R′, let O′ denote the
local ring of rational functions on C′ that are generically defined on the special fiber
above the maximal ideal of R′.

In this case one has an additional map

M2(O
′)⊗Q O′∗

Q

∂1
−→

∐
x

M̃2(k(x)) ,

where M2(O
′) is now a Q-vector space on symbols [u]2 with u in O′∗ such that

1− u is also in O′∗, the coproduct is over all closed points of the generic fiber
C ′ = C′⊗R′ k, given by

∂1,x([g]2⊗ f )= ordx( f ) · [g(x)]2 ,

with the convention that [0]2 = [1]2 = [∞]2 = 0.
To explain the terms in which the formula for the regulator will be expressed,

we need to introduce Coleman integration theory (see Section 4). Coleman [1982;
Coleman and de Shalit 1988] defined an integration theory on curves over Cp with
good reduction and on certain rigid analytic subdomains of these, which he termed
“wide open spaces”. One first needs to choose a branch of the p-adic logarithm,
that is, a group homomorphism log : C∗p→ Cp, such that around z = 1, it is given
by the usual power series expansions for log(1+ y). This amounts to specifying
log(p) in Cp. Once this is done, the theory includes single valued iterated integrals
on the appropriate domain, called “Coleman functions”. In particular, we have the
functions

(1.8)

Li2(z)=−
∫ z

0 log(1− x) dlog x,

L2(z)= Li2(z)+ log(z) log(1− z),

Lmod,2(z)= Li2(z)+ 1
2 log(z) log(1− z).

The function Li2(z) is defined on Cp \ {1}; see the beginning of Section VI
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in [Coleman 1982]. Consequently, all 3 functions are defined everywhere except
possibly 0, 1,∞. They, and other Coleman functions, can be assigned a value at
these points as follows.

For every point y ∈ P1(Cp), the residue disc Uy is the collection of points
reducing to the same point as y. For each such y, and in terms of a local parameter
z= zy on Uy , a Coleman function G can be expanded as G(z)=

∑n
i=0 fi (z) logi (z),

where all fi (z) are in Cp[[z, z−1
]]. We define the constant term cz(G) at y with

respect to the parameter z as the constant term of f0; see Definition 7.7. In general
the constant term will depend on the choice of the local parameter z, but there are
many Coleman functions for which the constant term is independent of this choice.
In such a case we will write G(y) for this constant term. In particular, this is the
case at all points y for Lmod,2(z) and

∫
L2(g)ω for any rational function g (it is in

fact sufficient that ω is holomorphic at y), as well as for Li2(z) and L2(z) at all
points except∞ (see Lemmas 10.7 and 10.9 as well as Corollary 10.8). We further
define all three functions from (1.8) to be 0 at 0 and∞ (this is the constant term
with respect to the standard parameter). For any Coleman function G, which is the
integral of a form η, and divisor D =

∑
ni yi , we will define

G(D)=
∫

D
η :=

∑
ni G(yi ),

where we will be assuming that either G is defined at each yi , or its constant term
there is independent of the parameter.

We note that Lmod,2(z)+ Lmod,2(z−1) = 0 for z in Cp \ {0, 1} [Coleman 1982,
Proposition 6.4(ii)], and that this extends to all values using constant terms. Similarly
we have L2(z)+L2(z−1)= 1

2 log2(z).
We shall state the theorems in the introduction in a way that allows comparison

with similar results in the classical case over C. The formulas in that case can be
easily transformed by using Stokes’ theorem, whereas it seems the formulas in the
syntomic case are not as flexible. Consequently, in the syntomic case we have to
state a larger number of theorems. In order to enable a comparison in Remark 10.14
of the syntomic formulas below (especially those in Theorems 1.12 and 1.13) with
those in the classical case, we recall and reformulate some of the classical results
in Section 3.

We are now ready to state the first main theorem. In it, and the remaining
theorems in the introduction, we assume that K is a closed subfield of Cp and
evaluate Coleman functions at closed points of C by working over a finite extension
of K over which all such points are rational. The result will be in K by Galois
equivariance of Coleman integration.

Theorem 1.9. Suppose, in the situation of Notation 1.4, that ω is a holomorphic
form on C.
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(1) The assignment

[g]2⊗ f 7→ 2
∫
( f )

L2(g)ω

gives a well-defined map 9p,ω : M2(O) ⊗ O∗
Q
→ K , and this induces a

map 9p,ω : H 2(M(3)(O))→ K .

(2) Suppose k ⊂ K is a number field, and C′ is a smooth, proper, geometrically
connected curve over the local ring R′ = R ∩ k. Let O′ be as in Notation 1.7
and put C= C′⊗R′ R. Let α′ in H 2(M(3)(O

′)) be such that ∂1(α
′)= 0. Then

there exists a unique β ′ in K (3)
4 (C′) whose image in K (3)

4 (O′) under localization
equals the image of α′ under (1.6) modulo K (2)

3 (k)∪O′∗
Q

. If β is the image of
β ′ under K (3)

4 (C′)→ K (3)
4 (C), then we have

ω∪ regp(β)=9p,ω(α),

where α is the image of α′ in H 2(M(3)(O)).

Remark 1.10. The reader should compare the above formula for the regulator with
the formula obtained by Coleman and de Shalit [1988], which is known to be the
syntomic regulator by [Besser 2000c]. There, the regulator is obtained by sending
the symbol { f, g} in K2(F) to

∫
( f ) log(g)ω. The similarity with the present formula

should be clear.

The rest of our results concern the K-theory of open curves over R and not over
a number field. Thus, they are more general on the one hand, but progressively
harder to state. Indeed, the first theorem is special because we are able to simplify
matters by taking account of boundary terms over number fields.

As we are now computing on an open scheme, we no longer have a nontrivial cup
product pairing, so we first need to explain what it is that we are computing. Under
the regulator, each element of K (3)

4 (O) maps to H 1
dR(U/K ) for some wide open

space U in C in the terminology of Coleman. There exists a canonical projection
H 1

dR(U/K )→ H 1
dR(C/K ), compatible with restriction to a smaller U ; see [Besser

2000c, Proposition 4.8] and (9.13) below. We denote by reg′p the composition

K (3)
4 (O)→ H 1

dR(U/K )→ H 1
dR(C/K ).

Theorem 1.11. Suppose ω is a holomorphic form on C. The assignment

[g]2⊗ f 7→ 2
∫
( f )

L2(g)ω− 2
∑

y

ordy( f )Fω(y)Lmod,2(g(y)),

where in the sum y runs through the closed points of C , gives a well-defined
map 9 ′p,ω : M2(O)⊗O∗

Q
→ K . It induces a map 9 ′p,ω : H

2(M(3)(O))→ K , which
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coincides with the composition

H 2(M(3)(O))→ K (3)
4 (O)

reg′p
−−→ H 1

dR(C/K )
ω∪
−−→ K .

Over the complex numbers, it is known that computing the cup product of the
regulator with holomorphic forms suffices to describe it completely in the case
we are considering because those linear maps surject onto the dual of the target
space of the regulator (see the beginning of Section 4 of [de Jeu 1996], especially
Proposition 4.1). This is not true over the p-adics. It is therefore important to have
formulas for the cup product of the regulator with a general cohomology class (such
a class can be represented by a form of the second kind on C , that is, a meromorphic
form all of whose residues are 0). This can be done at the cost of introducing further
machinery — the notion of the triple index. It is a generalization of the “local index”
that was introduced in [Besser 2000c, Section 4].

Informally speaking, working on an annulus e over Cp, e ∼= {r < |z|< 1}, the
triple index associates to the integrals F , G and H of three rigid analytic 1-forms
on e (in this case these forms are simply Laurent series converging on e multiplied
by dz) together with choices of integrals for F dG, F dH and G dF , a number
〈F,G; H〉e in Cp that is supposed to be a generalization of Rese FG dH . Note
that the integrals appearing in the data for the triple index make perfect sense once
one admits a log function to correspond to the integral of dz/z, and are determined
up to a constant by the form they integrate. Suppose now that C/Cp is a curve
with good reduction and that C contains discs Di ∼= {|z|< 1}. The rigid analytic
domain U = C \

⋃
i (Di − ei ), where ei ⊂ Di is the annulus corresponding to

{r < |z|< 1}, is called a wide open space by Coleman. The ei ⊂U are called the
ends of U . Suppose that F , G and H are Coleman functions defined on U such
that restricted to the ei they are of the type allowing us to compute the triple indices
〈F |ei ,G|ei ; H |ei 〉ei . We may use auxiliary data composed of Coleman integrals
restricted to ei for computing these. It sometimes turns out that the sum of triple
indices over all the ei depends only on F , G, and H and not on the auxiliary data.
This applies in particular to the sum of triple indices in the two theorems below. It is
further known that this sum of triple indices behaves well with respect to shrinking
the wide open space U . Finally, if everything is defined over a complete subfield
K of Cp then this sum of triple indices is in K .

Theorem 1.12. Let ω be a form of the second kind on C. The assignment

[g]2⊗ f 7→
∑

e

〈
log( f ), log(g);

∫
Fω dlog(1− g)

〉
e
,

where Fω is any Coleman integral of ω, and the sum of triple indices is over all
ends e of a wide open space U on which all f, g and 1−g are invertible and ω is
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holomorphic, gives a well-defined map 9 ′′p,ω : M2(O)⊗O∗
Q
→ K . It induces a map

9 ′′p,ω : H
2(M(3)(O))→ K , which coincides with the composition

H 2(M(3)(O))→ K (3)
4 (O)

reg′p
−−−→ H 1

dR(C/K )
ω∪
−−→ K .

The complex M̃(3)(F) defined in (1.3) is easier to work with in explicit computa-
tions than the complex M(3)(F). Therefore, just as in [de Jeu 1996, Remark 4.5],
it is desirable to have a formula for the regulator using this complex. With that in
mind, we define in Section 2.5.5 a complex

M̃(3)(O) : M̃3(O)→ M̃2(O)⊗O∗Q→
∧3O∗Q

such that its cohomology in degrees 2 and 3 is isomorphic to that of the complex
M(3)(O) in (1.5). There is a natural map M̃(3)(O)→ M̃(3)(F) of complexes, and
one may view M̃2(O)⊆ M̃2(F). Corresponding to the statements in Theorems 1.11
and 1.12 for M(3)(O), we have the following two expressions for the regulator in
this case.

Theorem 1.13. 1. Let ω be a form of the second kind on C. The assignment

[g]2⊗ f 7→ 2
3

∑
e

〈
log( f ), log(g);

∫
Fω dlog(1− g)

〉
e

−
2
3

∑
e

〈
log( f ), log(1− g);

∫
Fω dlog(g)

〉
e

gives a well-defined map 9 ′′′p,ω : M̃2(O)⊗O∗
Q
→ K . It induces a map

9 ′′′p,ω : H
2(M̃(3)(O))→ K ,

which coincides with the composition of maps

H 2(M̃(3)(O))
'
−→ H 2(M(3)(O))→ K (3)

4 (O)
reg′p
−−−→H 1

dR(C/K )
ω∪
−−→K ,

with the leftmost map being the isomorphism alluded to before.

2. If ω is a holomorphic form on C , then the same holds for the assignment

[g]2⊗ f 7→ 2
3

∫
( f )
(3L2(g)− log(1− g) log(g))ω+ 2

3

∫
(g)

log( f ) log(1− g)ω

−2
∑

y

ordy( f )Fω(y)Lmod,2(g(y)) .

A key complex for doing computations is C•(O) : C1(O)→ C2(O) in cohomo-
logical degrees 1 and 2, which we shall construct in Section 2.5.4. The theorems in
this introduction admit analogous results expressed in terms of this complex. We
avoided these results for clarity in the introduction. However, they are very useful
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in applications since it is easier to find explicit examples to which these results
apply, for instance, for certain elliptic curves; see [de Jeu 1996, Section 6].

We end the introduction with a conjecture. The regulator formulas that we obtain
do not depend on any integrality assumptions. This is only required because the
syntomic regulator is a map from the K-theory of an integral model. Thus we
conjecture the following.

Conjecture 1.14. Theorems 1.9, 1.11, 1.12 and 1.13 hold, with the same formulas,
with O replaced by F and C replaced by C .

Notation 1.15. Unless stated otherwise, throughout the paper, we will be working
with the following notation.

K will be a discrete valuation field of characteristic zero with valuation ring R
and residue field κ of positive characteristic p, which is a subfield of Fp. In various
places, k will be a number field inside K . In that case we denote by F ⊆ κ the
residue field of the local ring R′ = k ∩ R.

C will be a smooth, proper, geometrically irreducible curve over R. The generic
fiber is denoted C , the special fiber is denoted Cκ . We let F = K (C), and O⊂ F
will be the valuation ring for the valuation on F corresponding to the generic point
of Cκ , which consists of those elements in F that are generically defined on Cκ .

If k ⊂ K is a number field, and C′ is a smooth, proper, geometrically irreducible
curve over R′ = R ∩ k, then the generic fiber is denoted C ′, the special fiber
is denoted C′F. We let F ′ = k(C ′), and O′ ⊂ F ′ will be the valuation ring for
the valuation on F ′ corresponding to the generic point of C′F. In particular, if
C= C′⊗R′ R, then O′ = O∩ F ′.

If S is a subset of a group, then we denote by <S> the subgroup generated
by S, and if S is a subset of a Q-vector space, we denote by <S>Q the Q-vector
subspace generated by S.

All tensor products will be over Q, unless specified otherwise.

For the convenience of the reader, we give a commutative diagram that plays the
role of a two-dimensional Leitfaden (“Leitteppich”) for the proofs in this paper. In
the left lower square we may also use O′ instead of O, in which case C =C ′⊗R′ K .

(1.16)

H 2(M(3)(C
′)) //

��

K (3)
4 (C′)⊕ K (2)

3 (k)∪O′∗
Q

��

H 2(M(3)(O)) //

��

K (3)
4 (O)

reg′p //

��

H 1
dR(C/K )

ω∪·

��
H 1(C•(O)) // K (3)

4 (O)/K (2)
3 (O)∪O∗

Q
// K
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The constructions in algebraic K-theory will be carried out in Section 2. The top
left square comes from the natural map M(3)(C

′)→M(3)(O
′) (see Section 2.5.3),

and is justified by (2.58), whereas the bottom left square is (2.67). The map

K (3)
4 (O)

reg′p
−−→ H 1

dR(C/K )

already factorizes through the quotient map K (3)
4 (O)→ K (3)

4 (O)/K (2)
3 (O)∪O∗

Q
(see

Corollary 9.5). The resulting composition in the bottom line of (1.16) is then
computed in Section 9, using the techniques developed in the preceding sections. In
Section 10 we then finish the proofs of the theorems above, based on this calculation.

2. K-theory

2.1. Introduction. Consider a proper, smooth, geometrically irreducible curve C

over R as in Notation 1.4, or C′ over R′ as in Notation 1.7. We shall construct
various cohomological complexes whose cohomologies are related to that of F ,
O, F ′ or O′. The main idea is the same as in [de Jeu 1996], but the fact that we
shall be working with a discrete valuation ring rather than a field gives rise to some
complications. In order to highlight the idea we start with a more gentle exposition.
For the proofs of the statements that are used in the construction, we refer the reader
to [de Jeu 1995], especially Sections 2.1 through 2.3 and 3. There most of the work
was done over Q, but in fact the proofs hold over our base O, a discrete valuation
ring of characteristic zero, without any change.

It will be clear from the constructions that the complexes are natural in terms
of F , F ′, O and O′, which we shall use later in this paper. In particular, if we
start with C′ over R′ and let C = C′⊗R′ R, then there are natural maps from the
complexes for F ′ to those for F , and from those for O′ to those for O.

If B is a Noetherian scheme of finite Krull dimension d , then according to [Soulé
1985, Proposition 5], one can write

(2.1) Kn(B)⊗Z Q=

n+d⊕
j=min{2,n}

K ( j)
n (B)

where K ( j)
n (B) consists of all α in Kn(B)⊗Z Q such that ψk(α) = k jα for all

Adams operators ψk . (The regularity assumption at the beginning of Section 4 of
[loc. cit.] is not necessary; see [Gillet and Soulé 1999, Proposition 8].) If in addition
B is separated and regular, then the pullback K∗(B)→ K∗(A1

B) is an isomorphism;
see [Quillen 1973, §7]. The weight behaves naturally with respect to pullback,
also giving us K ( j)

m (B)' K ( j)
m (A1

B) under pullback. And under suitable hypotheses
for a closed embedding, there is a pushforward Gysin map with a shift in weights
corresponding to the codimension; see, for instance, [de Jeu 1995, Proposition 2.3].
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Let X B = P1
B \ {t = 1} with t the standard affine coordinate on P1

B . Write �1
B

for the closed subset {t = 0,∞} in P1
B . Then the relative exact sequence for the

couple (X B;�1
B) gives us

· · · → Kn+1(X B)→ Kn+1(�
1
B)→ Kn(X B;�

1
B)→ Kn(X B)→ Kn(�

1
B)→ · · ·

for n ≥ 0. Because the map pullback Kn+1(B)→ Kn+1(X B) is an isomorphism,
combining it with the pullback Kn+1(X B) → Kn+1(�1

B) = Kn+1(B)2 shows
that the map Kn+1(X B) → Kn+1(�1

B) corresponds to the diagonal embedding
Kn+1(B) → Kn+1(B)2. As this holds for all n ≥ 0, we get that we have an
isomorphism Kn(X B;�1

B) ' Kn+1(B) for n ≥ 0. Note that we have a choice of
sign here in the isomorphism of the cokernel of Kn(B)→ Kn(B)2 with Kn(B).
This results in similar choices of signs in the maps H i (M(n)(O))→ K (n)

2n−i (O) and
H i (M̃(n)(O))→ K (n)

2n−i (O) later on in this section.
We will have to go up one level in the relativity. If we let �2

B be shorthand for
{t1 = 0,∞}; {t2 = 0,∞}, then we can get a long exact sequence

· · · → Kn+1(X2
B; {t1 = 0,∞})→ Kn+1({t2 = 0,∞}; {t1 = 0,∞})

→ Kn(X2
B;�

2
B)→ Kn(X2

B; {t1= 0,∞})→ Kn({t2= 0,∞}; {t1= 0,∞})→· · · .

The composition

Kn+1(X B; {t1 = 0,∞})
'
−→ Kn+1(X2

B; {t1 = 0,∞})

→ Kn+1({t2 = 0,∞}; {t1 = 0,∞})' Kn+1(X B; {t1 = 0,∞})2

(with the first the pullback along the projection (t1, t2) 7→ t2) is the diagonal embed-
ding, hence we obtain an isomorphism Kn(X2

B;�
2
B)' Kn+1(X B;�1

B) for n ≥ 0.
Therefore we get

Kn(X2
B;�

2
B)' Kn+1(X B;�

1
B)' Kn+2(B) for n ≥ 0.

A similar argument with weights gives us an isomorphism

K ( j)
n (X2

B;�
2
B)' K ( j)

n+2(B) for n ≥ 0.

In order to get elements in Kn+2(X2
B;�

2
B), we use localization sequences. We

first explain the idea for Kn+1(X B;�1
B), because for Kn+2(X2

B;�
2
B) the process

involves a spectral sequence. If u is an element in our discrete valuation ring O

such that both u and 1− u are units, then we get an exact localization sequence

· · · → Km(O)→ Km(XO;�
1
O)→ Km(XO,loc;�

1
O)→ Km−1(O)→ · · ·

where XO,loc = XO \ {t = u} and we identified {t = u} ⊂ XO with O (or rather
Spec(O)). We used here that u and 1− u are units in O so that {t = u} does not
meet �1

O or {t = 1}, and that O is regular in order to identify Km(O) with K ′m(O). (If
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we want to leave out {t = u} and {t = v} simultaneously for two distinct elements
u and v in O such that all of u, v, 1− u and 1− v are units, which we shall do
below, this already becomes far more complicated and one is forced to use a spectral
sequence.) The image of K2(O)→ K2(XO;�1

O) can be controlled by looking at
the weights, which for the bit that we are interested in gives us

· · · → K (1)
2 (O)→ K (2)

2 (XO;�
1
O)→ K (2)

2 (XO,loc;�
1
O)→ K (1)

1 (O)→ · · · .

Because of weights in K-theory, one knows that K (1)
2 (O)= 0, so that

K (2)
3 (O)' Ker(K (2)

2 (XO,loc;�
1
O)→ K (1)

1 (O)),

and we can analyze K (2)
2 (XO;�1

O) as a subgroup of K (2)
2 (XO,loc;�1

O). In [de Jeu
1995, Section 3.2] universal elements [S]n were constructed, of which we want to
use [S]2 here. It gives rise to an element [u]2 in K (2)

2 (XO,loc;�1
O) with boundary

(1−u)−1 in K (1)
1 (O). If we use this for various u (suitably modifying the localization

sequence above into a spectral sequence) and also consider elements coming from
the cup product

K (1)
1 (XO,loc;�

1
O)× K (1)

1 (O)→ K (2)
2 (XO,loc;�

1
O, )

we can get part of K (2)
2 (XO;�1

O)' K (2)
3 (O) by intersecting the kernel of the map

corresponding to K (2)
2 (XO,loc;�1

O) → K (1)
1 (O) with the space generated by the

symbols [u]2 and the image K (1)
1 (XO,loc;�1

O)∪ K (1)
1 (O) of the cup product.

2.2. Preliminary material. We describe some basic facts about the various K -
groups of F , O, C and C, or F ′, O′, C ′ and C′, including those mentioned in the
introduction. The two cases are very similar so we shall treat them together.

We shall first consider the case where F = k(C ′) for a smooth, projective curve
C′ over R′ with geometrically irreducible generic fiber C ′. Let C′F be the special
fiber of C′, which is a smooth, projective curve over the finite field F. Because C′F
is regular, there is an exact localization sequence

(2.2) · · · → K (2)
4 (F(C′F))→ K (3)

4 (O′)→ K (3)
4 (F ′)→ K (2)

3 (F(C′F))→ · · · .

By [Harder 1977, Korollar 2.3.2], Kn(L) is torsion for n ≥ 2 for all function fields
L of curves over finite fields, so in particular, K (3)

4 (O′)
'
−→ K (3)

4 (F ′). If F = K (C),
then we get

· · · → K (2)
4 (κ(Cκ))→ K (3)

4 (O)→ K (2)
3 (F)→ K (2)

3 (κ(Cκ))→ · · · .

By our assumptions (see Notation 1.15), κ ⊆ Fp. According to [Quillen 1973,
Proposition 2.2] or [Srinivas 1996, Lemma 5.9], Kn(κ(Cκ)) is the direct limit of Kn

of function fields of curves over finite fields, hence is torsion as well, and we
find K (3)

4 (O)' K (3)
4 (F).
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From the exact localization sequence

· · · →

∐
x∈C′(1)F

K (1)
n (F(x))→ K (2)

n (C′F)→ K (2)
n (F(C′F))→ · · ·

and the fact that K (1)
n (L) is zero for any field L for n ≥ 2, we see that K (2)

n (C′F) is
trivial for n ≥ 2. From the exact localization sequence

· · · → K (2)
4 (C′F)→ K (3)

4 (C′)→ K (3)
4 (C ′)→ K (2)

3 (C′F)→ · · ·

we see that K (2)
n (C′F) is trivial for n ≥ 2, hence K (3)

4 (C′)' K (3)
4 (C ′). Using a direct

limit argument as before, we then see that K (3)
4 (C)' K (3)

4 (C) as well.

Remark 2.3. We now have two identifications fitting into a commutative diagram

K (3)
4 (C′) // K (3)

4 (O′)

K (3)
4 (C ′) // K (3)

4 (F ′)

and similarly for F , O, C and C . From the exact localization sequence

· · · →

∐
x∈C ′(1)

K (2)
4 (k(x))→ K (3)

4 (C ′)→ K (3)
4 (F ′)

∂
−→

∐
x∈C ′(1)

K (2)
3 (k(x))→ · · ·

we see that the map K (3)
4 (F ′)→ K (3)

4 (C ′) is injective because K (2)
4 (L)= 0 for any

number field L . Hence the map K (3)
4 (C′)→ K (3)

4 (O′) is also injective.

Remark 2.4. We have

K (3)
4 (C ′)⊕ K (2)

3 (k)∪ F ′∗Q inside K (3)
4 (F ′).

(This makes sense because F ′∗
Q
= K (1)

1 (F ′).) Namely, K (3)
4 (C) = Ker(∂) in the

localization sequence in Remark 2.3. On the other hand, for f in F∗
Q

and α in
K (2)

3 (k), ∂(α ∪ f )= α ∪ div( f ) in
∐

x∈C (1) k(x)∗
Q

, hence this is trivial only if f is
in k∗

Q
. But

K (2)
3 (k)∪ k∗Q ⊆ K (3)

4 (k),

which is zero since k is a number field. Therefore K (2)
3 (F) ∪ F∗

Q
injects into∐

x∈C (1) k(x)∗
Q

under ∂ .

Remark 2.5. Note that a local parameter of R′ is also a local parameter for O′,
so F ′∗ is generated by O′∗ and that local parameter. This implies that

K (2)
3 (k)∪O′∗Q = K (2)

3 (k)∪ F ′∗Q ,

again because K (2)
3 (k)∪ k∗

Q
is trivial.
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We shall need the following result at several places later on.

Proposition 2.6. For a discrete valuation ring O, with residue field κ and field of
fractions F , for all n ≥ 1, the sequence O∗

Q
⊗n
→ K (n)

n (F)→ K (n−1)
n−1 (κ)→ 0 is

exact.

Proof. Since K (n)
n (L) ' K M

n (L)Q for any field L by [Soulé 1985, Théorème 2],
with K M

n (L) the Milnor K-theory of L , it suffices to show that

(O∗)⊗Zn
→ K M

n (F)→ K M
n−1(κ)→ 0

is exact. If π is a uniformizer of O, then K M
n (F) is generated by symbols {u1, . . . ,un}

and {u1, . . . , un−1, π}, with all uj in O∗. The map K M
n (F)→ K M

n−1(κ) is the tame
symbol, which is trivial on the first type of generator, and maps the second to
{ū1, . . . , ūn−1}. It is clearly surjective. So we only have to show that if α in
(O∗)⊗Z(n−1) maps to the trivial element under the composition

(O∗)⊗Z(n−1)
→ (κ∗)⊗Z(n−1)

→ K M
n−1(κ),

then the image of α ⊗ π in K M
n (F) is in the image of (O∗)⊗Zn . Noticing that

the Steinberg relations · · · ⊗ x ⊗ · · · ⊗ (1− x)⊗ · · · in (O∗)⊗Z(n−1) surject onto
those in (κ∗)⊗Z(n−1), we see that we may assume that α is in the kernel of the map
(O∗)⊗Z(n−1)

→ (κ∗)⊗Z(n−1). From the exact sequence

1→ 1+Oπ→ O∗→ κ→ 1

and the fact that, if we have exact sequences 0→ Ai→ Bi→Ci→ 0 (i = 1, . . . ,m)
of Abelian groups, then the kernel of B1⊗Z · · · ⊗Z Bm→ C1⊗Z · · · ⊗Z Cm is the
image of A1⊗Z B2⊗Z · · ·⊗Z Bm+ B1⊗Z A2⊗Z B3⊗Z · · ·⊗Z Bm+· · · , we see α
lies in the image of

(1+Oπ)⊗Z O∗⊗Z · · · ⊗Z O∗+O∗⊗Z (1+Oπ)⊗Z · · · ⊗Z O∗+ · · · .

But each element {u1, . . . , un−1, π} with all ui in O∗ and at least one of them in
1+Oπ lies in the image of (O∗)⊗Zn . Namely, an element in 1+Oπ is of the form
1−πdu for some u in O∗, d > 0. If d = 1 we can rewrite {. . . , 1−πu, . . . , π} =
−{. . . , 1−πu, . . . , u}. If d > 1, then using that

1−πdu
1−π

= 1−π π
d−1u−1
1−π

,

we find that {. . . , 1− πdu, . . . , π} = {. . . , 1− π π
d−1u−1
1−π , . . . , π}, which reduces

to the case d = 1 as (πd−1u− 1)/(1−π) is in O∗. �

Assumption 2.7. Throughout the construction of the complexes in the various
subsections below, we let F be a field of characteristic zero. In the constructions
for complexes for O, O will be a discrete valuation ring, with residue field κ and
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field of fractions F , which we assume to be of characteristic zero. We shall always
assume that |κ|> 2, so that O[ is nonempty and 〈O[〉 = O∗.

2.3. A few more preliminaries. It will be convenient to introduce the notation
F[ = F∗ \ {1}, as well as O[ = {u in O∗ such that 1−u is in O∗}, and κ[ = κ∗ \ {1}.

Throughout the remainder of Section 2, we shall let X loc
F be the scheme obtained

from X F =P1
F \ {t = 1} by removing all points t = u with u in F[. We write X2,loc

F
for (X loc

F )
2. Similarly, we let XO = P1

O \ {t = 1}, we write X loc
O for the scheme

obtained from XO by removing all subschemes t = u with u in O[, and we write
X2,loc

O for (X loc
O )2. Finally, for κ , we let Kκ = P1

κ \ {t = 1}, we write X loc
κ for the

scheme obtained from Xκ by removing all subschemes t = u with u in κ[, and
we write X2,loc

κ for (X loc
κ )

2. (Of course, we would have to remove such a closed
subscheme for only a finite set of u’s first, and then take a direct limit. But by
[Quillen 1973, Proposition 2.4] and some exact sequences in relative K-theory
this will give us the K-theory of X loc

κ anyway. Moreover, as such a direct limit
over finite subsets of O[ or F[ is clearly filtered, hence exact, this procedure will
commute with taking spectral sequences, etc., below, so that we work directly in
the direct limit.)

Since writing {t = 0,∞} or {t1 = 0,∞}; {t2 = 0,∞} can be rather too long in
places, we often abbreviate the first by writing �, and the second by writing �2.

Let (1+ I )∗ = K (1)
1 (X loc

F ;�). From the exact sequence

· · · → K (1)
2 (�)→ K (1)

1 (X loc
F ;�)→ K (1)

1 (X loc
F )→ K (1)

1 (�)→ · · ·

we see that (1+ I )∗⊂ K (1)
1 (X loc

F ) as K (1)
2 (�)' K (1)

2 (F)⊕2
= 0. So we can describe

(1+ I )∗ explicitly as those elements in K (1)
1 (X loc

F ) that restrict to 1 at t = 0 and
t = ∞. Because K1(X loc

F ) is given by the units in the ring corresponding to a
localization of the affine line, we find that

(1+ I )∗ =
{∏

j

( t−uj

t−1

)n j
with uj in F[, n j in Z, such that

∏
j

un j
j = 1

}
⊗Z Q .

Note that in particular the divisor map

(2.8) (1+ I )∗→
∐
t∈F[

K (0)
0 (F)

is an injection.
Note that, if A is any Q-subspace of K (l)

n (X loc
F ;�), and we use the cup product

(1+ I )∗ ∪ A→ K (l+1)
n+1 (X

2,loc
F ;�2) by pulling (1+ I )∗ back along the first projec-

tion, and A along the second, then d((1+ I )∗ ∪ A)= (d(1+ I )∗)∪ A− (1+ I )∗ ∪
(dA), and

∐
t1∈F[ A/(d(1+ I )∗)∪ A ' A⊗ F∗

Q
because F[ generates F∗, and the

functions in (1+ I )∗ (without · · · ⊗Z Q ) give exactly the multiplicative relations
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among the elements in F[. Of course, by reversing the role of the projections
we can do this with t2 instead of t1 instead. This will be used in order to change∐

t∈F[ · · · into · · · ⊗Q F∗
Q

in localization sequences or spectral sequences below.
Under Assumption 2.7, we can do the same for O. Namely, define

(1+ I )∗O = K (1)
1 (X loc

O ;�).

Because K (1)
2 (O)= 0 and K (1)

1 (O)= O∗
Q

, one sees by exactly the same argument as
for (1+ I )∗ that

(2.9) (1+ I )∗O =
{∏

j

( t−uj

t−1

)n j
∣∣∣ uj in O[, n j in Z, such that

∏
j

un j
j = 1

}
⊗Z Q .

In particular, we have (1+ I )∗O ⊆ (1+ I )∗ under localization of the base from O

to F . Note that we used here that (1+ I )∗O gives us exactly the relations needed to
turn

∐
t∈O[ · · · into · · ·⊗O∗

Q
, as (1+ I )∗O (without · · ·⊗Z Q ) gives the multiplicative

relations among elements in O[, and O[ generates O∗.
Finally, we like to mention that for x in F , under the map

K (0)
0 (F)|t=x → K (1)

0 (X F ;�)' F∗Q,

1 is mapped to x±1; see [de Jeu 1995, Lemma 3.14]. The same holds for O instead
of F , and this is compatible with products.

2.4. Construction of the complexes for F and C ′. Several parts of the construc-
tions of the complexes in this section and in Section 2.5 below were carried out in
earlier papers [de Jeu 1995; 1996; Besser and de Jeu 2003], but we review them
so that we can refer to the relevant details in some new constructions for O and in
the calculations relating to regulators in later sections. Also, in various cases the
constructions were carried out more generally, in which case they tend to become
dependent on assumptions on weights in K-theory, and our exposition below will
avoid such assumptions.

2.4.1. Construction of the complexes M(2)(F) and M̃(2)(F). The principle of the
construction of the complex M(2)(F) was first used in Bloch’s Irvine notes (finally
published as [Bloch 2000]). The construction of M(2)(F) and M̃(2)(F) can be found
in [de Jeu 1995, Section 3].

We start with the localization sequence

(2.10) · · · →
∐
t∈F[

K (1)
2 (F)→ K (2)

2 (X F ;�)→ K (2)
2 (X loc

F ;�)→∐
t∈F[

K (1)
1 (F)→ K (2)

1 (X F ;�)→ · · · .

Because K (1)
2 (F)= 0 for any field F by (2.1), this means that the cohomological
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complex (in degrees 1 and 2)

(2.11) RC(2)(F) : K
(2)
2 (X loc

F ;�)→
∐
t∈F[

K (1)
1 (F)

has cohomology groups H 1(RC(2)(F))' K (2)
3 (F) and H 2(RC(2)(F))' K (2)

2 (F).
In [de Jeu 1995, Section 3.2] (see also [Bloch 1990]), for every x in F[ an

element [x]2 was constructed in K (2)
2 (X loc

F ;�) with the property that its boundary
in
∐

K (1)
1 (F) is (1− x)−1

|t=x . Let

Symb1(F)= K (1)
1 (F)= F∗Q,

Symb2(F)= 〈[x]2 with x in F[〉Q+ (1+ I )∗ ∪Symb1(F).

Then we get a subcomplex of (2.11):

(2.12) Symb2(F) : Symb2(F)→
∐
t∈F[

Symb1(F).

Letting F∗
Q

act on the right in (2.8) gives the subcomplex

(2.13) (1+ I )∗ ∪ F∗Q→ d(· · · ),

which is acyclic by [de Jeu 1995, Lemma 3.7]. Taking the quotient of (2.12) by
(2.13), we obtain the complex

M(2)(F) : M2(F)→ F∗Q⊗ F∗Q,

where we used that d(1+ I )∗ gives exactly the right relations to turn
∐

t∈F[ · · ·

into · · · ⊗ F∗
Q

, as F[ generates F∗, and

M2(F)= Symb2(F)/(1+ I )∗ ∪Symb1(F)= Symb2(F)/(1+ I )∗ ∪ F∗Q.

Then M2(F) is a Q -vector space generated by the [x]2, x in F[, and the boundary
of [x]2 is (1− x)⊗ x .

Note that from the maps M(2)(F)← Symb2(F)→ RC(2)(F), with the left one
a quasiisomorphism, we obtain maps

H i (M(2)(F))→ K (2)
4−i (F)

for i = 1 and 2. The map for i = 1 is an injection as the corresponding statement
holds for RC(2)(F) and Symb2(F) is a subcomplex, and we are in the lowest degree.
For i = 2 the map is an isomorphism because K (2)

2 (F) is the quotient of F∗
Q
⊗ F∗

Q

by 〈x ⊗ (1− x) with x in F[ 〉.
We shall quotient out the complex M(2)(F) in order to end up with a second

term
∧2 F∗

Q
rather than F∗

Q
⊗ F∗

Q
. The shape of the quotient complexes M̃(2)(F)

here and M̃(3)(F) in Section 2.4.2 is more in line with conjectures; see for instance
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[Goncharov 1994, Conjecture 2.1]. Besides, the definition of complex M(3)(C ′)
depends on the complexes M̃(2)(L) for number fields L .

Namely, consider the subcomplex of M(2)(F)

(2.14) N2(F)→ d(· · · )

with

(2.15) N2(F)= 〈[u]2+ [u−1
]2 with u in F[〉Q ⊆ M2(F).

As d([x]2+ [x−1
]2) = x ⊗ x , the second term is in fact Sym2(F∗

Q
). By the proof

of [de Jeu 1995, Corollary 3.22], (2.14) is acyclic. Taking the quotient complex
we get

(2.16) M̃(2)(F) : M̃2(F)→
∧2 F∗Q,

with M̃2(F)= M2(F)/N2(F), and d[x]2 = (1− x)∧ x .
Because M̃(2)(F) is quasiisomorphic to M(2)(F) we have maps

(2.17) H i (M̃(2)(F))→ K (2)
4−i (F).

Again this map is an injection for i = 1 and an isomorphism for i = 2.
There are essentially two ways of generalizing the complex M(2)(F). The first

one is to look at another part of the localization sequence (2.10), the other to replace
X F by Xn

F for n ≥ 2, and use localization there, which will give a spectral sequence.
The first will be used to construct the complex C•(F) in Section 2.4.4 below, the
second (with n = 2 ) will be used for constructing the complex M(3)(F) below.

2.4.2. Construction of the complexes M(3)(F) and M̃(3)(F). Those complexes were
also defined in [de Jeu 1995, Section 3]. The complex M(3)(F) consists of three
terms in cohomological degrees 1, 2 and 3,

(2.18) M3(F)→ M2(F)⊗ F∗Q→ F∗Q⊗
∧2 F∗Q,

and comes equipped with maps

H 2(M(3)(F))→ K (3)
4 (F) and H 3(M(3)(F))→ K (3)

3 (F).

The last of those two maps is in fact an isomorphism.
Although we shall need a similar complex M(3)(O) in order to have information

about the special fiber, we describe the complex M(3)(F) first, as it is notationally
easier. Moreover, in the part of the complex we are interested in, we can view
M(3)(O) as a subcomplex of M(3)(F) (see Remark 2.45).

Consider the divisors on X2
F defined by putting ti = uj for some uj in F[ for

i = 1 or 2. Then there is a spectral sequence (see [de Jeu 1996, page 257; de Jeu
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1995, page 221])

(2.19)
...

...
...

K (3)
2 (X2,loc

F ;�2)
∐

t1∈F[
K (2)

1 (X loc
F ;�)

∐ ∐
t2∈F[

K (2)
1 (X loc

F ;�)
∐

t1,t2∈F[
K (1)

0 (F)

K (3)
3 (X2,loc

F ;�2)
∐

t1∈F[
K (2)

2 (X loc
F ;�)

∐ ∐
t2∈F[

K (2)
2 (X loc

F ;�)
∐

t1,t2∈F[
K (1)

1 (F)

K (3)
4 (X2,loc

F ;�2)
∐

t1∈F[
K (2)

3 (X loc
F ;�)

∐ ∐
t2∈F[

K (2)
3 (X loc

F ;�)
∐

t1,t2∈F[
K (1)

2 (F)

...
...

...

converging to K (3)
∗ (X2

F ;�
2) ' K (3)

∗+2(F). The only terms in it that contribute to
K (3)

4 (F) are

K (3)
2 (X2,loc

F ;�2) and
∐

t1∈F[
K (2)

2 (X loc
F ;�)

∐ ∐
t2∈F[

K (2)
2 (X loc

F ;�)

because
∐

t1,t2∈F[K
(2)
1 (F) is trivial. Let RC(3)(F) be the cohomological complex in

degrees 1, 2 and 3, consisting of the row in (2.19) that begins with K (3)
3 (X2,loc

F ;�2):

(2.20) RC(3)(F) : K
(3)
3 (X2,loc

F ;�2)

→

∐
t1∈F[

K (2)
2 (X loc

F ;�)
∐ ∐

t2∈F[
K (2)

2 (X loc
F ;�)→

∐
t1,t2∈F[

K (1)
1 (F).

This complex was denoted C(3) in [de Jeu 1995, Section 3.1], but considering the
notational overload of the letter C in this paper, we prefer to think of it as a row
complex rather than just a complex.

Note that K (2)
1 (F) equals zero, so for i = 2 and 3 there is a map

(2.21) H i (RC(3)(F))→ K (3)
6−i (F) .

For x in F[, in addition to the element [x]2 in K (2)
2 (X loc

F ;�) of Section 2.4.1,
there is also an element [x]3 in K (3)

3 (X2,loc
F ;�2) (see [de Jeu 1995, Section 3.2])

with boundary

−[x]2|t1=x + [x]2|t2=x in
∐

t1∈F[
K (2)

2 (X loc
F ;�)

∐ ∐
t2∈F[

K (2)
2 (X loc

F ;�)
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in (2.19). Let us define Symbn(F) ⊆ K (n)
n (Xn−1,loc

F ;�n−1) for n = 1, 2 and 3
by setting

Symb1(F)= F∗Q,

Symb2(F)= 〈[u]2 with u in F[〉Q+ (1+ I )∗ ∪Symb1(F),

Symb3(F)= 〈[u]3 with u in F[〉Q+ (1+ I )∗ ∪̃Symb2(F).

For n ≤ 2, those are the definitions given in Section 2.4.1, and for n = 3, by ∪̃ we
mean the following. In the projection X2

F to X F , we can use one of the factors to
pull back (1+ I )∗, the other to pull back Symb2(F) and then take the product to
land in Symb3(F), giving us two cup products. The ∪̃ indicates that we take the
sum of the images of both possibilities for those cup products.

Because, in (2.20), d[u]2 = (1− u)−1
|t=u and d[u]3 = −[u]2|t1=u + [u]2|t2=u , it

follows that

(2.22) Symb(3)(F) : Symb3(F)

→

∐
t1∈F[

Symb2(F)
∐ ∐

t2∈F[
Symb2(F)→

∐
t1,t2∈F[

Symb1(F)

is a subcomplex of (2.20). It is shown in [de Jeu 1995, Lemma 3.9 and Remark 3.10]
that the subcomplex

(2.23) (1+ I )∗ ∪̃Symb2(F)

→

∐
t1∈F[

(1+ I )∗ ∪ F∗Q
∐ ∐

t2∈F[
(1+ I )∗ ∪ F∗Q+ d(· · · )→ d(· · · )

of (2.22) is acyclic.
S2 acts on the spectral sequence (2.19) by swapping t1 and t2. It therefore

also acts on the complex (2.20) above. Because the symbol [x]3 is alternating by
construction (see [de Jeu 1995, Section 3.2]), we can take the alternating parts of
(2.22) and (2.23), and form the quotient complex

M(3)(F) : M3(F)→ M2(F)⊗ F∗Q→ F∗Q⊗
∧2 F∗Q ,

where
M3(F)= Symb3(F)/((1+ I )∗ ∪̃Symb2(F))

alt,

M2(F)= Symb2(F)/(1+ I )∗ ∪ F∗Q ,

as before in Section 2.4.1. Note that, for n = 2 and 3, Mn(F) is a Q-vector space
on symbols [x]n for x in F[, modulo nonexplicit relations depending on n. The
maps in the complex are given by d[x]3 = [x]2⊗ x and

(2.24) d[x]2⊗ y = (1− x)⊗ (x ∧ y).
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As before, we used here that d(1+ I )∗ gives exactly the right relations to turn∐
t∈F[ · · · into · · · ⊗ F∗

Q
, as F[ generates F∗. As Symb(3)(F) is a subcomplex of

RC(3)(F), this gives us maps

M(3)(F)← Symb(3)(F)alt
→ RC(3)(F)alt

→ RC(3)(F)

with the left map a quasiisomorphism. Combining this with (2.21) gives us a map

(2.25) H i (M(3)(F))→ K (3)
6−i (F)

for i = 2 and 3. (For i = 1, starting with H 1(RC(3)(F))→ K (3)
5 (F)/K (2)

4 (F)∪ F∗
Q

,
we still obtain a map H 1(M(3)(F))→ K (3)

5 (F)/K (2)
4 (F)∪ F∗

Q
.)

Finally, we quotient out M(3)(F) in order to obtain M̃(3)(F), as follows. Let

N3(F)= 〈[u]3− [u−1
]3 with u in F[〉Q ⊆ M3(F)

(cf. (2.15); in general Nn(F) is generated by the [u]n+ (−1)n[u−1
]n ) and consider

the subcomplex

(2.26) N3(F)→ N2(F)⊗ F∗Q→ d(· · · )

of M(3)(F). By the proofs of [de Jeu 1995, Proposition 3.20, Corollary 3.22] it is
acyclic in degrees 2 and 3, hence for the quotient complex

M̃(3)(F) : M̃3(F)→ M̃2(F)⊗ F∗Q→
∧3 F∗Q ,

where M̃3(F)= M3(F)/N3(F), we get a map

(2.27) H i (M̃(3)(F))
'
←− H i (M(3)(F))→ K (3)

6−i (F) .

In M̃3(F) we still denote the class of [x]i with [x]i , so that the maps are now given
by d[u]3 = [u]2⊗ u and d[u]2⊗ v = (1− u)∧ u ∧ v.

The next remark, lemma, and corollary will be used in Section 10 to define the
various maps in the theorems in the introduction.

Remark 2.28. Consider the map

8 : (F∗Q)
⊗3
→ Sym2(F∗Q)⊗ F∗Q

a⊗ b⊗ c 7→ 2
3((a · b)⊗ c− (a · c)⊗ b),

where a1·a2=
1
2(a1⊗a2+a2⊗a1) in Sym2(F∗

Q
). Up to scaling,8 is the composition

of antisymmetrizing in the last two factors, followed by symmetrizing in the first
two factors, so it is trivial on F∗

Q
⊗Sym2(F∗

Q
). It is easy to check that 8 ◦8=8

and 8 maps a generator (a · a)⊗ c of Sym2(F∗
Q
)⊗ F∗

Q
to itself modulo Sym3(F∗

Q
).

In particular, id−8 maps Sym2(F∗
Q
)⊗ F∗

Q
+ F∗

Q
⊗Sym2(F∗

Q
) to F∗

Q
⊗Sym2(F∗

Q
).

For α̃ in M̃2(F)⊗ F∗
Q

, let α be a lift of α̃ to M2(F)⊗ F∗
Q

, so that (d⊗ id)(α)
is in (F∗

Q
)⊗3. Because of the statements just after (2.14), there is a unique βα in
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N2(F)⊗ F∗
Q
⊂ M2(F)⊗ F∗

Q
with 8 ◦ (d⊗ id)(α)= (d⊗ id)(βα). By definition, α

is unique up to adding β ′ in N2(F)⊗ F∗
Q

. But

8 ◦ (d⊗ id)(α+β ′)=8 ◦ (d⊗ id)(α)+8 ◦ (d⊗ id)(β ′)= (d⊗ id)(βα +β ′+ γ )

for some γ in d(N3(F))= 〈([h]2+[h−1
]2)⊗h〉 ⊂ N2(F)⊗F∗

Q
as (d⊗ id)(β ′) is in

Sym2(F∗
Q
)⊗F∗

Q
, hence (8−id)◦(d⊗id)(β ′) is in Sym3(F∗

Q
). So βα+β ′=βα+β ′+γ ,

hence the class of α−βα is well-defined in M2(F)⊗ F∗
Q
/d(N3(F)).

Let
4 : M̃2(F)⊗ F∗Q→ M2(F)⊗ F∗Q/d(N3(F))

α̃ 7→ α−βα modulo d(N3(F))

be the resulting map, so α in M2(F)⊗ F∗
Q

lifts α̃ and βα in N2(F)⊗ F∗
Q

satisfies
8◦(d⊗id)(α)= (d⊗id)(βα). Clearly, the quotient map M2(F)⊗F∗

Q
→ M̃2(F)⊗F∗

Q

gives a quotient map M2(F)⊗ F∗
Q
/d(N3(F))→ M̃2(F)⊗ F∗

Q
, and 4 is a section

of the latter. Hence

M2(F)⊗ F∗Q/d(N3(F))= im(4)⊕ N2(F)⊗ F∗Q/d(N3(F)).

Now assume α̃ is in the kernel of d : M̃2(F)⊗F∗
Q
→

∧3 F∗
Q

. If α in M2(F)⊗F∗
Q

lifts α̃, then (d⊗ id)(α) is in Sym2(F∗
Q
)⊗ F∗

Q
+ F∗

Q
⊗Sym2(F∗

Q
). The same holds

for η = (d⊗ id)(α−βα) with α−βα any representative of 4(α̃), so that α lifts α̃
and (d⊗ id)(βα)=8◦ (d⊗ id)(α). Therefore η−8(η) is in F∗

Q
⊗Sym2(F∗

Q
). But

8(η)=8◦(d⊗id)(α)−8◦8◦(d⊗id)(α)=0, hence α−βα is in (M2(F)⊗F∗
Q
)d=0,

and therefore 4 maps (M̃2(F)⊗ F∗
Q
)d=0 to (M2⊗ F∗

Q
)d=0/d(N3(F)). It is easy to

check that 4(d(M̃3(F)))= d(M3(F))/d(N3(F)), so that 4 induces the inverse to
the natural isomorphism H 2(M(3)(F))→ H 2(M̃(3)(F)).

Lemma 2.29. Let V be a Q-vector space.

(1) Suppose we have a linear map G : (F∗
Q
)⊗3
→ V . Then the assignment

[g]2⊗ f 7→ G((1− g)⊗ g⊗ f )

defines a linear map 9 : M2(F)⊗ F∗
Q
→ V .

(2) If this 9 is trivial on d(N3(F)), then 9 ◦4 maps [g]2⊗ f in M̃2(F)⊗ F∗
Q

to

G((1− g)⊗ g⊗ f )− 2
3 G(((1− g) · g)⊗ f )+ 2

3 G(((1− g) · f )⊗ g),

where a1 · a2 =
1
2(a1⊗ a2+ a2⊗ a1) in Sym2(F∗

Q
)⊂ (F∗

Q
)⊗2.

(3) Suppose that we have linear maps 9 : M2(F) ⊗ F∗
Q
/d(N3(F)) → V and

H : Sym2(F∗
Q
)⊗ F∗

Q
→ V , such that 9(([a]2+[a−1

]2)⊗b)= H((a ·a)⊗b).
Then 9 ◦4 maps [g]2⊗ f in M̃2(F)⊗ F∗

Q
to

9(g, f )− 2
3 H((1− g) · g)⊗ f )+ 2

3 H((1− g) · f )⊗ g).
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Proof. (1) The map 9 is the composition of G with d⊗ id, with d : M2(F)→ F∗
Q
⊗2

the differential in M(2)(F). For (2) and (3) we lift α = [g]2⊗ f in M̃2(F)⊗ F∗
Q

to [g]2⊗ f in M2(F)⊗ F∗
Q

to find 9 ◦4([g]2⊗ f )=9([g]2⊗ f )−9(β), with
β = βα, so it suffices to compute 9(β). For (2) we find

9(β)= G(d⊗ id(β))= G(8(d⊗ id([g]2⊗ f )))= G(8((1− g)⊗ g⊗ f ))

=
2
3 G(((1− g) · g)⊗ f )− 2

3 G(((1− g) · f )⊗ g)

For (3) we find the formula in a similar way by noting that β can be written as a
sum of elements of the form [a]2+ [a−1

]2 and that d([a]2+ [a−1
]2)= a · a. �

Corollary 2.30. Under the assumptions in (2) and (3) of Lemma 2.29, the composi-
tion H 2(M̃(3)(F))→ H 2(M(3)(F))→ V is given by the corresponding formulas.

2.4.3. Construction of the complex M(3)(C ′). In this section we consider the situa-
tion where we have smooth, projective, geometrically irreducible curve C ′ over a
number field k with function field F ′ = k(C ′).

Because we are interested in finding elements in K (3)
4 (C ′), we introduce yet

another complex, M(3)(C ′), which is the total complex associated to the double
complex:

M3(F ′)
d //

��

M2(F ′)⊗Q F ′∗
Q

d //

∂1

��

F ′∗
Q
⊗
∧2 F ′∗

Q

∂2
��

0 // ∐
x M̃2(k(x))

d // ∐
x
∧2k(x)∗

Q

(Although not needed in this paper, one could define the complex M̃(3)(C ′) by using
M̃(3)(F ′) in the top row.) Here the coproducts are over all closed points x of C ′.
The boundary maps are as follows. The d’s in the top row are as in M(3)(F ′). In
the bottom row, d[z]2 = (1− z)∧ z. For the vertical maps,

∂1,x([g]2⊗ f )= ordx( f ) · [g(x)]2,

with the convention that [0]2 = [1]2 = [∞]2 = 0. Finally, ∂2,x described as follows.
Let π be a uniformizer at x , uj units at x . Then ∂2,x is determined by

π ∧ u1 ∧ u2 7→ u1(x)∧ u2(x) and u1 ∧ u2 ∧ u3 7→ 0 .

Therefore, an element
∑

i [gi ]2⊗ fi in H 2(M(3)(F ′)) satisfies∑
i

(1− gi )⊗ (gi ∧ fi )= 0

in F ′∗
Q
⊗
∧2 F ′∗

Q
. The additional condition for it to lie in H 2(M(3)(C ′)) is that∑

i ordx( fi )[gi (x)]2 = 0 in M̃2(k(x)) for all closed points x in C ′, with the con-
vention that [0]2 = [1]2 = [∞]2 = 0.
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We have an obvious map M(3)(C ′)→M(3)(F ′), corresponding to the localization
map in (2.2). In [de Jeu 1996, Theorem 5.2], it is shown that this induces a
commutative diagram:

(2.31)

H 2(M(3)(C ′))

��

// H 2(M(3)(F ′))

��

K (3)
4 (C ′)⊕ K (2)

3 (k)∪ F ′∗
Q

// K (3)
4 (F ′)

Note that it was shown in Remark 2.4 that K (3)
4 (C ′)⊕ K (2)

3 (k)∪ F ′∗
Q

is indeed a
direct sum, and that the lower horizontal map is an injection.

Remark 2.32. If k is totally real then K (2)
3 (k) is zero. But in general we can use

the projection

K (3)
4 (C ′)⊕ K (2)

3 (k)∪ F ′∗Q → K (3)
4 (C ′)

to get a map H 2(M(3)(C ′))→ K (3)
4 (C ′) as the composition

H 2(M(3)(C ′))→ K (3)
4 (C ′)⊕ K (2)

3 (k)∪ F ′∗Q → K (3)
4 (C ′).

2.4.4. Construction of the complex C•(F). The complex C•(F) is described in
[de Jeu 1996, Section 3], but it was first constructed in [Bloch 1990]. We recall its
construction in order to clarify the construction of the corresponding complex for O

in Section 2.5.4.
One starts with another part of the exact localization sequence (2.10) in rela-

tive K-theory.

(2.33) · · · →
∐
t∈F[

K (2)
3 (F)→ K (3)

3 (X F ;�)→ K (3)
3 (X loc

F ;�)

→

∐
t∈F[

K (2)
2 (F)→ K (3)

2 (X F ;�)→ · · · .

Because K (3)
2 ((X F ;�))' K (3)

3 (F)' K M
3 (F)Q, so that the map∐

t∈F[
K (2)

2 (F)→ K (3)
2 (X F ;�)

is surjective, this shows that the cohomological complex in degrees 1 and 2,

AC(3)(F) : K
(3)
3 (X loc

F ;�)→
∐
t∈F[

K (2)
2 (F),

has maps H 1(AC(3)(F))' K (3)
4 (F)/K (2)

3 (F)∪ F∗
Q

and H 2(AC(3)(F))' K (3)
3 (F).

(Here AC stands for “auxiliary complex”.)
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Again we have an acyclic subcomplex

(1+ I )∗ ∪ K (2)
2 (F)→ d(· · · ),

and therefore the quotient complex C•(F) is a cohomological complex in degree 1
and 2,

C•(F) : C1(F)→ C2(F),

with

C1(F)=
K (3)

3 (X loc
F ;�)

(1+ I )∗∪K (2)
2 (F)

and C2(F)= K (2)
2 (F)⊗ F∗Q .

It comes with maps

(2.34) H 1(C•(F))' K (3)
4 (F)/K (2)

3 (F)∪ F∗Q

and H 2(C•(F))' K (3)
3 (F .)

Note that if g is in F[, and f is in F∗, then [g]2 ∪ f lies in K (3)
3 (X loc

F ;�). In
fact, if we take the class of [g]2 in M2(F) instead, then we do get a well-defined
class in C1(F), as (1+ I )∗ ∪ F∗

Q
∪ f goes to zero in C1(F) by definition. Under

the differential in the complex, [g]2 ∪ ( f ) is mapped to

{(1− g)−1, f }⊗ g =−{1− g, f }⊗ g,

so the condition for an element
∑

i [gi ]2 ∪ ( fi ) to be in H 1(C•(F)) is that∑
i

{1− gi , fi }⊗ gi = 0 in K (2)
2 (F)⊗ F∗Q.

The map M(2)(F)⊗ F∗
Q
→ C1(F) given by [g]2 ⊗ f 7→ [g]2 ∪ f fits into a

commutative diagram

(2.35)

M3(F) //

��

M2(F)⊗ F∗
Q

//

��

F∗
Q
⊗
∧2 F∗

Q

��
0 // C1(F) // C2(F)

where we map f ⊗ g ∧ h to { f, g} ⊗ h − { f, h} ⊗ g. Multiplying the map
H 2(M(3)(F))→ K (3)

4 (F) by −1 if necessary, we obtain a commutative diagram
(see [de Jeu 1996, Proposition 3.2]):

(2.36)

H 2(M(3)(F)) //

��

K (3)
4 (F)

��

H 1(C•(F)) // K (3)
4 (F)/K (2)

3 (F)∪ F∗
Q
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2.5. Construction of the complexes for O and C′.

Remark 2.37. At various stages there will be some properties of the complexes
for O that depend on K (2)

3 (κ) being trivial. Clearly, this applies to O as in Section 1
by our remarks about the K -groups of κ(Cκ) and F(C′F) in Section 2.2.

2.5.1. Construction of the complex M(2)(O). When we try to imitate the localization
sequence (2.10) for O rather than F , we are dealing with the two dimensional
scheme XO, and we end up with a spectral sequence instead,

(2.38)

...
...

K (2)
1 (X loc

O ;�)
∐
t∈O[

K (1)
0 (F)

K (2)
2 (X loc

O ;�)
∐
t∈O[

K (1)
1 (F)

∐
t∈κ[

K (0)
0 (κ)

K (2)
3 (X loc

O ;�)
∐
t∈O[

K (1)
2 (F)

∐
t∈κ[

K (0)
1 (κ)

...
...

...

which converges to K (2)
∗ (XO;�)' K (2)

∗+1(O).
Because K (1)

2 (F), K (0)
1 (κ) and K (0)

2 (κ) are all trivial, if we let RC(2)(O) be the
cohomological complex in degrees 1, 2 and 3, given by

(2.39) K (2)
2 (X loc

O ;�)→
∐
t∈O[

K (1)
1 (F)→

∐
t∈κ[

K (0)
0 (κ) ,

then there are maps H 1(RC(2)(O))' K (2)
3 (O) and H 2(RC(2)(O))→ K (2)

2 (O). The
last map is surjective by Proposition 2.6 and the exact sequence

· · · → K (1)
2 (κ)→ K (2)

2 (O)→ K (2)
2 (F)→ K (1)

1 (κ)→ · · ·

as K (1)
2 (κ) = 0. Note that the map K (1)

1 (F) → K (0)
0 (κ) is surjective, so that

H 3(RC(2)(O)) is zero, as is K (2)
1 (O).

Now let A ⊆ K (2)
2 (X loc

O ;�) be the inverse image of
∐

t∈O[ O∗
Q

in
∐

t∈O[ K (1)
1 (F).

Because K (1)
1 (O)= O∗

Q
is equal to

ker
(
K (1)

1 (F)→ K (0)
0 (κ)

)
,

this means that the subcomplex

(2.40) RC(2)(O) : A→
∐
t∈O[

O∗Q

of (2.39) has maps H 1(RC(2)(O))→ K (2)
3 (O) and H 2(RC(2)(O))→ K (2)

2 (O).
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We again use the element [u]2 in K (2)
2 (X loc

O ;�) for every u in O[, and put

Symb1(O)= K (1)
1 (O)= O∗Q ,

Symb2(O)= 〈[u]2 with u in O[〉Q+ (1+ I )∗O ∪O∗Q .

(See (2.9) for the definition of (1+ I )∗O.) Observe that, if u is in O[ and v is in O∗
Q

,
then [u]2 and (1+ I )∗O ∪ v are in A, so we get a subcomplex of (2.40)

(2.41) Symb2(O) : Symb2(O)→
∐
t∈O[

O∗Q ,

containing the acyclic subcomplex

(2.42) (1+ I )∗O ∪O∗Q→ d(· · · ).

We take the quotient complex of (2.41) by (2.42) to obtain the complex

(2.43) M(2)(O) : M2(O)→ O∗Q⊗O∗Q ,

with M2(O)= Sym2(O)/(1+ I )∗ ∪O∗
Q

. Then M2(O) is a Q-vector space generated
by the [u]2, u in O[, and d[u]2 = (1− u)⊗ u. (Again, we used that d(1+ I )∗O ∪O∗

Q

gives us exactly the right relations to change
∐

t∈O[ O∗
Q

into O∗
Q
⊗ O∗

Q
because O[

generates O∗.) Note that we now have maps

M(2)(O)← Symb2(O)→ RC(2)(O),

with the left one a quasiisomorphism, so we obtain maps

(2.44) H i (M(2)(O))→ K (2)
4−i (O)

for i = 1 and 2. Again the map for i = 1 is an injection (cf. (2.17)). For i = 2 the
map is a surjection by Proposition 2.6 because K (2)

2 (O)= ker
(
K (2)

2 (F)→ K (1)
1 (κ)

)
.

Localizing the base from O to F in (2.38) gives us (2.19), so that we get a map
of complexes M2(O)→ M2(F) since the various steps in the constructions of the
two complexes are compatible.

Remark 2.45. The map M2(O) → M2(F) is injective. Namely, because the
construction of the complexes for M(2)(O) and M(2)(F) is compatible with the
localization from O to F in (2.38), we have a commutative diagram

0 // H 1(M(2)(O)) //

��

M2(O) //

��

O∗
Q
⊗O∗

Q

��
0 // H 1(M(2)(F)) // M2(F) // F∗

Q
⊗ F∗

Q
,
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with H 1(M(2)(O)) ⊆ K (2)
3 (O) and H 1(M(2)(F)) ⊆ K (2)

3 (F). From the exact local-
ization sequence

· · · → K (1)
3 (κ)→ K (2)

3 (O)→ K (2)
3 (F)→ K (1)

2 (κ)→ · · ·

we see that K (2)
3 (O) ' K (2)

3 (F), so that the map on H 1’s must be injective. As
O∗

Q
⊗ O∗

Q
→ F∗

Q
⊗ F∗

Q
is clearly injective, M2(O)→ M2(F) must be injective as

well. So we may think of M2(O) as the subspace of M2(F) generated by the [u]2
with u in O[ ⊂ F[.

2.5.2. Construction of the complex M(3)(O). In this subsection, we shall be mak-
ing Assumption 2.7.

If we now try to imitate the construction of M(3)(F) using O instead of F , we
see some differences. For example, in the construction of the spectral sequence, in
codimension one, we shall end up with copies of {ti = u} for u in O[, which look
like XO, out of which we have to remove the intersections with all other such pieces
of codimension one of the form {ti = v} for i = 1 and 2, and v in O[. Note that, in
particular, we also cut out ti = v with u and v different elements in O[, but reducing
to the same in the residue field. Then ti = v cuts out the bit in the special fiber
in ti = u. We therefore end up with copies of X

′loc
F = X F \ {t = u with u in O[}.

So if we do this for O, we end up with the following spectral sequence, converging
to K (3)

∗ (X2
O;�

2)' K (3)
∗+2(O); see [Besser and de Jeu 2003, (3.7)]. For typographical

reasons, let us introduce the following abbreviations:

K ( j),m
n,O := K ( j)

n (Xm
O ;�

m), K ( j),1
n,F := K ( j)

n (X
′loc
F ;�), K ( j),1

n,κ := K ( j)
n (Xκ;�).

Then the spectral sequence is

(2.46)
...

...
...

K (3),2
2,O

(∐
t∈O[

K (2),1
1,F

)2 ∐
t1,t2∈O[

K (1)
0 (F)

∐(∐
t∈κ[

K (1),1
0,κ

)2

K (3),2
3,O

(∐
t∈O[

K (2),1
2,F

)2 ∐
t1,t2∈O[

K (1)
1 (F)

∐(∐
t∈κ[

K (1),1
1,κ

)2 ∐
t1,t2∈κ[

K (0)
0 (κ)

K (3),2
4,O

(∐
t∈O[

K (2),1
3,F

)2 ∐
t1,t2∈O[

K (1)
2 (F)

∐(∐
t∈κ[

K (1),1
2,κ

)2 ∐
t1,t2∈κ[

K (0)
1 (κ)

...
...

...
...



332 AMNON BESSER AND ROB DE JEU

Here the (· · · )2 corresponds to two copies, corresponding to a coproduct over t1 in
O[ or κ[, and t2 in O[ or κ[. As explained before, in order to obtain X

′loc
F out of X F ,

we only remove ti = uj with uj in O[.
Now notice that all K (0)

j (κ) are zero for j ≥ 1, that K (1)
j (F) is zero for j ≥ 2,

and finally that K (1)
j (X

loc
κ ;�) is zero as well for j ≥ 2: we consider the exact

localization sequence

· · · → K (1)
j (X

1
κ;�)→ K (1)

j (X
loc
κ ;�)→

∐
K (0)

j−1(κ)→ · · · ,

and use that K (1)
j (X

1
κ;�)' K (1)

j+1(κ), which is zero as K (1)
m (L)= 0 for m ≥ 2 for

any field L , as well as that K (0)
j−1(κ)=0 because j−1≥1. Therefore, with RC(3)(O)

the following cohomological complex in degrees 1 through 4 (corresponding to the
row in (2.46) starting with K (3)

3 (X2
O,loc;�

2)):

(2.47) RC(3)(O) : K
(3)
3 (X2,loc

O ;�2)→

(∐
t∈O[

K (2)
2 (X loc

F ;�)

)2

→

∐
t1,t2∈O[

K (1)
1 (F)

∐(∐
t∈κ[

K (1)
1 (X loc

κ ;�)

)2

→

∐
t1,t2∈κ[

K (0)
0 (κ)

has maps

(2.48) H i (RC(3)(O))→ K (3)
6−i (O)

for i = 2, 3 and 4.

Remark 2.49. Note that for i = 4 this statement is vacuous since from the local-
ization sequence

· · · → K (3)
3 (F)→ K (2)

2 (κ)→ K (3)
2 (O)→ K (3)

2 (F)→ · · ·

and the facts that K (3)
2 (F) is trivial and K (3)

3 (F) → K (2)
2 (κ) is surjective (see

Proposition 2.6), it follows that K (3)
2 (O) is zero.

Remark 2.50. The map K (2)
2 (X loc

O ;�)→ K (2)
2 (X

′loc
F ;�)→ K (2)

2 (X loc
F ;�) is in-

jective. Namely, we have an exact localization sequence

· · · → K (1)
2 (X loc

κ ;�)→ K (2)
2 (X loc

O ;�)→ K (2)
2 (X

′loc
F ;�)→ · · · ,

and K (1)
2 (X loc

κ ;�) equals zero, as seen above. Also, we have an exact localization
sequence

· · · →

∐
t∈F∗\F[

⋃
{1}

K (1)
2 (F)→ K (2)

2 (X
′loc
F ;�)→ K (2)

2 (X loc
F ;�)→ · · · ,

and again K (1)
2 (F) is zero.
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Remark 2.51. Note that, because we can localize O to F , we have a natural
map of the spectral sequence in (2.46) to the one in (2.19), which, at the level
of the complexes (2.20) and (2.47), simply forgets the terms over κ , includes a
coproduct over O[ into the corresponding coproduct over F[, and uses the maps
K (2)

2 (X loc
O ;�) → K (2)

2 (X loc
F ;�) and K (3)

3 (X2,loc
O ;�2) → K (3)

3 (X
′2,loc
F ;�2). By

Remark 2.50, the first one is always injective, and the second is injective if K (2)
5 (κ)

and K (2)
4 (F) are zero.

Let us try to create a jewel in the crown of the scary notation in (2.47). Define
Symbn(O)⊆ K (n)

n (Xn−1,loc
O ;�n−1) for n = 1, 2 and 3 by setting

Symb1(O)= O∗Q ,

Symb2(O)= 〈[u]2 with u in O[〉Q+ (1+ I )∗O ∪Symb1(O),

as before, and

Symb3(O)= 〈[u]3 with u in O[〉Q+ (1+ I )∗O ∪̃Symb2(O).

Again, by ∪̃ we denote that we use both products, coming from the two ways of
projecting X2

O to XO.
Note that for n = 1, Symb1(O)= O∗

Q
⊆ Symb1(F)= F∗

Q
, and that for n = 2, we

can view Symb2(O)⊆ Symb2(F) inside K (2)
2 (X loc

F ;�) by Remark 2.50, as

K (2)
2 (X loc

O ;�)⊆ K (2)
2 (X loc

F ;�).

Because d[u]2 = (1− u)−1
|t=u , and d[u]3 = −[u]2|t1=u + [u]2|t2=u (where both

terms lie in a copy of K (2)
2 (X loc

O ;�) inside K (2)
2 (X loc

F ), again by Remark 2.50), it
follows that

(2.52) Symb(3)(O) : Symb3(O)→

(∐
t∈O[

Symb2(O)

)2

→

∐
t1,t2∈O[

O∗Q

is a subcomplex (in degrees 1, 2 and 3) of (2.47). Note that we used here that
elements in O[ never give rise to a pole or zero over κ , so the map to

∐
K (0)

0 (κ) is
zero. Also, we used that an element [u]2 with u in O[ under the localization (of its
construction),

K (2)
2 (XO \ {t = u};�)→ K (1)

1 (O)→ · · ·

maps to (1− u)−1, so under the boundary in (2.46) it never hits the K (1)
1 (X loc

κ ;�)
components. Similarly, the elements in (1+ I )∗O ∪O∗

Q
never hit these components.

Again, one shows that the subcomplex of (2.52) given by

(1+ I )∗O ∪̃Symb2(O)→

(∐
t

(1+ I )∗O ∪O∗Q

)2

+ (· · · )→ d(· · · )
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is acyclic; see [de Jeu 1995, Lemma 3.7 and Remark 3.10].
Taking the quotient complex and the alternating part for the action of S2 under

swapping the coordinates, we finally get a complex

M3(O)→ M2(O)→ O∗Q⊗
∧2O∗Q .

Here
M3(O)= Symb3(O)/

(
(1+ I )∗O ∪̃Symb2(O)

)alt

and, as before,
M2(O)= Symb2(O)/(1+ I )∗O ∪O∗Q .

Note that Mn(O) is a Q-vector space on symbols [u]n for u in O[, modulo nonexplicit
relations depending on n. The maps in the complex are given by d[u]3 = [u]2⊗ u
and d[u]2⊗ v = (1− u)⊗ (u ∧ v).

In particular, the condition for an element
∑

i [ui ]⊗ vi in M2(O)⊗O∗
Q

to lie in
H 2(M(3)(O)) is that

(2.53)
∑

i

(1− ui )⊗ (ui ∧ vi )= 0 in O∗Q⊗
∧2O∗Q .

Again S2 acts on the various complexes by swapping the coordinates, and we
get maps

M(3)(O)← Symb(3)(O)alt
→ RC(3)(O)alt

→ RC(3)(O)

with the left map a quasiisomorphism. Combining this with (2.48) gives us a map

(2.54) H i (M(3)(O))→ K (3)
6−i (O)

for i = 2 and 3, where the map for i = 3 is a surjection if K (2)
3 (κ) = 0 by

Proposition 2.6 and the localization sequence

· · · → K (2)
3 (κ)→ K (3)

3 (O)→ K (3)
3 (F)→ K (2)

2 (κ)→ · · · .

Remark 2.55. Notice that by construction (that is, by compatibility of everything
we did with the localization of O to F ), these maps for i = 2 or 3 fit into a
commutative diagram:

(2.56)

H i (M(3)(O)) //

��

K (3)
6−i (O)

��

H i (M(3)(F)) // K (3)
6−i (F)

We also note that it was proved in Remark 2.45 that the map M2(O)→ M2(F) is
injective. Because we clearly have that O∗

Q
→ F∗

Q
is an injection, this means that,

in degrees 2 and 3, M(3)(O) injects into M(3)(F).
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2.5.3. Construction of the complex M(3)(C
′). In this subsection we imitate the

definition of the complex M(3)(C ′) in Section 2.4.3, but using the complex M(3)(O
′)

rather than M(3)(F ′) in the top row. The advantage of using the complex M(3)(C
′)

(just like the advantage of using any O′-complex over the corresponding F ′-complex)
is that the syntomic regulator gets the input it needs on the special fiber of C′.

We therefore put ourselves in the situation of Notation 1.7, so assume we have a
number field k ⊂ K , a proper, smooth, irreducible curve C′ over R′ = O∩ k, and
that the generic fiber C ′=C′⊗R′ k is geometrically irreducible. We put F ′= k(C ′),
and O′ the discrete valuation ring in F ′ corresponding to the generic point of the
special fiber of C′. We have a commutative diagram as follows:

M3(O
′)

d //

��

M2(O
′)⊗Q O′∗

Q

d //

∂1

��

O′∗
Q
⊗
∧2O′∗

Q

∂2
��

0 // ∐
x M̃2(k(x))

d // ∐
x
∧2k(x)∗

Q
.

The d’s in the top row are as in M(3)(O
′). The vertical maps and the map in the

bottom row are given by the same formulas as before (see 2.4.3), via the natural
map M(3)(O

′)→M(3)(F ′) corresponding to the localization from O′ to F ′.
We let M(3)(C

′) be the cohomological complex in degrees 1 through 4, given by
the total complex associated to the double complex in the commutative diagram
above. Note that therefore in particular, an element

∑
i [ui ]2⊗ vi in M2(O

′)⊗O′∗
Q

is in H 2(M(3)(C
′)) if and only if it satisfies (2.53) as well as, for every closed

point x in C ′,

(2.57)
∑

i

ordx(vi )[ui (x)]2 = 0

in M̃2(k(x)), with the convention that [0]2 = [1]2 = [∞]2 = 0.
The map to K-theory is similar to the map for M(3)(F ′), but now we get

H 2(M(3)(C
′))→ H 2(M(3)(O

′))→ K (3)
4 (O′),

where the first arrow corresponds to forgetting the bottom row in M(3)(C
′). In

fact, because this is compatible with the localization to F ′ (that is, with the map
M(3)(O

′)→M(3)(F ′)), from (2.31) we find that we have a commutative diagram

(2.58)

H 2(M(3)(C
′)) //

��

K (3)
4 (C′)⊕ K (2)

3 (k)∪O′∗
Q

H 2(M(3)(C ′)) // K (3)
4 (C ′)⊕ K (2)

3 (k)∪ F ′∗
Q
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where the group on the right is contained in K (3)
4 (O′)= K (3)

4 (F ′), and we used that
K (3)

4 (C′)⊕K (2)
3 (k)∪ F ′∗

Q
= K (3)

4 (C ′)⊕K (2)
3 (k)∪O′∗

Q
by Remarks 2.3 and 2.5. This

proves that the top square in (1.16) exists and commutes.
Note that in Theorem 1.9(2), the condition ∂1(α

′)= 0 on α′ in H 2(M(3)(O
′)) is

exactly that α′ satisfies (2.57), hence lies in the subspace H 2(M(3)(C
′)). Therefore

we have proved the existence of β ′ in the theorem. Its uniqueness is clear because
the direct sum above gives an injection K (3)

4 (C′)→ K (3)
4 (O′)/K (2)

3 (k)∪O′∗
Q

.

Remark 2.59. Just as in Remark 2.32, we can consider the projection

K (3)
4 (C′)⊕ K (2)

3 (k)∪O′∗Q→ K (3)
4 (C′)

to get a map H 2(M(3)(C
′))→ K (3)

4 (C′) as the composition

H 2(M(3)(C
′))→ K (3)

4 (C′)⊕ K (2)
3 (k)∪O′∗Q→ K (3)

4 (C′).

2.5.4. Construction of the complex C•(O). The remainder of the theorems in the
introduction will be proved in Section 10. The necessary calculations will in fact
depend heavily on the analogue of C•(F) for O, C•(O).

Because we are dealing with the two dimensional scheme XO, the localization
sequence (2.33) becomes a spectral sequence (cf. (2.38)):

(2.60)

...
...

...

K (3)
2 (X loc

O ;�)
∐
t∈O[

K (2)
1 (F)

∐
t∈κ[

K (1)
0 (κ)

K (3)
3 (X loc

O ;�)
∐
t∈O[

K (2)
2 (F)

∐
t∈κ[

K (1)
1 (κ)

K (3)
4 (X loc

O ;�)
∐
t∈O[

K (2)
3 (F)

∐
t∈κ[

K (1)
2 (κ)

...
...

...

converging to K (3)
∗ (XO;�)' K (3)

∗+1(O). Let us notice that K (1)
2 (κ) and K (1)

3 (κ) are
zero, and that the exact localization sequence

· · · → K (1)
3 (κ)→ K (2)

3 (O)→ K (2)
3 (F)→ K (1)

2 (κ)→ K (2)
2 (O)→ K (2)

2 (F)→ · · ·

tells us that K (2)
2 (O) ⊆ K (2)

2 (F) and K (2)
3 (O) ' K (2)

3 (F). Therefore we get an
exact sequence

0→
K (3)

4 (O)

K (2)
3 (O)∪O∗

Q

→ K (3)
3 (X loc

O ;�)→ ker
(∐

t∈O[

K (2)
2 (F)→

∐
t∈κ[

K (1)
1 (κ)

)
.



THE SYNTOMIC REGULATOR FOR K4 OF CURVES 337

In the middle row of the spectral sequence (2.60) above, let B ⊆ K (3)
3 (X loc

O ;�) be
the inverse image of

∐
K (2)

2 (O) (with the coproduct over all of O[). Then we have
a cohomological complex in degrees 1 and 2,

(2.61) AC(3)(O) : B→
∐
t∈O[

K (2)
2 (O),

an isomorphism

H 1(AC(3)(O))'
K (3)

4 (O)

K (2)
3 (O)∪O∗

Q

,

and a map H 2(AC(3)(O))→ K (3)
3 (O).

Remark 2.62. If K (2)
3 (κ)= 0, or more generally, the map K (3)

4 (F)→ K (2)
3 (κ) is

surjective, then from the exact localization sequence

· · · → K (3)
4 (F)→ K (2)

3 (κ)→ K (3)
3 (O)→ K (3)

3 (F)→ K (2)
2 (κ)→ · · · ,

Proposition 2.6 and (2.44), we see that the map
∐

t∈O[ K (2)
2 (O)→ K (3)

3 (O), and
hence the map H 2(AC(3)(O))→ K (3)

3 (O), are surjective.

Remark 2.63. Because K (2)
1 (F) and K (1)

2 (κ) are zero, and K (2)
2 (F)→ K (1)

1 (κ) is
surjective, from (2.60) we get that there is an exact sequence

Ker
(∐

t∈O[

K (2)
2 (F)→

∐
t∈κ[

K (1)
1 (κ)

)
→ K (3)

2 (XO;�)→ K (3)
2 (X loc

O ;�)→ 0.

If K (2)
3 (κ) is zero, or, more generally, the map K (3)

4 (F)→ K (2)
3 (κ) surjective, then

Proposition 2.6 tells us that
∐

t∈O[ K (2)
2 (O) surjects onto K (3)

2 (XO;�) ' K (3)
3 (O),

and we can conclude that K (3)
2 (X loc

O ;�) is zero.

Now we consider the acyclic subcomplex (1+ I )∗O∪K (2)
2 (O)→ d(· · · ) of (2.61),

and quotient out to find a complex C•(O) : C1(O)→ C2(O), where

(2.64) C1(O)=
B

(1+ I )∗O∪K (2)
2 (O)

and C2(O)= K (2)
2 (O)⊗O∗

Q
. We still have an isomorphism

(2.65) H 1(C•(O))' K (3)
4 (O)/K (2)

3 (O)∪O∗Q

and a map H 2(C•(O))→K (3)
3 (O), which by Proposition 2.6 and (2.44) is a surjection

if K (3)
4 (F)→ K (2)

3 (κ) is surjective, for example, if K (2)
3 (κ)= 0.
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Observe that if g is in O[, and f is in O∗
Q

, then [g]2 ∪ ( f ) is in C1(O), and has
boundary {(1− g)−1, f } ⊗ g = −{(1− g), f } ⊗ g in C2(O). The condition for∑

i [gi ]2 ∪ ( fi ) to be in H 1(C•(O)) is therefore that∑
i

{1− gi , fi }⊗ gi = 0 in C2(O)= K (2)
2 (O)⊗O∗Q.

Note that because the construction of the spectral sequence in (2.60) is compatible
with localizing the base from O to F and enlarging the coproduct from being
over O[ to F[ (in which case it becomes the localization sequence in (2.33)), and
that (1+ I )∗O is contained in (1+ I )∗, and K (2)

2 (O)⊆ K (2)
2 (F), we have an obvious

map of complexes, C•(O)→ C•(F), which fits into the commutative diagram

(2.66)

H 1(C•(O)) //

��

K (3)
4 (O)/K (2)

3 (O)∪O∗
Q

��

H 1(C•(F)) // K (3)
4 (F)/K (2)

3 (F)∪ F∗
Q

and similarly for H 2.
Finally, we have a commutative diagram

M3(O) //

��

M2(O)⊗O∗
Q

//

��

O∗
Q
⊗
∧2O∗

Q

��
0 // C1(O) // C2(O)

as follows. We map [u]2⊗ v to [u]2 ∪ v, and u⊗ v∧w to {u, v}⊗w−{u, w}⊗ v.
This gives rise to a commutative diagram

(2.67)

H 2(M(3)(O)) //

��

K (3)
4 (O)

��

H 1(C•(O)) // K (3)
4 (O)/K (2)

3 (O)∪O∗
Q
,

which is the bottom left square of (1.16). Obviously, the two diagrams above are
compatible with (2.35) and (2.36) under the localization from O to F .

2.5.5. Construction of the complexes M̃(2)(O) and M̃(3)(O). For n = 2 and 3, let
Nn(O)= 〈[u]n + (−1)n[u−1

]n with u in O[〉Q ⊆ Mn(O). Consider the subcomplex
of M(2)(O) given by N2(O)→d(· · · ). Because the corresponding subcomplex (2.14)
of M(2)(F) is acyclic and the natural map M2(O)→ M2(F) is an injection (see
Remark 2.45), this subcomplex is acyclic. The second term is Sym2(O∗

Q
), and the

resulting quotient complex of M(2)(O) is
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(2.68) M̃(2)(O) : M̃2(O)→
∧2O∗Q ,

with M̃2(O)= M2(O)/N2(O), and d[u]2 = (1− u)∧ u.
Because M̃(2)(O) is quasiisomorphic to M(2)(O) we have maps

H i (M̃(2)(O))→ K (2)
4−i (O) .

For i = 1 this is again an injection. There is a map M̃(2)(O)→ M̃(2)(F) obtained
by localizing the construction from O to F , and for i = 1, 2 a commutative diagram

H i (M̃(2)(O))

��

H i (M(2)(O)) //'oo

��

K (2)
4−i (O)

��

H i (M̃(2)(F)) H i (M(2)(F)) //'oo K (2)
4−i (F) .

In this diagram for i = 1 the central vertical map is injective by the discussion in
Remark 2.45. Hence the same holds for the map H 1(M̃(2)(O))→ H 1(M̃(2)(F)),
the map M̃2(O)→ M̃2(F) is an injection, and M̃(2)(O) is a subcomplex of M̃(2)(F).

By Remark 2.45, in the commutative diagram

M3(O) //

��

M2(O)⊗O∗
Q

//

��

O∗
Q
⊗
∧2O∗

Q

��

M3(F) // M2(F)⊗ F∗
Q

// F∗
Q
⊗
∧2 F∗

Q

the two right-most maps are injective. (If we knew (as part of the rigidity conjecture)
that H 1(M(3)(O))→ H 1(M(3)(F)) were injective, then this would also hold for the
left-most map.) We can quotient out the complex M(3)(O) in the first row by the
subcomplex

N3(O)→ N2(O)⊗O∗Q→ d(· · · ),

which maps to the subcomplex (2.26) of the second row. We saw earlier that
d : N2(O)→ Sym2(O∗

Q
) is an isomorphism, so as in the proof of [de Jeu 1995,

Corollary 3.22] one sees that this subcomplex is acyclic in degrees 2 and 3. The
quotient complex is

M̃(3)(O) : M̃3(O)→ M̃2(O)⊗O∗Q→
∧3O∗Q ,

where M̃3(O)= M3(O)/N3(O), and the natural map M̃(3)(O)→ M̃(3)(F) is an injec-
tion in degrees 2 and 3 because, as we saw earlier, M̃2(O) injects into M̃2(F). Still
denoting the class of [x]i with [x]i , the maps are now given by d[u]3= [u]2⊗u and

(2.69) d[u]2⊗ v = (1− u)∧ u ∧ v.
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Using (2.54) we see that for i = 2, 3 we have a commutative diagram

H i (M̃(3)(O))

��

H i (M(3)(O))

��

'oo // K (3)
6−i (O)

��

H i (M̃(3)(F)) H i (M(3)(F))
'oo // K (3)

6−i (F) .

Remark 2.70. Using the statements just before (2.68), the arguments in Remark
2.28 can also be given for O instead of F . This way we obtain a map

M̃2(O)⊗O∗Q→ M2(O)⊗O∗Q/d(N3(O)),

which we still denote by 4. It yields a decomposition

M2(O)⊗O∗Q/d(N3(O))= im(4)⊕ N2(O)⊗O∗Q/d(N3(O)),

and induces the inverse to the natural isomorphism H 2(M(3)(O))→ H 2(M̃(3)(O)).
The formulas in Lemma 2.29 and Corollary 2.30 apply in this case as well.

2.6. A diagram. For the convenience of the reader, we give in Figure 1 a com-
mutative diagram summarizing the cohomology groups of most of the complexes
introduced, and the maps. We have kept the layout of the diagram in the same
spirit as the relativity in the plane. Note that the outer square is only relevant in
the situation of Notation 1.7, and that we may replace F and O elsewhere in the
diagram with F ′ and O′ in this case.

The top half of this diagram is the top of the one in (1.16). The vertical maps
correspond to the maps from constructions over O to the corresponding constructions
over F . The horizontal maps are the maps on cohomology of complexes constructed
in the previous subsections, and the diagonal maps correspond to the maps in (2.35),
(2.56), (2.58) and (2.66).

Note that by Remarks 2.3 and 2.5 the rightmost vertical map is an isomorphism.

3. The classical case

In Proposition 3.1 below, we rephrase the results in Theorem 4.2 and Remarks 4.3
and 4.5 of [de Jeu 1996], which concern a curve C over C with function field
F = C(C) and associated analytic manifold Can, in a way that resembles the
formulas in Theorems 1.12 and 1.13(1). (See Remark 10.14 for some thoughts on
this comparison.) In fact, Sections 7 and 8 grew out of attempts to obtain syntomic
analogues of those results of [loc. cit.], but the resulting formulas seem to be less
flexible than the classical ones so we rephrase the latter.

In this section we let H 1
dR(F,R(2))= lim→

U
H 1

dR(U,R(2)) where the limit is over
U with Can \U finite, and similarly for other cohomology groups, or forms. Here



THE SYNTOMIC REGULATOR FOR K4 OF CURVES 341

H 2(M(3)(C
′)) //

��

$$

K (3)
4 (C′)⊕ K (2)

3 (k)∪O′∗
Q

��

zz

H 2(M(3)(O)) //

��

""

K (3)
4 (O)

��

||

H 1(C•(O)) //

��

K (3)
4 (O)

K (2)
3 (O)∪O∗

Q

��

H 1(C•(F)) // K (3)
4 (F)

K (2)
3 (F)∪F∗

Q

H 2(M(3)(F)) //

<<

K (3)
4 (F)

bb

H 2(M(3)(C ′)) //

::

K (3)
4 (C ′)⊕ K (2)

3 (k)∪ F ′∗
Q

dd

Figure 1. Diagram summarizing cohomology groups (see previous page).

R(m)= (2π i)mR⊂C. Ifω is holomorphic on Can, then by [loc. cit., Proposition 4.6]
one has a well-defined map H 1

dR(F,R(2))→ C by taking a representative β of a
class in H 1

dR(F,R(2)) satisfying [loc. cit., (9)], and computing
∫

Can
ω∧β.

The signs of the maps in the following proposition are normalized to be compat-
ible with the ones in the theorems in the introduction (see Remark 3.3).

Proposition 3.1. Let C be a smooth, proper, irreducible curve over C with function
field F = C(C), and let Can be the analytic manifold associated to C(C). For a
holomorphic 1-form ω on Can, the maps

9 ′′
∞,ω : M2(F)⊗ F∗Q→ C

[g]2⊗ f 7→ 4
∫

Can

log | f | log |g| dlog |1− g| ∧ω,

9 ′′′
∞,ω : M̃2(F)⊗ F∗Q→ C

[g]2⊗ f 7→ 8
3

∫
Can

log | f |(log |g| dlog |1−g| − log |1−g| dlog |g|)∧ω

are well-defined, and induce maps H 2(M(3)(F)) → C and H 2(M̃(3)(F)) → C,
respectively. Moreover, with regC : K

(3)
4 (F)→ H 2

D(F,R(3))' H 1
dR(F,R(2)) the
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Beilinson regulator map, the compositions

H 2(M(3)(F))
(2.25)
−−−→ K (3)

4 (F)
∫

Can
ω∧regC(·)

−−−−−−−−→ C,

H 2(M̃(3)(F))
(2.27)
−−−→ K (3)

4 (F)
∫

Can
ω∧regC(·)

−−−−−−−−→ C

coincide with these induced maps.

Proof. Since d⊗id :M2(F)⊗F∗
Q
→ F∗

Q
⊗F∗

Q
⊗F∗

Q
maps [g]2⊗ f to (1−g)⊗g⊗ f ,

9 ′′
∞,ω is well-defined. That it induces the stated map on H 2(M(3)(F)), and that this

induced map has the stated property, follows from Proposition 3.2 and (the proof
of) Theorem 4.2 of [de Jeu 1996], where we normalize the maps as explained in
Remark 3.3 below. (The condition in [loc. cit.] that C is defined over a number
field is not used in the proof of Theorem 4.2. The same holds for the condition
with respect to complex conjugation on ω, which guaranteed only that the value of
the integral was in R(1)⊂ C.)

Applying Corollary 2.30 shows that 9 ′′′
∞,ω maps [g]2⊗ f to

4
3

∫
Can

(3 log | f | log |g|dlog |1−g|+log |1−g|(log |g|dlog | f |−log | f |dlog |g|))∧ω.

Using a limit version of Stokes’ theorem we may subtract 0 =
∫

Can
d(α ∧ ω) for

α = 4
3 log |g| log |1− g| log | f |, which gives the formula in the proposition. �

Remark 3.2. The Bloch–Wigner dilogarithm D(z) :P1
C
\{0, 1,∞}→ (2π i)R⊂C

satisfies dD(z) = log |z|di arg(1− z)− log |1− z|di arg(z) and extends to a con-
tinuous function on P1

C
. It is the function in the classical case that corresponds

to Lmod,2(z) in the sense that they have similar functional equations, for example,
D(z) + D(z−1) = 0. Because d log(g) ∧ ω = d log(1 − g) ∧ ω = 0, we find
d(P2,Zag(g) log | f |ω) equals

P2,Zag(g) dlog | f | ∧ω+ log | f |(log |1− g| dlog |g| − log |g| dlog |1− g|)∧ω.

Hence 9 ′′′
∞,ω is also given by mapping [g]2⊗ f to 8

3

∫
Can

log | f |D(g)ω.

Remark 3.3. The signs in Proposition 3.1 and Remark 3.2 are chosen in a way that
is compatible with the ones in the p-adic case in Remark 5.25 below. In [de Jeu
1996] it is shown that, for a holomorphic 1-form ω, the map

K (3)
4 (F)

∫
Can

ω∧regC(·)

−−−−−−−−→ C

factorizes through the quotient map K (3)
4 (F)→ K (3)

4 (F)/K (2)
3 (F)∪ F∗

Q
in (2.36),

giving maps H 2(M(3)(F))→ H 1(C•(F)) ' K (3)
4 (F)/K (2)

3 (F) ∪ F∗
Q
→ C. This

composition is the one used in Proposition 3.1, and there is a choice of sign in the
isomorphism here, which we normalize as follows.
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The regulator map gives us

regC : K
(3)
3 (X loc

F ;�)→ H 3
D(X

loc
F ;�;R(3))' H 2

dR(X
loc
F ;�;R(2)).

Computing the last cohomology group here as

(3.4)

{
(ε, ε∞, ε0)

∣∣ ε ∈ A2(X loc
F ), εs ∈ A1(F), dε = 0, dεs = ε|t=s(s = 0,∞)

}{
(dψ,ψ|t=∞+ d f∞, ψ|t=0+ d f0)

∣∣ ψ ∈ A1(X loc
F ), fs ∈ A0(F)

} ,

we can map the class of (ε, ε∞, ε0) to

(3.5) 1
2π i

∫
X×Can

ω∧ dlog(t)∧ ε−
∫

Can

ω∧ (ε∞− ε0),

where the integral is taken with the product orientation on X ×Can, because this is
trivial on (dψ,ψ|t=∞, ψ|t=0) with ψ in A1(F). The calculations in [de Jeu 1996]
are carried out using ε in A∗(X loc

F ) that restrict to 0 for t = 0 or∞, which yield the
same cohomology group. The calculations in the proof of Proposition 3.1 therefore
use the first term in (3.5).

The connecting map

H 1
dR(F;R(2))|t=∞⊕ H 1

dR(F;R(2))t=0→ H 2
dR(X F ;�;R(2))

in the long exact sequence for relative cohomology maps (ε∞, ε0) to (0, ε∞, ε0).
The map in (3.5) therefore factorizes the composition

H 2
dR(X F ;�;R(2))

'
−→ H 1

dR(F;R(2))
∫

Can
ω∧·

−−−−−→ C

(with one of the two natural choices of isomorphism in the first map) over the
localization map H 2

dR(X F ;�;R(2))→ H 2
dR(X

loc
F ;�;R(2)).

For this choice of isomorphism we have a commutative diagram

(3.6)

K (3)
3 (XC ;�)

' //

regC

��

K (3)
4 (C)

regC

��
H 2

dR(XCan;�;R(2))
' // H 1

dR(Can;R(2))

by normalizing the isomorphism at the top in the same way, and using the same
convention in all localizations. This fixes the choice of sign in (2.34). Finally, there
is a choice in the sign of the map H 2(M(3)(F))→ H 1(C•(F)) (see (2.36)), but we
choose this so that the formulas in Proposition 3.1 hold.

For O, one can give a similar discussion on the K-theory side using the diagram
(2.67), and this is compatible with the one here by the commutativity of (2.66) and
the compatibility of (2.67) with (2.36). In particular, the choices of signs on the
K-theory side for O are compatible with those for F .
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In Remark 5.25 we give a description of the maps on the p-adic side, using
the description of syntomic cohomology in (5.5) that matches our description
above. Comparing the sign of the term ε∞− ε0 in both cases, and taking into
account that we are ultimately cupping on the left with ω in the p-adic case as
well (see Proposition 5.22), it is then clear that we have normalized the formulas in
Proposition 3.1 and those in the theorems in the introduction in the same way.

4. Coleman integration

In this short section we briefly discuss Coleman’s integration theory in the one-
dimensional case only. The interested reader may refer to [Besser 2000b] for
more details.

Coleman theory is done on wide open spaces in the sense of Coleman [1988].
In general these are the overconvergent spaces described in Section 5. In the one-
dimensional case these can be described concretely in the following way. Let X
be a curve over Cp with good reduction (there is a minor assumption that it is
obtained by extension of coefficients from a curve over a complete discretely valued
subfield, which will always be satisfied in our applications). The rigid analytic
space X (Cp) is set-theoretically decomposed as the union X =

⋃
x Ux where x

varies over the points in the reduction of X and Ux is the residue disc (tube in
the language of Berthelot) of points reducing to x . By the assumption of good
reduction each residue disc is isomorphic to a disc |z|< 1. A wide open space U is
obtained from X by fixing a finite and nonempty set of points S in the reduction and
throwing away the discs inside the residue discs Ux , x ∈ S, isomorphic to |z|< r
for arbitrarily large r < 1. The space U should be thought of as the inverse limit of
the corresponding spaces Ur .

Coleman theory associates to U the Cp-algebra Acol(U ) and the Acol(U )-modules
�i

col(U ) with differentials forming a complex. The key property is that this complex
is exact at the one and zero forms, that is, there is an exact sequence

0→ Cp→ Acol(U )→�1
col(U )→�2

col(U ).

The space �1
col(U ) contains the space �1(U ) of overconvergent forms on U , that

is, those forms that are rigid analytic on some Ur . Similarly, the space Acol(U )
contains the space A(U ) of overconvergent functions. The differential extends the
usual differential on the subspaces.

The whole picture extends to higher dimensions. We shall only need the case
where U is one-dimensional. In this case the space �2

col(U ) is already 0.
Coleman functions may be interpreted as locally analytic functions on U . More

precisely, again in the one-dimensional case, for x /∈ S, the intersection of the residue
disc Ux with U is Ux , while for x ∈ S it is an annulus ex isomorphic to an annulus
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of the form r < |z|< 1. A Coleman function is analytic on each disc Ux and is in
the polynomial algebra A(ex)[log(z)] where z is a local parameter on an annulus
Ux (here, there is an implicit global choice of a branch of the p-adic logarithm).

We define the space Acol,1(U ) to be the inverse image of�1(U )⊆�1
col(U ) under

the differential d. The space of differentials �1
col,1(U ) is Acol,1(U ) ·�1(U ).

Ifω∈�1(Ur ) and y, z∈Ur the integral
∫ y

z ω is clearly well-defined as f (y)− f (z)
where f ∈ Acol(Ur ) and d f = ω. It is a basic property of Coleman integration
that if X,U, ω, z, y are all defined over the complete subfield K , then so is the
integral

∫ y
z ω.

For f ∈ A(U ) the function log( f ) is in Acol,1(U ). Pullback by a rigid analytic
endomorphism φ of U (such as the Frobenius endomorphisms that will appear in
the next section) preserves Coleman functions and in particular Acol,1(U ).

5. Regulators

In this section we compute the regulator on C1(O) in (modified) syntomic cohomol-
ogy. In case the element lies in the subspace H 1(C•(O)), we also explain how we
wish to interpret the cup product of this regulator with the cohomology class of
a form ω of the second kind on C , and what are the obstacles for doing so, thus
paving the way for constructions in the next sections.

We first write down the relevant spaces and the (modified) syntomic complexes
computing their cohomology. For the full story the reader should consult [Besser
2000b].

We begin with a smooth proper relative curve C/R. Related to that is the space
XC :=P1

C\{t=1}. The superscript loc will denote various localizations, obtained by
removing the image of a finite number of R-sections. We note that the computations
in this section can be done after a finite base change, so we may easily get from
more general localizations into this situation by further localization. We shall use
localizations Cloc of C or X loc

C of XC. If the localization is nontrivial, and we may
and do assume this, then all localized schemes are affine.

Our goal is to compute the syntomic regulator K (3)
4 (C)→ H 2

syn(C, 3). According
to [Besser 2000b, Proposition 8.6.3] there is an isomorphism, commuting with
the regulator, H 2

syn(C, 3)
'
−→H̃ 2

ms(C, 3), where H̃ms is the Gros style modified rigid
syntomic cohomology, in the sense of loc. cit. From now on we shall therefore
concentrate on modified syntomic cohomology. We shall refer to it simply as
syntomic cohomology.

Let us recall one of the possible models for modified syntomic cohomology
for affine schemes. Let A be an affine R-scheme. We assume we have an open
embedding A ↪→ A, where A is proper. From the embedding A ↪→ A one obtains
the overconvergent space A†. This space can be made sense of in Grosse-Klönne’s
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[2000] theory of overconvergent spaces as the space whose affine ring, O(A†), is
the weak completion, in the sense of Monsky–Washnitzer, of O(A). However, here
we shall simply think of A† formally as the inverse system of strict neighborhoods
of the special fiber of A in that of A.

We further assume that we have an R-linear endomorphism φ : A†
→ A† whose

reduction is a power of Frobenius, say of degree q = pr . We call φ a Frobenius
endomorphism. Standard results [Coleman 1985, Theorem A-1; van der Put 1986,
Theorem 2.4.4.ii] imply one always has such φ.

With the above data, we have

H̃ n
ms(A, j)= H n(MF(F j�•(A†)

1−φ∗/q j

−−−−−→�•(A†))).

Here, the filtration is the stupid filtration on the space of differentials and MF
denotes the mapping fiber (cone shifted by −1). To be more precise, one really
needs to take the limit of these cohomology groups with respect to powers of φ,
in a way explained in [Besser 2000b], but it is also explained there that one can
ignore this point.

The cohomology groups H̃ms are in fact functorial with respect to arbitrary maps
of schemes. This functoriality is not at all obvious from the definition except in the
case where the maps extend to the dagger spaces and commute with φ. Fortunately,
this will always be the case for us. In this situation, one may also construct relative
cohomology in the obvious way (the reader is advised to look at [Besser and
de Jeu 2003, Section 5] for constructions of complexes computing relative syntomic
cohomology).

To end this general review we recall that the corresponding syntomic regulator
is defined by the formula

(5.1) f ∈ O(A)∗ ⊂ K1(A) 7→ (dlog( f ), log( f0)/q) ∈ H̃ 1
ms(A, 1),

where f0 = f q/φ∗( f ) and has the property that log( f0) is in O(A†). We also recall
from[Besser 2000b, Definition 6.5] that the cup product

H̃•ms(A, i)× H̃•ms(A, j)→ H̃•ms(A, i + j)

is given by

(5.2) (ω1, ε1)∪ (ω2, ε2)

=

(
ω1∧ω2, ε1∧

(
γ+(1−γ )φ

∗

q j

)
ω2+(−1)degω1

((
(1−γ )+γ φ

∗

q i

)
ω1

)
∧ε2

)
for some constant γ , which can be taken arbitrarily (producing homotopic products).

We now write these constructions for the affine schemes we are considering. To
simplify notation we write U for (Cloc)†, U ′ for (X loc

C )†, and XU for (XCloc)†. We
may localize so that U ′ ⊂ XU . We fix a Frobenius endomorphism φ :U →U . We
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can then take the Frobenius endomorphism for XU to be the product of φ with the
map t 7→ tq and for U ′ the restriction of this endomorphism to U ′. Since t 7→ tq

fixes 0 and∞ we can use the embedding of U in U ′ at t = 0 and t =∞ to create the
complex computing relative cohomology. With this we have the following models
for syntomic cohomology.

(5.3) H̃ i
ms(X

loc
C , i)

=

{
(ω, ε), ω ∈�i (U ′), ε ∈�i−1(U ′), dω = 0, dε =

(
1− φ∗

q i

)
(ω)

}
{(0, dε), ε ∈�i−2(U ′)}

for i = 1, 2. Now, for relative syntomic cohomology one we can write, by throwing
away terms which are forced to be 0,

(5.4) H̃ 2
ms(X

loc
C ,�, 2)={

(ω, ε, ε∞, ε0),
ω ∈�2(U ′), ε ∈�1(U ′), εs ∈ O(U ), s = 0,∞,

dω = 0, dε =
(
1− φ∗

q2

)
(ω), dεs = ε|t=s, s = 0,∞

}
{(

0, dε, ε|t=∞, ε|t=0
)
, ε ∈ O(U ′)

} .

The map between H̃ 2
ms(XC,�, 2) and H̃ 2

ms(XC, 2) remembers only ω and ε. Since
U ′ is two dimensional and therefore does not support forms of degree 3, we also have

(5.5) H̃ 3
ms(X

loc
C ,�, 3)

=
{(ε, ε∞, ε0), ε ∈�

2(U ′), εs ∈�
1(U ), dε = 0, dεs = ε|t=s(s = 0,∞)}

{(dε, ε|t=∞+ dε∞, ε|t=0+ dε0), ε ∈�1(U ′), ε∞, ε0 ∈ O(U ′)}
.

If we replace U ′ by XU we obtain a model for H̃ 3
ms(XCloc,�, 3).

The last model is

(5.6) H̃ 2
ms(C

loc, 3)= {ε ∈�
1(U ), dε = 0}

{dε, ε ∈ O(U )}
.

This is of course just the first de Rham cohomology of U . However, the “correct”
isomorphism with this cohomology is not the obvious one but rather the one twisted
by 1−φ∗/q3, that is,

(5.7) H 1
dR(U/K )→ H̃ 2

ms(C
loc, 3), [η] 7→ [(1−φ∗/q3)η]

(for an explanation of this see [Besser 2000b, Proposition 10.1.3]). Here, and in
what follows, we denote the cohomology class of an element in square brackets.

At this point, we are able to make more precise the definition of the p-adic
regulator for open curves that was hinted at in the introduction before stating
Theorem 1.11. As explained there, for each U as above, one has a canonical projec-
tion H 1

dR(U/K )
p
−→H 1

dR(C/K ). This is the unique Frobenius equivariant splitting of
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the natural restriction map in the other direction. These projections are compatible
in the obvious way when restricting to a smaller U .

Definition 5.8. The regulator map

reg′p : K
(3)
4 (Cloc)→ H 1

dR(C/K )

is the composition

K (3)
4 (Cloc)→ H 1

dR(U/K )
p
−→ H 1

dR(C/K ) .

Using the compatibility of the maps p mentioned above for all possible Cloc, from
K (3)

4 (O) = lim
−→Cloc K (3)

4 (Cloc) (see [Quillen 1973, Proposition 2.2; Srinivas 1996,
Lemma 5.9]) we also obtain a well defined regulator map

reg′p : K
(3)
4 (O)→ H 1

dR(C/K ).

We need a formula for the cup product

H̃ 2
ms(X

loc
C ,�, 2)× H̃ 1

ms(X
loc
C , 1)→ H̃ 3

ms(X
loc
C ,�, 3)

in terms of the models (5.4), (5.3) and (5.5) respectively. Using the formula for
a cup product between a cone and a complex and (5.2) with γ = 0 we find the
following formula:

(5.9) (ω, ε, ε∞, ε0)∪ (η, h)=
(

hω+ ε∧ φ
∗

q
η, ε∞η, ε0η

)
.

Suppose now that f and g are in O∗(Cloc) (see Section 2.5.4). To compute the
regulator of [g]2 ∪ ( f ) we start with [g]2 in K (2)

2 (X loc
C ,�). It maps in K (2)

2 (X loc
C )

to −((t − g)/(t − 1))∪ (1− g), by pulling back along g the corresponding result
for the universal elements [Besser and de Jeu 2003, Proposition 6.7].

Lemma 5.10. We have in H̃ 2
ms(X

loc
C , 2) that

− regp

( t−g
t−1
∪ (1− g)

)
= (ωg, εg)

in the model (5.3) with

ωg =− dlog
( t−g

t−1

)
∧ dlog(1− g)

εg =
1
q

log(1− g)0 dlog
( t−g

t−1

)
−

1
q2 log

( t−g
t−1

)
0

dlogφ∗(1− g)

Proof. This follows from the formula (5.1) for the regulators of functions, the
compatibility of regp with cup products and the cup product formula (5.2). �

In what follows, the notation [a1, . . . , ai ] will denote the class of (a1, . . . , ai ) in
(5.4) or (5.5), depending on whether i = 3 or 4.
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Proposition 5.11. We have in H̃ 2
ms(X

loc
C ,�, 2), using the model (5.4),

regp([g]2)= [ωg, εg, 0,2(g)]

where

(5.12) d2(g)= εg|t=0 =
1
q

log(1− g)0 dlog g− 1
q2 log g0 dlogφ∗(1− g).

Proof. We are looking for a closed four-tuple, whose first two coordinates represent
the cohomology class of (ωg, εg). It is easy to see that we may assume that the first
two coordinates are indeed (ωg, εg). Then the closedness condition implies that the
differentials of the next two coordinates give the restrictions to t =∞ and t = 0,
respectively, of εg. These are, respectively, 0 and εg|t=0, so the result is clear. �

Remark 5.13. 1. One can show that there exists a function 2 on P1 such that
2(g) is indeed the composition of 2 and g, but we shall not need to use this.

2. The determination of the regulator at this stage is incomplete, since we have
only determined 2(g) up to a constant. It will turn out that for the regulator
computation this is irrelevant. For the computation of the boundary this
becomes much trickier. We in fact failed to determine the boundary of the
regulator directly. When we need this towards the end of Section 10 for the
proof of Theorem 1.9, we shall use a trick to overcome this difficulty, which
in particular forces us to assume working over a number field at that stage.

Proposition 5.14. The regulator of [g]2∪ ( f ) in H̃ 3
ms(X

loc
C ,�, 3) is represented by

the following element in the model (5.5),

ε(g, f ) :=
(1

q
log f0ωg +

1
q
εg ∧φ

∗ dlog f, 0, 1
q
2(g)φ∗ dlog f

)
.

Proof. This follows again from the compatibility of the regulator with cup products
and from the formulas for the cup product in relative syntomic cohomology (5.9). �

Suppose now that α =
∑

i [gi ]2 ∪ ( fi ) belongs to

H 1(C•(O))' K (3)
4 (O)/K (2)

3 (O)∪O∗Q;

see (2.65). Note that α is only determined up to an element in (1+ I )∗O ∪O∗
Q

; see
(2.61) and (2.64). A term in the latter space consists explicitly of elements of the
form

(5.15) δ =
∑

j

δ1, j ∪ δ2, j ,

with δ1, j ∈ K (1)
1 (X loc

C ,�) and δ2, j ∈ K (2)
2 (Cloc), for all possible localizations. There-

fore, for an appropriately chosen Cloc, there exists β ∈ K (3)
3 (XCloc,�) whose restric-

tion to (X loc
C ,�) is α+δ, where δ is as in (5.15). If we write regp(β)= [ε, ε∞, ε0],
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with the ε’s on XU , then we have [ε, ε∞, ε0]|(X loc
C ,�) =

∑
[ε(gi , fi )] + regp(δ).

Writing this explicitly, this means that

(ε, ε∞, ε0)|(U ′,�) =
∑

ε(gi , fi )+ regp(δ)+ (dλ, λ|t=∞, λ|t=0)

for some λ∈�1(U ′) and where now regp(δ)means any form representing this class.
The isomorphism T∞0 : H̃

3
ms(XCloc,�, 3)∼= H̃ 2

ms(C
loc, 3) is obtained by integra-

tion from 0 to∞. More precisely it is given by

(5.16) [ε, ε∞, ε0] 7→

[(∫
∞

0
ε

)
− (ε∞− ε0)

]
where the integration is only with respect to the variable t ;

(5.17)
∫
∞

0
( f (x, t) dt ∧ dx)=

(∫
∞

0
f (x, t) dt

)
dx .

Note that we are integrating forms on XU . For forms on U ′ we may do Coleman
integration instead (Section 4). This technique was introduced in [Besser and de Jeu
2003, Section 5]. Note that we only discussed Coleman integration over Cp. The
extension of scalars of U and the fibers of U ′→U , to Cp are wide open space in
the sense of Coleman so one can do Coleman integration on them. By abuse of
notation we shall continue to denote this extension of scalars by the same letters.
Coleman integration will be the same as ordinary integration if the forms extend
to XU . The theory of Coleman integration is not sufficiently developed yet to tell
us that what we do makes sense in general, so we must be careful to check that it
makes sense for the particular forms we are working with.

Now we check what happens to the term ε(g, f ) under this integration, which
we continue to denote by T∞0 . The integral of the first term is∫
∞

0

1
q

log f0ωg +
1
q
εg ∧φ

∗ dlog f = 1
q

log f0

∫
∞

0
ωg +

1
q

(∫
∞

0
εg

)
∧φ∗ dlog f

=
1
q

log f0 log g dlog(1− g)− 1
q2 log(1− g)0 log gφ∗ dlog f.

The last equality follows because
∫
∞

0 dlog((t − g)/(t − 1))=− log g and the term
involving log((t−g)/(t−1))0 vanishes because it does not involve a dt . Subtracting
the term ε∞− ε0 we obtain

(5.18) T∞0 ε(g, f )= 1
q

log f0 log g dlog(1− g)

−
1
q2 log(1− g)0 log gφ∗ dlog f + 1

q
2(g)φ∗ dlog f.

Note that this integral belongs to �1
col,1(U ), in the notation of Section 4.
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Lemma 5.19. For δ in (1+ I )∗O ∪ K (2)
2 (O) we have T∞0 (regp(δ))= 0.

Proof. As in (5.15) δ is a sum of terms of the form δ1∪ δ2 with δ1 in K (1)
1 (X loc

C ,�)
and δ2 in K (2)

2 (Cloc). That T∞0 vanishes on these elements follows from the proof
of [Besser and de Jeu 2003, Proposition 7.2]. �

Now we deal with the term (dλ, λ|t=∞, λ|t=0).

Proposition 5.20. Suppose that X loc
C is obtained from XCloc by removing the graphs

of t = h j (x) for j = 1, . . . , n. Assume further that the reductions of those graphs
are either disjoint or identical (which we can achieve by shrinking Cloc). Then there
are a j (x), a(x) ∈ O(U ) such that we have

T∞0 (dλ, λ|t=∞, λ|t=0)= d(a+
∑

j

a j log(h j )),

where, if there are two h j with identical reduction, one may take just one of them.
In particular, it belongs to �1

col,1(U ).

Proof. We have global coordinates x and t on U ′ so we can write λ= f (x, t) dx +
g(x, t) dt . Then

dλ=
(
∂ f
∂t
−
∂g
∂x

)
dt ∧ dx .

Therefore ∫ t=∞

t=0
dλ= ( f (x,∞)− f (x, 0)) dx −

(∫ t=∞

t=0

∂g
∂x

dt
)

dx .

But the first term is exactly λ|t=∞− λ|t=0 so we find

T∞0 [dλ, λ|t=∞, λ|t=0] = −d
(∫ t=∞

t=0
g(x, t) dt

)
.

Consider now the two-form γ =g(x, t)dx∧dt ∈�2(U ′). This is closed so represents
a cohomology class in H 2

rig((X
loc
C )κ/K ). We have a short exact sequence

H 2
rig((XCloc)κ/K )→ H 2

rig((X
loc
C )κ/K

Res
−−→⊕i H 1

rig((C
loc)κ/K ),

where the map Res = ⊕ j Res j is the sum of the boundary maps on the reduc-
tions of t = h j (x), composed with the pullback under the isomorphisms of these
graphs with (Cloc)κ . Suppose that Res j (γ ) is the cohomology class of a j (x) dx ∈
�1(U ). Let γ j := a j (x) dx ∧ dlog(t − h j (x)). Clearly Resl(γ j ) = 0 if l 6=
j . We claim that Res j (γ j ) = Res j (γ ). This can be seen easily by applying
the map (x, t) → (x, t − h j (x)), transforming γ j to a j (x) dx ∧ dlog(t). Thus,
γ −

∑
j γ j extends to H 2

rig((XCloc)κ/K ) and its integral is a holomorphic one
form on U . Let this form be a(x) dx . Since

∫ t=∞
t=0 γ j = ±a j (x) log(h j (x))dx
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we find ±
∫ t=∞

t=0 γ = (a(x)+
∑

a j (x) log(h j (x))) dx and dividing by dx we find∫ t=∞
t=0 g(x, t) dt =±(a(x)+

∑
a j (x) log(h j (x))). This completes the proof. �

These results give us a strategy for breaking the regulator into a sum of terms,
each depending on the pairs (gi , fi ), as follows. Suppose that ω is a form of the
second kind on C and let [ω] be its cohomology class in H 1

dR(C/K ).

Definition 5.21. A functional Lω : �1
col,1(U )→ Cp will be called good if it has

the following properties:

• it kills terms of the forms da and d(a log f ) for a, f ∈ O(U ),

• if η is in �1(U ) then we have Lω(η)= [ω] ∪p([η]).

Proposition 5.22. Suppose that an element β in K (3)
4 (Cloc) maps to

∑
i [gi ]2∪ ( fi )

in H 1(C•(O)) under the natural map

K (3)
4 (Cloc)→ K (3)

4 (O)→ K (3)
4 (O)/K (2)

3 (O)∪O∗Q

(see (2.65)), and that regp(β)= [η0] in the model (5.6). Then we have, for a good
functional Lω,

[ω] ∪p([η0])=
∑

i

Lω
(
T∞0 ε(gi , fi )

)
.

Proof. We must first show that the map

K (3)
4 (Cloc)

regp
−−→ H̃ 2

ms(C
loc, 3)

η0 7→Lω(η0)
−−−−−−→ Cp

factors via K (3)
4 (O)/K (2)

3 (O)∪O∗
Q

. By further localizing, it suffices to show that
the map above vanishes on elements of the form γ ∪ f with γ ∈ K (2)

3 (Cloc) and
f ∈ O∗(Cloc). We have

(5.23) H̃ 1
ms(C

loc, 2)= {(0, ε), ε ∈ O(U ), dε = 0} = {(0, ε), ε ∈ K }.

Thus regp(γ ) = (0, α) for some α ∈ K . On the other hand, by (5.1) we have
regp( f )= (dlog f, log( f0)/q) (here it does not matter what f0 is). Using (5.2) we
obtain, in the model (5.6)

regp(γ ∪ f )= (0, α)∪ (dlog f, log( f0)/q)= α dlog f.

The factorization thus follows from first property of the good functional. Next,
by Proposition 5.20 the first property also implies that Lω kills all terms of the
form T∞0 [dλ, λ|t=∞, λ|t=0]. The result now follows immediately from the discus-
sion above. �

Remark 5.24. There is a final wrinkle here because of the normalization (5.7) for
the syntomic regulator. For β as in the corollary, the regulator of β is in fact [η]
with (1− (φ∗/q3))[η] = [η0]. Thus, once we have the functional Lω we shall be
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able to compute [ω] ∪p(η0) but will in fact want [ω] ∪p(η). Fortunately, it is easy
to see (and will be explained) that if we know [ω] ∪ p(η0) for all ω, then we also
know [ω] ∪p(η) for all ω. In fact, as in previous computations, the result with η is
much simpler than with η0, confirming the “correctness” of our normalization.

Remark 5.25. As with some of our previous works on syntomic regulators, one
can ask about the sign compatibility between the p-adic and classical regulators;
see [Besser et al. 2009, Remark 4.16]. As explained in Remark 3.3, the signs in the
various isomorphisms induced by using relative K-theory and relative Deligne or
de Rham cohomology are normalized by choosing one of the natural isomorphisms
H 2

dR(XCan;�;R(2))' H 1
dR(Can;�;R(2)), in this case by choosing (3.5), and then

demanding that (3.6) commutes. The same approach works for the syntomic
regulator, using (5.16) and the analogue of (3.6) for syntomic cohomology.

Because the descriptions of relative cohomology in 3.3 and (5.5) and the signs in
front of the term ε∞−ε0 in (3.5) and (5.16) are the same (note that just as in Section 3
we are ultimately cupping on the left with ω; see Proposition 5.22), we have chosen
the “relativity isomorphism” for Deligne (or de Rham) cohomology and syntomic
cohomology in a compatible way. Therefore (3.6) and its analogue for syntomic
cohomology lead to the same sign for the K-theory (under the compatibility of the
constructions for O and F as explained in Section 2).

6. Wishes

This section is highly speculative. It contains no formal proofs. Nevertheless, we
feel it is vital for the understanding of a significant portion of the computations
to come. It also suggests interesting research directions into a more canonical
representation of syntomic cohomology, one that would make the computations in
the syntomic case equivalent to the complex case.

We want to follow a strategy that proved very successful in computing syntomic
regulators on K2 of curves; see the discussion after Proposition 5.2 in [Besser 2000c].
We argue heuristically, in some make-believe world where syntomic cohomology
looks much more like Deligne cohomology from the computational standpoint,
and get a formula for the regulator. Then we try to relate this formula with the
formula we obtained in the previous section and see what needs to be proved to
show that the two formulas are equivalent. That the make-believe formula turns out
to be correct is a strong indication that one should be able to turn the make-believe
computation into a rigorous one.

The make-believe computation is based on the following assumptions:

• The “cohomology” is given by the pairs (ω, h) where ω is an i-form and h is
an i − 1 form with dh = ω. Of course h is not an actual form but something
like a Coleman form, for example a Coleman function.
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• The “regulator” of a function f is the pair (dlog( f ), log( f )).

• The cup product is given by (ω1, h1)∪(ω2, h2)= (ω1∧ω2, ω1∧h2 or h1∧ω2).

With these rules, we can redo the computation from the previous section in this
make-believe language: We have in H̃ 2

ms(X
loc
C , 2) that

− regp

( t−g
t−1
∪ (1− g)

)
= (ωg, εg)

with ωg as in Lemma 5.10 and

εg =− log(1− g) dlog
( t−g

t−1

)
.

Since the restriction of εg to t = 0 is − log(1− g) dlog(g) = d Li2(g) we have,
following the proof of Proposition 5.11, that

regp([g]2) ∈ H̃ 2
ms(X

loc
C ,�, 2) equals [ωg, εg, 0,Li2(g)].

Cupping with (dlog( f ), log( f )) we get

ε̃(g, f ) := regp([g]2 ∪ ( f ))=
[
−log( f ) dlog

( t−g
t−1

)
∧ dlog(1− g)), 0, 0

]
.

Applying T∞0 we find T∞0 (ε̃(g, f ))= log( f ) log(g) dlog(1− g).
We now compare this with T∞0 ε(g, f ) of (5.18). Continuing to mimic the

discussion of the K2 in [Besser 2000c], the former version should be an untwisted
version of the latter, that is, without the “twist” by (1− (φ∗/q3)). To see this, we
use the formalism described in [Besser 2000c, Remark 3.1] to get

(6.1)
(

1− φ
∗

q3

)
[log( f ) log(g) dlog(1− g)] =

1
q

log( f0) log(g) dlog(1− g)+ 1
q2 logφ∗( f ) log(g) dlog(1− g)0

+
1
q3 log(g0) logφ∗( f )φ∗ dlog(1− g).

This already begins to look similar to T∞0 ε(g, f ), but there are differences. We want
to argue that the difference is “exact”. This cannot be taken to simply mean being
the differential of something, since in Coleman’s theory every form is integrable.
Experience has shown that things are exact if they are the differential of a product
of functions. We shall use two such assertions. Each one will correspond to a
precise statement in the following sections, which will be justified by the techniques
we shall introduce. To remind ourselves where these occurred, we shall call them
“Wishes”, and mark them explicitly.

Wish 6.2. We have in cohomology that 2(g) dlogφ∗( f )=−logφ∗( f ) d2(g).
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Using this wish we can write the term 1
q2(g) dlogφ∗( f ) in (5.18) as

−
1
q

d2(g) logφ∗( f )

=−
1
q

(
1
q

log(1− g)0 dlog g− 1
q2 log g0 dlogφ∗(1− g)

)
logφ∗( f )

=−
1
q2 log(1− g)0 dlog(g) logφ∗( f )+ 1

q3 log(g0) dlogφ∗(1− g) logφ∗( f ),

so we obtain

T∞0 ε(g, f )= 1
q

log( f0) log(g) dlog(1− g)− 1
q2 log(1− g)0 log(g)φ∗ dlog( f )

−
1
q2 log(1− g)0 dlog(g) logφ∗( f )+ 1

q3 log(g0) dlogφ∗(1− g) logφ∗( f ).

Comparing this with (1− (φ∗/q3))(log( f ) log(g) dlog(1− g)) given in (6.1) we
see that the first and last terms are the same, and that therefore we get our desired
equality, “twisted” by 1− (φ∗/q3) if we get our second wish to come true.

Wish 6.3. We have in cohomology that

log(1− g)0 log(g)φ∗(dlog( f ))+ log(1− g)0 logφ∗( f ) dlog(g)

+ log(g) logφ∗( f ) dlog(1− g)0

is trivial.

In Sections 7 and 8 we shall introduce triple indices. The wishes described
above correspond to precise results stated in terms of triple indices, which we can
indeed prove.

7. The triple index, local theory

We first briefly recall the theory of the “local index” from [Besser 2000c, Section 4].
In our new context this should be called the double index. To make things slightly
simpler, we work in an algebraic context. The transition to working with annuli is
straightforward.

Let K be a field of characteristic 0. We consider the algebra Alog :=K ((z))[log(z)]
of polynomials over the formal variable log(z), over the field of finite to the left
Laurent power series in z. We further consider the module of differentials Alog · dz.
It is an easy exercise in integration by parts to see that every form in Alog ·dz has an
integral in Alog in a unique way up to a constant. We distinguish in Alog the subfield
Mer := K ((z)) of meromorphic functions and the subspace Alog,1=Mer+K · log(z)
consisting exactly of all functions whose differential is in Mer · dz. To F ∈ Alog,1
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we can associated the residue of its differential Res dF ∈ K . If F ∈ Alog,1, then
F ∈Mer if and only if Res dF = 0.

Definition 7.1 [Besser 2000c, Proposition 4.5]. The double index is the unique an-
tisymmetric bilinear form 〈 · , · 〉 : Alog,1× Alog,1→ K such that 〈F,G〉 =Res F dG
whenever this last expression makes sense.

We recall that the construction of this index is essentially trivial: one notices that
the antisymmetry forces 〈log(z), log(z)〉 = 0 and that 〈F,G〉 = −Res G dF when-
ever this expression makes sense. Then one writes F=α log(z)+ f , G=β log(z)+g
with f, g ∈Mer and then one uses the bilinearity to write 〈F,G〉 as a sum of terms
that can be computed.

The triple index turns out to be a bit more complicated. First of all we need to
explain on which data it is evaluated:

• three functions F,G, H in Alog,1,

• for each two functions R and S out of F,G, H a choice of
∫

R dS (that is, a
function in Alog whose differential is R dS) and of

∫
S dR in such a way that

(7.2)
∫

R dS+
∫

S dR = RS.

As it will turn out this information is a bit redundant: clearly
∫

R dS determines∫
S dR. Also it will turn out that the index will be independent of

∫
F dG. Still,

these symmetric data are very convenient. To not carry around too much notation,
we shall simply denote these data by (F,G; H), where the additional choices
should be understood from the context. In particular, any permutation of F,G, H
induces an obvious permutation of the additional data. Also, if (Fi ,G; H), i = 1, 2
are given with all their additional data then there is a natural choice of data for
(F1+ F2,G; H), and similarly in the second and third positions. If we do need to
indicate a change in the auxiliary data we shall write this as (F,G; H |IFdG, . . . ),
where the subscript F dG indicates that I is an integral of F dG.

Proposition 7.3. There exists a unique function from data as above to K , denoted
(F,G; H) 7→ 〈F,G; H〉, called the triple index, such that the following conditions
are satisfied.

(1) Trilinearity: the triple index is linear in each of the three variables, which
means that 〈α1 F1 + α2 F2,G; H〉 = α1〈F1,G; H〉 + α2〈F2,G; H〉 provided
that all auxiliary data are chosen in the way indicated above, and similarly for
linearity in G and H.

(2) Symmetry: we have 〈F,G; H〉 = 〈G, F; H〉, again with the choice of auxiliary
data indicated above.
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(3) Triple identity: we have, again with the obvious additional choices,

〈F,G; H〉+ 〈F, H ;G〉+ 〈G, H ; F〉 = 0.

(4) Reduction to the double index: if G ∈ Mer then 〈F,G; H〉 = 〈F,
∫

G dH〉,
where

∫
G dH is taken from the auxiliary data and is in Alog,1 because by

assumption G dH ∈Mer · dz.

Proof. We first show that the dependency on the choices of integrals is forced by
the properties of the triple index.

Lemma 7.4. Suppose that the triple index exists. We then have the following change
of constant formulas:

(1) If C is a constant, then

〈F,G; H |(I +C)GdH , (J −C)HdG〉 = 〈F,G; H |IGdH , JHdG〉−C ·Res dF,

〈F,G; H |(I +C)FdH , (J −C)HdF 〉 = 〈F,G; H |IFdH , JHdF 〉−C ·Res dG.

(2) The triple index is independent of the integral
∫

F dG.

Proof. We use the trilinearity. Consider the data (F, 0; H), where the additional
data are the same for F and H but we take the integral of 0 dH to be C , hence
we are forced to take that of H d0 to be −C . We take

∫
0 dF = 0. The trilinearity

implied that 〈F,G; H〉 and 〈F, 0; H〉 gives the left-hand side of the formula. But
reduction to the double index means that 〈F, 0; H〉 = 〈F,C〉 = −Res C dF . An
identical argument proves the second case. Finally, if in the above argument we
take instead

∫
0 dF = D and

∫
0 dH = 0, we see from exactly the same argument

that the integral is independent of the auxiliary choice
∫

F dG. �

We now check that the triple index is uniquely defined on all data where at least
one of F , G, H is in Mer. Clearly in this case we can use reduction to the double
index together with symmetry and the triple formula to compute the index, so it is
clearly unique. The following lemma gives existence.

Lemma 7.5. Consider the following recipe:

(1) if G ∈Mer define 〈F,G; H〉 = 〈F,
∫

GdH〉,

(2) if F ∈Mer define 〈F,G; H〉 = 〈G, F; H〉 where the last expression is defined
as in (1),

(3) if H ∈Mer define 〈F,G; H〉=−(〈F, H ;G〉+〈G, H ; F〉) where each of these
terms is defined as in 1.

Then this recipe gives a well-defined 〈F,G; H〉 in all cases where at least one of
F , G and H is in Mer and restricted to this subset it satisfies all properties of the
triple index.
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Proof. To show that this expression is well-defined we need to consider what happens
when two of F,G, H are in Mer: If F,G ∈ Mer we check that 〈F,

∫
G dH〉 =

〈G,
∫

F dH〉. This follows because by the definition of the double index both
expressions equal Res FG dH . Next we check that if G, H ∈Mer then

〈F,
∫

G dH〉+ 〈F,
∫

H dG〉+ 〈G,
∫

H dF〉

= 〈F,G H〉+ 〈G,
∫

H dF〉 by bilinearity of the double index and (7.2)

=−Res G H dF +Res G H dF = 0.

Thus we find that we have a well-defined expression. We need to check that all
properties of the expected triple index hold in this case. Trilinearity is essentially
clear from the bilinearity of the double index. Symmetry is also easy: if F or G
are in Mer then symmetry follows from the first two rules. If H is in Mer then the
expression in (3) is clearly symmetric in F and G. The triple identity is forced
by (3) and the reduction to the double index is an immediate consequence of our
check that the triple index is well-defined. �

Note that the proof of Lemma 7.4 applies verbatim for this partial triple index,
so we know the dependency on the choices of integrals.

To extend the triple index to all F , G and H we first check the case where
F = G = H = log(z). Then we can arrange that all auxiliary data equal 1

2 log2(z).
The triple formula implies immediately that (with these data)

(7.6) 〈log(z), log(z); log(z)〉 = 0.

We can now demonstrate uniqueness for the triple index. Suppose Fi =αi log(z)+ fi ,
i = 1, 2, 3 where αi ∈ K and fi ∈Mer. Choose some auxiliary data

∫
R dS for any

two R and S out of fi and αi log(z), where we continue to take
∫

log(z) dlog(z)=
1
2 log2(z). Using trilinearity and (7.6) we can write 〈F1, F2; F3〉, with some choice
of auxiliary data, as the sum with some coefficients of triple indices where at
least one of the entries is in Mer, which are therefore computable by previous
considerations. Now we can use change of constant to write 〈F1, F2; F3〉 with
arbitrary auxiliary data. This shows uniqueness and gives a formula for the general
index. We need to check that this formula is well-defined, which, given the fact
that all the summands are well-defined thanks to Lemma 7.5, amounts to checking
independence of the choices of the auxiliary data. This is just a tedious formal
check: suppose for example that we add C to

∫
α1 log(z) d f3, and correspondingly

subtract C from
∫

f3α1 dlog z. This will have the effect that
∫

F1 dF3 will have
C added to it and

∫
F3dF1 will have C subtracted from it. This procedure will

subtract α2C = C Res dF2 from 〈α1, α2 log(z); f3〉 and will not change any of the
other indices. This shows that the change does not alter the index.
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It remains to check that our formula satisfies all the properties for the triple index.
First the change of constant formula of Lemma 7.4 is clear because we used it in
the definition and we showed that the formula we get is well-defined. Now given
change of constant it easy to see that it is enough to check trilinearity, symmetry
and triple identity for one choice of auxiliary data. The derivation of these three
formulas is then completely formal. Finally, reduction to the double index can only
occur if at least one αi is 0. But in this case we clearly get the triple index for the
case where Fi ∈Mer so we know this formula already. �

To compute the triple index in some concrete situations, which will be needed
later, we introduce the notion of the constant term.

Definition 7.7. The constant term with respect to the variable z is the linear func-
tional cz : Alog→ K , first defined on Mer by

cz

(∑
anzn

)
= a0,

and then in general by

cz

( ∞∑
i=0

fi (z) logi (z)
)
= cz( f0).

Note that the unlike the triple index, the constant term definitely depends on
the choice of the local parameter z. For example, for α ∈ K and the function
f (z)= log(z)= log(αz)− log(α) we have cz( f )= 0 but cαz( f )=−log(α).

Proposition 7.8. Let F , G and H be 3 functions in Alog,1 whose differentials (which
are in Mer dz) have at most simple poles at 0. The choice of integrals

∫
F dH and∫

G dH gives auxiliary data for the computation of 〈F,G; H〉 and with respect to
this choice we have

〈F,G; H〉=cz(F)·cz(G)·Res dH−Res dF ·cz

(∫
G dH

)
−Res dG·cz

(∫
F dH

)
.

Proof. We have a bilinear map

(F, H)→
∫
′

F dH := unique
∫

F dH with cz

(∫
F dH

)
= 0.

Therefore, we see that the map

(F,G, H)→ 〈F,G; H〉′ :=
〈
F,G; H

∣∣∣∣ ∫ ′F dHFdH ,

∫
′

G dHGdH

〉
is trilinear and symmetric in F and G. By Lemma 7.4 it suffices to prove that

(7.9) 〈F,G, H〉′ = cz(F) · cz(G) ·Res dH ,
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and as both sides are trilinear and symmetric in F and G, and as F = a log(z)+
f (z) with f (z) holomorphic and similarly for G and H , it suffices to treat the
following cases:

(1) When f , g and h are holomorphic we have

〈 f, g, h〉′ = Res f g dh = 0= cz( f )cz(g)Res dh

since Res dh = 0.

(2) Suppose F = G = H = log(z). Since cz(log2(z)/2) = 0 we see that the
local index computed with all auxiliary data set equal to log2(z)/2 is given by
〈log(z), log(z); log(z)〉′, and this we know is 0 by (7.6). On the other hand,
the right-hand side of (7.9) is also zero since cz(log(z))= 0.

(3) If g and h are holomorphic we have

〈log(z), g; h〉′ = 〈log(z),
∫
′

g dh〉 =−Res
(∫

′

g dh
)

dlog z =
(∫

′

g dh
)
(0)= 0,

which equals cz(log(z))cz(g)Res dh as required.

(4) If f and g are holomorphic we find

〈 f, g; log(z)〉′ = Res f g dlog z = f g(0)= cz( f )cz(g)Res dlog z .

(5) If g is holomorphic and a = cz(g) we see that∫
′

(g− a) dlog z =
∫
′

g dlog z− a log(z).

Using this we find

〈log(z), g; log(z)〉 =
〈
log(z),

∫
′

g dlog z
〉
=

〈
log(z),

∫
′

(g− a) dlog z
〉

=−Res
(∫

′

(g− a) dlog z
)

dlog z = 0,

since
∫
′
(g − a) dlog z is holomorphic and has constant term 0. This again

equals the right-hand side.

(6) The final case is for 〈log(z), log(z); h〉with h holomorphic. As cz(h log(z))=0,
we have the equation

∫
′ h dlog z+

∫
′ log(z) dh = h log(z). We therefore im-

mediately deduce this case from the previous one and the triple identity. �

8. The triple index, global theory

At this point we shall switch for convenience to assuming that our ground field
is Cp. Suppose now that we consider an open annulus V ∼= {r < |z| < s} with a
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parameter z. Then exactly the same analysis as in Section 7 gives us a triple index
on V . Note that while a parameter is used for proving the existence of the index,
the uniqueness statement is parameter-free, hence so is the index.

The uniqueness of the triple index immediately implies the following result
(cf. [Besser 2000c, Lemma 4.6]).

Lemma 8.1. If φ : V → V is an endomorphism of degree n, let φ∗(F,G; H) be
defined in the obvious way, pulling back by φ all the auxiliary data. Denote these
data simply by (φ∗F, φ∗G;φ∗H). Then we have the formula

〈φ∗F, φ∗G;φ∗H〉 = n〈F,G; H〉.

Consider now a wide open space U over Cp, with set of ends End(U ). We shall
denote the triple index with respect to the end e by the subscript e. When we are
given Coleman functions F , G and H in Acol,1(U ), in other words, such that their
differentials are in �1(U ), we may choose Coleman integrals for all forms R dS
when R and S are among F , G and H , and we may do so in such a way that∫

R dS+
∫

S dR = RS globally. This allows us to compute 〈F,G; H〉e at each end
e and we may consider the global triple index

〈F,G; H〉gl =
∑

e∈End(U )

〈F,G; H〉e.

Lemma 8.2. For F,G, H ∈ Acol,1(U ), the expression 〈F,G; H〉gl is independent
of the auxiliary choices, so depends only on F , G and H.

Proof. Since the possible integrals differ from one another by a global constant, if
we change for example

∫
G dH by a constant C , the change of constant formula

implies that the global triple index changes by∑
e

C Rese dF = C
∑

e

Rese dF = C · 0= 0. �

Unlike the global double index, the global triple index does not depend solely
on the cohomology classes of dF, . . . , and not even just on the differentials of the
functions. For example, if C is a constant we have the formula

〈F,C; H〉gl =
∑

e

〈
F,
∫

C dH
〉

e
= C

∑
e

〈F, H〉e.

However, we do have the following.

Lemma 8.3. If F,G ∈ Acol,1(U ) and C is a constant then 〈F,G;C〉gl = 0.
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Proof. Indeed,

〈F,G; 1〉gl =−〈F, 1,G〉gl−〈G, 1, F〉gl by the triple identity

=−〈F,
∫

dG〉gl−〈G,
∫

dF〉gl by reduction to the double index

=−〈F,G〉gl−〈G, F〉gl = 0,

where the last two equalities follow because the global double index is independent
of the choice of the integral and by the antisymmetry of the double index. �

The lemma suggests that the global triple index is quite an interesting creature.
It deserves further study. For our purposes we only need the following results:

Proposition 8.4. Let F , G, H in Acol(U ) have dF, dG, dH in�1(U ), and suppose
that the classes [dF] and [dG] in H 1

dR(U/K ) are eigenvectors for Frobenius with
eigenvalue q. Then 〈F,G; H〉gl = 0.

Proof. We begin by establishing the following formulas. If r ∈ A(U ) then

(8.5) 〈F, r, H〉gl =
∑

e

〈
F,
∫

r dH
〉

e
= 0,

where the last equality follows from [Besser 2000c, Corollary 4.11]. Similarly we
find that if also s ∈ A(U ) then 〈s,G, H〉gl = 0. Now if h ∈ A(U ), then

〈F,G; h〉gl =−〈F, h;G〉gl−〈G, h; F〉gl = 0,

by application of (8.5). This last formula shows that for fixed F and G the function
H 7→〈F,G; H〉gl depends only on the cohomology class of dH , [dH ]∈H 1

dR(U/K ).
Let φ be a Frobenius lift on U . The assumption on F and G implies the existence of
r, s ∈ A(U ) such that φ∗F = q F+r and φ∗G= qG+s. Using this we can compute

q〈F,G; H〉gl = 〈φ
∗F, φ∗G;φ∗H〉gl

= 〈q F + r, qG+ s;φ∗H〉gl = q2
〈F,G;φ∗H〉gl,

using bilinearity and (8.5). This shows that the functional [dH ] 7→ 〈F,G; H〉gl is
an eigenvector for the action of φ∗ with eigenvalue 1/q. Such a functional must
be 0 because the eigenvalues of φ∗ on H 1

dR(U/K ) are either q or Weil numbers of
weight 1. �

Note that this proposition applies in particular when F and G are of the form
r+ log( f ) where r, f ∈ A(U ). This follows since by [Coleman and de Shalit 1988,
Lemma 2.5.1], log( f q/φ∗( f )) is in A(U ).

Proposition 8.6. Suppose ω in �1(U ) has trivial residues on all ends, so that its
Coleman integral Fω is in fact analytic on the ends. Let F,G, H be Coleman
functions on U whose differentials are holomorphic and represent eigenvectors for
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Frobenius with eigenvalue q on H 1
dR(U/K ). Then, choosing the integrals globally

as Coleman integrals,

(8.7)∑
e

〈
F,G;

∫
Fω dH

〉
e
+

∑
e

〈
H, F;

∫
Fω dG

〉
e
+

∑
e

〈
G, H ;

∫
Fω dF

〉
e
= 0.

Proof. Note that the expression above makes sense since on each end e the form
Fω dH is analytic, so the corresponding triple index is defined, and similarly with
H replaced by F and G. Note also that this is of course not a global index in the
sense of this section, since Fω dH is not holomorphic. The strategy for the proof is
the same as for Proposition 8.4. First we notice that if Fω is in fact holomorphic,
then the identity holds by Proposition 8.4. It follows that the expression factors
via the cohomology class [ω]. Suppose now that we replace F by a holomorphic
function u. We then have∑

e

〈
u,G;

∫
Fω dH

〉
e
=

∑
e

〈
G,
∫

Fωu dH
〉

e
,

∑
e

〈
u, H ;

∫
Fω dG

〉
e
=

∑
e

〈
H,
∫

Fωu dG
〉

e
,

by reduction to the double index, and

∑
e

〈
G, H ;

∫
Fωdu

〉
e

=

∑
e

〈
G, H ; Fωu−

∫
uω
〉

e
=

∑
e

〈G, H ; Fωu〉e by Proposition 8.4

=−

∑
e

〈G, Fωu; H〉−
∑

e

〈H, Fωu;G〉 by the triple identity

=−

∑
e

〈
G,
∫

Fωu dH
〉

e
−

∑
e

〈
H,
∫

Fωu dG
〉

e

by reducing to the double index again as Fω is analytic. This shows that if we
replace F by u in the formula to be proved we indeed get 0. Similarly we get the
same result if we replace G by a holomorphic v, H by a holomorphic w, or if we
do 2 or 3 of these replacements at the same time. Now, exactly as in the proof of
Proposition 8.4, writing the left-hand side of (8.7) as T (F,G, H, ω), we easily get
from the previous computation that

qT (F,G, H, ω)= T (φ∗F, φ∗G, φ∗H, φ∗ω)= q3T (F,G, H, φ∗ω).
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Defining the functional γ by γ ([ω])= T (F,G, H, ω), this shows that γ satisfies
γ (φ∗[ω]) = q−2γ ([ω]), so that γ ((q2φ∗ − id)[ω]) = 0. By the theory of Weil
numbers, it follows that γ = 0. This proves what we want. �

9. A formula for the regulator

In this section we obtain our first explicit regulator formula, Theorem 9.10, using
the theory of the triple index. For technical reasons, the syntomic regulator itself
must be developed over a discretely valued field. However, since we have formulas
for the regulator that make sense over Cp as well, we work from now until the end
of this paper over Cp.

Now that we have at our disposal the triple index, we can interpret our make-
believe computation of Section 6 in such a way that it will become true. We continue
with the notation of the previous section, so U is a wide open space over Cp.

The first thing that the triple index allows us to do is to extend the cup product
to some Coleman differential forms. We first need a lemma.

Lemma 9.1. The map �1
col,1(U )→ H 1(U )⊗�1(U ) given by∑

Fωiηi 7→
∑
[ωi ]⊗ ηi

is well-defined.

Proof. This is [Besser 2002, Corollary 6.2]. �

Proposition 9.2. There is a unique bilinear map

<<<< · , · >>>> : Acol,1(U )⊗�1
col,1(U )→ Cp

such that we have, for any F , G, H in Acol,1(U ),

(9.3) <<<< F,G dH >>>> = 〈F,G; H〉gl.

Proof. By definition, �1
col,1(U ) is generated by forms like G dH so uniqueness

is clear. To show the existence we first note that by Lemma 8.3 the right-hand
side depends only on dH . This shows that <<<< · , · >>>> is well-defined as a map
Acol,1(U ) ⊗ Acol,1(U ) ⊗ �1(U ) → Cp, where the tensors are taken over Cp.
Lemma 9.1 shows that the kernel of the map G⊗ dH → G dH from Acol,1(U )⊗
�1(U ) to �1

col,1(U ) is contained in A(U )⊗�1(U ) so it is enough to observe that
if g in A(U ) then 〈F, g; H〉gl = 〈F,

∫
g dH〉gl indeed depends only on the form

g dH . �

The interest in the pairing <<<< · , · >>>> is justified by the fact that its restriction to
Acol,1(U )⊗�1(U ) is given by <<<< F, dG >>>> = 〈F,G〉gl. The pairing on the right was
studied in [Besser 2000c].
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Let us now fix ω in �1(U ) such that [ω] extends to C , or equivalently, that it
has trivial residues on all ends, and let F = Fω in Acol,1(U ) be a Coleman integral
of ω. Let p([ω]) be the canonical projection of [ω] on H 1

dR(C/K ).

Proposition 9.4. The functional Lp([ω])(η)= <<<< F, η >>>> on �1
col,1(U ) is good in the

sense of Definition 5.21.

Proof. Note that we are not claiming that this functional is independent of the
choice of the constant of integration. We first need to prove that Lp([ω]) vanishes
on forms of type d(a log f ), with a and f in A(U ). This is easily established:

<<<< F, d(a log f ) >>>> = <<<< F, a dlog f >>>> + <<<< F, log f da >>>>

= 〈F, a; log f 〉gl+〈F, log f ; a〉gl

= 〈a, log f ; F〉gl = 0

by Proposition 8.4. The second property of a good functional is immediate from
the formula 〈F,G〉gl = p([dF])∪p([dG]) [Besser 2000c, Proposition 4.10]. �

We will henceforth denote the above functional simply by Lω. This is literally
the case if ω is of the second kind on C , as in this case p(ω)= [ω].

Corollary 9.5. The p-adic regulator K (3)
4 (O)

reg′p
−−→ H 1

dR(C/K ) factors through the
quotient map K (3)

4 (O)→ K (3)
4 (O)/K (2)

3 (O)∪O∗
Q

.

Proof. By Proposition 5.22 and the normalization (5.7), the fact that a good func-
tional for any cohomology class α ∈ H 1

dR(C/K ) exists implies that the composition

K (3)
4 (O)

reg′p
−−→ H 1

dR(C/K )
1−φ∗/q3

−−−−−→ H 1
dR(C/K )

α∪
−−→ K

factors. As this is true for any α it follows that

K (3)
4 (O)

reg′p
−−→ H 1

dR(C/K )
1−φ∗/q3

−−−−−→ H 1
dR(C/K )

factors, but 1−φ∗/q3 is invertible on H 1
dR(C/K ) so the result follows. �

Propositions 9.4 and 5.22 suggest that in order to get an explicit formula for reg′p
we need to compute <<<< F, T∞0 ε(g, f ) >>>> , where the ε(g, f ) are computed in (5.18).
We shall manipulate this by “making our wishes come true” in the form of the
following proposition.

Proposition 9.6. Let F be as in Proposition 9.4 and let g, f ∈ O∗(Cloc) with g 6= 1.
Let T∞0 ε(g, f ) be as in (5.18). Then we have

(9.7) <<<< F, T∞0 ε(g, f ) >>>> =
∑

e

T(g, f, F)e ,
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where (choosing the integrals globally as Coleman integrals)

(9.8) T(g, f, F)e =
1
q
〈log f0, log g;

∫
F dlog(1− g)〉e

+
1
q2 〈logφ∗( f ), log(g);

∫
F dlog(1− g)0〉e

+
1
q3 〈logφ∗( f ), log(g0);

∫
Fφ∗ dlog(1− g)〉e .

Proof. We have by (5.18) and (9.3)

<<<< F, T∞0 ε(g, f ) >>>>

=

∑
e

(1
q
〈F, log g;

∫
log f0 dlog(1− g)〉e

−
1
q2 〈F, log g;

∫
log(1− g)0 dlogφ∗( f )〉e+

1
q
〈F,2(g); logφ∗( f )〉e

)
.

Note that dF = ω is in �1(U ) and has trivial residues along all ends. It follows
that F is holomorphic on each end.

At every annulus e we obtain the identities

〈F, log g;
∫

log f0 dlog(1− g)〉e = 〈log(g),
∫

F log f0 dlog(1− g)〉e

= 〈log f0, log g;
∫

F dlog(1− g)〉e,

〈F, log g;
∫

log(1− g)0 dlogφ∗( f )〉e = 〈log g,
∫

F log(1− g)0 dlogφ∗( f )〉e

= 〈log g, F log(1− g)0; logφ∗( f )〉e ,

〈F,2(g); logφ∗( f )〉e = Rese F2(g) dlogφ∗( f )

=−〈logφ∗( f ),2(g)F〉e,

so we obtain

<<<< F, T∞0 ε(g, f ) >>>>

=

∑
e

( 1
q
〈log f0, log g;

∫
F dlog(1− g)〉e

−
1
q2 〈log g, F log(1− g)0; logφ∗( f )〉e−

1
q
〈logφ∗( f ),2(g)F〉e

)
.

To equate this with the right-hand side of (9.7) we now realize our wishes one by
one. First we notice that the first summands in each expression are identical. The
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realization of the first wish corresponds to the formula∑
e

〈logφ∗( f ),2(g)F〉e

=

∑
e

〈logφ∗( f ),
∫

F d2(g)〉e+
∑

e

〈logφ∗( f ),
∫
2(g) dF〉e

=

∑
e

〈logφ∗( f ),
∫

F d2(g)〉e ,

as the second sum on the second line vanishes by [Besser 2000c, Corollary 4.11].
Now we may use the formula (5.12) for d2(g) to write this as∑

e

(
1
q
〈logφ∗( f ), F log(1− g)0; log(g)〉e

−
1
q2 〈logφ∗( f ), log(g0);

∫
Fφ∗ dlog(1− g)〉e

)
,

so the left-hand side of (9.7) becomes∑
e

(
1
q
〈log f0, log g;

∫
F dlog(1− g)〉e−

1
q2 〈log g, F log(1− g)0; logφ∗( f )〉e

−
1
q2 〈logφ∗( f ), F log(1− g)0; log(g)〉e

+
1
q3 〈logφ∗( f ), log(g0);

∫
Fφ∗ dlog(1− g)〉e

)
.

Now the first and last terms both agree with those on the right-hand side of (9.7)
and we are left with verifying the realization of the second wish in the form of∑

e

(
〈log g, F log(1− g)0; logφ∗( f )〉e+〈logφ∗( f ), F log(1− g)0; log(g)〉e

+〈logφ∗( f ), log(g);
∫

F dlog(1− g)0〉e

)
= 0 .

If we could replace the last triple index by

〈logφ∗( f ), log(g); F log(1− g)0〉e

the result would be an immediate consequence of the triple identity; indeed,∑
e

〈logφ∗( f ), log(g);
∫

F dlog(1− g)0〉e

=

∑
e

〈logφ∗( f ), log(g); F log(1− g)0〉e

−

∑
e

〈logφ∗( f ), log(g);
∫

log(1− g)0 dF〉e,

and the last sum is 0 by Proposition 8.4. �
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Proposition 9.9. Let G be such that dG lies in �1(U ) and G is holomorphic on
ends. Then, with the notation of Proposition 9.6, we have

T(g, f, φ∗G)e =
〈
log( f ), log(g);

∫ (
φ∗−

1
q2

)
G dlog(1− g)

〉
e
.

Proof. Let F = φ∗G. We replace each term of the form h0 by q log(h)− logφ∗(h)
in (9.8). Then we get

T(g, f, F)e =
1
q
〈q log( f )− logφ∗( f ), log g;

∫
F dlog(1− g)〉e

+
1
q2 〈logφ∗( f ), log(g); q

∫
F dlog(1−g)−

∫
F dlogφ∗(1−g)〉e

+
1
q3 〈logφ∗( f ), q log(g)− logφ∗(g);

∫
Fφ∗ dlog(1− g)〉e,

which after some cancellations equals

〈log( f ), log(g);
∫

F dlog(1−g)〉e−
1
q3 〈logφ∗( f ), logφ∗(g);

∫
F dlogφ∗(1−g)〉e.

After substituting φ∗G for F and noting that

〈logφ∗( f ), logφ∗(g);
∫
φ∗G dlogφ∗(1− g)〉e

= q 〈log( f ), log(g);
∫

G dlog(1− g)〉e

by Lemma 8.1, this becomes

〈log( f ), log(g);
∫
φ∗G dlog(1− g)〉e−

1
q2 〈log( f ), log(g);

∫
G dlog(1− g)〉e

=

〈
log( f ), log(g);

∫ (
φ∗−

1
q2

)
G dlog(1− g)

〉
e
,

as required. �

We now proceed to apply this theory to elements in K-theory.

Theorem 9.10. 1. Suppose that an element β ∈ K (3)
4 (Cloc) maps to

∑
i [gi ]2∪ fi

in H 1(C•(O)) under the composition (with the last isomorphism from (2.65))

(9.11) K (3)
4 (Cloc)→ K (3)

4 (O)→ K (3)
4 (O)/K (2)

3 (O)∪O∗Q
'
−→ H 1(C•(O)) ,

and that regp(β) ∈ H̃ 2
ms(C

loc, 3) is the image of [η] ∈ H 1
dR(U/K ) under the

isomorphism (5.7). Let ω in �1(U ) have trivial residues along all ends of U.
Then

(9.12) 〈Fω, Fη〉gl =
∑

i

∑
e

〈log( fi ), log(gi );
∫

Fω dlog(1− gi )〉e,

where Fω and Fη are any Coleman integrals of ω and η respectively.
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2. In particular, the composition

K (3)
4 (Cloc)

regp
−−→ H̃ 2

ms(C
loc, 3)

[η]7→〈Fω,Fη〉gl
−−−−−−−−−→ Cp

factors via (9.11).

Proof. First one easily checks that the validity of the formula depends only on the
cohomology class of ω. Since the operator φ∗−1/q2 is invertible on H 1(U ) we can
assume that ω= (φ∗−1/q2)µ with µ in �1(U ) and that Fω = (φ∗−1/q2)G with
G a Coleman integral of µ. Notice that G satisfies the condition of Proposition 9.9.
Let η0 be regp(β) ∈ H̃ 2

ms(C
loc, 3) in the model (5.6) so that by (5.7) we have

η0 = (1− φ∗/q3)η (up to an exact form, but this is irrelevant for global index
computations). We can take the Coleman integral of η0 to be Fη0 = (1−φ

∗/q3)Fη.
Let F = φ∗G. By Proposition 9.4 the functional Lω(η)= <<<< F, η >>>> is good in the
sense of Definition 5.21. It follows that we may apply Proposition 5.22 to obtain

<<<< F, η0 >>>> =
∑

i

<<<< F, T∞0 ε(gi , fi ) >>>>

=

∑
i

∑
e

T(gi , fi , F)e by Proposition 9.6

=

∑
i

∑
e

〈
log( f ), log(g);

∫ (
φ∗−

1
q2

)
G dlog(1− g)

〉
e

=

∑
i

∑
e

〈
log( f ), log(g);

∫
Fω dlog(1− g)

〉
e

by Proposition 9.9. On the other hand, we have

<<<< F, η0 >>>> = 〈F, Fη0〉gl =

〈
F,
(

1− φ
∗

q3

)
Fη
〉
gl
=

〈
φ∗G, Fη−

φ∗

q3 Fη
〉
gl

= 〈φ∗G, Fη〉gl−

〈 1
q2 G, Fη

〉
gl
=

〈(
φ∗−

1
q2

)
G, Fη

〉
gl
= 〈Fω, Fη〉gl .

The last two equations immediately give the result. �

We can restate the first part of Theorem 9.10 in a form that is more convenient for
the rest of this paper. As explained in the introduction, one has a canonical projection
H 1

dR(U/K )
p
−→H 1

dR(C/K ). This is the unique Frobenius equivariant splitting of the
natural restriction map in the other direction.

Recall now the Definition 5.8 of the regulator map reg′p, using the projection
map p. It follows from [Besser 2000c, Proposition 4.10] that p can be described in
the following way. It is the unique map such that for any η ∈�1(U ) and for any
form of the second kind ω on C , which is holomorphic on U , one has

(9.13) [ω] ∪ (pη)= 〈Fω, Fη, 〉gl .
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Corollary 9.14. Suppose that an element β ∈ K (3)
4 (Cloc) maps to

∑
i [gi ]2 ∪ fi

in H 1(C•(O)) under (9.11). Let ω be a form of the second kind on C that is
holomorphic on U. Then [ω] ∪ reg′p(β) is given by the right-hand side of (9.12).

10. End of the proofs

In this section we prove our main theorems. These will all follow from manipulations
of Theorem 9.10 and Corollary 9.14.

Fix a form ω of the second kind on C and a Coleman integral Fω of ω. We begin
with the proof of Theorem 1.12.

Lemma 10.1. The assignment

[g]2⊗ f 7→
∑

e

〈
log( f ), log(g);

∫
Fω dlog(1− g)

〉
e

extends to a well-defined map 9 ′′p,ω : M2(F)⊗ F∗
Q
→ K .

Proof. For functions f, g, h ∈ F the map

(10.2) G(h, g, f )=
∑

e

〈
log( f ), log(g);

∫
Fω dlog(h)

〉
e

is trilinear by the properties of the triple index. The result follows from Lemma 2.29.
�

Lemma 10.3. The restriction of 9 ′′p,ω to (M2(O)⊗O∗
Q
)d=0 coincides with the com-

position

(M2(O)⊗O∗Q)
d=0
→ H 2(M(3)(O))→ K (3)

4 (O)
reg′p
−−→ H 1

dR(C/K )
ω∪
−−→K .

Proof. This is an immediate consequence of diagram (2.67), noting the vertical map
on the left there is [g]2⊗ f 7→ [g]2 ∪ f , and of Corollary 9.14. �

Proof of Theorem 1.12. The only part of the theorem not proven already in Lem-
mas 10.1 and 10.3 is that the map 9 ′′p,ω factors via H 2(M(3)(O)), but this follows
immediately from Lemma 10.3. �

Proof of part 1 of Theorem 1.13. By Corollary 2.30, which applies with F replaced
with O by Remark 2.70, the fact that 9 ′′p,ω factors via H 2(M(3)(O)) implies that
9 ′′p,ω ◦4 : H

2(M̃(3)(O))→ K is induced by the following map, with G as in (10.2):

[g]2⊗ f 7→ G((1− g)⊗ g⊗ f )− 1
3 G((1− g)⊗ g⊗ f )− 1

3 G(g⊗ (1− g)⊗ f )

+
1
3 G((1− g)⊗ f ⊗ g)+ 1

3 G( f ⊗ (1− g)⊗ g)

= G((1− g)⊗ g⊗ f )− 1
3 G(g⊗ (1− g)⊗ f )+ 1

3 G( f ⊗ (1− g)⊗ g)

=
2
3 G((1− g)⊗ g⊗ f )− 2

3 G(g⊗ (1− g)⊗ f ),
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where we used that G is symmetric in the last two positions by Proposition 7.3(2),
and that G( f ⊗ (1− g)⊗ g) = −G((1− g)⊗ g⊗ f )− G(g⊗ f ⊗ (1− g)) by
Proposition 8.6. This is the formula in the first part of Theorem 1.13 by (10.2). �

For the proofs of Theorems 1.11 and 1.9, as well as part 2 of Theorem 1.13, we
now assume that ω is a holomorphic form on C .

Lemma 10.4. The associations

[g]2⊗ f 7→
∫
(1−g)

log(g)Fω dlog( f )−
∫
(g)

log(1− g)Fω dlog( f )

[g]2⊗ f 7→
∫
( f )

L2(g)ω

[g]2⊗ f 7→
∑

y

ordy( f )Fω(y)Lmod,2(g(y))

induce well-defined maps on M̃2(F)⊗ F∗
Q

(first) and M2(F)⊗ F∗
Q

(last two).

Proof. All three assertions follow from Lemma 2.29. This is essentially clear for the
first association. For the second association, observe that dL2 = log(z) dlog(1− z)
by (1.8). Consider the association

(h, g, f ) 7→
∫
( f )

(
ω ·

∫
log(g) dlog(h)

)
.

Here, the integral
∫

log(g) dlog(h) is a Coleman integral defined only up to a
constant. However, if the constant changes, the entire expression changes by the
same constant multiplied by

∫
( f ) ω, which equals 0 as it is the p-adic Abel–Jacobi

map applied to the principal divisor ( f ); see [Besser 2000a]. This association is
therefore well-defined, clearly trilinear, and we obtain the required result again by
Lemma 2.29. For the third association, one first needs to note that Lmod,2(g(y))
is the value of Lmod,2(g) at y (this is not obvious in general because we are using
the generalized way of assigning values to Coleman functions by taking constant
terms, discussed in the introduction) as we shall see in Corollary 10.8, so the entire
expression can be written as Fω ·Lmod,2(g) evaluated at the divisor of f . It is now
possible to proceed as in the previous case, given that

dLmod,2(g)= (log(g) dlog(1− g)− log(1− g) dlog(g))/2,

by associating to f, g, h the value of Fω ·
∫
(log(g) dlog(h)− log(h) dlog(g)) at

( f ), where the constant of integration does not matter for exactly the same reason
it did not in the previous case. �

By Lemma 10.4, the maps 9p,ω in Theorem 1.9 and 9 ′p,ω in Theorem 1.11
from M2(O)⊗O∗

Q
to K exist. (The existence of the maps in Theorem 1.13 will be

deduced from those in Theorems 1.11 and 1.12 later.)
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Next, we shall derive the formulas for the regulator. In all cases, we already
have a formula for the regulator, expressed in terms of a sum of local indices on
annuli. We can use the argument in the proof of [Besser 2000c, Proposition 5.5]
using Proposition 8.4 to replace the sum over ends by a sum over points.

Let α =
∑

i [gi ]2⊗ fi be an element of (M2(O)⊗O∗
Q
)d=0. By the above we have

9 ′′p,ω(α)=
∑

i

∑
y∈C

〈
log( fi ), log(gi );

∫
Fω dlog(1− gi )

〉
y
.

We again extend scalars to Cp, so in particular points are Cp valued. Fix a
local parameter at each point y, which we shall call zy , or, whenever there is
no risk of confusion, simply z. Consider a single point y in C . We recall that
with respect to the local parameter z at y we define, for a rational function f ,
f̄ (y) = ( f/zordy( f ))(y). For such a function f we have cz(log( f )) = log( f̄ (y)).

We also have Resy(Fω dlog( f )) = ordy( f ) · Fω(y). Thus, using Proposition 7.8,
we obtain

(10.5) 9 ′′p,ω(α)=
∑

i

∑
y∈C

[
ordy(1− gi )Fω(y) log f̄i (y) log ḡi (y)

− ordy( fi )cz

(∫
log(gi )Fω dlog(1− gi )

)
− ordy(gi )cz

(∫
log( fi )Fω dlog(1− gi )

)]
.

Let A (respectively B) be the subgroup of k(C)∗ generated by the fi and gi

(respectively by the 1− gi ). By choosing bases for A and B and then choosing
appropriate integrals we can arrange it so that for each f in A and h in B an integral∫

log( f )Fω dlog h is chosen such that the map ( f, h) 7→
∫

log( f )Fω dlog h is
bilinear. Since the overall sum in (10.5) is independent of the choice of integrals,
we may and do assume from now on that the integrals there are chosen as above.

Lemma 10.6. If
∑

i [gi ]2⊗ fi is in (M2(F)⊗F∗
Q
)d=0, then for every y in C we have

∑
i

ordy( fi ) cz

(∫
log(gi )Fω dlog(1− gi )

)
=

∑
i

ordy(gi ) cz

(∫
log( fi )Fω dlog(1− gi )

)
.

Proof. With the choices above the map

( f, g, h) 7→ ordy( f )cz

(∫
log(g)Fω dlog(h)

)
−ordy(g)cz

(∫
log( f )Fω dlog(h)

)
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is trilinear and antisymmetric with respect to f and g. The lemma follows since∑
(1− gi )⊗ (gi ∧ fi )= 0 by (2.24). �

We recall that the function L2(z) is defined by L2(z)=Li2(z)+ log(z) log(1− z)
and that we have dL2(z)= log(z) dlog(1−z). Note that this last form is holomorphic
in the residue disc of 1 and as a consequence so is L2(z).

Lemma 10.7. Let g be a rational function. The constant term at y of L2(g) equals
L2(g(y)) if g(y) 6= 0,∞, equals 0 if g(y) = 0 or 1 and equals log2(ḡ(y))/2 if
g(y) = ∞, where ḡ is computed with respect to the same local parameter as
the constant term. In addition, the expansion of L2(g) with respect to any local
parameter z contains no summands of the form Const · zn with n < 0.

Proof. This is clear if g(y) 6= 0,∞. Suppose g(y)= 0. Since Li2 is holomorphic
near 0 and has value 0 there, we see that the constant term and terms of the form zn

for n< 0 are the same as in log(g) log(1−g). Near y, log(g(z))= ordy(g) log(z)+ ,
a holomorphic function in z. Also, log(1− g) is holomorphic near y with value
0 there. Thus the result is clear. Finally, by [Coleman 1982, Proposition 6.4], we
have L2(g)+L2(1/g)= log2(g)/2 (from which it also follows that L2(1)= 0) so
the result at g(y)=∞ is deduced from that of 1/g when g(y)=∞. �

Corollary 10.8. The constant term of Lmod,2(z) at 0, 1 and ∞ is 0, regardless
of parameter. Furthermore, setting the value of Lmod,2 at these points to be the
above constant term, we have that for any rational function g the constant term of
Lmod,2(g) at any point y equals Lmod,2(g(y)).

Proof. Since Lmod,2(z) = L2(z)− log(z) log(1− z)/2 it is easy to check that the
constant term of Lmod,2(g) is 0 at either g(y)=0, 1,∞, and the result easily follows.

�

Lemma 10.9. For any point y in C and for any choice of a Coleman integral∫
L2(g)ω the quantity cz(

∫
L2(g)ω) is independent of the choice of the local pa-

rameter z at y.

Proof. Let fω be the unique Coleman integral of ω that vanishes at y. We may
choose a Coleman integral

∫
fωdL2(g) in such a way that the integration by parts

formula ∫
L2(g)ω = L2(g) fω−

∫
fω dL2(g)

holds. It is therefore sufficient to show that the constant term of each of the
summands on the right is independent of the parameter. From the last assertion in
Lemma 10.7 and the fact that fω(y)= 0 it is easy to see that the constant term of
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the first summand is 0. For the second summand we have∫
fω dL2(g)=

∫
fω log(g) dlog(1− g)

= log(g)
∫

fω dlog(1− g)−
∫ (∫

fω dlog(1− g)
)

dlog(g)

for appropriate choices of integrals. As fω dlog(1− g) is holomorphic at y, we
may arrange it so that

∫
fω dlog(1− g) vanishes at y. Then in the last formula the

first term has constant term 0 while the second term is holomorphic at y hence its
constant term is independent of z. �

Using the last lemma we may set∫
L2(g)ω|y := cz

(∫
L2(g)ω

)
with respect to any parameter z at y. Using this we can define

∫
D L2(g)ω for any

divisor D of degree zero. If we change
∫

L2(g)ω by a constant, its value at y in
the above sense will change by the same constant. Thus when D has degree 0 the
integral

∫
D L2(g)ω does not depend on the constant of integration even if D and

the divisor of g have a common support. This explains the general definition of the
integral in Theorem 1.9.

Lemma 10.10. Choose integrals such that the integration by parts formula∫
log(g)Fω dlog(1− g)= FωL2(g)−

∫
L2(g)ω

is satisfied. Then we have at a point y and with respect to the local parameter z,

cz

(∫
log(g)Fω dlog(1− g)

)
= Fω(y)cz(L2(g))−

∫
L2(g)ω|y .

Proof. One just applies cz to the integration by parts formula and observes that by
Lemma 10.7 we have cz(FωL2(g))= Fω(y)cz(L2(g)). �

Proof of Theorem 1.11. We already saw that the association gives a well-defined
map on M2(O)⊗ O∗

Q
. It therefore suffices to show that it gives the same map on

(M2(O)⊗O∗
Q
)d=0 as 9 ′′p,ω in Theorem 1.12. Consider (10.5). By Lemma 10.6 we

can choose our integrals such that for each point y the sum over i of each of the
last two terms is identical. The term

ordy( fi )cz
(∫

log(gi )Fω dlog(1− gi )
)



THE SYNTOMIC REGULATOR FOR K4 OF CURVES 375

is computed in Lemmas 10.10 and 10.7. Substituting the results we see that we
have the equation

9 ′′p,ω(α)=
∑

i

∑
y∈C

(ordy(1− gi )Fω(y) log f̄i (y) log ḡi (y))+ 2
∫
( fi )

L2(gi )ω

−

∑
y∈C

ordy( fi )Fω(y)×


0 gi (y)= 0,
2L2(gi (y)) gi (y) 6= 0,∞,
log2(ḡi (y)) gi (y)=∞.

.
In the first sum over y, only terms with gi (y)=∞ can be nonzero. Thus neither
sum over y contributes for gi (y)= 0, and the right-hand side becomes

(10.11)
∑

i

[
2
∫
( fi )

L2(gi )ω− 2
∑

gi (y) 6=0,∞

ordy( fi )Fω(y)L2(gi (y))

+

∑
gi (y)=∞

Fω(y)λy( fi , gi )

]
with

λy( f, g)= ordy(1− g) log f̄ (y) log ḡ(y)− ordy( f ) log2 ḡ(y)

= log ḡ(y)(ordy(1− g) log f̄ (y)− ordy( f ) log ḡ(y))

= log 1− g(y)(ordy(g) log f̄ (y)− ordy( f ) log ḡ(y))

because g(y)=∞ implies ordy(1− g)= ordy(g) and ḡ(y)=−1− g(y).
For y in C , the function

µy( f, g, h)= log h(y)(ordy(g) log f̄ (y)− ordy( f ) log ḡ(y))

is trilinear in f , g and h and antisymmetric in f and g. As
∑

i (1−gi )⊗(gi∧ fi )=0
by (2.53), we find

(10.12)
∑

i

µy( fi , gi , 1− gi )= 0 .

If gi (y)= 0 then µy( fi , gi , 1− gi )= 0, while if g(y) 6= 0,∞ then

µy( fi , gi , 1− gi )=− ordy( fi ) log gi (y) log(1− gi (y)),

where we set the value of log(y) log(1− y) at 1 to be 0, which is its constant term.
Thus, summing (10.12) multiplied by Fω(y) over all y in C we see that∑

i

∑
gi (y)=∞

Fω(y)λy( fi , gi )=
∑

i

∑
gi (y) 6=0,∞

ordy( fi )Fω(y) log gi (y) log(1− gi (y)).
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Substituting this into (10.11), and using that L2(z)−log(z) log(1−z)/2=Lmod,2(z)
by definition, we obtain

9 ′′p,ω(α)= 2
∑

i

∫
( fi )

L2(gi )ω− 2
∑

i

∑
gi (y) 6=0,∞

ordy( fi )Fω(y)Lmod,2(gi (y)).

This formula finishes the proof of Theorem 1.11 as Lmod,2(0)= Lmod,2(∞)= 0. �

Proof of Theorem 1.9. That the assignment is well-defined is part of Lemma 10.4.
In order to see that it vanishes on [ f ]2⊗ f , we note that we already know this is true
for the assignment in Theorem 1.11, and that the second term in that assignment is
trivial on such terms because Lmod,2(z) vanishes at 0 and∞.

For part (2), consider (1.16). That ∂1(α
′) = 0 means that α′ satisfies (2.57),

which is equivalent with α′ being in H 2(M(3)(C
′)) inside H 2(M(3)(O

′)) (recall from
Section 2.5.3 that the two vertical maps at the top in this diagram are injections
if we use O′ instead of O everywhere). The existence and uniqueness of β ′ was
therefore proven just after (2.58). In fact, β ′ is the K (3)

4 (C′) component of the
image of α′ in K (3)

4 (C′)⊕ K (2)
3 (k)∪ O′∗

Q
, and the images of α′ and β ′ in K (3)

4 (O′)

differ by some γ ′ in the image of K (2)
3 (k) ∪ O′∗

Q
. But ω ∪ reg′p(γ

′) = 0 by the
commutativity of the bottom right square, so that, after extending from O′ to O, we
have ω∪ reg′p(β) = 9

′
p,ω(α) by Theorem 1.11. It therefore suffices to show that

the contribution of each ordy( f )Fω(g(y))Lmod,2(g(y)) in 9 ′p,ω(α) is trivial.
Note that in Theorem 1.11 this sum has to be computed after a suitable finite

extension K̃ of K that makes the relevant y rational, but that further extending the
field to Cp as we are using here gives the same result. In fact, because we start over
the number field k, the relevant y become rational over some number field L ⊂ K̃
containing k. The M̃2(·) are compatible with field extensions, and clearly the same
holds for ∂1. Therefore (2.57) gives us that for each closed point y of C ′L , ∂1,y(α

′)

is trivial in M̃2(L). Because Fω(y) is just a constant, comparing with the definition
of ∂1,y in Section 2.4.3, we see that it suffices to show that the map

H 1(M̃(2)(L))→ K̃∑
i

[ai ]2 7→
∑

i

Lmod,2(ai )

is well-defined. It is conjectured in [Besser and de Jeu 2003, Conjecture 1.14] that
this map is the syntomic regulator map on as composition (with OL the ring of
integers in L)

H 1(M̃(2)(L))→ K (2)
3 (L)' K (2)

3 (OL)→ H 1
syn(OL , 2)' K ,
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which would imply what we need. However, extending the domain of the map, we
can show by more basic means that the map

M̃2(L)→ K̃

[a]2 7→ Lmod,2(a)

is well-defined, which will prove what we want.
Namely, for any field L of characteristic zero, let B ′2(L) be the free Q-vector

space on elements {b}2 with b in F , b 6= 0, 1, modulo the five term relation

(10.13) {b}2+{c}2+
{ 1−b

1−bc

}
2
+{1− bc}2+

{ 1−c
1−bc

}
2
= 0.

It is shown in [de Jeu 2000, Lemma 5.2] that there is a map B ′2(L)→ M̃2(L), given
by sending {b}2 to [b]2. In the case where L is a number field, this was already
done on page 240 of [de Jeu 1995] (where the relations were not made explicit and
the group was called B2(L)), and the map was shown to be an isomorphism in that
case. Finally, in [Coleman 1982, Corollaries 6.4(ii), (iii) and 6.5b] Coleman shows
that Lmod,2 (which is called D there) satisfies

Lmod,2(z−1)=−Lmod,2(z)

Lmod,2(1− z)=−Lmod,2(z)

as well as (with signs corrected)

Lmod,2(z1z2)=Lmod,2(z1)+Lmod,2(z2)+Lmod,2

( z1(1−z2)

z1−1

)
+Lmod,2

( z2(1−z1)

z2−1

)
.

Substituting z1 = (bc)−1, z2 = c in the last relation and using the first two, one
sees that Lmod,2 satisfies the relation corresponding to (10.13). Therefore it induces
a map

M̃2(L)' B ′2(L)→ K

mapping [b]2 to Lmod,2(b). This finishes the proof of Theorem 1.9. �

Proof of part 2 of Theorem 1.13. Since by Theorem 1.11, the map 9 ′p,ω factors via
H 2(M(3)(O)), we may again use Corollary 2.30, which applies with F replaced by
O by Remark 2.70. Recall that 9 ′p,ω is induced by

[g]2⊗ f 7→ 2
∫
( f )

L2(g)ω− 2
∑

y

ordy( f )Fω(y)Lmod,2(g(y)).

Since Lmod,2(z)+Lmod,2(z−1)=0, while L2(z)+L2(z−1)= 1
2 log2(z), we see that we

are in the situation of part (3) of Lemma 2.29 with H(a ·b⊗c)=
∫
(c) log(a) log(b)ω.
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Applying the corollary, the composition 9 ′p,ω ◦4 : H
2(M̃(2)(O))→ K is given by

[g]2⊗ f 7→ 2
∫
( f )

L2(g)ω− 2
∑

y

ordy( f )Fω(y)Lmod,2(g(y))

−
2
3

∫
( f )

log(1− g) log(g)ω+ 2
3

∫
(g)

log( f ) log(1− g)ω,

as required. �

Remark 10.14. We would like to explain a bit of the heuristics suggesting that
Theorem 1.13 gives a formula which is the p-adic analogue of the complex analytic
formula for the regulator in Section 3.

Experience has taught us that complex surface integrals translate in the p-adic
world to a similar formula involving local indices. For example, the complex
analytic formula for the regulator of the symbol { f, g} in K2(F),∫

C
log |g| dlog f ∧ω = 2

∫
C

log |g| dlog | f | ∧ω,

where ω is holomorphic, translates in the p-adic world into the formula

〈log f, Fω; log g〉gl.

Note that, using the rules for the triple index, this is the same as the formula∑
e〈log f,

∫
(Fω dlog(g))〉e obtained in [Besser 2000c, Propositon 5.1]. This corre-

sponds to the regulator on an open curve using the same projection on H 1
dR(C/K )

we have been using in this paper. For a sum { fi , gi } in the kernel of the tame
symbol, we may, for every pair ( f, g)= ( fi , gi ), replace 〈log f, Fω; log g〉gl with∫
( f ) log(g) ·ω, obtaining the formula of Coleman and de Shalit [1988, (1)]. This is

similar to Theorem 1.11 specializing to Theorem 1.9.
Relying on these considerations, the maps 9 ′′p,ω and 9 ′′′p,ω in Theorems 1.12

and 1.13 are precise analogues, up to a factor of 4, of the maps 9 ′′
∞,ω and 9 ′′′

∞,ω

in Proposition 3.1. Factors that are powers of 2 appear in comparison with other
regulator formulas; see for example the introduction of [Besser 2012].
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To the memory of Jonathan David Rogawski

Rogawski (1985) used the affine Hecke algebra to model the intertwining
operators of unramified principal series representations of p-adic groups.
On the other hand, a representation of this Hecke algebra in which the
standard generators act by Demazure–Lusztig operators was introduced
by Lusztig (1989) and applied by Kazhdan and Lusztig (1987) to prove the
Deligne–Langlands conjecture. These operators appear in various other
contexts. Ion (2006) used them to express matrix coefficients of principal
series representations in terms of nonsymmetric Macdonald polynomials,
while Brubaker, Bump and Licata (2011) found essentially the same oper-
ators underlying recursive relationships for Whittaker functions. Here we
explain the role of unique functionals and Hecke algebras in these contexts
and revisit the results of Ion from the point of view of Brubaker et al.

1. Introduction

One of the innovations in [Rogawski 1985] was the use of the Hecke algebra to
model the intertwining operators of unramified principal series representations of
p-adic groups. His goal was the classification of the irreducible representations
of the Hecke algebra, or equivalently, the irreducible representations of a p-adic
group having an Iwahori-fixed vector. These had already been classified in the case
of GLn by Zelevinsky [1980]. It was known from [Zelevinsky 1981] that there
were analogies between this problem and the decomposition of Verma modules of a
semisimple Lie algebra into irreducibles, where deep connections with the theory of
Hecke algebras had been found by Kazhdan and Lusztig [1979]. Rogawski sought to
clarify the relationship between p-adic representation theory and Kazhdan–Lusztig

This work was partially supported by NSF grants DMS-0844185, DMS-1001079 and DMS-1001326,
and by NSA grant H98230-10-1-0183.
MSC2010: primary 22E50; secondary 22E35, 33D52.
Keywords: Hecke algebra, unramified principal series, Demazure–Lusztig operator, unique

functional.
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theory. As part of this effort, he expressed intertwining integrals between principal
series representations in terms of Kazhdan–Lusztig elements of the Hecke algebra.

Among the tools that had been brought to bear on the study of Verma modules,
Jantzen [1979] had introduced a filtration of the Verma module based on the
Shapovalov bilinear form. With the analogy between p-adic groups and Verma
modules in mind, Rogawski gave an analog of the Jantzen filtration, and also
reproved the results of Zelevinsky [1980] for GLn using Hecke algebra methods.

After [Rogawski 1985] was written, Zelevinsky’s results were generalized to
arbitrary p-adic groups by Kazhdan and Lusztig [1985; 1987], who proved the
Langlands–Deligne conjecture classifying the irreducible representations of a p-adic
group G that have Iwahori-fixed vectors. They made use of a representation of the
affine Hecke algebra HJ on the ring of rational functions on the maximal torus T̂
of the L-group Ĝ. In this action, the generators of the Hecke algebra act by certain
operators known as Demazure–Lusztig operators, which resemble the well-known
Demazure operators that occur in the cohomology of line bundles over Schubert
varieties. Given data consisting of a pair (s, u) of elements of Ĝ such that s is
semisimple, u is unipotent, and sus−1

= uq , where q is the cardinality of the residue
field, a subquotient of this representation can be found that gives an irreducible
HJ -module. This module may be identified with the space of Iwahori-fixed vectors
in an irreducible representation of G(F). To prove that this gives every irreducible
representation of G(F) uniquely, thus proving the Deligne–Lusztig conjecture,
Kazhdan and Lusztig made use of the “coincidence” that the same representation
of the Hecke algebra by Demazure–Lusztig operators also occurs in the K-theory
of flag varieties, allowing statements about representations to be translated into
algebraic geometry, where suitable methods are available.

The representation of the Hecke algebra by Demazure–Lusztig operators comes
up in yet another context, namely the study of special functions on a p-adic group
realized as matrix coefficients involving Iwahori-fixed vectors. Our first task, after
some preliminaries, will be to briefly retrace Rogawski’s steps and to discuss
the relationship between the Hecke algebra and the intertwining operators. The
intertwining operators involve different principal series representations, which must
be taken together to obtain a representation of the Hecke algebra. We express this
by saying that the principal series representation is variable in this representation
of the Hecke algebra.

As we will explain in Section 3, this representation may be converted into
something concrete by introducing a family of functionals on the principal series
representations. We will consider two particular such families: the Whittaker
functionals and the spherical functionals. The role of the unique functional is that
it converts the Iwahori-fixed vectors in a variable principal series representation
into a family of regular functions on T̂ . The problem of variability of the principal
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series representation disappears, and the action of the Hecke algebra generators is
by some variant (depending on the functional) of the Demazure–Lusztig operator.
The regularity of the functions obtained this way is related to Bernstein’s method
of showing that a unique functional defined (typically by a suitable integral) on an
open subspace extends to a meromorphic function for all Langlands parameters.
(See, for example, [Banks 1998] or [Sakellaridis 2006, Section 7] for Bernstein’s
method.)

Both the spherical and the Whittaker functionals are defined and nonzero on
a Zariski dense set of T̂ . By contrast, one may consider functionals defined and
nonzero on only a subset of T̂ that is not Zariski dense. An example is the Shalika
functional on representations of GLn , proved unique by Jacquet and Rallis [1996],
with a Casselman–Shalika type formula established by Sakellaridis [2006]. The
Shalika functional, like the Bessel models for classical groups, exhibits characteris-
tics of both the spherical and Whittaker functionals and can be studied using our
methods. We hope to return to this in a later paper.

Shortly before [Rogawski 1985] appeared, intertwining operators had been
used for another purpose: the computation of the spherical vector in each of
our two archetypal models. For the spherical model, Casselman [1980] used
intertwining operators to give a new proof of the Macdonald formula which expresses
the values of the spherical function as specializations of Macdonald symmetric
functions. This specialization is the Hall–Littlewood polynomial in the case of GLn .
Later, nonsymmetric Macdonald polynomials were defined in [Macdonald 2003;
Opdam 1995; Cherednik 1995]. Generalizing the Macdonald formula, Ion [2006]
showed that the Iwahori-fixed vectors in the model are expressible in terms of
nonsymmetric Macdonald polynomials, making use of recursions that they satisfy
involving Demazure–Lusztig operators. See also [Cherednik and Ostrik 2003] for
earlier hints of this connection.

For the Whittaker functional, Casselman and Shalika [1980] used the intertwin-
ing operators to show that the values of the spherical Whittaker function are the
irreducible characters of Ĝ, multiplied by a factor which is a deformation of the
denominator in the Weyl character formula. Regarding the more general Iwahori-
fixed vectors in the model, Reeder [1992; 1993] used the Hecke algebra action to
give recursions between these, usable for explicit computation. These relations
can be understood in terms of Demazure–Lusztig operators as proved by Brubaker,
Bump and Licata [Brubaker, Bump and Licata 2011].

In Section 2, we review the relation between the Iwahori Hecke algebra and
the intertwining operators for principal series. Then, in Section 3, we show that,
given a unique functional on a Zariski dense subset of T̂ , to each generator Ti of
the Iwahori Hecke algebra we may attach a difference operator on a suitable ring
of regular functions that is similar to a Demazure operator. This extends to an



384 BENJAMIN BRUBAKER, DANIEL BUMP AND SOLOMON FRIEDBERG

action of the Hecke algebra. In the case of the spherical functional, this gives a new
perspective on the work of Ion [2006].

2. Hecke algebras and intertwiners of principal series

Let G be a reductive algebraic group defined and split over a nonarchimedean
local field F with ring o of integers and prime p. We may regard G as defined
over o in such a way that K = G(o) is a special maximal compact subgroup. Let
q = |o/p|. Let T be a split maximal torus contained in Borel subgroup B, and let
W0 = N (T )/T be the Weyl group. We will always choose representatives for W0

from N (T )∩ K .
The connected L-group Ĝ is an algebraic group defined over C with a maximal

torus T̂ that is in duality with T in the sense that elements of T̂ (C) are in bijection
with the unramified characters of T (F), that is, those that are trivial on T (F)∩K =
T (o). Let J be the Iwahori subgroup, which is the preimage in K of B(Fq) under
the canonical homomorphism G(o)→ G(Fq).

Let s1, . . . , sr be the simple reflections in the Weyl group W0. The affine Weyl
group Waff is obtained by adjoining one more “affine” simple reflection s0 [Bourbaki
1968, Section VI.2]. It is the semidirect product of W0 by the root lattice Q∨ of T̂ ,
which is the coroot lattice of T . The groups W0 and Waff are Coxeter groups. The
extended affine Weyl group Wext is a slightly larger group that is the semidirect
product of W0 by the weight lattice P∨ of T̂ , which is the coweight lattice of T ,
isomorphic to T (F)/T (o). In this presentation, P∨ is a normal subgroup. We will
denote by λ 7→ aλ a map sending λ ∈ P∨ to a representative of the corresponding
coset in T (F)/T (o).

The group Wext is not a Coxeter group, but like Coxeter groups, it has a length
function. The finite subgroup � of elements of length 0 is isomorphic to P∨/Q∨.
For example, if G is semisimple, then � is isomorphic to the fundamental group
of G. The group Wext is the semidirect product of Waff by �, with Waff being a
normal subgroup. Conjugation by an element of � permutes the si .

The (affine) Iwahori Hecke algebra HJ is the convolution algebra of compactly
supported J -biinvariant functions on G(F). Let H0 be the subring of functions
with support in K . Then H0 and HJ have the following explicit description due
to Iwahori and Matsumoto [1965]. If r is the rank of G, the ring H0 is generated
by T1, . . . , Tr , where each Ti is the characteristic function of Jsi J . These Ti then
satisfy quadratic relations

(1) T 2
i = (q − 1)Ti + q

and the braid relations

Ti T j Ti . . .= T j Ti T j . . . ,
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where the number of terms on each side is the order of si s j . The affine Hecke
algebra Haff is obtained by adjoining an element T0 satisfying the same quadratic
and braid relations but allowing i =0 corresponding to the affine simple reflection s0.
The algebra HJ is slightly larger than Haff, and is isomorphic as a vector space
to Haff ⊗ C[�]. The elements of � act on Haff by conjugation, and this action
corresponds to permuting the Ti , just as in Wext conjugation by elements of �
permutes the si .

The algebra HJ also has a presentation analogous to the presentation of Wext

as the semidirect product of P∨ by W0. This presentation, sometimes known as
the Bernstein presentation, was developed but not published by Bernstein and
Zelevinsky. Possibly its first use in a published paper was in [Rogawski 1985], and
a full treatment was given by Lusztig [1989]. In the Bernstein presentation, H0

is supplemented by a ring homomorphism θ : C[P∨] → HJ . As a vector space,
HJ =H0⊗C[P∨]. To describe the ring structure, it is sufficient to give one relation.
Let 16 i 6 r and let λ ∈ P∨. Then

θ(λ)Ti − Tiθ(siλ)= (q − 1)
θ(λ)− θ(siλ)

1− θ(−α∨i )
,

where α∨i is the coroot corresponding to i .
Let z ∈ T̂ (C), and let τ = τz : T (F)→ C× be the corresponding unramified

character. We extend it to B(F) by letting the unipotent radical N (F) be in the
kernel. The principal series representation M(τ ) consists of all locally constant
maps f : G(F)→ C such that f (bg)= (δ1/2τ)(b) f (g) for b ∈ B(F), g ∈ G(F).
The action of G(F) is by right translation. The module M(τ ) is irreducible if τ is
in general position.

If (π, V ) is an irreducible representation having a J -fixed vector, then V J is a
finite-dimensional irreducible HJ module and its isomorphism class determines π .
Any such (π, V ) with a J -fixed vector is a subquotient of M(τ ) for some τ , and
the category of smooth representations of finite length all of whose composition
factors have J -fixed vectors is equivalent to the category of finite-dimensional
HJ -modules.

The Weyl group W0 acts on T and hence on unramified characters. We will
make this a right action, so τw(a) = τ(waw−1) for a ∈ T (F). If w ∈ W0, the
modules M(τ ) and M(τw) are isomorphic if irreducible, and in any case have
isomorphic semisimplifications. To see this, one may construct homomorphisms
Aw : M(τ )→ M(τw) by means of intertwining integrals. By definition,

(2) Aw f (g)=
∫

N∩w−1 N−w
f (wng) dn,
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where N− is the unipotent radical of the negative Borel. The integral is convergent
if |τ(aλ)|< 1 for dominant weights λ. By the singular set, we mean the union of
hyperplanes in T̂ (C) that are the kernels of the coroots α∨ (regarded as charac-
ters of T̂ ). For arbitrary τ , the intertwining operator may be defined by analytic
continuation, except that the Aw can have poles in the singular set.

Now we return to the point in question: why may Hecke algebras be used to
model intertwining operators? The basic insight is that, to any ring R regarded as
a left R-module, a left R-module homomorphism λ : R→ R is necessarily of the
form λ(x)= x · a for some a ∈ R. This is trivial to prove with a = λ(1).

The first way of applying this is to note that the space M(τ )J of J -invariants is
|W0|-dimensional. It has several natural bases indexed by Weyl group elements. A
particular one is the basis 8τw =8w (w ∈W0) defined by

8τw(bk)=
{
δ1/2τ(b) if k ∈ BwJ ,
0 otherwise,

for b ∈ B(F) and k ∈ K .
We see that H0 and M(τ )J are both |W0|-dimensional H0-modules, and in fact

they are isomorphic as left H0-modules. A particular isomorphism

%τ : M(τ )J
→H0

is given by %τ ( f )= F , where

F(g)=
{

f (g−1) if g ∈ K ,
0 otherwise .

It is not hard to check that this is an isomorphism of left H0-modules.
Composing with this isomorphism, the intertwining integral Aw thus gives rise

to a homomorphism H0→H0. This can have poles (in the singular set) or zeros
(if τ(aα∨) = q±1 for some coroot α∨), but if τ is in general position, it is an
isomorphism and so it agrees with right multiplication by a particular element Fw
of H0, which was identified by Rogawski [1985]. It is sufficient to describe it when
w = si is a simple reflection, and in this case

Fsi =
1
q
(Ti + 1)−Cαi (τ ),

where Cαi (τ ) with τ = τz is the ubiquitous rational function

(3) Cαi (τ )=
1− q−1zα∨i

1− zα∨i
.



UNIQUE FUNCTIONALS AND REPRESENTATIONS OF HECKE ALGEBRAS 387

In other words, the following diagram is commutative:

(4)

M(τ )J %τ- H0

M(τ si )
J

Asi ?

%τ si

- H0

·Fsi
?

See [Brubaker, Bump and Licata 2011, Lemma 24] for a proof.
Instead of H0, one may also use HJ to model the intertwining integrals. The

factor Cαi (τ ), which depends on the spectral parameter, may then be replaced by
an element of θ(P∨). This point of view is taken in Haines, Kottwitz and Prasad
[Haines et al. 2010]. In order to see how this should work, consider that since the
intertwining operator permutes the spaces M(τ )J , one might consider each Aw to
be an endomorphism of

(5)
⊕
w∈W0

M(τw)J .

The characters τ of B(F) that are induced all have a common trivial restriction to the
subgroup B0= T (o)N (F), so by Frobenius reciprocity, the module M = indG(F)

B0
(1)

is the direct integral of the spaces (5), with τ running over T̂ modulo the action of W0.
This is the universal principal series. It is almost true that the intertwining integrals
are endomorphisms of indG(F)

B0
(1); the difficulty is that the operators are polar in

the singular set, so one must restrict to the orthogonal complement in M of the
spaces (5) with singular τ . Alternatively, one may consider the compact induction
Mc = c-indG(F)

B0
(1). Although this is no longer closed under the intertwining

operators, at least for f in Mc the intertwining integral (2) is always convergent,
and Aw is realized as a map Mc→ M .

We now come to the point, which is that as an HJ -module, Mc is a free module
of rank one. This is to be expected from the Bruhat decomposition, because every
coset in B0\G(F)/J has a unique representative in the extended affine Weyl group,
and this is also in bijection with J\G(F)/J . Thus the extended affine Weyl group
parametrizes both a basis of Mc and a basis of HJ . For a proof that the module Mc

is one-dimensional, see [Chriss and Khuri-Makdisi 1998] or [Haines et al. 2010,
Lemma 1.6.1].

If Aw were a map Mc→ Mc, we could then transfer Aw to a map HJ → HJ

and conclude that it agreed with right multiplication by some element. Due to
the poles of the intertwining operators, this does not quite work. What may be
done is to consider a somewhat larger Hecke algebra. In the Bernstein presentation
HJ ∼=H0⊗C[P∨], we can enlarge C[P∨] to any ring R such that C[P∨] ⊆R⊆M,
where M is the field of fractions of C[P∨]. We take R to be the localization at the
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set of singular hyperplanes, that is, the ring obtained by adjoining 1− α∨ for all
coroots α∨. Let H′J =H0⊗R. Since the poles of the intertwining operators are
contained in the singular locus, if M ′ denotes the submodule of M generated by
the image of the Aw, then we have a commutative diagram

(6)

Mc ∼=HJ - H′J

M ′
Aw

?
- H′J

?

The top arrow is the natural inclusion and the bottom arrow extends the injection
of Mc into HJ . The vertical arrows are H′J -module homomorphisms. As before,
if R is a ring, then a left R-module homomorphism R→ R is multiplication by
some element, and therefore Aw may be realized as multiplication by some element
of H′J .

3. Hecke algebra modules from unique functionals

There are two different kinds of actions of the affine Hecke algebra that we need to
consider. First, in any smooth representation, the Hecke algebra acts by convolution.
The Hecke algebra action on the Iwahori-fixed vectors in an induced representation
is an action of this type.

Second, with the notation as in the prior section, the affine Hecke algebra acts
on the ring O(T̂ ) of rational functions on the maximal torus T̂ in the L-group. This
ring is isomorphic to the group algebra C[P∨] of the coweight lattice P∨ of T ,
which may be identified with the weight lattice of T̂ . The generators Ti of the finite
Hecke algebra H0 will act by so-called Demazure–Lusztig operators. This action
was introduced by Lusztig [1985] and has far-reaching consequences.

We have seen in the previous section how the Hecke algebra can be used to
model intertwining integrals. In this section, we will show how we may translate
this action of the Hecke algebra into an action on rational functions. We described
two interpretations of intertwining operators via Hecke algebras in the diagrams (4)
and (6); the simpler point of view in (4) will be sufficient for our purposes, as it
was for Rogawski.

Let us consider, for every z in some Zariski-dense subset of T̂ , a linear functional
L z on M(τ ). We shall suppose that L z arises from a multiplicity-free representation
in the following way. Let H be a subgroup of G(F) and η a character of H such
that the induced representation indG(F)

H (η) is multiplicity-free. Then by Frobenius
reciprocity, a functional L z (if it exists) is characterized up to scalar multiple by
the property that L z(π(g)φ) = η(g)L z(φ) for g ∈ H . As noted above, using the
uniqueness of the functional, it is often possible to show by a method of Bernstein
that L z(φ) is a rational function of z on this set. Alternatively, this rationality may
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be proved for one specific vector, together with recursions that imply the rationality
for all φ.

As particular examples, L z could be the spherical functional

Sz( f )=
∫

K
f (k) dk

or the Whittaker functional

Wz( f )=
∫

N (F)
f (w0ng)ψ(n) dn,

where ψ is a nondegenerate character of N (F), the unipotent radical of the Borel,
and w0 is the long element of the Weyl group W . The spherical and Whittaker
functionals are both characterized up to scalar multiple by the uniqueness property
described above. Indeed, since the spherical Hecke algebra of compactly supported
K -biinvariant functions is commutative, K is a Gelfand subgroup of G(F), so the
functional L z is determined (up to scalar) by the fact that Sz(π(k)φ)= Sz(φ) for
all k ∈ K . For the Whittaker functional, the corresponding uniqueness result was
obtained by Gelfand and Graev, by Piatetski-Shapiro and by Shalika [1974]. The
Whittaker integral, like the intertwining integral, is convergent for z in an open set,
and has analytic continuation to all z.

It follows from these uniqueness results that for every pair z andw, the functional
L zw ◦ Aw is a constant multiple of L z. For the two examples above, these constants
were computed by Casselman [1980] and Casselman and Shalika [1980], who found
that for the spherical functional

(7) Szw ◦ Aw =
∏
α∈1+

w−1α∈1−

(
1− q−1zα∨

1− zα∨

)
Sz =

∏
α∈1+

w−1α∈1−

Cα(τ )Sz,

with Cα(τ ) as in (3), and for the Whittaker functional

(8) Wzw ◦ Aw =
∏
α∈1+

w−1α∈1−

(
1− q−1z−α∨

1− zα∨

)
Wz.

Here 1+ and 1− are the positive and negative roots, and if α is a root, then α∨ is
the associated coroot.

Our goal is to describe a Hecke algebra action on M(τ )J arising from each of
these functionals and explain how this action gives a recursion for L z(π(g)8w) for
any standard basis element 8w ∈ M(τ )J . To describe the function L z(π(g)8w), it
suffices to choose g from a set of representatives for H\G(F)/J , where H = K
when L = S and H = N when L =W. This means that we may choose g = aλ,
where λ ∈ P∨, and in the Whittaker case we may assume λ is dominant, since
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otherwise W(π(aλ)φ)= 0 for any φ ∈M(τ ); see [Brubaker, Bump and Licata 2011,
Lemma 5].

For both the spherical and Whittaker functionals, there is a standard basis vector
8w for which L z(π(aλ)8w) has a particularly simple form. In the Whittaker case,
for any dominant weight λ we have

Wz(π(aλ)8τw0
)= δ1/2(aλ)zw0λ;

see [Brubaker, Bump and Licata 2011, Proposition 6]. In the spherical case, we have:

Proposition 1. Let λ∈ P∨. Then Sz(πz(aλ)8τ1)= c(λ)zλ, where the constant c(λ)
is independent of z.

Proof. We have

Sz(πz(aλ)8τ1)=
∫

K
81(kaλ) dk = (δ1/2τ)(aλ)

∫
K
81(a−1

λ kaλ) dk.

The support of 81 is B(F)J . It is easy to see that if k ∈ K and a−1
λ kaλ ∈ B(F)J ,

then a−1
λ kaλ ∈ B0 J , where B0 is the kernel of τz : B(F)→ C. Hence the integral

is a constant independent of z. �

For either functional, this choice of standard basis vector will be the starting
point for our recursion. It remains to define the Hecke action. From Rogawski’s
perspective, M(τ )J is understood abstractly as a Hecke algebra module via the
regular representation, which is determined by

Tw81 =8w and Tw8y = TwTy81 for all y, w ∈W.

Remembering the quadratic relation given in (1), we see that for a simple reflection s,

Ts8w =

{
8sw if sw >w,
q8sw + (q − 1)8w if sw <w.

But (4) gives a relation between the intertwining operator As and Ts . So combining
these two ingredients and manipulating the terms, we obtain the following result.

Proposition 2. Let τ = τz and let w ∈W0. Let s = si be a simple reflection. Then

(9) As8
τ s
w +Cα(τ )8τw =

{
8τw +8

τ
sw if sw <w,

q−1(8τw +8
τ
sw) if sw >w.

Proof. This is an easy consequence of [Casselman 1980, Theorem 3.4]; see Propo-
sition 8 of [Brubaker, Bump and Licata 2011]. �

Thus it is reasonable to expect that we may obtain an action of the Hecke algebra
on the ring O(T̂ ) of regular functions on T̂ via the regular representation by applying
the functional to both sides of (9).
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The case where L =W is treated in detail in [Brubaker, Bump and Licata 2011],
so we will focus on the case L = S, and return at the end to make some remarks
about the difference between the two cases. For L = S, we intend to start our
recursion at 81 and move up in the Bruhat order. So let us rewrite (9) in the case
sw >w:

(10) q As8
τ s
w + (qCα(τ )− 1)8τw =8

τ
sw.

We will find that applying Sz to both sides gives a recursive identity for the matrix
coefficient

Fλ,w(z) := Sz(π(aλ)8τw)

of the principal series representation. To state this more precisely, let us introduce
the Demazure–Lusztig operator Ti defined on an arbitrary function F on the dual
torus T̂ by

(11) Ti F(z) := qC−αi (τ )F(zsi )+ (qCαi (τ )− 1)F(z).

Here 1≤ i ≤ r corresponds to a simple reflection si of the finite Weyl group. After
some algebra, this is equivalent to

Ti F(z)= (zαi − 1)−1(F(z)− F(zsi )− q F(z)+ q zαi F(zsi )
)
,

which is precisely the operator defined in [Lusztig 1985, (8.1)]. (This can also be
defined if i = 0, but for this discussion we are excluding this case.)

The following result is equivalent to a result of Ion [2006, Proposition 5.8].

Theorem 1. The Demazure–Lusztig operators satisfy the quadratic and braid
relations, and hence generate a ring isomorphic to the Hecke algebra H0. If w ∈W0

and siw >w, then

(12) Fλ,siw = Ti Fλ,w.

The fact that the Demazure–Lusztig operators satisfy the quadratic and braid
relations is due to Lusztig [1985, Section 8]. However, checking the braid relations
directly depends on a tedious computation for rank-2 root systems, so it may be of
interest that we can avoid such computations using our methods.

Proof. Assume that sw >w. Apply π(aλ) to both sides of (10) and then apply Sz.
We obtain

(13) Fλ,sw(z)= qSτz As(π(aλ)8τ s
w )+ (qCα(τ )− 1)Fλ,w(z).

Now we use (7), replacing z by zs and remembering that Cα (τzs) = C−α (τ ).
Comparing with (11), the right-hand side of (13) is just Ti Fτλ,w, as desired.

We turn to the fact that the Ti satisfy the generating relations of H0. Let m be
the order of si s j with 16 i, j 6 r , i 6= j . To show that Ti T j Ti . . .= T j Ti T j . . .
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(m factors on both sides), it is sufficient to show that they have the same effect on
zλ, where λ ∈ P∨. By Proposition 1, it is thus sufficient to show that

Ti T j Ti . . . Faλ,1(z)= T j Ti T j . . . Faλ,1(z).

But applying (12), both sides equal Faλ,w(z), where w = si s j si . . .= s j si s j . . . is
the longest element of the dihedral group generated by si and s j .

We next prove the quadratic relation. Assume now that siw <w. Then applying
(12) to Fλ,siw, we have Fλ,siw = T−1

i Fλ,w. Now we can compute this by the first
case of (9), and we find

T−1
i F(z)= C−αF(zsi )+ (Cα(τ )− 1)F(z).

This means that T−1
i = q−1Ti + q−1

− 1, which is equivalent to the quadratic
relation T2

i = (q − 1)Ti + q . �

This theorem guarantees that, given any reduced decomposition for the Weyl
group element w = si1 . . . sik , the operator

Tw := Ti1 . . .Tik

is well defined. As noted in [Ion 2008, Theorem 3.1], the Demazure–Lusztig
operators applied to zλ for λ dominant give a recursive definition for a certain
limit of nonsymmetric Macdonald polynomials with weight w · λ ∈ P∨. Thus our
Iwahori-spherical functions are also limits of these polynomials for λ dominant.

We caution the reader that our conventions for Demazure–Lusztig operators and
nonsymmetric Macdonald polynomials differ slightly from those of Ion. Instead,
they more closely parallel those of Cherednik [1995]. In particular, our Ti essen-
tially match those in [Cherednik 1995, (3.5)], which are then used to construct
nonsymmetric Macdonald polynomials.

Returning to the Whittaker case, similar arguments to those presented above
were given in [Brubaker, Bump and Licata 2011]. The resulting operators are
not Demazure–Lusztig operators, but are related in a way that is made precise in
Section 5 of that reference. The difference results from the fact that the starting
point for the Whittaker recursion is the Iwahori-fixed vector 8w0 , rather than 81.
Furthermore, the constant of proportionality in (8) differs slightly from the spherical
case given in (7). The resulting recursive operators for Whittaker functions are
Demazure–Lusztig operators conjugated by θ(ρ∨) and with q replaced by q−1.
Here θ : C[P∨] →HJ is as in the previous section and ρ∨ is half the sum of the
positive coroots. In either the spherical or Whittaker cases, the resulting action of
the finite Hecke algebra can be generalized to an action of the (extended) affine
Hecke algebra where the elements in θ(P∨) act by translation. (See Theorem 28 of
[Brubaker, Bump and Licata 2011] for the Whittaker case.)
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A RELATIVE TRACE FORMULA
FOR PGL(2) IN THE LOCAL SETTING

BROOKE FEIGON

In memory of Jonathan Rogawski

We develop the local Kuznetsov trace formula on a unitary group in two
variables for an unramified quadratic extension of local, non-Archimedean
fields E/F and compare it to a local relative trace formula on PGL(2, E).
To define the local distributions for the relative trace formula, we define a
regularized local period integral and prove that it is a PGL(2, F)-invariant
linear functional. By comparison of the two local trace formulas, we get an
equality between a local PGL(2, F)-period and local Whittaker functionals.
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1. Introduction

Base change is an important type of functoriality which is useful in the study of au-
tomorphic forms by relating automorphic representations on different groups. Hervé
Jacquet shed light on a new technique for attacking certain cases of Robert Lang-
lands’ important functoriality conjectures by comparing the relative and Kuznetsov
trace formulas in the global setting. Jacquet’s comparison of trace formulas leads
to global identities that characterize the image of the base change map associating
automorphic representations of a unitary group for a quadratic extension of number
fields E/F to automorphic representations of GL(2,AE) in terms of distinguished
representations. While Jacquet’s global identities factor, they do not give unique
local identities.
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This paper uses techniques of James Arthur to define and develop a local
Kuznetsov trace formula on U(2) and a local relative trace formula on GL(2).
Both local trace formulas are expanded geometrically in terms of orbital integrals
and spectrally in terms of local Bessel distributions and local relative Bessel dis-
tributions. The latter involve regularized local period integrals. We then carry out
Jacquet’s comparison in the local setting by relating these two local trace formulas
for matching functions. This comparison yields identities between local Bessel
distributions for automorphic representations on U(2) and local relative Bessel
distributions for automorphic representations on GL(2).

Before we describe more precisely the local relative trace formula developed
in this paper, let us recall the relative trace formula for GL(2). Take E/F to be
a quadratic extension of number fields and AF to be the adeles of F . Let ψ ′ be
a character on F\AF ∼= N (F)\N (AF ) where N is the upper triangular unipotent
matrices of GL(2). Let ψ = ψ ′ ◦ trE/F .

A cuspidal automorphic representation π of GL(2,AE) with central character
trivial on GL(2,AF ) is distinguished by GL(2,AF ) if there exists a φ ∈ Vπ , the
vector space associated to π , such that the period integral, P(φ), is nonzero:

P(φ) :=
∫

GL(2,F)Z(AF )\GL(2,AF )

φ(h) dh 6= 0.

Where π ′ is a cuspidal automorphic representation of the quasisplit unitary group
U (2,AF ) and φ′ ∈ Vπ ′ , let

W (φ′)=

∫
N (F)\N (AF )

φ′(n)ψ ′(n) dn and W (φ)=

∫
N (E)\N (AE )

φ(n)ψ(n) dn.

We define the Bessel distribution as

B ′π ′( f ′) :=
∑

i

W ′(π ′( f ′)φ′i )W ′(φ
′

i ),

and the relative Bessel distribution as

Bπ ( f ) :=
∑

j

P(π( f )φ j )W (φ j ),

where the summations are over an orthonormal basis of Vπ ′ and Vπ respectively.
Flicker [1991], following related work of Jacquet and Lai [1985] and Ye [1989],
showed that for “matching functions” f ′ on U (2,AF ) and f on GL(2,AE), if π ′

maps to π under the unstable base change, then

(1-1)
∑

i

W ′(π ′( f ′)φ′i )W ′(φ
′

i )=
∑

j

P(π( f )φ j )W (φ j ).

In particular, this equality characterizes the image of the unstable base change
lift associating every automorphic representation of U (2,AF ) to an automorphic
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representation of GL(2,AE) in terms of GL(2,AF ) distinguished representations.
The equality above is proved via the relative trace formula [Jacquet 2005], which
tells us that for f and f ′ matching functions we have∫
(N (F)\N (AF ))2

K f ′(n1, n2)ψ
′(n−1

1 n2) dn1 dn2

=

∫
GL(2,F)Z(AF )\GL(2,AF )

∫
N (E)\N (AE )

K f (h, n)ψ(n) dn dh

where
K f (x, y)=

∑
δ∈Z(E)\GL(2,E)

f (x−1δy).

The distributions B ′π ′( f ′) and Bπ ( f ) occur in the spectral expansions of the respec-
tive trace formulas.

In a different direction, Arthur [1989; 1991] developed a local version of the
classical Arthur–Selberg trace formula. Let G be a connected reductive algebraic
group over a local field F of characteristic zero. Diagonally embed G(F) into
G(F)×G(F). Then L2(G(F)) is isomorphic to L2(G(F)\G(F)×G(F)) by

φ 7→ ((y1, y2) 7→ φ(y−1
1 y2)).

For φ ∈ L2(G(F)), let (ρ(g1, g2)φ)(x) = φ(g−1
1 xg2). The right regular repre-

sentation of G(F) × G(F) on L2(G(F)\G(F) × G(F)) is equivalent to ρ of
G(F)×G(F) on L2(G(F)). Thus to develop the local trace formula we look at
ρ( f ) where f = f1⊗ f2 ∈ C∞c (G(F)×G(F)). Then

(ρ( f )φ)(x)=
∫

G(F)

∫
G(F)

f1(g) f2(y)φ(g−1xy) dg dy

is an integral operator on L2(G(F)) with kernel

K f (x, y)=
∫

G(F)
f1(g) f2(x−1gy) dg.

The local trace formula develops an explicit formula for the regularized trace
of ρ( f ).

The main result of this paper is that, when evaluated with matching functions,
the two local trace formulas described in Theorems 1.3 and 1.4 below, that is the
local Kuznetsov trace formula and the local relative trace formula, are equal. Thus
there is an equality between their local distributions on the spectral sides. This
equality is stated in Theorem 1.1. This is the natural local counterpart to the global
comparison from (1-1). In order to develop the local relative trace formula stated
in Theorem 1.4, we have to define a local regularized period integral, prove it is
a GL(2, F)×GL(2, F)-invariant linear functional and relate it to the truncated
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period integral that initially appears in the relative trace formula. We state these
properties about the local regularized period integral in Proposition 1.2.

To describe our results more precisely we need to introduce some further notation.
Let E/F now denote an unramified extension of local non-Archimedean fields
of characteristic 0. Let OF (respectively OE ) denote the ring of integers in F
(respectively E). Let H = GL(2)/F , G = ResE/F H and let

G ′ = U(2, F)=
{

g ∈ G : t g
(

0 1
−1 0

)
g =

(
0 1
−1 0

)}
.

Let N ′ and N be the upper triangular unipotent matrices of G ′ and G, respectively,
and let M ′ and M be the diagonal subgroup of G ′ and G, respectively. Let Z
and Z ′ denote the center of G and G ′, respectively. For any subgroup X of G let
X̃ = Z ∩ X\X and let X H = X ∩ H . Let ψ ′ be an additive character on F with
conductor OF and let ψ(x) = ψ ′ ◦ trE/F . Let f = f1⊗ f2 ∈ C∞c (G̃(F)× G̃(F))
and f ′ = f ′1⊗ f ′2 ∈ C∞c (G̃

′(F)× G̃ ′(F)).
We define the local Kuznetsov trace formula as the equality between the geo-

metric expansion (in terms of orbital integrals) and spectral expansion (in terms of
representations) of

lim
t→∞

∫
(N ′×N ′)(F)

K f ′(n1, n2)ψ
′(n−1

1 n2)u(n1, t)u(n2, t) dn1 dn2

and the local relative trace formula as the equality between the expansions of

lim
t→∞

∫
H̃(F)

∫
N (F)

K f (h, n)ψ(n)u(h, t)u(n, t) dn dh.

In this local setting

K f (x, y)=
∫

G̃(F)
f1(g) f2(x−1gy) dg, K f ′(x, y)=

∫
G̃ ′(F)

f ′1(g) f ′2(x
−1gy) dg

and u(n, t) and u(h, t) are truncation parameters that are needed due to convergence
issues. They are defined analogously to Arthur’s truncation [1991, Section 3].

We use the following ideas in this paper to rewrite these local trace formulas in
terms of orbital integrals and representations:

• methods of Arthur [1991] from the local trace formula,

• methods of Flicker [1991], Jacquet [2005] and Ye [1989] from the relative
trace formula,

• Harish-Chandra’s Plancherel formula [Harish-Chandra 1984; Waldspurger
2003],

• Jacquet, Lapid and Rogawski’s methods for regularizing period integrals
[Jacquet et al. 1999; Jacquet ≥ 2012].
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The power of the two trace formulas lies in the comparison. For “matching
functions”, the geometric expansions of the two local relative trace formulas are
equal. By comparing the spectral expansions in these two trace formulas, we get an
analogue of (1-1), giving the following identity between local Bessel distributions for
functions on U (2) and local relative Bessel distributions for functions on GL(2, E),
and therefore local periods and local Whittaker functionals:

Theorem 1.1. If σ is a supercuspidal representation on G̃(F) that is the unstable
base change lift of the supercuspidal representation σ ′ of G̃ ′(F), and

f ′ = f ′1⊗ f ′2 ∈ C∞c (G̃
′(F)× G̃ ′(F)) and f = f1⊗ f2 ∈ C∞c (G̃(F)× G̃(F))

are matching functions, then

(1-2) d(σ ′)
∑

S′∈B(σ ′)

W ′σ ′(σ
′( f ′2)S

′σ ′( f ′∨1 ))W
′

σ ′(S
′)

= d(σ )
∑

S∈B(σ )

Pσ (σ ( f2)Sσ( f ∨1 ))Wσ (S),

where d(σ ) is the formal degree of σ , B(σ ) is an orthonormal basis of the Hilbert
space of Hilbert–Schmidt operators on Vσ ,

W ′σ ′(S
′)=

∫
N ′(F)

tr(σ ′(n)S′)ψ ′(n−1) dn,

Wσ (S)=
∫

N (F)
tr(σ (n)S)ψ(n−1) dn,

Pσ (S)=
∫

H̃(F)
tr(σ (h)S) dh.

The Bessel and relative Bessel distributions B ′π ′( f ′) and Bπ ( f ) factor into
local (relative) Bessel distributions B ′π ′v ( f ′v) and Bπv ( fv), but it is not clear how to
normalize the local distributions. The distributions on the left and right-hand side
of (1-2) are each the product of two local distributions and (1-2) can be restated as

d(σ ′)B ′σ ′( f ′2)B
′

σ ′∗( f ′1)= d(σ )Bσ ( f2)Bσ ∗( f1).

We note that the local period integral Pσ (S) is not a convergent integral if σ is
not a discrete series representation. To develop the local relative trace formula we
have to define a local regularized period integral. Let K =G(OF ) and let P = N M .
For λ ∈C and m =

(
α 0
0 β
)

let eλHM (m) = |α/β|E where | · |E denotes the normalized
valuation on E . For a principal series representation π of G̃ and u, v ∈ π we define
the matrix coefficient fu,v(g)= 〈π(g)u, v〉. Asymptotically on M , fu,v will equal
a finite sum of functions of the form eλHM (m). We define the regularized period
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integral as:∫
∗

H̃(F)
fu,v(h) dh :=

∫
H̃(F)

fu,v(h)u(h, t) dh

+

∫
K̃ H×K̃ H

∫ ]

M̃+H (F)
DPH (m) fu,v(k1mk2)(1− u(m, t)) dm dk1 dk2

where ∫ ]

M̃+H (F)
eλHM (m)(1− u(m, t)) dm

is the meromorphic continuation at ν = 0 of∫
M̃+H (F)

e(ν+λ)HM (m)(1− u(m, t)) dm,

which is absolutely convergent for Re(ν)� 0.
We prove that the regularized period integral is an H(F)×H(F)-invariant linear

functional, and we relate it to the truncated period integral that initially appears
in the local relative trace formula as follows. By abuse of notation we identify a
character χ of M̃(F) with a character χ of E× by letting χ

(
a 0
0 b

)
= χ(a)χ−1(b).

For λ ∈ C we let χλ(m) = χ(m)eλ(HM (m)). We let IP(χλ) be the parabolically
induced normalized representation acting on the Hilbert space HP(χ). Then for
S ∈BP(χ),

tr(IP(χλ, k1gk2)S)= EP(g, 9S, λ)k1,k2,

where EP(g, 9, λ) is the Eisenstein integral and

(C P EP)(m, ψ, λ)= (cP|P(1, λ)ψ)(m)eλHM (m)+ (cP|P(w, λ)ψ)(m)e−λHM (m).

We fix a uniformizer $ in F (and E) and q−1
= |$ |F .

Proposition 1.2. Fix a character χ of E× such that χ($)= 1. Then for t � 0,∫
H̃(F)

tr(IP(χλ, h)S)u(h, t) dh =
∫
∗

H̃(F)
tr(IP(χλ, h)S) dh

−δ(χ)(1+ q−1)

(
q2λ(t+1)

1−q2λ

∫
K̃ H×K̃ H

c(1, λ)9S(1)k1,k2 dk1 dk2

+
q−2λ(t+1)

1−q−2λ

∫
K̃ H×K̃ H

c(w, λ)9S(1)k1,k2 dk1 dk2

)
,

where δ(χ)= 1 if χ |O×F = 1 and δ(χ)= 0 if χ |O×F 6= 1.

Denote the action of the nontrivial element in Gal(E/F) on x ∈ E by x̄ . Denote
by NE/F the norm map from E× to F×. Let E1

= {x ∈ E× : NE/F (x)= 1}. Let η
denote an element in G(F) such that η−1η =

(
0 1
1 0

)
.
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We define

D′χ ′λ( f ′)=
∑

S′∈BP (χ ′)

W ′
χ ′λ
(S′λ[ f

′
])W ′

χ ′λ
(S′) and Dχλ( f )=

∑
S∈BP (χ)

Pχλ(Sλ[ f ])Wχλ(S),

where

W ′
χ ′λ
(S′)= lim

t→∞

∫
N ′(F)

tr(IP ′(χ
′

λ, n)S′)ψ ′(n−1)u(n, t) dn,

Wχλ(S)= lim
t→∞

∫
N (F)

tr(IP(χλ, n)S)ψ(n−1)u(n, t) dn,

Pχλ(S)=
∫
∗

H̃(F)
tr(IP(χλ, h)S) dh,

Sλ[ f ] = IP(χλ, f2)SIP(χλ, f ∨1 ).

We let 52(G̃ ′(F)) be a set of equivalence classes of irreducible, tempered square
integrable representations of G̃ ′(F). We identify unitary characters on M̃ ′(F)
with characters on E× that are trivial on E1. We let {52(M̃ ′(F))} be a set of
representatives of unitary characters χ ′ on M̃ ′(F) such that χ ′($) = 1. We let
µ(χ ′λ) be Harish-Chandra’s µ-function. We take the analogous definitions for G̃(F).

Theorem 1.3 (local Kuznetsov trace formula). For any

f ′ = f ′1⊗ f ′2 ∈ C∞c (G̃
′(F)× G̃ ′(F)),

we have

lim
t→∞

∫
N ′(F)

∫
N ′(F)

K f ′(n1, n2)ψ
′(n−1

1 n2)u(n1, t)u(n2, t) dn1 dn2

=

∫
a∈E×/E1

O ′
(

f1, ψ
′, a
)
O ′
(

f ′2, ψ̄
′, a
)
|a|E d×a

=

∑
σ ′∈52(G̃ ′(F))

d(σ ′)D′σ ′( f ′)+ 1
2

∑
χ ′∈{52(M̃ ′(F))}

d(χ ′)
∫ π i/log q

0
µ(χ ′λ)D

′

χ ′λ
( f ′) dλ,

where

O ′( f ′i , ψ
′, a)=

∫
N ′(F)

∫
N ′(F)

f ′i
(
n−1

1

(
0 1
−1 0

)( a 0
0 a−1

)
n2
)
ψ ′(n−1

1 n2) dn1 dn2.

Theorem 1.4 (local relative trace formula). For any

f = f1⊗ f2 ∈ C∞c (G̃(F)× G̃(F)),

we have
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lim
t→∞

∫
H̃(F)

∫
N (F)

K f (h, n)ψ(n)u(h, t)u(n, t) dn dh

=

∫
a∈E×/E1

O
(

f1, ψ, a
)
O
(

f2, ψ̄, a
)
|a|E d×a

=

∑
σ∈52(G̃(F))

d(σ )Dσ ( f )+ 1
2

∑
χ∈{52(M̃(F))}
χ2
6=1,χ |F×=1

D̃χ ( f )

+
1
2

∑
χ∈{52(M̃(F))}

χ |E1=1

d(χ)
∫ π i/log q

0
µ(χλ)Dχλ( f ) dλ

where

O( fi , ψ, a)=
∫

H̃(F)

∫
N (F)

fi

(
h−1η

(
a 0
0 1

)
n
)
ψ(n) dn dh.

The representations that occur on the right-hand side of Theorem 1.4 are exactly
the representations that are in the image of the unstable base change lift on G̃ ′(F).
The additional discrete term D̃χ ( f ) corresponds to the representations that lift from
discrete series on G̃ ′(F) to principal series on G̃(F).

In addition to the spectral comparison, these local trace formulas also have
applications on the geometric side. If we define the inner product of two functions
g1, g2 on E×/E1 by

〈g1, g2〉 =

∫
a∈E×/E1

g1(a)g2(a)|a|E d×a,

then:

Proposition 1.5 (orthogonality relations). For f1 and f2 matrix coefficients of the
supercuspidal representations σ1 and σ2 of G̃(F) and f ′1 and f ′2 matrix coefficients
of the supercuspidal representations σ ′1 and σ ′2 of G̃ ′(F),〈

O ′( f ′1, ψ
′, · ), O ′( f ′2, ψ

′−1, · )
〉
6= 0 ⇐⇒ σ ′1 ∼ σ

′

2,〈
O( f1, ψ, · ), O( f2, ψ

−1, · )
〉
6= 0 ⇐⇒ σ1 ∼ σ2.

The rest of this paper is organized as follows. In Section 2 we define notation
and give normalizations of measures. In Section 3 we develop the local Kuznetsov
trace formula. For the geometric expansion we rewrite our trace formula in terms of
orbital integrals corresponding to the N ′\G ′/N ′ double cosets. The orbital integrals
for f ′1 and f ′2 initially depend on the truncation and are intertwined. It is only
through the multiplication of the two orbital integrals, integration over the space
of double cosets, and the nontriviality of the character ψ ′, that we are able to
untangle the orbital integral for f ′1 from the orbital integral for f ′2. For the spectral
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expansion we apply Harish-Chandra’s Plancherel formula to rewrite the local kernel
in terms of representations. We are left with truncated integrals over the unipotent
subgroup of matrix coefficients against the character ψ ′. By the smoothness of the
matrix coefficients and the appearance of the character, we show these distributions
stabilize for t large.

In Section 4 we develop the local relative trace formula of H\G/N . In the spectral
expansion we have truncated integrals of matrix coefficients over H that do not
converge without the truncation. We define the regularized period integral Pχλ(S).
We use the asymptotics of matrix coefficients of tempered representations to prove
the truncated integral is a polynomial exponential function in the truncation param-
eter t . We define the regularized integral as the constant term of this polynomial,
and prove that this is an H × H invariant linear functional and the relevant term in
the local relative trace formula.

In Section 5 we compare our two local trace formulas. There is a bijection
between the “admissible” N ′\G ′/N ′ cosets and the “admissible” H\G/N cosets
and both of these sets can be parametrized by E×/E1. This bijection allows us
to compare the geometric sides. By work of Ye and Flicker, we know that for
any f ′ there is an f such that the orbital integrals are equal for corresponding
cosets. Thus, by their geometric expansions, our local trace formulas are equal for
matching functions. This gives an equality of the spectral expansions and of local
distributions.

This paper would not have come into being had it not been for my teacher and
advisor, Jonathan Rogawski. These thoughts originated as my PhD thesis under
his direction, and his ideas, support, and guidance were critical to its completion. I
am fortunate and will be forever grateful to have had him as a mentor. He could
explain complicated math in a clear and simple way that aimed at the heart of the
problem. He served, and continues to serve, as the role model of the inquisitive,
patient, and approachable mathematician.

2. Notation

Let F be a non-Archimedean local field of characteristic 0 and odd residual charac-
teristic q . Let E be an unramified quadratic extension of F . Let OF and OE denote
the rings of integers in F and E , respectively. Let $ denote a uniformizer in the
maximal ideal of OF . Thus $ is also a uniformizer in E . Let v( · ) denote the
valuation on F , extended to E . Let | · |F and | · |E denote the normalized valuations
on F E , respectively. Thus for a ∈ F×, |a|E = |a|2F . Denote the action of the
nontrivial element in Gal(E/F) on x ∈ E by x̄ . Denote by NE/F the norm map
from E× to F×. Let E1

= {a ∈ E× : NE/F (a)= 1}.
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Let H = GL(2)/F and let G = ResE/F H , the restriction of scalars of GL(2)
from E to F . Thus G(F)= GL(2, E). Let

G ′ = U(2, F)=
{

g ∈ G : t g
(

0 1
−1 0

)
g =

(
0 1
−1 0

)}
.

We note that by defining the quasisplit unitary group in this way, SL(2, F)⊂G ′(F).
Let N ′ and N be the upper triangular unipotent matrices of G ′ and G, respectively.
Let M ′ and M be the diagonal subgroups of G ′ and G, respectively. That is,

M ′(F)=
{(

a 0
0 a−1

)
: a ∈ E×

}
and M(F)=

{(
a 0
0 b

)
: a, b ∈ E×

}
.

Occasionally by abuse of notation we let n =
(

1 n
0 1

)
and a =

( a 0
0 ā−1

)
. Let P = N M

and P ′ = N ′M ′. Let K = G(OF ) and K ′ = G ′(OF ). Let Z and Z ′ denote the
centers of G and G ′, respectively. For any subgroup X of G let X̃ = Z ∩ X\X
and X H = X ∩ H . By abuse of notation we identify a character χ of M̃(F) with a
character χ of E× by letting χ

(
a 0
0 b

)
= χ(a)χ−1(b).

Let ψ ′ be an additive character on F with conductor OF . Let ψ be the additive
character on E defined by ψ(x) = ψ ′(x + x). By abuse of notation we will also
denote by ψ and ψ ′ the corresponding characters on N (F) and N ′(F), respectively.
Let f = f1⊗ f2 ∈ C∞c (G̃(F)× G̃(F)) and f ′ = f ′1⊗ f ′2 ∈ C∞c (G̃

′(F)× G̃ ′(F)).
For a function f on G, let f ∨(g)= f (g−1).

To define the local Kuznetsov trace formula and local relative trace formula we
first multiply our function by the characteristic function of a large compact subset
of G̃(F) via Arthur’s local truncation [1991, §3], and then take the limit of the
integral of the truncated function. For g ∈ G(F), t ∈ Z+, let

u(g, t)=
{

1 if g = zk1
(

1 0
0 α

)
k2, for some k1, k2 ∈ K , z ∈ Z(F), 0≤ v(α)≤ t ,

0 otherwise.

We note that u( · , t) is well-defined on G̃(F) and

u
((

1 x
0 1

)
, t
)
=

{
1 if x ∈$ [−t/2]OE ,

0 otherwise,

where [x] is the integral part of x .
If X is a closed subgroup of G̃(F) with the subgroup topology, supp(u( · , t))∩X

is a compact set.
We normalize the Haar measure dx on F so that vol(OF ) = 1. We define the

multiplicative measure d×x on F× as

d×x = 1
1−q−1

1
|x |F

dx .
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Thus vol(O×F )= 1. We let N (F) and M(F) have the measures induced by dx and
d×x . We normalize the Haar measure dk on K so that vol(K )= 1. We define the
measure dg on G(F) by∫

G(F)
f (g) dg =

∫
M(F)

∫
N (F)

∫
K

f (mnk) dk dn dm.

We define dg′ on G ′(F) similarly. We normalize Haar measure on K̃ by taking
vol(K̃ )= 1.

We let d×a be the unique Haar measure on E×/E1 such that

vol(O×E/E1)=
1

1+q−1 .

3. The local Kuznetsov trace formula for U(2)

In this section we develop a local Kuznetsov trace formula for the quasisplit unitary
group in two variables. We expand this local Kuznetsov trace formula geometrically
in terms of separate orbital integrals for f ′1 and f ′2. Then we use Harish-Chandra’s
Plancherel formula to rewrite this expression spectrally in terms of representations.

We define the local Kuznetsov trace formula for

f ′ = f ′1⊗ f ′2 ∈ C∞c (G̃
′(F)× G̃ ′(F))

as the equality between the geometric and spectral expansions of

lim
t→∞

∫
(N ′×N ′)(F)

K f ′(n1, n2)ψ(n−1
1 n2)u(n1, t)u(n2, t) dn1 dn2

where
K f ′(n1, n2)=

∫
G̃ ′(F)

f ′1(g) f ′2(n
−1
1 gn2) dg.

We will show that for a fixed f ′ this limit stabilizes, that is, there exists a T such
that for all t ′ ≥ T ,∫
(N ′×N ′)(F)

K f ′(n1, n2)ψ
′(n−1

1 n2)u(n1, t ′)u(n2, t ′) dn1 dn2

= lim
t→∞

∫
(N ′×N ′)(F)

K f ′(n1, n2)ψ(n−1
1 n2)u(n1, t)u(n2, t) dn1 dn2.

3A. The geometric expansion. In this subsection we rewrite

lim
t→∞

∫
N ′(F)

∫
N ′(F)

K f ′(n1, n2)ψ
′(n−1

1 n2)u(n1, t)u(n2, t) dn1 dn2

as an integral over admissible cosets of a product of an orbital integral for f ′1 and
an orbital integral for f ′2.



406 BROOKE FEIGON

3A1. Integration formula. Let w =
( 0 1
−1 0

)
. For a ∈ E×, let βa =

( a 0
0 a−1

)
and

γa = w
( a 0

0 a−1

)
. By the Bruhat decomposition, G ′ = P ′ t P ′wP ′. Thus{

βa :
a is in a set of
representatives for E×/E1

} ⋃ {
γa :

a is in a set of
representatives for E×/E1

}
is a set of representatives for the double cosets of N ′(F)\G̃ ′(F)/N ′(F).

For g ∈ G ′(F) let

Cg(N ′(F)× N ′(F))

= {(n1, n2) ∈ N ′(F)× N ′(F) : n−1
1 gn2 = zg for some z ∈ Z ′(F)}.

Definition 3.1. An element g ∈ G̃ ′(F) and its corresponding orbit are called ad-
missible if the map

Cg(N ′(F)× N ′(F))→ C : (n1, n2) 7→ ψ ′(n−1
1 n2)

is trivial.

By a simple calculation we see that

Cβa (N
′(F)× N ′(F))=

{((
1 x
0 1

)
,

(
1 x

aa
0 1

))
: x ∈ F

}
,

Cγa (N
′(F)× N ′(F))= 1.

Thus the orbits represented by {β1} ∪ {γa : a ∈ E×/E1
} are admissible.

We use the following integration formula to rewrite K f ′(n1, n2) as an integral
over the admissible cosets. Unlike in the global case the trivial admissible coset, β1,
will not contribute to the trace formula.

For any F ∈ Cc(G̃ ′(F)),

(3-1)
∫

G̃ ′(F)
F(g) dg =

∫
E×/E1

∫
(N ′×N ′)(F)

F(n−1
1 γan2) dn1 dn2|a|E d×a.

3A2. Separating the orbital integrals. Let

K t( f ′)=
∫

N ′(F)

∫
N ′(F)

K f ′(n1, n2)ψ(n−1
1 n2)u(n1, t)u(n2, t) dn1 dn2.

Clearly K t( f ′) is absolutely convergent because f ′1 and u( · , t) have compact
support on G̃ ′(F) and N ′(F) respectively. By changing the order of integration
and using (3-1), we see that K t( f ′) equals∫

E×/E1

∫
(N ′×N ′)(F)

∫
(N ′×N ′)(F)

f ′1(n̂
−1
1 γa n̂2) f ′2(n

−1
1 n̂−1

1 γa n̂2n2)

×ψ ′(n−1
1 n2)u(n1, t)u(n2, t) dn1 dn2 dn̂1 dn̂2|a|E d×a.
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This integral is absolutely convergent because the map

N ′(F)× E×/E1
× N ′(F)→ G̃ ′(F)

defined by
(n1, a, n2) 7→ n−1

1 γan2

is injective and f ′1 has compact support. By a change of variables we have

K t( f ′)=
∫

E×/E1
K t(γa, f ′)|a|E d×a,

where

K t(γa, f ′)=
∫
(N ′×N ′)(F)

∫
(N ′×N ′)(F)

f ′1(n̂
−1
1 γa n̂2) f ′2(n

−1
1 γan2)ψ

′(n−1
1 n̂1n̂−1

2 n2)

×u(n̂−1
1 n1, t)u(n̂−1

2 n2, t) dn1 dn2 dn̂1 dn̂2.

To complete the geometric expansion of the local Kuznetsov trace formula we
rewrite K t( f ′) for t � 0 as an integral of two separate orbital integrals. We begin
by examining the dependence of the integrand on the truncation.

Lemma 3.2. Let f ′1, f ′2 ∈ Cc(G̃ ′(F)). For each t0 > 0 there exists a T > 0 such
that for all t ≥ T ,

f ′1(x
−1
1 γ y1) f ′2(x

−1
2 γ y2)u(x−1

1 x2, t)u(y−1
1 y2, t0)

= f ′1(x
−1
1 γ y1) f ′2(x

−1
2 γ y2)u(y−1

1 y2, t0)

for all x1, x2, y1, y2, γ ∈ G̃ ′(F).

Proof. Let

�1 = supp( f ′1), �2 = supp( f ′2), �3 = supp(u( · , t0))∩ G̃ ′(F).

These sets are all compact on G̃ ′(F). If f ′1(x
−1
1 γ y1) f ′2(x

−1
2 γ y2)u(y−1

1 y2, t0) 6= 0,
then the following conditions must hold:

• x−1
1 ∈�1 y−1

1 γ−1.

• x2 ∈ γ y2�
−1
2 .

• y−1
1 y2 ∈�3.

Thus if f ′1(x
−1
1 γ y1) f ′2(x

−1
2 γ y2)u(y−1

1 y2, t0) 6= 0, then x−1
1 x2 ∈�1�3�

−1
2 . Because

this is a compact set, there exists a T > 0 such that �1�3�
−1
2 ⊆ supp(u(g, T )).

The lemma now follows. �

Now we use this lemma, along with the character ψ ′, to separate the two orbital
integrals. By abuse of notation, in the proof of the following lemma we let

$ n
=

(
$ n 0
0 $−n

)
and a =

(
a 0
0 a−1

)
.
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Lemma 3.3. For f ′ = f ′1⊗ f ′2 ∈ C∞c (G̃
′(F)× G̃ ′(F)), there exists a T such that

for all t ≥ T and n ∈ Z,

(3-2)
∫

a∈$ nO×E/E1
K t(γa, f ′) d×a =

∫
a∈$ nO×E/E1

O ′( f ′1, ψ
′, a) O ′( f ′2, ψ̄

′, a) d×a,

where

O ′( f ′, ψ ′, a)=
∫

N ′(F)

∫
N ′(F)

f ′(n−1
1 γan2)ψ ′(n−1

1 n2) dn1 dn2.

Proof. We show that there is a hidden truncation on the right-hand side of (3-2) that
comes from the fact that the two orbital integrals are simultaneously evaluated at
the same γa . Let K1 be an open compact subgroup of G̃ ′(F) such that f ′1 and f ′2
are bi-K1-invariant. There exists a positive constant c such that(

a 0
0 a−1

)
∈ K1 for all a ∈ (1+$ cOE)E1.

By definition∫
a∈$ nO×E/E1

K t(γa, f ′) d×a

=

∫
a∈O×E/E1

∫
(N ′×N ′)(F)

f ′1(n̂
−1
1 w$ nan̂2)ψ

′(n̂1n̂−1
2 )

∫
(N ′×N ′)(F)

f ′2(n
−1
1 w$ nan2)

×ψ ′(n−1
1 n2)u(n̂−1

1 n1, t)u(n̂−1
2 n2, t) dn2 dn1 dn̂2 dn̂1 d×a

=

∑
η∈O×E/(1+$

cOE )E1

∫
a∈(1+$ cOE )E1/E1

∫
(N ′×N ′)(F)

f ′1(n̂
−1
1 w$ nηan̂2)ψ

′(n̂1n̂−1
2 )

×

∫
(N ′×N ′)(F)

f ′2(n
−1
1 w$ nηan2)ψ

′(n−1
1 n2)u(n̂−1

1 n1, t)

× u(n̂−1
2 n2, t) dn2 dn1 dn̂2 dn̂1 d×a.

By a change of variables and the fact that f ′ is locally constant the right-hand side
of this equation is equal to∑
η∈O×E/(1+$

cOE )E1

∫
(N ′×N ′)(F)

f ′1(n̂
−1
1 w$ nηn̂2)ψ

′(n̂1)

×

∫
(N ′×N ′)(F)

f ′2(n
−1
1 w$ nηn2)ψ

′(n−1
1 )u(n̂−1

1 n1, t) dn1 dn̂1

×

∫
a∈(1+$ cOE )E1/E1

ψ ′(a−1n̂−1
2 n2a)u(a−1n̂−1

2 n2a, t) d×a dn2 dn̂2.
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We can rewrite the inner integral as

u(n̂−1
2 n2, t)

∫
a∈(1+$ cOE )E1/E1

ψ ′((n2− n̂2)(aā)−1) d×a

= u(n̂−1
2 n2, t)

∫
b∈1+$ cOF

ψ ′(b(n2− n̂2)) d×b

= u(n̂−1
2 n2, t) 1

1−q−1 ψ
′(n2− n̂2)

∫
b∈$ cOF

ψ ′(b(n2− n̂2)) db

= u(n̂−1
2 n2, t)u(n̂−1

2 n2, 2c) vol($ cOF )

1−q−1 ψ ′(n̂−1
2 n2).

Thus for t ≥ 2c,∫
a∈$ nO×E/E1

K t(γa, f ′) d×a =
∫

a∈$ nO×E/E1

∫
(N ′×N ′)(F)

f ′1(n̂
−1
1 γa n̂2)ψ

′(n̂1n̂−1
2 )

×

∫
(N ′×N ′)(F)

f ′2(n
−1
1 γan2)ψ

′(n−1
1 n2)u(n̂−1

1 n1, t)u(n̂−1
2 n2, 2c) dn2 dn1 dn̂2dn̂1d×a.

By Lemma 3.2 there exists a T > 0 such that for all t ≥max{T, 2c},∫
a∈$ nO×E/E1

K t(γa, f ′) d×a

=

∫
a∈$ nO×E/E1

∫
(N ′×N ′)(F)

f ′1(n̂
−1
1 γa n̂2)ψ

′(n̂1n̂−1
2 ) dn̂1

×

∫
(N ′×N ′)(F)

f ′2(n
−1
1 γan2)ψ

′(n−1
1 n2)u(n̂−1

2 n2, 2c) dn2 dn1 dn̂2 d×a

=

∫
a∈$ nO×E/E1

∫
(N ′×N ′)(F)

f ′1(n̂
−1
1 γa n̂2)ψ

′(n̂1n̂−1
2 ) dn̂2 dn̂1

×

∫
(N ′×N ′)(F)

f ′2(n
−1
1 γan2)ψ

′(n−1
1 n2) dn2 dn1 d×a. �

We have shown that the truncated local Kuznetsov trace formula stabilizes.

Proposition 3.4. For any f ′ = f ′1⊗ f ′2 ∈ C∞c (G̃
′(F)× G̃ ′(F)) and t � 0,∫

N ′(F)

∫
N ′(F)

K f ′(n1, n2)ψ
′(n−1

1 n2)u(n1, t)u(n2, t) dn1 dn2

=

∫
a∈E×/E1

O ′( f ′1, ψ
′, a)O ′( f ′2, ψ̄

′, a)|a|E d×a.
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3B. The spectral expansion. Now we derive a spectral expansion for the local
Kuznetsov trace formula,

lim
t→∞

∫
N ′(F)

∫
N ′(F)

K f ′(n1, n2)ψ
′(n−1

1 n2)u(n1, t)u(n2, t) dn1 dn2.

Our main tool is the Plancherel formula for p-adic groups, which was first stated,
with an outlined proof, by Harish-Chandra [1984]. Silberger [1996] later filled in
an important proof of one of the steps in the theorem. More recently Waldspurger
[2003] provided a complete proof.

As in [Arthur 1991, §2], we begin by rewriting K f ′(x, y) using the Plancherel
formula. First we introduce some additional notation. For an irreducible representa-
tion (σ, Vσ ) of G ′(F) let B(σ ) be the Hilbert space of Hilbert–Schmidt operators
on Vσ . The inner product on B(σ ) is defined as

〈S, S′〉 := tr(SS′∗)

for S, S′ ∈ B(σ ), where tr(SS′∗) =
∑

o.n.b.Vσ 〈SS′∗ui , ui 〉 and this sum converges
absolutely and does not depend on the basis. For a discrete series representation σ
of a group G let d(σ ) be the formal degree of σ .

Let 52(G̃ ′(F)) be a set of representatives for the equivalence classes of irre-
ducible, tempered square integrable representations of G̃ ′(F) and let {52(M̃ ′(F))}
be a set of representatives of unitary characters χ on M̃ ′(F) such that χ($)=1. For
a character χ of M ′(F) and λ∈C, let χλ(m)=χ(m)eλ(HP ′ (m)). For χ ∈{52(M̃ ′(F))},
I G ′

P ′ (χλ) = IP ′(χλ) is the normalized induced representation of G̃ ′(F) acting on
a Hilbert space HP ′(χ) of vector-valued functions on K ′. Let BP ′(χ) be a fixed
K ′-finite orthonormal basis of the Hilbert space of Hilbert–Schmidt operators on
HP ′(χ).

Let m(σ ) be the Plancherel density. We normalize our measures following
[Arthur 1991, §1]. The Plancherel density satisfies m(χλ) = d(χ)µ(χλ), where
µ(χλ) is Harish-Chandra’s µ-function.

For a fixed x ∈ G ′(F), let

h(v)=
∫

G̃ ′(F)
f ′1(xu) f ′2(uvx) du.

Then h ∈ C∞c (G̃
′(F)) and K f ′(x, y)= h(yx−1), so by the Plancherel formula,

K f ′(x, y)=
∑

σ∈52(G̃ ′(F))

d(σ ) tr(σ (R(yx−1)h))

+
1
2

∑
χ∈{52(M̃ ′(F))}

∫ π i
log q

0
tr(IP ′(χ, R(yx−1)h))m(χλ) dλ.
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Because IP ′(χλ, R(yx−1)h) = IP ′(χλ, f ′∨1 )IP ′(χλ, x)IP ′(χλ, f ′2)(IP ′(χλ, y))∗,
we have

tr(IP ′(χλ, R(yx−1)h))

=

∑
S∈BP ′ (χ)

(IP ′(χλ, f ′∨1 )IP ′(χλ, x)IP ′(χλ, f ′2), S∗)(IP ′(χλ, y), S∗)

=

∑
S∈BP ′ (χ)

tr(IP ′(χλ, f ′∨1 )IP ′(χλ, x)IP ′(χλ, f ′2)S)tr(IP ′(χλ, y)S)

=

∑
S∈BP ′ (χ)

tr(IP ′(χλ, x)Sλ[ f ′])tr(IP ′(χλ, y)S),

where Sλ[ f ′] = IP ′(χλ, f ′2)SIP ′(χλ, f ′∨1 ).
For f ′ ∈C∞c (G̃

′(F)), π an admissible representation, π( f ′) has finite rank. Thus
the sum over S is a finite sum of an orthonormal basis of operators on HP(χ)

K0

for some open compact K0.
Putting everything together we have∫

N ′(F)

∫
N ′(F)

K f ′1⊗ f ′2(n1, n2)ψ
′(n−1

1 n2)u(n1, t)u(n2, t) dn1 dn2

=

∑
σ∈52(G̃ ′(F))

d(σ )
∑

S∈B(σ )

(∫
N ′(F)

tr(σ (n)(σ ( f ′2)Sσ( f ′∨1 )))ψ
′(n−1)u(n, t) dn

×

∫
N ′(F)

tr(σ (n)S)ψ ′(n−1)u(n, t) dn
)

+
1
2

∑
χ∈{52(M̃ ′(F))}

d(χ)×
∫ π i

log q

0

( ∑
S∈BP ′ (χ)

∫
N ′(F)

tr(IP ′(χλ, n)Sλ[ f ′])ψ ′(n−1)u(n, t) dn

×

∫
N ′(F)

tr(IP ′(χλ, n)S)ψ ′(n−1)u(n, t) dn
)
µ(χλ) dλ.

To finish the spectral expansion we show that the above unipotent integrals stabi-
lize. We first note that in the discrete series case the above integrals are absolutely
convergent without any truncation for reasons similar to those in Section 4B1.

Lemma 3.5 (spectral stabilization). For any complex-valued function φ on G̃ ′(F)
that is biinvariant under a fixed open compact subgroup, there exists a positive
integer c such that for all t ≥ c,∫

N ′(F)
φ(n)ψ ′(n)u(n, t) dn =

∫
N ′(F)

φ(n)ψ ′(n)u(n, c) dn.

This c only depends on the open compact subgroup under which φ is biinvariant.
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Proof. Let K1 be an open compact subgroup of G̃ ′(F) under which φ is biinvariant.
K1 must contain a neighborhood of the identity, so there exists a positive integer c′

such that (
a 0
0 a−1

)
∈ K1 for all a ∈ (1+$ c′OE)E1.

We show that for m > c′,∫
$−m O×F

φ

((
1 x
0 1

))
ψ ′(x) dx = 0.

We note that (
a 0
0 a−1

)(
1 x
0 1

)(
a−1 0

0 a

)
=

(
1 aax
0 1

)
.

Thus for x ′ ∈ 1+$ c′OF ,

φ

((
1 x ′x
0 1

))
= φ

((
1 x
0 1

))
.

Hence∫
$−m O×F

φ

((
1 x
0 1

))
ψ ′(x) dx

=

∑
α∈O×F/(1+$

c′OF )

∫
$−m(1+$ c′OF )

φ

((
1 αx
0 1

))
ψ ′(αx) dx

=

∑
α∈O×F/(1+$

c′OF )

φ

((
1 $−mα

0 1

))
ψ ′($−mα)

∫
$ c′−m OF

ψ ′(x) dx .

The last line equals 0 for m > c′. Thus for t > 2c′,∫
N ′(F)

φ(n)ψ ′(n)u(n, t) dn =
∫

N ′(F)
φ(n)ψ ′(n)u(n, 2c′) dn. �

We have now proved the following.

Proposition 3.6. For any f ′ = f ′1⊗ f ′2 ∈ C∞c (G̃
′(F)× G̃ ′(F)),

lim
t→∞

∫
N ′(F)

∫
N ′(F)

K f ′(n1, n2)ψ
′(n−1

1 n2)u(n1, t)u(n2, t) dn1 dn2

=

∑
σ ′∈52(G̃ ′(F))

d(σ ′)D′σ ′( f ′)+ 1
2

∑
χ ′∈{52(M̃ ′(F))}

d(χ ′)
∫ π i

log q

0
D′
χ ′λ
( f ′)µ(χ ′λ) dλ,
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where
D′σ ′( f ′)=

∑
S∈B(σ ′)

W ′σ ′(σ
′( f ′2)Sσ

′( f ′∨1 ))W
′

σ ′(S),

W ′σ ′(S)=
∫

N ′(F)
tr(σ ′(n)S)ψ ′(n−1) dn,

D′
χ ′λ
( f ′)=

∑
S∈BP ′ (χ

′)

W ′
χ ′λ
(IP ′(χ

′

λ, f ′2)SIP ′(χ
′

λ, f ′∨1 ))W
′

χ ′λ
(S),

W ′
χ ′λ
(S)= lim

t→∞

∫
N ′(F)

tr(IP ′(χ
′

λ, n)S)ψ ′(n−1)u(n, t) dn.

We note that Theorem 1.3 now follows from the results of Propositions 3.4
and 3.6.

4. The local relative trace formula and periods for PGL(2)

In this section we define a local relative trace formula for PGL(2). We expand
this local relative trace formula geometrically in terms of separate orbital integrals
of f1 and f2. Then we use Harish-Chandra’s Plancherel formula to rewrite this
expression spectrally in terms of representations. We define a regularized period
integral, show that it is an H × H -invariant linear functional and that it is the term
that appears in the spectral expansion of the local relative trace formula.

We define the local relative trace formula for f = f1⊗ f2 ∈C∞c (G̃(F)× G̃(F))
as the equality between the geometric and spectral expansions of

lim
t→∞

∫
H̃(F)

∫
N (F)

K f (h, n)ψ(n)u(h, t)u(n, t) dn dh

where

K f (h, n)=
∫

G̃(F)
f1(g) f2(h−1gn) dg.

As we did with the local Kuznetsov trace formula, we show that for a fixed f this
limit stabilizes.

4A. The geometric expansion. We will rewrite

lim
t→∞

∫
H̃(F)

∫
N (F)

K f (h, n)ψ(n)u(h, t)u(n, t) dn dh

as an integral over admissible cosets of a product of an orbital integral for f1 and
an orbital integral f2.

4A1. Integration formula. As pointed out in [Jacquet et al. 1999, §VI.13], by
[Springer 1985], G(F) = H(F)P(F) t H(F)ηP(F), where η is any element
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in G(F) such that η−1η =
(

0 1
1 0

)
. Let ηa = η

(
a 0
0 1

)
and γα =

( 1 0
0 α+

√
τ

)
, where

E = F(
√
τ). Then{(

1 0
0 1

)}
∪ {γα : α ∈ F} ∪ {ηa : a is in a set of representatives for E×/E1

}

is a set of representatives for the double cosets of H̃(F)\G̃(F)/N (F).
For g ∈ G(F), let

Cg(H̃(F)× N (F))= {(h, n) ∈ H̃(F)× N (F) : h−1gn = zg for some z ∈ Z(F)}.

Definition 4.1. An element g ∈ G̃(F) and its corresponding orbit is called admis-
sible if the map Cg(H̃(F)× N (F))→ C : (h, n) 7→ ψ(n) is trivial.

By a short calculation we see that

Cγα (H̃(F)× N (F))=
{((

1 y
0 1

)
,

(
1 y(α+

√
τ)

0 1

))
: y ∈ F

}
,

Cηa (H̃(F)× N (F))= 1.

Thus the orbits represented by {ηa : a ∈ E×/E1
} ∪ {γ0} are admissible.

We have the following integration formula. For any F ∈ Cc(G̃(F)),

(4-1)
∫

G̃(F)
F(g) dg =

∫
E×/E1

∫
H̃(F)×N (F)

F(h−1ηan) dn dh|a|E d×a.

4A2. Separating the orbital integrals. Let

Rt( f )=
∫

H̃(F)

∫
N (F)

K f (h, n)ψ(n)u(h, t)u(n, t) dn dh.

Rt( f ) is absolutely convergent because f1(g), u(h, t) and u(n, t) have compact sup-
port on G̃(F), H̃(F) and N (F) respectively. By changing the order of integration
and applying (4-1) we see that Rt( f ) equals∫

E×/E1

∫
H̃(F)×N (F)

∫
H̃(F)×N (F)

f1(h−1
1 ηan1) f2(h−1

2 h−1
1 ηan1n2)

×ψ(n2)u(h2, t)u(n2, t) dn2 dh2 dn1 dh1|a|E d×a.

By a change of variables we have

Rt( f )=
∫

E×/E1
Rt(ηa, f )|a|E d×a,

where

Rt(ηa, f )=
∫

H̃(F)×N (F)

∫
H̃(F)×N (F)

f1(h−1
1 ηan1) f2(h−1

2 ηan2)ψ(n−1
1 n2)

×u(h−1
1 h2, t)u(n−1

1 n2, t) dn2 dh2 dn1 dh1.
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To complete the geometric expansion of the local relative trace formula we
rewrite Rt( f ) for t � 0 as an integral of a product of two separate orbital integrals
that are not truncated. We omit the proof the lemma below as it is very similar to
the proof of Lemma 3.3.

Lemma 4.2. For f ∈C∞c (G̃(F)×G̃(F)), there exists a T >0 such that for all t≥T
and n ∈ Z,∫

$ nO×E/E1
Rt(ηa, f ) d×a =

∫
$ nO×E/E1

O( f1, ψ, a)O( f2, ψ, a) d×a

where

O( f, ψ, a)=
∫

H̃(F)

∫
N (F)

f (h−1ηan)ψ(n) dn dh.

We have proved the following proposition.

Proposition 4.3. For any f = f1⊗ f2 ∈ C∞c (G̃(F)× G̃(F)),

lim
t→∞

∫
H̃(F)

∫
N (F)

K (h, n)ψ(n)u(h, t)u(n, t) dn dh

=

∫
a∈E×/E1

O( f1, ψ, a) O( f2, ψ, a)|a|E d×a.

Here, as in the local Kuznetsov trace formula, we have actually shown that the
limit of the truncated local relative trace formula stabilizes.

4B. The spectral expansion and period integrals. We want to develop a spectral
expansion for the local relative trace formula,

lim
t→∞

∫
H̃(F)

∫
N (F)

K f (h, n)ψ(n)u(h, t)u(n, t) dn dh.

As in the previous section, we expand the kernel via the Plancherel formula:

(4-2)
∫

H̃(F)

∫
N (F)

K (h, n)ψ(n)u(h, t)u(n, t) dn dh

=

∑
σ∈52(G̃(F))

d(σ )Dt
σ ( f )+ 1

2

∑
χ∈{52(M̃(F))}

d(χ)
∫ π i

log q

0
µ(χλ)Dt

χλ
( f ) dλ
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where

Dt
σ ( f )=

∑
S∈B(σ )

P t
σ (σ ( f2)Sσ( f ∨1 ))W t

σ (S),

Dt
χλ
( f )=

∑
S∈BP (χ)

P t
IP (χλ)

(IP(χλ, f2)SIP(χλ, f ∨1 ))W
t
IP (χλ)

(S),

W t
π (S)=

∫
N (F)

tr(π(n)S)ψ(n−1)u(n, t) dn,

P t
π (S)=

∫
H̃(F)

tr(π(h)S)u(h, t) dh.

By Lemma 3.5, there exists a positive integer c, such that for t > c,

W t
π (S)=

∫
N (F)

tr(π(n)S)ψ(n−1)u(n, c) dn.

Thus as in the previous section, we define

Wσ (S)=
∫

N (F)
tr(σ (n)S)ψ(n−1) dn,

Wχλ(S)= lim
t→∞

∫
N (F)

tr(IP(χλ, n)S)ψ(n−1)u(n, t) dn.

To finish the spectral expansion of the local relative trace formula we need to
define the regularized integral∫

∗

H̃(F)
tr(IP(χλ, h)S) dh

because tr(IP(χλ,−)S) is not integrable over H̃(F).
Many of the techniques in this section are inspired by the work of Jacquet, Lapid

and Rogawski in [Jacquet et al. 1999]. In that paper they define a regularized
period integral for an automorphic form φ on G(A) integrated over H where G is a
reductive group over a number field F and H is the fixed point set of an involution
of G. They focus on the case G = ResE/F H where E/F is a quadratic extension
and they obtain explicit results for G = GL(n, E), H = GL(n, F).

For λ ∈ C and m =
(
α 0
0 β
)
∈ M(F), let eλHM (m) = |α/β|λE . If g =m(g)n(g)k(g),

m(g) ∈ M(F), n(g) ∈ N (F), k(g) ∈ K , we let eλHP (g) = eλHM (m(g)). Let δP(m)=
eHM (m). We give analogous definitions for eλHMH and δPH so that for m ∈ MH (F),
eλHM (m) = e2λHMH (m).

We recall the Cartan decomposition H(F)= K H M+H (F)K H , where

M+H (F)=
{(
α 0
0 β

)
∈ M(F) : v

(
α

β

)
≤ 0

}
.



A RELATIVE TRACE FORMULA FOR PGL(2) IN THE LOCAL SETTING 417

Then for any absolutely integrable function f∫
H̃(F)

f (h) dh =
∫

K̃ H

∫
K̃ H

∫
M̃+H (F)

DPH (m) f (k1mk2) dm dk2 dk1,

where

DPH

((
α 0
0 β

))
=

{
|α/β|F (1+ |$ |F ) v(α/β)≤ 0,
0 v(α/β) > 0.

To define the regularized integral, we begin by defining a regularized integral on
M+H (F). We note that

1− u
((

1
α

)
, t
)
=

{
0 0≤ v(α)≤ t,
1 v(α) > t.

For Re ν <−Re λ,

(4-3)
∫

M̃+H (F)
e(ν+λ)HM (m)(1− u(m, t)) dm =

∞∑
n=t+1

q2n(ν+λ)
=

q(t+1)2(ν+λ)

1−q2(ν+λ) .

We write ∫ ]

M̃+H (F)
eλHM (m)(1− u(m, t)) dm

to denote the meromorphic continuation at ν = 0 of (4-3). This is well-defined so
long as λ 6= 0. Let

(4-4)

φ(k1mk2)=

r∑
i=1

φi (k1, k2) fi (m)eλi HM (m), k1, k2 ∈ K H ,

m =
(

1
$ n

)
, n ≥ 0, fi ∈ Cc(M̃(F))

with λi 6= −
1
2 . We define for t � 0,∫ ]

H̃(F)
φ(h)(1− u(h, t)) dh

=

r∑
i=1

∫
K̃ H×K̃ H

φi (k1, k2)

∫ ]

M̃+H (F)
DPH (m)e

λi HM (m)(1− u(m, t)) dm

= (1+ q−1)

r∑
i=1

∫
K̃ H×K̃ H

φi (k1, k2)

∫ ]

M̃+H (F)
e(λi+1/2)HM (m)(1− u(m, t)) dm.

If φ is a matrix coefficient of IP(χλ) where χ($)= 1 then by smoothness and
the asymptotics of matrix coefficients there exists a function C Pφ of the form in
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(4-4) with λi ∈ {λ−
1
2 ,−λ−

1
2} and for n� 0,

C Pφ

(
k1

(
1
$ n

)
k2

)
= φ

(
k1

(
1
$ n

)
k2

)
.

Note that the condition for the regularized integral to exist is now that λ 6= 0.

Definition 4.4. For any matrix coefficient φ of IP(χλ) such that χ($)=1 and λ 6=0,∫
∗

H̃(F)
φ(h) dh :=

∫
H̃(F)

φ(h)u(h, t) dh+
∫ ]

H̃(F)
φ(h)(1− u(h, t)) dh

for t � 0.

One can check that this definition of the regularized integral is independent of t
and agrees with the usual integral if we start with something that is integrable. Now
we will prove that it is H -invariant and then we will explicitly relate the regularized
period to the truncated period that occurs in the local trace formula.

Let φh0(x) = φ(xh0) for h0 ∈ H̃ . Note that if φ is a matrix coefficient of π
then φh0 is as well.

Lemma 4.5. Fix h0 ∈ H, λ 6= 0 and a character χ of E× with χ($)= 1. Then for
any matrix coefficient φ of IP(χλ) and t � 0,∫

K̃ H×K̃ H

∫ ]

M̃H (F)
DPH (m)φ

h0(k1mk2)(1− u(k1mk2h0, t)) dm dk1 dk2

=

∫
K̃ H×K̃ H

∫ ]

M̃H (F)
DPH (m)φ(k1mk2)(1− u(m, t)) dm dk1 dk2.

Proof. For g ∈ G(F) let M(g) ∈ M+(F) be such that g = k1M(g)k2, k1, k2 ∈ K .
For Re ν� 0 and t � 0,∫

K̃ H×K̃ H

∫
M̃H (F)

DPH (m)φ
h0(k1mk2)

× eν(HM (M(k1mk2h0)))(1− u(k1mk2h0, t)) dm dk1 dk2

=

∫
H̃(F)

φ(hh0)eν(HM (M(hh0)))(1− u(hh0, t)) dh

=

∫
H̃(F)

φ(h)eν(HM (M(h)))(1− u(h, t)) dh

=

∫
K̃ H×K̃ H

∫
M̃H (F)

DPH (m)φ(k1mk2)eν(HM (m))(1− u(m, t)) dm dk1 dk2

by the invariance of Haar measure, since both sides are absolutely convergent. For
t � 0, if h ∈ supp(1− u( · , t)), then M(hh0)=M(h)M(k2h0). Thus both sides of
the equation above have a meromorphic continuation whose value at ν = 0 gives
the statement of the lemma. �
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Proposition 4.6 (H -invariance). Let φ be a matrix coefficient of IP(χλ), where
χ($)= 1 and λ 6= 0, and let h0 ∈ H(F). Then∫

∗

H̃(F)
φh0(h) dh =

∫
∗

H̃(F)
φ(h) dh.

Proof. By the definition of the regularized integrals, the statement of the proposition
will follow once we prove the following equality:∫

K̃ H×K̃ H

∫ ]

M̃+H (F)
DPH (m)φ

h0(k1mk2)(1− u(m, t)) dm dk1 dk2

−

∫
K̃ H×K̃ H

∫ ]

M̃+H (F)
DPH (m)φ(k1mk2)(1− u(m, t)) dm dk1 dk2

=

∫
H̃(F)

φ(h)u(h, t) dh−
∫

H̃(F)
φh0(h)u(h, t) dh.

First we note that by Lemma 4.5∫
K̃ H×K̃ H

∫ ]

M̃+H (F)
DPH (m)φ

h0(k1mk2)(1− u(m, t)) dm dk1 dk2

−

∫
K̃ H×K̃ H

∫ ]

M̃+H (F)
DPH (m)φ(k1mk2)(1− u(m, t)) dm dk1 dk2

=

∫
K̃ H×K̃ H

∫ ]

M̃+H (F)
DPH (m)φ(k1mk2)(1− u(mk2h−1

0 , t))) dm dk1 dk2

−

∫
K̃ H×K̃ H

∫ ]

M̃+H (F)
DPH (m)φ(k1mk2)(1− u(m, t)) dm dk1 dk2.

For fixed h0 and t sufficiently large, u( · h−1
0 , t)− u( · , t) has support contained in

an annulus. From this fact one can easily check that the previous line is equal to
the convergent integral∫

K̃ H×K̃ H

∫
M̃+H (F)

DPH (m)φ(k1mk2)[u(m, t)− u(mk2h−1
0 , t)] dm dk1 dk2.

=

∫
H̃(F)

φ(h)[u(h, t)− u(hh−1
0 , t)] dh

=

∫
H̃(F)

φ(h)u(h, t) dh−
∫

H̃(F)
φh0(h)u(h, t) dh. �

We note that Proposition 4.6 also holds if we replace φh0 with φ(h0−) so our
regularized integral is H × H invariant.

Now we derive an explicit formula relating regularized periods to truncated peri-
ods for the matrix coefficients that appear in the trace formula. We begin by recalling
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some definitions of Harish-Chandra’s. For σ an admissible, tempered representation
of G, Aσ (G) is the space of functions on G spanned by K-finite matrix coefficients
of σ , Atemp(G) is the sum of Aσ (G) over all admissible tempered representations of
G and A2(G) is the sum of Aσ (G) over all unitary, square integrable representations.
For τ a finite dimensional, unitary, two-sided representation of K ,

Aσ (G, τ )= { f ∈Aσ (G)⊗ Vτ : f (k1gk2)= τ(k1) f (g)τ (k2), g ∈ G, k1, k2 ∈ K }.

Then Atemp(G, τ ) and A2(G, τ ) are defined similarly.
Let τM = τ |K∩M . By [Harish-Chandra 1984, §3] for f ∈Aσ (G, τ ) there exists

a unique function C P f ∈A(M, τM) such that

lim
|
α
β
|E→∞

∣∣∣∣δP

((
α 0
0 β

)) 1
2

f
((
α 0
0 β

))
− (C P f )

((
α 0
0 β

))∣∣∣∣= 0.

We call C P f the weak constant term of f .
For two parabolics P1, P2 with Levi component M , let

VP1|P2 = {v ∈ V : τ(n1)vτ(n2)= v, n1 ∈ NP1 ∩ K , n2 ∈ NP2 ∩ K }

and let τP1|P2 be the subrepresentation of τM on VP1|P2 . For 9 ∈A2(M, τP|P) and
λ ∈ [0, π i/log q], the Eisenstein integral EP(g, 9, λ) ∈Atemp(G, τ ) is defined as

EP(g, 9, λ)=
∫

K
τ(k)−19P(kg)e(λ+1/2)(HM (kg)) dk

where 9P extends 9 to G by 9P(nmk)=9(m)τ (k) for n ∈ N , m ∈ M , k ∈ K .
The weak constant term of the Eisenstein integral uniquely defines Harish-

Chandra’s c-functions [1984, §6]. For each element w in the Weyl group W of
G̃, the c-function cP|P(w, λ) is a linear map from A2(M, τP|P) to A2(M, τP|P)

such that

(C P EP)(m, 9, λ)= (cP|P(1, λ)9)(m)eλHM (m)+ (cP|P(w, λ)9)(m)e−λHM (m)

where w is a representative for the nontrivial element in the Weyl group of G̃.
Let cP|P(s, λ)χ denote the restriction of cP|P(s, λ) to Aχ (M, (τ0)P|P). We have

µ(χλ)
−1
= cP|P(s, λ)∗χcP|P(s, λ)χ .

For the rest of this section we let c(1, λ)= cP|P(1, λ)χ and c(w, λ)= cP|P(w, λ)χ .
We note that the S we consider are actually in HP(χ)

K0 for some open compact
K0. Harish-Chandra [1976, §7] gives an isomorphism S→9S from End(HP(χ)

K )

onto Aχ (M, (τ )P|P) where Vτ is a particular subspace of L2(K × K ) such that

tr(IP(χλ, k1gk2)S)= EP(g, 9S, λ)k1,k2 .
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We can now relate the regularized integral to what appears in the local relative
trace formula.

Proposition 4.7. For χ = (χ, χ−1) ∈ {52(M̃(F)}, χ($)= 1, λ 6= 0, t � 0,∫
∗

H̃(F)
tr(IP(χλ, h)S) dh

=

∫
H̃(F)

tr(IP(χλ, h)S)u(h, t) dh

+δ(χ)(1+ q−1)

(
q2λ(t+1)

1−q2λ

∫
K̃ H×K̃ H

c(1, λ)9S(1)k1,k2 dk1 dk2

+
q−2λ(t+1)

1−q−2λ

∫
K̃ H×K̃ H

c(w, λ)9S(1)k1,k2 dk1 dk2

)
,

where δ(χ)= 1 if χ |O×F = 1 and δ(χ)= 0 if χ |O×F 6= 1.

Proof. For S ∈BP(χ), 9S ∈Aχ (M, (τ0)P|P) and

c(1, λ)9S, c(w, λ)9S ∈Aχ (M, (τ0)P|P).

Therefore 9 =9S can be written as a sum of matrix coefficients of χ . Thus

C P EP(m, 9, λ)k1,k2

= c(1, λ)9(m)k1,k2eλHM (m)+ c(w, λ)9(m)k1,k2e−λHM (m)

= χ(m)
[
(c(1, λ)9)(1)k1,k2eλHM (m)+ (c(w, λ)9)(1)k1,k2e−λHM (m)

]
where χ(m) ∈ C×. Hence for t � 0,∫

M̃+H (F)
DPH (m) tr(IP(χλ, k1mk2)S)eν(HM (m))(1− u(m, t)) dm

=

∫
M̃+H (F)

DPH (m)δ
−

1
2

P (m)(c(1, λ)9)(1)k1,k2e(λ+ν)(HM (m))χ(m)(1− u(m, t)) dm

+

∫
M̃+H (F)

DPH (m)δ
−

1
2

P (m)(c(w, λ)9)(1)k1,k2e(−λ+ν)(HM (m))χ(m)(1−u(m, t)) dm

= (1+ q−1)(c(1, λ)9)(1)k1,k2

∫
M̃+H (F)

e(λ+ν)(HM (m))χ(m)(1− u(m, t)) dm

+ (1+ q−1)(c(w, λ)9)(1)k1,k2

∫
M̃+H (F)

e(−λ+ν)(HM (m))χ(m)(1− u(m, t)) dm

= (1+ q−1)

∫
O×F

χ(α) d×α
∞∑

n=t+1

[
(c(1, λ)9)(1)k1,k2q2(λ+ν)n

+ (c(w, λ)9)(1)k1,k2q2(−λ+ν)n].
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Clearly
∫

O×F
χ(α) d×α = 0 unless χ |O×F = 1. If χ |O×F = 1, the previous line equals

(1+ q−1)

(
q2(λ+ν)(t+1)

1−q2(λ+ν) c(1, λ)9(1)k1,k2 +
q2(−λ+ν)(t+1)

1−q2(−λ+ν) c(w, λ)9(1)k1,k2

)
.

Therefore for t � 0∫ ]

M̃+H (F)
DPH (m) tr(IP(χλ, k1mk2)S)(1− u(m, t)) dm

= δ(χ)(1+ q−1)

(
q2λ(t+1)

1−q2λ c(1, λ)9S(1)k1,k2 +
q−2λ(t+1)

1−q−2λ c(w, λ)9S(1)k1,k2

)
and the proposition now follows. �

Lemma 4.8. Let χ = (χ, χ−1) where χ is a character of E× such that χ($)= 1.
Then

(1) If χ |F× 6= 1 and χ |E1 6= 1, then∫
∗

H̃(F)
tr(IP(χλ, h)S) dh =

∫
H̃(F)

tr(IP(χλ, h)u(h, t) dh = 0.

(2) If χ |F× 6= 1 and χ |E1 = 1, then for t � 0,∫
∗

H̃(F)
tr(IP(χλ, h)S) dh =

∫
H̃(F)

tr(IP(χλ, h)S)u(h, t) dh.

(3) If χ |F× = 1 and χ |E1 6= 1, then
∫
∗

H̃ tr(IP(χλ, h)S) dh is 0 whenever defined and∫
K̃ H×K̃ H

c(1, λ)9S(1)k1,k2 dk1 dk2 =

∫
K̃ H×K̃ H

c(s, λ)9S(1)k1,k2 dk1 dk2

at λ= 0.

(4) If χ |F× = 1 and χ |E1 = 1, then χ2
= 1. In this case c(1, λ) and c(s, λ) have

a simple pole at λ = 0 and so µ(χλ) has a zero of order two at λ = 0 and
µ(χλ)c(1, λ)= µ(χλ)c(s, λ)= 0 at λ= 0.

In all cases,

µ(χλ)

∫
∗

H̃(F)
tr(IP(χλ, h)S) dh

is holomorphic for all λ ∈ iR, S ∈BP(χ).

Proof. In this proof we follow the techniques of [Jacquet ≥ 2012]. Case 2 is obvious
from the above work. Case 1 is obvious from the above work and the H -invariance
of
∫
∗

H̃ tr(IP(χλ, h)S) dh [Jacquet et al. 1999, Proposition 22].
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The vanishing of the regularized period for λ 6= 0 in case 3 also follows from
H -invariance. Then by the previous proposition we know that for λ 6= 0,∫

H̃(F)
tr(IP(χλ, h)S)u(h, t) dh

=−(1+ q−1)

(
q2λ(t+1)

1−q2λ

∫
K̃ H×K̃ H

c(1, λ)9S(1)k1,k2 dk1 dk2

+
q−2λ(t+1)

1−q−2λ

∫
K̃ H×K̃ H

c(w, λ)9S(1)k1,k2 dk1 dk2

)
.

Both sides are holomorphic and the left-hand side is also defined and holomorphic
for λ= 0. As

Resλ=0
q2λ(t+1)

1−q2λ =
−1

2 log q
and Resλ=0

q−2λ(t+1)

1−q−2λ =
1

2 log q
,

we must have that∫
K̃ H×K̃ H

c(1, 0)9(1)k1,k2 dk1 dk2 =

∫
K̃ H×K̃ H

c(w, 0)9(1)k1,k2 dk1 dk2.

In case 4 the poles and zeros are well-known and can also be seen by explicit
computations of the intertwining operators. We have that

µ(χλ)

∫
H̃(F)

tr(IP(χλ, h)S)u(h, t) dh

= µ(χλ)

∫
∗

H̃(F)
tr(IP(χλ, h)S) dh

−(1+ q−1)µ(χλ)

(
q2λ(t+1)

1−q2λ

∫
K̃ H×K̃ H

c(1, λ)9S(1)k1,k2 dk1 dk2

+
q−2λ(t+1)

1−q−2λ

∫
K̃ H×K̃ H

c(w, λ)9S(1)k1,k2 dk1 dk2

)
.

The left-hand side is 0 at λ= 0 and the last two terms are holomorphic at λ= 0 so
the first term must be holomorphic at λ= 0. �

Let

Dχλ( f )=
∑

S∈BP (χ)

Pχλ(Sλ[ f ])Wχλ(S),

Pχλ(S)=
∫
∗

H̃(F)
tr(IP(χλ, h)S) dh,

Sλ[ f ] = IP(χλ, f2)SIP(χλ, f ∨1 ),

D̃χ ( f )= (1+ q−1)µ(χ0)
∑

S∈BP (χ)

Wχ0(S)
∫

K̃ H×K̃ H

c(1, 0)ψS0[ f ](1)k1,k2 dk1 dk2.
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We now relate the distributions above to the truncated distributions from (4-2).

Lemma 4.9. Let χ = (χ, χ−1) where χ is a character of E× such that χ($)= 1.

(1) If χ |F× 6= 1 and χ |E1 6= 1, then

lim
t→∞

∫ π i
log q

0
µ(χλ)Dt

χλ
( f ) dλ= 0.

(2) If χ |F× 6= 1 and χ |E1 = 1, then

lim
t→∞

∫ π i
log q

0
µ(χλ)Dt

χλ
( f ) dλ=

∫ π i
log q

0
µ(χλ)Dχλ( f ) dλ.

(3) If χ |F× = 1 and χ |E1 6= 1, then

lim
t→∞

∫ π i
log q

0
µ(χλ)Dt

χλ
( f ) dλ= D̃χ ( f ).

(4) If χ |F× = 1 and χ |E1 = 1, then

lim
t→∞

∫ π i
log q

0
µ(χλ)Dt

χλ
( f ) dλ=

∫ π i
log q

0
µ(χλ)Dχλ( f ) dλ.

Proof. First we note that∫ π i
log q

0
µ(χλ)Dt

χλ
( f ) dλ=

∫ π i
log q

0
µ(χλ)

∑
S∈BP (χ)

P t
IP (χλ)

(Sλ[ f ])Wχλ(S) dλ

=

∑
S∈BP (χ)

∫ π i
log q

0

(∫
N (F)

tr(IP(χλ, n)S)ψ(n−1)u(n, t) dn
)

×µ(χλ)

∫
H̃(F)

tr(IP(χλ, h)Sλ[ f ])u(h, t) dh dλ.

Cases 1 and 2 now follow directly from Lemma 4.8. For the remaining cases we
note that by Proposition 4.7 for t � 0,∫

H̃(F)
tr(IP(χλ, h)Sλ[ f ])u(h, t) dh

=

∫
∗

H̃(F)
tr(IP(χλ, h)Sλ[ f ]) dh

+δ(χ)
1+q−1

qλ−q−λ

(
q2λ(t+ 1

2 )

∫
K̃ H×K̃ H

c(1, λ)9Sλ[ f ](1)k1,k2 dk1 dk2

−q−2λ(t+ 1
2 )

∫
K̃ H×K̃ H

c(w, λ)9Sλ[ f ](1)k1,k2 dk1 dk2

)
.
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In case 3, by Lemma 4.8 the regularized period vanishes and we are left computing

(4-5) (1+ q−1) lim
t→∞

∫ π i
log q

0
µ(χλ)Wχλ(S)(

q2λ(t+1/2)

qλ−q−λ

∫
K̃ H×K̃ H

c(1, λ)9Sλ[ f ](1)k1,k2 dk1 dk2

−
q−2λ(t+1/2)

qλ−q−λ

∫
K̃ H×K̃ H

c(w, λ)9Sλ[ f ](1)k1,k2 dk1 dk2

)
dλ.

Let

f1(λ)=
1+q−1

2
µ(χλ)Wχλ(S)

(∫
K̃ H×K̃ H

c(1, λ)9Sλ[ f ](1)k1,k2 dk1 dk2

−

∫
K̃ H×K̃ H

c(w, λ)9Sλ[ f ](1)k1,k2 dk1 dk2

)
,

f2(λ)=
1+q−1

2
µ(χλ)Wχλ(S)

(∫
K̃ H×K̃ H

c(1, λ)9Sλ[ f ](1)k1,k2 dk1 dk2

+

∫
K̃ H×K̃ H

c(w, λ)9Sλ[ f ](1)k1,k2 dk1 dk2

)
.

Then (4-5) equals

lim
t→∞

∫ π i
log q

0

f1(λ)(q2λ(t+ 1
2 )+q−2λ(t+ 1

2 ))

qλ−q−λ

+ lim
t→∞

∫ π i
log q

0

f2(λ)(q2λ(t+ 1
2 )−q−2λ(t+ 1

2 ))

qλ−q−λ
dλ.

By Lemma 4.8, f1(0)= 0. Hence by Fourier analysis the first integral will vanish.
The limit of the second integral will be f2(0), which, by the identity in case 3 of
Lemma 4.8, equals

(1+ q−1)µ(χ0)Wχ0(S)
∫

K̃ H×K̃ H

c(1, 0)9S0[ f ](1)k1,k2 dk1 dk2.

For case 4 by Lemma 4.8 when multiplied by µ(χλ)Wχλ(S), f1(λ) and f2(λ) are
holomorphic functions of λ and vanish at λ= 0, thus by similar analysis as above the
last two terms vanish in the limit and we are left with the statement of the lemma. �

4B1. Discrete series representations. Because the matrix coefficient of a supercus-
pidal representation σ has compact support it is obvious that

lim
t→∞

∫
H̃(F)

tr(σ (h)S)u(h, t) dh =
∫

H̃(F)
tr(σ (h)S) dh.

Now we will prove that this is also true for Steinberg representations.
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Lemma 4.10. For σ = St (χ), χ2
= 1, the matrix coefficients are absolutely con-

vergent over H̃(F). Thus the limit

lim
t→∞

∫
H̃(F)

tr(σ (h)S)u(h, t) dh

exists and equals ∫
H̃(F)

tr(σ (h)S dh.

Proof. By [Borel and Wallach 1980, XI.4.3; Casselman 1995, 4.2.3], a matrix
coefficient for σ evaluated at

(
a 0
0 b

)
is equal to a matrix coefficient for the Jacquet

functor σN , evaluated at the same value, for
∣∣a

b

∣∣
E sufficiently small. The Jacquet

functor of σ is δP . Thus outside some compact set, our original matrix coeffi-
cient will behave like δP on M−H (F). When we integrate over H̃(F), using the
K H M−H (F)K H decomposition, we get a measure factor of δ−1/2

P . Thus outside a
set of compact support our integral will look like

∫
|a|<c|a|F d×a for some c> 0. �

Putting everything together we have proved the following.

Proposition 4.11. For any f ∈ C∞c (G̃(F)× G̃(F)),

lim
t→∞

∫
H̃(F)

∫
N (F)

K f (h, n)ψ(n)u(h, t)u(n, t) dn dh

=

∑
σ∈52(G̃(F))

d(σ )Dσ ( f )+ 1
2

∑
χ∈{52(M̃(F))}
χ2
6=1,χ |F×=1

D̃χ ( f )

+
1
2

∑
χ∈{52(M̃(F))}

χ |E1=1

d(χ)
∫ π i

log q

0
µ(χλ)Dχλ( f ) dλ,

where

Dχλ( f )=
∑

S∈BP (χ)

Pχλ(Sλ[ f ])Wχλ(S),

Pχλ(S)=
∫
∗

H̃(F)
tr(IP(χλ, h)S) dh,

D̃χ ( f )= (1+ q−1)µ(χ0)
∑

S∈BP (χ)

Wχ0(S)
∫

K̃ H×K̃ H

c(1, 0)ψS0[ f ](1)k1,k2 dk1 dk2,

Dσ ( f )=
∑

S∈B(σ )

Pσ (σ ( f2)Sσ( f ∨1 ))Wσ (S),

Pσ (S)=
∫

H̃(F)
tr(σ (h)S) dh.

This proposition combined with Proposition 4.3 proves Theorem 1.4.
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5. Comparison of local trace formulas and applications

We now combine the results of the previous two sections to compare the two trace
formulas. Let ωE/F be the quadratic character of F× associated to E/F and let ω
denote its trivial extension to E×.

Definition 5.1. We say that f ′ ∈ C∞c (G̃
′(F)) and f ∈ C∞c (G̃(F)) are matching

functions if O ′( f ′, ψ ′, a)= ω(a)O( f, ψ, a) for all a ∈ E×.

By work of Ye [1989] and Flicker [1991, Proposition 3], we know that for
any f ′ ∈C∞c (G̃

′(F)) there exists a matching f ∈C∞c (G̃(F)) and vice versa. In fact,
by the Fundamental Lemma, for f ′ spherical, we know that f is the corresponding
function from the base change map between their Hecke algebras. Thus by the
geometric expansion of the trace formulas in Propositions 3.4 and 4.3 we have the
following statement.

Proposition 5.2. For f ′i ∈ C∞c (G̃
′(F)) and fi ∈ C∞c (G̃(F)) matching functions

for i = 1, 2,

lim
t→∞

∫
N ′(F)

∫
N ′(F)

K f ′1⊗ f ′2(n1, n2)ψ
′(n−1

1 n2)u(n1, t)u(n2, t) dn1 dn2

= lim
t→∞

∫
H̃(F)

∫
N (F)

K f1⊗ f2(h, n)ψ(n)u(h, t)u(n, t) dn dh.

Now we use the equality of the trace formulas to compare the spectral expansions.
By Propositions 3.6, 4.11 and 5.2 we have the following result.

Theorem 5.3. For fi and f ′i matching functions for i = 1, 2,

∑
σ ′∈52(G̃ ′(F))

d(σ ′)D′σ ′( f ′1⊗ f ′2)+
1
2

∑
χ ′∈{52(M̃ ′(F))}

d(χ ′)
∫ π i

log q

0
µ(χ ′λ)D

′

χ ′λ
( f ′1⊗ f ′2) dλ

=

∑
σ∈52(G̃(F))

d(σ )Dσ ( f1⊗ f2)+
1
2

∑
χ∈{52(M̃(F))}
χ2
6=1,χ |F×=1

D̃χ ( f1⊗ f2)

+
1
2

∑
χ∈{52(M̃(F))}

χ |E1=1

d(χ)
∫ π i

log q

0
µ(χλ)Dχλ( f1⊗ f2) dλ.

The unstable base change map associated toω lifts principal series representations
of G̃ ′ to principal series representations IP(χ) of G̃ such that χ |E1 = 1. It also lifts
certain square integrable representations of G̃ ′ to the principal series representations
of G̃ defined by IP(χω) such that χ2

6= 1, χ |F× = 1. It lifts the remaining square
integrable representations of G̃ ′ to square integral representations of G̃ [Rogawski
1990; Flicker 1982]. Thus we could rephrase the right-hand side of Theorem 5.3 in
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terms of summing over the representations of G̃ that are the unstable base change
lifts of representations of G̃ ′. The extra discrete term W̃χ ( f ) corresponds exactly to
the representations that lift from the discrete series of G̃ ′ to the principal series of G̃.

We also note that the only representations that appear on the right-hand side of
Theorem 5.3 are those σ or IP(χλ) for which there is a matrix coefficient such that
the regularized integral over H is nonzero. This gives us a more explicit description
of the nonvanishing H invariant linear functional that characterizes the image of
the unstable base change map.

We would like to relate our distributions to the local factors in the Bessel and
relative Bessel distributions. Recall from the introduction that Jacquet’s global
relative trace formula tells us that for f ′ on U (2,AF ) and f on GL(2,AE)matching
functions, if a cuspidal representation π ′ of U (2,AF ) maps to π of GL(2,AE)

under unstable base change, then

B ′π ′( f ′)= Bπ ( f )

where
B ′π ′( f ′)=

∑
φ′∈o.n.b.(Vπ ′ )

W ′(π ′( f ′)φ′)W ′(φ′),

Bπ ( f )=
∑

φ∈o.n.b.(Vπ )

P(π( f )φ)W (φ),

W ′(φ′)=
∫

N ′(F)\N ′(AF )

φ′(n)ψ ′(n) dn,

W (φ)=

∫
N (E)\N (AE )

φ(n)ψ(n) dn,

P(φ)=
∫

GL(2,F)Z(AF )\GL(2,AF )

φ(h) dh 6= 0.

While B ′π ′( f ′) and Bπ ( f ) factor into local Bessel distributions B ′π ′v ( f ′v) and Bπv ( fv),
it is not clear how to normalize the local Bessel distributions. We can rewrite
our local distributions as a product of two local Bessel (or local relative Bessel)
distributions:

Lemma 5.4. (1) For σ ′ an irreducible supercuspidal representation of G̃ ′(F),
there exists a local Bessel distribution B ′σ ′ , unique up to a constant of absolute
value 1, such that

D′σ ′( f ′1⊗ f ′2)= B ′σ ′( f ′2)B
′

σ ′∗( f ′1).

(2) For σ an irreducible supercuspidal representation of G̃(F), there exists a local
relative Bessel distribution Bσ , unique up to a constant of absolute value 1,
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such that
Dσ ( f1⊗ f2)= Bσ ( f2)Bσ ∗( f1).

Proof. We recall that

D′σ ′( f ′)=
∑

S′∈B(σ ′)

∫
N ′(F)

tr(σ ′(n1)σ
′( f ′2)S

′σ ′∗( f ′1))ψ
′(n1)

−1 dn1∫
N ′(F)

tr(σ ′(n2)S′)ψ ′(n2)−1 dn2.

Let V = Vσ ′ . As S′ is an endomorphism on V there exist v ∈ V, v∗ ∈ V ∗ such that
S′ = v⊗ v∗. Then the linear functional on V ⊗ V ∗ that acts by

v⊗ v∗ 7→

∫
N ′(F)

tr(σ ′(n)v⊗ v∗)ψ ′(n)−1 dn

transforms under n on v and v∗ by ψ ′. Thus it is a Whittaker functional on V ⊗V ∗.
By the uniqueness of Whittaker models,∫

N ′(F)
tr(σ ′(n)S′)ψ ′(n)−1 dn =W ′(v)W ′(v∗).

Thus
D′σ ′( f ′)=

∑
v⊗v∗

W ′(σ ′( f ′2)v)W ′(v)W
′(σ ′∗( f ′1)v

∗)W ′(v∗)

= B ′σ ′( f ′2)B
′

σ ′∗( f ′1).

We note that if we change B ′σ ′ by a constant c, then B ′σ ′∗ will change by c.
The proof for the local relative Bessel distributions is similar, using the uniqueness

of the H -invariant linear functional [Hakim 1991; Flicker 1991, Proposition 11]. �

We can also describe matching functions by an equality of all the Bessel distri-
butions.

Lemma 5.5 (density). (1) If f ′1 ∈ C∞c (G̃
′(F)) is such that D′σ ′( f ′1 ⊗ f ′2) = 0

for all irreducible tempered representations σ ′ of G̃ ′(F) and all f ′2, then
O ′( f ′1, ψ

′−1, a)= 0 for all a ∈ E×.

(2) If f1 ∈C∞c (G̃(F)) is such that Dσ ( f1⊗ f2)= 0 and D̃σ ( f1⊗ f2)= 0 for all ir-
reducible tempered representations σ of G̃(F) and f2, then O( f1, ψ

−1, a)= 0
for all a ∈ E×.

Proof. If D′σ ′( f ′1⊗ f ′2)= 0 for all σ ′, then by Theorem 1.3,∫
a∈E×/E1

|a|E O ′( f ′1, ψ
′−1, a)O ′( f ′2, ψ

′, a) d×a = 0

for all f ′2 ∈C∞c (G̃
′(F)). As O ′( f ′1, ψ

−1, a) is a locally constant function of a there
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exists some open compact U such that O ′( f ′1, ψ
′−1, a) is biinvariant under it. Then

by choosing f ′2 such that O ′( f ′2, ψ
′−1, a) has support contained in U we see that

O ′( f ′1, ψ
′−1, a)= 0. The second case follows from the first one. �

Combining Theorem 5.3 with Lemma 5.4 and the global relative trace formula,
we have the following result:

Corollary 5.6. If σ is the supercuspidal representation of G̃(F) that is the unstable
base change lift of the supercuspidal representation σ ′ on G̃ ′(F), and f ′i and fi are
matching functions for i = 1, 2, then

d(σ ′)Dσ ′( f ′1⊗ f ′2)= d(σ )Dσ ( f1⊗ f2).

Proof. From the global comparison of relative trace formulas [Flicker 1991; Lapid
2006; Ye 1989] and a standard globalization argument we know there exists a
constant cσ such that B ′σ ′( f ′i )= cσ Bσ ( fi ) for all matching fi , f ′i . Take f ′1 and f2 to
be matrix coefficients of σ ′ and σ such that B ′σ ′( f ′1) 6= 0 and Bσ ( f2) 6= 0. Take f ′2
a matching function to f2 and f1 a matching function to f ′1. Then by Theorem 5.3,

d(σ ′)D′σ ′( f ′)= d(σ )Dσ ( f ). �

In addition to the spectral comparison, these local trace formulas also have
applications on the geometric side. If we define the inner product of two functions
g1, g2 on E×/E1 by

〈g1, g2〉 =

∫
a∈E×/E1

g1(a)g2(a)|a|E d×a,

then:

Corollary 5.7 (orthogonality relations). For f1 and f2 matrix coefficients of the
supercuspidal representations σ1 and σ2 of G̃(F),〈

O( f1, ψ, · ), O( f2, ψ
−1, · )

〉
6= 0 ⇐⇒ σ1 ∼ σ2.

For f ′1 and f ′2 matrix coefficients of the supercuspidal representations σ ′1 and σ ′2 of
G̃ ′(F), 〈

O ′( f ′1, ψ
′, · ), O ′( f ′2, ψ

′−1, · )
〉
6= 0 ⇐⇒ σ ′1 ∼ σ

′

2.

Proof. This follows directly from the local Kuznetsov and local relative trace
formulas. �
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We state and discuss a general conjectural bound on the degrees of ma-
trix coefficients of intertwining operators for reductive groups over p-adic
fields and a supplementary uniformity conjecture for reductive groups over
number fields. We prove both conjectures for the groups GL(r) and obtain
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1. Introduction

Let G be a reductive algebraic group defined over a p-adic field F with residue
field Fq and G = G(F). Fix a special maximal compact subgroup K0 of G. For a
maximal parabolic subgroup P =MU of G and a smooth irreducible representation
π of M = M(F), we consider the family of induced representations IP(π, s),
s ∈ C, which extend the fixed K0-representation I K0

P∩K0
(π |M∩K0), and the associated

intertwining operators M(s)= MP|P(π, s) : IP(π, s)→ IP(π,−s). For any open
subgroup K of K0, the restriction

M(s)K
: I K0

P∩K0
(π |M∩K0)

K
= IP(π, s)K

→ IP(π,−s)K
= I K0

P∩K0
(π |M∩K0)

K

of M(s) to the space of K -fixed vectors is a family of linear maps between finite-
dimensional vector spaces which do not depend on s. It is well known that the

The authors were partially sponsored by grant 964-107.6/2007 from the German–Israeli Foundation
for Scientific Research and Development. Finis was supported by DFG Heisenberg grant FI 1795/1-1.
MSC2010: primary 20G25, 20G30; secondary 11F85.
Keywords: p-adic reductive groups, intertwining operators.
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matrix coefficients of the linear operators M(s)K are rational functions of q−s ,
whose denominators can be controlled explicitly (see, e.g., [Waldspurger 2003,
IV.1.1, IV.1.2]). In particular, their degrees are bounded independently of K and π .

What can be said about the degrees of the numerators? In this note, we propose
the following conjecture, which should provide a bound of the correct order of
magnitude. Let G′ be the derived group of G and set G ′ = G′(F). Note that
K ′0 = K0 ∩G ′ is a special maximal compact subgroup of G ′.

Conjecture 1. There exist constants c > 0 and d, depending only on G, such
that for any open subgroup K ⊂ K0, the degrees of the numerators of the matrix
coefficients of M(s)K are bounded by c logq [K

′

0 : K
′
] + d, where K ′ = K ∩G ′.

We also propose the following supplement in a global situation, where we
consider a reductive group G defined over a number field k and its base change
to F = kv for all nonarchimedean places v of k. Let K0,v be a special maximal
compact subgroup of G(kv).

Conjecture 2. In the global situation, assume K0,v to be hyperspecial for almost
all places v of k. Then Conjecture 1 is true for all pairs of local groups G(kv) and
K0,v, with uniform values of c and d.

It is equivalent to consider the normalized intertwining operators R(s) defined
by Arthur [1989]. We discuss this modification and some other simple variants in
Section 3 below.

The main result of this paper is the following.

Theorem 1. Conjectures 1 and 2 are true for the groups G=GL(r). More precisely,
the constants c and d in Conjecture 1 depend only on r and [F :Qp].

An important motivation for our paper is provided by the analysis of limit
multiplicities for noncompact quotients of G(R), where in order to deal with the
spectral side of Arthur’s trace formula, it is crucial to bound the degrees of the
matrix coefficients of local intertwining operators. This application (for G=GL(r))
is discussed in [Finis et al. 2012]. We opted to single out our conjectures and results
on local intertwining operators as a separate paper, since they may be of interest in
their own right.

A natural analog of Conjecture 1 in the archimedean case (F =R or C) has been
obtained in [Lapid 2004]. To explain it, fix a maximal compact subgroup K0 of G
(it is well known to be unique up to conjugation). For any K0-module V and σ ∈ K̂0,
let V σ denote the σ -isotypic part of V . Let R(π, s) : IP(π, s)→ IP(π,−s) be the
normalized intertwining operators and R(π, s)σ their restrictions to linear maps
between the finite-dimensional vector spaces IP(π, s)σ and IP(π,−s)σ which do
not depend on s. The matrix coefficients of the operators R(π, s) are rational
functions of s [Arthur 1989, Theorem 2.1]. We denote by ‖σ‖ the maximum of
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the norms of the highest weights of σ (with respect to a fixed choice of norm on
the vector space spanned by the lattice of characters of a maximal torus of the
connected component of the identity of K0). Then we can formulate the following
direct consequence of [Lapid 2004, Proposition A.2].

Theorem 2. There exists a constant c> 0, depending only on G and the norm ‖ · ‖,
such that for any maximal parabolic subgroup P = MU of G, any irreducible rep-
resentation π of M , and any K0-type σ ∈ K̂0, the degrees of the matrix coefficients
of R(π, s)σ are bounded by c‖σ‖.

Let us now make a few comments about the proof of Theorem 1, at the same time
outlining the partial results that we can prove for general groups G. By a standard
argument, we can reduce to the case where π is supercuspidal. Furthermore, a
result of Lubotzky (quoted as Proposition 3 below) allows us to assume that K ′

is a principal congruence subgroup of G ′. After these preliminary reductions,
there are two main ingredients. First, assuming the widely believed conjecture
that supercuspidal representations of G are induced from open subgroups which
are compact modulo the center,1 we can deduce a good bound for the support
of matrix coefficients of these representations (property (PSC) of Definition 7
below). This inference is an explication of an argument which goes back to [Jacquet
1971] (cf. [Bushnell 1990]). The classification of supercuspidals needed for our
argument has been proven for G = GL(r) by Bushnell and Kutzko [1993a]. It is
also known in many other cases, most notably for classical groups of odd residual
characteristic [Stevens 2008] and for any group in large residual characteristic [Kim
2007]. Therefore, property (PSC) is true in these cases.

The second part of the main argument is a simple proof of the rationality of inter-
twining operators for parabolic subgroups P with abelian unipotent radical,2 which
allows us to control the degrees of the rational functions involved (Proposition 16 and
Theorem 21). For G = GL(r), this fortunately covers all cases, thereby completing
the proof of Theorem 1. The technical geometric property that is needed for our
argument is explicated in Definition 15 below. It is unfortunately not satisfied for all
maximal parabolic subgroups, even in the case of classical groups (see Remark 18).
It is conceivable that a more elaborate argument will work in general.

Acknowledgements. We are grateful to Joseph Bernstein, Colin Bushnell, Guy
Henniart and Eitan Sayag for useful discussions. We thank the Centre Interfacultaire
Bernoulli, Lausanne, and the Max Planck Institute for Mathematics, Bonn, where a
part of this paper was worked out.

1In fact, it suffices to assume that every supercuspidal representation is contained in such an
induced representation of finite length (see Section 4 below for more details).

2We also make the additional technical assumption that the group G is split over F .
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2. The setup

Let F be a p-adic field with normalized absolute value | · |, ring of integers O, and
uniformizer $ . Let q be the cardinality of the residue field of F .

As a rule, we write X = X(F) whenever X is a variety over F . Let G be a
connected reductive algebraic group defined over F with center Z. All algebraic
subgroups that will be considered in the sequel are implicitly assumed to be defined
over F . Let G′ be the derived group of G and for any subgroup K ⊂ G, write
K ′ = K ∩G ′. Fix a maximal F-split torus T0 and a minimal parabolic subgroup
P0 = M0U0 ⊃ T0 of G, where M0 =CG(T0) is a minimal Levi subgroup of G. Let
8 = R(T0, G) be the set of roots of T0. The choice of P0 fixes a set of positive
roots R(T0,U0)⊂8. Let 10⊂8 be the corresponding subset of simple roots. The
standard maximal parabolic subgroups of G correspond bijectively to the simple
roots, and for α ∈ 10, we denote by Pα = MαUα the unique standard maximal
parabolic subgroup with α ∈ R(T0,Uα). For any Levi subgroup M, we denote by
P(M) the (finite) set of all parabolic subgroups of G with Levi part M. For any
standard parabolic subgroup P of G with standard Levi decomposition P = MU ,
we denote by P = MU the opposite parabolic subgroup.

Fix a special maximal compact subgroup K0 of G (more precisely, the stabilizer
of a special point in the apartment associated to T0), so that we have the Iwasawa
decomposition P0K0 = G. In addition, we have the Cartan decomposition G =
K0 M+0 K0, where M+0 is the set of all m ∈ M0 with |α(m)| ≥ 1 for all α ∈ 10

[Tits 1979, §3.3]. Also, for any parabolic subgroup P = MU with Levi subgroup
M⊃M0, we have (P∩K0)= (M∩K0)(U∩K0). We take a representative w0 ∈ K0

for the longest Weyl element. Fix a faithful representation ρ : G→ GL(V ) and an
O-lattice3V in the representation space V such that K0={g ∈G : ρ(g)3V =3V },
and for n = 1, 2, . . . , let

Kn = {g ∈ G : ρ(g)v ≡ v (mod$ n3V ), v ∈3V }

be the associated principal congruence subgroups of K0. Note that a more natural
filtration of K0 has been defined in terms of the Bruhat–Tits building of G ′ in
[Schneider and Stuhler 1997, Chapter I].

Suppose now that P = MU is a standard maximal parabolic subgroup. Let χP

be the fundamental weight of P . Some integral power of χP defines a rational
character of P trivial on U . Therefore |χP | defines a character |χP | : P→R>0 and
we can extend this character uniquely to a right-K0-invariant function, still denoted
by |χP |, on G. Let (π, Vπ ) be an irreducible (smooth) representation of M . Let
δP be the modulus function of P . Consider the family of induced representations
IP(π, s), s ∈C, of G which extend the K0-representation I K0

P∩K0
(π |M∩K0). Namely,

IP(π, s) is the space of all smooth functions ϕ : G→ Vπ with
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ϕ(pg)= |χP |(p)sδP(p)1/2π(p)ϕ(g)

for all p ∈ P , g ∈ G, where π is extended to P via the canonical projection
P → M , and the G-action is given by right translations. Any smooth function
ϕ : K0 → Vπ with ϕ(pk) = π(p)ϕ(k) for all k ∈ P ∩ K0 extends uniquely to a
function ϕs ∈ IP(π, s). Let π∨ be the contragredient of π and denote the pairing
between Vπ and Vπ∨ by ( · , · ). Then

(ϕ, ϕ∨)=

∫
K0

(ϕ(k), ϕ∨(k)) dk

defines a pairing between IP(π, s) and IP(π
∨,−s). Fix a choice of Haar measure

on U . The intertwining operators M(s) = MP|P(π,−s) : IP(π, s)→ IP(π, s),3

which are defined by the meromorphic continuation of the integrals

(M(s)ϕ)(g)=
∫

U
ϕ(ūg) dū, ϕ ∈ IP(π, s),

were first studied in this generality by Harish-Chandra. (See [Waldspurger 2003,
Section IV] for a self-contained treatment.) It is known that the matrix coefficients
(M(s)ϕs, ϕ

∨
s ) for ϕ ∈ I K0

P∩K0
(π |M∩K0) and ϕ∨ ∈ I K0

P∩K0
(π∨|M∩K0) are rational func-

tions of q−s [Waldspurger 2003, IV.1.1] and that the degree of the denominator is
bounded in terms of G only [Waldspurger 2003, IV.1.2]; see also [Shahidi 1981,
Theorems 2.2.1, 2.2.2; Silberger 1979]. It is often advantageous to work instead
with the normalized intertwining operators R(s)= RP|P(π, s) : IP(s)→ IP(−s)
defined in [Arthur 1989], which differ from M(s) by a certain rational function
of q−s depending on π whose degree is bounded in terms of G only. Thus, the
matrix coefficients of R(s) are also rational functions in q−s and the degree of the
denominator is bounded in terms of G.

Occasionally we will also consider intertwining operators for general (nonmaxi-
mal) parabolic subgroups containing T0. For this, let M ⊃ M0 be a Levi subgroup
of G and set a∗M,C = X∗(M)⊗C, where X∗(M) denotes the group of (F-rational)
characters of M. Then for any smooth irreducible representation π of M , we have
the families of induced representations IP(π, λ), P ∈ P(M), λ ∈ a∗M,C, and the
associated intertwining operators MP2|P1(π, λ) : IP1(π, λ)→ IP2(π, λ) for pairs of
parabolic subgroups P1, P2 ∈ P(M) [Waldspurger 2003, p. 278]. We can extend
arbitrary functions ϕ ∈ I K0

P1∩K0
(π |M∩K0) and ϕ∨ ∈ I K0

P2∩K0
(π∨|M∩K0) uniquely to

functions ϕλ ∈ IP1(π, λ) and ϕ∨
−λ ∈ IP2(π

∨,−λ), respectively, and the matrix
coefficients (M(λ)ϕλ, ϕ∨−λ) are rational functions of the variables q−〈λ,α

∨
〉, α ∈1P .

Here 1P is the set of simple roots of U . The degree of the denominator is bounded
in terms of G only. The normalized intertwining operator RP2|P1(π, λ) differs from

3Note that IP (π,−s) is defined using χP and δP and that χP |M = χ
−1
P |M and δP |M = δ

−1
P |M .
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the operator MP2|P1(π, λ) by a normalizing scalar which is a rational function of
q−〈λ,α

∨
〉 of degree bounded in terms of G only.

Let g = Lie G and denote by Ad : G→ GL(g) the adjoint representation. Fix
an O-lattice 3 ⊂ g stabilized by the operators Ad(k), k ∈ K0, and define a norm
on g by ‖

∑d
i=1 ti X i‖g =max1≤i≤d |ti | for an (arbitrary) O-basis X1, . . . , Xd of 3.

This defines a norm ‖ · ‖End(g) on End(g); namely, ‖A‖End(g) is the maximum of the
absolute values of the matrix coefficients of A with respect to the basis X1, . . . , Xd .
For any g ∈ G, we write ‖g‖G = ‖Ad(g)‖End(g), and for any real number R we set
BG(R)= {g ∈ G : ‖g‖G ≤ q R

}, which is a compact set modulo Z . We often omit
the index G from ‖ · ‖G and BG(R) if it is clear from the context.

In the global situation of a reductive group G defined over a number field k, we
need of course to fix analogous global data that induce the local data pertaining
to G(kv) for the nonarchimedean places v of k. In particular, we fix an Ok-lattice
3 ⊂ g to define the local norms ‖ · ‖G(kv) via base change to Okv . In the same
way, we obtain the representation ρv and the lattice 3Vv ⊂ Vv intervening in the
definition of the groups Kn,v from a representation ρ : G→ GL(V ) defined over k
and an Ok-lattice 3V in the k-vector space V . It is well known that K0,v is then
hyperspecial for almost all v.

We write A� B (or B� A) if there exists a constant c (independent of other
quantities) such that A ≤ cB.

3. Variants of the conjectures

In this section we discuss some simple variants of Conjectures 1 and 2. In studying
our conjectures, it is useful to restrict attention to the principal congruence subgroups
K ′n of K ′0. This is possible by the following statement, which is a special case of
[Lubotzky 1995, Lemma 1.6].

Proposition 3 (Lubotzky). There exist constants c0 and d0 such that any open
subgroup K of K0 contains the principal congruence subgroup K ′n of G ′ for n =
bc0 logq [K

′

0 : K ′] + d0c. Moreover, if G is defined over a number field k and for
any finite place v, K0,v is a special maximal compact subgroup of G(kv), which
is hyperspecial for almost all v, then for the pairs (G(kv), K0,v), one may take
uniform values of c0 and d0 (in fact, c0 = [kv :Qp] works for almost all v).

Remark 4. Note that in [Lubotzky 1995] it is assumed that G′ is simply connected,
and one can then take d0 = 0. The general case follows easily by passing to the
simply connected covering group of G′.

Proposition 3 implies that equivalent forms of Conjectures 1 and 2 are obtained
by replacing the index [K ′0 : K

′
] by the level of K ′, which is defined as

level(K ′) := qn,
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where n ≥ 0 is the smallest integer with K ′ ⊃ K ′n .
We now consider the generalization of our conjectures to arbitrary parabolic

subgroups and the associated intertwining operators.

Proposition 5. Suppose that Conjecture 1 is true for any Levi subgroup L ⊃ M0

in place of G. Then there exist constants c > 0 and d, depending only on G, such
that for any open subgroup K ⊂ K0, the degrees of the numerators of the matrix
coefficients of MP2|P1(λ)

K , as rational functions of the variables q−〈λ,α
∨
〉, α ∈1P ,

are bounded by c logq [K
′

0 : K
′
] + d.

In the global situation of a reductive group G defined over a number field k,
suppose that Conjecture 2 is true for all L ⊃ M0. Then the degree bound above
holds for the local groups G(kv) and K0,v with uniform values of c and d as v
ranges over the nonarchimedean places of k.

Proof. Let P1 = Q0, Q1, . . . , Ql = P2 be a sequence of adjacent parabolic sub-
groups from P1 to P2 and let1Qi ∩1Qi+1 = {αi }. We can decompose MP2|P1(π, λ)

into a product of rank-one intertwining operators MQi+1|Qi (π, 〈λ, α
∨

i 〉). Thus, it is
enough to consider the degrees of the matrix coefficients of MQi+1|Qi (σ, 〈λ, α

∨

i 〉)
K ,

i=0, . . . , l−1. Fix i and let R=MR NR be the parabolic subgroup generated by Qi

and Qi+1. Let Q′=MR∩ Qi and Q′′=MR∩ Qi+1. Then Q′ and Q′′ are maximal
parabolic subgroups of MR with Levi subgroup M and Q′′ = Q′. By [Waldspurger
2003, p. 284, (14)], the matrix coefficients of MQi+1|Qi (σ, 〈λ, α

∨

i 〉)
K are given by

those of MQ′|Q′(σ, 〈λ, α
∨

i 〉)
K∩MR , and the degrees of the latter coefficients satisfy

by assumption the bounds of Conjectures 1 and 2. �

Finally, it is clear that we can replace the intertwining operators M(s) and M(λ)
by the normalized intertwining operators R(s) and R(λ) in Conjectures 1 and 2 and
Proposition 5. In fact, we can obtain slightly stronger statements for the normalized
operators. If we replace M(s) by R(s) in Conjecture 1, and in addition G is
unramified and K0 hyperspecial, then we may take d = 0, since any representation
which admits a K ′0-fixed vector is a twist by a character of G/G ′ of an unramified
representation of G. Similarly, by Remark 4, we may take d = 0 in the analog of
Conjecture 2 for R(s), if G′ is simply connected and we omit the finitely many
places v where G(kv) is ramified or K0,v not hyperspecial. The same remarks apply
to Proposition 5. If we consider here level(K ′) instead of [K ′0 : K

′
], then we do not

need to make any additional assumption on G ′, since trivially logq level(K ′) ≥ 1
whenever K ′ 6= K ′0. We record the resulting variant of Proposition 5 explicitly,
since we intend to use the statement in another paper.

Proposition 6. Suppose that Conjecture 1 is true for any Levi subgroup L ⊃ M0

of G. Then there exists a constant c > 0, depending only on G, such that for
any open subgroup K ⊂ K0, the degrees of the numerators of the matrix coeffi-
cients of RP2|P1(λ)

K , as rational functions of the variables q−〈λ,α
∨
〉, α ∈1P , are



440 TOBIAS FINIS, EREZ LAPID AND WERNER MÜLLER

bounded by c logq level(K ′) if G is unramified and K0 is hyperspecial, and by
c(logq level(K ′)+ 1) otherwise.

In the global situation of a reductive group G defined over a number field k,
suppose that Conjecture 2 is true for all L ⊃ M0. Then the degree bound above
for the numerators of the matrix coefficients of RP2|P1(λ)

K holds with a uniform
value of c for all local groups G(kv) and K0,v as v ranges over the nonarchimedean
places of k.

4. Matrix coefficients of supercuspidal representations

Definition 7. We say that G has polynomially bounded support of supercuspi-
dal matrix coefficients (PSC) if there exist constants c and d such that for every
open subgroup K ⊂ K0 and any supercuspidal representation π of G, the sup-
port of the matrix coefficients (π(g)v, v∨), v ∈ πK , v∨ ∈ (π∨)K , is contained in
B(c logq [K

′

0 : K
′
] + d).

Note that property (PSC) is independent of the choice of K0, which could be
replaced by an arbitrary open compact subgroup of G. However, the possible values
of the constants c and d will depend on K0 (and the norm ‖ · ‖G on g).

Conjecture 3. Every p-adic reductive group G has property (PSC).

We will show that this conjecture is true in a large number of cases. In addition,
we will obtain a global uniformity statement for the constants c and d for reductive
groups G defined over number fields k and almost all of the associated local groups
G(kv) (see Corollary 13 below).

Let L be an open subgroup of G containing Z such that L/Z is compact. We
refer to such subgroups as open compact modulo center (ocmc) for short. We
say that a finite-dimensional representation σ of L is cuspidal if for every proper
parabolic subgroup P of G with unipotent radical U , we have σ L∩U

= 0. Here,
it clearly suffices to consider only maximal parabolic subgroups. By [Bushnell
1990, Theorem 1 supp.], this condition is necessary (and in fact also sufficient, by
Lemma 8 below) for IndG

L σ to be of finite length, in which case it is the direct
sum of finitely many irreducible supercuspidal representations. Note that if σ is
cuspidal, then its contragredient σ∨ is cuspidal as well. We say that a supercuspidal
representation π of G is induced from an ocmc, if there exists a pair (L , σ ) where
L is an ocmc and σ ∈ L̂ , necessarily cuspidal, such that π = IndG

L σ .
It is widely believed that every irreducible supercuspidal representation π is

induced from an ocmc,4 and in fact this is known in many cases (see [Bushnell
and Kutzko 1993a; Kim 2007; Stevens 2008; Yu 2001], and earlier work by Howe,

4We were unable to trace back who precisely formulated the conjecture in this generality, but it
certainly goes back to the early days of the representation theory of p-adic groups.
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Morris, Moy and others). For our purposes it suffices to know that π is a constituent
of IndG

L σ for some cuspidal σ .

Lemma 8. Let L be an ocmc. Then there exist constants c, depending only on G,
and d, depending on L , such that for any cuspidal σ ∈ L̂ , any open subgroup
K ⊂ K0 and any f ∈ (IndG

L σ)
K we have supp( f )⊂B(c logq [K

′

0 : K
′
] + d).

Proof. Note first that the assertion is trivial if G′ is anisotropic, since G/Z is then
compact. So, we may assume that the F-rank of G′ is nonzero. By Lubotzky’s
result (Proposition 3 above), we may assume without loss of generality that K ′ is a
principal congruence subgroup K ′n of G ′. In particular, K ′ is normal in K0.

Let g ∈G and write its Cartan decomposition as g= k1ak2 ∈G with k1, k2 ∈ K0

and a ∈ M+0 . We first show that there are constants c and d such that ‖g‖> qcn+d

implies the existence of a standard maximal parabolic subgroup P = MU of G
satisfying

(1) U ∩ k−1Lk ⊂ a(U ∩ K )a−1 for all k ∈ K0.

Assume that ‖g‖ = ‖a‖> qcn+d for some c > 0 and d which will be specified
later. Note first that there are only finitely many K0-conjugates of the group L , and
that their intersections with U0 generate an open compact subgroup V0(L) of U0.
Using the exponential map, we can identify U0 with its Lie algebra, which is an
affine space. Fixing a norm on U0, we let U0(n) be the lattice consisting of the
elements of U0 of norm bounded by qn and set U (n)=U0(n)∩U for any standard
parabolic subgroup P = MU of G. Clearly, there exists a constant n0 = n0(L)
such that V0(L) is contained in U0(n0), and therefore the left-hand side of (1) is
contained in U (n0) for all k ∈ K0.

Let β ∈10 with |β(a)| =maxα∈10 |α(a)|. There exist constants c1 > 0 and n1

such that maxα∈10∪−10 |α(b)| ≥ q−n1‖b‖c1 for any b ∈ M0. Therefore, we obtain
from |α(a)|≥ 1, α ∈10, and ‖a‖> qcn+d that |β(a)|> qc1cn+c1d−n1 , which implies
in turn that |α(a)|> qc1cn+c1d−n1 for all roots α ∈ R(T0,Uβ). There also exists a
constant n2 such that Uβ

∩K =Uβ
∩K ′n contains Uβ(−n−n2), which implies that

a(Uβ
∩ K )a−1 contains Uβ(c1cn+ c1d − n1− n− n2). It is therefore sufficient to

take c = c−1
1 and d = c−1

1 (n0+ n1+ n2) to obtain (1) for P = Pβ .
Let now π = IndG

L σ . For an arbitrary element f ∈ πK , set f2 = π(k2) f ∈ πK ′ .
For any u ∈U ∩ K =U ∩ K ′, we have

f (g)= f2(k1a)= f2(k1au)= f2(u′k1a),

where u′ = k1aua−1k−1
1 . If in addition u′ ∈ k1Uk−1

1 ∩ L , then we get f (g) =
σ(u′) f2(k1a)= σ(u′) f (g). Using (1) and the cuspidality of σ , we conclude that
f (g) ∈ σ k1Uk−1

1 ∩L
= 0. �
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Remark 9. The qualitative statement that in the situation of the lemma any element
of IndG

L σ has compact support modulo the center is contained in [Bushnell 1990,
Theorem 1 supp.] in the case G=GL(r). The argument is originally due to Jacquet
[1971].

Corollary 10. There exist constants c′ and d ′ with the following property. Let L be
an ocmc of G, σ be a cuspidal representation of L , and π = IndG

L σ . Let K ⊂ K0 be
open and let v ∈ πK and v∨ ∈ (π∨)K . Then the support of (π(g)v, v∨) is contained
in B(c′ logq [K

′

0 : K
′
] + d ′).

Proof. Clearly, if σ is a cuspidal representation of an ocmc L1 and L ⊃ L1 is a
larger ocmc, then IndL

L1
σ is a cuspidal representation of L [Bushnell 1990]. We

can therefore assume that L is a maximal ocmc. In other words, denoting by TG the
maximal F-split torus of Z, L is the inverse image under the projection G→G/TG

of a maximal compact subgroup of G/TG , which is also the group of F-points of
the algebraic group G/TG , since the first Galois cohomology group of TG is trivial.
There are finitely many such subgroups L up to G-conjugation [Tits 1979, §3.2]. It
follows from the previous lemma that for suitable positive constants c and d, the
supports S and S∨ of v ∈ πK and v∨ ∈ (π∨)K , respectively, are both contained
in B(c logq [K

′

0 : K ′] + d). However, (π(g)v, v∨) = 0 whenever the support of
π(g)v is disjoint from the support of v∨, or equivalently whenever g 6∈ (S∨)−1S.
Observing that there exists a positive constant c1 such that B(N )−1B(N )⊂B(c1 N )
for all N > 0, we conclude that the support of the matrix coefficient (π(g)v, v∨) is
contained in B(c1c logq [K

′

0 : K
′
] + c1d). �

Remark 11. The proof shows also that in the global situation of a reductive group
G defined over a number field k, there exist uniform constants c and d such that
the assertion of the corollary is true for all local groups G(kv), v a nonarchimedean
place of k, and maximal compact subgroups K0,v that are hyperspecial for almost
all v. One only needs to observe that every maximal compact subgroup of G/TG is
conjugate to a maximal compact subgroup L̃ containing a fixed Iwahori subgroup I
[Tits 1979, §3.7]. Moreover, the index [L̃ : I ] is bounded by q N , where N does not
depend on v. From this, we deduce that the constant n0 in the proof of Lemma 8
can be bounded independently of v, if the norm on U0 = U0(kv) used in the proof
is induced from the choice of a fixed Ok-lattice in the Lie algebra of U0. The
boundedness of all other constants is clear.

Remark 12. The maximal ocmcs of GL(r, F) are (up to conjugation) parametrized
by divisors of r . They can be realized as stabilizers of sequences L i , i ∈ Z, of
O-lattices in Fr such that L i+l = $ L i and dimFq L i/L i+1 = k for all i , where k
is a divisor of r and kl = r . Note that this stabilizer is the semidirect product of
the parahoric subgroup of type (k, . . . , k) with the cyclic group generated by an
element zl of GL(r, F) with zl L i = L i+1 [Carayol 1984].
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Corollary 13. Assume that every supercuspidal representation of G is contained in
a representation induced from a cuspidal representation of an ocmc. Then G has
property (PSC). In particular, the following groups have property (PSC):

(1) G = GL(r, F) [Bushnell and Kutzko 1993a],

(2) G = SL(r, F) [Bushnell and Kutzko 1993b],

(3) G(F) for classical groups G, provided p 6= 2 [Stevens 2008], and

(4) G(kv) for any reductive group G defined over a number field k and almost all
nonarchimedean places v of k [Kim 2007]. Moreover, if the maximal compact
subgroups K0,v of G(kv) are hyperspecial for almost all v, then there are
uniform constants c and d for which G(kv) has property (PSC) with respect to
K0,v for almost all v.

Remark 14. A general finiteness theorem of Bernstein [Bernstein 1974] (see also
[Bernstein and Zelevinskii 1976; Bushnell 1990, p. 110]) shows (without appealing
to any classification results) that for any open subgroup K of K0, there are, up to
twisting by unramified characters, only finitely many supercuspidal representations
π of G with a nontrivial K -fixed vector. Therefore, there necessarily exists a
number N = N (K ) such that the support of all matrix coefficients (π(g)v, v∨),
v ∈ πK , v∨ ∈ (π∨)K , is contained in B(N ). To prove property (PSC) predicted
by Conjecture 3 this way, it seems necessary to obtain an effective version of
Bernstein’s stabilization theorem (see [Bushnell 2001, Theorem 1]) with a realistic
bound for the exponent nK , namely a bound that is logarithmic in [K ′0 : K

′
].

5. A class of parabolic subgroups

Definition 15. We say that a maximal parabolic subgroup P = MU is nice if there
exists a positive constant c such that for all n > 0, we have

(2) U ∩U Z(M)B(n)⊂
{

B(cn)∪ Pw0Kn if w0 Mw−1
0 = M,

B(cn), otherwise.

In other words, P is nice if in a precise quantitative sense, for a compact subset
� of G, either U ∩U Z(M)� is bounded in terms of �, or Pw0 = P and for a
small open compact subgroup K = K (�) of G the set U ∩U Z(M)� \ Pw0K is
bounded in terms of �.

Our main result concerning this property is the following.

Proposition 16. Suppose that G is split and U is abelian. Then P is nice. Moreover,
if G is defined and split over a number field k, then there is a uniform constant c> 0
such that (2) is satisfied for all local groups G(kv), where v is a nonarchimedean
place of k.
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The assumption that G is split is mainly for convenience and can probably be
suppressed. For the convenience of the reader, we first present a proof in the case
of G = GL(r), where we can simplify the argument by direct matrix computations.
The general case will be dealt with in Section 7 below.

Lemma 17. For G = GL(r), all maximal parabolic subgroups are nice.

Proof. To fix ideas, we define the norm of elements of G and the sets B(n) with
respect to the standard O-lattice in g spanned by the elementary matrices. With this
normalization, we will obtain (2) for c = 2(r + 1). For a matrix X over F we write
‖X‖ (to be distinguished from ‖g‖G for invertible g) for the standard norm of X ,
that is, the maximum of the absolute values of its entries.

Let P be of type (m′,m). We may assume without loss of generality that m ≥ m′,
for otherwise we can apply the automorphism g 7→ w0

t g−1w0 of G. Let

ū =
(

Im′

X Im

)
and suppose that

ū =
(
λIm′ ∗

µ−1 Im

)
g, λ, µ ∈ F∗, g =

(
α β

γ δ

)
∈B(n).

Note that ‖ū‖G ≤ ‖X‖2. Modifying g by a central element (and modifying λ and
µ accordingly), we can assume that 1 ≤ |det g| < qr . Then it is easy to see that
the absolute values of the entries of g are bounded by qn . Note that γ = µX and
δ = µIm . In particular, we have ‖X‖ ≤ qn

|µ|−1.
Suppose first that m > m′. Expanding det g as an alternating sum of products of

entries of g, we see that each product contains at least one entry (in fact, at least
m −m′ entries) from δ as a factor. Thus 1 ≤ |det g| ≤ q(r−1)n

|µ|, which implies
|µ| ≥ q−(r−1)n , and therefore ‖X‖ ≤ qrn and ‖ū‖G ≤ q2rn .

Suppose now that m=m′. We distinguish the two cases |µ|>q−rn and |µ|≤q−rn .
In the first case, we have ‖X‖ ≤ q(r+1)n and ‖ū‖G ≤ q2(r+1)n . Assume therefore
that |µ| ≤ q−rn . The products in the expansion of det g which do not contain an
entry from δ as a factor add up to (−1)m detβ det γ . Therefore,∣∣det g− (−1)m detβγ

∣∣≤ |µ|q(r−1)n
≤ q−n.

On the other hand, we have |det g| ≥ 1. Therefore |det g| = |detβγ |. In particular,
γ is invertible and

|det γ |−1
= |detβγ |−1

|detβ| ≤ |det g|−1qmn
≤ qmn.

It follows that X is invertible and

‖X−1
‖ = |µ|‖γ−1

‖ ≤ |µ||det γ |−1
‖γ ‖m−1

≤ |µ|q(r−1)n
≤ q−n.
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Finally, the identity

ū =
(

X−1 Im

X

)(
−Im

Im

)(
Im X−1

Im

)
shows that ū ∈ Pw0Kn . �

Remark 18. While there are other cases of nice parabolic subgroups (for example,
the maximal parabolic subgroups of Sp(4)), unfortunately not all maximal parabolic
subgroups are nice. As an example, consider

G = Sp(6)=

g ∈ GL(6) : g

 1
1

1
−1

−1
−1

 gt
=

 1
1

1
−1

−1
−1


and let P be the maximal parabolic subgroup of the form P=


 ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗

0 0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 0 0 ∗ ∗
0 0 0 0 ∗ ∗

 ∈ G

.

The equality 1
1

1
a 1
−a 1
−a a 1


=

 1 −a−1

1 1 −a−1

1
1 −1

1
1

 a−1

a−1

1
1

a
a

  1
1

1
1 1

a−1 1
a−1 1 1

 1
1

1
1

−1
−1


shows that  1

1
1

a 1
−a 1
−a a 1

 ∈U ∩U Z(M)K0

for all a ∈ F . However, if
(
∗ ∗ ∗
∗ ∗ ∗
A B C

)
∈ Pw0Kn (with blocks of size 2× 2), then

‖A−1 B‖ ≤ q−n .

6. Matrix coefficients of intertwining operators

We now consider Conjectures 1 and 2 stated in the introduction, and prove some
results in this direction. In particular, we prove Theorem 1.

Definition 19. Let P be a maximal parabolic subgroup of G. We say G has
polynomial growth of matrix coefficients of intertwining operators (PIO) with
respect to P if there exist constants c and d such that for any open subgroup
K ⊂ K0 and any irreducible representation π of M , the degrees of the numerators
of the linear operators MP|P(π, s)K are bounded by c logq [K

′

0 : K
′
] + d .
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If this property is satisfied for all supercuspidal irreducible representations π
of M , we say that G has polynomial growth of supercuspidal matrix coefficients of
intertwining operators (PSIO) with respect to P .

Conjecture 1 amounts to the assertion that every p-adic reductive group G
satisfies property (PIO). It is easy to see that we can replace (PIO) by the weaker
condition (PSIO). More precisely, we have the following.

Lemma 20. Suppose that any Levi subgroup L ⊃ M0 of G (including G itself )
satisfies (PSIO). Then G satisfies (PIO).

Proof. We argue as in the proof of Proposition 5. Let π be an irreducible rep-
resentation of M . By the Jacquet subrepresentation theorem, we can embed π
in an induced representation I M

Q∩M(σ ) for a parabolic subgroup Q ⊂ P of G
with Levi subgroup L ⊂ M and an irreducible supercuspidal representation σ
of L . Consider the intertwining operators MS2|S1(σ, λ) : IS1(σ, λ) → IS2(σ, λ),
λ ∈ a∗L ,C, for parabolic subgroups S1, S2 ∈ P(L). The embedding of π into
I M

Q∩M(σ ) gives rise to an embedding of IP(π, s) into IQ(σ, sχP), and the restric-
tion of MQ|Q(σ, sχP) to IP(π, s) becomes M(π, s). We will bound the degrees
of the matrix coefficients of M(σ, sχP)

K . Let Q = Q0, Q1, . . . , Ql = Q be
a sequence of adjacent parabolic subgroups from Q to Q, and suppose that
1Qi ∩1Qi+1 = {αi }. We can decompose M(σ, sχP) into a product of rank-one
intertwining operators MQi+1|Qi (σ, s〈χP , α

∨

i 〉). Therefore, it is enough to consider
the degrees of the matrix coefficients of MQi+1|Qi (σ, s〈χP , α

∨

i 〉)
K , i = 0, . . . , l− 1.

Fix i and let R = MR NR be the parabolic subgroup generated by Qi and Qi+1.
Let Q′=MR∩ Qi and Q′′=MR∩ Qi+1. Then Q′ and Q′′ are maximal parabolic
subgroups of MR with Levi subgroup L and Q′′ = Q′. By [Waldspurger 2003,
p. 284, (14)], the matrix coefficients of MQi+1|Qi (σ, s〈χP , α

∨

i 〉)
K are given by those

of MQ′|Q′(σ, s〈χP , α
∨

i 〉)
K∩MR . The lemma follows. �

Theorem 21. Suppose that P = MU is a nice maximal parabolic subgroup of G
and that M satisfies property (PSC). Then G satisfies (PSIO) with respect to P.

Proof. Let π be a supercuspidal representation of M . Assume that K ′ = K ′n , n > 0,
a normal subgroup of K0. Let

ϕ ∈ I K0
P∩K0

(π |M∩K0)
K ′n and ϕ∨ ∈ I K0

P∩K0
(π∨|M∩K0)

K ′n .

This is equivalent to ϕ(k) ∈ πM∩K ′n and ϕ∨(k) ∈ (π∨)M∩K ′n for all k ∈ K0. We
extend these functions to functions ϕs ∈ IP(π, s) and ϕ∨s ∈ IP(π

∨, s). Then the
matrix coefficient (M(π, s)ϕs, ϕ

∨
s ) can be computed as(

M(π, s)ϕs, ϕ
∨

s
)
=

∫
K0

(
(M(π, s)ϕs)(k), ϕ∨(k)

)
dk =

∫
U
|χP |(ū)s f (ū) dū,
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with

f (ū)=
∫

K0

(
ϕ0(ūk), ϕ∨(k)

)
dk.

Note that f is right U ∩ K ′n-invariant. Since M satisfies property (PSC), there is
a constant c1 > 0 such that the matrix coefficients (π(m)ϕ(k ′), ϕ∨(k)), m ∈ M ,
k, k ′ ∈ K0, all vanish for m 6∈BM(c1n). Furthermore, there exists a constant c2 > 0
with BM(l)⊂ Z(M)B(c2l) for all l > 0. Applying the Iwasawa decomposition to ū,
it follows that the support of f is contained in U ∩U Z(M)B(c1c2n). Consider
first the case where Pw0 6= P . Because P is nice, we conclude from the above that
the support of f is contained in U ∩B(cc1c2n) for the constant c of Definition 15.
Thus, up to a constant, the integral becomes a finite sum∑

ū∈U∩B(cc1c2n)/U∩K ′n

|χP |(ū)s f (ū),

which is a polynomial in q−s of degree at most − logq minU∩B(cc1c2n)|χP | � n.
We still need to consider the case Pw0 = P . Let ωπ be the central character of

π . We take an element a ∈ Z(M) as follows. If

(3) ωπ
∣∣

Z(M)1 6≡ ωw0π

∣∣
Z(M)1

then we take any a ∈ Z(M)1 = Z(M) ∩ K0 such that ωπ (a) 6= ωπ (b) where
b = w−1

0 aw0 ∈ Z(M). Otherwise we take a which generates T0 ∩ Z(M) modulo
Z(G)Z(M)1 and for which |χP |(a)= |α(a)|

1
2 = q−m < 1. We have m ∈ 1

2 Z>0.
We take n0 ≥ 0 such that K ′n ∩ bK ′nb−1

⊃ K ′n+n0
and Z(G)K ′n ⊃ Z(G)Kn+n0

for all n.
Note that under the action of K0 the space I K0

P∩K0
(π∨|M∩K0)

K ′n+n0 is spanned by
functions ϕ∨ with support (P ∩ K0)K ′n+n0

. Thus, we can assume that ϕ∨ has this
property. Hence, ϕ∨ is determined by its value at the identity and

(M(π, s)ϕs, ϕ
∨

s )= c(M(π, s)ϕs(e), ϕ∨(e))= c
∫

U
|χP |(ū)s(ϕ0(ū), ϕ∨(e)) dū

for some constant c. If ϕ vanishes at w0, then the last integrand vanishes on
U ∩ Pw0K ′n ⊃U ∩ Pw0Kn+n0 , and we can argue as in the case Pw0 6= P above.

Otherwise, observe that

(M(π, s)IP(b, s)ϕs,ϕ
∨

s )= (IP(b,−s)M(π, s)ϕs,ϕ
∨

s )

= c(M(π, s)ϕs(b),ϕ∨(e))= δ
1
2

P
(b)ωs(b)(M(π, s)ϕs,ϕ

∨

s )

= δ
1
2
P(a)ωs(b)(M(π, s)ϕs,ϕ

∨

s ),
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where ωs is the character ωπ |χP |
−s
= ωπ |χP |

s of Z(M). Thus, if we consider the
operator

1a,s = ωs(b−1)δ
−

1
2

P (a)I (b, s)−ωs(b−1a) Id

on IP(π, s) then 1a,sϕs vanishes at w0, while

(M(π, s)1a,sϕs, ϕ
∨

s )= (1−ωs(b−1a))(M(π, s)ϕs, ϕ
∨

s ).

If condition (3) holds then

(M(π, s)ϕs, ϕ
∨

−s)= (1−ωπ (b
−1a))−1(M(π, s)1a,sϕs, ϕ

∨

s ),

and since 1a,sϕs ∈ IP(π, s)K ′n , we reduce to the previous case. Otherwise,

(M(π, s)ϕs, ϕ
∨

−s)= (1−ωπ (b
−1a)q−2ms)−1(M(π, s)1a,sϕs, ϕ

∨

s )

and 1a,sϕs ∈ IP(π, s)K ′n+n0 . So once again, we reduce to the previous case. �

Remark 22. The argument also gives a simple proof of the rationality of M(π, s) for
supercuspidal π and nice P . More precisely, it shows that M(π, s) is a polynomial
in q−s if either Pw0 6= P or ωπω−1

w0π
|Z(M)1 6= 1. Otherwise,(

1−ωπ (w−1
0 a−1w0a)q−2ms)

is a polynomial in q−s , where a and m are as above.

Remark 23. In the global situation of Conjecture 2, the proof shows that the
constants c and d appearing in the definition of property (PSIO) can be chosen
independently of the nonarchimedean place v, if this is the case for the constants
appearing in Definition 7 (definition of property (PSC)) and Definition 15. By
the fourth part of Corollary 13, for property (PSC) this uniformity statement is
always satisfied after omitting finitely many places. Uniformity of the constant in
Definition 15 is satisfied in the cases covered by Proposition 16.

Proof of Theorem 1. Lemma 17 and Corollary 13 show that in the case of G=GL(r),
the conditions of Theorem 21 hold for all maximal parabolic subgroups of G.
Therefore, G satisfies property (PSIO). Lemma 20 finishes the argument. The
assertion on the constants c and d is clear. �

7. Parabolic subgroups with abelian unipotent radical

In this section, we prove Proposition 16 in general. Parabolic subgroups with
Abelian unipotent radical and the associated action of their Levi subgroup on the
radical have been studied by Richardson, Röhrle and Steinberg [1992]. We recall
their results and extend them as necessary.
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Let G be a split reductive group over F . It will be convenient to write g in terms
of a Chevalley basis [Serre 2001]. Namely, choose Xα ∈ gα, α ∈ 8 = R(T0, G),
such that

[Xα, Xβ] =


Nα,βXα+β if α+β ∈8,
Hα if α =−β,
0 otherwise.

Here, the structure constants Nα,β , α, β, α+β ∈8, satisfy Nα,β =±(p+1), where
p is the largest integer with β − pα ∈8.

Obviously, to prove Proposition 16 we can pass to the adjoint group, which
is a direct product of simple groups. Therefore, suppose from now on that G is
simple and adjoint, P is maximal, and U is abelian. (Actually, the maximality
of P is then automatic.) Let K0 be the stabilizer of the O-lattice spanned by the
Chevalley basis, which is a hyperspecial maximal compact subgroup of G. Let α
be the simple root defining P . Write m= Lie M , u= Lie U , and u= Lie U , so that
g= u⊕m⊕ u. Denote by 8U = R(T0,U) the roots in u, namely the roots whose
α-coefficient in the expansion with respect to 10 is positive. (Since U is abelian,
this coefficient is necessarily 1.) Let ρ be the highest root. We have α, ρ ∈8U . The
roots orthogonal to ρ form a parabolic root subsystem 81 which contains a unique
irreducible constituent 8′1 ⊃8U ∩81. If G is not simply laced, we write ρs for the
highest short root and δ= ρ−ρs =−sρρs ∈8. We have ρs, 2ρs−ρ=−sρsρ ∈8U .

Lemma 24. Suppose that G is not simply laced and let ρ, ρs and δ be as before.
Then the following conditions are equivalent for γ ∈8U :

(1) γ + δ, γ + 2δ ∈8U .

(2) γ is long and 〈δ, γ ∨〉 = −1.

(3) γ is long, 〈ρ, γ ∨〉 = 0, and 〈ρs, γ
∨
〉 = 1.

(4) γ is the highest root in 8′1.

(5) γ = 2ρs − ρ.

Proof. The first three conditions are clearly equivalent and they hold for γ = 2ρs−ρ.
It remains to consider the cases of Bn and Cn . In the Bn case ρ = 2ε1, ρs = ε1+ ε2,
δ = ε1− ε2, γ = 2ε2. In the Cn case ρ = ε1+ ε2, ρs = ε1, δ = ε2, γ = ε1− ε2. �

We fix once and for all a tuple (β1, . . . , βr ) of mutually orthogonal long roots in
8U with r maximal.

Theorem 25 [Richardson et al. 1992, Theorem 2.1]. (1) For any 0 ≤ s ≤ r , the
Weyl group of M acts transitively on the set of s-tuples of mutually orthogonal
long roots in 8U .
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(2) Fix ui ∈ Uβi \ {0}. Then
{∏s

i=1 ui
}r

s=0 is a set of representatives for the M-
orbits in U under the conjugation action. (The integer s is called the rank of
the orbit.)

The orbit corresponding to s = r is the open orbit of the M-action on U . It is the
intersection with U of the Richardson orbit associated to P . The orbit corresponding
to s = 0 is the zero orbit.

Remark 26. The possibilities (up to isogeny) for G and P have been enumerated
in [Richardson et al. 1992, Remark 2.3], and the corresponding values of r are
listed in [Richardson et al. 1992, Table 1]. We can explicate the orbit classification
of Theorem 25 case by case.

In the cases where G = GL(m), M = GL(k)×GL(m− k), U is the space of
k× (m− k) matrices, and 0 < k < m, or G = Sp(2m), M = GL(m), and U is
the space of symmetric m×m matrices, the notion of rank given by Theorem 25
coincides with the usual notion for matrices. In the case G= SO(2m), M =GL(m),
and U is the space of antisymmetric m×m matrices, the rank in our sense is one
half of the rank of the matrix. In the case G = SO(m), M = GL(1)×SO(m− 2),
and U is a quadratic space of dimension m − 2, the rank is one for a nonzero
isotropic vector and two for anisotropic vectors.

There are (up to automorphisms of G) two exceptional cases. For G = E6,
M = GSpin(10), and U one of the 16-dimensional half-spin representations of M,
we have r = 2. The nonzero pure spinors (i.e., the spinors in the orbit of 1, the unit
element of the exterior algebra) have rank one, and the remaining nonzero spinors
have rank two. The orbit dimensions are 0, 11, and 16, respectively [Igusa 1970,
Proposition 2]. For G = E7, M = G E6, and U the 27-dimensional representation
of M, we have r = 3. The derived group of M leaves a nonzero cubic form f on
U invariant, and this form is unique up to a scalar. The rank is one for the nonzero
vectors in the singular locus of the hypersurface f =0, two for the remaining nonzero
vectors with f = 0, and three for the vectors with f 6= 0 [Chevalley 1951]. The orbit
dimensions are 0, 17, 26, and 27, respectively [Richardson et al. 1992, Table 2].

Note that the second part of Theorem 25 does not apply to the M-orbits in U .
However, the proof of [Richardson et al. 1992, Theorem 2.1] (see also [loc. cit.,
Theorem 5.3]) shows that fixing β1, . . . , βr as above, it is still true that any M-orbit
in U of rank s contains a representative of the form

∏s
i=1 ui for some ui ∈Uβi \{0}.

More precisely, we have:

Lemma 27. Let β1, . . . , βr be as above. Then there exists a compact set ω ⊂ M
with the following property: for all X ∈ u, there is m ∈ ω such that Ad(m)X is a
linear combination of Xβ1, . . . , Xβr . If either G is simply laced or p 6= 2, then we
can take ω = KM = M ∩ K0.
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Proof. Write X =
∑

β∈8U
cβ(X)Xβ . Let ρ ∈8U be the highest root. We follow the

argument of [Richardson et al. 1992, Proposition 2.13]. The proof is by induction
on the rank of G. The case X = 0 is trivial, so we assume that X 6= 0. The
first step is to show that in the Ad KM -orbit of X , we can choose X ′ such that
|cβ(X ′)| ≤ D|cρ(X ′)| for all β ∈ 8U , where D is a fixed constant which can be
taken to be 1 if p 6= 2 or if G is simply laced. This is done as follows. Let β0 ∈8U

be such that |cβ0(X)| is maximal. Applying a Weyl element of M , we can assume
that either β0 = ρ or β0 = ρs (in the nonsimply laced case). If |cρ(X)| = |cβ0(X)|
(and in particular, if G is simply laced), then we are done. Assume that this is
not the case and let δ = ρ− ρs and X ′ = Ad(uδ(t))X with t ∈ O. It follows from
Lemma 24 and the commutation relations that

cγ (X ′)=


cρ(X)± 2tcρs (X)+ t2c2ρs−ρ(X) if γ = ρ,

cγ (X)± tcγ−δ(X) if γ 6= ρ and γ − δ ∈8,

cγ (X) if γ − δ /∈8.

Therefore, we can choose t ∈ O∗ such that |cρ(X ′)| = maxβ∈8U |cβ(X
′)| if p 6= 2

and |cρ(X ′)| ≥ 1
2 |2|maxβ∈8U |cβ(X

′)| if p = 2.
The second step is to clear the coefficients of all roots which are not orthogonal

to ρ by conjugating by suitable unipotent elements. This is done as in [Richardson
et al. 1992, p. 655], except that our condition on X ′ guarantees that the conjugating
elements are taken from KM (or at least from a bounded set, if p = 2 and G is not
simply laced). The rest of the proof (the induction step) follows [loc. cit.]. �

Let w = sβ1 . . . sβr . Note that the reflections sβi commute with each other, since
the roots βi are mutually orthogonal. For any β ∈8U , let N(β) be the multiset

N(β)=

{
{βi : 〈β, β

∨

i 〉 = 1} if β 6= β1, . . . , βr ,

{βi , βi } if β = βi .

Thus, N(β) consists of the roots βi which are not orthogonal to β, counted with
multiplicity 〈β, β∨i 〉. Note that wβ = β −

∑
N(β) for any β ∈8U . Also, for any

β ∈8U ,

(4) |N(β)| =

r∑
i=1

〈β, β∨i 〉,

and by [Richardson et al. 1992, Lemma 2.10], we have 1≤ |N(β)| ≤ 2.
Suppose that β, γ ∈8U are distinct and β is long. Then the following conditions

are equivalent:

(1) 〈γ, β∨〉 6= 0,

(2) 〈γ, β∨〉 = 1,



452 TOBIAS FINIS, EREZ LAPID AND WERNER MÜLLER

(3) γ −β ∈8, and

(4) γ −β = sβ(γ ).

For any X ∈ u, denote by DX the double commutator map

DX =
1
2 ad X

∣∣
m
◦ ad X

∣∣
u
∈ HomF (u, u).

Analogously, for X ∈ u, we denote by DX the double commutator map

DX =
1
2 ad X

∣∣
m
◦ ad X

∣∣
u
∈ HomF (u, u).

Lemma 28. Let X =
∑r

i=1 ti Xβi . Then

DX X−β =
{

0 if |N(β)| = 1,
ti t j X−wβ if N(β)= {βi , β j }.

Proof. The statement is clear if β = βi , since βi −β j 6∈8 for all j .
Now suppose that β 6= β1, . . . , βr . Then

ad X (X−β)=
∑

i :βi∈N(β)

ti Xβi−β,

and therefore
DX (X−β)= 1

2

∑
i, j :βi∈N(β),
βi+β j−β∈8U

ti t j Xβi+β j−β .

Note that if βi ∈N(β) and δ= βi+β j−β ∈8U , then i 6= j , since βi is long. If we
set γ = βi −β =−sβiβ, then δ = β j +γ and sβi δ = β j −β ∈8. Thus, β j ∈N(β)

and δ =−wβ. �

Corollary 29. For any X ∈ u, we have ‖DX‖Hom(u,u)�‖X‖2.

Lemma 30. The following conditions are equivalent:

(1) P is conjugate to P .

(2) Pw0 = P .

(3) Pw = P .

(4) |N(β)| = 2 for all β ∈8U .

(5) 1
2

∑r
i=1 β

∨

i is the fundamental coweight with respect to P .

(6) 1
2

∑r
i=1 βi is the fundamental weight with respect to P .

(7) There exists X ∈ u such that DX is invertible.

If these conditions are satisfied, then DX is invertible if and only if X belongs to the
open Ad M-orbit in u.



ON THE DEGREES OF MATRIX COEFFICIENTS OF INTERTWINING OPERATORS 453

Proof. The equivalence of the first four conditions follows from [Richardson et al.
1992, Proposition 3.12]. The equivalence of the last and the fourth conditions, as
well as the last assertion of the lemma, follows from Lemma 28. The equivalence
between the fourth and fifth conditions follows from (4). Finally, the equivalence
between the fifth and the sixth conditions is immediate, since α is a long root. �

Let H be the central element of m such that ad H
∣∣
u
= 2 Idu.

Lemma 31. Suppose that Pw0 = P . Then

(1) We have H =
∑r

i=1 Hβi .

(2) The open (P, P) Bruhat cell is Pw0U.

(3) We have

Pw0U = {g ∈ G : proju ◦Ad(g)
∣∣
u

is invertible}.

(4) For any g ∈ Pw0U , the U-part in the Bruhat decomposition is given by exp Y ,
where 2Y =

(
proju ◦Ad(g)

∣∣
u

)−1
(proju(Ad(g)H)).

(5) In particular, for X ∈u, we have exp X ∈ Pw0U if and only if X lies in the open
Ad M-orbit, and in this case the U-part of exp X is exp Y for Y = D−1

X
(X).

Proof. The first part follows from the previous lemma. The second part is clear. Let
C=

{
g ∈ G : proju ◦Ad(g)

∣∣
u

is invertible
}
. Clearly, C is left and right P-invariant

and w0 ∈ C. Therefore C is a union of (P, P) double cosets and Pw0U ⊂ C.
The fourth part is also clear by direct computation. By [Richardson et al. 1992,
Theorem 1.1], every (P, P) double coset intersects U in (the set of F-rational points
of) a single M-orbit under conjugation. Thus, in order to show that C = Pw0U ,
it is enough to show that C ∩U is (the set of F-rational points of) an M-orbit.
However, C ∩U = {exp X : DX is invertible}. Therefore, the statement follows
from Lemma 30. �

Corollary 32. Let θ be the Cartan involution of G and set d = #{β ∈ 8U : βi ∈

N(β)}, which is independent of i . If Pw0 = P , then d = 2 dim U/r . For X =∑r
i=1 ti Xβi , we have

det(θ ◦ DX )=

{
(t1 . . . tr )d if Pw = P,
0 otherwise.

Remark 33. Suppose that Pw0 = P . The character
∏r

i=1 βi of T0 is trivial on M ′

and therefore extends to a rational character ψ of M. The polynomial
r∑

i=1

ti Xβi 7→ t1 . . . tr

extends to an irreducible (Ad M, ψ)-equivariant polynomial 1 on u.
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For n ∈ NM(T ) representing w ∈W M and β ∈8U , let fn,β be the scalar so that
Ad(n)Xβ = fn,βXwβ . Clearly fnt,β = β(t) fn,β . In the simply laced case, we have

1
(∑
β∈8U

cβXβ
)
=

∑
w∈NM (T0)/T0

ψ(nw)
cwβ1

fnw,β1

. . .
cwβr

fnw,βr

,

where nw is any representative of w in M . The polynomial 1 is the determinant in
the GL(m) or Sp(2m) case, the Pfaffian in the SO(4m) case, the canonical quadratic
form in the SO(m) case, and the relatively invariant cubic form in the E7 case.

Corollary 34. Assume that Pw0 = P .

(1) The open orbit in u is the principal open set defined by det θ ◦ DX .

(2) Assume that X ∈ u is in the open orbit. Then the Jacobson–Morozov parabolic
subgroup of X is P .

(3) Assume that X =
∑r

i=1 ti Xβi with t1, . . . , tr 6= 0. Let X =
∑r

i=1 t−1
i X−βi .

Then (X, H, X) is an SL(2)-triple.

Remark 35. In [Kac 1980], the double commutator map has been used to obtain
relatively invariant polynomials in a more general situation.

Finally, we are ready to prove Proposition 16.

Proof of Proposition 16. Suppose that ū ∈ U ∩ Z(M)UB(n) and write ū = zub,
where z ∈ Z(M), u ∈ U , and b ∈B(n). Let λ ∈ F∗ be such that Ad(z)

∣∣
u
= λ Idu.

Also write ū = exp X , where X ∈ u. As Ad(exp X) =
∑
∞

m=0(1/m!)(ad X)m , we
have

(5) Idu− ad X
∣∣
u
+ DX = Ad(ū−1)

∣∣
u
= Ad(b−1)Ad(zu)−1∣∣

u
= λ−1 Ad(b−1)

∣∣
u
.

It follows that max(1, ‖DX‖)≤ |λ|
−1
‖b‖, and therefore by Corollary 29 (applied

to P) that max(1, ‖X‖)2� |λ|−1
‖b‖, or equivalently,

|λ|‖b‖max(1, ‖X‖)�‖b‖2 max(1, ‖X‖)−1.

We can write (5) in the form

λAd(b) ◦ DX = (Idg−1)
∣∣
u
,

where1=λAd(b)◦(Id− ad X)∈End(g). Suppose that ‖X‖�‖b‖2. Then ‖1‖�
|λ|‖b‖max(1, ‖X‖) < 1, and therefore Id−1 is invertible and ‖(Id−1)−1

‖ = 1.
It follows that DX is invertible, and therefore by Lemma 30 we infer that Pw0 = P .
Moreover, D−1

X
= λ(Id−1)−1

◦ Ad(b)
∣∣
u
, and therefore ‖D−1

X
‖ ≤ |λ|‖b‖. By

Lemma 31, we get ū ∈ Pw0U and the U -part in the Bruhat decomposition of ū is
exp Y for Y = D−1

X
(X). Hence ‖Y‖≤ |λ|‖b‖‖X‖�‖X‖−1

‖b‖2. This immediately
implies Proposition 16. �
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COMPARISON OF COMPACT INDUCTION
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GUY HENNIART AND MARIE-FRANCE VIGNERAS

In memory of Jon Rogawski

I (GH) have very fond memories of an extraordinary expedition to the
Grand Canyon with Jon. I have in mind these happy remembrances, and
others of a more mathematical kind, in dedicating the present paper to him.

I (MFV) first met Jon in Paris when he was a student visiting École Normale
Supérieure; at that time, he was already gifted, charming, fluent in French,
and full of music and mathematics. During another visit that Jon made to
ENS, we discussed in detail his preprint on the Jacquet–Langlands local
correspondence for division algebras; my collaboration with Bernstein,
Deligne and Kazhdan emerged from this. Afterwards, I always looked
forward to seeing him at scientific meetings, and I was enriched by being
welcomed by his wife Julie and their four children to their home in Los
Angeles.

We and our French colleagues all share a sense of great loss.

Let F be a nonarchimedean locally compact field of residual characteris-
tic p, let G be a connected reductive F-group, and let K be a special para-
horic subgroup of G(F). We choose a parabolic F-subgroup P of G with
Levi decomposition P = MN in good position with respect to K . Let C be an
algebraically closed field of characteristic p, and V an irreducible smooth
C-representation of K . We investigate the natural intertwiner from the com-
pact induced representation c-IndG(F)

K V to the parabolic induced represen-
tation IndG(F)

P(F)

(
c-IndM(F)

M(F)∩K VN(F)∩K
)
. Under a regularity condition on V ,

we show that the intertwiner becomes an isomorphism after localization at
a specific Hecke operator. When F has characteristic 0, G is F-split and K
is hyperspecial, the result was essentially proved by Herzig. We define the
notion of K -supersingularity for an irreducible smooth C-representation of
G(F) which extends Herzig’s definition for admissible irreducible represen-
tations and we give a list of irreducible representations which are neither
supercuspidal nor K -supersingular.
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Keywords: representations modulo p of reductive p-adic groups, compact induction, parabolic

induction, Satake isomorphism.
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1. Introduction

Let F be a nonarchimedean locally compact field of residual characteristic p, let
G be a reductive connected F-group, and let C be an algebraically closed field
of characteristic p. We are interested in smooth admissible C-representations of
G(F). Two induction techniques are available: compact induction c-IndG(F)

K from
a compact open subgroup K of G(F) and parabolic induction IndG(F)

P(F) from a
parabolic subgroup P(F) with Levi decomposition P(F)= M(F)N (F). Here we
want to investigate the interaction between the two inductions.

More specifically, assume that G(F)= P(F)K and

P(F)∩ K = (M(F)∩ K )(N (F)∩ K ).

We construct (Definition 2.1), for any finite-dimensional smooth C-representation
V of K , a canonical intertwiner

IV : c-IndG(F)
K V → IndG(F)

P(F)

(
c-IndM(F)

M(F)∩K VN (F)∩K
)
,

where VN (F)∩K stands for the N (F)∩K -coinvariants in V , and a canonical algebra
homomorphism

S′ :H(G(F), K , V )→H
(
M(F),M(F)∩ K , VN (F)∩K

)
,

where, as in [Henniart and Vigneras 2011], the Hecke algebra H(G(F), K , V ) is
EndG(F) c-IndG(F)

K V seen as an algebra of double cosets of K in G, and similarly
for

H
(
M(F),M(F)∩ K , VN (F)∩K

)
.

By construction, (
IV (8( f ))

)
(g)= S′(8)

(
IV ( f )(g)

)
,

for f ∈ c-IndG(F)
K V,8 ∈H(G(F), K , V ), g ∈ G(F).



COMPARISON OF COMPACT INDUCTION WITH PARABOLIC INDUCTION 459

Let V ∗ be the contragredient representation of V . We constructed in [Henniart
and Vigneras 2011] a Satake homomorphism

S :H(G(F), K , V ∗)→H
(
M(F),M(F)∩ K , (V ∗)N (F)∩K ).

Here we show that S′ and S are related by a natural anti-isomorphism of Hecke
algebras (Proposition 2.3).

We study IV further in the particular case where K is a special parahoric subgroup
and V is irreducible. Such a V is trivial on the pro-p-radical K+ of K . The
quotient K/K+ is the group of k-points of a connected reductive k-group Gk ,
so that we can use the theory of finite reductive groups in natural characteristic.
We write K/K+ = G(k). The image of P(F)∩ K = P0 in G(k) is the group of
k-points of a parabolic subgroup of Gk . We write P0/P0 ∩ K+ = P(k), and we
use similar notations for M and N , for the opposite parabolic subgroup P = MN
(Section 4A), and for a minimal parabolic F-subgroup B of G contained in P , of
Levi decomposition B = ZU .

We say that V is P-regular when the stabilizer PV (k) in G(k) of the line V U (k)

is contained in P(k) (this does not depend on the choice of B). An equivalent
definition is that, for h ∈ K which does not belong to P0 P0, the kernel of the
quotient map V → VN (k) contains hV N (k) (Definition 3.6 and Corollary 3.19).

We choose a maximal F-split torus S in M such that K stabilizes a special vertex
in the apartment of G(F) associated to S. We choose an element s ∈ S(F) which is
central in M(F) and strictly N -positive, in the sense that conjugation by s strictly
contracts the compact subgroups of N (F). There is a unique Hecke operator TM in
H
(
M(F),M0, VN (k)

)
with support in M0s and value at s the identity morphism of

VN (k). We prove (Proposition 4.5):

Proposition 1.1. The map S′ is a localization at TM .

This means that S′ is injective, that TM belongs to the image of S′ and is central
and invertible in H

(
M(F),M0, VN (k)

)
, and that

H
(
M(F),M0, VN (k)

)
= S′

(
H(G(F), K , V )

)
[T−1

M ].

This is a consequence of the analogous property of S proved in [Henniart and
Vigneras 2011].

In this particular case, following a suggestion of Abe, we show that IV is injective.
We introduce the localization 2 of IV at TM . As IV is injective, its localization 2
is injective. Our main theorem is this:

Theorem 1.2 (Theorem 4.6). The map

2 :H
(
M(F),M0,VN (k)

)
⊗H(G(F),K ,V ),S′c-IndG(F)

K V→ IndG(F)
P(F)

(
c-IndM(F)

M(F)∩K VN (k)
)

is bijective if V is P-regular.
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The special case when F has characteristic 0, G is F-split, and K is hyperspecial
was proved in [Herzig 2011] (see also [Abe 2011]). In this case the Hecke algebras
are commutative.

Writing ZG(V ) for the center of H(G(F), K , V ) and ZM(VN (k)) for the center
of H

(
M(F),M(F)∩ K , VN (k)

)
, the theorem implies by specialization:

Corollary 1.3. If V is P-regular, for any right ZM(VN (k))-module χ , the represen-
tations of G(F)

χ ⊗ZG(V ),S′ c-IndG(F)
K V and IndG(F)

P(F)

(
χ ⊗ZM (VN (k)) c-IndM(F)

M(F)∩K VN (k)
)

are isomorphic.

To prove the theorem, we follow the method of Herzig and decompose IV as the
composite IV = ζ ◦ ξ of two G(F)-equivariant maps: the natural inclusion ξ of
c-IndG(F)

K V in c-IndG(F)
K

(
c-IndG(k)

P(k) VN (k)
)

and the natural map

ζ : c-IndG(F)
K

(
c-IndG(k)

P(k) VN (k)
)
→ IndG(F)

P(F)

(
c-IndM(F)

M(F)∩K VN (k)
)
,

associated to the quotient map c-IndG(k)
P(k) VN (k)→ VN (k) (see (2) below). We write

P for the parahoric subgroup inverse image of P(k) in K and TP for the Hecke
operator in H(G(F),P, VN (k)) with support PsP and value at s the identity of
VN (k). With no regularity assumption on V , we prove

ζ ◦ TP = TM ◦ ζ.

Seeing c-IndG(F)
K

(
c-IndG(k)

P(k) V
)
= c-IndG(F)

P VN (k) and IndG(F)
P(F)

(
c-IndM(F)

M(F)∩K VN (k)
)

as C[T ]-modules via TP and TM , the map ζ is C[T ]-linear, and using Corollary 6.5
we prove:

Theorem 1.4. The localization at T of ζ is an isomorphism.

To study ξ , we consider the Hecke operator TG in H(G(F), K , V ) with support
K sK and value at s the natural projector V → V N (k), and the Hecke operator TK ,P

from c-IndG(F)
P VN (k) to c-IndG(F)

K V with support K sP and value at s given by
the natural isomorphism VN (k)→ V N (k). With no regularity assumption on V , we
prove

TK ,P ◦ ξ = TG .

Assuming that V is P-regular, we prove

ξ ◦ TK ,P = TP,

S′(TG)= TM .

Seeing c-IndG(F)
K V as a C[T ]-module via TG = (S

′)−1(TM), the map ξ is C[T ]-
linear and:
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Theorem 1.5. The localization at T of ξ is an isomorphism when V is P-regular.

These two theorems imply that 2 is an isomorphism when V is P-regular.

Following Herzig and Abe, we define the notion of K -supersingularity.

Definition 1.6. We say that an irreducible smooth C-representation π of G(F) is
K -supersingular when

H
(
M(F),M0, VN (k)

)
⊗H(G(F),K ,V ),S′ HomG(F)

(
c-IndG(F)

K V, π
)
= 0

for any irreducible smooth C-representation V of K and any standard Levi subgroup
M 6= G.

If π is a smooth irreducible C-representation of G(F), we say that π is super-
cuspidal if π is not a subquotient of a proper parabolically induced representation
IndG(F)

P(F) τ , P 6= G, from an irreducible smooth C-representation τ . Note that for
an admissible π , our requirement for supercuspidality is stronger than the one
used in [Herzig 2011, Definition 9.12]: he only asks that π not be a subquotient
of a proper parabolically induced representation from an irreducible admissible
C-representation. In their context and with Herzig’s definition, Herzig and Abe
[Abe 2011, Corollary 5.10] show that, for admissible π , K -supersingularity is
equivalent to supercuspidality. We expect that the same is true, for admissible π , in
our more general context and with our definition. Here are the partial results we
have in that direction:

Theorem 1.7. Let π be an irreducible smooth C-representation of G(F).

i. If π is isomorphic to a subrepresentation or is an admissible quotient of
IndG(F)

P(F) τ as above, then π is not K -supersingular.

ii. If π is admissible and

(1) H
(
M(F),M0, VN (k)

)
⊗H(G(F),K ,V ),S′ HomG(F)

(
c-IndG(F)

K V, π
)
6= 0

for some Q-regular irreducible subrepresentation V of π |K and some standard
parabolic subgroups P = MN ⊂ Q = L N ′ 6= G, then π is a quotient of
IndG(F)

Q(F) τ for an admissible irreducible smooth C-representation τ of L(F).

2. Generalities on the Satake homomorphisms

In this chapter we give a functorial construction of Herzig’s Satake transform S′

in a rather general situation. Let C be a field, G a locally profinite group, K
an open subgroup of G, and P a closed subgroup of G satisfying the “Iwasawa
decomposition” G = K P . We choose a smooth C[K ]-module V . As in [Henniart
and Vigneras 2011], we assume that P is the semidirect product of a closed normal
subgroup N and of a closed subgroup M , and that K ∩ P is the semidirect product
of N ∩ K by M ∩ K . We also impose:
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A1) Each double coset K gK in G is the union of a finite number of cosets K g′

and the union of a finite number of cosets g′′K (the first condition for g is
equivalent to the second for g−1).

A2) V is a finite-dimensional C-vector space.

The smooth C[K ]-module V gives rise to a compactly induced representation
c-IndG

K V and a smooth C[P]-module W gives rise to the full smooth induced
representation IndG

P W . We consider the space of intertwiners

J := HomG
(
c-IndG

K V, IndG
P W

)
.

By Frobenius reciprocity for compact induction (as K is open in G), the C-module
J is canonically isomorphic to HomK

(
V,ResG

K IndG
P W

)
; to an intertwiner I we

associate the function v 7→ I [1, v]K , where [1, v]K is the function in c-IndG
K V with

support K and value v at 1. By the Iwasawa decomposition and the hypothesis that K
is open in G, we get by restricting functions to K an isomorphism of C[K ]-modules
from ResG

K IndG
P W onto IndK

P∩K (ResP
P∩K W ). Using now Frobenius reciprocity for

the full smooth induction IndK
P∩K from P ∩ K to K , we finally get a canonical

C-linear isomorphism
J' HomP∩K (V,W )

(we now omit mentioning the obvious restriction functors in the notation); this map
associates to an intertwiner I the function v 7→ (I [1, v]K )(1).

We could have proceeded differently, first applying Frobenius reciprocity to
IndG

P W , getting J' HomP
(
c-IndG

K V,W
)
, then identifying ResG

P c-IndG
K V with

c-IndP
P∩K V , and finally applying Frobenius reciprocity to c-IndP

P∩K V . In this
way we also obtain an isomorphism of J onto HomP∩K (V,W ), which is readily
checked to be the same as the preceding one.

Assume also that W is a smooth C[M]-module, seen as a smooth C[P]-module
by inflation. Then IndG

P W is the parabolic induction of W , and HomP∩K (V,W )

identifies with HomM∩K (VN∩K ,W ), where VN∩K is the space of coinvariants of
N ∩K in V . With that identification, an intertwiner I is sent to the map from VN∩K

to W sending the image v of v ∈ V in VN∩K to (I [1, v]K )(1). By Frobenius reci-
procity again, HomM∩K (VN∩K ,W ) is isomorphic to HomM

(
c-IndM

M∩K VN∩K ,W
)
,

so overall we obtain an isomorphism

(2) j : J= HomG
(
c-IndG

K V, IndG
P W

)
→ HomM

(
c-IndM

M∩K VN∩K ,W
)
,

which associates to I ∈ J the C[M]-linear map sending [1, v]M∩K to (I [1, v]K )(1).
The reciprocal isomorphism sends I ′ ∈ HomM

(
c-IndM

M∩K VN∩K ,W
)

to the element
in HomG

(
c-IndG

K V, IndG
P W

)
which, for v ∈V , sends [1, v]K to the unique function

with value I ′([1, kv]M∩K ) at k ∈ K .
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For W = c-IndM
M∩K VN∩K , the isomorphism j is written jV :

jV : HomG
(
c-IndG

K V, IndG
P
(
c-IndM

M∩K VN∩K
))
→ EndM

(
c-IndM

M∩K VN∩K
)
.

Definition 2.1. We define IV in HomG
(
c-IndG

K V, IndG
P
(
c-IndM

M∩K VN∩K
))

such
that jV (IV ) is the unit element of EndM

(
c-IndM

M∩K VN∩K
)
. The intertwiner IV is

determined by the condition

(3) (IV [1, v]K )(1)= [1, v]M∩K

for all v ∈ V .

The isomorphism j is natural in V and W . The functor

FV :W 7→ HomG
(
c-IndG

K V, IndG
P W

)
from the category of smooth C[M]-modules to the category of sets is representable
by c-IndM

M∩K VN∩K . Let now V ′ be another finite-dimensional smooth C[K ]-
module. Any G-intertwiner

b : c-IndG
K V → c-IndG

K V ′

gives a morphism of functors FV ′→ FV . By the representability of FV and FV ′ ,
there is then a unique C[M]-morphism

S′(b) : c-IndM
M∩K VN∩K → c-IndM

M∩K V ′N∩K

such that the diagram

(4)

HomG
(
c-IndG

K V ′, IndG
P W

) j ′ //

I ′ 7→I ′◦b
��

HomM
(
c-IndM

M∩K V ′N∩K ,W
)

I ′ 7→I ′◦S′(b)
��

HomG
(
c-IndG

K V, IndG
P W

)
j

// HomM
(
c-IndM

M∩K VN∩K ,W
)

is commutative for all smooth C[M]-modules W (the horizontal maps are the
canonical isomorphisms constructed above, and the vertical maps are given by
composition with b or with S′(b)). Taking W = c-IndM

M∩K VN∩K , we get

(5) S′(b)= j (IV ′ ◦ b),

when VN∩K =V ′N∩K as a representation of M∩K . If V ′ is a third finite-dimensional
smooth C[K ]-module and

b′ : c-IndG
K V ′→ c-IndG

K V ′′
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is a G-intertwiner, then b′ ◦ b : c-IndG
K V → c-IndG

K V ′′ is a G-intertwiner and we
have obviously

(6) S′(b′ ◦ b)= S′(b′) ◦S′(b).

Taking V = V ′ = V ′′, we get an algebra homomorphism

S′ : EndG
(
c-IndG

K V
)
→ EndM

(
c-IndM

M∩K VN∩K
)

such that
j (I ◦ b)= j (I ) ◦S′(b)

for I in HomG
(
c-IndG

K V, IndG
P W

)
.

By the naturality of j in W , for any homomorphism α : W ′→ W of smooth
C[M]-modules, we have a commutative diagram

HomG
(
c-IndG

K V, IndG
P W ′

) j //

Ind(α)
��

HomM
(
c-IndM

M∩K VN∩K ,W ′
)

α

��
HomG

(
c-IndG

K V, IndG
P W

)
j

// HomM
(
c-IndM

M∩K VN∩K ,W
)

for any V . For W =W ′, we obtain j
(
(IndG

P α) ◦ I
)
= α ◦ j (I ) for α ∈ EndM(W ).

We have
j
(
(IndG

P α) ◦ IV
)
= α

for all α in HomM
(
c-IndM

M∩K VN∩K ,W
)
. For W = W ′ = c-IndM

M∩K VN∩K , we
deduce

IV ◦ b =
(
IndG

P S′(b)
)
◦ IV

for b ∈ EndG(c-IndG
K V ), by applying j−1

V to (5).
We now want to interpret the previous results in terms of actions of Hecke

algebras. By Frobenius reciprocity, HomG
(
c-IndG

K V, c-IndG
K V ′

)
identifies with

HomK
(
V,ResG

K c-IndG
K V ′

)
, as a C-module; to a G-intertwiner b we associate the

map v 7→ bv := b([1, v]K ). From such a b, we get a map

8b : G→ HomC(V, V ′), g 7→ (v 7→ bv(g)).

Thus we identify HomG
(
c-IndG

K V, c-IndG
K V ′

)
with the space H(G, K , V, V ′) of

functions 8 from G to HomC(V, V ′) such that:

(i) 8(k ′gk)= k ′ ◦8(g)◦k for k, k ′ in K , g in G, where we have written k, k ′ for
the endomorphisms v 7→ kv, v′ 7→ k ′v′ of V and of V ′;

(ii) The support of 8 is a finite union of double cosets K gK .
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The natural map H(G, K , V, V ′)× c-IndG
K V → c-IndG

K V ′ is given by convolu-
tion

(8 ∗ f )(g)=
∑

h∈G/K

8(h)( f (h−1g))=
∑

h∈K\G

8(gh−1)( f (h)).

The composition

H(G, K , V ′, V ′′)×H(G, K , V, V ′)→H(G, K , V, V ′′)

corresponding to the composition of intertwiners is given by convolution

(8 ∗9)(g)=
∑

h∈G/K

8(h)9(h−1g)=
∑

h∈K\G

8(gh−1)9(h)

(the term 8(h)9(h−1g)(v) vanishes, for fixed g ∈ G and v ∈ V , outside finitely
many cosets K h, so that the sum makes sense). The map

HomG
(
c-IndG

K V, c-IndG
K V ′

)
→ HomM

(
c-IndM

M∩K VN∩K , c-IndM
M∩K V ′N∩K

)
taking b to S′(b) translates into a map

S′ :H(G, K , V, V ′)→H(M,M ∩ K , VN∩K , V ′N∩K ).

The next proposition shows that our definition of S′ is equivalent to Herzig’s.

Proposition 2.2. The homomorphism

S′ :H(G, K , V, V ′)→H
(
M,M ∩ K , VN∩K , V ′N∩K

)
is given by

S′(8)(m)(v)=
∑

n∈(N∩K )\N

8(nm)(v) for m ∈ M, v ∈ V,

where bars indicate the image in VN∩K of elements in V and similarly for V ′.

Proof. Let b ∈HomG
(
c-IndG

K V, c-IndG
K V ′

)
and 8b ∈H(G, K , V, V ′) correspond-

ing to b. We have, by (5),

S′(8b)=8S′(b) =8 j (IV ′◦b).

For g ∈ G, v ∈ V,m ∈ M , we have 8b(g)(v)= b([1, v]K )(g) in V ′ and

S′(8b)(m)(v)=
(

j (IV ′ ◦ b)
)
([1, v]M∩K )(m)=

(
(IV ′ ◦ b)([1, v]K )(1)

)
(m)

in V ′N∩K . Using the Iwasawa decomposition, we write in c-IndG
K V

b([1, v]K )=
∑

h

h−1
[1,8b(h)(v)]K

for h running over a system of representatives of (P ∩ K )\P .
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We compute now the element IV ′
(
h−1
[1,8b(h)(v)]K

)
(1) of c-IndM

M∩K V ′N∩K .
As IV ′ is G-equivariant, we have in IndG

P
(
c-IndM

M∩K V ′N∩K

)
IV ′
(
h−1
[1,8b(h)(v)]K

)
= h−1 IV ′

(
[1,8b(h)(v)]K

)
.

Taking the value at the unit element 1 of G, we obtain(
h−1 IV ′

(
[1,8b(h)(v)]K

))
(1)= IV ′

(
[1,8b(h)(v)]K

)
(h−1)

= h−1(IV ′([1,8b(h)(v)]K )(1)
)
.

Recalling (3), this is equal to

h−1
[1,8b(h)(v)]M∩K = mh−1[1,8b(h)(v)]M∩K = m−1

h [1,8b(h)(v)]M∩K ,

where mh is the image of h in M . We deduce

(IV ′ ◦ b)([1, v]K )(1)=
∑

h

m−1
h [1,8b(h)(v)]M∩K .

For m in a system of representatives of (M ∩ K )\M , and n in a system of repre-
sentatives of (N ∩ K )\N , the elements nm form a system of representatives of
(P ∩ K )\P . We obtain

(IV ′ ◦ b)([1, v]K )(1)=
∑

m∈(M∩K )\M

m−1
[1, wm]M∩K ,

wm :=
∑

n∈(N∩K )\N

8b(nm)(v). �

In [Henniart and Vigneras 2011] we constructed a Satake homomorphism

S :H(G, K , V, V ′)→H(M,M ∩ K , V N∩K , V ′N∩K ),

S(8)(m)(v)=
∑

n∈N/(N∩K )

8(mn)(v),

for v ∈ V N∩K . To compare S′ with S we need to take the dual. Remark that K acts
on the dual space V ∗ = HomC(V,C) of V via the contragredient representation,
and that the dual of V ∗ is isomorphic to V by our finiteness hypothesis on V . It is
straightforward to verify that the map

ι :H(G, K , V ′∗, V ∗)→H(G, K , V, V ′), ι(8)(g) := (8(g−1))t ,

where the upper index t indicates the transpose, is a C-isomorphism, and satisfies

ι(8 ∗9)= ι(9) ∗ ι(8)

for 8 ∈H(G, K , V ′∗, V ∗), 9 ∈H(G, K , V ′′∗, V ′∗).
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The linear forms on V which are (N ∩ K )-fixed identify with the linear forms
on VN∩K ,

(VN∩K )
∗
' (V ∗)N∩K ,

and similarly for V ′ and V ′′. This leads to a natural C-linear isomorphism

ιM :H
(
M,M ∩ K , (V ′∗)N∩K , (V ∗)N∩K )

→H
(
M,M ∩ K , VN∩K , V ′N∩K

)
.

The following proposition describes the relation between the Satake homomor-
phisms S attached to V ′∗, V ∗ and S′ attached to V, V ′.

Proposition 2.3. The following diagram is commutative:

H(G, K , V ′∗, V ∗)
S //

ι

��

H
(
M,M ∩ K , (V ′∗)N∩K , (V ∗)N∩K

)
ιM

��
H(G, K , V, V ′)

S′ // H
(
M,M ∩ K , VN∩K , V ′N∩K

)
.

Proof. For 8 ∈H(G, K , V ′∗, V ∗),m ∈ M and v ∈ V of image v in VN∩K , we have:(
(ιM ◦S)8

)
(m)(v)=

(
S(8)(m−1)

)t
(v)

=

∑
n∈N/(N∩K )

(
8(m−1n)

)t
(v)

=

∑
n∈(N∩K )\N

(
8((nm)−1)

)t
(v)

=

∑
n∈(N∩K )\N

ι(8)(nm)(v)=
(
(S′ ◦ ι)8

)
(m)(v). �

By this proposition, the Satake map S is injective if and only if the map S′ is
injective because the maps ι and ιM are isomorphisms.

Proposition 2.4. Let V be a finite-dimensional smooth C-representation of K .
If the homomorphisms S′ : H(G, K , V ′, V )→ H

(
M,M ∩ K , V ′N∩K , VN∩K

)
are

injective for all irreducible C-smooth representations V ′ of K , then the intertwiner

IV : c-IndG
K V → IndG

P
(
c-IndM

M∩K VN∩K
)

is injective.

Proof. Assume that IV is not injective. Then the kernel of IV is a nonzero subrepre-
sentation of c-IndG

K V , and contains an irreducible smooth C[K ]-representation V ′.
By Frobenius reciprocity, we get a nonzero intertwiner

b ∈ HomG
(
c-IndG

K V ′, c-IndG
K V

)
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such that IV ◦ b = 0. By assumption, the map

S′ :H(G, K , V ′, V )→H
(
M,M ∩ K , V ′N∩K , VN∩K

)
is injective. By the relation (5), this means that the map

HomG
(
c-IndG

K V ′, c-IndG
K V

)
→ HomM

(
c-IndM

M∩K V ′N∩K , c-IndM
M∩K VN∩K

)
taking b to j (IV ◦ b) is injective, which gives a contradiction. �

This criterion for the injectivity of IV was communicated to us by Noriyuki Abe.

3. Representations of G(k)

Let C be an algebraically closed field of positive characteristic p, let k be a finite
field of the same characteristic p and of cardinality q, and let G be a connected
reductive group over k. We fix a minimal parabolic k-subgroup B of G with
unipotent radical U and maximal k-subtorus T . Let S be the maximal k-split
subtorus of T , let W = WG = W (S,G) be the Weyl group, let 8 = 8G be the
roots of S with respect to U (called positive), and let 1 ⊂ 8 be the subset of
simple roots. For a ∈8, let Ua be the unipotent subgroup denoted in [Bruhat and
Tits 1984, 5.1] by U(a). A parabolic k-subgroup P of G containing B is called
standard, and has a unique Levi decomposition P = MN with Levi subgroup M
(called standard) containing T . The standard parabolic subgroup P = MU =UM
is determined by M . There exists a unique subset1M ⊂1 such that M is generated
by T,Ua,U−a for a in the subset 8M of 8 generated by 1M . This determines a
bijection between the subsets of 1 and the standard parabolic k-subgroups of G.

Let B = T U be the opposite of B = T U , and P = MN the opposite of P . We
have B = w0 Bw−1

0 , where w0 = w
−1
0 is the longest element of W . The roots of S

with respect to U , that is, the positive roots for U , are the negative roots for U . The
simple roots for U are the roots −a for a ∈1.

For a ∈1, let Ga,k ⊂G(k) be the subgroup generated by the unipotent subgroups
Ua(k) and U−a(k), and let Ta,k := Ga,k ∩ T (k).

Definition 3.1. Let ψ : T (k)→ C∗ be a C-character of T (k). We denote by

1ψ := {a ∈1 | ψ(Ta,k)= 1}

the set of simple roots a such that ψ is trivial on Ta,k .

Example 3.2. G =GL(n) and S is the diagonal group. Then T = S and the groups
Ta for a ∈1 are the subgroups Ti ⊂ T for 1≤ i ≤ n−1, with coefficients xi = x−1

i+1
and x j = 1 otherwise. When k = F2 is the field with 2 elements, T (k) is the trivial
group.
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Let V be an irreducible C-representation of G(k). When P = MN is a standard
parabolic subgroup of G, we recall that the natural action of M(k) on V N (k) is
irreducible [Cabanes and Enguehard 2004, Theorem 6.12]. In particular, taking
the Borel subgroup B = T U , the dimension of the vector space V U (k) is 1 and the
group T (k) acts on V U (k) by a character ψV .

Proposition 3.3. The stabilizer in G(k) of the line V U (k) is PV (k), where PV =

MV NV is a standard parabolic subgroup of G associated to a subset 1V ⊂1ψV .

Proof. The stabilizer of V U (k) contains B(k), and hence is of the form PV (k) for
a standard parabolic subgroup PV of G associated to the set 1V of simple roots
a ∈ 1 such that U−a(k) acts trivially on V U (k). When U−a(k) acts trivially on
V U (k), so does Ga,k by definition of this group, implying that a belongs to 1ψV ,
by definition of this set. �

Corollary 3.4. The dimension of V is 1 if and only if PV = G.

Proof. If the dimension of V is 1, then V = V U (k) and PV = G. Conversely, if
PV = G, the line V U (k) is stable by G(k), and hence is equal to V because V is
irreducible. �

Corollary 3.5. When P = MN is a standard parabolic subgroup of G, the dimen-
sion of V N (k) is equal to 1 if and only if P ⊂ PV .

The group PV measures the irregularity of V . A 1-dimensional representation V
is as little regular as possible (PV = G), and in general V is as regular as possible
when PV = B.

Definition 3.6. Let P be any parabolic k-subgroup of G. We say that V is P-
regular when the stabilizer in G(k) of the line V U (k) is contained in P(k), where
U is the unipotent radical of a minimal parabolic k-subgroup of G contained in P .

The definition depends only on P and not on the choice of U . The reason is that
for a parabolic k-subgroup P ′ ⊂ P of G and g ∈ G(k), we have g P ′g−1

⊂ P if
and only if g ∈ P(k). As in the proof of [Borel and Tits 1965, Proposition 4.4 a)],
the inclusion P ′ ⊂ g−1 Pg ∩ P implies g−1 Pg = P , and g ∈ P(k) because P is
equal to its own normalizer and is conjugate to a unique k-subgroup containing P ′.

We recall the classification of the irreducible C-representations V of G(k).

Theorem 3.7. The isomorphism class of V is characterized by ψV and 1V ⊂1ψV .
For each C-character ψ of T (k) and each subset J ⊂ 1ψ , there exists a C-irre-
ducible representation V of G(k) such that ψV = ψ,1V = J .

Proof. [Curtis 1970, Theorem 5.7]. �

Definition 3.8. (ψV ,1V ) are called the standard parameters of V .
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Example 3.9. The irreducible representations V with ψV = 1 are classified by
the subsets of 1. They are sometimes called the special representations or the
generalized Steinberg representations. We denote by SpP the representation such
that 1V =1M for a standard parabolic group P = MN . The representation SpG is
the trivial character and SpB is the classical Steinberg representation.

Let P = MN be a standard parabolic k-subgroup of G. For V an irreducible
C-representation of G(k) with standard parameters (ψV ,1V ), the C-representation
V N (k) of M(k) is irreducible of standard parameters (ψV ,1V ∩1M) [Henniart and
Vigneras 2011, 5.7(i)].

Proposition 3.10. The P-regular irreducible C-representations V of G(k) are in
bijection with the irreducible representations of M(k) by the map V 7→ V N (k).
Those representations V with MV = M correspond to the characters of M(k).

Proof. Fix an irreducible representation W of M(k) with standard parameters
(ψW ,1W ). For an irreducible representation V of G(k) with standard parameters
(ψV ,1V ), we have V N (k)

' W if and only if ψV = ψW and 1W = 1V ∩1M .
Moreover, V is P-regular if and only if 1V ⊂ 1M . This implies the first claim,
and the second one follows from Corollary 3.5. �

If instead of choosing B, we choose the Borel subgroup B opposite to B, then
V has other parameters that we call antistandard and write (ψV ,1V ).

Lemma 3.11. The antistandard parameters of V areψV =w0(ψV ),1V =w0(1V ).

Proof. As B = w0 Bw−1
0 , the torus T (k) acts by the character w0(ψV ) on the line

V U (k) and PV = w0 PVw
−1
0 is the stabilizer of the line V U (k). Hence, the subset

1V of simple roots is equal to w0(1V )⊂−1. �

The contragredient representation V ∗ of V is irreducible and its standard param-
eters are:

Lemma 3.12. ψV ∗ = w0(ψV )
−1,1V ∗ =−w0(1V ).

Proof. By Lemma 3.11, it is equivalent to describe the antistandard parameters
(ψV ∗,1V ∗) of V ∗. The direct decomposition V = V U (k)

⊕ (1 − U (k))V (see
Proposition 3.14 below) gives a T (k)-equivariant isomorphism:

(V ∗)U (k) = (VU (k))
∗
' (V U (k))∗.

The group T (k) acts on the line V U (k) by the character ψV and on (V U (k))∗ by the
character ψ−1

V . Hence ψV ∗ = ψ
−1
V .

The space (V ∗)U (k) is the subspace of elements on V ∗ vanishing on (1−U (k))V .
This space is stable by MV (k) because the direct decomposition of V for B is
the same as for PV (Remark 3.15 below). Hence MV U ⊂ PV ∗ , or equivalently,
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−1V ⊂1V ∗ =w0(1V ∗). As V is isomorphic to the contragredient of V ∗ and −w0

is an involution on 1, we have also the inclusion in the other direction. �

Remark 3.13. In general, −w0 does not act trivially on 1 (for example for G =
GL(3)), and hence the stabilizer PV of V U (k) in G(k) is not the opposite of PV , and
the P-regularity of V is not equivalent to the P-regularity of V . The P-regularity
of V is equivalent to the P-regularity of V ∗.

For a subgroup H ⊂ G(k) and a subspace W ⊂ V , the notation (1 − H)W
denotes the subspace of V linearly generated by the elements v− hv for all h ∈ H
and v ∈W .

Proposition 3.14. We have the M(k)-equivariant direct decomposition

V = V N (k)
⊕ (1− N (k))V N (k)

= V N (k)
⊕ (1− N (k))V,

which gives an M(k)-isomorphism V N (k)
→ VN (k).

Proof. [Cabanes and Enguehard 2004, Theorem 6.12]. �

Remark 3.15. The decompositions of V for P = PV and for P = B are the same,
because V U (k)

= V NV (k) by the definition of PV .

Proposition 3.16. For g ∈ G(k), the image of gV U (k) in VN (k) is not 0 if and only
if g ∈ P(k)PV (k).

Proof. It is clear that the nonvanishing condition on g depends only on P(k)g PV (k)
and that the image is not 0 when g= 1 as V U (k)

⊂ V N (k)
' VN (k) (Proposition 3.14).

We prove that the image of gV U (k) in VN (k) is 0 when g does not belong to
P(k)PV (k). For convenience, we write in this proof PV = P ′ = M ′N ′.

a) We reduce to the case where Gder is simply connected by choosing a z-extension
defined over k,

1→ R→ G1→ G→ 1,

where R ⊂ G1 is a central induced k-subtorus and G1 is a connected reductive
k-group with G1,der simply connected. The sequence of rational points

1→ R(k)→ G1(k)→ G(k)→ 1

is exact. The parabolic subgroups of G1 inflated from P, P ′ are P1 = M1 N ,
P ′1 = M ′1 N ′, where 1→ R→ M1→ M → 1 and 1→ R→ M ′1→ M ′→ 1 are
z-extensions defined over k. We consider V as an irreducible representation of
G1(k) where R(k) acts trivially. The image of G1(k)− P1(k)P ′1(k) in G(k) is
G(k)− P(k)P ′(k). For g1 ∈ G1(k)− P1(k)P ′1(k) of image g ∈ G(k)− P(k)P ′(k),
the image of g1V N ′(k) in VN (k) is 0 if and only if the image of gV N ′(k) in VN (k) is 0.

b) The proposition can be reformulated in terms of Weyl groups because the equality
depends only on the image of g in P(k)\G(k)/P ′(k)=WM\W/WM ′ . We denote
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by ẇ a representative of w ∈ W in G(k). The proposition says that the image of
ẇV N ′(k) in VN (k) is 0 if w ∈W does not belong to WM WM ′ .

c) Given a), we now suppose that Gder is simply connected. In this case, V is the
restriction of an irreducible algebraic representation F(ν) of G with highest weight
ν equal to a q-restricted character of T [Herzig 2009, Appendix 1.3]. The stabilizer
Wν of ν in W is WM ′ , the irreducible algebraic representation F(ν) of M with
highest weight ν is F(ν)N , and F(ν)N is equal to the sum of all weight spaces
F(ν)µ with ν − µ ∈ Z8M ; for w ∈ W , wν is a weight of F(ν)N if and only if
w ∈WM WM ′ [Herzig 2011, Lemma 2.3, and proof of Lemma 2.17 in the split case].
The quotient map t : F(ν)→ F(ν)N restricts to an M-equivariant isomorphism
F(ν)N

→ F(ν)N . We deduce that the weights of F(ν)N are the weights of F(ν)N

and are disjoint from the weights of the kernel of the quotient map t . In particular,
for w ∈W , the space w(F(ν)U ) is not in the kernel of t if and only if w ∈WM WM ′ .

The space V N (k) is the restriction to M(k) of F(ν)N and the space VN (k) is the
restriction to M(k) of F(ν)N . This implies the proposition under the form given in
b). �

Corollary 3.17. Let P ′ = M ′N ′ be another standard parabolic subgroup. The
image of gV N ′(k) in VN (k) is not 0 if and only if g ∈ P(k)PV (k)P ′(k).

Proof. We have V N ′(k)
=
∑

h∈M ′(k) hV U (k) because the right-hand side is N ′(k)-
stable and V N ′(k) is an irreducible representation of M ′(k). �

Remark 3.18. The equality P PV P ′ = P P ′ is equivalent to PV ⊂ P P ′. The latter
inclusion is obviously true when V is P-regular or P ′-regular.

In our study of Hecke operators, we will use the following particular case:

Corollary 3.19. For g ∈ G(k), the image of gV N (k) in VN (k) is not 0 if and only if
g ∈ P(k)PV (k)P(k).

4. Representations of G(F)

4A. Notation. Let C be an algebraically closed field of positive characteristic p,
let F be a local nonarchimedean field of finite residue field k of characteristic p and
of cardinality q , of ring of integers oF and uniformizer pF , and let G be a reductive
connected group over F . We fix a minimal parabolic F-subgroup B of G with
unipotent radical U and maximal F-split F-subtorus S. The group B has the Levi
decomposition B = ZU , where Z is the G-centralizer of S. Let 8(S,U ) be the
set of roots of S in U (called positive for U ) and let 1⊂8(S,U ) be the subset of
simple roots. A parabolic k-subgroup P of G containing B is called standard (for U ),
and has a unique Levi decomposition P = MN with Levi subgroup M containing
Z (called standard), and unipotent radical N . The group (M ∩ B) = Z(M ∩U )
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is a minimal parabolic F-subgroup of M , and 1M =1∩8(S,M ∩U ) is the set
of simple roots of 8(S,M ∩U ). This procedure determines bijections between
the subsets of 1, the standard parabolic k-subgroups of G, and their standard Levi
subgroups.

The natural homomorphism v : S(F)→ Hom(X∗(S),Z), where X∗(S) is the
group of F-characters of S, extends uniquely to a homomorphism v : Z(F)→
Hom(X∗(S),Q); its kernel is the maximal compact subgroup of Z(F). For a
standard Levi subgroup M , we denote by Z(F)+N the monoid of elements z in
Z(F) which are N -positive, that is,

a(vZ (z))≥ 0 for all a ∈1−1M .

When these inequalities are strict, z is called strictly N -positive. We denote by
Z(F)+N the monoid of elements in Z(F) which are N -positive, that is, N -negative,

a(vZ (z))≤ 0 for all a ∈1−1M .

When N = U , we write Z(F)+ := Z(F)+U and Z(F)− := Z(F)+U , and if the
inequalities are strict, z is called strictly positive or strictly negative. These notations
extend to M ; we write Z(F)+M

= Z(F)+(U∩M).
In the building of the adjoint group Gad over F , we choose a special vertex in

the apartment attached to S and we write K for the corresponding special parahoric
subgroup, as in [Henniart and Vigneras 2011, 6.1]. The quotient of K by its
pro-p-radical K+ is the group of k-points of a connected reductive k-group Gk .
The group K/K+ is Gk(k). For H = B, S,U, Z , P,M, N , the image in Gk(k) of
H(F)∩ K is the group of k-points of a connected k-group Hk . Note that Bk is a
minimal parabolic subgroup of Gk , Sk is a maximal k-split torus in Bk , Zk (being
the centralizer of Sk in Gk) is a maximal k-subtorus of Bk , and Bk = ZkUk is a
Levi decomposition; moreover, there is a bijection between 1 and the set 1k of
simple roots of Sk (with respect to Uk), Pk is a standard parabolic subgroup of Gk

of standard Levi subgroup Mk and unipotent radical Nk , and the set1k,Mk of simple
roots of Sk in Mk is the image of 1M by the bijection above. We shall usually
suppress the indices k from the notation, write H0 = H(F) ∩ K , and identify a
character of Z(k) (with the notations in the chapter on representations of G(k) we
have T (k)= Z(k)) with a smooth character of Z0.

We now fix an irreducible C-representation V of G(k) with parameters (ψV ,1V )

(Definition 3.8), a proper standard parabolic subgroup P = MN of G, and an
element s ∈ S(F) central in M(F) and strictly N-positive (and hence U-positive).

4B. S′ is a localization. We also see V as a smooth C-representation of K , trivial
on K+. We apply the generalities of the Satake homomorphisms to the group G(F),
the compact subgroup K , and the closed subgroup P(F)= M(F)N (F). As K is a
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special parahoric subgroup, the Iwasawa decomposition G(F)= P(F)K is valid.
We have a G(F)-equivariant linear map (Definition 2.1)

(7) IV : c-IndG(F)
K V → IndG(F)

P(F)

(
c-IndM(F)

M0
VN (k)

)
and an algebra homomorphism (Proposition 2.2)

(8) S′ = S′M,G :H
(
G(F), K , V

)
→H

(
M(F),M0, VN (k)

)
,

related by IV (b f )= S′(b)IV ( f ) for b ∈H(G(F), K , V ) and f in c-IndG(F)
K V .

Proposition 4.1. The intertwiner IV and the algebra homomorphism S′ are injec-
tive.

Proof. Apply Proposition 2.4 and [Henniart and Vigneras 2011, 7.9], giving the
injectivity of the Satake homomorphism S appearing in Proposition 2.3 when V, V ′

are irreducible smooth representations of K over a field of characteristic p. �

We write S′G = S′Z ,G and denote by SG the corresponding Satake homomor-
phisms appearing in Proposition 2.3 when M = Z . We analogously define S′M and
SM with a commutative diagram of algebra homomorphisms:

H
(
M,M0, (V ∗)N (k)

) SM //

ιM

��

H
(
Z , Z0, (V ∗)U (k)

)
ιZ

��

H
(
M,M0, VN (k)

)0 S′M
0

// H
(
Z , Z0, VU (k)

)0
,

where (ι∗(8))(g) = 8(g−1)t for ∗ = M or Z (definition before Proposition 2.3).
In this diagram, A0 denotes the opposite of an algebra A and f 0

: A0
→ B0 is the

algebra homomorphism a 7→ f 0(a)= f (a) associated to an algebra homomorphism
f : A→ B. By the transitivity relation of the Satake homomorphisms [Henniart
and Vigneras 2011, Proposition 2.8] and by Proposition 2.3, we have

(9) S′G = S′M ◦S′.

Recalling the standard parameters (ψV ∗,1V ∗) of V ∗, we identify ψV ∗ with a
smooth character of Z0, and we denote by

ZV ∗ = {z ∈ Z(F) | ψV ∗(zxz−1)= ψV ∗(x) for all x ∈ Z0}

the stabilizer of ψV ∗ in Z(F). As ψV ∗ = w0(ψV )
−1 (Lemma 3.12), we have

ZV ∗ = w0(ZV ).

Proposition 4.2. The image of the map

S′G :H(G(F), K , V )→H(Z(F), Z0, VU (k))

is equal to H
(
Z(F)+ ∩ ZV ∗, Z0, VU (k)

)
.
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Proof. The support of a Hecke operator in H
(
Z(F), Z0, (V ∗)U (k)

)
is contained

in ZV ∗ . By [Henniart and Vigneras 2011, Theorem 1.8], the image of SG consists
of the Hecke operators with negative support, that is, with support contained in
Z(F)− ∩ ZV ∗ . The image of ιZ ◦SG consists of the Hecke operators with positive
support, that is, of support in Z(F)+ ∩ ZV ∗ , because the inverse map permutes the
monoids Z(F)+ and Z(F)− and respects ZV ∗ . �

Analogously, the image of S′M is H
(
Z(F)+M ∩ ZV ∗, Z0, VU (k)

)
.

Definition 4.3. A ring morphism f : A → B is a localization at b ∈ B if f is
injective, b ∈ f (A) is central and invertible in B, and B = ∪n∈N f (A)b−n .

There exists a unique Hecke operator TZ central in H
(
Z(F)+ ∩ ZV ∗, Z0, VU (k)

)
with support Z0s such that TZ (s)= 1, because s is U -positive and belongs to S(F)
contained in ZV ∗ .

The algebra H
(
Z(F)+M ∩ ZV ∗, Z0, VU (k)

)
is the localization of

H
(
Z(F)+ ∩ ZV ∗, Z0, VU (k)

)
at TZ because, for any U ∩M-positive element z ∈ Z(F), there exists a positive
integer n such that snz belongs to Z(F)+, because s ∈ S(F) is strictly N -positive.

Definition 4.4. As s is central in M(F) and contained in ZV ∗ , there exists a unique
Hecke operator TM in H(M(F),M0, VN (k)) with support M0s with value idVN (k)

at s.

The Hecke operator TM is central and invertible in H(M(F),M0, VN (k)); it acts
on c-IndM(F)

M0
VN (k) by TM([1, v]M0) = s−1

[1, v]M0 for v ∈ V . We also denote by
TM the G(F)-endomorphism of

IndG(F)
P(F)

(
c-IndM(F)

M0
VN (k)

)
,

such that TM( f )(g)= TM( f (g)) for f ∈ IndG(F)
P(F)

(
c-IndM(F)

M0
VN (k)

)
and g ∈ G(F).

Using Proposition 2.2, we see that

(10) S′M(TM)= TZ ,

because (U∩M)(F)z∩M0s=
(
(U∩M)(F)zs−1

∩M0
)
s= (U0∩M0)z if zs−1

∈ Z0

and is 0 otherwise. The Hecke operator TM belongs to the image of S′, because TZ

belongs to the image of S′G by construction, S′ is injective, and we have (10), (9).
We have shown:

Proposition 4.5. The map S′ is a localization at TM .

In (7), we consider the map IV as a C[T ]-linear map, T acting on the left side
by (S′)−1(TM) and on the right side by TM . By Proposition 4.5, the localization of
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IV at T is the
(
G(F),H(M(F),M0, VN (k))

)
-equivariant map

(11) 2 :H
(
M(F),M0, VN (k)

)
⊗H(G(F),K ,V ),S′ c-IndG(F)

K V

→ IndG(F)
P(F)

(
c-IndM(F)

M0
VN (k)

)
.

The map 2 is injective because IV is injective (Proposition 4.1). Our main theorem
is:

Theorem 4.6. 2 is surjective if V is P-regular.

The theorem will follow from Corollary 6.5 and Proposition 5.4.

4C. Decomposition of the intertwiner. Following Herzig, we write the intertwiner
IV as a composite of two G(F)-equivariant linear maps

(12)

c-IndG(F)
P VN (k)

ζ

))

c-IndG(F)
K V

IV

//

ξ
77

IndG(F)
P(F)

(
c-IndM(F)

M0
VN (k)

)
,

which we now define. In this diagram, P is the inverse image in K of P(k). The
image of P in G(k) is P(k) by [Bruhat and Tits 1984, 5.1.22]; P is a parahoric
subgroup of G(F).

Lemma 4.7. The parahoric subgroup P admits an Iwahori decomposition with
respect to M ,

(13) P= N0 M0 N 0+, N 0,+ := N (F)∩ K+,

with any order of the factors.

Proof. This decomposition is well known, but at the referee’s suggestion, we outline
a proof. By [Bruhat and Tits 1984, 4.6.4 and 5.1.31], K+ = U0+Z0+U 0+, with
the sign + indicating the intersection with K+ as above. As M0 is the parahoric
subgroup of M(F) fixing our special point, we have M0+= (U0+∩M0)Z0+(U 0+∩

M0). It follows that K+ = N0+M0+N 0+. From [Henniart and Vigneras 2011,
Theorem 6.5], we have P = N0 M0K+, and so P = N0 M0 N0+M0+N 0+. As M0

normalizes N0, N 0 and K+, it normalizes also N0+ and N 0+, and we have the
decomposition P= N0 M0 N 0+ with any order of the factors. �

The transitivity of compact induction implies that

(14) c-IndG(F)
P VN (k) ' c-IndG(F)

K

(
c-IndG(k)

P(k) VN (k)
)
.
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Definition 4.8. The map ξ is the image by the compact induction functor c-IndG
K

of the natural embedding V → c-IndG(k)
P(k) VN (k).

For v ∈ V , ξ([1, v]K ) is the function in c-IndG(F)
P VN (k) with support contained

in K and value kv at k ∈ K .

Proposition 4.9. There is a unique G(F)-equivariant map

ζ : c-IndG(F)
P VN (k)→ IndG(F)

P(F)

(
c-IndM(F)

M0
VN (k)

)
,

which for v ∈ V , sends [1, v]P to the function fv with support contained in

P(F)P= P(F)N 0,+

and constant value [1, v]M0 on N 0,+.

Proof. The uniqueness is clear because the functions [1, v]P for v ∈ V generate the
representation c-IndG(F)

P VN (k). The existence can be proved directly, but we can
also apply the considerations of the beginning of Section 2 with V ′ := c-IndK

P (VN (k))

instead of V and W = c-IndM(F)
M0

VN (k).
The value at 1 from V ′ to VN (k) factorizes through the quotient map v′ 7→ v′

from V ′ to V ′N (k) and defines an M0-equivariant map r : V ′N (k)→ VN (k), such that
r(v′)= v′(1) for all v′ ∈ V ′. The image of r by the compact induction functor from
M0 to M(F) is an element in

HomM(F)
(
c-IndM(F)

M0
V ′N (k), c-IndM(F)

M0
VN (k)

)
which corresponds by the isomorphism (2) to an element in

HomG(F)
(
c-IndG(F)

K V ′, IndG(F)
P(F)

(
c-IndM(F)

M0
VN (k)

))
,

sending [1, v′]K to the unique function ϕv′ with value on k ∈ K equal to

[1, r(kv′)]M0 = [1, v
′(k))]M0,

for all v′ ∈ V ′. Applying the transitivity of the compact induction functor to
c-IndG(F)

K V ′, we obtain the element

ζ ∈ HomG(F)
(
c-IndG(F)

P VN (k), IndG(F)
P(F)

(
c-IndM(F)

M0
VN (k)

))
of the proposition. For v ∈ V with image v in NN (k), the morphism ζ sends [1, v]P
to ϕv′ , where v′ ∈ V ′ is the function on K of support P and equal to v at 1. It
remains to check that ϕv′ is equal to the function fv given in the proposition. Indeed,
the support of the function ϕv′ ∈ c-IndG(F)

P VN (k) is contained in P(F)P, we have
P(F)P = P(F)N 0,+ by the Iwahori decomposition of P, and for k ∈ N 0,+ we
have v′(k)= v. �
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Remark 4.10. Later we will use that, for g ∈ G(F), ζ(g−1
[1, v]P) has support in

P(F)Pg which contains 1 if and only if g ∈PP(F). Thus, for f ∈ c-IndG(F)
P VN (k),

the element ζ( f )(1) depends only on the restriction of f to PP(F).

Lemma 4.11. IV = ζ ◦ ξ .

Proof. This is clear from the definitions of IV , ξ, ζ . �

Remark 4.12. The map ξ is injective because IV is injective (Proposition 4.1).
We can give a direct proof: As V is irreducible and VN (k) 6= 0, the map V →
c-IndG(k)

P(k) VN (k) is injective. As the functor c-IndG
K is exact, the map ξ is injective.

The map ξ is not surjective because the map V → c-IndG(k)
P(k) VN (k) is not surjective,

as P 6= G by our running hypothesis. This can be seen by taking fixed points under
U (k).

5. Hecke operators

In this chapter, we introduce some Hecke operators associated to our fixed element
s ∈ S(F) central in M(F) and strictly N -positive, and we show the compatibility
of these Hecke operators with the maps ξ, ζ,S′ (sometimes we need to suppose
that V is P-regular).

The space of G(F)-equivariant homomorphisms from c-IndG(F)
K V to

c-IndG(F)
P VN (k),

is isomorphic to the space H
(
G(F), K ,P, V, VN (k)

)
of functions 8 : G(F)→

HomC(V, VN (k)) satisfying

(i) 8( jg j ′)= j ◦8(g) ◦ j ′ for j ∈ P, j ′ ∈ K ,

(ii) 8 vanishes outside finitely many double cosets PgK .

We call8 a Hecke operator. We shall usually use the same notation for the Hecke
operator and for the corresponding G(F)-equivariant homomorphism, defined by:
for all v ∈ V ,

(15) [1, v]K →
∑

g∈P\G(F)

g−1
[1,8(g)(v)]P.

The map ξ corresponds to the Hecke operator with support K and value at 1 the
projection V → VN (k) given by v 7→ v.

In the same way, the space of G(F)-equivariant homomorphisms

c-IndG(F)
P VN (k)→ c-IndG(F)

K V

corresponds to a space H
(
G(F),P, K , VN (k), V

)
of functions from G(F) to

HomC(VN (k), V ).
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5A. Definition of Hecke operators. Recall (Proposition 3.14) that the quotient
map v 7→ v from V to VN (k) induces an isomorphism V N (k)

→ VN (k). We write
ϕ : VN (k)→ V N (k) for the reciprocal isomorphism. Since s ∈ S(F) is U -positive
and belongs to ZV ∗ , we deduce from [Henniart and Vigneras 2011, 7.3 Lemma 1]:

Proposition 5.1. There exists a unique Hecke operator TG in H(G(F), K , V ) with
support K sK such that TG(s) ∈ EndC(V ) sends v ∈ V to ϕ(v).

The Hecke operator TM (Definition 4.4) could have been defined in the same
way. We shall prove later that S′(TG)= TM when V is P-regular. We define now
Hecke operators TP and TK ,P generalizing TG and TM .

Proposition 5.2. (i) There is a unique Hecke operator TP in H
(
G(F),P, VN (k)

)
with support PsP and value at s the identity of VN (k).

(ii) There is a unique Hecke operator TK ,P in H
(
G(F),P, K , VN (k), V

)
with

support K sP such that TK ,P(s) : VN (k)→ V sends v to ϕ(v).

Proof. (i) By the condition (i) for Hecke operators, we have to check that for
h, h′ ∈ P, the relation h′s = sh implies that the actions of h and of h′ on VN (k) are
the same. We use the Iwahori decomposition (13):

P= N 0+M0 N0.

Decomposing h = nmn, we have h′ = sns−1msns−1, since s is central in M(F).
Because s is N -positive, sns−1

∈ N0 and the condition h′ ∈ P means that sns−1
∈

N 0+. Consequently, both h and h′ act as m on VN (k).

(ii) We now have to check that for h′ ∈ K , h ∈P, the relation h′s = sh implies that
h′ϕ(v) = ϕ(hv) for all v ∈ V . Writing as above h = nmn, the condition h′ ∈ K
means sns−1

∈ N (F) ∩ K = N 0, so that n belongs to N 0+ because s is strictly
N -positive. Then ϕ(hv)= ϕ(mnv)=mϕ(nv)=mϕ(v). But sns−1 is in N0+ again
because s is strictly N -positive and h′ϕ(v)= mϕ(v) too. �

Remark 5.3. We note that, for v ∈ V :

• TP([1, v]P) is the function in c-IndG(F)
P VN (k) with support PsP and value v

on s N 0+.

• TK ,P([1, v]P) is the function in c-IndG(F)
K V with support K sP and value ϕ(v)

on s N 0+.

• TG([1, v]K ) is the function in c-IndG(F)
K V with support contained in K sK and

value ϕ(hv) on sh for all h ∈ K .

5B. Compatibilities between Hecke operators. In this section, following Herzig’s
method, we prove:
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Proposition 5.4. (i) The diagram on the left

(16)

c-IndG(F)
K V

ξ //

TG
��

c-IndG(F)
P VN (k)

TK ,P

ww

c-IndG(F)
K V

c-IndG(F)
P VN (k)

TK ,P

ww
TP

��

c-IndG(F)
K V

ξ
// c-IndG(F)

P VN (k)

is commutative; the diagram on the right is commutative when V is P-regular.

(ii) The diagram

c-IndG(F)
P VN (k)

ζ //

TP

��

IndG(F)
P(F)

(
c-IndM(F)

M0
VN (k)

)
TM

��

c-IndG(F)
P VN (k) ζ

// IndG(F)
P(F)

(
c-IndM(F)

M0
VN (k)

)
is commutative.

(iii) S′(TG)= TM when V is P-regular.

By (15), the G(F)-homomorphisms corresponding to ξ, TG, TP and TK ,P are
characterized by the following formulas, for v ∈ V :

ξ : [1, v]K 7→
∑

g∈P\K

g−1
[1, gv]P,

TG : [1, v]K 7→
∑

g∈K\K sK

g−1
[1, TG(g)(v)]K ,

TP : [1, v]P→
∑

g∈P\PsP

g−1
[1, TP(g)(v)]P,

TK ,P : [1, v]P 7→
∑

g∈K\K sP

g−1
[1, TK ,P(g)(v)]K .

To prove the proposition, it is useful first to simplify these formulas.

Lemma 5.5. We have

TP : [1, v]P 7→
∑

n∈s−1 N 0+s\N 0+

n−1s−1
[1, v]P,(17)

TK ,P : [1, v]P 7→
∑

n∈s−1 N 0s\N 0+

n−1s−1
[1, ϕ(v)]K ,(18)

TG : [1, v]K 7→
∑

h∈P\K

h−1
∑

n∈s−1 N 0s\N 0+

n−1s−1
[1, ϕ(hv)]K .(19)
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Proof. By the Iwahori decomposition P= N0 M0 N 0+, we get that PsP= Ps N 0+,
because s N0s−1

⊂ N0 and s M0s−1
= M0. Consequently, the map n 7→ sn induces

a bijection of s−1 N 0+s\N 0+ onto P\PsP. Since N 0+ acts trivially on VN (k), we
get the formula for TP.

A similar reasoning gives that K sP=K s N 0+ and that n 7→ sn induces a bijection
of s−1 N 0s\N 0+ onto K\K sP. This implies the formula for TK ,P.

To simplify the formula for TG , we note that the map h 7→ sh induces a bijection
from (K∩s−1K s)\K onto K\K sK . But K∩s−1K s is contained in P by [Henniart
and Vigneras 2011, Proposition 6.13], so that we can perform the sum in TG as a
sum over (K ∩ s−1K s)\P followed by a sum over P\K . By what we said in the
previous paragraph, the inclusion N 0+ ⊂ P induces a bijection of s−1 N 0s\N 0,+

onto (K ∩ s−1K s)\P, so that we finally get the formula for TG . �

We now give the proof of Proposition 5.4.

Proof. From the formulas for TG, TK ,P in Lemma 5.5 and the formula for ξ , we
immediately get

(20) TG = TK ,P ◦ ξ,

so that the left diagram in Proposition 5.4(i) is indeed commutative.
The elements [1, v]P for v ∈ V generate the representation c-IndG(F)

P VN (k), and
to prove the commutativity of the diagram in Proposition 5.4(ii), it thus suffices to
prove for v ∈ V the equality

(TM ◦ ζ )([1, v]P)= (ζ ◦ TP)([1, v]P).

From the value of ζ([1, v]P) for v ∈ V given in Proposition 4.9 and from

TM([1, v]M0)= s−1
[1, v]M0,

we see that the function (TM ◦ ζ )([1, v]P) vanishes outside P N 0+ and has constant
value s−1

[1, v]M0 on N 0+. From the formula for TP in Lemma 5.5, we have

(ζ ◦ TP)([1, v]P)=
∑

n∈s−1 N 0+s\N 0+

n−1s−1ζ([1, v]P),

and with the value of ζ([1, v]P), we see that this function is indeed the function
(TM ◦ ζ )([1, v]P) described above, so that the diagram in Proposition 5.4(ii) is
commutative.

Let us turn to the proof of the commutativity of the diagram on the right in
Proposition 5.4(i). We now assume that V is P-regular. From the formulas for
TK ,P in Lemma 5.5, we have, for v ∈ V ,

ξ ◦ TK ,P : [1, v]P 7→
∑

n∈s−1 N 0s\N 0+

n−1s−1
∑

h∈P\K

h−1
[1, hϕ(v)]P.
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We have seen that for h ∈ K , the image of hV N (k) in VN (k) is 0 unless h belongs to
PP (Corollary 3.19), so that the inner sum can be restricted to h ∈ N 0,+\N 0. Now
n−1s−1h−1

= n−1s−1h−1ss−1 and s−1hs runs through s−1 N 0,+s\s−1 N 0s, which
gives the result

ξ ◦ TK ,P([1, v]P)= TP([1, v]P).

We finally prove S′(TG) = TM , still assuming that V is P-regular. We have
just proved ξ ◦ TK ,P = TP and previously we got TK ,P ◦ ξ = TG , so we deduce
ξ ◦ TG = TP ◦ ξ . We also proved ζ ◦ TP = TM ◦ ζ , so we obtain

ζ ◦ ξ ◦ TG = ζ ◦ TP ◦ ξ = TM ◦ ζ ◦ ξ,

that is, IV ◦TG=TM◦ IV . Applying jV and Definition 2.1, this implies S′(TG)=TM .
�

Note that the trivial representation V is not P-regular, as M 6= G by our running
hypothesis; however, we can still have S′(TG)= TM when the representation V is
the trivial representation. We now present some examples of that phenomenon (the
referee remarks that even more examples result from [Herzig 2011, Proposition 5.1]).

Example 5.6. Take G=GL(2,− ), ZG the center, M the diagonal group, B= N M
the upper triangular subgroup, K = GL(2, oF ), and

sp :=

(
pF 0
0 1

)
.

The monoid of strictly positive elements in M(F) is ∪n≥1sn
p ZG(F)M0, where

M0=M(F)∩K . An irreducible smooth C-representation V of K is B-regular if and
only if it is B-regular if and only if it is not 1-dimensional. For g ∈G(F), we denote
by Tg the characteristic function of K gK in the Hecke C-algebra H(G(F), K ,C)'
C[K\G(F)/K ] of (the trivial C-representation of) K in G(F). For t ∈ M(F), we
denote by τt the characteristic function of t M0 in the Hecke algebra

H(M(F),M0,C)' C[M(F)/M0].

Claim. When s ∈ M(F) is strictly positive, we have S′(Ts) = τs if and only if
s ∈ sp ZG M0.

Proof. By [Barthel and Livné 1994, Proposition 8], the characteristic function Tn of
ZG(F)K sn

p K in the Hecke algebra H
(
G(F), ZG(F)K ,C

)
satisfies the relations

(21) Tn = T n
1 − T n−2

1 for n ≥ 2.

The natural surjective G(F)-equivariant map

σ : c-IndG(F)
K C→ c-IndG(F)

ZG(F)K C, 1K 7→ 1ZG K ,
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satisfies σ ◦ Ts = Tn ◦ σ when s ∈ sn
p pZG

F M0, n ≥ 1.
Indeed, we write K sK as a disjoint union of cosets K bi pr

F , where s ∈ sn
p pr

F M0

and bi ∈ B(F). For f ∈ c-IndG(F)
K C , we have

Ts( f )=
∑

i

p−r
F b−1

i f and (σ ◦ Ts)( f )=
∑

i

b−1
i σ( f ).

The double coset ZG(F)K sn
p K is the union of the cosets ZG(F)K bi . The union

remains disjoint because the equality of cosets ZG(F)K bi = ZG(F)K b j , equivalent
to b j b−1

i k = z for some z ∈ ZG(F), k ∈ K , implies that the determinant of z is a
unit. When this holds, z ∈ M0 ∩ ZG and K bi = K b j . For ϕ ∈ c-IndG(F)

ZG(F)K C , we
have

Tn(ϕ)=
∑

i

b−1
i ϕ and (Tn ◦ σ)( f )=

∑
i

b−1
i σ( f ).

We deduce σ ◦ Ts = Tn ◦σ . Then the relation (21) implies that Tsn
p

is different from
T n

sp
when n ≥ 2.

The value of S′(Ts) at t ∈ M(F) is the image in C of the number of b ∈ F/oF

such that nbt ∈ K sK , where

nb :=

(
1 b
0 1

)
.

The double coset K sp K is the disjoint union of K sp and of K
( 1 a

0 pF

)
for a in a

system of representatives of oF/pF oF . The characteristic of C being p, we deduce
that S′(Tsp) = τsp . Then we obtain S′(Tsn

p
) 6= τsn

p
when n ≥ 2, because S′ is an

injective algebra homomorphism and Tsn
p
6= T n

sp
. Our claim is proved for s = sn

p
and n ≥ 1. The general case s = sn

p pr
F t0 with r ∈ Z, t0 ∈ M0, reduces easily to this

case. �

Example 5.7. Let D be a quaternion division algebra over F . We write O for the
ring of integers of D, and v for its normalized valuation; we choose a uniformizer
pD of D such that p2

D = pF is a uniformizer of F ; the residue field kD of O is a
quadratic extension of the residue field k of F . We take for G the group such that
G(F)=GL(2, D), for S the group such that S(F) is the group of diagonal matrices
with coefficients in F∗, and for B = MN the groups such that M(F) is the group
of diagonal matrices and B(F) is the upper triangular subgroup of GL(2, D).

Let K = GL(2,O); the quotient of K by its pro-p-radical is isomorphic to
GL(2, kD). The Cartan decomposition says that G(F) is the disjoint union of
the double cosets K da,b K , for integers a, b ∈ Z with a ≥ b, where da,b is the
diagonal matrix with entries pa

D and pb
D down the diagonal. The strictly positive

elements of M(F) are those of the form s = m0da,b, for a, b ∈ Z with a > b and
m0 ∈ M0 = M(F)∩ K .
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An irreducible C-representation of GL(2, kD) which is not B-regular has di-
mension 1 and is given by a character g 7→ (ε ◦ det)(g), where ε : k∗D→ C∗ is a
character. We identify ε ◦ det with an irreducible smooth C-character of K and ε
with a smooth C-character of O∗.

The reduction of the conjugation by pD on O induces the nontrivial automorphism
σ of kD/k. The character ε of O∗ extends to a character of D∗ exactly when ε is
invariant under σ . In that case, the Hecke algebra H(D∗,O∗, ε) has support D∗

(the support of the Hecke algebra is the union of the supports of its elements). This
implies that the Hecke algebra H

(
M(F),M0, ε ⊗ ε

)
has support M(F), and by

the Satake isomorphism, that the Hecke algebra H
(
G(F), K , ε ◦ det

)
has support

G(F).
Assume now that ε is not invariant under σ . Then the support of the Hecke

algebra H(D∗,O∗, ε) is the set of elements in D∗ of even normalized valuation.
This implies that the support of H

(
M(F),M0, ε ⊗ ε

)
is the union of the cosets

M0d2a,2b for a, b∈Z, and that the support of the Hecke algebra H
(
G(F), K , ε◦det

)
is the union of the double cosets K d2a,2b K , for a, b ∈ Z and a ≥ b.

For a positive element s in the support of H
(
M(F),M0, ε ⊗ ε

)
, let τs be the

Hecke operator in H
(
M(F),M0, ε⊗ ε

)
of support M0s and value 1 at s, and let Ts

be the Hecke operator in H
(
G(F), K , ε ◦ det

)
of support K sK and value 1 at s.

Claim. S′(Ts)= τs for any choice of strictly positive s ∈ S(F).

Proof. It suffices to prove the claim for s = d2a,2b ∈ S(F) with a > b. We compute
S′(Ts) on d2α,2β with α ≥ β in Z,

S′(Ts)(d2α,2β)=
∑

x∈D/O

Ts

((
1 x
0 1

)(
pαF 0
0 pβF

))
.

The matrix (
1 x
0 1

)(
pαF 0
0 pβF

)
=

(
pαF xpβF
0 pβF

)
belongs to K d2α,2βK when x ∈ O.

If x 6∈ O, then putting v(x)=−γ , γ > 0, we have(
pαF xpβF
0 pβF

)
=

(
0 xpγD

−x−1 p−γD pγD

)(
p2α+γ

D 0
0 p2β−γ

D

)(
1 0

x−1 pα−βF 1

)
,

which consequently belongs to K d2α+γ,2β−γ K .
If (2α, 2β)= (2a, 2b), we see that only x ∈ O contributes to S′(Ts)(d2α,2β) and

that this contribution is 1. Hence S′(Ts)(d2α,2β)= 1.
If (2α, 2β)= (2a−γ, 2b+γ ) with γ > 0, we see that the only x contributing to

S′(Ts)(d2α,2β) are those with v(x)=−γ and that this contribution is 1. Therefore
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S′(Ts)(d2α,2β) is the number of x ∈ D/O of valuation −γ , and hence

S′(Ts)(d2α,2β)= q2γ
− q2(γ−1).

However, γ has to be even, so that S′(Ts)(d2α,2β)= 0.
For the other values of α, β in Z, we see that S′(Ts)(d2α,2β)= 0. �

6. Proof of the main theorem

We give three lemmas which will help us to study the map ζ (Proposition 4.9).

Lemma 6.1. The map ζ is injective on the set of functions f ∈ c-IndG(F)
P VN (k) with

support in PZ(F)+N K .

Proof. Let f be such that ζ( f ) = 0 with support in PZ(F)+N K . We claim that
f = 0 on PP(F). This implies that f = 0, because G(F) = P(F)K and for
k ∈ K , the function k−1 f satisfies the same conditions as f . To prove the claim,
we use only that ζ( f )(1)= 0 in c-IndM(F)

M0
VN (k). As ζ( f )(1) depends only on the

restriction of f to PP(F) (Remark 4.10), we assume, as we may, that the support
of f is contained in PP(F). The support of f is a finite disjoint union of Pzi ki

for zi ∈ Z(F)+N and ki ∈ K , with zi ki ∈ PP(F). We have PP(F)= N 0,+P(F),
and hence ki ∈ z−1

i N 0,+zi P(F). As zi is positive, z−1
i N 0,+zi ⊂ N 0,+. This implies

that we can suppose ki ∈ P(F)∩ K . As P(F)∩ K = N0 M0 and zi is positive, we
can suppose ki ∈ M0. We proved that the support of f is a finite disjoint union of
Pzi ki for zi ∈ Z(F)+N and ki ∈ M0. Taking the intersection with M(F), the sets
M(F)∩Pzi ki are also disjoint. Writing

f =
∑

i

(zi ki )
−1
[1, vi ]P,

we have ζ( f )(1)=
∑

i (zi ki )
−1
[1, vi ]M0 , and ζ( f )(1)= 0 is equivalent to vi = 0

for all i . �

Lemma 6.2. (i) A compact space P(F)\G(F) is given by the G(F)-translates
of P(F)\P(F)N 0,+sn , for all n ∈ N.

(ii) For any subset X ⊂ G(F) with finite image in P\G(F), there exists a large
integer n ∈ N such that sn X ⊂ PZ(F)+N K .

Proof [Herzig 2011, Lemma 2.20]. (i) The compact space P(F)\G(F) is the union
of the right G(F)-translates of the big cell P(F)\P(F)N (F), which is open, and
the s−n N 0,+sn for n ∈ N form a decreasing sequence of open subgroups of N (F)
converging to 1.

(ii) Let N be the normalizer of S in G and let B be the inverse image of B(k) in K
(an Iwahori subgroup). Then (G(F),B,N(F)) is a generalized Tits system [Morris
1993, 3.12]. We have:
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a) G(F)=BN(F)B.

b) For ν ∈ N(F), there is a finite subset Xν in N(F) such that, for all ν ′ ∈ N(F),
we have

ν ′Bν ⊂ ∪x∈XνBν
′xB.

c) As the parahoric group K is special, it contains representatives of the Weyl
group, so for any ν ∈ N(F), there exists z ∈ Z(F) such that νK = zK .

We deduce from a) and c) that G(F)=BZ(F)K . We may assume that X is a
finite union X = ∪i Pzi ki with zi ∈ Z(F), ki ∈ K . We deduce from b) that, for any
index i , there are finitely many ni, j ∈ N(F) such that zBzi ⊂ ∪ j Bzni, j B for all
z ∈ Z(F). It follows that for n ∈ N and z = sn , we have

zPzi ki ⊂ P0zN 0,+zi ki ⊂ ∪ j Pzni, j K ,

as N 0,+ ⊂ B. We choose zi, j ∈ Z(F) such that zi, j K = ni, j K , as we may
by c). There exists n ∈ N such that snzi, j ∈ Z(F)+N for all i, j . Hence sn X ⊂
∪ j Psnzi, j K ⊂ PZ(F)+N K . �

Let σ be a smooth C-representation of M(F). For any nonzero vector y in
the space of σ , there exists a function fy ∈ IndG(F)

P(F) σ with support P(F)N 0,+

and value y on N 0+ because the multiplication P(F)× N 0+→ P(F)N 0,+ is a
homeomorphism.

Lemma 6.3. Let σ be a smooth C-representation of M(F) generated by an element
x. Then the representation IndG(F)

P(F) σ is generated by the functions fs−n x , n ∈ Z,
with support P(F)N 0,+ and value s−nx on N 0+.

Proof. By Lemma 6.2, it is enough to show that any function fn,mx ∈ IndG(F)
P(F) σ

with support contained in P(F)N 0,+sn and value mx on N 0+sn , for n ∈ N and
m ∈ M(F), is contained in the subrepresentation generated by fs−r x for all r ∈ Z.
The function m−1 fn,mx has support in P(F)\P(F)N 0+snm and value s−nx on
the compact open subset m−1s−n N 0+snm of N (F); for some n′ ∈ N, this set is a
disjoint union of s−n′N 0+sn′n for n running through a finite subset of N (F). For
a nonzero y in the space of σ , the function (sn′n)−1 fy ∈ IndG(F)

P(F) σ has support
P(F)N 0+sn′n and value s−n′ y on s−n′N 0+sn′n. The sum over n of (sn′n)−1 fsn′−n x
is equal to m−1 fn,mx . �

Proposition 6.4. (i) The image of ξ contains TP

(
c-IndG(F)

P VN (k)
)

when V is
P-regular.

(ii) The kernel of the map ζ is the T∞P -torsion part of c-IndG(F)
P VN (k), and the

representation
c-IndG(F)

P(F)

(
c-IndM(F)

M0
VN (k)

)



COMPARISON OF COMPACT INDUCTION WITH PARABOLIC INDUCTION 487

is generated by

(T−n
M ◦ ζ )([1, v]P), for all n ∈ Z,

for any fixed nonzero element v ∈ VN (k).

Proof. (i) This follows from Proposition 5.4(i).

(ii) We fix a nonzero v ∈ VN (k); then x = [1, v]M0 generates the representation
σ = c-IndM(F)

M0
VN (k). We note that for n ∈ Z, by Definition 4.4 and 4.8,

(T n
M ◦ ζ )([1, v]P)= fs−n x .

We obtain by Lemma 6.3 that the representation IndG(F)
P(F)

(
c-IndM(F)

M0
VN (k)

)
is gen-

erated by the elements (T n
M ◦ ζ )([1, v]P), when n runs through Z.

We now consider an element f in the kernel of ζ . The function f vanishes
outside of a compact set X with finite image in P\G(F). We choose an integer
n ∈ N such that sn X ⊂ PZ(F)+N K (Lemma 6.2(ii)). The support of T n

P is PsnP

by (13) and the positivity of s. The support of T n
P( f ) is contained in Psn X , and

hence in PZ(F)+N K . By Lemma 6.1, we conclude that T n
P( f )= 0. The converse

follows from Proposition 5.4(ii). �

In the diagram (12), the representations are C[T ]-modules, where T acts as
on the middle space by TK ,P, on the right space by TM , and on the left space by
(S′)−1(TM). Proposition 5.4 tells us that:

• The map ζ is C[T ]-linear.

• When V is P-regular, the map ξ is C[T ]-linear and (S′)−1(TM)= TG .

Corollary 6.5. (i) The T -localization ζT of ζ is an isomorphism.

(ii) When V is P-regular, the T -localization ξT of ξ is an isomorphism.

The map 2 is the T -localization of IV = ζ ◦ ξ . By Corollary 6.5(ii), the map
2= ζT ◦ ξT is surjective when V is P-regular.

Remark 6.6. We suppose that V is given by a character ε of K , and that there
exists a character εM of M(F) equal to ε on M0 (such a character εM does not
always exist). We consider the composite of IV with the surjective natural map

ψ : IndG(F)
P(F)

(
c-IndM(F)

M0
ε
)
→ IndG(F)

P(F) εM .

If εM extends to a character εG of G(F), the image of ψ◦ IV is the subrepresentation
εG of dimension 1 of IndG(F)

P(F) εM , and the map ψ ◦2 is nonsurjective.
But in the case where εM does not extend to a character εG of G(F), the map

ψ ◦2 can be surjective. For example, ψ ◦2 is surjective when IndG(F)
P(F) εM is

irreducible. This is the case, for any choice of εM , when G =U (2, 1) with respect
to an unramified quadratic extension of F , B is a Borel subgroup, and K is a special
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nonhyperspecial parahoric subgroup [Abdellatif 2011]; this is also the case when
G(F)=GL(2, D) with D a quaternion skew field over F , B is the upper triangular
subgroup, and K = GL(2, OD) [Ly ≥ 2012].

7. Supersingular representations of G(F)

We introduce first the notion of K -supersingularity for an irreducible smooth
representation π of G(F). Then we recall the notion of supercuspidality [Henniart
and Vigneras 2011, 1.7 footnote]. We expect that supercuspidality is equivalent
to K -supersingularity, at least for admissible representations. We will give some
partial results in this direction. Finally, when π is admissible, we give an equivalent
definition of K -supersingularity which coincides with the definition given by Herzig
and Abe when G is F-split, K is hyperspecial, and the characteristic of F is 0.

Let π be an irreducible smooth C-representation of G(F). For any smooth
irreducible C-representation V of K , we consider

HomG(F)
(
c-IndG(F)

K V, π
)

as a right module for the Hecke algebra H(G(F), K , V ).

Remark 7.1. Given π , there exists an irreducible representation V of K such that
HomG(F)

(
c-IndG(F)

K V, π
)
6= 0. Indeed, a nonzero element v ∈ π being fixed by an

open subgroup of K generates a K -stable subspace W of finite dimension; if V is
an irreducible subrepresentation of W , we have HomK (V, π) 6= 0, and hence the
result by Frobenius reciprocity.

For any standard parabolic subgroup P = MN , we consider the Satake map

S′ = S′M,G :H
(
G(F), K , V

)
→H

(
M(F),M0, VN (k)

)
.

We recall that S′ is a localization at some element TM (Proposition 4.5).

Definition 7.2. An irreducible smooth C-representation π of G(F) is called K -
supersingular when

H
(
M(F),M0, VN (k)

)
⊗H(G(F),K ,V ),S′ HomG(F)

(
c-IndG(F)

K V, π
)
= 0,

for all irreducible smooth C-representations V of K and all standard Levi subgroups
M 6= G.

The condition means that the localization of the right H(G(F), K , V )-module

HomG(F)
(
c-IndG(F)

K V, π
)

at TM is 0, that is, for any nonzero f ∈HomG(F)
(
c-IndG(F)

K V, π
)
, there is n∈N such

that S′−1
(T n

M)( f )= 0. If the space HomG(F)
(
c-IndG(F)

K V, π
)

is finite-dimensional,
this means that the eigenvalues of S′−1

(TM) on this space are 0, or equivalently,



COMPARISON OF COMPACT INDUCTION WITH PARABOLIC INDUCTION 489

that the characters of Z(G(F), K , V ) appearing in

HomG(F)
(
c-IndG(F)

K V, π
)

vanish at S′−1
(TM). For admissible representations, our definition is equivalent to

the one given by Herzig [2011, Definition 4.7] and Abe [2011, Definition 5.1].

Definition 7.3. An irreducible smooth C-representation π of G(F) is called super-
cuspidal if π is not isomorphic to a subquotient of c-IndG(F)

P(F) τ for a proper standard
parabolic subgroup P = MN of G and for an irreducible smooth C-representation
τ of M(F).

The definition, which is valid for any field C , does not depend on the minimal
parabolic F-subgroup B of G used to define the standard parabolic subgroups, as
all such B’s are conjugate in G(F). Consequently, we get an equivalent definition
if we let P be any parabolic subgroup different from G.

Let V be an irreducible smooth C-representation of K , let P = MN be a proper
standard parabolic subgroup of G, and let σ be a smooth C-representation of M(F).
Our first result concerns the TM -localization of the right H(G(F), K , V )-module

HomG(F)
(
c-IndG(F)

K V, IndG(F)
P(F) σ

)
.

Proposition 7.4. (i) V ⊂
(
IndG(F)

P(F) σ
)
|K if and only if VN (k) ⊂ σ |M0 .

(ii) In this case, the action of S′−1(TM) on HomG(F)
(
c-IndG(F)

K V, IndG(F)
P(F) σ

)
is

invertible.

Proof. (See [Herzig 2011, p. 416].) (i) This follows from the isomorphism (2).

(ii) By (4), we have isomorphisms of H(G(F), K , V )-modules

HomG(F)
(
c-IndG(F)

K V, IndG(F)
P(F) σ

)
' HomK

(
V, IndG(F)

P(F) σ
)
' HomM0(VN (k), σ ),

where H(G(F), K , V ) acts on the final term by S′; the last isomorphism follows
from Frobenius reciprocity and K ∩ P(F)= (K ∩M(F))(K ∩ N (F)). The claim
follows since S′ is a localization map at TM , by Proposition 4.5. �

Our results on the comparison between non-K -supersingular and nonsupercuspi-
dal irreducible smooth C-representations of G(F) are:

Proposition 7.5. Let τ be an irreducible smooth C-representation of M(F).

(i) An irreducible subrepresentation of IndG(F)
P(F) τ is not K -supersingular.

(ii) An admissible irreducible quotient of IndG(F)
P(F) τ is not K -supersingular.
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This proposition claims that certain nonsupercuspidal irreducible representations
of G(F) are non-K -supersingular. The next proposition claims that certain non-K -
supersingular admissible irreducible representations of G(F) are nonsupercuspidal.

Proposition 7.6. Let π be an admissible irreducible smooth C-representation of
G(F), let P = MN ⊂ Q = L N ′ be two standard parabolic F-subgroups different
from G, and let V be a Q-regular irreducible smooth C-representation of K such
that the localization of the right H(G(F), K , V )-module

HomG(F)
(
c-IndG(F)

K V, π
)

at TM is not 0. Then π is a quotient of IndG(F)
Q(F) τ for an admissible irreducible

smooth C-representation τ of L(F).

Proof of Proposition 7.5. (i) Proposition 7.4 implies that an irreducible subrepresen-
tation of IndG(F)

P(F) τ is not K -supersingular.

(ii) Let π be an irreducible quotient of IndG(F)
P(F) τ . We choose an irreducible smooth

C-representation W of M0 such that the irreducible representation τ is a quotient
of c-IndM(F)

M0
W . Then π is a quotient of IndG(F)

P(F)

(
c-IndM(F)

M0
W
)
. We consider

the unique irreducible P-regular representation V of G(k) such that VN (k) ' W
(Proposition 3.10). By our main theorem (Theorem 4.6),

IndG(F)
P(F)

(
c-IndM(F)

M(F)∩K W
)
'H

(
M(F),M0, VN (k)

)
⊗H(G(F),K ,V ),S′ c-IndG(F)

K V .

We deduce:

HomG(F)
(
H
(
M(F),M0, VN (k)

)
⊗H(G(F),K ,V ),S′ c-IndG(F)

K V, π
)
6= 0.

If π is admissible, we will show

(22) H
(
M(F),M0, VN (k)

)
⊗H(G(F),K ,V ),S′ HomG(F)

(
c-IndG(F)

K V, π
)
6= 0.

This implies that π is not K -supersingular.
To prove (22), we write X := c-IndG(F)

K V , T := TM ∈ A := H(G(F), K , V ),
B = A[T−1

]. Our assumption is

HomG(B⊗A X, π) 6= 0,

and we want to prove that B⊗A HomG(X, π) 6= 0, provided that HomG(X, π) is
finite-dimensional (which is the case if π is admissible).

We consider the natural linear map

r : HomG(B⊗A X, π)→ HomG(X, π), ϕ 7→
(
x 7→ ϕ(1⊗ x)

)
.



COMPARISON OF COMPACT INDUCTION WITH PARABOLIC INDUCTION 491

The space HomG(B ⊗A X, π) is naturally a right B-module, and hence a right
A-module by restriction. The map r is A-linear:

r(ϕa)(x)= (ϕa)(1⊗ x)= ϕ(a⊗ x)= ϕ(1⊗ ax)= r(ϕ)(ax)= (r(ϕ)a)(x),

for a ∈ A, x ∈ X , ϕ ∈ HomG(B ⊗A X, π). Consequently, the image Im(r) is an
A-submodule of HomG(X, π). We remark that Im(r)T = Im(r) because r(ϕ) =
r(ϕT−1)T for ϕ ∈ HomG(B⊗A X, π).

We show now that our hypothesis implies that Im(r) is not 0. Indeed, let ϕ 6= 0 in
HomG(B⊗A X, π). There exist b ∈ B and x ∈ X such that ϕ(b⊗ x) 6= 0. Writing
b= T−na with n ∈N and a ∈ A, we get ϕ(T−na⊗ x)= ϕT−n(1⊗ax) 6= 0 so that
r(ϕT−n) 6= 0.

Assume now that HomG(X, π) is finite-dimensional. Then Im(r) is also finite-
dimensional and as Im(r)T = Im(r), T induces an automorphism of Im(r) so that
B⊗A Im(r) 6= 0. The localization being an exact functor, we have

B⊗A HomG(X, π) 6= 0. �

We state a useful general lemma before proving Proposition 7.6.
Let R be a commutative ring, let H be an R-algebra, let W be a left H-module with

a smooth H-linear action of M(F), and let N be a right H-module. Then N⊗H W
is a smooth R-representation of M(F) and we can form IndG(F)

P(F)(N⊗H W ). We can
also form N⊗H IndG(F)

P(F)(W ), where the structure of left H-module on IndG(F)
P(F)(W )

is given by (h, f )→ h f : g→ h( f (g)). The canonical map

ιN : N⊗H IndG(F)
P(F)(W )→ IndG(F)

P(F)(N⊗H W )

is clearly G(F)-equivariant.

Lemma 7.7. The map ιN is an isomorphism.

Proof. It is well known that the quotient map G(F) → P(F)\G(F) admits a
continuous section and that the module C∞

(
P(F)\G(F), R

)
is free. This implies

that the parabolic induction functor IndG(F)
P(F)− for smooth R-representations is

exact and commutes with infinite direct sums, and that IndG(F)
P(F)(W ) identifies with

C∞
(
G(F)/P(F), R

)
⊗W as R-modules, for any smooth R-representation W of

M(F).
We choose a resolution of N by free right H-modules

F1→ F0→ N→ 0.

We have a commutative diagram
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F1⊗H IndG(F)
P(F)(W ) //

ιF1
��

F0⊗H IndG(F)
P(F)(W ) //

ιF0
��

N⊗H IndG(F)
P(F)(W ) //

ιN

��

0

IndG(F)
P(F)(F1⊗H W ) // IndG(F)

P(F)(F0⊗H W ) // IndG(F)
P(F)(N⊗H W ) // 0,

where the lines are exact, the second one because IndG(F)
P(F) is an exact functor.

The functor IndG(F)
P(F) being compatible with direct sums, the maps ιF1 and ιF0 are

isomorphisms. It follows that ιN is an isomorphism. �

Remark 7.8. When π is an admissible smooth C-representation of G, then

HomG(F)
(
c-IndG(F)

K V, π
)

is finite-dimensional, and hence it is 0 or contains a simple H(G(F), K , V )-module.
An irreducible smooth C-representation π of G(F) such that

HomG(F)
(
c-IndG(F)

K V, π
)

contains a simple H(G(F), K , V )-module N has a central character. This follows
from:

1. The center of H(G(F), K , V ) acts on N by a character [Vigneras 2007].

2. π is a quotient of N⊗H(G(F),K ,V ) c-IndG(F)
K V .

Proof of Proposition 7.6. Put

HL ,V,π :=H
(
L(F), L0, VN ′(k)

)
⊗H(G(F),K ,V ),S′L ,G HomG(F)

(
c-IndG(F)

K V, π
)
,

and similarly define HM,V,π . From the transitivity S′M,G =S′M,L ◦S′L ,G , we deduce

HM,V,π =H
(
M(F),M0, VN (k)

)
⊗H(L(F),L0,VN ′(k)),S

′

M,L
HL ,V,π .

Hence HL ,V,π is not 0, because HM,V,π 6= 0. The space

HomG(F)
(
c-IndG(F)

K V, π
)

is finite-dimensional because π is admissible, and we have just seen that its lo-
calization at TL is not 0. Therefore TL has a nonzero eigenvalue α. The cor-
responding eigenspace is a nonzero H

(
G(F), K , V

)
-submodule, and hence con-

tains a simple right H
(
G(F), K , V

)
-submodule N, which we consider as a simple

H
(
L(F), L0, VN ′(k)

)
-module with TL acting by α. The irreducible representation

π is a quotient of

(23) N⊗H(G(F),K ,V ) c-IndG(F)
K V .

As V is Q-regular, the representation (23) is isomorphic to

(24) N⊗H(L(F),L0,VN ′(k))
IndG(F)

Q(F)

(
c-IndL(F)

L0
VN ′(k)

)
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by Theorem 4.6. By Lemma 7.7, this last representation is isomorphic to IndG(F)
Q(F) σ ,

where

(25) σ := N⊗H(L(F),L0,VN ′(k))
c-IndL(F)

L0
VN ′(k)

is a smooth representation of L(F). The center of L(F) embeds naturally in the
center of the Hecke algebra H

(
L(F), L0, VN ′(k)

)
and acts by a character on the

simple H
(
L(F), L0, VN ′(k)

)
-module N. Hence σ has a central character.

The admissible irreducible representation π is a quotient of IndG(F)
Q(F) σ , where σ

has a central character. By Proposition 7.9 below, π is a quotient of IndG(F)
Q(F) τ for

an admissible irreducible smooth C-representation τ of L(F). �

Proposition 7.9. Let π be an admissible irreducible smooth C-representation of
G(F) which is a quotient of IndG(F)

P(F) σ for a smooth C-representation σ of M(F)
with a central character. Then there exists an admissible irreducible smooth C-
representation τ of M(F) such that π is a quotient of IndG(F)

P(F) τ .

When the characteristic of F is 0, Herzig [2011, Lemma 9.9] proved this propo-
sition using the P-ordinary functor OrdP introduced by Emerton [2010]. His proof
contains four steps:

1. As σ is locally Z M -finite, we have

Hom
(
IndG(F)

P(F) σ, π
)
' HomM(F)(σ,OrdPπ).

2. As π is admissible, OrdPπ is admissible.

3. As OrdPπ is admissible and nonzero, it contains an admissible irreducible
subrepresentation τ .

4. As OrdP is the right adjoint of IndG(F)
P(F) in the category of admissible represen-

tations, π is a quotient of IndG(F)
P(F) τ .

The proof is valid without hypothesis on the characteristic of F : we checked
carefully that Emerton’s proof of steps 1, 2, 4 never uses the characteristic of F .
Only the proof of step 3 given by Herzig has to be replaced by a characteristic-free
proof.

Lemma 7.10. A nonzero admissible smooth C-representation of G(F) contains an
admissible irreducible subrepresentation.

Proof. Let π be a nonzero admissible smooth C-representation of G(F), and H an
open pro-p-subgroup of G(F). The dimension of πH is a positive integer. Choose
a subrepresentation π1 of π such that πH

1 has minimal positive dimension; then the
subrepresentation generated by πH

1 is irreducible. �

This ends the proof Proposition 7.9, and hence of Proposition 7.6.



494 GUY HENNIART AND MARIE-FRANCE VIGNERAS

Acknowledgements

We would like to thank Noriyuki Abe for his helpful remarks which in particular
saved us from a blunder in Example 5.6. We also thank the excellent referee for his
care and rapidity.

References

[Abdellatif 2011] R. Abdellatif, Autour des représentations modulo p des groupes réductifs p-adiques
de rang 1, thesis, Faculté des sciences d’Orsay, 2011, www.math.u-psud.fr/~abdellat/RAThese.pdf.

[Abe 2011] N. Abe, “On a classification of admissible irreducible modulo p representations of a
p-adic split reductive group”, preprint, 2011.

[Barthel and Livné 1994] L. Barthel and R. Livné, “Irreducible modular representations of GL2 of a
local field”, Duke Math. J. 75:2 (1994), 261–292. MR 95g:22030 Zbl 0826.22019

[Borel and Tits 1965] A. Borel and J. Tits, “Groupes réductifs”, Inst. Hautes Études Sci. Publ. Math.
27 (1965), 55–150. MR 34 #7527 Zbl 0145.17402

[Bruhat and Tits 1984] F. Bruhat and J. Tits, “Groupes réductifs sur un corps local, II: Schémas en
groupes. Existence d’une donnée radicielle valuée”, Inst. Hautes Études Sci. Publ. Math. 60 (1984),
197–376. MR 86c:20042 Zbl 0597.14041

[Cabanes and Enguehard 2004] M. Cabanes and M. Enguehard, Representation theory of finite
reductive groups, New Mathematical Monographs 1, Cambridge University Press, 2004. MR 2005g:
20067 Zbl 1069.20032

[Curtis 1970] C. W. Curtis, “Modular representations of finite groups with split (B, N )-pairs”, pp.
57–95 in Seminar on Algebraic Groups and Related Finite Groups (Princeton, 1968/69), edited by
A. Borel, Springer, Berlin, 1970. MR 41 #6991 Zbl 0233.20005

[Emerton 2010] M. Emerton, “Ordinary parts of admissible representations of p-adic reductive
groups, I: Definition and first properties”, Astérisque 331 (2010), 355–402. MR 2011k:22013
Zbl 1205.22013

[Henniart and Vigneras 2011] G. Henniart and M.-F. Vigneras, “A Satake isomorphism for repre-
sentations modulo p of reductive groups over local fields”, preprint, 2011, www.math.jussieu.fr/
~vigneras/satake_isomorphism-1.pdf.

[Herzig 2009] F. Herzig, “The weight in a Serre-type conjecture for tame n-dimensional Galois
representations”, Duke Math. J. 149:1 (2009), 37–116. MR 2010f:11083 Zbl 1232.11065

[Herzig 2011] F. Herzig, “The classification of irreducible admissible mod p representations of a
p-adic GLn”, Invent. Math. 186:2 (2011), 373–434. MR 2845621 Zbl 1235.22030

[Ly ≥ 2012] T. Ly, “Irreducible representations modulo p representations of GL(2, D)”, preprint
forthcoming.

[Morris 1993] L. Morris, “Tamely ramified intertwining algebras”, Invent. Math. 114:1 (1993), 1–54.
MR 94g:22035 Zbl 0854.22022

[Vigneras 2007] M.-F. Vigneras, “Représentations irréductibles de GL(2, F)modulo p”, pp. 548–563
in L-functions and Galois representations, edited by D. Burns et al., London Math. Soc. Lecture
Note Ser. 320, Cambridge Univ. Press, 2007. MR 2009h:11084 Zbl 1172.11017

Received July 17, 2012. Revised October 6, 2012.



COMPARISON OF COMPACT INDUCTION WITH PARABOLIC INDUCTION 495

GUY HENNIART

LABORATOIRE DE MATHÉMATIQUES D’ORSAY

UNIVERSITÉ PARIS-SUD

CNRS, UMR 8628, ORSAY CEDEX F-91405
FRANCE

guy.henniart@math.u-psud.fr

MARIE-FRANCE VIGNERAS

INSTITUT DE MATHÉMATIQUES DE JUSSIEU

UNIVERSITÉ DE PARIS 7
175 RUE DU CHEVALERET

PARIS 75013
FRANCE

vigneras@math.jussieu.fr





PACIFIC JOURNAL OF MATHEMATICS
Vol. 260, No. 2, 2012

dx.doi.org/10.2140/pjm.2012.260.497

THE FUNCTIONAL EQUATION
AND BEYOND ENDOSCOPY

P. EDWARD HERMAN

Dedicated to the memory of Jonathan Rogawski

In his paper “Beyond endoscopy,” Langlands tries to understand functorial-
ity via poles of L-functions. This paper further investigates the analytic con-
tinuation of an L-function associated to a GL2 automorphic form through
the trace formula. Though the usual way to obtain the analytic continua-
tion of an L-function is through its functional equation, this paper shows
that by simply assuming the trace formula, the functional equation of the
L-function may be recovered. This paper is a step towards understanding
the analytic continuation of the L-function at the same time as capturing
information about functoriality.

From the perspective of analytic number theory, obtaining the functional
equation from the trace formula implies that Voronoi summation should in
general be also a consequence of the trace formula.

1. Beyond endoscopy

Let AQ be the ring of adeles of Q, and π be an automorphic cuspidal representation
of GL2(AQ). We define m(π, ρ) to be the order of the pole at s = 1 of L(s, π, ρ),
where ρ is a representation of the dual group GL2(C).

Langlands proposes the study of

(1-1) lim
X→∞

∑
π

1
X

tr(π)( f )
∑
p≤X

log(p)a(p, π, ρ).

Here f is a nice test function on GL2(AQ), tr(π)( f ) is the trace of the operator
defined by f on π , and a(p, π, ρ) is the p-th Dirichlet coefficient of L(s, π, ρ).
The quantity

lim
X→∞

1
X

∑
p≤X

log(p)a(p, π, ρ)

is equal to m(π, ρ).

MSC2010: 11F12, 11F66, 11F72, 11L05.
Keywords: trace formula, L-functions, functional equation, automorphic forms.
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Therefore, summing over the range of representations π will project only on to
the ones which have nontrivial multiplicity. The tool used to study this sum over the
spectrum of forms π is the trace formula. Ultimately, one gets from use of the trace
formula a sum over primes and conjugacy classes, and hopes by analytic number
theory techniques to take the limit. One hopes that after getting the limit, one can
decipher and construct the L-functions having nontrivial multiplicity of the pole at
s = 1. Sarnak [2001] addresses (1-1) for ρ = std, the standard representation. He
points out that such a computation can be done, but the tools used for the study
of sums of primes is limited, and this problem is perhaps more tractable if rather
studied over the sum of integers.

Sarnak’s idea then is to evaluate

(1-2) lim
X→∞

∑
π

1
X

tr(π)( f )
∑
n≤X

a(n, π, ρ).

This should “detect,” rather than the multiplicities of the poles, the residue of the
poles of the associated L-functions. As well, instead of using the Arthur–Selberg
trace formula, he uses the Petersson–Kuznetsov trace formula, which is a special
case of the relative trace formula [Knightly and Li 2006a]. One advantage of the
relative trace formula is that the spectrum contains only generic representations, so
we avoid the task of excising the trivial representation as in [Frenkel et al. 2010].
As well, the geometric side of the relative trace formula has a nice “streamlined”
appearance as a sum of Kloosterman sums. This is in comparison to the Arthur–
Selberg trace formula, which has orbital integrals associated to different conjugacy
classes for which the analysis of each class could be different.

The disadvantage to the relative trace formula is that each automorphic rep-
resentation π on the spectral side of the trace formula is weighted by a factor
L(1, π, ad)−1, which is the adjoint representation of π evaluated at s = 1. This
can perhaps make matching two different trace formulas more difficult. Another
disadvantage of using the relative trace formula is that the Arthur–Selberg trace
formula is in much better shape to generalize to other groups. Namely, one now
has full use of the stable trace formula due to the proof of the “fundamental lemma”
by Ngô [2010]. With the stable trace formula, one can compare stable conjugacy
classes for different groups (specifically endoscopic groups), from which one can
then compare automorphic representations for the respective groups.

However in our case of studying GL2, the disadvantages seem minimal, and
in fact the crucial exponential sums one encounters in either trace formula are
the same. Sarnak [2001] made some points on the essential differences of the
geometric sides of the two trace formulas. Also, in the case of GL2, the stable
trace formula is the same as the Arthur–Selberg trace formula, so one should not
expect an advantage of one trace formula over another.
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1.1. Sarnak’s analysis for ρ = std. The obvious first example to test Langlands’s
beyond endoscopy idea on is for the standard representation. In this case we do
not expect the L-functions to have any poles except for the continuous spectrum,
but in this case there are not any poles as the spectrum is not spectrally isolated.
So we expect in the case of ρ = std that

(1-3) lim
X→∞

∑
π

1
X

tr(π)( f )
∑
n≤X

a(n, π, std)= 0.

Sarnak uses the classic Petersson–Kuznetsov trace formula instead of using the
adelic language. To go from (1-3) to a classic approach, one can follow the great
expository article of Rogawski [1994] or the book of Knightly and Li [2006b].
Then for an automorphic form f with normalized Fourier coefficients an( f ) as-
sociated to a representation π , Sarnak [2001] showed, up to some weight factors
needed in the trace formula, that

(1-4)
∑
n≤X

∑
f

an( f )g(n/X)= O(X−A)

for any A > 0. Here X is a large fixed parameter and g ∈ C∞0 (R
+) is used for

“smoothing” the n-sum. Why is this smoothing needed? It is certainly not essential,
but when one goes to the geometric side of the trace formula to get the bound
(1-4), one requires freedom to apply analytic manipulations (interchanging sums,
Fourier transforms, and so on). With the smoothing function g, these problems
are removed and one can focus on the central issue of the arithmetic, which is
the true difficulty in these problems. One can recover the left hand side of (1-3)
by applying techniques in [Iwaniec 1984]. For completeness, we will reproduce
Sarnak’s argument in the appendix.

1.2. Results of the paper. Clearly (1-4) is a stronger result than (1-3), and up to
using Hecke operators, is equivalent to L(s, f )=

∑
∞

n=1 an( f )/ns having analytic
continuation to the complex plane. We see the analytic continuation of the left
hand side of (1-4) by Mellin inversion. By applying Mellin inversion to (1-4) we
get

(1-5) 1
X

∑
f

∑
n≤X

g(n/X)an( f )= 1
2π i

∫ σ+i∞

σ−i∞
G(s)

[∑
f

L(s, f )
]

X sds,

where G(s) =
∫
∞

0 g(x)x s−1dx is the Mellin transform with σ > 2 to ensure the
convergence of the integral. Using the right hand side of (1-4) we know that the
contour in (1-5) can be shifted (using decay properties of G(s)) to σ =−A, A> 0.
So in Sarnak’s application of the trace formula to get (1-4) we indirectly applied a
functional equation of the L-function for each automorphic form f in our spectral
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sum. Can we actually see directly the functional equation via manipulations on the
geometric side of the trace formula? In other words, can we show directly via the
trace formula that

1
2π i

∫ σ+i∞

σ−i∞
G(s)

[∑
f

L(s, f )
]

X sds

=
1

2π i

∫ σ+i∞

σ−i∞
G(s)

[∑
f

ikγ ( f, 1− s)L( f, 1− s)
γ ( f, s)

]
X sds?

We will prove this equality and get the functional equation for a fixed automorphic
form f in this note.

There are two other methods we mention that also get the analytic continuation
of an automorphic form on GLn; both use integral representations. The first method
is associated to Jacquet and Langlands [1970] (who followed Hecke [1918; 1920]),
and expresses the standard L-function as an adelic integral of an explicitly cho-
sen vector in the space of the associated automorphic representation. The second
method is of a certain integral representation constructed by Godement and Jacquet
[1972], which is inspired by Tate’s construction [1967] for GL1.

One can consider these two methods as easier ways to get the functional equa-
tion for a GL2 automorphic form, but in consideration of Langlands’s beyond
endoscopy idea, a trace formula approach seems the most systematic way to get
analytic continuation for all L-functions L(s, π, ρ) associated to a dual group rep-
resentation ρ of an automorphic representation π of a group G. For example,
currently there is no general procedure of using integral representations to get
the analytic continuation for the symmetric power L-functions. From the beyond
endoscopy perspective, asking for the analytic continuation is certainly a more
difficult question than investigating whether the L-function has a pole at s = 1 or
not. The question requires a deeper understanding of the geometric side of the
trace formula, and this paper is just the first step in that direction.

Voronoi summation. If one can always recover the functional equation from the
trace formula, then from the perspective of analytic number theory, the Voronoi
summation should be implied also from the trace formula. For example in [Kowal-
ski et al. 2000; 2002], an application of a trace formula and a Voronoi summation
are used to get results on subconvexity. Could one avoid Voronoi summation and
just apply the trace formula? In [Herman ≥ 2012a], we do just that to get subcon-
vexity for the Rankin–Selberg L-function in both levels by applying a double trace
formula instead of a Voronoi summation and a single trace formula.

1.3. Key steps in proof. As for the proof of the main theorem, one sees the role
of the sum over the Kloosterman sums on the geometric side of the trace formula
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interacting with the averaging coming from the Dirichlet series for the standard
L-function.

To see the functional equation of a GL2 L-function, the Dirichlet series sum
exchanges roles with the sum of Kloosterman sums. There are two important steps
in this switching of roles of parametrization. One is elementary reciprocity,

A
B
+

B
A
≡

1
AB

(1),

which allows one to invert the modulus of exponential sums. This simple reci-
procity seems to come up several times in these beyond endoscopy calculations (see
[Herman 2012; ≥ 2012b]). The second important tool is the integral representation∫

∞

0
exp(−αx)Jν(2β

√
x)Jν(2γ

√
x) dx = 1

α
Iν

(
2βγ
α

)
exp

(
−(β2

+ γ 2)

α

)
dx .

Given that Bessel functions are the archimedean version of Kloosterman sums, this
representation implies that a Fourier transform of a product of Kloosterman sums
is another Kloosterman sum times an exponential sum. It would be nice to see how
these two steps are generalized for higher rank or for a relative trace formula for
other groups.

2. Preliminaries

We recall the functional equation for a cusp form. Let D be a squarefree integer, χ
be a primitive Dirichlet character modulo D, and k ≥ 2, k ∈ 2Z. Let f ∈ Sk(D, χ),
where Sk(D, χ) is the space of holomorphic modular forms of weight k and level
D with nebentypus χ ; see [Iwaniec and Kowalski 2004]. In this case the space
Sk(D, χ) can be spanned by an orthonormal basis of primitive newforms which
we label Bk(D, χ). We note the Fourier coefficients cn( f )n(k−1)/2 of a form f in
Bk(D, χ) satisfy

cn( f )cl( f )=
∑

r |(n,l)

χ(r)c(nl)/r2( f )

for (nl, D)= 1, and also that |cD( f )| = 1.
Let L( f, s)=

∑
∞

n=1 cn( f )/ns , and define 3( f, s)= γ ( f, s)L( f, s), where

γ ( f, s)=
(√

D
2π

)s

0

(
s+ k−1

2

2

)
0

(
s+ k+1

2

2

)
.

The functional equation then says 3( f, s)= ik3( f, 1− s).
The trace formula we use is Petersson’s formula, which is a variant of the relative

trace formula [Knightly and Li 2006a]. This formula requires a normalization of
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the Fourier coefficients. For cn( f ) above, define

an( f ) :=

√
π−k0(k)
2k−1 cn( f ).

Petersson’s formula states

(2-1)
∑

f ∈Bk(D,χ)

an( f )al( f )= δn,l + 2π i−k
∞∑

c≡0(D)

Sχ (n, l, c)
c

Jk−1

(4π
√

nl
c

)
.

Here
Sχ (a, b, c)=

∑
x(c)∗

χ(x)
(ax+bx

c

)
,

where xx ≡ 1(c), e(x) := exp(2π i x) and Jt(x) is the J -Bessel function with
index t .

To relate the functional equation to the geometric side of the trace formula, we
need an equivalent version of the functional equation for a form f ∈ Bk(D, χ),
which is called Voronoi summation. The Voronoi summation needed is proved in
the appendix of [Kowalski et al. 2002], and states this:

Theorem 2.1. Let g ∈C∞0 (R
+) and f ∈ Bk(D, χ), then for integers a, c such that

(aD, c)= 1,

(2-2)
∑
n≥1

an( f )e
(an

c

)
g(n)

=
2π ikη( f )χ(−c)

c
√

D

∑
n≥1

an( fD)e
(
−naD

c

) ∫ ∞
0

g(x)Jk−1

(
4π
√

nx
√

Dc

)
dx,

where aa ≡ 1(c). Here η( f ) = τ(χ)/(aD( f )
√

D), with τ(χ) denoting the Gauss
sum associated to χ , and

an( fD)=

{
χ(n) an( f ) if (n, D)= 1,
an( f ) if n | D∞.

In our case, we only take a = c = 1. If so, the functional equation of the L-
function L( f, s) is equivalent to the Voronoi summation by using Mellin inversion
on the left hand side of (2-2), then applying the functional equation to L( f, s) and
using the integral representation

Jk−1(x)=
1

4π i

∫
(σ )

( x
2

)−s 0
(1

2

(
s+ k−1

2

))
0
(1

2

(
1− s

2
+

k−1
2

))ds

for 0< σ < 1, along with the duplication formula for the gamma function.
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3. Main theorem

The main theorem of the paper is:

Theorem 3.1. Let g ∈ C∞0 (R
+) satisfy |x j g( j)(x)| � (1+ | log x |). Then, for any

l ∈ N with (l, D)= 1, and assuming Petersson’s formula above, one gets

(3-1)
∑

f ∈Bk(D,χ)

al( f )
∑
n≥1

an( f )g(n)

=

∑
f ∈Bk(D,χ)

al( f )
[

2π ikη( f )
√

D

∑
n

an( fD)

∫
∞

0
g(x)Jk−1

(
4π
√

nx
√

D

)
dx
]
.

Using Hecke theory one gets:

Corollary 3.2. For a modular form f ∈ Bk(D, χ),

L( f, s)=
ikγ ( f, 1− s)L( f, 1− s)

γ ( f, s)
,

or,

3( f, s)=3( f, 1− s).

Proof of Theorem 3.1. Using Petersson’s trace formula on the left hand side of
(3-1) one gets

(3-2)
∑

n

g(n)
[
δn,l + 2π i−k

∞∑
c=1

Sχ (n, l, Dc)
Dc

Jk−1

(4π
√

nl
Dc

)]

= g(l)+ 2π i−k
∞∑

c=1

∑
n

g(n)
Sχ (n, l, Dc)

Dc
Jk−1

(4π
√

nl
Dc

)
.

We can interchange the c-sum and n-sum as the latter is compactly supported.
For now we will ignore the term g(l), and come back to it later. Opening up the

Kloosterman sum and gathering the n-sum together, we apply Poisson summation
on it in arithmetic progressions modulo c, getting

2π i−k
∞∑

c=1

1
(Dc)2

∑
x(Dc)∗

χ(x)e
( xl

Dc

)∑
m∈Z

∑
k(Dc)

e
( xk+mk

Dc

)
×

∫
∞

−∞

g(t)Jk−1

(4π
√

tl
Dc

)
e
(
−mt
Dc

)
dt.

Using

(3-3)
∑
a(c)

e
(ax

c

)
=

{
c if x ≡ 0(c),
0 else,
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one gets

(3-4) 2π i−k
∞∑

c=1

1
Dc

∑
m 6=0∈Z
(m,Dc)=1

χ(m) e
(
−lm
Dc

) ∫ ∞
−∞

g(t)Jk−1

(4π
√

tl
Dc

)
e
(
−mt
Dc

)
dt.

Note the m = 0 disappears.
Now the interesting part of the argument is that the c-sum and n-sum swap roles,

in that the c-sum will become part of the averaging coming from the L-function.
We use the elementary reciprocity

A
B
+

B
A
≡

1
AB

(1),

to get

(3-5) 2π i−k
∞∑

c=1

1
Dc

∑
m 6=0∈Z
(m,Dc)=1

χ(m)e
( lc

Dm

)
e
(
−l

m Dc

)
×

∫
∞

−∞

g(t)Jk−1

(4π
√

tl
Dc

)
e
(
−mt
Dc

)
dt.

Also, the terms m < 0 we write as −m,m ∈N, and exchange sign to the c-sum.
This can be clearly done everywhere except for in the J -Bessel function and the 1

c
term. Using the fact that Jk−1(−x)=−Jk−1(x), we can rewrite (3-5) as

(3-6) 2π i−k
∞∑

c 6=0,c∈Z

1
Dc

∑
m=1

(m,c)=1

χ(m)e
( lc

Dm

)
e
(
−l

m Dc

)
×

∫
∞

−∞

g(t)Jk−1

(4π
√

tl
Dc

)
e
(
−mt
Dc

)
dt.

The rearrangement of the m-sum is accomplished by using a standard integration
by parts argument in the t-integral and the estimate in the appendix of [Kowalski
et al. 2002],

|zk Jν(z)| �k,ν
1

(1+z)1/2

for <ν ≥ 0.
We also interchange the c-sum and m-sum. To justify the rearrangement, note

for c large, and by using the power series expansion, we have the estimate

Jk−1

(4π
√

tl
Dc

)
�

1
ck−1 .
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Therefore, for N sufficiently large, by estimating the exponentials and integral
trivially and noting that k ≥ 2, we get

(3-7)
∑
c>N

1
Dc

∑
m=1

(m,c)=1

χ(m)e
( lc

Dm

)
e
(
−l

m Dc

) ∫ ∞
−∞

g(t)Jk−1

(4π
√

tl
Dc

)
e
(
−mt
Dc

)
dt

� L(0, χ)
∑
c>N

1
ck <∞.

Clearly, the c-sum up to N is finite and is not a problem, and the sums can be
interchanged.

Now we need a integral representation from [Gradshteyn and Ryzhik 2000,
6.615],

(3-8)
∫
∞

0
exp(−αx)Jν(2β

√
x)Jν(2γ

√
x) dx = 1

α
Iν
(2βγ
α

)
exp

(
−(β2

+ γ 2)

α

)
for <ν >−1.

We rewrite (3-6) as

(2π i)(2π i−k)
∑

m

1
m

∑
c 6=0,c∈Z
(c,m)=1

χ(m)e
( lc

Dm

)

×

∫
∞

−∞

g(t)
[

m
2π i Dc

Jk−1

(4π
√

tl
Dc

)
e
(
−l

m Dc

)
e
(
−mt
Dc

)]
dt.

Note the term in brackets is equal to the right hand side of (3-8) times ik−1 for
α = 2π i Dc/m, β = 2π

√
l/m, and γ = 2π

√
t by using the fact that for k−1 odd,

Jk−1(z)= ik−1 Ik−1(−iy).
Using this integral representation, one has

(3-9) 4π2
∑

m

1
m

∑
c 6=0,c∈Z
(c,m)=1

χ(m)e
( lc

Dm

)

×

∫
∞

−∞

g(t)
[∫
∞

0
Jk−1

(4π
√

ly
m

)
Jk−1(4π

√
t y)e

(
−Dcy

m

)
dy
]

dt.

We make a change of variables y→ y/D to get

(3-10) 4π2
∑

m

1
Dm

∑
c 6=0,c∈Z
(c,m)=1

χ(m)e
( lc

Dm

)

×

∫
∞

−∞

g(t)
[∫
∞

0
Jk−1

(4π
√

l Dy
Dm

)
Jk−1

(
4π
√

t y
√

D

)
e
(
−cy
m

)
dy
]

dt.
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Using τ(χ)τ(χ)/D = 1, we get

(3-11) 4π2τ(χ)

D

∑
m=1

1
Dm

∑
c∈Z

χ(m)τ (χ)e
( lc

Dm

)
×

∫
∞

−∞

Jk−1

(4π
√

l Dy
Dm

)[∫ ∞
0

g(t)Jk−1

(
4π
√

t y
√

D

)
dt
]

e
(
−cy
m

)
dy.

Anticipating the use of the Chinese remainder theorem, we let c′ = Dc. So
(3-11) equals

(3-12)
4π2τ(χ)

D

∑
m=1

1
Dm

∑
c′∈Z,c′≡0(D)
c′ 6=0,(c′,m)=1

χ(m)τ (χ)e
( lc′/D

Dm

)

×

∫
∞

−∞

Jk−1

(4π
√

l Dy
Dm

)[∫ ∞
0

g(t)Jk−1

(
4π
√

t y
√

D

)
dt
]

e
(
−c′y
Dm

)
dy.

We focus on the arithmetic inside the c′-sum. We note, using (m, D) = 1 and
the Chinese remainder theorem, that

(3-13) χ(m)τ (χ)e
( lc′/D

Dm

)
=

[∑
a(D)

χ(a)e
(ma

D

)][ ∑
b(m)∗, bl≡ c′

D (m)

e
( b

m

)]

=

∑
x(Dm)

Dxl≡c′(Dm)

χ(x)e
( x

Dm

)
.

Using (3-3) again the above equals

∑
x(Dm)

Dxl≡c′(Dm)

χ(x)e
( x

Dm

)
=

1
Dm

∑
x(Dm)

χ(x)e
( x

Dm

) ∑
k(Dm)

e
(k(Dlx−c′)

Dm

)
.

Incorporating the above line and a rearrangement of the exponential sums, we
have

(3-14) 4π2τ(χ)

D

∑
m=1

1
(Dm)2

∑
c′∈Z

∑
x(Dm)

χ(x)e
( x

Dm

) ∑
k(Dm)

e
(k Dlx

Dm

)
×

∫
∞

0
Jk−1

(4π
√

l Dy
Dm

)[∫ ∞
0

g(t)Jk−1

(
4π
√

t y
√

D

)
dt
]

e
(
−c′(y+k)

Dm

)
dy.
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We note the c′-sum has the restriction c′ ≡ 0(D) removed by the k-sum. With a
change of variables y→ y− k, followed by y→ Dmy, we get

(3-15) 4π2τ(χ)

D

∑
m=1

1
Dm

∑
x(Dm)∗

χ(x)e
( x

Dm

) ∑
k(Dm)

e
(k Dlx

Dm

)
+

∑
c′∈Z

∫
∞

0
Jk−1

(4π
√

l D(Dmy−k)
Dm

)
×

[∫
∞

0
g(t)Jk−1

(
4π
√

t (Dmy− k)
√

D

)
dt
]

e(−c′y) dy.

The c′-sum now clearly came from a Poisson summation, namely,

(3-16)
∑
c′∈Z

∫
∞

0
Jk−1

(4π
√

l D(Dmy−k)
Dm

)
×

[∫
∞

0
g(t)Jk−1

(
4π
√

t (Dmy− k)
√

D

)
dt
]

e(−c′y) dy

=

∑
c∈Z

Jk−1

(4π
√

l D(Dmc′−k)
Dm

)
×

∫
∞

0
g(t)Jk−1

(
4π
√

t (Dmc− k)
√

D

)
dt.

In order to check that

F(w)= Jk−1

(
4π
√

l D(Dmw− k)
Dm

)∫
∞

0
g(t)Jk−1

(
4π
√

t (Dmw− k)
D

)
dt

satisfies the conditions for Poisson summation, we use the following lemma of
[Kowalski et al. 2002]:

Lemma 3.3. Let h(x) be a smooth function supported on [M, 2M] that satisfies
|x j h( j)(x)| � (1+ | log x |) for all i ≥ 0, x > 0. For ν complex and j ≥ 0 we have∫

∞

0
Jν(x)h(x) dx �ν, j

(1+| log M |)
M j−1

M<ν+ j+1

(1+M)<ν+ j+1/2 .

We apply this to the integral in F(w) with

h(t)= D2

16π2(Dmw−k)2
tg
( D2t2

16π2(Dmw−k)2
)
.

It is easy, but tedious, to check that the assumptions of the lemma are fulfilled by
using the assumption on g that |x j g( j)(x)|� (1+| log x |) (from the hypothesis of
Theorem 3.1). The lemma then gives F(w)�min(wk−1, 1/w j ) for any j > 0 for
w ∈ [0,∞). So certainly Poisson summation holds in this case.
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Defining Dmc− k =− j , (3-15) again by regrouping equals

4π2τ(χ)

D

∑
m=1

1
Dm

∑
j∈Z

∑
x(Dm)∗

χ(x)e
( x

Dm

)
e
( j Dlx

Dm

)
Jk−1

(4π
√

l j D
Dm

)
×

∫
∞

0
g(t)Jk−1

(
4π
√

t j
√

D

)
dt

=
4π2τ(χ)

D

∑
m=1

1
Dm

∑
j∈Z

χ( j)Sχ (Dl, j, Dm)Jk−1

(4π
√

l Dj
Dm

)
×

∫
∞

0
g(t)Jk−1

(
4π
√

t j
√

D

)
dt

=
4π2τ(χ)

D

∑
j∈Z

χ( j)
[ ∑

m≡0(D)

Sχ (Dl, j,m)
m

Jk−1

(
4π
√

Dl j
m

)]
×

∫
∞

0
g(t)Jk−1

(
4π
√

t j
√

D

)
dt.

Now recall we ignored g(l) from (3-2), so (3-1) equals

(3-17) g(l)+ 2π ikτ(χ)

D

∑
j

χ( j)
[

2π i−k
∑

m≡0(D)

Sχ (Dl, j,m)
m

Jk−1

(4π
√

Dl j
m

)]

×

∫
∞

0
g(t)Jk−1

(
4π
√

t j
√

D

)
dt.

The g(l) term is again the diagonal term for the geometric side of the trace
formula that comes from the term

(3-18)
∑

fD

al D( fD)al D( fD).

This is again using the fact that |aD( fD)| = 1.
Now as D is squarefree and χ is primitive, the space Bk(N , χ) is spanned by

newforms, which implies the Fourier coefficients are multiplicative in all the primes
(including the bad primes) and |cD( f )| = 1. So using Petersson’s formula again
we get

(3-19)
∑
f ∈Bk

al( f )
[

2π ikτ(χ)

DaD( f )

∑
j

χ( j)a j ( f )
∫
∞

0
g(x)Jk−1

(
4π
√

j x
√

D

)
dx
]

=

∑
f ∈Bk

al( f )
[

2π ikη( f )
√

D

∑
j

χ( j)a j ( f )
∫
∞

0
g(x)Jk−1

(
4π
√

j x
√

D

)
dx
]

=

∑
fD∈Bk

al( fD)

[
2π ikη( f )
√

D

∑
( j,D)=1

a j ( fD)

∫
∞

0
g(x)Jk−1

(
4π
√

j x
√

D

)
dx
]
.
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Note that to show the connection to Voronoi summation from Theorem 2.1, we
need also the coefficients a j ( fD) with ( j, D) > 1. We state a lemma:

Lemma 3.4. For (l, D)= 1,

(3-20)
∑

fD∈Bk

al( fD)

[
2π ikη( f )
√

D

∑
( j,D)>1

a j ( fD)

∫
∞

0
g(x)Jk−1

(
4π
√

j x
√

D

)
dx
]
= 0.

Assuming the lemma for now, we get that (3-19) equals

∑
fD∈Bk

al( fD)

[
2π ikη( f )
√

D

∞∑
j=1

a j ( fD)

∫
∞

0
g(x)Jk−1

(
4π
√

j x
√

D

)
dx
]
,

which proves Theorem 3.1. �

Proof of Lemma 3.4. First we write j = Dk j ′, ( j ′, D)= 1. Using the definition of
the coefficients fD(n) in Theorem 2.1, the left hand side of (3-20) equals

2π ik
√

D

∞∑
k=1

∑
( j,D)=1

χ( j)
∑
f ∈Bk

al Dk+1( f ) a j ( f )
∫
∞

0
g(x)Jk−1

(
4π
√

j Dk x
√

D

)
dx .

Fix a k, and following the same argument as we made previously, we apply Peters-
son’s formula to get

2π i−k
∑

j

χ( j)
∞∑

c=1

Sχ ( j, l Dk+1, Dc)
Dc

Jk−1

(4π
√

nl Dk+1

Dc

)
×

∫
∞

0
g(x)Jk−1

(
4π
√

j Dk x
√

D

)
dx .

That we can apply Petersson’s formula in this case follows from using the estimates
of Lemma 3.3. With a change of variable in the Kloosterman sum this equals

2π i−k
∑

j

∞∑
c=1

Sχ (1, jl Dk+1, Dc)
Dc

Jk−1

(4π
√

nl Dk+1

Dc

)
×

∫
∞

0
g(x)Jk−1

(
4π
√

j Dk x
√

D

)
dx .

Interchanging the j- and c-sums, justified by a similar Bessel function analysis
as above, we apply Poisson summation to the j-sum modulo Dc. The crucial
arithmetic sums, analogous to the ones in obtaining (3-4), are

(3-21)
∑

x(Dc)∗
χ(x)e

( x
Dc

) ∑
a(Dc)

e
( xaDk+1l

Dc

)
e
(
−am
Dc

)
,
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where m is the variable for Poisson summation. The inner sum is nonzero only
when Dk+1l ≡ mx(Dc). If (m, c) = 1, then it is easy to check (3-21) is zero.
As well if Dh

|m then Dh−1
|c as (xl, D) = 1 for h ≤ k + 1. So for a nonzero

contribution we must have Dk+1
|m and Dk

|c. Writing c= Dkc′ and m = Dk+1m′,
x must satisfy l ≡ m′x(c′). We can write these solutions as x ≡ m′l + c′b(Dc),
where b(Dk+1). So (3-21) equals

Dc
∑

b(Dk+1)

χ(m′l + c′b)e
(m′l+c′b

Dc

)
= e

(m′l
Dc

)
Dc

∑
b(Dk+1)

χ(m′l + c′b)e
( b

Dk+1

)
.

With a change of variables b→ cb, b→ b−m′l, the inner Gauss sum is∑
b(Dk+1)

χ(b)e
( c′b

Dk+1

)
= χ(c′)

∑
b(Dk+1)

χ(b)e
( b

Dk+1

)
.

This last Gauss sum is zero as χ is a primitive character modulo D and k+1≥ 2.
�

Remark. There is nothing special about the test function we used in the lemma,
and by a similar argument it is easy to show that for a “nice” test function V (x)
and k ≥ 2,

∞∑
j=1

χ( j)V ( j)
∑
f ∈Bk

aDk ( f )a j ( f )= 0.

4. Application of Hecke theory

Now to prove Corollary 3.2. One can rewrite Theorem 3.1 as

(4-1) 1
2π i

∫
(σ )

G(s)

[∑
f ∈Bk

al( f )
(

L( f, s)−
ikγ ( f, 1− s)L( f, 1− s)

γ ( f, s)

)]
ds = 0,

using that the Voronoi summation we take into consideration is equivalent to the
functional equation. Since (4-1) holds for any g in C∞0 (R

+), and in fact holds with
slightly more care for the transform of any Schwarz function, by completeness, it
must hold that∑

f ∈Bk

al( f )
(

L( f, s)−
ikγ ( f, 1− s)L( f, 1− s)

γ ( f, s)

)
= 0.

Fix a form f ◦ ∈ Bk . Now as l was arbitrary and the space of forms f ∈ Bk is
finite dimensional, using the relation

an( f )al( f )=
∑

r |(n,l)

χ(r)anl/r2( f )
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for (nl, D) = 1, one can build a polynomial in the Hecke coefficients, call it
F(aq1( f ), aq2( f ), . . . , aqN ( f )), such that

∑
f ∈Bk

F(aq1( f ), aq2( f ), . . . , aqN ( f ))
(

L( f, s)−
ikγ ( f, 1− s)L( f, 1− s)

γ ( f, s)

)
= 0,

where F equals 1 for f = f ◦, and equals 0 for f 6= f ◦, following [Herman 2010].
So we get a pointwise equality

L( f, s)−
ikγ ( f, 1− s)L( f, 1− s)

γ ( f, s)
= 0,

which proves the corollary. �

Appendix

We replicate Sarnak’s argument [2001] from his letter to Langlands. In order to do
so, we use the Kuznetsov trace formula for the entire GL2 spectrum. We refer to
[Herman 2011] for the details. Let H(D, χ) denote the GL2 spectrum with level
D and nebentypus χ .

Theorem A.1. Let g, V ∈ C∞0 (R
+) with |x j g( j)(x)| � (1+ | log x |), X a large

fixed real number, and D and χ as above. Then for any integer A > 0,

(A-1)
∑
n≤X

∑
f ∈H(D,χ)

h(t f , V )al( f )an( f )g(n/X)= O(X−A).

Proof. We apply the Kuznetsov trace formula and Poisson summation, similarly
as we did in obtaining (3-4) for just the holomorphic forms, to get

(A-2)
∞∑

c=1

1
Dc

∑
m 6=0∈Z
(m,Dc)=1

χ(m)e
(
−lm
Dc

)∫
∞

−∞

g
(

t
X

)
V
(

4π
√

tl
Dc

)
e
(
−mt
Dc

)
dt.

Essentially, the argument only depends on showing the integral is bounded by
O(X−A). Note that as V and g are compactly supported, the c-sum is restricted to
size a

√
X ≤ c ≤ b

√
X , for some absolute constants a, b ∈ R+, notated c ∼

√
X .

Note that g(k)(Dct/X)� 1/X k/2 and V (h)(4π
√

tl/
√

Dc)� 1/Xh/2 for h, k ≥ 0.
Also the size of the integral is X/c ∼

√
X . Using these estimates and integrating

by parts j-times, after a change of variables t→ Dct , it easy to check that

(A-3) Dc
∫
∞

−∞

g
(

Dct
X

)
V
(

4π
√

tl
√

Dc

)
e(−mt) dt�

Dc

(
√

X) j−1m j
�

1

(
√

X) j−2m j
.
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So including the c- and m-sums we have

�
1

(
√

X) j−2

∑
c∼
√

X

∑
m

1
m j �

1

(
√

X) j−3
.

Obviously, this implies the theorem by taking ( j − 3/2) > A. �

Acknowledgements

I want to dedicate this paper to my advisor, Jon Rogawski. I could not have asked
for a better advisor than Jon as a graduate student at UCLA. His unfaltering pa-
tience and calm resolve balanced my personality, which was the opposite of patient
in those days. When I would fail to understand an aspect of automorphic forms or
the trace formula, Jon would dismiss my frustration and clarify the misunderstand-
ing in a way that only Jon could with sympathetic composure and the knowledge
of a veteran in the field. While he was always collected when he addressed the
challenges that I faced, he was a passionate person and was ardent when he spoke
about math. During times of stagnation, I would go to Jon to reinvigorate me.
After talking to Jon, I always felt more inspired and confident.

From winter to the early part of summer of 2011, I was at the American Institute
of Mathematics in Palo Alto and would visit Jon in Los Angeles every few months.
I remember fondly going to coffee shops or to his home to discuss my new ideas
as he shared his own. It was in one of these gatherings that he suggested how to
isolate a single Hecke eigenform (found in Section 4). I want to point this out
because even today, Jon continues to inspire me. I am honored to have been one
of his students and am also saddened that I was his last.

References

[Frenkel et al. 2010] E. Frenkel, R. Langlands, and B. C. Ngô, “Formule des traces et fonctorial-
ité: le début d’un programme”, Ann. Sci. Math. Québec 34:2 (2010), 199–243. MR 2012c:11240
Zbl 05998868 arXiv 1003.4578

[Godement and Jacquet 1972] R. Godement and H. Jacquet, Zeta functions of simple algebras, Lec-
ture Notes in Mathematics 260, Springer, Berlin, 1972. MR 49 #7241 Zbl 0244.12011

[Gradshteyn and Ryzhik 2000] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and
products, 6th ed., Academic Press, San Diego, CA, 2000. MR 2001c:00002 Zbl 0981.65001

[Hecke 1918] E. Hecke, “Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung
der Primzahlen”, Math. Z. 1:4 (1918), 357–376. MR 1544302 JFM 46.0258.01

[Hecke 1920] E. Hecke, “Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung
der Primzahlen”, Math. Z. 6:1-2 (1920), 11–51. MR 1544392

[Herman 2010] P. E. Herman, “Quadratic base change and the analytic continuation of the Asai
L-function: a new trace formula approach”, preprint, 2010. arXiv 1008.3921

[Herman 2011] P. E. Herman, “Beyond endoscopy for the Rankin–Selberg L-function”, J. Number
Theory 131:9 (2011), 1691–1722. MR 2802142 Zbl 1245.11068



THE FUNCTIONAL EQUATION AND BEYOND ENDOSCOPY 513

[Herman 2012] P. E. Herman, “Beyond endoscopy for the symmetric cube L-function and the
Shimura correspondence”, preprint, 2012. arXiv 1208.1705

[Herman ≥ 2012a] P. E. Herman, “Subconvexity for the Rankin–Selberg L-function in both levels”,
in preparation.

[Herman ≥ 2012b] P. E. Herman, “A trace formula approach to Sym2
⊗ Sym2”, in preparation.

[Iwaniec 1984] H. Iwaniec, “Prime geodesic theorem”, J. Reine Angew. Math. 349 (1984), 136–159.
MR 85h:11025 Zbl 0527.10021

[Iwaniec and Kowalski 2004] H. Iwaniec and E. Kowalski, Analytic number theory, American Math-
ematical Society Colloquium Publications 53, American Mathematical Society, Providence, RI,
2004. MR 2005h:11005 Zbl 1059.11001

[Jacquet and Langlands 1970] H. Jacquet and R. P. Langlands, Automorphic forms on GL(2), Lec-
ture Notes in Mathematics 114, Springer, Berlin, 1970. MR 53 #5481 Zbl 0236.12010

[Knightly and Li 2006a] A. Knightly and C. Li, “A relative trace formula proof of the Petersson
trace formula”, Acta Arith. 122:3 (2006), 297–313. MR 2007d:11042 Zbl 1095.11028

[Knightly and Li 2006b] A. Knightly and C. Li, Traces of Hecke operators, Mathematical Surveys
and Monographs 133, American Mathematical Society, Providence, RI, 2006. MR 2008g:11090
Zbl 1120.11024

[Kowalski et al. 2000] E. Kowalski, P. Michel, and J. VanderKam, “Mollification of the fourth mo-
ment of automorphic L-functions and arithmetic applications”, Invent. Math. 142:1 (2000), 95–151.
MR 2001m:11080 Zbl 1054.11026

[Kowalski et al. 2002] E. Kowalski, P. Michel, and J. VanderKam, “Rankin–Selberg L-functions in
the level aspect”, Duke Math. J. 114:1 (2002), 123–191. MR 2004c:11070 Zbl 1035.11018

[Ngô 2010] B. C. Ngô, “Le lemme fondamental pour les algèbres de Lie”, Publ. Math. Inst. Hautes
Études Sci. 111 (2010), 1–169. MR 2011h:22011 Zbl 1200.22011 arXiv 0801.0446

[Rogawski 1994] J. Rogawski, “Appendix: modular forms, the Ramanujan conjecture and the Jac-
quet–Langlands correspondence”, pp. 135–176 in Discrete groups, expanding graphs and invariant
measures, Progress in Mathematics 125, Birkhäuser, Basel, 1994. MR 96g:22018 Zbl 0826.22012

[Sarnak 2001] P. C. Sarnak, “Comments on Langland’s lecture”, Princeton University, 2001, avail-
able at http://web.math.princeton.edu/sarnak/SarnakLectureNotes-1.pdf.

[Tate 1967] J. T. Tate, “Fourier analysis in number fields, and Hecke’s zeta-functions”, pp. 305–347
in Algebraic number theory (Brighton, 1965), edited by J. W. S. Cassels and A. Fröhlich, Academic
Press, London, 1967. MR 36 #121

Received August 1, 2012.

P. EDWARD HERMAN

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CHICAGO

5734 S. UNIVERSITY AVENUE

CHICAGO, IL 60637
UNITED STATES

peherman@math.uchicago.edu





PACIFIC JOURNAL OF MATHEMATICS
Vol. 260, No. 2, 2012

dx.doi.org/10.2140/pjm.2012.260.515

A CORRECTION TO CONDUCTEUR DES REPRÉSENTATIONS
DU GROUPE LINÉAIRE

HERVÉ JACQUET

We give a correct proof for the existence of the essential vector of an irre-
ducible admissible generic representation of the general linear group over a
p-adic field.

Nadir Matringe has indicated to me that the paper “Conducteur des représenta-
tions du groupe linéaire” [Jacquet et al. 1981a; 1981b] contains an error. Since the
result therein has applications (see [Jacquet and Shalika 1985] for instance), it may
be useful to correct the error. In any case, the correct proof is actually simpler than
the erroneous proof. Separately, Matringe [2011] has given a different proof, which
is of independent interest.

First, I recall the result in question. Let F be a non-Archimedean local field. We
denote by ˛ or j � j the absolute value of F , by q the cardinality of the residual field
and finally by v the valuation function on F . Thus, ˛.x/D jxj D q�v.x/. Let  be
an additive character of F whose conductor is the ring of integers OF . Let Gr be
the group GL.r/ regarded as an algebraic group. We denote by wr the permutation
matrix whose antidiagonal entries are 1. For instance,

w3 D

0@0 0 1

0 1 0

1 0 0

1A :
We denote by dg the Haar measure of Gr .F / for which the compact group Gr .OF /

has volume 1. Let Nr be the subgroup of upper triangular matrices with unit
diagonal and Ar the group of diagonal matrices. We define a character

�r; WNr .F /! C�

by the formula

�r; .u/D  

� X
1�i�r�1

ui;iC1

�
:

We denote by du the Haar measure on Nr .F / for which Nr .OF / has measure 1.
We have then an invariant quotient measure on Nr .F /nGr .F /.

MSC2010: 11F70, 22E50.
Keywords: conductor, essential vector.
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Let Sr be the algebra of symmetric polynomials in

.X1;X
�1
1 ;X2;X

�1
2 ; : : : ;Xr ;X

�1
r /:

Let Hr be the Hecke algebra of Gr .F /, that is, the convolution algebra of compactly
supported, complex-valued functions that are bi-invariant under the maximal com-
pact group Gr .OF /. Let Sr WHr ! Sr be the Satake isomorphism. Thus, for any
r -tuple of nonzero complex numbers .x1;x2; : : : ;xr / we have a homomorphism
of algebras Sr .x1;x2; : : : ;xr / WHr ! C, defined by

Sr .x1;x2; : : : ;xr / W � 7! Sr .�/.x1;x2; : : : ;xr / :

Concretely, it is defined in the following way. Let t D .t1; t2; : : : ; tr / be a tuple of
complex numbers such that xi D q�ti for each i . We denote by �.t1; t2; : : : ; tr / the
corresponding principal series representation of Gr�1.F /. It is the representation
induced by the character

aD .a1; a2; : : : ; ar / 7! ja1j
t1 ja2j

t2 � � � jar j
tr

of Ar .F /. Its space I.t1; t2; : : : ; tr / is the space of smooth functions � WGr .F /!C

such that

�

240@a1 � � � � � � � �

0 a2 � � � � � � �

0 0 � � � � � � ar

1Ag

35D ja1j
t1C

r�1
2 ja2j

t2C
r�1

2
�1
� � � jar j

tr�
r�1

2 �.g/ :

The space I.t1; t2; : : : ; tr / contains a unique vector �0 equal to 1 on Gr .OF / and
thus invariant under Gr .OF /. Under convolution, it is an eigenfunction of Hr with
eigenvalue Sr .x1;x2; : : : ;xr /, that is,Z

Gr .F /

�0.gh/ �.h/ dhD Sr .�/.x1;x2; : : : ;xr / �0.g/

for every � in Hr .
There is a unique function W WGr .F /! C satisfying the following properties:

� W .gk/DW .g/ for k 2Gr .OF /,

� W .ug/D � .u/W .g/ for u 2Nr .F /,

� for all .x1;x2; : : : ;xr / and all � 2Hr ,Z
Gr .F /

W .gh/ �.h/ dhD Sr .�/.x1;x2; : : : ;xr /W .g/;

� W .e/D 1.
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Thus, W is an eigenfunction of Hr with eigenvalue Sr .x1;x2; : : : ;xr /. We will
denote this function by W .x1;x2; : : : ;xr I / and its value at g by

W .gIx1;x2; : : :xr I / :

Let .�;V / be an irreducible admissible representation of Gr .F /. We assume
that � is generic, that is, there is a nonzero linear form � W V ! C such that

�.�.u/v/D �r; .u/ �.v/

for all u 2Nr .F / and all v 2 V . Recall that such a form is unique within a scalar
factor. We denote by W.� I / the space of functions of the form

g 7! �.�.g/v/

with v 2 V . It is the Whittaker model of � . On the other hand, we have the L-
factor L.s; �/ [Godement and Jacquet 1972]. We denote by P�.X / the polynomial
defined by L.s; �/D P�.q

�s/�1. The main result of [Jacquet et al. 1981a] is the
following theorem:

Theorem 1. There is an element W 2W.� I / such that, for any .r � 1/-tuple of
nonzero complex numbers .x1;x2; : : : ;xr�1/,Z

Nr�1.F /nGr�1.F /

W

�
g 0

0 1

�
W .gIx1;x2; : : : ;xr�1I /jdet gjs�1=2 dg

D

Y
1�i�r�1

P�.q
�sxi/

�1:

In [Jacquet et al. 1981a] it is shown that if we impose the extra condition

W

�
gh 0

0 1

�
DW

�
g 0

0 1

�
for all h 2Gr�1.OF / and g 2Gr�1.F /, then W is unique. The vector W is then
called the essential vector of � , and further properties of this vector are obtained in
[Jacquet et al. 1981a].

The proof of this theorem is incorrect in that paper. We give a correct proof here.

1. Review of the properties of the L-factor

Let r � 2 be an integer. Let t D .t1; t2; : : : ; tr�1/ be an .r � 1/-tuple of complex
numbers. We assume that

Re.t1/� Re.t2/� � � � � Re.tr�1/:

Again, we consider the representation �.t1; t2; : : : ; tr�1/ that acts on the space
I.t1; t2; : : : ; tr�1/. As before, let �0 be the unique vector of that space that is
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equal to 1 on Gr�1.OF /. Recall it is invariant under Gr�1.OF /. We recall a
standard result.

Lemma 1. For each tuple t satisfying the above inequalities the vector �0 is a
cyclic vector for the representation �.t1; t2; : : : ; tr�1/.

Proof. Indeed, if Re.t1/DRe.t2/D � � �DRe.tr�1/, the representation is irreducible
and our assertion is trivial. If not, we use Langlands’ construction [Silberger 1978].
For each root ˛ of Ar�1 we denote by N˛ the corresponding subgroup of Nr�1

or N r�1 and by L̨ the corresponding co-root. Thus, if ˛ is a positive root, we have

˛.a1; a2; : : : ; ar�1/D ai=aj

with i < j and
ht; L̨ i D ti � tj :

Let P .t/ be the set of positive roots ˛ such that Reht; L̨ i> 0. Let U be the unipotent
group generated by the subgroups N�˛ with ˛ 2 P .t/. The intertwining operator

N�.g/D

Z
U.F /

�.ug/ du

is defined by a convergent integral, and its kernel is a maximal invariant subspace.
The formula of [Gindikin and Karpelevič 1966; Gindikin 1961] gives

N�0.e/D
Y

˛2P.t/

1� q�ht; L̨ i�1

1� q�ht; L̨ i
:

Thus, N�0 ¤ 0, and our assertion follows. �

The representation I.t1; t2; : : : ; tr�1/ admits a nonzero linear form � such that,
for u 2Nr�1.F / and � in the space of the representation,

�.�.u/�/D �
r�1; 

.u/ �.�/:

We denote by W.t1; t2; : : : ; tr�1I / the space spanned by the functions of the form

g 7!W�.g/; W�.g/D �.�.t1; t2; : : : ; tr�1/.g/�/

with � 2 I.t1; t2; : : : ; tr�1/. We recall the following result:

Lemma 2 [Jacquet and Shalika 1983]. The map � 7!W� is injective.

It follows that the image W0 of �0 is a cyclic vector in W.t1; t2; : : : ; tr�1I /. Up
to a multiplicative constant, the function W0 is equal to the function

W0 DW .x1;x2; : : : ;xr�1I /:
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Now let � be an irreducible generic representation of Gr .F /. For W 2W.�;  /

and W 0 2W.t1; t2; : : : ; tr�1I / we consider the integral

‰.s;W;W 0/D

Z
Nr�1nGr�1

W

�
g 0

0 1

�
W 0.g/jdet gjs�1=2 dg:

The integral converges absolutely if Re.s/ � 0 and extends to a meromorphic
function of s. In any case, it has a meaning as a formal Laurent series in the
variable q�s (see below). We recall a result from [Jacquet et al. 1983].

Lemma 3. There are functions Wj 2W.� I / and W 0j 2W.t1; t2; : : : ; tr�1I /,
1� j � k, such thatX

1�j�k

‰.s;Wj ;W
0

j /D
Y

1�i�r�1

L.sC ti ; �/:

Since W0 is a cyclic vector, after a change of notations, we see that there are
functions Wj 2W.� I / and integers nj , 1� j � k, such thatX

j

q�ni s‰.s;Wj ;W .x1;x2; : : : ;xr�1I //D
Y

1�i�r�1

L.sC ti ; �/:

In our discussion jx1j � jx2j � � � � � jxr�1j. However, the functions

W .x1;x2; : : : ;xr�1I /

are symmetric in the variables xi . Thus, we have the following result:

Lemma 4. Given an .r � 1/-tuple of nonzero complex numbers .x1;x2; : : : ;xr�1/

there are functions Wj 2W.� I / and integers nj , 1� j � k, such thatX
j

q�nj s‰.s;Wj ;W .x1;x2; : : : ;xr�1I //D
Y

1�i�r�1

P�.q
�sxi/

�1:

2. The ideal I�

We review the construction of [Jacquet et al. 1981a], adding a little more detail to
some formal computations. First, we introduce a function

W .X1;X2; : : : ;Xr�1I / WGr�1.F /! Sr�1

whose value at a point g 2Gr�1.F / is denoted W .gIX1;X2; : : : ;Xr�1I /. It is
defined by the following property: for every .r � 1/-tuple .x1;x2; : : : ;xr�1/ and
every g, the scalar W .gIx1;x2; : : : ;xr�1I / is the value of the polynomial

W .gIX1;X2; : : : ;Xr�1I /
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at the point .x1;x2; : : : ;xr�1/. For g in a set compact modulo Nr�1.F /, the
polynomials W .gIX1;X2; : : : ;Xr�1I / remain in a finite dimensional vector
subspace of Sr�1. We have the relation

jdet gjsW .gIx1;x2; : : : ;xr�1I /DW .gI q�sx1; q
�sx2; : : : ; q

�sxr�1I / :

It follows that if jdet gj D q�n, then the polynomial

W .gIX1;X2; : : : ;Xr�1I /

is homogeneous of degree n, that is,

W .gIXX1;XX2; : : : ;XXr�1I /DX nW .gIX1;X2; : : : ;Xr�1I /:

For each integer n, we now define the integral

‰n.W IX1;X2; : : : ;Xr�1I /

WD

Z
jdet gjDq�n

W

�
g 0

0 1

�
W .g;X1;X2; : : : ;Xr�1I /jdet gj�1=2 dg:

The support of the integrand is contained in a set compact modulo Nr�1.F /, which
depends on W . In addition, there is an integer N.W / (depending on W ) such that
the support of the integrand is empty if n<N.W /. The polynomial

‰n.W IX1;X2; : : : ;Xr�1I /

is homogeneous of degree n. We consider the following formal Laurent series with
coefficients in Sr�1:

‰.X IW IX1;X2; : : : ;Xr�1I /D
X

n

X n‰n.W IX1;X2; : : : ;Xr�1I /:

Hence, in fact

‰.X IW IX1;X2; : : : ;Xr�1I /D
X

n�N.W /

X n‰n.W IX1;X2; : : : ;Xr�1I /:

If we multiply this Laurent series by
Q

1�i�r�1 P�.XXi/, we obtain a new Laurent
series with coefficients in Sr�1, namely,

‰.X IW;X1;X2; : : : ;Xr�1I /
Y

1�i�r�1

P�.XXi/

D

X
n�N1.W /

X nan.X1;X2; : : : ;Xr�1I /;

where N1.W / is another integer (depending on W ) and an 2 Sr�1. Each an is
homogeneous of degree n. We can replace � by the contragredient representation z� ,
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 by  and the function W by the function zW defined by

zW .g/DW .wr
tg�1/:

The function zW belongs to W.z�; /. We define similarly

‰. zW IX1;X2; : : : ;Xr�1I /:

We have then the following functional equation [Jacquet et al. 1983]:

‰.q�1X�1
I zW IX�1

1 ;X�1
2 ; : : : ;X�1

r�1I /

r�1Y
iD1

Pz�.q
�1X�1X�1

i /

D c�

r�1Y
iD1

��.XXi ;  /‰.X IW;X1;X2; : : : ;Xr�1I /

r�1Y
iD1

P�.XXi/:

The � factors are monomials and c� D˙1. Thus, there is another integer N2.W /

such that in fact

‰.X IW IX1;X2; : : : ;Xr�1I /
Y

1�i�r�1

P�.XXi/

D

X
N2.W /�n�N1.W /

X nan.X1;X2; : : : ;Xr�1/:

From now on we drop the dependence on  from the notation.
From the above considerations it follows that the product

‰.X IW IX1;X2; : : : ;Xr�1/
Y

1�i�r�1

P�.XXi/

is in fact a polynomial in X with coefficients in Sr�1. Moreover, because the an

are homogeneous of degree n, there is a polynomial „.W IX1;X2; : : : ;Xr�1/ in
Sr�1 such that

‰.X IW IX1;X2; : : : ;Xr�1/
Y

1�i�r�1

P�.XXi/D„.W IXX1;XX2; : : : ;XXr�1/:

In a precise way, let us writeY
1�i�r�1

P�.Xi/D

RX
mD0

Pm.X1;X2; : : : ;Xr�1/;

where each Pm is homogeneous of degree m. Then

‰.X IW IX1;X2; : : : ;Xr�1/
Y

1�i�r�1

P�.XXi/

D

X
n

X n
RX

mD0

‰n�m.W IX1;X2; : : : ;Xr�1/Pm.X1;X2; : : : ;Xr�1/:
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The polynomial „.W IX1;X2; : : : ;Xr�1/ is then determined by the condition that
its homogeneous component of degree n noted„n.W IX1;X2; : : : ;Xr�1/ be given
by

„n.W IX1;X2; : : : ;Xr�1/

D

RX
mD0

‰n�m.W IX1;X2; : : : ;Xr�1/Pm.X1;X2; : : : ;Xr�1/:

The theorem amounts to saying there is a W such that „.W IX1;X2; : : : ;Xr�1/

equals 1.
Let I� be the subvector space of Sr�1 spanned by the polynomials

„.W IX1;X2; : : : ;Xr�1/:

Lemma 5. In fact I� is an ideal of the algebra Sr�1.

Proof. Let Q be an element of Sr�1. Let � be the corresponding element of Hr�1.
ThenZ

W .ghIX1;X2; : : : ;Xr�1/�.h/ dh

DW .gIX1;X2; : : : ;Xr�1/Q.X1;X2; : : : ;Xr�1/:

Let W be an element of W.�;  /. Define another element W1 of W.�;  / by

W1.g/D

Z
Gr�1

W

�
g

�
h�1 0

0 1

��
�.h/jdet hj1=2 dh:

We claim that

„.W1IX1;X2; : : : ;Xr�1/D„.W IX1;X2; : : : ;Xr�1/Q.X1;X2; : : : ;Xr�1/:

This will imply the Lemma.
By linearity, it suffices to prove our claim when Q is homogeneous of degree t .

Then � is supported on the set of h such that jdet hjDq�t . We have then, for every n,

‰n.W1IX1; : : : ;Xr�1/

D

Z
jdet gjDq�n

W1

�
g 0

0 1

�
W .gIX1; : : : ;Xr�1/jdet gj�1=2 dg

D

Z
jdet gjDq�n

Z
W
�
gh�1 0

0 1

�
W .gIX1; : : : ;Xr�1/ �.h/jdet hj1=2 dh

� jdet gj�1=2 dg

D

Z
jdet gjDq�nCt

W
�
g 0

0 1

� Z
W .ghIX1; : : : ;Xr�1/ �.h/ dh jdet gj�1=2 dg
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D

Z
jdet gjDq�nCt

W
�
g 0

0 1

�
W .gIX1; : : : ;Xr�1/jdet gj�1=2 dg Q.X1; : : : ;Xr�1/

D‰n�t .W IX1; : : : ;Xr�1/Q.X1; : : : ;Xr�1/:

Hence,

„n.W1IX1; : : : ;Xr�1/

D

RX
mD0

‰n�m.W1IX1; : : : ;Xr�1/Pm.X1; : : : ;Xr�1/

D

RX
mD0

‰n�m�t .W IX1; : : : ;Xr�1/Pm.X1; : : : ;Xr�1/Q.X1; : : : ;Xr�1/

D„n�t .W IX1; : : : ;Xr�1/Q.X1; : : : ;Xr�1/:

Since Q is homogeneous of degree t our assertion follows. �

3. Proof of the theorem

Proof. Given an .r � 1/-tuple of nonzero complex numbers .x1;x2; : : : ;xr�1/,
Lemma 4 shows that we can find Wj and integers nj such that, for all s,X

1�j�k

.q�s/nj„.Wj ; q
�sx1; q

�sx2; : : : ; q
�sxr�1/D 1:

In particular, X
1�j�k

„.Wj ;x1;x2; : : : ;xr�1/D 1:

Thus, the element X
1�j�k

„.Wj IX1;X2; : : : ;Xr�1/

of I� does not vanish at .x1;x2; : : : ;xr�1/. By the theorem of zeros of Hilbert we
have then I� D Sr�1. In particular, there is W such that

„.W IX1;X2; : : : ;Xr�1/D 1 :

This implies the theorem. �

Remark 1. The proof in [Jacquet et al. 1981a] is correct if L.s; �/ is identically 1.
In general, the proof there only shows that the polynomials in I� cannot all vanish
on a coordinate hyperplane Xi D x.
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Remark 2. Consider an induced representation � of the form

� D I.�1˝˛
s1 ; �2˝˛

s2 ; : : : ; �k ˝˛
sk /;

where the representations �1; �2; : : : ; �k are tempered and s1; s2; : : : ; sk are real
numbers such that

s1 > s2 > � � �> sk :

The representation � may fail to be irreducible. But, in any case, it has a Whittaker
model [Jacquet and Shalika 1983], and Theorem 1 is valid for the Whittaker model
of � .

Remark 3. The proof of Matringe uses the theory of derivatives of a representation.
The present proof appears simple only because we use Lemma 3, the proof of which
is quite elaborate (and can be obtained from the theory of derivatives as in [Cogdell
and Piatetski-Shapiro 2011]).
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MODULAR L-VALUES OF CUBIC LEVEL

ANDREW KNIGHTLY AND CHARLES LI

In memory of Jonathan Rogawski

Using a simple relative trace formula, we compute averages of twisted mod-
ular L-values for newforms of cubic level. In the case of Maass forms, we
obtain an exact formula. For holomorphic forms of weight k > 2, we ob-
tain an asymptotic formula, which agrees with the estimate predicted by
the Lindelöf hypothesis in the weight and level aspects.

1. Introduction

A simple trace formula is one in which a local discrete series matrix coefficient
is used, thereby annihilating the contribution of the continuous spectrum (see
Lecture V of [Gelbart 1996] for a general overview). By choosing the matrix
coefficient appropriately, one can also project onto a particular local new vector.
For example, using the matrix coefficient attached to a lowest weight vector for
the weight k discrete series of GL2(R), one isolates the space of holomorphic
cusp forms of weight k from the rest of the automorphic spectrum. In essence,
this was the method used by Selberg [1956, §4] in his formula for the trace of a
Hecke operator.

In this paper we give a nonarchimedean illustration of this technique, using
matrix coefficients attached to certain supercuspidal representations of GL2(Qp).
We work with a relative trace formula to compute averages of the form∑

u∈F

λn(u)ar (u)3(s, u, χ)
‖u‖2

Br (u),

where u ranges over the set of newforms of weight k and level N 3 for N squarefree
and k > 2 or k = 0, λn(u) is the associated eigenvalue of the Hecke operator Tn ,
ar (u) is the r -th Fourier coefficient, 3(s, u, χ) is the completed L-function, twisted
by a fixed primitive character χ of conductor D prime to N , and Br (u) is a function

We thank the NSF for supporting this work through grant DMS 0902145.
MSC2010: primary 11; secondary 11F41, 11F70, 11F72.
Keywords: L-functions, relative trace formula, supercuspidal representations, Maass forms.
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of the spectral parameter of u with sufficient decay, which we take to be 1 in the
case of holomorphic forms (that is, when k > 2).

We have two main results, one for Maass newforms and one for holomorphic
newforms. Each is an explicit version of the relative trace formula introduced by
Jacquet [1987]. In broad terms, we start with a kernel function attached to the
Hecke operator Tn , and integrate it (against a character) over the group N × M ,
where N is unipotent and M is diagonal. The unipotent integral gives the Fourier
coefficient ar (u), and the diagonal integral gives the L-function. The geometric
side reduces to the calculation of numerous local orbital integrals.

The result for Maass forms is given in Theorem 5.4 below. A special case of it is
the following exact expression for a weighted average of Maass newform L-values:

Theorem 1.1. Let χ be a primitive Dirichlet character with modulus D. Let h(i z)
be any even Paley–Wiener function, and let h1(s) be the e−2π i x-twisted spherical
transform of the inverse Selberg transform of h; cf. (5-5). Then there exists a
constant C ≥ 1 depending only on h, such that for all squarefree integers N > C
prime to D and all complex numbers s,

(1-1)
∑

u j∈Fnew
+ (N 3)

3(s, u j , χ)

ψ(N 3)‖u j‖
2 h(t j )Ki t j (2π)= 2h1(s)

∏
p|N

(
1− 1

p

)
.

Here, Fnew
+
(N 3) denotes the set of even Maass newforms on 00(N 3) of weight 0

and trivial central character, normalized with first Fourier coefficient a1(u) = 1,
t j is the spectral parameter of u j , Kν(x) is the Bessel function, and ψ(N 3) denotes
the index [SL2(Z) : 00(N 3)].

Remarks. (1) It is interesting to note that the right-hand side of (1-1) (and hence
also the left-hand side for N sufficiently large) is independent of χ .

(2) Given any s ∈ C, we can choose h so that h1(s) is nonzero. Therefore an
immediate consequence is the existence of a Maass newform of level N 3 with
nonvanishing twisted L-value at s.

(3) We normalize the Petersson norm on page 530 so that it is independent of the
choice of level and coincides with the adelic L2-norm. Many people write
‖u‖2 where we have written ψ(N 3)‖u‖2.

The analogous result for holomorphic cusp forms is stated in Theorem 4.1. In
that case, we no longer have an exact formula because the archimedean discrete
series matrix coefficient is not compactly supported. But the resulting asymptotic
formula still gives nonvanishing, as well as a bound for the sum of the central
L-values that is as strong as that predicted by the Lindelöf hypothesis in the weight
and level aspects; see Corollary 4.3. In Corollary 4.4, we compare the contribution
of newforms and oldforms in the analogous sum for the full space of cusp forms
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of level N 3. When N is prime, the contribution of oldforms becomes negligible
as N →∞, but in the other extreme, if N is the product of the first m primes, the
contribution of newforms becomes negligible as m→∞.

In both of our main results, we project onto the newforms of cubic level by
using the simple supercuspidal representations defined by Gross and Reeder [2010].
Matrix coefficients for these representations have previously been used in the trace
formula by Gross [2011], where, for a simple group over a totally real number field,
he computed the multiplicities of cuspidal representations with certain prescribed
local behavior in terms of values of modified Artin L-functions at negative integers.
The local test vector used by Gross has a very simple matrix coefficient and is
ideally suited for counting representations. However, it is not a new vector so it
cannot be used for our purpose here.

In [KL 2012], we defined simple supercuspidal representations for the group
GLn(Qp), showing that they have conductor pn+1 and exhibiting the new vector.
We then gave an explicit formula for the matrix coefficient attached to the new
vector in the case where n = 2. Lastly, we showed that every irreducible admissible
representation of GL2(Qp) with conductor p3 is a simple supercuspidal represen-
tation, assuming that its central character is unramified or tamely ramified. In
the present paper, at each place p | N we sum the new vector matrix coefficients
attached to the 2(p − 1) distinct simple supercuspidal representations to obtain
a test function which projects onto the newforms of level N 3 and annihilates the
continuous spectrum.

We restrict to the field Q throughout for simplicity, but since all of the computa-
tions are local, there would be no serious obstruction to working over an arbitrary
totally real number field.

2. Preliminaries

2A. Orthogonality of matrix coefficients. The proposition below, which has been
attributed to Langlands, will be a key ingredient in what follows.

Proposition 2.1. Let G be a unimodular locally compact group with center Z.
Let (π, V ) be an irreducible unitary square integrable representation of G with
formal degree dπ . Let w ∈ V be a unit vector, and suppose that the function
f (g) = dπ 〈π(g)w,w〉 is absolutely integrable over G = G/Z. Then for any
irreducible unitary representation (ρ,W ) of G with the same central character as
π (but not necessarily square integrable), the operator ρ( f ) is identically zero on
W unless ρ ∼= π . Furthermore, π( f ) is the orthogonal projection operator from V
onto Cw.

Remark. The formal degree dπ depends on a choice of Haar measure on G, as
does the operator π( f ). We must assume that these measures are the same.
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Proof. See Corollary 10.29 of [KL 2006]. �

2B. Notation and measure. Given a prime number p and an integer x , we write
x p = ordp(x), so that x =

∏
p px p .

Let A,Afin be the adeles and finite adeles of Q, and henceforth let G = GL(2).
Write G = G/Z , where Z is the center of G. We let Z p = Z(Qp) and Z∞ = Z(R)
be the respective centers of G(Qp) and G(R). We also set K∞ = SO(2) and
K p = GL2(Zp).

We take Lebesgue measure dx on R, and we use the measure d∗y = dy/|y|
on R∗. On Qp and Q∗p we normalize the Haar measures so that meas(Zp)= 1 and
meas(Z∗p) = 1, respectively. With these choices, the product measure on A has
the property that meas(Q\A) = 1. In A∗fin we have meas(Ẑ∗) = 1. We normalize
Haar measure on G(Qp) by taking meas(K p) = 1. Likewise in G(Qp) we take
meas(K p) = 1. On G(Afin), we give G(Ẑ) the measure 1. We normalize Haar
measure on G(A) so that meas(G(Q)\G(A)) = π/3. See [KL 2006] for further
details about this normalization.

We let θ : A→ C∗ be the nontrivial character given locally by

(2-1) θp(x)=
{

e−2π i x if p =∞ (x ∈ R),

e2π irp(x) if p <∞ (x ∈Qp),

where rp(x) ∈Q is the p-principal part of x , a number with p-power denominator
characterized up to Z by x ∈ rp(x)+Zp. The kernel of θp is Zp, and θ is trivial
on Q⊂ A.

2C. Cusp forms. Let k be a nonnegative integer. Eventually we will assume
further that k 6= 1, 2. Let N be a positive integer, and let ω′ be a Dirichlet character
modulo N satisfying ω′(−1)= (−1)k . Define the Hecke congruence subgroups

00(N )=
{(

a b
c d

)
∈SL2(Z)

∣∣∣∣c∈NZ

}
, 01(N )=

{(
a b
c d

)
∈00(N )

∣∣∣∣d∈1+NZ

}
,

and let

(2-2) ψ(N )= [SL2(Z) : 00(N )] = N
∏
p | N

(
1+ 1

p

)
.

Consider the space of measurable complex-valued functions u on the complex
upper half-plane H that have the following properties:

(1) For all z ∈ H and all (
a b
c d

)
∈ 00(N ),

(2-3) u
(az+b

cz+d

)
= ω′(d)(cz+ d)ku(z).
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(2) u has finite Petersson norm:

‖u‖2 = 1
ψ(N )

∫
00(N )\H

|u(x + iy)|2 yk dx dy
y2 <∞.

(3) u is holomorphic if k > 0.

(4) u is cuspidal: at each cusp of 01(N ) it has a constant term which vanishes
almost everywhere (see for example [KL 2013, §4.1] for a detailed definition).

We denote this space by Sk(N , ω′) if k > 0, and by L2
0(N , ω

′) if k = 0. The
latter space is infinite-dimensional if nonzero, but it has a basis consisting of
Maass forms, that is, those elements which are eigenfunctions of the Laplacian
1=−y2((∂2/∂x2)+ (∂2/∂y2)). We write the Laplace eigenvalue as

1u = (1
4 + t2)u,

and refer to t as the spectral parameter of u. We know that t ∈R∗∪ i(−1
2 ,

1
2), with

the number of u with exceptional (nonreal) parameter being finite.
If u is continuous, condition (1) implies u has a Fourier expansion of the form

u(x + iy)=
∑
n 6=0

an(u, y) e2π inx.

The coefficient an(u, y) has the well-known form

(2-4) an(u, y)=


an(u)e−2πny if n, k > 0,
0 if k > 0, n < 0,
an(u)y1/2Ki t(2π |n|y) if k = 0,

where Ki t is the Bessel function and t is the spectral parameter of u.
The weight k Hecke operator Tn is defined by

Tnu(z)= nα(k)
∑

ad=n
a>0

d−1∑
b=0

ω′(a)d−ku
(az+r

d

)
,

where α(k)= k−1 if k > 0 and α(k)=−1
2 if k = 0. If u is a Hecke eigenform, we

denote the eigenvalues by Tnu = λn(u)u. We say that u is a newform if its Hecke
eigenvalue packet {λp(u)}p-N has an eigenspace that is exactly one-dimensional.
In this case, a1(u) 6= 0, and we will normalize so that a1(u) = 1. Under this
normalization,

(2-5) an(u)= λn(u)

for all n. We let

Fnew
k (N , ω′)= {newforms u, with a1(u)= 1}.
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We also define T−1u(x + iy) = u(−x + iy). A Maass cusp form is even or
odd if T−1u = u or T−1u = −u, respectively. If u is even, then in (2-4) we
have a−n(u) = an(u), while if u is odd, an(u) = −a−n(u). It is a basic fact that
L2

0(N , ω
′ ) has an orthogonal basis consisting of Maass eigenforms which are also

eigenfunctions of T−1. We let

Fnew
+
(N , ω′ )= {u ∈ Fnew

0 (N , ω′ ) | u is even}.

We define the L-function of u by

L(s, u)=
∞∑

n=1

an(u)n−s .

This converges absolutely when Re(s) is sufficiently large. We define the completed
L-function by

(2-6) 3(s, u)=

{
(2π)−s0(s)L(s, u) k > 0,

π−s0
(s+ε+i t

2

)
0
(s+ε−i t

2

)
L(s, u) k = 0,

where ε = 0 or 1 according to whether u is even or odd. It has an analytic
continuation, which satisfies a functional equation relating values at s and 1− s
when k = 0, and at s and k− s when k > 0.

2D. Adelic cusp forms. Let ω be the Hecke character attached to ω′ by

(2-7) ω : A∗ =Q∗(R+× Ẑ∗)→ Ẑ∗→ (Z/NZ)∗→ C∗,

where the first two arrows are the canonical projections, and the last arrow is
ω′. For q > 0, let Lq(ω) = Lq(G(Q)\G(A), ω) denote the space of measurable
G(Q)-invariant functions φ : G(A)→ C that transform under the center by ω, and
satisfy

∫
G(Q)\G(A) |φ(g)|

q dg <∞. When q = 2, we let L2
0(ω)⊂ L2(ω) denote the

subspace of cuspidal functions.
Letting

K1(N )=
{(

a b
c d

)
∈ G(Ẑ)

∣∣∣∣ c, d − 1 ∈ N Ẑ

}
,

we embed Sk(N , ω′ ) and L2
0(N , ω

′ ) (taking k = 0 in the latter case) isometrically
into L2

0(ω) by defining

(2-8) φu(γ (g∞× gfin))= j (g∞, i)−k u(g∞(i))

for γ (g∞× gfin) ∈ G(Q)(G(R)+× K1(N ))= G(A), and

j
((

a b
c d

)
, z
)
= (ad − bc)−

1
2 (cz+ d).
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In the k = 0 case, the map u 7→ φu is a surjective linear isometry from L2
0(N , ω

′ )

to L2
0(ω)

K∞×K1(N ) (the K∞×K1(N )-invariant vectors); see [KL 2013, Proposition
4.5].

Lemma 2.2. Let u be a holomorphic Hecke eigenform (k>0) or a Maass eigenform
with spectral parameter t (k = 0). Then for r ∈Q,

∫
Q\A

φu

((
1 x
0 1

))
θ(r x) dx =


ar (u)Ki t(2π |r |) if r ∈ Z, k = 0,
e−2πr ar (u) if r ∈ Z+, k > 0,
0 otherwise,

where θ is the character defined in (2-1). For all s ∈ C,

∫
Q∗\A∗

φu

((
y

1

))
|y|s−

k′
2 d∗y =


1
23(s, u) if k = 0, u is even,
0 if k = 0, u is odd,
3(s, u) if k > 0,

where 3(s, u) is the completed L-function defined in (2-6) and

k ′ =
{

k k > 2,
1 k = 0.

Each of the above integrals is absolutely convergent.

Proof. For a proof of the first statement, see [KL 2006, Corollary 12.4; 2013,
Lemma 7.1]. For the second, suppose k = 0. Using the fundamental domain
R+× Ẑ∗ for Q∗\A∗, we have∫

Q∗\A∗
φu

((
y

1

))
|y|s−

1
2 d∗y =

∫
∞

0
u(iy)ys−1

2 dy
y
.

The result then follows by a well-known classical computation using the Fourier
expansion; see [Goldfeld 2006, p. 86]. The proof when k > 0 is similar; see, e.g.,
[KL 2010, Lemma 3.1]. �

2E. Newforms. Here we will define a space of adelic newforms, and realize the
orthogonal projection onto it as an integral operator.

We wish to study newforms with certain local behavior. Let N be an integer
multiple of the conductor of ω with the property that Np ≥ 2 for all p | N . For
each p | N , let σp be a fixed supercuspidal representation of G(Qp) with central
character ωp and conductor pNp . Let σ̂ denote the tuple {σp}p | N .

Under the action of G(A) on L2
0(ω) by right translation, the space decomposes

as a direct sum of irreducible cuspidal representations π . Given a nonnegative
integer k 6= 1, 2 (that is, k ∈ {0, 3, 4, 5, . . . }), we define the subspace

(2-9) Hk(σ̂ , ω)=
⊕
π ⊂ L2

0(ω),
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where π ranges through the irreducible cuspidal representations for which:

(1) πp = σp for all p | N .

(2) πp is unramified for all finite p - N .

(3) π∞ is a spherical principal series representation of G(R) with trivial central
character if k = 0.

(4) π∞ is the weight k discrete series representation πk of G(R) with central
character (

z
z

)
7→ sgn(z)k if k > 2.

For each such π =
⊗
′
πp, define a vector (the “newform”) wπ =

⊗
wπp in the

space of π by taking

wπp =


unit new vector [Casselman 1973] if p | N ,
unit unramified vector if p - N∞,
unit spherical vector if p =∞, k = 0,
unit lowest weight vector if p =∞, k > 2,

where, in almost every unramified case, the unit vector is the one predetermined by
the restricted tensor product. In each case, the vector wπp is unique up to unitary
scaling. Let

(2-10) Ak(σ̂ , ω)=
⊕
π

Cwπ ⊂ Hk(σ̂ , ω).

This corresponds to a classical space of newforms of level N on the upper half-plane.
Letting φπ ∈ L2

0(ω) denote the function defined by ωπ , the associated cusp form
on H is given by

(2-11) u(x + iy)= y−
k
2φπ

((
y x
0 1

)
∞

× 1fin

)
, y > 0.

This is the inverse of the association (2-8), that is, φu = φπ .
For p | N , define a function f p : G(Qp)→ C by

(2-12) f p(g)= dp
〈
σp(g)wσp , wσp

〉
, p | N ,

where dp is the formal degree of the supercuspidal representation σp relative to
our choice of Haar measure on G(Qp), and the inner product is G(Qp)-invariant.
Likewise, if p =∞ and k > 2 we take

(2-13) f∞(g)= dk
〈
π∞(g)wπ∞, wπ∞

〉
, k > 2,
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where dk is the formal degree of the discrete series representation π∞ = πk . The
latter function is supported on the subgroup

G(R)+ = {g ∈ G(R) | det(g) > 0}.

(We rule out k = 2 because the function (2-13) is integrable precisely when k > 2,
and integrability is required by Proposition 2.1.)

For p - N∞, we assume that f p is a bi-K p-invariant function on G(Qp) with
compact support modulo the center, and that for all but finitely many such p,
f p = φp is the function supported on Z p K p given by

(2-14) φp(zκ)= ωp(z), z ∈ Z p, κ ∈ K p.

Likewise if p =∞ and k = 0, we take

(2-15) f∞ ∈ C∞c (G(R)
+//K∞), k = 0.

The latter is the space of smooth functions on G(R)+ which are biinvariant under
Z(R)K∞ and have compact support modulo Z(R). Such a function enables us to
project onto the K∞-invariant space of L2(ω), which contains the Maass forms of
weight k = 0.

Proposition 2.3. With local functions as above, let f =
∏

f p be the associated
function on G(A). Let R( f ) be the operator on L2(ω) defined by

R( f )φ(x)=
∫

G(A)
f (g)φ(xg) dg.

Then R( f ) annihilates L2
0(ω)

⊥. In fact, it factors through the orthogonal projection
of L2(ω) onto Ak(σ̂ , ω), and acts diagonally on the latter space, the vectors wπ
being eigenvectors.

Proof. For a proof of the first statement, see [Rogawski 1983, Proposition 1.1]. Now
suppose v ∈ L2

0(ω). Since the latter space is a direct sum of cuspidal representations,
we may assume that v ∈ Vπ for some π =

⊗
′
πp. Likewise, we may assume that

v=
⊗
′
vp is a pure tensor. For the purposes of this proof, let G ′ denote the restricted

direct product G ′ =
∏
′

p-N G(Qp). Decompose π as

π = π∞⊗π
′
⊗
⊗
p | N

πp,

where π ′ is a representation of G ′, and write

v = v∞⊗ v
′
⊗
⊗
p | N

vp

accordingly. Then (by [KL 2006, Proposition 13.17], for instance)

R( f )v = π∞( f∞)v∞⊗π ′( f ′)v′⊗
⊗
p | N

πp( f p)vp.



536 ANDREW KNIGHTLY AND CHARLES LI

If p | N , or p =∞ and k > 2, then by Proposition 2.1, the above vanishes unless
πp = σp or, respectively, πp = πk , and in these cases πp( f p) is the orthogonal
projection onto Cwπp . Because f ′ is biinvariant under

∏
p-N K p, π ′( f ′) has its

image in the space
Cw′ =

⊗
p-N

′
Cwπp ⊂ Vπ ′,

and it annihilates the orthogonal complement of this subspace (see for instance [KL
2013, Lemma 3.10]). The analogous statement holds for π∞( f∞) if k = 0 for the
same reasons. It follows that R( f ) annihilates Ak(σ̂ , ω)

⊥, and acts by scalars on
the vectors wπ ∈ Ak(σ̂ , ω). �

2F. Twisting. Let D be a positive integer with gcd(D, N ) = 1, and let χ be a
primitive Dirichlet character modulo D. Given a cusp form

u(z)=
∑
n 6=0

an(u, y)e2π inx

in Sk(N , ω′ ) or L2
0(N , ω

′ ), its twist by χ is the form

uχ (z)=
∑
n 6=0

χ(n)an(u, y)e2π inx ,

which belongs to Sk(D2 N , χ2ω′ ) or L2
0(D

2 N , χ2ω′ ). If u is a Maass form with
spectral parameter t , then so is uχ . In this section we will define a function f χ

on G(Afin) for which R( f χ ) encodes the twisting operation adelically. See §3 of
[Jackson and Knightly 2012] (henceforth referred to as [JK 2012]) for more detail.
Beware that the nebentypus ψ in that paper plays the role of ω′ here, since we have
a complex conjugate in (2-3) which is not present in [JK 2012].

We let χ∗ : A∗→ C∗ be the Hecke character attached to χ as in (2-7) (but using
D in place of N ).1 We let χp be the local component of χ∗. It is a character of Q∗p,
and when p | D it can be viewed as a primitive character of the group (Z/pDp Z)∗.
The Gauss sum attached to χ is

τ(χ)=
∑

m∈(Z/DZ)∗

χ(m)e
2π im

D .

If we set

(2-16) τ(χ)p = χp

( D
pDp

)
τ(χp),

then τ(χ)=
∏

p|D τ(χ)p; see [JK 2012], (3.10).

1Thus we use two sets of notation: ω′ and χ are Dirichlet characters and ω, χ∗ are the associated
Hecke characters. This was done in order to conform to notation in papers we reference.
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For each prime p | D, we define a local test function f χp : G(Qp)→ C by

f χp (x)=


ωp(z) χp(m)
τ (χ)p

if x = zg for z ∈ Z p

and g ∈
(

1 −m/D
0 1

)
K p for m ∈ (Zp/DZp)

∗,

0 otherwise.

For the primes p | N , we take f χp to be the function supported on Z p K1(N )p

given by

(2-17) f χp (zκ)=
ωp(z)

meas(K1(N )p)
=
ψp(N )
ωp(z)

,

whereψp(N )=[K p :K1(N )p]= pNp(1+(1/p)). Lastly, for p - DN , we take f χp to
be the function defined in (2-14). Now let f χ =

∏
p<∞ f χp , and define the operator

(2-18) R( f χ )φ(x)=
∫

G(Afin)

f χ (g)φ(xg) dg, φ ∈ L2(ω).

We call this the twisting operator of level N attached to χ .

Proposition 2.4. For y ∈ R+× Ẑ∗ ∼=Q∗\A∗ and u a holomorphic or Maass cusp
form of level N and nebentypus ω′,

R( f χ )φu

((
y

1

))
= χ∗(y)φuχ

((
y

1

))
.

Proof. See Proposition 3.2 of [JK 2012]. That result is stated for holomorphic cusp
forms, but the proof carries over verbatim to the case of Maass forms. �

Given two functions f1, f2 ∈ L1(G(Afin), ω), we define their convolution by

f1 ∗ f2(x)=
∫

G(Afin)

f1(g) f2(g−1x) dg =
∫

G(Afin)

f1(xg−1) f2(g) dg.

Then f1∗ f2∈ L1(G(Afin), ω). It is straightforward to show R( f1∗ f2)= R( f1)R( f2)

as operators on L2(ω).

Proposition 2.5. Let f = f∞× ffin be a function on G(A) of the type defined in
Section 2E, with the property that for all p | D, f p is the function (2-14). Then

(2-19) R( f∞× ( f χ ∗ ffin))= R( f χ )R( f ).

As a result, the above operator factors through the orthogonal projection of L2(ω)

onto Ak(σ̂ , ω) by Proposition 2.3.
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Proof. As mentioned above, R( f χ ∗ ffin)= R( f χ )R( ffin). The local components
of the convolution are given as follows:

(2-20) ( f χ ∗ ffin)p = f χp ∗ f p =

{
f χp if p | D,
f p if p - D.

Indeed, if p - DN , then the assertion is immediate because f p is bi-K p-invariant and
f χp is the identity element of the local Hecke algebra of bi-K p-invariant functions.
Similarly, the case p | D follows easily by the right K p-invariance of f χp and our
assumption that f p is given by (2-14). If p | N , then for κ ∈ K1(N )p, by (2-12)
we have

f p(κ
−1x)= dp

〈
σp(x)wσp , σp(κ)wσp

〉
= f p(x),

since wσp is fixed by K1(N )p. Thus by (2-17),

f χp ∗ f p(x)=
∫

K1(N )p

f χp (κ) f p(κ
−1x) dκ = f p(x)

∫
K1(N )p

f χp (κ) dκ = f p(x),

as claimed.
In view of (2-20), we may apply Proposition 2.3 to both sides of the proposed

equality (2-19) to see that they each vanish on L2
0(ω)

⊥. Therefore it suffices to
show that they agree on L2

0(ω). Let (π, Vπ ) be a cuspidal representation in L2
0(ω).

Given v = v∞⊗ vfin ∈ Vπ , by (2-18) we have

R( f χ )v =
∫

G(Afin)

f χ (g)π(1∞× g)v dg

=

∫
G(Afin)

v∞⊗ f χ (g)πfin(g)vfin dg = v∞⊗πfin( f χ )vfin.

For details justifying the movement of the tensor outside the integral, see [KL 2006,
Lemma 13.16]. Applying the above identity with R( f )v in place of v, the result
follows:

R( f χ )R( f )v = π∞( f∞)v∞⊗πfin( f χ )πfin( ffin)vfin

= π∞( f∞)v∞⊗πfin( f χ ∗ ffin)vfin = R( f∞× ( f χ ∗ ffin))v.

For a justification of the last step, see, e.g., [ibid., Proposition 13.17]. �

2G. A particular choice of function. The above discussion is rather general, and
we will now define a very specific function f as in Section 2E, designed to project
onto the newforms of cubic level and then act as a Hecke operator. For our main
test function in the trace formula, we will then take F = f∞× ( f χ ∗ ffin), with f χ

a twisting operator defined as above.
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Henceforth we take N > 1 to be a squarefree integer. We make the following
assumption in all that follows:

(**) ω′ is a Dirichlet character of modulus N 3 whose conductor divides N .

As before, we let ω be the associated Hecke character.
For each p | N , the conductor of ωp divides p. Therefore by Proposition 7.2

of [KL 2012], there are exactly 2(p− 1) irreducible admissible representations of
G(Qp) of conductor p3 and central character ωp, up to isomorphism. These are the
simple supercuspidal representations, which are parametrized naturally by the pairs
(t, ζ )with t ∈ (Z/pZ)∗ and ζ ∈C satisfying ζ 2

=ωp(tp). The construction depends
on the choice of a nontrivial character of Z/pZ, which we fix to be x 7→ θp(x/p).
Let σ = σt,ζ be the supercuspidal representation indexed by (t, ζ ). It is defined
precisely in [KL 2012], but all that we need here is the formula for its matrix
coefficient

f σ = dσ 〈σ(g)wσ , wσ 〉,

where the formal degree dσ is taken relative to the Haar measure for which meas(K p)

is 1, and wσ is a unit new vector as before. By Theorem 7.1 of the same reference,

(2-21) f σ = f σ1 + f σ2 ,

where f σ1 and f σ2 have disjoint support, and for z ∈ Z p,

(2-22) f σ1 (zg)= p+1
2ωp(z)

∑
w∈(Z/pZ)∗

θp

(
−bw−tc(aw)−1

p

)

for g =
(

a bp−1

cp2 d

)
∈

(
Z∗p

1
p Zp

p2Zp 1+ pZp

)
(a Kloosterman sum), and

(2-23) f σ2 (zg)= (p+1)ζ
2ωp(z)ωp(t)

θp

(
−b−tc(ad)−1

p

)
for g =

(
c dp−2

ap b

)
∈

(
Zp

1
p2 Z∗p

pZ∗p Zp

)
.

The function f σ vanishes outside the set

Z p ·

(
Z∗p p−1Zp

p2Zp 1+ pZp

)⋃
Z p ·

(
Zp p−2Z∗p
pZ∗p Zp

)
.

Fix an integer n > 0 with gcd(n, DN )= 1. Let

M(n)p =

{(
a b
c d

)
∈ M2(Zp)

∣∣∣∣ ad − bc ∈ nZ∗p

}
.
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Define, for p | n, the local Hecke operator f n
p :G(Qp)→C, supported on Z p M(n)p:

(2-24) f n
p (zg)= ωp(z), z ∈ Z p, g ∈ M(n)p.

This plays the role of the classical Hecke operator Tpn p .
Finally, we let f∞ be the matrix coefficient (2-13) if k> 2, or a spherical function

as in (2-15) if k = 0.
With these choices, we define the global function f : G(A)→ C by

f = f∞×
∏
p | N

(∑
(t,ζ )

f σt,ζ

)∏
p|n

f n
p

∏
p-nN

φp,

where, in the case p - nN , φp is the unramified function supported on Z p K p defined
in (2-14). We remark that at the places p | N ,∑

(t,ζ )

f σt,ζ =

∑
(t,ζ )

f σt,ζ
1 ,

since from the definition (2-23) it follows easily that for each t , f σt,ζ
2 + f σt,−ζ

2 = 0.
Nevertheless, we will compute the contribution of f σ2 to the local orbital integrals
in the trace formula that follows, since these do not vanish individually and may be
of interest in other applications.

The function f defined above is a finite sum of functions of the type considered
in Section 2E. Thus any new vector wπ belonging to the space

(2-25) Ak(N 3, ω)
def
=

⊕
σ̂

Ak(σ̂ , ω)

is an eigenvector of R( f ). Here, σ̂ runs through all tuples {σp}p | N of simple
supercuspidal representations (σp = σt,ζ ) with central character ωp, and Ak(σ̂ , ω)

is the space defined in (2-10).

Proposition 2.6. Given a new vector wπ ∈ Ak(N 3, ω), let u be the associated
newform. Then R( f )wπ = λ f (u)wπ , for

(2-26) λ f (u)=
{

n1−k/2λn(u) if k > 2,
n1/2h(t)λn(u) if k = 0,

where λn(u) is the eigenvalue of the classical Hecke operator Tn acting on u, and
in the k = 0 case, t is the spectral parameter of u and h(t) is the Selberg transform
of f∞ (defined in (5-3) below).

Proof. We may write

R( f )wπ = π∞( f∞)w∞⊗π ′( f ′)w′
⊗
p | N

πp( f p)wp

⊗
p | n

πp( f p)wp,
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where the ′ indicates the contribution of the primes p - Nn∞ as in the proof of
Proposition 2.3. If p | N , then

πp( f p)wp =
∑
σ

πp( f σ )wp = wp

by Proposition 2.1, since exactly one of the representations σ is isomorphic to πp.
Likewise if p - nN , then πp( f p)wp = πp(φp)wp = wp by the definition of φp.
Hence

R( f )wπ = π∞( f∞)w∞⊗w′
⊗
p | N

wp
⊗
p | n
πp( f p)wp.

Now

π∞( f∞)w∞ =
{
w∞ if k > 2 (by Proposition 2.1),
h(t)w∞ if k = 0 (by [KL 2013, Proposition 3.9]).

From the product over the places p | n, we get the scalar
√

nλn(u) if k = 0 [ibid.,
Lemma 4.6], and n1−k/2λn(u) if k > 2 [KL 2006, Proposition 13.6]. �

To incorporate twisting, we consider the function

(2-27) F = f∞× ( f χ ∗ ffin)= f∞×
∏
p | N

(∑
(t,ζ )

f σt,ζ

) ∏
p | D

f χp
∏
p | n

f n
p

∏
p-nDN

φp,

where f χ is the twisting operator of level N 3 as defined in Section 2F (where the
level was denoted by N rather than N 3 used here). The second equality in (2-27)
follows from (2-20). We will use the above as our test function in the trace formula.
The kernel of the operator R(F) is

(2-28) K (x, y)=
∑

γ∈G(Q)

F(x−1γ y).

Proposition 2.7. Let Fnew
k (N 3, ω′ ) be the set of newforms of weight k, level N 3

and central character ω′. Then the kernel function above has the spectral form

(2-29) K (x, y)=
∑

u∈Fnew
k (N 3,ω′ )

λ f (u)R( f χ )φu(x)φu(y)
‖u‖2

for λ f (u) as in (2-26). The kernel function is continuous on G(A)×G(A) and the
above equality is valid for all points (x, y).

Proof. First, note that by Propositions 2.5 and 2.6, R(F)φu = λ f (u)R( f χ )φu .
Therefore the right-hand side of (2-29) is the same as

(2-30)
∑
φ

R(F)φ(x)φ(y)
‖φ‖2

,
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where φ ranges through an orthogonal basis for Ak(N 3, ω) (defined in (2-25)). In
fact we may even allow φ to range over an orthogonal basis for the whole space
L2(ω) since R(F) annihilates Ak(N 3, ω)⊥. The restriction of R(F) to the cuspidal
subspace is well-known to be Hilbert–Schmidt, and hence R(F) is itself Hilbert–
Schmidt since it vanishes on L2

0(ω)
⊥. (In fact, R(F) has finite rank when k > 2,

but not when k = 0.) Hence its kernel is equal to (2-30), proving that (2-29) holds
almost everywhere.

The continuity of (2-28) is trivial when k = 0, since in that case the defining
sum is locally finite, F having compact support modulo the center and G(Q) being
discrete and closed in G(A). When k > 2, f∞ is not compactly supported, so the
continuity is not trivial, but a proof is given in [KL 2006, Proposition 18.4].

On the other hand, the continuity of the right-hand side of (2-29) is trivial when
k > 2 since in that case it is a finite sum of continuous functions. When k = 0, a
proof is given in [KL 2013, Corollary 6.12]. In all cases, it follows that (2-29) is
valid everywhere. �

3. A relative trace formula

Our goal is to compute the relative trace formula given by the integral

(3-1)
∫

Q∗\A∗

∫
Q\A

K
((

y
1

)
,

(
1 x
0 1

))
θ(r x)χ∗(y)|y|s−

k′
2 dx d∗y,

where k ′ = k if k > 2 and k ′ = 1 if k = 0.
On the spectral side we evaluate the double integral using (2-29).

Proposition 3.1. The integral∫
Q∗\A∗

∫
Q\A∑

u∈Fnew
k (N 3,ω′ )

∣∣∣∣∣λ f (u)R( f χ )φu
((y

1

))
φu
((

1 x
0 1

))
‖u‖2

θ(r x) χ∗(y)|y|s−k′/2

∣∣∣∣∣ dx d∗y

is convergent for all s ∈ C when k > 2, and in some right half-plane when k = 0.
Hence for such s, (3-1) is equal to

(3-2)
∑

u∈Fnew
k (N 3,ω′ )

λ f (u)ar (u)3(s, u, χ)
‖u‖2

Pr (u),

where λ f (u) is given in (2-26) and

Pr (u)=


1
2 Ki t(2π |r |) if k = 0 and u is even,
0 if k = 0 and u is odd,
e−2πr if k > 0.
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Proof. By Proposition 2.4, we have

R( f χ )φu

((
y

1

))
= χ∗(y)φuχ

((
y

1

))
for all y ∈ R+× Ẑ∗ ∼= Q∗\A∗. Therefore, whenever the double integral in the
statement of the proposition is convergent, (3-1) is equal to∑
u∈Fnew

k (N 3,ω′ )

λ f (u)
‖u‖2

∫
Q∗\A∗

φuχ

((
y

1

))
|y|s−

k′
2 d∗y

∫
Q\A

φu

((
1 x
0 1

))
θ(r x) dx,

which is equal to (3-2) by Lemma 2.2. Each of the above integrals is absolutely
convergent, so the first assertion of the proposition is immediate when k > 2 since
the sum over u is finite in that case. For the nonholomorphic case, we refer to
Proposition 5.1 below. �

For the geometric side, we use the expression (2-28) and formally unfold (3-1)
to obtain

(3-3)
∑
δ

∫
A∗

∫
A

F
((

y−1

1

)
δ

(
1 x
0 1

))
θ(r x)χ∗(y)|y|s−

k′
2 dx d∗y,

where δ ranges over M(Q)\G(Q)/N (Q). (See §7 of [JK 2012] for details.) By the
Bruhat decomposition, the elements

1,
(

0 −1
1 0

)
,

{(
a −1
1 0

) ∣∣∣∣ a ∈Q∗
}
,

form a set of representatives for these double cosets.

Proposition 3.2. The convergence∑
δ

∫
A∗

∫
A

∣∣∣∣F((y−1

1

)
δ

(
1 x
0 1

))
θ(r x)χ∗(y)|y|s−k′/2

∣∣∣∣ dx d∗y <∞

is valid for all s when k = 0, and for 1 < Re(s) < k − 1 when k > 2. Hence the
spectral side (3-2) is equal to the geometric side (3-3) when 1< Re(s) < k− 1 if
k > 2, and when Re(s) is sufficiently large if k = 0.

Proof. We will show in the proof of Proposition 5.3 below that when k = 0, the
integrand vanishes identically for all but finitely many δ. Since F also has compact
support modulo the center in this case, the remaining integrals are absolutely
convergent. When k > 2, the proof is essentially identical to that of Proposition 7.1
of [JK 2012], in view of the proof of Proposition 4.5 below. �

We let Iδ(s) denote the double integral attached to δ in (3-3). This orbital integral
can be computed locally. The archimedean integral in the case k = 0 will be
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considered in Section 5 below. In the holomorphic case k > 2, the archimedean
orbital integral was computed in [KL 2010] and [JK 2012]. The nonarchimedean
local calculations at places p - N were carried out in [JK 2012]. Thus it remains
here to compute the local integrals at places p | N . The results will be given in
(3-5), (3-7) and (3-10) below.

3A. Orbital integrals for p | N. To simplify notation in this section, we will write
k rather than k ′. Suppose p | N , and let σ = σt,ζ be a supercuspidal representation
of conductor p3 and central character ωp. Define

Jδ(s, f σ )= Jδ(s, f σ1 )+ Jδ(s, f σ2 ),

as in (2-21), where for i = 1, 2,

Jδ(s, f σi )=
∫

Q∗p

∫
Qp

f σi

((
y

1

)
δ

(
1 x
0 1

))
θp(r x)χp(y)|y|

k
2−s
p dx d∗y.

Then replacing y by y−1 in (3-3), we see that

Iδ(s)p =
∑
σ

J σδ (s).

Proposition 3.3. Let δ = 1, so that

J1(s, f σ )=
∫

Q∗p

∫
Qp

f σ
((

y xy
0 1

))
θp(r x) dx χp(y)|y|k/2−s

p d∗y.

Then

J1(s, f σ )= J1(s, f σ1 )=
{ p(p+1)

2 if p - r ,
0 if p | r ,

(3-4)

I1(s)p =

{
p3
− p if p - r ,

0 otherwise.
(3-5)

Proof. By (2-23), the matrix (
y xy
0 1

)
never belongs to Supp( f σ2 ), so J1(s, f σ )= J1(s, f σ1 ). Note that(

y xy
0 1

)
∈ Supp( f σ1 )= Z p

(
Z∗p p−1Zp

0 1

)
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if and only if y ∈ Z∗p and x ∈ p−1Zp. We substitute u = y ∈ Z∗p, and replace yx by
p−1x , so now x ∈ Zp. Then dx becomes p dx , and

J1(s, f σ1 )= p
∫

Z∗p

∫
Zp

f σ1

((
u p−1x
0 1

))
θp

(ru−1x
p

)
dx d∗u

=
p(p+1)

2

∑
w∈(Z/pZ)∗

∫
Z∗p

∫
Zp

θp

(
−xw

p

)
θp

(
−ru−1x

p

)
dx d∗u.

The integral over Zp is equal to∫
Zp

θp

(
(−w−ru−1)x

p

)
dx =

{
1 if u ≡−rw−1 mod p,
0 otherwise.

In particular, this vanishes if p | r . Assuming p - r ,

J1(s, f σ1 )=
p(p+1)

2

∑
w∈(Z/pZ)∗

∫
−rw−1+pZp

d∗u = p(p+1)
2

meas(Z∗p),

which proves (3-4). The number of pairs (t, ζ ) is 2(p−1). Since (3-4) is independent
of σ (the parameters (t, ζ ) not appearing in (3-4)),

I1(s)p = 2(p− 1)J1(s, f σ ),

and (3-5) follows. �

Proposition 3.4. Let

δ =

(
0 −1
1 0

)
,

so that

Jδ(s, f σ )=
∫

Q∗p

∫
Qp

f σ
((

0 −y
1 x

))
θp(r x) dx χp(y)|y|

k
2−s
p d∗y.

Then

Jδ(s, f σ )= Jδ(s, f σ2 )=


(p3)

k
2−s p(p+ 1)ωp(p)2

2ζχp(p3)
if r ≡−1 mod p,

0 otherwise,

(3-6)

Iδ(s)p = 0.(3-7)

Proof. By (2-22), the matrix (
0 −y
1 x

)
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never belongs to Supp( f σ1 ), so Jδ(s, f σ )= Jδ(s, f σ2 ). Note that(
0 −y
1 x

)
∈ Supp( f σ2 )

if and only if (
0 −py
p px

)
∈

(
Zp p−2Z∗p
pZ∗p Zp

)
.

In this case, we may write y = p−3u for u ∈ Z∗p, and x ′ = px ∈ Zp. Then
dx ′ = p−1 dx , and dropping the ′ from the notation, we have

Jδ(s, f σ2 )

= p
∫

Z∗p

∫
Zp

f σ2

((
p−1

p−1

)(
0 −p−2u
p x

))
θp

(
−r x

p

)
dx χp(p−3)(p3)

k
2−s d∗u

=
(p3)k/2−s p(p+ 1)ζωp(p)

2χp(p3)ωp(t)

∫
Z∗p

∫
Zp

θp

(
−x
p

)
θp

(
−r x

p

)
dx d∗u.

The integral over Zp is equal to∫
Zp

θp

(
−
(1+r)x

p

)
dx =

{
1 if r ≡−1 mod p,
0 otherwise.

Equality (3-6) now follows, using the fact that

ζωp(p)
ωp(t)

=
ζωp(p)2

ωp(pt)
=
ωp(p)2

ζ
.

For fixed t , if we sum (3-6) over ±ζ , we get 0. It follows that

Iδ(s)p =
∑
σ

Jδ(s, f σ )= 0. �

Proposition 3.5. For a ∈Q∗, let

δa =

(
a −1
1 0

)
,

so that

Jδa (s, f σ )=
∫

Q∗p

∫
Qp

f σ
((

ya y(xa− 1)
1 x

))
θp(r x) dxχp(y)|y|

k
2−s
p d∗y.
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Then Jδa (s, f σ1 ) vanishes unless a ∈ p2Zp and p - r . In this case, writing a = pap a0

for a0 ∈ Z∗p ∩Q∗, we have

(3-8) Jδa (s, f σ1 )=


|a|2s−k

p p(p+ 1)ωp(pap)

2χp(a2)
θp

( ta
r p3 −

r
a

)
if a0 ≡ 1 mod p,

0 otherwise.

The integral Jδa (s, f σ2 ) vanishes unless a ∈ p2Zp. For such a,

(3-9) Jδa (s, f σ2 )=


(p3)k/2−s p(p+ 1)ωp(p2)

2χp(p3)ζ
θp

( ta
p3

)
if r ≡−1 mod p,

0 otherwise.

Finally, Iδa (s)p vanishes unless p - r and a= pap a0 for ap ≥ 2 and a0≡ 1 mod pZp.
If these conditions are satisfied, then

(3-10) Iδa (s)p =
|a|2s−k

p p(p+ 1)ωp(pap)θp
(
−

r
a

)
χp(a2)

1p(a),

for 1p(a)=
{

p− 1, ap > 2
−1, ap = 2.

Proof. We start by computing Jδa (s, f σ1 ). From (2-22) we see that the determinant
of any matrix in the support of f σ1 is of the form (pm)2u for some m ∈Z and u ∈Z∗p
(the square factor coming from the center). Since

det
(

y
1

)
δa

(
1 x
0 1

)
= y,

it follows that we may assume y = u/p2` for some ` ∈ Z and u ∈ Z∗p, and that(
p`

p`

)(
ya y(xa− 1)
1 x

)
=

(
p−`au p−`u(xa− 1)

p` p`x

)
∈

(
Z∗p p−1Zp

p2Zp 1+ pZp

)
.

This implies ap = ` ≥ 2, and that p`x = 1 + px ′ for some x ′ ∈ Zp. Then
p−` dx = p−1 dx ′. Making this substitution, we find that Jδa (s, f σ1 ) is equal to

(p`−1)ωp(p`)(p2`)
k
2−s

χp(p2`)

×

∫
Z∗p

∫
Zp

f σ1

((
a0u 1

p` u((1+ px ′)a0− 1)
p` 1+ px ′

))
θp

(r(1+ px ′)
p`

)
dx ′ d∗u.

In order that the integrand be nonzero, we need p−`((1+ px ′)a0−1)∈ p−1Zp, that
is, 1+ px ′ ≡ a−1

0 mod p`−1Zp. This is only possible if a0 ≡ 1 mod p. Assuming
the latter condition holds, we set 1+ px ′ = a−1

0 + p`−1x ′′, so p−1 dx ′ = p1−` dx ′′.
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Then, writing x in place of x ′′, the double integral becomes

pωp(p`)(p2`)
k
2−s

χp(p2`)

∫
Z∗p

∫
Zp

f σ1

((
a0u p−1xua0

p` a−1
0 + p`−1x

))
θp

(r(a−1
0 + p`−1x)

p`
)

dx d∗u.

After replacing u by ua−1
0 , this becomes

(p2`)
k
2−s p(p+ 1)ωp(p`)

2χp(p2`)
θp

(
−r
p`a0

)
×

∑
w∈(Z/pZ)∗

∫
Z∗p

∫
Zp

θp

(
−xuw− tp`−2(uw)−1

p

)
θp

(
−r x

p

)
dx d∗u.

Replacing u by−uw−1, we eliminate w, and the sum contributes a factor of (p−1).
The integral over x is then∫

Zp

θp

(
(u−r)x

p

)
dx =

{
1 if u ∈ r + pZp,

0 otherwise.

In particular, it vanishes if p | r . Assuming p - r , the sum over w of the double
integral thus becomes

(p− 1)
∫

r+pZp

θp

( tp`−2u−1

p

)
d∗u = θp

( tp`−2

r p

)
.

Hence

Jδa (s, f σ1 )=
(p2`)k/2−s p(p+ 1)ωp(p`)

2χp(p2`)
θp

( tp`−2

r p
−

r
a

)
,

which establishes (3-8).
Now consider

Jδa (s, f σ2 )=
∫

Q∗p

∫
Qp

f σ2

((
ya y(xa− 1)
1 x

))
θp(r x) dxχp(y)|y|

k
2−s
p d∗y.

By (2-23), the integrand is nonzero precisely when(
p

p

)(
ya y(xa− 1)
1 x

)
=

(
pya py(xa− 1)

p px

)
∈

(
Zp p−2Z∗p
pZ∗p Zp

)
.

Taking the determinant, this says in particular that p2 y ∈ p−1Z∗p, so we may write
y = u/p3 for u ∈ Z∗p. Writing px = x ′, we have p−1 dx = dx ′, and the double
integral above equals

(p3)
k
2−s pωp(p)
χp(p3)

∫
Z∗p

∫
Zp

f σ2

((ua
p2

u
p2 (

xa
p − 1)

p x

))
θp

(
−r x

p

)
dx d∗u.
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From the upper left entry, the integrand is nonzero only if ap ≥ 2. Assuming the
latter, we also have (xa/p)− 1 ∈ Z∗p, so the upper right entry belongs to p−2Z∗p as
required. Hence the above equals

(p3)k/2−s p(p+ 1)ζωp(p)
2ωp(t)χp(p3)

×

∫
Z∗p

∫
Zp

θp

(
−x − tp−2ua

(
u
( xa

p − 1
))−1

p

)
θp

(
−r x

p

)
dx d∗u.

Note that u disappears, and that ((xa/p)− 1)−1
≡ −1 mod p. Hence the above

equals
(p3)

k
2−s p(p+ 1)ζωp(p)
2ωp(t)χp(p3)

θp

( ta
p3

) ∫
Zp

θp

(
−(r+1)x

p

)
dx .

Equation (3-9) follows upon using ζωp(p)/ωp(t)= ωp(p)2/ζ .
Since Jδa (s, f σt,ζ

2 )+ Jδa (s, f σt,−ζ
2 )= 0, we see that

Iδa (s)p =
∑
(t,ζ )

Jδa (s, f σ1 )=
|a|2s−k

p p(p+ 1)ωp(p)ap

χp(a2)
θp

(
−

r
a

)
1p(a),

assuming p - r , a ∈ p2Zp, and a0 ≡ 1 mod p, where

1p(a)=
∑

t∈(Z/pZ)∗

θp

( tpap−2

r p

)
=

{
p− 1 if ap > 2,
−1 if ap = 2.

This concludes the proof. �

3B. Summary of local results. We summarize here the contribution of δ = 1,
which turns out to be the main term. By (7.7) and (7.8) of [JK 2012], and (3-5)
above, we have
(3-11)

I1(s)p =



χp(r) if p | D,
p(p+ 1)(p− 1) if p | N ,

(pn p)
k′
2 −s

min(rp,n p)∑
dp=0

(pdp)2s−k′+1 ωp

( pdp

pn p

)
χp

( p2dp

pn p

)
if p | n,

2k−1(2πr)k−s−1

(k− 2)! e2πr 0(s) if p =∞, k > 2,

1 if p - N Dn∞.

The local integrals for δ =
( 0

1
−1

0

)
are irrelevant, since those at places dividing N

vanish by (3-7).
We will discuss the local integrals for δ =

(a
1
−1

0

)
in Section 4A.
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4. Results for holomorphic cusp forms

In this section, we will prove the following:

Theorem 4.1. Let r, n, D, N , k ∈Z+ with N squarefree, k > 2, (rn, N D)= 1, and
(D, N )= 1. Let ω′ be a Dirichlet character modulo N , with ω′(−1)= (−1)k , and
let χ be a primitive Dirichlet character modulo D. Then for all s = σ + iτ in the
strip 1< σ < k− 1,

(4-1)
∑

u∈Fnew
k (N 3,ω′ )

λn(u)ar (u)3(s, u, χ)
ψ(N 3)‖u‖2

= F + E,

where

F =
2k−1(2πrn)k−s−1

(k− 2)!
0(s)

∏
p | N

(
1− 1

p

) ∑
d | (n,r)

d2s−k+1ω′
(n

d

)
χ
(rn

d2

)
is the main term, and the error term E (an infinite series involving confluent
hypergeometric functions) satisfies

|E | ≤
(4πrn)k−1ϕ(D) gcd(r, n)B(σ, k−σ)

∏
p | N

(
1− 1

p

)
N 2σ Dσ−k+1

2 (k− 2)!
2 cosh πτ

2
ζ(k− σ)ζ(σ )

for the beta function B(x, y)= 0(x)0(y)/0(x + y)≤ 1 and Euler’s ϕ-function.

Remark. If (r, N ) > 1, then (4-1) vanishes. This is a consequence of the fact that
the local representations at p | N are supercuspidal, which implies that ap(u)= 0
(see, e.g., the proof of Corollary 45 of [Goldfeld et al. 2010]) and hence ar (u)= 0.
This is reflected on the geometric side in (3-5).

The L-functions in Theorem 4.1 are normalized so that the central point is k/2.
In order to free s from dependence on k we shift the variable so that the critical
strip becomes [0, 1] in the following:

Corollary 4.2. Suppose for simplicity that (n, r)= 1. Then for any point s in the
critical strip 0< Re(s) < 1, the sum∑

u∈Fnew
k (N 3,ω′ )

λn(u)ar (u)3(s+ k−1
2 , u, χ)

ψ(N 3)‖u‖2

is nonzero as long as N + k is sufficiently large.

Proof. See the proof of Corollary 4.4 below. �

As another corollary, we can show that the central values L(k/2, h, χ) satisfy
the Lindelöf hypothesis on average as k+ N →∞ when χ is real and ω′ is trivial.
(Under these conditions, the central value is a nonnegative real number [Guo 1996].)
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Corollary 4.3. Suppose that ω′ is trivial and χ is real. Then for k > 2,∑
u∈Fnew

k (N 3)

L(k/2, u, χ)�D (k N 3)1+ε.

Proof. The proof is identical to that of Corollary 1.3 of [JK 2012]. �

Remark. This is the same bound we would get by assuming the Lindelöf hypothesis
L(k/2, u, χ)� (D2k N 3)ε, in view of the fact that

|Fnew
k (N 3)| ∼

k−1
12

ψ new(N 3),

where (N 3)1−ε� ψ new(N 3)≤ N 3 [Serre 1997, (60) on p. 86].

Returning to the case of general ω′ and χ , let 〈3n(s, χ), ar 〉
new denote the sum

in (4-1). We can regard this as an inner product of elements of the dual space of
Sk(N 3, ω′ )new. One can also define 〈3n(s, χ), ar 〉 in the same way, but where the
sum is taken over an orthogonal basis for the full space Sk(N 3, ω′ ). It is interesting
to compare the two.

Corollary 4.4. Let s belong to the critical strip (k−1)/2<Re(s) < (k+1)/2, and
suppose that (n, r)= 1. Then with notation as above, we have

〈3n(s, χ), ar 〉
new

〈3n(s, χ), ar 〉
∼

∏
p | N

(
1− 1

p

)
as N + k→∞.

Remark. From this we can observe two extremes in behavior. If N = p is prime,
and p→∞, the above tends to 1, so the contribution of oldforms becomes negligible.
This agrees with a prediction of Ellenberg [2004, Remark 3.11]. On the other hand,
if we take N to be the product of the first ` primes not dividing D and let `→∞,
the above goes to 0 and the contribution of the newforms becomes negligible.

Proof. In Theorem 1.1 of [JK 2012], it is proven that

〈3n(s, χ), ar 〉 = F ′+ E ′, where F ′ =
F∏

p | N

(
1− 1

p

) ,
and |E ′| satisfies a bound similar to the one given for |E | in the above theorem, but
without the factor of

∏
p | N (1−

1
p ), and with N 3σ in the denominator rather than N 2σ .

In the last line of [JK 2012], it is shown using Stirling’s approximation that for
s = (k/2)+ δ+ iτ with |δ|< 1

2 ,

∣∣∣E ′

F ′

∣∣∣� (4Dπrne)
k
2

(N 3)
k−1

2 k
k
2−1

,

where the implied constant depends on δ, D, R, n, τ . Clearly the above goes to
0 as N + k→∞. The same bound holds for |E/F |, but with N 2 in place of N 3,
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since the extra factor of
∏(

1− 1
p

)
in the numerator and denominator cancels out.

Likewise, ∣∣∣ E
F ′

∣∣∣= ∣∣∣E
F

∣∣∣ ∏
p | N

(
1− 1

p

)
≤

∣∣∣E
F

∣∣∣� (4Dπrne)
k
2

(N 2)
k−1

2 k
k
2−1

.

Now consider the quotient

〈3n(s, χ), ar 〉
new

〈3n(s, χ), ar 〉
=

F+E
F ′+E ′

=

F
F ′ +

E
F ′

1+ E ′
F ′
=

∏
p | N

(
1− 1

p

)
+ O

(
(4Dπrne)

k
2

(N 2)
k−1

2 k
k
2−1

)

1+ O

(
(4Dπrne)

k
2

(N 3)
k−1

2 k
k
2−1

)

The corollary now follows easily. �

4A. Proof of Theorem 4.1. In the holomorphic case, the spectral side (3-2) be-
comes

n1− k
2

e2πr

∑
u∈Fnew

k (N 3,ω′ )

λn(u)ar (u)
‖u‖2

3(s, u, χ).

By the local calculation (3-7), the geometric side has the form

I1(s)+
∑
a∈Q∗

Iδa (s).

As is typical, the identity term I1(s) is the dominant term as N+k→∞. Multiplying
the local results (3-11) together, when k > 2 (so k ′ = k) we obtain:

e2πr n
k
2−1

ψ(N 3)
I1(s)

=
2k−1(2πrn)k−s−1

(k− 2)!
0(s)

∏
p | N

p(p+ 1)(p− 1)
p2(p+ 1)

∑
d | (r,n)

d2s−k+1 ω′
(n

d

)
χ
(rn

d2

)
.

This is the leading term of (4-1).
Theorem 4.1 now follows immediately from the following proposition involving

the remaining orbital integrals.

Proposition 4.5. For δa =
(a

1
−1

0

)
, with a ∈Q∗, the orbital integral Iδa (s) is abso-

lutely convergent on the strip 0 < σ < k. It vanishes unless a = (N 2b)/(nD) for
b ∈Z−{0}. When s = σ + iτ for 1<σ < k−1, the sum

∑
a∈Q∗ Iδa (s) is absolutely
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convergent, and

e2πr n
k
2−1

ψ(N 3)

∑
a∈Q∗

|Iδa (s)|

≤

(4πrn)k−1ϕ(D) gcd(r, n)B(σ, k− σ)
∏

p | N

(
1− 1

p

)
N 2σ Dσ−k+1

2 (k− 2)!
2 cosh

(
πτ

2

)
ζ(k−σ)ζ(σ ).

Using the results of [JK 2012] and (3-10) above, one can actually give a rather
explicit formula for the sum of the Iδa (s) as an infinite series. However, this involves
a lot of bookkeeping and seems of limited value, so we will just present the bound.
First, by (3-10), we note that for p | N , Iδa (s)p vanishes unless a = (N 2b)/(nD) ∈
N 2Zp, and

(4-2)
|Iδa (s)p| ≤ |N 2b|2σ−k

p p(p+ 1)(p− 1)≤ |N 2
|
2σ−k
p p(p+ 1)(p− 1)

bp∑
dp=0

|pdp |
2σ−k
p .

Now suppose p - N∞. Then the value of Iδa (s)p is not quite stated explicitly in
[JK 2012], but a closely related integral is given. Start with

Iδa (s)p =

∫
Q∗p

∫
Qp

f p

((
ya y(xa− 1)
1 x

))
θp(r x) dx χp(y)|y|

k
2−s
p d∗y.

A matrix belongs to the support of f p only if its determinant is of the form (pm)2nu
for some m ∈ Z and u ∈ Z∗p. This can be seen from (2-24) (for p | n), from the
expression for f χp three lines above (2-17) if p | D, and from (2-14) if p - nDN∞.
(In the latter two cases, n is a unit.) The determinant of the matrix in the above
integral is y, so the integrand vanishes unless y ∈ p−2dp nZ∗p for some dp ∈ Z.
Write a = N 2b/(nD), where (for now) b ∈ Q∗. It will be convenient to write
y = nu/(N 2d)2 for d = pdp and u ∈ Z∗p. Then the above becomes

∑
dp∈Z

χp
( n

N 4d2

)
∣∣ n

d2

∣∣s− k
2

p

×

∫
Z∗p

∫
Qp

f p

((
N 2d

N 2d

)−1
(

nu
N 2d

N 2b
nD

nu
N 2d

( x N 2b
nD − 1

)
N 2d d N 2x

))
θp(r x) dx χp(u) d∗u.

Since the second matrix has determinant un ∈ nZ∗p, all entries must lie in Zp for
the integrand to be nonzero. In particular, dp ≥ 0. We may substitute x ′ = d N 2x ,
so that dx ′ = |d N 2

|p dx = |d|p dx . Using the fact that the central character ωp is
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unramified, we obtain

∑
dp≥0

χp
( n

N 4d2

)
ωp(d)∣∣ n

d2

∣∣s− k
2

p

|d|−1
p

×

∫
Z∗p

∫
Zp

f p

(( ub
d D

ubx
N 2d2 D −

nu
N 2d

N 2d x

))
θp

( r x
N 2d

)
dx χp(u) d∗u.

The latter double integral coincides with (8.4) of [JK 2012], but with N where we
have N 2. It is computed explicitly in Sections 8.1 and 8.2 of that reference. In
particular, it vanishes unless 0≤dp≤bp, proving the assertion in Proposition 4.5 that
the global integral vanishes unless a = N 2b/(nD) for nonzero b ∈ Z. Multiplying
the coefficient by the double integral, whose value is given in (8.7), (8.8), and (8.12)
of the same work, we find

|Iδa (s)p| ≤
ϕ(pDp)

|τ(χ)p|

bp∑
dp=0

|pdp |
2σ−k
p if (p | D),(4-3)

|Iδa (s)p| ≤
|n|

k
2−σ
p

| gcd(r, n)|p

bp∑
dp=0

|pdp |
2σ−k
p if (p - DN∞).(4-4)

(For the latter, we have used the fact that gcd( b
d , Nd) | gcd(r, Dn) in [JK 2012].)

Multiplying the local bounds (4-2)–(4-4) together, we have

(4-5) |Iδa (s)fin| ≤
nσ−

k
2ϕ(D) gcd(r, n)

(N 2)2σ−k |τ(χ)|

(∏
p | N

p(p+ 1)(p− 1)
)∑

d | b

1
d2σ−k .

For the archimedean part, we have from [ibid., (8.15)]

(4-6) |Iδa (s)∞| =
∣∣∣∣(4πr)k−1(N 2)σ−kbs−ke

iπs
2

(k− 2)! (nD)σ−ke2πr 1 f1

(
s; k;−2π irnD

N 2b

)∣∣∣∣,
where bs

= e−iπs
|a|s if b < 0, and for Re(k) > Re(s) > 0,

1 f1(s, k;w)= B(s, k− s)1 F1(s; k;w)=
∫ 1

0
ewx x s−1(1− x)k−s−1 dx

[Slater 1960, §3.1]. Noting that∣∣∣1 f1

(
s; k;−2π irnD

N 2b

)∣∣∣≤ ∫ 1

0
xσ−1(1− x)k−σ−1 dx = B(σ, k− σ),
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and that ∏
p | N p(p+ 1)(p− 1)

ψ(N 3)
=

∏
p | N

p(p+ 1)(p− 1)
p2(p+ 1)

=

∏
p | N

(
1− 1

p

)
,

we multiply (4-5) by (4-6) to get

e2πr n
k
2−1

ψ(N 3)
|Iδa (s)|

≤
(4πrn)k−1ϕ(D)e−π

τ
2

N 2σ Dσ−k+1
2 (k− 2)!

(∏
p | N

(
1− 1

p

))∣∣bs−k
∣∣B(σ, k− σ)

∑
d | b

gcd(r, n)
d2σ−k .

Now we need to bound the sum over b ∈ Z−{0}. Write b =±cd for c, d > 0,
and group the c,−c terms together, so that

|cs−k
| + |(−c)s−k

| = cσ−k
+ |(e−iπ )s−kcs−k

| = cσ−k(1+ eπτ ).

Noting that e−πτ/2(1+ eπτ )= 2 cosh(πτ/2), we obtain

e
−πτ

2
∑
b 6=0

|bs−k
|

∑
d | b

1
d2σ−k

= 2 cosh
(
πτ

2

) ∑
c,d>0

cσ−kd−σ = 2 cosh
(
πτ

2

)
ζ(k− σ)ζ(σ ).

Proposition 4.5 now follows immediately.

5. The case of nonholomorphic cusp forms

5A. Integral transforms. Here we define various integral transforms involving
spherical functions. We refer to §3 of [KL 2013] for further detail.

Let f∞ ∈ C∞c (G(R)
+//K∞) as in (2-15). The Harish-Chandra transform of

f∞ is the function on R+ defined by

H f∞(y)= y
−1
2

∫
∞

−∞

f∞

((
1 x
0 1

)(
y 0
0 1

))
dx .

We will also encounter the twisted variant

(5-1) Hr f∞(y)= y−
1
2

∫
∞

−∞

f∞

((
1 x
0 1

)(
y

1

))
e−2π ir x dx

for r ∈ R, and a twisted variant in the big Bruhat cell

(5-2) Hr,α f∞(y)= y−
1
2

∫
∞

−∞

f∞

((
1 x
0 1

)(
0 1
−1 α

)(
y

1

))
e−2π ir x dx

for α ∈ R. Each of the above functions is smooth with compact support in R+.
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For φ ∈ C∞c (R
+), the Mellin transform is denoted

Msφ =

∫
∞

0
φ(y)ys d∗y.

Composing with the Harish-Chandra transform, we obtain the spherical transform

S f∞(s)=MsH f∞.

The Selberg transform of f∞ is defined by

(5-3) h(t)= S f∞(i t)=Mi t H f∞.

Then h(i t) is an even Paley–Wiener function. This means that it is holomorphic
and there exists a real number C ≥ 1 depending only on h such that for any integer
M > 0, we have

(5-4) h(a+ ib)�M,h
C |b|

(1+ |a|)M .

Using (5-1) we also define a twisted spherical transform of f∞ by

(5-5) hr (s)=MsHr f∞,

and a twisted variant in the big Bruhat cell

(5-6) hr,α(s)=MsHr,α f∞,

for α ∈ R, as in (5-2). These functions likewise are holomorphic and satisfy (5-4),
though they are not even in general. Note that h0(s)= h(s).

5B. Nonholomorphic case: spectral side. When k = 0, the spectral side (3-2) of
the relative trace formula becomes

(5-7) I =
√

n
2

∑
u j∈Fnew

+ (N 3,ω′ )

λn(u j )ar (u j )3(s, u j , χ)

‖u j‖
2 h(t j )Ki t j (2π |r |).

Proposition 5.1. Let k = 0 and r ∈Q. If σ = Re(s) is sufficiently large, then the
integral∫

Q∗\A∗

∫
Q\A

∑
u∈Fnew

0 (N 3,ω′ )

∣∣∣∣∣λ f (u)R( f χ )φu
(( y

1

))
φu
((

1 x
0 1

))
‖u‖2

|y|s−
1
2

∣∣∣∣∣ dx d∗y

is absolutely convergent. Hence, as in Proposition 3.1, the integral (3-1) is equal to
(5-7) for such s. The sum (5-7) converges absolutely for all s ∈ C, and defines an
entire function.
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Proof. As in the proof of Proposition 3.1, by the fact there are at most finitely
many u with exceptional spectral parameters, it suffices to sum over the set F′ of
newforms for which t is real. Thus we need to show that

(5-8)
∑
u∈F′

|λ f (u)|
‖u‖2

∫
Q∗\A∗

∣∣∣∣φuχ

((
y

1

))∣∣∣∣ yσ−
1
2 d∗y

∫
Q\A

∣∣∣∣φu

((
1 x
0 1

))∣∣∣∣ dx

is finite. The second integral is bounded by an absolute constant:∫
Q\A

∣∣∣∣φu

((
1 x
0 1

))∣∣∣∣ dx =
∫ 1

0
|u(i + x)| dx ≤

∫ 1

0

∑
m 6=0

∣∣am(u)Ki t(2π |m|)e2π imx
∣∣ dx

=

∑
m 6=0

∣∣am(u)Ki t(2π |m|)
∣∣�∑

m 6=0

|m|
1
2+εK0(2π |m|) <∞.

Here, we have used the fact that since t is real,

(5-9) |Ki t(y)|=
∣∣∣∣ 1

2

∫
∞

0
e−

y(w+w−1)
2 wi t d∗w

∣∣∣∣≤ 1
2

∫
∞

0
e
−y(w+w−1)

2 d∗w= K0(y),

and also the bound |am(u)| � |m|1/2+ε [Iwaniec and Kowalski 2004, (5.92)]. The
strongest known bound of this nature is that of Kim and Sarnak [2003]:

(5-10) |am(u)| ≤ τ(|m|)|m|
7

64 ,

where τ is the divisor function. This, together with (2-26), gives |λ f (u)| �n |h(t)|.
By the above observations, and following the proof of Lemma 2.2, we see that
(5-8) is

(5-11) �

∑
u∈F′

|h(t)|
‖u‖2

∫
∞

0
|uχ (iy)| yσ−

1
2 d∗y.

Using the Fourier expansion of uχ , the above integral is bounded by∫
∞

0

∑
m 6=0

∣∣χ(m)am(u)Ki t(2π |m|y)
∣∣yσ d∗y

≤ (2π)−σ
∑
m 6=0

|am(u)|
mσ

∫
∞

0
|Ki t(y)|yσ d∗y.

Once again invoking (5-9), we have∫
∞

0
|Ki t(y)|yσ d∗y ≤

∫
∞

0
K0(y)yσ d∗y = 2σ−20

(
σ

2

)2
,

by a well-known identity for σ > 0 (cf. [Gradshteyn and Ryzhik 2007, 6.561.16]).
Using (5-10), we see that the sum over m is bounded by an absolute constant
when σ ≥ 3. This shows that the integral of uχ in (5-11) is bounded by a constant



558 ANDREW KNIGHTLY AND CHARLES LI

independent of u and depending continuously on σ ≥ 3. As shown by Goldfeld,
Hoffstein and Lieman (see [Hoffstein and Lockhart 1994, Appendix]),

(5-12) 1
‖u‖2

�ε N ε(1+ |t |)ε

for an absolute (ineffective) implied constant. Thus we reduce to proving that

(5-13)
∑

u j∈F′

|h(t j )|(1+ |t j |)
ε <∞.

This follows from (5-4) and the fact that |t j | →∞ (for details, see the end of the
proof of Proposition 7.5 of [KL 2013]).

Now we prove that the sum (5-7) is absolutely convergent for all s ∈ C. Once
again, it suffices to sum over u ∈F′. Thus (using (5-10) to bound ar (u) and λn(u)),
we need to show

(5-14)
∑

u j∈F′

∣∣0( s+i t j
2

)
0
( s−i t j

2

)
L(s, u j , χ)h(t j )Ki t j (2π |r |)

∣∣
‖u j‖

2 <∞.

By Stirling’s formula [Abramowitz and Stegun 1964, 6.1.39], for real t 6= 0 (taking
arg(i t)=±π2 ) we have

(5-15)
∣∣∣0(s+i t

2

)
0
(s−i t

2

)∣∣∣ f ∼ 2π
∣∣∣( i t

2

) s+i t−1
2

(
−

i t
2

) s−i t−1
2

∣∣∣
= 2π

(
|t |
2

)σ−1
e−π

|t |
2

as |t | →∞. Similarly, because t is real, we have

(5-16) Ki t(2π |r |)� e−π |t |/2

as |t | →∞; see (19) on p. 88 of [Erdélyi et al. 1953].
To bound the L-functions, by the functional equation we can assume without

losing generality that σ ≥ 1
2 . For such s, we have the uniform convexity bound

L(s, u j , χ)�ε (D2 N 3)
1
4+ε(|s| + 3)

1
2+ε(|t j | + 3)

1
2+ε

[Iwaniec and Kowalski 2004, Theorem 5.41 and (5.8)]. Here the implied constant
is independent of u j .

Using (5-12), we now find that the left-hand side of (5-14) is

� (|s| + 3)
1
2+ε

∑
u j

(|t j | + 3)
1
2+ε

(
|t j |

2

)σ−1
|h(t j )|e−π |t j |.

The finiteness of the above sum follows as for (5-13). It is clear as well that the
convergence is uniform for s in compact sets, giving an entire function. �
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5C. Nonholomorphic case: geometric side. By Proposition 3.2 and (3-7), the
geometric side is equal to

I1(s)+
∑
a∈Q∗

Iδa (s)

for δ =
(a

1
−1

0

)
. The only changes from the holomorphic case discussed earlier are

archimedean. For example, it remains true here that Iδa (s) 6=0 only if a=N 2b/(nD)
for some nonzero integer b. The local orbital integrals at∞ are now given as general
integral transforms of f∞ ∈C∞c (G(R)

+//K∞). Using the fact that f∞ has compact
support modulo Z∞, we will see that all but finitely many of the geometric terms
vanish, and indeed if N is sufficiently large, the only nonzero term is the main term.

For the main term we have, upon replacing y by y−1 in (3-3),

I1(s)∞ =
∫

R∗

∫
R

f∞

((
y xy
0 1

))
e2π ir x dx χ∞(y)|y|

1
2−s d∗y.

Since f∞ is supported on G(R)+, the first integral can be taken over R+, where
χ∞ is trivial. Furthermore, since f∞ is biinvariant under Z∞K∞, it follows easily
(using the Cartan decomposition [KL 2013, §3.1]) that

(5-17) f∞(g)= f∞(g−1).

Therefore

(5-18) I1(s)∞ =
∫
∞

0

∫
∞

−∞

f∞

((
y−1
−x

0 1

))
e2π ir x dx y

1
2−s d∗y

=

∫
∞

0

[
y−1/2

∫
∞

−∞

f∞

((
y x
0 1

))
e−2π ir x dx

]
ys d∗y

=MsHr f∞ = hr (s),

as in (5-5).
Multiplying the above by the local nonarchimedean values given in (3-11) (taking

k ′ = 1), we obtain the following:

Proposition 5.2. The global integral I1(s) is nonzero only if gcd(r, N ) = 1. In
this case,

(5-19) I1(s)=
hr (s)

ns−1
2

N
∏
p | N

(p2
− 1)

∑
d | gcd(n,r)

d2s ω′
(n

d

)
χ
(rn

d2

)
.

For δ =
(a

1
−1

0

)
, the archimedean orbital integral is
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Iδa (s)∞ =
∫

R∗

∫
R

f∞

((
y

1

)(
a −1
1 0

)(
1 x
0 1

))
e2π ir x dx χ∞(y)|y|

1
2−s d∗y

=

∫
∞

0

∫
R

f∞

((
1 −x
0 1

)(
0 1
−1 a

)(
y−1

1

))
e2π ir x dx y

1
2−s d∗y

=

∫
∞

0

∫
R

f∞

((
1 x
0 1

)(
0 1
−1 a

)(
y

1

))
e−2π ir x dx ys−1

2 d∗y

=Ms(Hr,a f∞)= hr,a(s),

as in (5-6).

Proposition 5.3. For any choice of f∞ ∈ C∞c (G(R)
+//K∞), Iδ(s)= 0 for all but

finitely many δ. Indeed, there exists a constant C , depending on f∞ and n, such that

(5-20)
∑
δ

Iδ(s)= I1(s)=
hr (s)

ns−1
2

N
∏
p | N

(p2
− 1)

∑
d | gcd(n,r)

d2sω′
(n

d

)
χ
(rn

d2

)
whenever N > C.

Proof. The function (
α β

γ δ

)
7→

αγ

αδ−βγ

is well-defined in G(R). Hence it is bounded on the compact set Supp( f∞)/Z∞.
Taking (

α β

γ δ

)
=

(
y

1

)(
a −1
1 0

)(
1 x

1

)
=

(
ya y(xa− 1)
1 x

)
,

we have αγ/(αδ−βγ )= a. This shows that if |a| is sufficiently large, the above
matrix lies outside the support of f∞ for all x, y, and hence Iδa (s)= 0. Furthermore,
because

|a| = N 2

n
|b| ≥ N 2

n
→∞

as N →∞, when N is sufficiently large the only nonzero term is I1(s). �

Putting everything together, we now arrive at the main result for Maass forms.

Theorem 5.4. Let r, n, N be positive integers with N squarefree and (rn, N )= 1.
Let χ be a primitive Dirichlet character of modulus D, where (D, rnN ) = 1.
Let h(i z) be an even Paley–Wiener function. When the squarefree integer N is
sufficiently large, we have for all s ∈ C,

(5-21)
∑

u j∈Fnew
+ (N 3,ω′ )

λn(u j ) ar (u j )3(s, u j , χ)

ψ(N 3)‖u j‖
2 h(t j ) Ki t j (2π |r |)

=
2
ns hr (s)

∏
p | N

(
1− 1

p

) ∑
d | gcd(n,r)

d2s ω′(
n
d
) χ
(rn

d2

)
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for hr (s) as in (5-5).

Remarks. (1) An immediate corollary (at least when gcd(n, r)= 1) is the exis-
tence of a Maass newform of level N 3 for which λn(u), ar (u), and 3(s, u, χ)
are simultaneously nonzero.

(2) When gcd(r, n) = 1, the sum on the right becomes ω′(n)χ(rn). If r = n =
1, then the right-hand side is independent of χ . This is the case stated as
Theorem 1.1.

(3) Both sides vanish when (r, N ) > 1. See the remark after Theorem 4.1.

(4) One can weaken the hypotheses somewhat. It is sufficient for h(i z) to be
Paley–Wiener of order m ≥ 8; cf. [KL 2013, Corollary 6.12 and (3.14)].

Proof. As a consequence of Proposition 3.2 and the above discussion, the equality
between the spectral side (5-7) and the geometric side (5-20) has been established
in some right half-plane Re(s)≥ α for α sufficiently large. Multiplying both sides
of this relative trace formula by 2/(

√
nψ(N 3)), we obtain (5-21) for such s. On

the other hand, by Proposition 5.1, each side of (5-21) is an entire function of s.
Hence the equality is valid for all complex s. �
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ON OCCULT PERIOD MAPS

STEPHEN KUDLA AND MICHAEL RAPOPORT

In memoriam Jonathan Rogawski

We interpret the “occult” period maps of Allcock, Carlson, and Toledo
(2002; 2011), of Looijenga and Swierstra (2007; 2008), and of Kondō (2000;
2002) in moduli theoretic terms, as a construction of certain families of po-
larized abelian varieties of Picard type. We show that these period maps are
morphisms defined over their natural field of definition.

1. Introduction

In papers of Allcock, Carlson, and Toledo [Allcock et al. 2002; 2011], of Looijenga
and Swierstra [2007; 2008], and of Kondō [2000; 2002], “hidden” period maps are
constructed in certain cases. The target spaces of these maps are certain arithmetic
quotients of complex unit balls. The basic observation which is the starting point
of this paper is that these arithmetic quotients can be interpreted as the complex
points of certain moduli spaces of abelian varieties of Picard type, of the kind
considered in [Kudla and Rapoport 2009]. Consequently, the purpose in this paper
is to interpret these hidden period maps in moduli-theoretic terms. The payoff of
this exercise is that we can raise and partially answer some descent problems which
seem natural from our viewpoint, and which are related to a similar descent problem
addressed by Deligne [1972] in his theory of complete intersections of Hodge level
one.

Why do we speak of “hidden” or “occult” period maps in this context? This is
done in order to make the distinction with the usual period maps which associate
to a family of smooth projective complex varieties (over some base scheme S) the
(polarized) Hodge structures of its fibers, which then induces a map from S to a
quotient by a discrete group of a period domain. Let us recall three examples of
classical period maps:

(1) Case of quartic surfaces. In this case, the period map is a holomorphic map
of orbifolds

ϕ : Quartics◦2,C→
[
0\V (2, 19)

]
.

MSC2010: 11G15, 14D20, 14K22.
Keywords: Torelli theorems, period maps.
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Here Quartics◦2,C denotes the stack parametrizing smooth quartic surfaces up to
projective equivalence,

Quartics◦2,C =
[
PGL4\PSym4(C4)◦

]
(stack quotient in the orbifold sense). The target space is the orbifold quotient of
the space of oriented positive 2-planes in a quadratic space V of signature (2, 19)
by the automorphism group 0 of a lattice in V .

(2) Case of cubic threefolds. In this case, the period map is a holomorphic map of
orbifolds

ϕ : Cubics◦3,C→
[
0\H5

]
.

Here Cubics◦3,C denotes the stack parametrizing smooth cubic threefolds up to
projective equivalence. The target space is the orbifold quotient of the Siegel upper
half-space of genus 5 by the Siegel group 0 = Sp5(Z).

(3) Case of cubic fourfolds. In this case, the period map is a holomorphic map of
orbifolds

ϕ : Cubics◦4,C→
[
0\V (2, 20)

]
.

Here Cubics◦4,C denotes the stack parametrizing smooth cubic fourfolds up to
projective equivalence. The target space is the orbifold quotient of the space
of oriented positive 2-planes in a quadratic space V of signature (2, 20) by the
automorphism group 0 of a lattice in V .

In the first case, by the Torelli theorem of Piatetski-Shapiro and Shafarevich, the
induced map |ϕ| on coarse moduli spaces is an open embedding. In the second case,
by the Torelli theorem of Clemens and Griffiths, the map |ϕ| is a locally closed
embedding (it is not an open embedding since the source of ϕ has dimension 10,
and the target has dimension 15). In the third case, by the Torelli theorem of Voisin,
the map |ϕ| is an open embedding.

The construction of the occult period maps is quite different, although it does
use the classical period maps indirectly. For instance, the construction of Allcock,
Carlson, and Toledo attaches a certain Hodge structure to any smooth cubic surface
which allows one to distinguish between nonisomorphic ones, even though the
natural Hodge structures on the cohomology in the middle dimension of all cubic
surfaces are isomorphic. Also, in one dimension higher, their construction allows
them to define an open embedding of the space of cubic threefolds into an arithmetic
quotient of the complex unit ball of dimension 10.

Our second aim in this paper is to identify the complements of the images of
occult period maps with special divisors considered in [Kudla and Rapoport 2009].

The layout of the paper is as follows. In Sections 2, 3 and 4, we recall some of
the theory and notation of [Kudla and Rapoport 2009]. In Sections 5, 6, 7 and 8,
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respectively, we explain in turn the cases of cubic surfaces, cubic threefolds, curves
of genus 3, and curves of genus 4. In Section 9, we explain the descent problem and
solve it in zero characteristic. In the final section, we make a few supplementary
remarks.

We stress that the proofs of our statements are all contained in the papers men-
tioned above, and that our work only consists in interpreting these results.

2. Moduli spaces of Picard type

Let k = Q(
√
1) be an imaginary-quadratic field with discriminant 1, ring of

integers Ok, and a fixed complex embedding. We write a 7→ aσ for the nontrivial
automorphism of Ok.

For integers n ≥ 1 and r , 0≤ r ≤ n, we consider the groupoid M=M(n−r, r)=
M(k; n − r, r) fibered over (Sch/Ok) which associates to an Ok-scheme S the
groupoid of triples (A, ι, λ). Here A is an abelian scheme over S, λ is a principal
polarization, and ι : Ok→ End(A) is a homomorphism such that

ι(a)∗ = ι(aσ ),

for the Rosati involution ∗ corresponding to λ. In addition, the following signature
condition is imposed:

(2-1) char
(
T, ι(a) | Lie A

)
= (T − i(a))n−r

· (T − i(aσ ))r , for all a ∈ Ok,

where i : Ok→ OS is the structure map.
We will mostly consider the complex fiber MC = M×Spec Ok Spec C of M. In

any case, M is a Deligne–Mumford stack and MC is smooth. We denote by |MC|

the coarse moduli scheme.
We will also have to consider the following variant, defined by modifying the

requirement above that the polarization λ be principal. Let d > 1 be a square-
free divisor of |1|. Then M(k, d; n− r, r)∗ =M(k; n− r, r)∗ parametrizes triples
(A, ι, λ) as in the case of M(k; n − r, r), except that we impose the following
condition on λ. We require first of all that ker λ ⊂ A[d], so that Ok/(d) acts on
ker λ. In addition, we require that this action factor through the quotient ring∏

p|d Fp of Ok/(d), and that λ be of degree dn−1 if n is odd and of degree dn−2 if
n is even. In the notation introduced in Section 13 of [Kudla and Rapoport 2009],
we have M(k, d; n−r, r)∗ =M(k, t; n−r, r)∗,naive, where the function t on the set
of primes p with p |1 assigns to p the integer 2[(n−1)/2] if p |d, and 0 if p -d.
Note that if k is the Gaussian field k=Q(

√
−1), then necessarily d = 2; if k is the

Eisenstein field k =Q(
√
−3), then d = 3. We denote by |M∗

C
| the corresponding

coarse moduli scheme.
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3. Complex uniformization

Let us recall from [Kudla and Rapoport 2009] the complex uniformization of
M(k; n−1, 1)(C) in the special case that k has class number one. For n > 2, let
(V, ( , )) be a hermitian vector space over k of signature (n−1, 1) which contains
a self-dual Ok-lattice L . By the class number hypothesis, V is unique up to
isomorphism. When n is odd, or when n is even and 1 is odd, the lattice L is also
unique up to isomorphism. We assume that one of these conditions is satisfied. Let
D be the space of negative lines in the C-vector space (VR, I0), where the complex
structure I0 is defined in terms of the discriminant of k, as I0 =

√
1/|
√
1|. Let 0

be the isometry group of L . Then the complex uniformization is the isomorphism
of orbifolds,

M(k; n−1, 1)(C)' [0\D].

There is an obvious ∗-variant of this uniformization, which gives

M(k; n−1, 1)∗(C)' [0∗\D],

where 0∗ is the automorphism group of the (parahoric) lattice L∗ corresponding to
the ∗-moduli problem. The lattice L∗ is uniquely determined up to isomorphism
by the condition that there is a chain of inclusions of Ok-lattices L∗ ⊂ (L∗)∨ ⊂
(
√

d)−1L∗, with quotient (L∗)∨/L∗ of dimension n−1 if n is odd and n− 2 if n is
even, when localized at any prime ideal p dividing d . Here, for an Ok-lattice M in
V , we write

M∨ = {x ∈ V | h(x, L)⊂ Ok}

for the dual lattice.

4. Special cycles (KM-cycles)

We continue to assume that the class number of k is one, and recall from [Kudla and
Rapoport 2009] the definition of special cycles over C. Let (E, ι0) be an elliptic
curve with CM by Ok over C, which we fix in what follows. Note that, due to
our class number hypothesis, (E, ι0) is unique up to isomorphism. We denote its
canonical principal polarization by λ0. For any connected C-scheme S and any
(A, ι, λ) ∈M(k; n−1, 1)(S), let

V ′(A, E)= HomOk(ES, A),

where ES = E ×C S is the constant elliptic scheme over S defined by E . Then
V ′(A, E) is a projective Ok-module of finite rank with a positive definite Ok-valued
hermitian form given by

h′(x, y)= λ−1
0 ◦ y∨ ◦ λ ◦ x ∈ EndOk(ES)= Ok.
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For a positive integer t , we define the DM-stack1 Z(t) by

Z(t)(S)=
{
(A, ι, λ; x) | (A, ι, λ)∈M(k; n−1, 1)(S), x ∈V ′(A, E), h′(x, x)= t

}
.

Then Z(t) maps by a finite unramified morphism to M(k; n−1, 1)C, and its image
is a divisor in the sense that, locally for the étale topology, it is defined by a nonzero
equation.

The cycles Z(t) also admit a complex uniformization. More precisely, under the
assumption of the triviality of the class group of k, we have

Z(t)(C)'
[
0
∖( ∐

x∈L
h(x,x)=t

Dx

)]
,

where Dx is the set of lines in D which are perpendicular to x .
Again, there is a ∗-variant of these definitions and a corresponding DM-stack

Z(t)∗ above M(k; n−1, 1)∗.

5. Cubic surfaces

In this paper we consider four occult period mappings. We start with the case of
cubic surfaces, following [Allcock et al. 2002]; compare [Beauville 2009]. As
explained in the introduction, in these sources, the results are formulated in terms of
arithmetic ball quotients; here we use the complex uniformization of the previous
two sections to express these results in terms of moduli spaces of Picard type.

Let S ⊂ P3 be a smooth cubic surface. Let V be a cyclic covering of degree 3 of
P3, ramified along S. Explicitly, if S is defined by the homogeneous equation of
degree 3 in 4 variables

F(X0, . . . , X3)= 0,

then V is defined by the homogeneous equation of degree 3 in 5 variables,

X3
4 − F(X0, . . . , X3)= 0.

Let k = Q(ω), ω = e2π i/3. Then the obvious µ3-action on V determines an
action of Ok = Z[ω] on H 3(V,Z). For the (alternating) cup product pairing 〈 , 〉,

〈ωx, ωy〉 = 〈x, y〉,

which implies that

〈ax, y〉 = 〈x, aσ y〉, for all a ∈ Ok.

1This notation differs from that in [Kudla and Rapoport 2009], in that here the special cycles are
defined over C, and are considered as lying over M(k; n−1, 1)C.
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Hence there is a unique Ok-valued hermitian form h on H 3(V,Z) such that

(5-1) 〈x, y〉 = tr
( 1
√
1

h(x, y)
)
,

where the discriminant 1 of k is equal to −3 in the case at hand. Explicitly,

(5-2) h(x, y)= 1
2

(
〈
√
1x, y〉+ 〈x, y〉

√
1
)
.

Furthermore, an Ok-lattice is self-dual with respect to 〈 , 〉 if and only if it is
self-dual with respect to h( , ).

Fact. H 3(V,Z) is a self-dual hermitian Ok-module of signature (4, 1).

As noted above, such a lattice is unique up to isomorphism.
Let

A = A(V )= H 3(V,Z)\H 3(V,C)/H 2,1(V )

be the intermediate Jacobian of V . Then A is an abelian variety of dimension
5 which is principally polarized by the intersection form. Since the association
V 7→ (A(V ), λ) is functorial, we obtain an action ι of Ok on A(V ).

Theorem 5.1. (i) The object (A, ι, λ) lies in M(k; 4, 1)(C).

(ii) This construction is functorial and compatible with families, and defines a
morphism of DM-stacks,

ϕ : Cubics◦2,C→M(k; 4, 1)C.

Here Cubics◦2,C denotes the stack parametrizing smooth cubic surfaces up to
projective equivalence,

Cubics◦2,C = [PGL4\PSym3(C4)◦]

(stack quotient in the orbifold sense).

(iii) The induced morphism on coarse moduli spaces

|ϕ| : |Cubics◦2,C| → |M(k; 4, 1)C|

is an open embedding. Its image is the complement of the image of the KM-
cycle Z(1) in |M(k; 4, 1)C|.

Proof. We only comment on the assertions in (ii) and (iii). In (ii), the compatibility
with families is always true of Griffiths’ intermediate jacobians (which however are
abelian varieties only when the Hodge structure is of type (m+1,m)+ (m,m+1)).
This constructs ϕ as a complex-analytic morphism. The algebraicity of ϕ then
follows from Borel’s theorem [1972] that any analytic family of abelian varieties over
a C-scheme is automatically algebraic. The fact that the image is contained in the
complement of Z(1) is true because, by the Clemens–Griffiths theory, intermediate
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Jacobians of cubic threefolds are simple as polarized abelian varieties, whereas over
Z(1), the polarized abelian varieties split off an elliptic curve. However, the fact
that Z(1) makes up the whole complement is surprising and results from the fact
that the morphism ϕ extends to an isomorphism from a partial compactification
|Cubicss

2,C| of |Cubics◦2,C| (obtained by adding stable cubics) to |M(k; 4, 1)C|, such
that the complement of |Cubics◦2,C| in |Cubicss

2,C| is an irreducible divisor; see
[Beauville 2009, Propositions 6.7 and 8.2]. �

Remark 5.2. Let us comment on the stacks aspect of Theorem 5.1. Any automor-
phism of S is induced by an automorphism of P3, which in turn induces an automor-
phism of V . We therefore obtain a homomorphism Aut(S)→Aut(A(V ), ι, λ). The
statement of [Allcock et al. 2002, Theorem 2.20] implies that this homomorphism
induces an isomorphism

(5-3) Aut(S)
∼
−→ Aut(A(V ), ι, λ)/O×k ,

where the units O×k ' µ6 act via ι on A(V ). Indeed, in [Allcock et al. 2002] it
is asserted that ϕ is an open immersion of orbifolds Cubics◦2,C→ [P0\D], where
P0 = 0/O×k ; however, we were not able to follow the argument. Note that the
orbifold [P0\D] is different from [0\D], which occurs in Section 3.

6. Cubic threefolds

Our next example concerns cubic threefolds, following Allcock et al. [2011] and
Looijenga and Swierstra [2007].

Let T ⊂ P4 be a cubic threefold. Let V be the cyclic covering of degree 3 of P4,
ramified in T . Then V is a cubic hypersurface in P5 and we define the primitive
cohomology as

(6-1) L = H 4
0 (V,Z)= {x ∈ H 4(V,Z) | (x, ρ)= 0},

where ρ is the square of the hyperplane section class. Note that rkZL=22. Again, let
k=Q(ω), with ω= e2π i/3, so that L becomes an Ok-module. Now the cup product
( , ) on H 4(V,Z) is a perfect symmetric pairing satisfying (ax, y)= (x, aσ y) for
a ∈ Ok. It induces on L a symmetric bilinear form ( , ) of discriminant 3. We wish
to define an alternating pairing 〈 , 〉 on L satisfying 〈ax, y〉 = 〈x, aσ y〉 for a ∈ Ok.
We do this by giving the associated Ok-valued hermitian pairing h( , ), in the sense
of (5-1), defined by

(6-2) h(x, y)= 3
2

(
(x, y)+ (x,

√
1y) 1
√
1

)
.

Here the factor 3
2 is used instead of 1

2 to have better integrality properties. Set
π =
√
1.
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Fact. For the pairing (6-2), L∨ contains π−1L with L∨/π−1L ' Z/3Z.

For this result, see [Allcock et al. 2011, Theorem 2.6 and its proof], as well as
[Looijenga and Swierstra 2007, the passage below (2.1)].

Now consider the eigenspace decomposition of H 4
0 (V,C) under k⊗C= C⊕C.

Fact. The Hodge structure of H 4
0 (V,R) is of type

H 4
0 (V,C)= H 3,1

⊕ H 2,2
0 ⊕ H 1,3,

with dim H 3,1
= dim H 1,3

= 1. Furthermore, the only nontrivial eigenspaces of the
generator ω of µ3 are

H 4
0 (V,C)ω = H 3,1

⊕ (H 2,2
0 )ω, with dim(H 2,2

0 )ω = 10,

H 4
0 (V,C)ω = (H

2,2
0 )ω⊕ H 1,3, with dim(H 2,2

0 )ω = 10.

(See [Allcock et al. 2011, §2] and [Looijenga and Swierstra 2007, §4], respectively.)

Now set 3= πL∨. Then we have the chain of inclusions of Ok-lattices

3⊂3∨ ⊂ π−13,

where the quotient 3∨/3 is isomorphic to (Z/3Z)10, and where π−13/3∨ is
isomorphic to Z/3Z. Let

A =3\H 4
0 (V,C)/H−,

where
H− = H 3,1

⊕ (H 2,2
0 )ω.

Note that the map 3→ H 4
0 (V,C)/H− is an Ok-linear injection; hence A is a

complex torus. In fact, the hermitian form h and its associated alternating form
〈 , 〉 define a polarization λ on A. Hence A is an abelian variety of dimension 11,
with an action of Ok and a polarization of degree 310. In fact, we obtain in this
way an object (A, ι, λ) of M(k; 10, 1)∗(C) (see Section 2 for the definition of the
∗-variants of our moduli stacks).

Theorem 6.1. (i) The construction which associates to a smooth cubic T in P4 the
object (A, ι, λ) of M(k; 10, 1)∗(C) is functorial and compatible with families,
and defines a morphism of DM-stacks

ϕ : Cubics◦3,C→M(k; 10, 1)∗C.

(ii) The induced morphism on coarse moduli spaces

|ϕ| : |Cubics◦3,C | → |M(k; 10, 1)∗C|

is an open embedding. Its image is the complement of the image of the KM-
cycle Z(3)∗ in |M(k; 10, 1)∗

C
|.
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Proof. The compatibility with families is due to the fact that the eigenspaces for
the µ3-action and the Hodge filtration both vary in a holomorphic way. Point (ii)
follows from [Allcock et al. 2011, Theorem 1.1] or [Looijenga and Swierstra 2007,
Theorem 3.1]. �

Remark 6.2. The stack aspect is not treated in these sources. However, it seems
reasonable to conjecture that the analogue of (5-3) is also true in this case, that is,
that there is an isomorphism

(6-3) Aut(T )
∼
−→ Aut(A, ι, λ)/O×k ,

where (A, ι, λ) is the object of M(k; 10, 1)∗
C

attached to T .

Remark 6.3. The construction of the rational Hodge structure H 1(A,Q) from
H 4

0 (V,Q) is a very special case of a general construction due to van Geemen [2001].
More precisely, it arises (up to Tate twist) as the inverse half-twist in the sense of
[van Geemen 2001] of the Hodge structure H 4

0 (V,Q) with complex multiplication
by k. The half-twist construction attaches to a rational Hodge structure V of weight
w with complex multiplication by a CM-field k a rational Hodge structure of weight
w+ 1. More precisely, if 6 is a fixed half-system of complex embeddings of k,
then van Geemen defines a new Hodge structure on V by setting

V r,s
new = V r−1,s

6 ⊕ V r,s−1
6

,

where V6 (resp. V6) denotes the sum of the eigenspaces for the k-action corre-
sponding to the complex embeddings in 6 (resp. in 6).

7. Curves of genus 3

Our third example concerns the moduli space of curves of genus 3 following Kondō
[2000].

Let C be a non-hyperelliptic smooth projective curve of genus 3. The canonical
system embeds C as a quartic curve in P2. Let X (C) be the µ4-covering of P2

ramified in C . Then the quartic X (C)⊂ P3 is a K3-surface with an automorphism
τ of order 4 and hence an action of µ4. Let

L = {x ∈ H 2(X (C),Z) | τ 2(x)=−x}.

Let k =Q(i) be the Gaussian field.

Fact. L is a free Z-module of rank 14. The restriction ( , ) of the symmetric cup
product pairing to L has discriminant 28; more precisely, for the dual lattice L∗ for
the symmetric pairing,

L∗/L ∼= (Z/2)8.

(See [Kondō 2000, top of p. 222].)
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Now consider the eigenspace decomposition of LC= L⊗C under k⊗C=C⊕C,
where i ⊗ 1 acts via τ .

Fact. The induced Hodge structure on LC is of type

LC = L2,0
⊕ L1,1

⊕ L0,2,

with dim L2,0
= dim L0,2

= 1. Furthermore, the only nontrivial eigenspaces of τ
are

(LC)i = L2,0
⊕ (L1,1)i , with dim(L1,1)i = 6,

(LC)−i = (L1,1)−i ⊕ L0,2, with dim(L1,1)−i = 6.

We define an Ok-valued hermitian pairing h on LQ by setting

(7-1) h(x, y)= (x, y)+ (x, τ y)i.

Then it is easy to see that the dual lattice L∨ of L for the hermitian form h is the
same as the dual lattice L∗ for the symmetric form.

Now set 3= πL∨, where π = 1+ i . Then we obtain a chain of inclusions of
Ok-lattices

3⊂3∨ ⊂ π−13,

where the quotient 3∨/3 is isomorphic to (Z/2Z)6, and where π−13/3∨ is
isomorphic to Z/2Z.

Let
A =3\LC/L−,

where
L− = L2,0

⊕ (L1,1)−i .

Note that the map 3→ LC/L− is an Ok-linear injection; hence A is a complex
torus. In fact, the hermitian form h and its associated alternating form 〈 , 〉 define a
polarization λ on A. Hence A is an abelian variety of dimension 7, with an action
of Ok and a polarization of degree 26. In fact, we obtain in this way an object
(A, ι, λ) of M(k; 6, 1)∗(C). Now [Kondō 2000, Theorem 2.5] implies the following
theorem.

Theorem 7.1. (i) The construction which associates to a non-hyperelliptic curve
of genus 3 the object (A, ι, λ) of M(k; 6, 1)∗(C) is functorial and compatible with
families, and defines a morphism of DM-stacks

ϕ : N◦3,C→M(k; 6, 1)∗C.

Here N◦3,C denotes the stack of smooth non-hyperelliptic curves of genus 3, that is,
of smooth non-hyperelliptic quartics in P2 up to projective equivalence.
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(ii) The induced morphism on coarse moduli schemes |ϕ| : |N◦3,C| → |M(k; 6, 1)∗
C
|

is an open embedding. Its image is the complement of the image of the KM-cycle
Z(2)∗ in |M(k; 6, 1)∗

C
|. �

Remark 7.2. Again, the stack aspect is not treated in [Kondō 2000]. It seems
reasonable to conjecture that the analogue of (5-3) is also true in this case, that is,
that there is an isomorphism

(7-2) Aut(C)
∼
−→ Aut(A, ι, λ)/O×k ,

where (A, ι, λ) is the object of M(k; 6, 1)∗
C

attached to C , and where O×k = µ4.

8. Curves of genus 4

Our final example concerns the moduli space of curves of genus 4 and is also due
to Kondō [2002].

Let C be a non-hyperelliptic curve of genus 4. The canonical system embeds C
into P3. More precisely, C is the intersection of a smooth cubic surface S and a
quartic Q which is either smooth or a quadratic cone. Furthermore, Q is uniquely
determined by C . Let X be a cyclic cover of degree 3 over Q branched along C
(if Q is singular, we take the minimal resolution of the singularities; see [Kondō
2002]). Then X is a K3-surface with an action of µ3. Let

L = (H 2(X,Z)µ3)⊥

be the orthogonal complement of the invariants of this action in H 2(X,Z), equipped
with the symmetric form ( , ) obtained by restriction.

Fact. L is a free Z-module of rank 20, with dual L∗ for the symmetric form satisfy-
ing

L∗/L ' (Z/3Z)2.

(See [Kondō 2002, top of p. 386].)

For k =Q(ω), ω = e2π i/3, we again define an alternating form 〈 , 〉 through its
associated Ok-valued hermitian form h. Using the action of Ok on L , we set

(8-1) h(x, y)= 3
2

(
(x, y)+ (x,

√
1y) 1
√
1

)
.

Set π =
√
1.

Fact. For the hermitian pairing (8-1), L∨ is an over-lattice of π−1L with

L∨/π−1L ' (Z/3Z)2.

Now consider the eigenspace decomposition of L ⊗C under k⊗C= C⊕C.
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Fact. The induced Hodge structure on LC is of type

LC = L2,0
⊕ L1,1

⊕ L0,2,

with dim L2,0
= dim L0,2

= 1. Furthermore, the only nontrivial eigenspaces of µ3

are
(LC)ω = L2,0

⊕ (L1,1)ω, with dim(L1,1)ω = 9,

(LC)ω = (L1,1)ω⊕ L0,2, with dim(L1,1)ω = 9.

Now set 3= πL∨. Then we have the chain of inclusions of Ok-lattices

3⊂3∨ ⊂ π−13,

where the quotient 3∨/3 is isomorphic to (Z/3Z)8, and where π−13/3∨ is
isomorphic to (Z/3Z)2.

Let
A =3\LC/L−,

where
L− = L2,0

⊕ (L1,1)ω.

Then the map 3→ LC/L− is an Ok-linear injection; hence A is a complex
torus. In fact, the hermitian form h and its associated alternating form 〈 , 〉 define a
polarization λ on A. Hence A is an abelian variety of dimension 10, with an action
of Ok and a polarization of degree 38. In fact, we obtain in this way an object
(A, ι, λ) of M(k; 9, 1)∗(C).

Theorem 8.1. (i) The construction which associates to a non-hyperelliptic curve
of genus 4 the object (A, ι, λ) of M(k; 9, 1)∗(C) is functorial and compatible with
families, and defines a morphism of DM-stacks

ϕ : N◦4,C→M(k; 9, 1)∗C.

Here N◦4,C denotes the stack of smooth non-hyperelliptic curves of genus 4.

(ii) The induced morphism on coarse moduli schemes |ϕ| : |N◦4,C| → |M(k; 9, 1)∗
C
|

is an open embedding. Its image is the complement of the image of the KM-cycle
Z(2)∗ in |M(k; 9, 1)∗

C
|. �

Remark 8.2. Again, the stack aspect is not treated in [Kondō 2002]. It seems
reasonable to conjecture that the analogue of (5-3) is also true in this case, that is,
that there is an isomorphism

(8-2) Aut(C)
∼
−→ Aut(A, ι, λ)/O×k ,

where (A, ι, λ) is the object of M(k; 9, 1)∗
C

attached to C , and where O×k = µ6.
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9. Descent

In all four cases discussed above, we obtain morphisms over C between DM-stacks
defined over k. These morphisms are constructed using transcendental methods.
In this section we will show that these morphisms are in fact defined over k. The
argument is modeled on Deligne’s solution [1972] of the analogous problem for
complete intersections of Hodge level one, where he shows that the corresponding
family of intermediate jacobians is an abelian scheme over the moduli scheme over
Q of complete intersections of given multidegree.

In our discussion below, to simplify notations, we will deal with the case of cubic
threefolds, as explained in Section 6; the other cases are completely analogous.
Below we will shorten the notation Cubics◦3 to C, and consider this as a DM-
stack over Spec k. Let v : V → C be the universal family of cubic threefolds,
and let a : A→ CC be the polarized family of abelian varieties constructed from
V in Section 6. Hence A is the pullback of the universal abelian scheme over
M(k; 10, 1)∗

C
under the morphism ϕ : CC→M(k; 10, 1)∗

C
.

Lemma 9.1. Let b : B→ CC be a polarized abelian scheme with Ok-action, which
is the pullback under a morphism ψ : CC→M(k; 10, 1)∗

C
of the universal abelian

scheme, and such that there exists ` and an Ok-linear isomorphism of lisse `-adic
sheaves on CC,

α` : R1a∗Z` ' R1b∗Z`,

compatible with the Riemann forms on source and target. Then there exists a unique
isomorphism α : A→ B that induces α`. This isomorphism is compatible with
polarizations.

To prove this, we are going to use the following lemma. In it, we denote by 3
the hermitian Ok-module H 1(As,Z), for s ∈ CC a fixed base point. Recall from
Section 6 that there is a chain of inclusions 3⊂3∨ ⊂ π−13, where π =

√
−3 is

a generator of the unique prime ideal of Ok dividing 3.

Lemma 9.2. Let s ∈ CC be the chosen base point.

(i) The monodromy representation ρA : π1(CC, s)→GLk(3⊗Ok k) is absolutely
irreducible.

(ii) For every prime ideal p prime to 3, the monodromy representation

π1(CC, s)→ GLκ(p)(3/p3)

is absolutely irreducible.

(iii) For the unique prime ideal p= (π) lying over 3, the monodromy representation
π1(CC, s)→GLκ(p)(3/p3) is not absolutely irreducible, but there is a unique
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nontrivial stable subspace, namely, the 10-dimensional image of π3∨ in
3/π3.

Proof. The monodromy representations in question are induced by the composition
of homomorphisms

(9-1) π1(CC, s)−→ π1
(
M(k; 10, 1)∗C, ϕ(s)

)
−→ GLOk(H

1(As,Z)).

Here by Theorem 6.1, and using complex uniformization (see Section 3), the first
homomorphism is induced by the inclusion of connected spaces

ι : D
∖( ⋃

x∈L
h(x,x)=3

Dx

)
↪→ D,

followed by quotienting out by the free action of 0∗. Since D is simply connected, it
follows that π1

(
M(k; 10, 1)∗

C
, ϕ(s)

)
= 0∗ and that the first homomorphism in (9-1)

is surjective. Now, 0∗ can be identified with the group of unitary automorphisms
of the parahoric lattice 3, and it is elementary that the representations of 0∗ on
3⊗Ok k and on 3/p3 for p prime to 3 are absolutely irreducible (the latter since
3∨⊗Z` =3⊗Z` for ` 6= 3). The statement (iii) is proved in the same way. �

Proof of Lemma 9.1. Let us compare the monodromy representations

(9-2)
ρA :π1(CC, s)→ GLOk(H

1(As,Z)),

ρB :π1(CC, s)→ GLOk(H
1(Bs,Z)).

By hypothesis, these representations are isomorphic after tensoring with Z`. Hence,
they are also isomorphic after tensoring with k. Hence there exists a π1(CC, s)-
equivariant k-linear isomorphism

β : H 1(As,Q)' H 1(Bs,Q).

By the irreducibility of the representation of π1(CC, s) in H 1(As,Q), β is unique up
to a scalar in k×. Let us compare the Ok-lattices β−1(H 1(Bs,Z)) and H 1(As,Z).
Since we are assuming that Ok is a PID, after replacing β by a multiple βO = cβ,
we may assume that L B = β

−1
O (H 1(Bs,Z)) is a primitive Ok-sublattice in 3 =

H 1(As,Z). Let p be a prime ideal in Ok, and let us consider the image of L B in
3/p3. Since L B is primitive in 3, this image is nonzero. If p is prime to 3, the
irreducibility statement in (ii) of Lemma 9.2 implies that this image is everything,
and hence L B ⊗ Ok,p =3⊗ Ok,p in this case.

To handle the prime ideal p = (π) over 3, we use the polarizations. By the
irreducibility statement in (i) of Lemma 9.2, the polarization forms on H 1(As,Q)

and on H 1(Bs,Q) differ by a scalar in Q× under the isomorphism βO. Now, by
hypothesis on B, with respect to the polarization form on H 1(Bs,Q), we have a
chain of inclusions L B ⊂ L∨B ⊂ π

−1L B with respective quotients of dimension 10
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and 1 over Fp, just as for 3. Since the two polarization forms differ by a scalar,
this excludes the possibility that the image of L B in 3/π3 be nontrivial. It follows
that L B =3.

Furthermore, the isomorphism βO is unique up to a unit in O×k , and it is an
isometry with respect to both polarization forms. Now, by [Deligne 1971, 4.4.11
and 4.4.12], βO is induced by an isomorphism of polarized abelian schemes. Finally,
βO⊗Z Z` = α` up to a unit, since these homomorphisms differ by a scalar and both
preserve the Riemann forms.

The uniqueness of α follows from Serre’s Lemma. �

Now Lemma 9.1 implies that over any field extension k ′ of k inside C, there
exists at most one polarized abelian variety b : B → Ck′ obtained by pull-back
from the universal abelian variety over M(k; 10, 1)∗, equipped with an Ok-linear
isomorphism of lisse `-adic sheaves over CC

R1a∗Z` ' R1bC∗Z`,

preserving the Riemann forms. By the argument in [Deligne 1972, 2.2], this implies
that, in fact, B exists (since it does for k ′ = C). Hence the morphism ϕ is defined
over k. Put otherwise, for any k-automorphism τ of C, the conjugate embedding
ϕτ , which corresponds to the conjugate (A, ι, λ)τ , is equal to ϕ; hence ϕ is defined
over k.

Conjecture 9.3. In all four cases above, the morphisms ϕ can be extended over
Ok[1

−1
].

Since we circulated a first version of our paper, this has been proved by J. Achter
[2012] in the case of cubic surfaces.

10. Concluding remarks

Remark 10.1. In all four cases, the complement of Im(|ϕ|) is identified with a
certain KM-divisor. In fact, for other KM-divisors, the intersection with Im(|ϕ|)
sometimes has a geometric interpretation. For example, in the case of cubic surfaces,
the intersection of Im(|ϕ|) with the image of the KM-divisor Z(2) in |M(k; 4, 1)C|
can be identified with the locus of cubic surfaces admitting Eckardt points; see
[Dolgachev et al. 2005, Theorem 8.10]. Similarly, in the case of curves of genus 3,
the intersection of Im(|ϕ|) with the image of Z(t)∗ in |M(k; 6, 1)∗

C
| can be identified

with the locus of curves C where the K3-surface X (C) admits a “splitting curve”
of a certain degree depending on t ; see [Artebani 2008, Theorem 4.6].

Remark 10.2. In [Dolgachev and Kondō 2007; Dolgachev et al. 2005; Matsumoto
et al. 1992], occult period morphisms are often set in comparison with the Deligne–
Mostow theory, which establishes a relation between configuration spaces (for
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example, of points in the projective line) and quotients of the complex unit ball by
complex reflection groups, via monodromy groups of hypergeometric equations.
This aspect of these examples has been suppressed entirely here. Also, it should
be mentioned that there are other ways of constructing the period map for cubic
surfaces; see, e.g., [Dolgachev and Kondō 2007; Dolgachev et al. 2005].

Remark 10.3. Let us return to Section 3. There we had fixed a hermitian vector
space (V, ( , )) over k of signature (n−1, 1). Let V0 be the underlying Q-vector
space, with the symmetric pairing defined by

s(x, y)= tr(h(x, y)).

Then s has signature (2(n−1), 2), and we obtain an embedding of U(V ) into O(V0).
This also induces an embedding of symmetric spaces,

(10-1) D ↪→ DO,

where, as before, D is the space of negative (complex) lines in (VR, I0), and where
DO is the space of oriented negative 2-planes in VR. The image of (10-1) is precisely
the set of negative 2-planes that are stable by I0. In the cases of the Gauss field and
the Eisenstein field, this invariance is equivalent to being stable under the action of
µ4 or µ6, respectively. Hence in these two cases, the image of (10-1) can also be
identified with the fixed point locus of µ4 or µ6, respectively, in DO.

Remark 10.4. By going through the tables in [Rapoport 1972, §2], one sees that
there is no further example of an occult period map of the type above which embeds
the moduli stack of hypersurfaces of suitable degree and dimension into a Picard
type moduli stack of abelian varieties. Note, however, that, in the case of curves of
genus 4, the source of the hidden period morphism is a moduli stack of complete
intersections of a certain multidegree of dimension one, and there may be more
examples of this type.
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my lectures at the École normale supérieure des jeunes filles in Paris in the summer
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of 1980, although not in the form finally proved by Ngô, which is a statement
that results from a sequence of reductions of the original statement. The theory
of endoscopy is a theory for certain pairs (H,G) of reductive groups. A central
property of these pairs is a homomorphism φH

G : f G
7→ f H of the Hecke algebra

for G(F) to the Hecke algebra for H(F), F a nonarchimedean local field, and the
fundamental lemma was an equality between certain orbital integrals for f G and
stable orbital integrals for f H .

Clozel observed at an early stage that, with the help of the trace formula, it
was sufficient to treat the case that f H and f G were both the unit element in the
respective Hecke algebras. Other more difficult reductions came later, but in the
seventies it was the fundamental lemma in a raw form, but for specific groups, that
I proposed as a problem to a number of students who worked with me at the Institute
for Advanced Study, although their formal advisors were elsewhere because the
IAS had no graduate program: first Robert Kottwitz in 1976–77, Tate’s student
at Harvard; then Jonathan Rogawski, who received his degree in 1980; and later
Thomas Hales, in the mid-eighties. Nicholas Katz was the formal advisor of both
Rogawski and Hales. The experience was perhaps not entirely a happy one for at
least two of the three students, but all survived to thrive as mathematicians. Jon left
us too soon.

He had come to me on arriving at Princeton from Yale thanks to the advice
of Serge Lang. It was Jon’s ambition to become a number theorist, an ambition
he ultimately realized, but the fundamental lemma for SU(2, 1) looked to him,
with reason, to be far from real number theory. I think he would rather have
proved the lemma wrong for SU(2, 1), abandoned the whole project, and gone on
to something where elliptic curves figured more prominently. Fortunately, in my
view, he never found a semisimple element for which the desired equality was false,
proved the lemma for this group, and went on to write an extremely useful treatise
on SU(2, 1), Automorphic representations of unitary groups in three variables,
with very instructive examples of endoscopy, and then spent a good part of the
remainder of his life with automorphic forms as an expression of the theory of
numbers. Unfortunately, I never had an opportunity to discuss with him the very
sophisticated, and very difficult, subsequent development of the fundamental lemma
as a central element in the analytic theory of automorphic forms at the hands of
Kottwitz, Waldspurger, Ngô and many others.

Indeed, we lived on opposite coasts of North America, and met only rarely, so
that we never had an occasion to share our views on the changing face of the theory
of automorphic forms in the years after late sixties when functoriality first appeared,
together with some indications of reciprocity, or after the seventies, when the trace
formula began to be used more systematically in the study of automorphic forms
and of Shimura varieties. We were together for a conference on Picard modular
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surfaces in Montreal in the late eighties, at which his book was a central reference,
but we were both too busy to have much time for conversation. Moreover, the
subject was changing around both of us: the geometrical theory was growing at an
astronomical rate; the genuinely arithmetical applications, such as Fermat’s theorem
were utterly unexpected; and the trace formula was being developed by Arthur not
merely as an occasional tool but as an elaborate theory crying out for applications.
In spite of many remaining points that are both obscure and difficult, many more,
and more important, applications are in the offing.

That there are common threads running through this material and many later
contributions, often referred to in the bulk as the Langlands program, was generally
accepted, but, as I found when attempting — to some extent to indulge my vanity,
because of the label, and to some extent for sentimental reasons, for it is also related
to a number of topics that appealed to me in my early years as a mathematician but
that I had never actively investigated — to acquire some understanding of the scope
of the program at present, there is a great deal of confusion: the central issues are not
always distinguished from the peripheral; partial results obtained by methods that
are almost certainly dead-ends are offered with a frequently misplaced satisfaction;
many suggestions are facile and, in my eyes, more than doubtful. Some of these
shortcomings reflect the failings of our current mathematical culture; others may
be inevitable in any cooperative intellectual effort. They are nonetheless troubling
and, for the incautious, misleading. Some coherent reflection on the topic, its goals,
its limitations at present, and achievements so far, is necessary. It is also difficult.

To write at this point a synopsis of the subject would be premature. Too much
is left to do and my command of the material is inadequate. Nevertheless, I am
trying to describe the goals of the theory and the methods with which they might
be achieved — for my own satisfaction first of all, but secondly because the subject
of automorphic representations and their applications appears to me central. As
I attempted to explain in the essay “Is there beauty in mathematical theories?” [ND],
it is the natural issue of several major currents in pure mathematics of the past two
centuries: algebraic number theory; algebraic geometry; group representations — as
created by Frobenius, Weyl and Harish-Chandra; and even a dollop of topological
ideas, such as perverse sheaves. There is a speculative element in this attempt, and
I try to be clear about it when the occasion arises. Nevertheless, the intention is to
offer, when I can, possibilities that are not, in my view, impasses and that will lead
to a theory at the level of its historical origins. If some results, even, or especially,
much-acclaimed or important results, are not mentioned, it may because I see them
as leading ultimately nowhere, not as an absolute conviction — absolute convictions
are seldom useful — but as a suspicion; but it may also be because they refer to
issues like endoscopy or the fundamental lemma, which are basic and important,
but for reasons that are tactical more than strategic. Unfortunately, inadequate as it
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will be, there was no question of completing this description in time for it to appear
in the present collection; there are far too many questions and difficulties on which
I have hardly begun to reflect. At my age the future offers an uncertain quantity of
time, so that whatever success I have will certainly be limited. Nevertheless, this
memorial volume is an opportunity to describe and explain in a provisional and,
at this time, necessarily incomplete form not only what I mean, in the context of
the Langlands program — even in that part of it that owes little or nothing to me —
by the two words functoriality and reciprocity — concepts that are maturing only
slowly and in whose development Jon participated — but also how I expect them to
be given a clear mathematical content. I apologize, once and for all, for the large
tentative element that still remains not only in this prologue but also in the longer,
more substantial text “Functoriality and Reciprocity” that it anticipates.

It is best to begin with a rough description of some basic concepts, concepts
which it would be idle at this point to formulate too precisely, but which help
in appreciating the structure of the theory we are attempting to construct. To
introduce the notions of functoriality and reciprocity we need a crude notion of
a mock Tannakian category: a generalization of the notion of the category of
representations of a group.

Take, as an introductory example, G to be a group, for example, to be as
simple as possible, a finite group. Suppose we have a family Grange of groups and
homomorphisms between then, for example the family {GL(n, K ) | n = 1, 2, . . . },
where K is a field, say the field of complex numbers. Consider the collection
of homomorphisms ϕ : G → GL(n, K ) from G to an element of Grange. This is
a Tannakian category in the sense of, for example, [M], a very simple one. The
morphisms are given by ϕ→ φ ◦ϕ, where φ is an algebraic homomorphism from
GL(n, K ) to GL(n′, K ).

A more sophisticated choice for Grange would be the collection LG(K/F) of all
L-groups L G defined for a given extension K/F (see [BC]). The possible choices
for these Galois extensions will be described later. The objects of the category will
be pairs, the first element of which is an L-group L G in LG(K/F) and the second
an object whose nature depends on F . What is important is that these objects behave
functorially: given a pair with first element L G and a homomorphism φ : G→ G ′

in LG(K/F), thus a homomorphism for which the diagram

(1.1)
L G L G ′

Gal(K/F)

φ

is commutative, there is an image — of the given pair with first element L G —
whose first element is L G ′. We have, for the moment, to be coy about the second
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element of the pairs because its nature depends on the nature of the field F , whether
it is local or global, a field of algebraic numbers or the function field of an algebraic
curve.

If K/F is given, the principal property of a mock Tannakian category — and the
word “mock” is there to allow a certain latitude and a certain imprecision — is that
there is a group G, usually not a group in LG although it will have to be provided
with a homomorphism G→ Gal(K/F), such that for any L G ∈ LG(K/F) the set
of pairs with first element L G may be identified with — or, better, parametrized
by — the homomorphisms ϕ :G→ L G for which the diagram

(1.2)
G L G ′

Gal(K/F)

ϕ

is commutative. The existence of this group is closely related to functoriality,
usually by no means evident, and in many cases of great interest it is not yet
established, although it is expected that it can, in the simpler local contexts, be
identified with groups familiar from mid-twentieth century algebraic number theory
or from geometry. For global fields, the group cannot be known except through the
category it describes. We are striving for a notion that is, in one way, more general
than that of a Tannakian category formulated in [M] and, in another, less broad. It
is certainly at the moment much less precise.

Functoriality in the L-group appeared first, although not with that name and
not so clearly circumscribed as at present, in my letter to Weil of 1967 [LW].
There is a reciprocity — of which, even today, only a small part has been realized —
already implicit in functoriality, but a general form of reciprocity only appeared in
connection with Shimura varieties, first with the theorem of Eichler–Shimura, but
later in a bolder form, once the relation between the cohomology of general Shimura
varieties and the discrete series of Harish-Chandra was clarified. The appropriate
expression of its general form is one of the central issues of the program, an
issue that, as will be intimated later in this prologue, not yet fully resolved, even
conjecturally. Indeed in spite of the spectacular success of Wiles with the conjecture
for elliptic curves to which the names of Taniyama and Shimura are attached, it is
hardly broached. That the initial expression of reciprocity was the Artin reciprocity
law for abelian characters of the Galois group of number fields, which itself had its
historic source in the quadratic reciprocity law is, however, clear. In the letter to
Weil, it was global functoriality that manifested itself as a possible strategy for the
analytic continuation of automorphic L-functions. It can still be regarded as the
only genuinely promising method for attacking this problem. Local functoriality
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only manifested itself later, as the consequences and the possibility of more precise
formulations of global functoriality began to appear.

In a general context, in which all avatars of the original “program” are to be
embraced not by an absolutely uniform collection of definitions and theorems, but
by structures which do bear a family resemblance to each other, the origins are a
less useful source of understanding than a few general concepts. There are three
different theories that find a place in the program, each with a global and a local
aspect. By and large, the local theory is a prerequisite for the global. Each of the
three is attached to a different type of field. Globally these are (i) algebraic number
fields of finite degree over Q; (ii) function fields of algebraic curves over a finite
field; (iii) function field of a complete nonsingular curve over C. The corresponding
local fields are (i) real, complex and p-adic local fields; (ii) fields of Laurent series
over a finite field; (iii) fields of Laurent series over C. The second type of field,
a kind of poor relative, usually ignored, shares properties with both the first and
the third, themselves quite different from each other in the details although with a
common structure.

Let, for example, F = Fv be a local field, for the moment the completion of
a number field, and G a reductive group over Fv. Consider the collection of
irreducible representations of G(Fv). These are usually infinite-dimensional. The
theory of irreducible representations of G(Fv) is a theory that began with Dedekind,
Frobenius, and Schur, and whose current structure, the structure with which we
shall be dealing, owes an enormous debt to Élie Cartan, Weyl, and Harish-Chandra,
but it is nonetheless a theory that is far from complete. We know more for F =R,C

than for a nonarchimedean F , but the theory appears to be similar for all.
An important observation is that the theory of which we speak is, for a given Fv ,

not unique. There are several possibilities. First of all, the representations being
infinite-dimensional, there are technical constraints, discussed in all the standard
texts: they are to be admissible. The notion of equivalent representation has also
to be formulated carefully. That demands a good deal of understanding of the
structure of the group, its subgroups, and its Lie algebra, all of which I take for
granted. Secondly the theories for different groups should be fused. There are
distinguished reductive groups: the quasisplit groups, even perhaps, in a pinch, the
quasisplit simply connected groups. The reduction of the representation theory for
general reductive groups to the theory for quasisplit groups is a part of endoscopy,
for which the famous fundamental lemma is necessary and which is absolutely
essential for the representation theory of reductive groups over local fields, those
of the first two types and probably those of the third type as well. This reduction
I do not emphasize; I take it for granted, simply confining myself to quasisplit
groups. Moreover, even for quasisplit groups there is another consequence of the yet
only very incompletely developed endoscopy that we accept: classes of irreducible
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representations and their characters are not the objects to which functoriality and
reciprocity apply. It is stable classes of representations and, at least for fields of
the first or second kinds, their characters that are pertinent. The local theory for
function fields over C is only available in a nascent form, and it is by no means
certain that characters have a role to play. It is hard — at the moment — to imagine
that their equivalent will not appear. For local fields of the first two types, a stable
class π st consists of finitely many equivalence classes of representations and the
character of a stable class is a sum

χπ st =

∑
π∈π st

απχπ ,

where the coefficients are often, perhaps always, integers and these stable characters
are not merely class functions, which is what we normally expect from characters,
but functions on stable conjugacy classes, stable conjugacy meaning — essentially —
conjugacy in G(F sep), F sep being the separable algebraic closure of F , of two
elements in G(F). In their full generality both functoriality and reciprocity are
predicated on complete theories of endoscopy. Although we are far from possessing
such theories, there are many questions related to the two notions on which we can
reflect at present.

In order to describe the mock Tannakian categories that are of concern to us,
we need to fix a field, either global or local. The first element of a pair is then the
L-group L G associated to a reductive group G over F or to the quasisplit group
associated to it. They are the same. The second, about which we have been until
now reticent, is a stable conjugacy class π st of irreducible representations of G(F),
if F is local, or of automorphic representations G(AF ), if F is global. As already
observed, it is best to take G itself quasisplit, referring the rest to endoscopy.

The second element introduces new subtleties. Suppose, for example, that F
is a local field and that we are dealing the first of the three types, so that F is the
completion of a number field, even R or C. Then there are several categories of
irreducible admissible representation that can — and must — be distinguished: all;
unitary; tempered; the Arthur class. For each of these classes, in so far as it is in the
present context of any interest at all, there will be a mock Tannakian category, each
a slight modification of the others. If we are dealing with all representations then
in the semidirect product defining the group L G = Ĝ o Gal(K/F), the connected
component Ĝ is the group of complex points of a reductive group. It is not clear
that it is appropriate to consider the category of unitary representations in the
context of functoriality. They are, as a class, recalcitrant, and it is very likely
that only the Arthur class, of which tempered representations, which are unitary,
form an important subclass, is needed. So it may be best to exclude the class of
unitary representations as such. For tempered representations, Ĝ is taken to be
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the unitary form of Ĝ — with no change in notation. For the parametrization of
the Arthur class, L G is presumably replaced by SL(2,C)× L G, but here again
it is best to impose some growth conditions on the characters and some unitary
condition on the parameters, thus, as it turns out, some growth conditions, not yet
understood or formulated, on the matrix coefficients of the representation. The
class of all representations has obscure aspects that remain unsettled. We can
classify its elements, so that we have a notion of L-packet for them, but so far
as I know, there is no stable theory available, even over R; there are L-packets
but, at this moment, no stable characters. They may not exist outside the Arthur
class. Over nonarchimedean local fields, our ignorance is even more thorough.
When the groups L G are replaced by their unitary form, the conditions on the
homomorphisms between them are modified as well. For example, for tempered
L-packets, homomorphisms from Ĥ o Gal(K/F) to Ĝ o Gal(K/F) restricted to
Ĥ are homomorphisms from a compact group to a compact group.

In the simple example we gave of a Tannakian category, each morphism ϕ :

G → GL(n, K ) represented something, namely itself, a linear representation of
G. Composed with φ : GL(n, K ) → GL(m, K ) it represents a second linear
representation, this time m-dimensional. In the more general mock Tannakian
categories, like those associated to LG(K/F), and we may as well restrict our
attention to it, each object is a pair, the first element of which is the L-group L G,
which determines and is uniquely determined by the corresponding quasisplit group
G over F . There is also a second element, a stable conjugacy class π st of irreducible
representations G(F), whose type must, as observed, be specified, whether all,
tempered, or in the Arthur class. The geometric theory, as described in [CFT], is
still immature, so that the possibilities for this second element are even less clear.
We shall come to the geometric theory, with its many unresolved questions, later.
For now it is best to concentrate on the arithmetic theory.

In order to be able to discuss reciprocity we need, whether at a local or global
level, a group A such that for a given group G or L G the stable conjugacy classes
of irreducible or, globally, irreducible automorphic representations are represented
by homomorphism of A to L G. This possibility was already mentioned, and it was
intimated that to prove the existence of A, it was necessary to prove first that to
any homomorphism φ : L G1→

L G2, there was associated a map 5φ : π
st
→ π st

φ

of L-packets for G1 to L-packets for G2. This possibility I refer to as functoriality
or, at more length, functoriality in the L-group.

Once functoriality in the L-group is proved, we shall be on the road to the proof
of the existence of A, locally or globally, and for each kind of field. We have, as
will be explained, to envisage different kinds of proof for the various types of fields.
Before attempting to describe the possible nature of these proofs, I comment on the
second principal topic of this prologue and of the essay to follow it: reciprocity.
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We have suggested that the existence of groups A=AF =AK/F , one associated
to each field F of the six various types of field, and, to be pedantic, to each
sufficiently large Galois extension K of F , was the appropriate classification of
representations either locally or globally. Indeed there are other constraints that
have to be taken into account: first of all, whether the representations considered
are tempered, of Arthur type, or, globally, of Ramanujan type, which entails, even
for the same field, the introduction of more than one AF ; secondly, and this is
important only in order not to be forced to pass to senselessly large inverse limits,
we should consider the stable classes of representations generated by a finite set.
This provides us with one ingredient of reciprocity. The other has been provided,
at least partially, by two mathematicians: Galois in the early nineteenth century
and Grothendieck in the late twentieth century. Galois groups and their importance
are well understood; Grothendieck’s notion of motivic Galois group is not well
understood and not yet even in a satisfactory form. One task for mathematicians
in the coming decades is to discover a better form. Whatever else, these are groups
M=MF =MK/F attached to the various fields. It can be said once again that they
are only known through the objects they describe. Over local fields these groups
are familiar, especially those for the fields of the first two types, and are known
as Weil(–Shafarevich) groups. Globally, however, they are not and the function
of reciprocity is to provide some understanding of them. It will be expressed as
a homomorphism from AK/F to MK/F , so that it attaches a representation of the
former group to one of the latter. Reciprocity is of course the most abstruse, the
most profound, and the most difficult of the topics discussed in this prologue and
in the essay to follow. I do not expect to have much useful to write. So far as
I can tell, we do not understand motives, not even hypothetically, and any real
understanding of them requires the solution of major problems in algebraic and
diophantine geometry. It would be presumptuous for me even to attempt to describe
them at this moment.

I am not certain how it is best to refer to the various groups A and M, in either
their local or global forms. For lack of anything better, I shall refer to automorphic
and motivic galoisian groups, the adjective galoisian indicating that the group
describes some other kind of algebraic structure or is defined by it. It may be useful
to observe immediately that, in the arithmetic theory, the relation between A and
M is inevitably reflected in an important analytic object associated to irreducible
representations and automorphic representations on one hand and motives on the
other: L-functions. A homomorphism from A to M entails a mapping from complex
representations of M to complex representations of A. The definitions on the motivic
side are delicate because of the intervention of `-adic-representations. An `-adic
representation is not, at least not without further ado, a complex representation.
Useful and important as `-adic representations are — they are indeed indispensable —
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some reflection is necessary before incorporating them into statements of reciprocity.
I find that this preliminary reflection is often missing.

Further discussion of these questions will appear in the essay itself. What is
important at present, especially for a reader who may not appreciate the need for the
development of sound general concepts, is some understanding of how the general
concepts are incorporated into the search for proofs. I begin with a brief list of the
necessary steps, employing sometimes notions that have yet to be introduced.

(i) The local theory over the real field. What is needed is, first of all, to complete
the theory for real groups developed by Harish-Chandra. This means, first of all, a
theory of the Arthur class, and secondly a theory of stable transfer.

(ii) The local theory over nonarchimedean fields. It is again a matter of completing
the theory created by Harish-Chandra, but, as he knew, he left the theory for p-adic
fields in a form in which much that he had established over R was not yet available.
Not only is there no theory for the Arthur class and no theory of stable transfer over
p-adic fields, there is also no adequate tempered theory.

(iii) The global theory for algebraic number fields. In my view, which may not be
unanimously shared, the only possibility is to pursue the suggestions of [FLN; BE;
ST]. This is no easy in matter. It requires the local theories of (i) and (ii). Globally,
it demands a completion of the analytic beginnings of [ST], thus some way of
transforming the limits that appear in [ST] into a useful form. Efforts with some
promise are being made, although not by me. I am keeping my fingers crossed that
they succeed. These will be, at first, results only for G = P GL(2), but it is possible
that they will substantially strengthen our confidence in the trace formula as the
route to global functoriality. Moreover the creation of the theories of (i) and (ii) will
make it possible to pursue the general global theory effectively. For P GL(2), there
are two bench marks: (a) the second symmetric power and dihedral representations;
(b) the fourth symmetric power and quaternionic representations. The second of
these bench marks, if reached, would, I believe, encourage the search for concrete
methods of counting fields with specific properties in a way that can be compared
with the results reached analytically with the trace formula. This may more closely
resemble the class field theory of the first half of the twentieth century than of the
second.

(iv) The local geometric theory. This is the local theory for the field of Laurent
series over C. The fascination of contemporary mathematicians with sheaves has, on
the one hand, encouraged the development of the local and global theories, but only
in the context of spherical functions, which were also of considerable importance in
the early years of representation theory for semisimple groups. It has, at the same
time, inhibited the development of a theory with ramification, although not entirely
[FG]. If this were remedied, the theory would be richer. The structure of a complete
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local theory is by no means evident, although there are some intimations of the
form to be taken by reciprocity, or, better, of the form of the galoisian group Ageom.

(v) The global geometric theory. This is a theory strongly related to the theory of
abelian integrals on one hand and the theory of ordinary differential equations with
singularities on the other. As with the local theory, the contributions of algebraic
geometers, among them Drinfeld, and of mathematical physicists, among them
Witten, to the theory have greatly enriched it, but we do prefer a mathematical
theory that includes ramification. The best I will be able to do in this prologue are
some, with any luck instructive, observations not about reciprocity in a geometric
context, where it may not exist, but about the new features that its relation to field
theories reveal. I hope that, before coming to this part of the essay itself, I shall
have acquired more familiarity and more understanding of the contributions of the
mathematical physicists and the geometers.

(vi) The p-adic theory and diophantine geometry. These, or rather reciprocity,
which can be considered the link between them and the theory of automorphic
forms, have to be postponed to the second half of the prologue. It is not clear that,
even with the longer period of time available to me for its preparation, I shall be
able to write anything useful about these topics. I do hope, at least, to make the
stakes clear.

I have no doubt that a lot of reflection will be necessary before the problems
presented by (vi) can be broached in any serious way. Deep, quiet reflection over
many years may be an indispensable preliminary. My thesis in this prologue and
in the essay is that we have, nevertheless, enough tactical understanding to attack
the other five problems successfully on a broad front now. Immediate victory is
unlikely, but steady advances are not.

2. The local theory over the real field

For reasons connected with the Ramanujan conjecture and its generalizations and
with the theory of Eisenstein series, the tempered irreducible representations of
G(Fv), Fv a local field, in particular, Fv = R, are not adequate for the modern
theory of automorphic forms. There is a larger class of irreducible representations
needed that we have already introduced as the Arthur class. The simplest such
representation is the trivial one-dimensional representation, which is present for
every G and an important factor in the global analytic theory. We have also observed
that the local group AR for tempered representations is known to be the Weil group
WC/R, of which we then admit only representations with relatively compact image.
The local group for Arthur classes over R, at least for the analogues of tempered
representations in the context of Arthur classes, is the group SL(2,C)×WC/R, or,
perhaps better SU(2)×WC/R, but they give equivalent results, and it is better to
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use the first, for which the Jacobson–Morozov theorem is more easily stated. It is
also more concise, if less precise, to use the notation WR rather than WC/R for the
Weil group of R.

When attempting to formulate the missing spectral theory for the Arthur packets,
we will need to be aware of the need when applying the trace formula for a stable
transfer of L-packets. Some very simple cases of this transfer were examined in
[ST], but no general theory is available even over R. It is closely related to the stable
character for Arthur packets for a (quasisplit) group G that Arthur introduced with
the packets in [A1] and their transfers from one group to another are presumably
functorial with respect to homomorphisms from L H to L G. There is, by the way,
no need to introduce any kind of unitary constraint on these homomorphisms: if
the image of ϕ is relatively compact, then so is the image of ψ ◦ϕ.

Our focus at the moment is the theory for the real field, which implicitly in-
cludes the theory for the complex field. Harish-Chandra’s theory for tempered
representations, which is the special case of

(2.1) ϕ = σ ×ψ : SL(2,C)×WR→
L G, WR =WC/R,

for which σ is trivial, will be in so far as possible the model. It will certainly be
used. It is a spectral theory, thus an analytic theory, but it differs from the usual
spectral theory. The space of functions to be decomposed is L2(G(R)), but, as
on the line, it is really a more subtle space that is to be decomposed, a Schwartz
space. The eigenfunctions or eigendistributions to be employed are invariant under
conjugation, thus characters, which are tempered distributions on the Schwartz
space. So there is a passage in the theory, not present in, for example, Fourier
analysis on the line. From functions on the group, through orbital integrals, to
functions on the semisimple conjugacy classes, which for a reductive group is
itself a space easily enough described in terms of Cartan subgroups. There is
also a passage backwards from distributions on the center to conjugation-invariant
distributions on the group and then, by integration on parameters and convolution
with functions on the maximal compact subgroup, to functions in the Schwartz
space. This means, incidentally, that at this stage it is best not to work with stable
packets but with the appropriate classes of irreducible representations, referred to
by Harish-Chandra as tempered, those whose matrix-coefficients lie in the Schwartz
space. All characters satisfy differential equations, differential equations whose
solutions can be concretely described in terms of exponential functions, growth
conditions, and jump conditions. Harish-Chandra recognized this. He recognized
also, after many years of reflection, that this was all he needed to construct a
complete spectral theory for tempered characters. For a more detailed description
of Harish-Chandra’s representation theory for real groups, I refer to Varadarajan’s
introduction to his collected works [HC].
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In the homomorphism (2.1) σ has a different character thanψ . Only its conjugacy
class under interior automorphisms of Ĝ is pertinent and these are finite in number
and correspond to conjugacy classes of unipotent elements in Ĝ or nilpotent elements
in its Lie algebra ĝ. It is usual to study the homomorphisms with a fixed σ and the
associated class of representations 5σ (G) as a unit, it being understand that the
image of ψ is relatively compact. For example, if σ is trivial, we are dealing with
the class of tempered representations. To a pair consisting of a homomorphism

φ = σ ×ψ : SL(2,C)× L H → L G

and a homomorphism

ϕH = σH ×ψH : SL(2,C)×WC/R→
L H,

in which ψ has relatively compact image, we can associate

ϕG = σG ×ψG : SL(2,C)→ L G,

in which σG is the composite of σG × σH ◦ φH with the diagonal imbedding
SL(2,C)→ SL(2,C)×SL(2,C) and ψG = ψ ◦ψH .

If we had the theory of stable characters for each Arthur class envisaged in [A1],
then we would have the mapping that assigns to the stable character of π st

ϕH
on H(R)

the stable character of π st
ϕG

on G(R). A grave question, or rather a question central
for the trace formula, arises! Is there, for a given φ a dual mapping — or, better,
correspondence because it will not be single-valued — from smooth functions f G

with compact support on G(R) to smooth functions f H with compact support on
H , thus f G

→ f H , such that∫
H(R)

f H (h)π st
ϕH
(h) dh =

∫
G(R)

f G(g)π st
ϕG
(g) dg,

for all ψ? This question was broached for a very special case in [ST]. It would be
premature to attempt to discuss it further here. It is necessary to understand the
transfer of stable characters. For this, the first step is to ask what must be done to
establish the existence of π st

ϕH
.

The stable character will be an eigendistribution, and thus, by an important
theorem, an eigenfunction of the center of the universal enveloping algebra with
eigenvalues that are given because the definition of Arthur prescribes one represen-
tation in it — or rather one stable packet in the sense of the Langlands classification
of all irreducible representations, namely, the packet π st associated, as in [A1], to
the homomorphism

(2.2) φw = σG

((
|w|1/2 0

0 |w|−1/2

))
·ψG(w)
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of WR into L G. The infinitesimal character of a representation with Langlands
parameter given can be readily calculated from the parameter. So we know the
infinitesimal character corresponding to π st and thus that corresponding to the
associated — conjecturally — Arthur packet. We can safely assume that all repre-
sentations in it have the same infinitesimal character, for otherwise we will have
no theory. We can study the papers of Harish-Chandra to learn how to calculate
all possible eigenfunctions χ associated to this infinitesimal character. On each
connected component of the regular elements in each Cartan subgroup T they have
the form

(2.3) χ(t)=

∑
w∈�

aw exp(wλX)

|1(t)|
,

where � is the Weyl group, X lies in the Lie algebra of t of T , t = exp X , λ is a
complex linear form on t and the aw are complex constants. The function |1(t)| is
defined as usual by a product of differences of roots. There are constraints attached
to χ by the parameter ϕG , constraints studied carefully by Harish-Chandra when σG

is trivial, thus when the packet is tempered. The constraints, basically on the growth
of the function (2.3) and on the propagation of the constants across the subvarieties
of singular elements, can be studied as for the tempered characters, although there
will be complications that I am in no position to anticipate. They will have to be
determined by experience and by the study of some low-dimensional cases.

The existence of the transfer f G
→ f H and its properties is not the only local

problem raised in [ST] in connection with the combined use of the trace formula
for G and Poisson summation formula on the Steinberg–Hitchin base. It was also
necessary to understand the singularities of θG . Both questions are related to the
asymptotic behavior of orbital integrals and stable orbital integrals Orb(γst, f G).
I have not tried to reflect on them in any serious way.

3. The local theory over nonarchimedean fields

The problems are the same as for the real field; the difficulties are different. I —
and, I suspect, many other people — find ourselves here face-to-face with our own
ignorance, not just in one domain, but in several. Over both fields we are dealing
with problems for characters. Over the real numbers, characters are solutions of a
system of holonomic differential equations. Such systems are intimately related
to perverse sheaves. In particular, for the complex numbers, the relation between
functions and perverse sheaves is mediated by differential equations and belongs
to a system of reference familiar to all mathematicians. For representation theory,
the real field is more important, but we can overlook that for the sake of the
analogy. Over nonarchimedean fields, characters are functions, but there is, as
yet, no convenient characterization of them. We have to appeal to the original
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definition of Dedekind–Frobenius. There are perverse sheaves over these fields
and, apparently, perverse sheaves on varieties over finite fields yield functions
through the trace of Frobenius — or of the inverse Frobenius. So, if we are willing
to overlook the difference between p-adic fields and finite fields, we have parallel
constructions for the real field and for nonarchimedean fields

perverse sheaves

perverse sheaves

−→

−→

differential equations and functions

trace of Frobenius and functions

−→

−→

characters

characters

The trick will be to discover how the perverse sheaves on the second line are to be
defined and how they are to be calculated

In the theory of Harish-Chandra ([HC]), whether over an archimedean or over a
nonarchimedean field, at least one of characteristic zero, the characters are distribu-
tions on G(F) given by functions, or, more precisely, by the product of invariant,
but singular, functions with the Haar measure. Over the real or complex field, these
singular functions, as distributions, satisfy differential equations, which are — in
some sense — holonomic. Since the distributions are invariant, the functions can
be considered as functions on the (regular, semisimple) conjugacy classes, and the
problem faced and solved by Harish-Chandra was to translate the differential equa-
tions satisfied by the characters into jump-conditions for these singular functions.
For nonarchimedean fields, there will presumably be similar problems, but I am
still uncertain of their nature and certainly in no position to attempt to solve them.

I content myself with a few remarks, influenced, but in no very precise way, by
[Wa]. I have no grounds for taking them very seriously, nor do I have any genuine
understanding of the necessary algebraic geometry. My goal is to complete the
Harish-Chandra theory by finding a handle on the explicit forms of the characters
over nonarchimedean fields for tempered representations and, more generally, for
characters of representations in the Arthur class; my immediate question is whether,
with this precise goal in mind, it is worthwhile to learn the theory of perverse `-adic
sheaves. We shall need sheaves on the Cartan subgroups of G and the functions
are to be obtained by the traces of the Frobenius on the `-adic cohomology of the
fibers.

We also need to convert varieties over a nonarchimedean local field Fv of char-
acteristic 0, or rather schemes over Ov with residue field κv. Let q be the number
of elements in κv. A preliminary study of [Ha] suggests that Witt vectors are the
appropriate instrument for this. The elements of Ov or, more generally, of the
analogous ring Ōv in the maximal unramified extension F̄v of Fv, can be written
as series (x0, x1, . . . ) with coefficients in κv or κ̄v. This applies to the equations
defining any scheme being considered. If the scheme A lies in an n-dimensional
space (X1, . . . , Xm), and if we truncate the coefficients of the equations and of
the variables after the mth variable, we obtain equations in (m+ 1)n variables and
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schemes Am , m= 0, 1, 2, . . . . There is a morphism Am+1→ Am , m= 0, 1, . . . . We
might guess that for large m this will usually be smooth with fiber the n-dimensional
affine space.

If there is a perverse `-adic sheaf on the scheme being considered, we can think
of restricting it to Am+1 and to the fibers of the morphism. If this restriction is a
constant sheaf, just the pull-back of the restriction to the base point of the fiber,
then the restriction has cohomology with compact support only in dimension 0. So
the summation over the points in the fiber of the trace of the Frobenius is qn . There
is, however, something to remember. Although the character is a function, it always
appears multiplied by a measure, either the Haar measure on the group or, if we
pass to an integral not against a function f on G(F), but against the orbital integral
of F a measure on the Steinberg–Hitchin base or on a Cartan subgroup. The two are
locally equivalent. A is either this base or the Cartan subgroup — give or take some
singular subvarieties. The measure of a point on Am+1 is, up to a constant, 1/qn

times the measure of its image, so that the factors qn and 1/qn cancel each other.
When passing to the Steinberg–Hitchin base, we multiply the character by |1(t)|
and the measure is the measure on the Cartan subgroup, for which conventions
have been established in [FLN]. The remaining factor in the measure is implicit in
the orbital integrals.

I am tempted to think that the road to follow is already blazed in the literature. The
theory over R, with the Borel–Weil–Bott theorem, the homological realization of
the discrete series verified by W. Schmid, Harish-Chandra’s analytic construction of
tempered representations from the discrete series, and the proof by Deligne–Lusztig
of a conjecture of Macdonald, all point in the same direction: first introduce the
characters of tori in a form adapted to the use of perverse sheaves, then combine it
with some twisted form of parabolic induction — which can be formulated I suppose,
in the context of perverse sheaves. This is not a matter of an effort lasting a few
days or a few weeks, but unless the basic idea of using truncated Witt vectors is
misguided, a careful study of the works mentioned should allow some progress.

I confess that I have never attempted, even in a modest experimental way, to
examine the possibilities or to understand the initial difficulties when attempting to
transpose the constructions in [DL] to a nonarchimedean context using truncated
Witt vectors. To begin would be easy enough, as the only difficulty is to find the
time, but the possible virtues of these secondary constructions was not apparent to
me until I began to write this prologue and the essay on functoriality and reciprocity
to follow, both a continuation of the reflections begun in [FLN; BE; ST]. In the
following section, I simply take the existence of the necessary local theory as
established. A good deal of it, not necessarily in the most suggestive form, is
certainly available for G = SL(2) for which the global analytic and arithmetic
problems are already daunting and well worth investigating.
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4. The global theory for algebraic number fields

There are two aspects to the continuing reflections on the methods suggested in [BE]:
the formal or structural aspects and the analytic aspects. The latter are extremely
difficult. Ali Altuğ has been reflecting on them and I leave it to him to present, when
it is appropriate, his conclusions. I concentrate on the former. The principal goal,
indeed the overriding goal, is to establish functoriality and its consequences with
the help of the trace formula and Poisson summation. The objects studied are the
automorphic L-functions L(s, π, ρ) associated to an automorphic representation
π or, better, a stable class of automorphic representations π st that contains π . It
is their analytic properties that need to be studied, especially near s = 1 or in the
half-plane Re s > 1.

There are two possibilities: examine L(s, π, ρ) itself or examine its logarith-
mic derivative. Although the logarithmic derivative contains in clearer form the
pertinent information, the function L(s, π, ρ) is the more accessible. So there
is a difficult passage, as with the prime number theorem, from its study to that
of −L ′(s, π, ρ)/L(s, π, ρ). This I leave, at least for the moment, to others and
concentrate on the properties of −L ′(s, π, ρ)/L(s, π, ρ) that one hopes can be
established and that lead to functoriality.

We anticipate a complete form of endoscopy, which is certainly available in
some simple and instructive cases. With an appropriate choice of test functions, the
stable trace formula leads to sums

(4.1)
∑
π st

mπ st

{∏
v∈S

trπ st
v ( fv)

{∑
v /∈S

ln Lv(s, πv, ρ)
}}
.

Here S is an arbitrary finite collection of places, containing the infinite places, Each
fv is a smooth function with compact support, taken otherwise arbitrary, and ρ is
an algebraic representation of L G. There are loose ends, some terms missing, and
some imprecision in the formula (4.1), but none of this is a serious issue for us here.
The sum itself is over stable classes of representations unramified outside of S. So
it is likely that only H that are unramified outside of S are pertinent.

The first serious issue is related to the generalized form of Ramanujan’s con-
jecture and Arthur L-packets. The global L-packets are expected to be related to
homomorphisms

(4.2) φ = σ ×ψ : SL(2,C)× λH → L G,

where, for the present purposes, we can quite comfortably write SL(2,C)× L H , the
necessity of modifying the L-groups L H slightly to λH for technical homological
reasons being one of the minor nuisances that plague the subject. Our principal
purpose is to establish that the stable classes of automorphic representations can
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be written as a sum over the functorial transfers associated to (4.2) of the stable
tempered automorphic representations of H(AF ). There will be ambiguities to be
clarified.

One stable class πG for G may be the image of several πH . This is why we
appeal in the essay to the notion of a hadronic or thick class introduced in [LSP].
We use only the transfers associated to classes that are hadronic. It is then to be
expected that each class π st

G is associated to a unique pair SL(2,C)× L H , although
we will have to allow different ψ , for the reasons that can be inferred from [LP],
and perhaps even different σ , although this is unlikely.

In the discussion of local packets and local transfers, we made it clear that the
transfers associated to (4.2) are of tempered representations of H to representations
of G that are tempered if and only if σ is trivial. The σ -factor is otherwise a measure
of the extent to which the local images πG,v are not tempered. This is measured by
the eigenvalues of

ρ

(
σ

((
q1/2 0

0 q−1/2

)))

in the various representations ρ of L G. We want to sort the representations appearing
in (4.1) according to type. This means we take the sum over pairs SL(2,C)× L H
and over conjugacy classes of φ but only include for a given such pair — if we
include φ, such triple — hadronic πH . Such a sum introduces multiplicities. It is
natural to assume, and the evidence, such as it is, supports the assumption, that
they are accommodated by the multiplicity with which various representations of
G(AF ) occur in the space of automorphic forms.

So (4.1) should be equal to a sum, implicitly over triples (φ,SL(2,C)× L H),

(4.3)
∑{∑temp

H

{∏
v∈S

trπ st
v

(
f H
v

){∑
v /∈S

ln Lv(s, πv, ρ)
}}}

It is understood that at each place f H
v is the transfer in the sense of the previous

sections of f G . I have left out any reference to multiplicities on the assumption,
made largely for the purposes of simplicity, that the multiplicities are largely caused
by multiple homomorphisms φ. Any necessary corrections can be made when
proofs have been found. What is important at the moment is to be clear about the
structure proposed for the proof. For (4.1) there is a formula, the trace formula.
In (4.3), the outer sum is over triples, the first inner sum,

∑temp
H is over the stable

tempered automorphic representations of H(AF ). We can assume by induction that
for each triple, except the triple with H = G, thus with φ trivial on SL(2) and the
identity on G itself, we have a formula for the inner sum

∑temp
H . This would yield
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a formula for the remaining term of the inner sum,

(4.4)
∑temp

G

{∏
v∈S

trπ st
v

(
f G
v

){∑
v /∈S

ln Lv(s, πv, ρ)
}}
,

except that we would not know that the only automorphic representations that are
not the image of a hadronic tempered automorphic representation with respect to
some ψ with H 6= G are themselves hadronic and tempered. However, in the terms
of the sum (4.4) the first factor

∏
v∈S trπ st

v ( f G
v ) is essentially arbitrary and serves

to distinguish one π from another. So an understanding of (4.3) is essentially an
understanding of the logarithmic derivative

(4.5) d
ds

ln Lv(s, πv, ρ)=
L ′v(s, πv, ρ)
Lv(s, πv, ρ)

.

The analytic problem is to show, with the aid of the formula for (4.4) just described,
that it is holomorphic to the right of Re s = 1 for every ρ. This implies not only that
the representation is tempered but that it is hadronic. This problem is central, very
serious, and, in my view, it will be a matter of decades before it is solved in any
generality. The method suggested in [FLN; ST] was to use the Poisson summation
formula on the Steinberg–Hitchin base, but the hard questions were not broached.

Although it is premature to make too much of a fuss of the notion of hadronic
representation, one observation is in order. If π st

G is the image of π st
H under the

functorial transfer associated to φ in (4.2). Then

(4.6) L(s, φst
G, ρ)= L(s, φst

H , ρ ◦ψ).

The representation ρ◦φ of SL(2,C)×L H decomposes into a direct sum
⊕

n τn⊗ρn ,
where τn is the irreducible representation of SL(2,C) of degree n, which can be
any positive integer. The L-function (4.6) is then given by

∞∏
n=1

n∏
j=0

L(s− 2 j + n, π st
H , ρn).

Each representation ρn is a direct sum of irreducible representations
⊕mn

i=1 ρn,i .
To show that (4.4) is holomorphic for Re s > 1 for every choice of S and every
choice of the functions fv , v ∈ S is to show that dim ρn = 0 for n > 0 and that for
all ρ none of the representations ρ0,i is trivial. It may be appropriate to remind
ourselves at this point that the L-groups that appear are defined with respect to any
extension K/F , which can be arbitrarily large. Since H itself may be the group
{1}, we will be dealing, in particular, with those representations that are attached to
homomorphisms of the Galois group into L G.

The solution of these analytic problems, even for very specific low-dimensional
questions, for example, the existence of automorphic representations associated to
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quaternionic representations, can entail at least partial answers to the arithmetic
questions raised in §2 and §3 and to their global forms. I, myself, find that these
questions and their answers add considerably to the appeal of the algebraic theory
of numbers [D; JY]. The Dedekind paper [D], which we shall review in the next
section, is particularly charming. The arithmetic problems to be confronted and
solved in the course of establishing global functoriality are nevertheless every bit
as formidable, if not more so, than the analytic problems.

5. Classical algebraic number theory

There are two very different aspects of the construction of global functoriality
proposed in the previous section: analytic and arithmetic. The analysis does not
end with the introduction of the Steinberg–Hitchin base and the use of the Poisson
summation formula; as in [FLN; ST], considerably more is needed. I hope that
this will be explained in Altuğ’s forthcoming thesis. As just intimated, there will
also be arithmetic problems. In §4 it was explained that we expect, for a given G
and each representation ρ of its L-group, thanks in part to the trace formula and
Poisson summation, to be able to express the sum of the logarithmic derivatives
of the L-functions L(s, π, ρ) as a sum over imbeddings φ : SL(2,C)× L H→ L G,
and in particular, with this in hand, to examine the asymptotic behavior of this
sum as s → 1. This will be complicated, because, for example, the L-groups
L H = Ĥ o Gal(K/F) and φ can reduce to an imbedding of a Galois group in
L G. As a result the proposed analysis entails an understanding of such imbeddings.
For abelian class field theory, this becomes an understanding of, say, the cyclic
extensions of a given degree of the base field F . For the group GL(2) or P GL(2),
it becomes an understanding of the imbeddings of Galois groups in GL(2) or SL(2).
If ρ is the fourth symmetric power of the defining representation of SL(2), the most
interesting possibility is that Gal(K/F) is imbedded as the quaternion group. Such
extensions were studied, as observed in the previous section, not so long ago by
Jensen and Yui, to whose paper my attention was drawn by Anthony Pulido. They
were influenced by an earlier paper of Reichardt ([Re], see also [Ri]). There is
a much earlier, more concrete paper by Dedekind ([D]), that it is worthwhile to
review briefly, because, or so it seems to me, algebraic number theory in the, often
concrete, style of Dedekind was abandoned after the Second World War, with the
mounting enthusiasm in the USA and elsewhere for the more formal, more abstract
styles of Artin and Chevalley. It may be that a successful attack in the spirit of §4
will demand a return to Dedekind.

The focus in Dedekind’s paper is on quaternion extensions of F =Q. Following
his notation, let the quaternion group be formed by 1, a central element ε, ε2

= 1,
and elements α, β, γ , εα, εβ, εγ , α2

= β2
= γ 2

= ε, αβ = γ = εβα. Any such
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extension contains a biquadratic extension, the fixed field H of ε. This is a field
of the form Q(

√
a,
√

b,
√

c), c = ab. Dedekind takes a = 2, b = 3, which pretty
much leads to the minimal ramification of the field, which, as it turns out, has to be
real. This is very convenient in connection with the trace formula. The field H is
the only biquadratic field unramified outside of {2, 3} and, using spherical functions
outside of {2, 3}, in particular at the infinite place, we exclude all representations π
with ramification outside this set. So our comparison will be very focussed. The
field � whose Galois group is the quaternion group will be of the form �= H(ω),
ω2
= µ ∈ H and the problem is to determine those ω that lead to an � also

unramified outside of {2, 3}. A helpful feature that simplifies the constructions, but
that is not present in general, is that the class number of H is one. We shall verify
this later.

We begin with some other considerations, more generally valid. After some
hesitation, I chose to follow Dedekind’s convention of writing the action of the
Galois group on the right. This is, otherwise, inconsistent with the notation of
the paper, but without it the comparison with Dedekind’s paper is awkward. The
elementsωα,ωβ, ωγ all lie in� and their squares all lie in H . Since they themselves
do not lie in H , they all lie in Hω. As a result, we obtain,

(5.1) ωα = uω, ωβ = vω, ωγ = wω, u, v, w ∈ H.

Moreover, ωε = −ω. Applying α to the first of the equations (5.1), we obtain
−ω = ωε = uαuω or, as Dedekind writes, uα = −u−1. There is a collection of
similar equations, verified in the same way, that Dedekind writes as

(5.2)

uα =−u−1,

vα =−wu−1,

wα = vu−1,

µα = µu2,

uβ = wv−1,

vβ =−v−1,

wβ =−uv−1,

µβ = µv2,

uγ =−vw−1,

vγ = uw−1,

wγ =−w−1,

µγ = µw2.

If µ is replaced by µν2, the extension does not change and u, v, w can be replaced
by uνα/ν, vνβ/ν, wνγ/ν. This allows simplifications. For example, Dedekind
observes that if the class number of H is one, then we can assume that µ is integral
and not divisible by the square of any prime ideal. This is then also true of its
conjugates µα, µβ, and µγ , so that, thanks to the last line in (5.2), u, v, w must
all be units. As a consequence, if µ is divisible by any prime ideal π , it is divisible
by all the conjugates of that ideal. If, therefore, p is the prime number in Q that
π divides and if p does not divide the discriminant, then p divides µ. Dedekind
concludes that µ must be the product of a natural number m, a unit, and perhaps
powers of the generators of the prime divisors of the discriminant. The pertinent
information for our particular H is (i) its discriminant is 482

= 2832; (ii) the ideal



604 ROBERT LANGLANDS

(3) = (
√

3)2 and
√

3 is a prime in H ; (iii) the ideal (2) is the fourth power of
the ideal (1+ η), η = (1+

√
3)/
√

2, with η2
= 2+

√
3, η−2

= 2−
√

3; (iv) the
fundamental units in H are a = 1+

√
2, η, τ =

√
2+
√

3, with inverses,
√

2− 1,
(
√

3− 1)/
√

2,
√

3−
√

2. The possibilities for µ are therefore

(5.3) µ=±mae1ηe2τ e3(1+ η)e4(
√

3)e5,

in which each ei , i = 1, . . . , 5, is 0 or 1 and m is a natural number prime to 6
and a product of primes. Not all possible values of the exponents are admissible.
Examining (5.3) on the basis of (i)–(iv), Dedekind arrives at the conclusion that
e1 = e2 = 1, e3 = e4 = 0, e5 = 1. As a consequence

(5.4) µ=±maη
√

3.

I repeat his calculations. It is necessary to calculate µα/µ, µβ/µ, µγ/µ and
to demand that they all be squares. For this, following Dedekind, we compute the
Galois action on each factor of (5.3). We repeat that

(
√

2,
√

3,
√

6, ω)α = (
√

2,−
√

3,−
√

6, uω),

(
√

2,
√

3,
√

6, ω)β = (−
√

2,
√

3,−
√

6, vω), ωε =−ω, µε = µ,

(
√

2,
√

3,
√

6, ω)γ = (−
√

2,−
√

3,
√

6, wω).

The Galois action on the units is given by

(5.5)
aα = a,
ηα =−η−1,

τα =−τ−1,

aβ =−a−1,

ηβ =−η,

τβ = τ−1,

aγ =−a−1,

ηγ = η−1,

τγ =−τ.

The first line follows from (1+
√

2)(1−
√

2)=−1. The action of the Galois group
takes η to ±(1±

√
3)/
√

2 and

1+
√

3
√

2
·

1−
√

3
√

2
=−1,

thus η to ±η±1. This is the second line. Since (
√

3+
√

2)(
√

3−
√

2) = 1, the
Galois group also takes τ to ±τ±1. This is the third line.

The action of the Galois group on
√

3 is given by (
√

3)α =−
√

3; (
√

3)β =
√

3;
(
√

3)γ = −
√

3. The second line yields immediately a first form for the Galois
action on the supplementary prime 1+ η that divides 2,

(5.6) (1+ η)α =−η−1(1− η), (1+ η)β = (1− η), (1+ η)γ = η−1(1+ η).
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Each of these numbers are units. It only remains to express them as products of
powers of the fundamental units times 1+ η.

1− η
1+ η

=

√
2− 1−

√
3

√
2+ 1+

√
3
=
(
√

2− 1−
√

3)2

2− (1+
√

3)2
=−

2− 2
√

2(1+
√

3)+ (1+
√

3)2

2+ 2
√

3
.

Multiplying numerator and denominator by 1−
√

3, we obtain

−
2(1−

√
3)− 2

√
2(1− 3)− 2(1+

√
3)

2(1− 3)
=−(
√

2−
√

3)=−τ−1.

Thus the three numbers (5.6) are 1+ η times, respectively,

η−1τ−1, −τ−1, η−1.

From these relations, we conclude with Dedekind that

µα =±mae1(−η)−e2−e4(−τ)−e3−e4(1+ η)e4(−
√

3)e5,

the sign being the same as in (5.3), and that

(5.7) u2
=
µα

µ
= (−1)e2+e3+2e4+e5η−2e2−e4τ−2e3−e4 .

For this to be a square it is necessary and sufficient that e4 be 0 and e2+ e3+ e5 ≡

0 (mod 2). Further conditions are given by µβ/µ. Since

µβ =±m(−a)−e1(−η)e2(τ )−e3−e4(1+ η)e4

and e4 = 0, the quotient v2
= µβ/µ is

(5.8) (−1)e1+e2a−2e1τ−2e3 .

For this to be a square e1+ e2 ≡ 0 (mod 2). Thus e1 = e2.
The first two of the equations in the last line of (5.2) imply the third. They imply

as well that � is a quadratic extension of H , Galois over Q. They do not imply that
� is a quaternion extension of Q. For that we need the earlier lines, which assure
us that this is so. Dedekind uses the first two of the three diagonal equations, which
must imply all nine equations because the first completely defines the action of α
on � and the second that of β. Consider the first diagonal equation. The number u
is the square root of (5.7). The information at our disposition yields

u = (±)′η−e1τ−e3,

where, following Dedekind, we have explicitly indicated with a prime that the sign
appearing here is not the sign in (5.3). The first diagonal equation yields

uα = (±)′(−η−1)−e1(−τ−1)−e3 = (±)′(−1)e1+ e3η
e1τ e3

=−u−1
=−(±)′ηe1τ e3,
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from which we conclude that e1+ e3 ≡ 1 (mod 2). This implies that e5 = 1 and
that (e1, e3) is either (1, 0) or (0, 1). Dedekind settles the matter with the second
diagonal equation.

The element v is the square root of (5.8), v = (±)′′a−e1τ−e3 and, thanks to (5.5),

vβ = (±)′′(−a)e1τ e3 = (±)′′(−1)e1ae1τ e3

=−v−1
=−(±)′′ae1τ e3 .

We infer that e1 = 1, and therefore that e3 = 0, arriving finally at Dedekind’s
conclusion (5.4).

Dedekind does not offer any hints for the verification that the class number is one.
So we apply the standard theorems. Since there are a number of other points about
the field H to be verified, we postpone this until the end of the section and explain
first the pertinence of the quaternionic fields to the study of the trace formula and
its applications.

There are two tests that may be undertaken to persuade oneself of the validity of
the strategy proposed in §4 and of Altuğ’s analytic development of the necessary
analysis. He, himself, has begun to reflect on them. The two tests are: the application
to dihedral automorphic representations and the possible application to quaternionic
representations. The interest is less in the results and more in the conviction to be
obtained that the methods proposed, although difficult, are sound. As explained
in §4, the method, as so often with L-functions, is focussed on the behavior of
−d L(s, π, ρ)/ds as s↘ 1, or, rather, assuming for simplicity that F =Q, on that
of

(5.9)
∑
π

{
trπ( f ρ

∞
)+

∑
p

∞∑
n=1

n ln p
pns trπv( f n

v )

}
,

where outside of a finite set S of places v, the functions f n
v are chosen to be spherical

functions such that
trπn

v = ρ(A
n(πv)),

where A(πv) is the Frobenius–Hecke class attached to πv . The representation ρ is a
representation of L G. The development of the stable trace formula described in §4
allows for the removal of all nontempered π from (5.9), thus of all stable π whose
parameter contains a nontrivial SL(2) component. It is understood that these have
been removed, so that the remaining sum has no singularities to the right of Re s= 1.
It will be part of the analysis to show this! It is moreover expected, and will have
to be shown, that only those π associated to a homomorphism φ : λH → L G
whose image is a proper subgroup of L G will contribute to the pole at s = 1. The
representations of G(AF ), thus of H(AF ), are to be understood inductively. For
the two tests, we take G = P GL(2) or, but that would be slightly more elaborate,
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GL(2). The L-groups are SL(2) or GL(2) or, better because we must consider all
possible H , SL(2)×Gal(K/Q) or GL(2)×Gal(K/Q). We consider only the first.

If π = πG is the image of πH , then the contribution of π to the sum (5.9) is
1/(s−1) times the multiplicity of the trivial representation of λH in ρ ◦φ. To avoid
redundancy, we always suppose πH is hadronic. In particular, if ρ is irreducible and
nontrivial, as we may as well suppose, there is no contribution from any hadronic πG .
For P GL(2) or GL(2), say GL(2) because this allows a simpler notation, this means
any one of the following three possibilities. First λH = L H , H = GL(1)×GL(1).
For the second there is a quadratic extension E of Q, H is the two-dimensional
torus obtained from GL(1) by restriction of scalars from E to Q, λH = L H , and

(5.10)
φ : (a, b)o 1 7→

(
a 0
0 b

)
, a, b ∈ C, 1 ∈ Gal(E/Q),

φ : (1, 1)o σ 7→
(

0 1
1 0

)
,

where Gal(E/Q)= {1, σ }. The representation πH is attached to a homomorphism
ϕ of the global Weil group

{1} → E×\IE →WE/F → Gal(E/F)→ {1}

into L H and this homomorphism is defined by a character χ of E×\IE . If w is a
fixed element in WE/F , w /∈ IE , then

(5.11) ϕ :

{
α ∈ IE 7→ (χ(α), χ(σα))o 1,

w 7→ (χ(w2), 1)o σ.

The third possibility is that H={1}. There is overlapping of all three cases.
The first case leads to noncuspidal representations and is thus understood. The

third case is most interesting when we take λH to be a Galois group, especially
when this group is tetrahedral, octahedral or icosahedral. We have not reached the
stage where they can be treated by the methods under discussion. The overlapping
occurs when the Galois group is a finite dihedral group and, in particular, when it
is a quaternion group.

Consider first the case (ii) and let ρ be the 2n-th symmetric power of the defining
representation of GL(2). Then the L-function L(s, πG, ρ)= L(s, πH , ρ ◦φ) will
be the product of the L-function of Q associated to the character χ |IQ and the
L-functions of the field E associated to the characters χ2, . . . , χn . The first of
these functions has a pole of order 1 at s = 1 if and only if χ |IQ is trivial. So for
any natural number n, these functions will contribute a pole at s = 1 to the sum
(4.3), in particular for n= 1. For the results achieved by the method of §4 for n= 1,
it will be best to refer to Altuğ’s thesis. Since they concern functoriality only for
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the group GL(2) and a torus H , a case that can be treated in the context of the
Hecke theory, they may not convince the sceptical, however interesting they may
be for those whose concern is with functoriality and its consequences in general. It
is only for exceptional n and very exceptional H and φ that further poles appear.

One possibility is that H is associated to a quadratic extension, χ is exactly of
order 4, χ(α) is not identically equal to χ(σα), and χ(w2)=−1. Of course, πH is
then not hadronic, but πG is also associated to another group H , the group H = {1},
and extensions K/Q with Gal(K/Q) isomorphic to the image of the original L H
under φ ◦ϕ. This image is a group of order 8, isomorphic to the group{(

a 0
0 ā

)}
∪

{(
0 a
−ā 0

)}
, a4

= 1.

This is the quaternion group imbedded in SL(2). In addition to the irreducible
representation this yields, the group has four one-dimensional representations, the
trivial representation and the three nontrivial characters of the group divided by its
center, which is, of course, ±I . The even symmetric powers of the two-dimensional
representation are clearly the direct sums of characters. Since the quaternion
group has a group of outer automorphisms of order three, α → β → γ → α,
all three nontrivial characters appear with the same multiplicity µ and the trivial
representation then appears with multiplicity ν = 2n+ 1− 3µ. For n = 1, µ= 1,
ν = 0; for n = 2, µ= 1, ν = 2. This means that if ρ is the fourth symmetric power
and πG is the image of the trivial representation of πH , then L(s, πG, ρ) has a pole
of order two at s = 1. This will not be so for hadronic πG , nor for other dihedral
πG , nor for tetrahedral, octahedral, or icosahedral πG . For these, as observed in
[BE], the exceptional poles at s = 1 begin only with higher values of n.

Thus the method of §4, if it is to work at all, must detect the quaternionic
representations — and only the quaternionic representations — by the extra pole for
n = 4. Although this leads to no new number-theoretical conclusions, it would be
a very important indication of the promise of the method. It would also be a sign
that the investigations of Dedekind or Jensen–Yui and the other authors have to be
pursued, perhaps along the lines suggested in [ST], perhaps in other ways.

When applying the method, we usually fix a bound for the ramification of the
representations π that we wish to consider. This is done by choosing f =

∏
v fv to

be a spherical function outside of a finite set S of places and then choosing the fv ,
v ∈ S, with appropriate restrictions. Their precise description is limited by one’s
understanding of the local harmonic analysis and arithmetic. In the present case, we
might want to take m = 1 in (5.4), which restricts the ramification to 2 and 3, where
it can be the minimum that permits the quaternion group to appear. Ramification for
nonabelian representations of the Galois group and for representations of a general
reductive group over a local field demands, of course, a more sophisticated, more
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technical examination, than necessary for abelian Galois representations or for the
group GL(1).

To complete our report on Dedekind’s paper, we have still to deal with some
details of the structure of H , which can be obtained in two steps: (i) by the adjunction
of
√

3 to obtain H1=Q(
√

3); (ii) by the subsequent adjunction of
√

2, H =H1(
√

2).
Unfortunately, I am not so familiar with such calculations as Dedekind.

The discriminant of H1/Q is 223 and the ideal
√

3 is clearly unramified in H2

where it does not split. So, by the usual formulas for the differents and discriminants
of fields obtained by repeated extensions, the contribution of 3 to the discriminant
of H/Q is 32. The two numbers a and τ are clearly integral. Moreover η2

= 2+
√

3,
so that η is also integral. It follows from (5.5) that all three of these numbers are
units and from (5.6) that

NH/Q(1+ η)=−η−2(1− η2)2 =−
(1+
√

3)2

2+
√

3
=−2

is a unit times the fourth power of 1+ η.
The only other prime dividing the discriminant is 2. Let Z2 be the 2-adic integers.

Since the powers (1+ η) j , j = 0, 1, 2, 3 form an integral basis over Z2 of H ⊗Z2,
we can calculate the power of 2 in the discriminant as

∏
i 6= j (ηi − η j ), where ηi ,

i = 1, 2, 3, 4 are the conjugates of η, namely η,−η, η−1,−η−1. The result is
±(η2

− η−2)4 and

16(η2
− η−2)4 = ((2+

√
3)− (2−

√
3)4 = 162

· 32
= 28
· 32.

This gives the correct result not only for 2 but also for 3. As a consequence,
{1, 1+ η, (1+ η)2, (1+ η)3} or {1, η, η2, η3

} is an integral basis for the ring of
integers in H .

Dedekind observes — discretely and without comment — that η2
= 2+

√
3 and

τ 2
= 5+ 2

√
6. This is very useful information. The three quadratic subfields of

H are E1 = Q(
√

2), E2 = Q(
√

3), E3 = Q(
√

6). For the units in E1, the two
basic hyperbolas are x2

− 2y2
= ±1. The units of positive norm are contained

in x2
− 2y2

= 1 and generated, up to sign, by 3± 2
√

2, themselves the square of
1±
√

2. So a is a fundamental unit of E1. For E2, the corresponding hyperbolas
are x2

− 3y2
= ±1. The units of positive norm are generated, again up to sign,

by 2±
√

3 = η2. There are none with negative norm. For E3 the hyperbolas are
x2
− 6y2

= ±1 with points 5± 2
√

6, thus τ 2, (τα)2. They generate the units of
positive norm. There are again no units of negative norm.

Consider a unit x = x1 and its conjugates, x2 = xα, x3 = xβ, x4 = xγ . Thus
|x1| · |x2| · |x3| · |x4| = 1, x1x2x3x4 =±1. Since x1x3 is a unit in E2, it is up to sign
an even power of η. Thus, dividing x by an appropriate power of η we can conclude
that x1x3 =±1. Then, of course, x2x4 =±1 as well. Now we divide by a power of
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τ to obtain x1x4 =±1, but without affecting the value of x1x3. As a result

±1= x1x2x3x4 =±
x2

x1
and

x1

x2
=±1,

so that x1α = ±x1. If x1α = x1, then x1 is in E1 and up to sign a power of a.
Otherwise, x1 = y

√
3, y ∈ E2. Since 3 remains prime in E2 and x1 is a unit, this is

impossible. We conclude that, as affirmed by Dedekind, a, η, and τ generate, up to
sign, the group of units of H . Dedekind’s example is marvelously simple!

Unfortunately, I am not familiar enough with Dedekind’s style to know how he
would have established that the class number of H is one. It follows readily enough
from standard theorems. Dedekind’s argument would have been more elegant.
According to a familiar theorem [He, Satz 96], if there is a prime ideal in H that is
not principal, there is one with norm less than or equal to the square root of the
discriminant of H , thus 24

· 3= 48.
The field H is a composite of two quadratic fields the class field associated to

the group of ideles multiplicatively congruent to 1 or 7 modulo 8, 1 modulo 3, and
positive. So there are four classes of primes different from 2 and 3. According to
the law of quadratic reciprocity, they are distinguished by their residues modulo 3
and 8. First of all, in the field Q(

√
2) the decomposition is:

(i) If p ≡ 1, 7 (mod 8) then p splits.

(ii) If p ≡ 3, 5 (mod 8) then p does not split.

In the field Q(
√

3):

(i) If p ≡ 1 (mod 3) and p ≡ 1 (mod 4) or p ≡ 2 (mod 3) and p ≡ 3 (mod 4)
then p splits.

(ii) If p ≡ 2 (mod 3) and p ≡ 1 (mod 4) or p ≡ 1 (mod 3) and p ≡ 3 (mod 4)
then p does not split.

In the field Q(
√

6), if p ≡ 1 (mod 8) and p ≡ 1 (mod 3), if p ≡ 7 (mod 8) and
p ≡ 2 (mod 3), if p ≡ 3 (mod 8) and p ≡ 1 (mod 3), or if p ≡ 5 (mod 8) and
p ≡ 2 (mod 3) then p splits, otherwise it does not. From this, we determine
immediately the nature of the decomposition in H , whether a prime different from
2, 3 splits into 1, 2 or 4 primes. It splits into four if and only if it splits into two in
the three intermediate fields.

According to the theorem cited, all we need do is show, first of all, that every
prime ideal p of norm p in one of the three fields E dividing a prime p > 3 in
Q and with N p less than or equal to the square root of the discriminant of E is
principal and, secondly, that every prime ideal of norm p in H dividing a prime
p > 3 and with N p less than or equal to the discriminant of H is also principal.
For the first type this is hardly necessary, but the results are as follows.
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(1) For Q(
√

2), the discriminant is 8 and there are no such primes.

(2) For Q(
√

3), the discriminant is 12 and the only pertinent prime seems to be 11.
Since N(1+ 2

√
3)=−11, p= (1+ 2

√
3) is a prime of norm 11.

(3) For Q(
√

6), the discriminant is 24. Of the primes 5, 7, 11, 13, 17, 19, 23, only
5, 19, 23 seem to satisfy the necessary conditions. We have N (1+

√
6) = −5,

N (5+
√

6)= 19, N(1+ 2
√

6)=−23.

(4) There are many primes less than or equal to 48, namely

5, 7, 11, 13, 17, 19, 23, 31, 37, 41, 43, 47,

but very few with the correct congruence properties, namely that split completely
in H . For this we need either p ≡ 1 (mod 8), p ≡ 1 (mod 3), or p ≡ 7 (mod 8),
p ≡ 2 (mod 3). Thus p = 23, 47 seem to be the only possibilities. We have to
show that each of them factors in H into the product of four distinct principal prime
ideals. It is enough to show that each of them is the norm of an element in H .

We can factor each of them in the three quadratic fields.

N(5−
√

2)= 23; N(2− 3
√

3)=−23; N(1− 2
√

6)=−23,

N(7−
√

2)= 47; N(1− 4
√

3)=−47; N(7− 4
√

6)=−47.

Because we have so much information about η, it is convenient — and sufficient —
to establish that the central element in each of these rows is, up to a unit, the norm
in E = Q(

√
3) of an element u in H , which is E(η), because η2

= 2+
√

3. The
field E is the fixed field of β. Thus, if we can find one u = a+ bη such that

(5.12) NH/E(u)= u · uβ = a2
− b2(2+

√
3), a, b ∈ E .

differs from 2− 3
√

3 by a unit in E and another such that it differs from 1− 4
√

3
by another unit, then our task will be complete. So ran my first reflections.

I thought it would be necessary to attack the problem systematically, by a careful
analysis that would determine where the numbers whose norm was ±23 or ±47
were to be found. The field H seemed to be singularly adapted to the necessary
calculation. Consider the absolute values of the numbers a, η, τ and of their
conjugates in the order: the number itself, then its conjugate under α, β, γ in that
vertical order. The first column is supplementary, x > 0, x 6= 1.

(5.13)

1 a η τ

x |a| |η| |τ |

x |a| |η|−1
|τ |−1

x |a|−1
|η| |τ |−1

x |a|−1
|η|−1

|τ |.
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Taking the logarithms, we obtain a matrix

(5.14)


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




ln x 0 0 0
0 ln |a| 0 0
0 0 ln |η| 0
0 0 0 ln |τ |


The first matrix is up to a factor an orthogonal matrix with inverse,

1
4


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 .
I wrote this down, looked at it, thought of the effort that a further systematic

analysis would require, and decided I would just resort to Mathematica and calculate
the norms of a few numbers in H in order to have a better feel for the sizes entailed.
To my surprise and delight, because I was growing very fatigued, among the first
ten norms generated appeared both −23 and −47.

N(1− η2
− η3)=−23; N(1− η− η3)=−47.

6. Reciprocity

The meaning of reciprocity, as it appears in this prologue, is somewhat uncertain and
variable. This appears to be inevitable. Although I have attempted to confine it to a
relation between a group of A and a group M, it sometimes appears to be simply a
description of a group, either a motivic group or, more often, an automorphic group.
This is, to a large extent, because the traditional Weil group already incorporates
both aspects: (i) the multiplicative group of the field or of the idele classes as a
carrier of characters; (ii) the Galois group as a description of finite extensions of the
base field F , thus as a description of motives of dimension 0. Moreover, although
reciprocity has a certain universality, it appears under more than form and this form
adapts itself to the circumstances, local or global, geometric or arithmetic, and is,
as a consequence, somewhat protean.

The Ramanujan conjecture in its general form — if properly interpreted, even in
its classical form — is a statement about the local factors of automorphic representa-
tions π =⊗πv and their Arthur parameters. We have not had occasion to comment
on the local form of the group A in an Arthurian context over nonarchimedean
fields Fv. It appears to be SL(2,C)×SL(2,C)×WFv . As for archimedean fields,
the first factor determines whether the representation is tempered or not and, if
it is not, the nature of its failure to be tempered: determined by the asymptotic
behavior of characters or matrix-coefficients. The second SL(2,C) does not appear
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for archimedean fields and is present to accommodate the needs of local reciprocity,
which some authors satisfy by introducing the Weil–Deligne group W D.

We can introduce into the global arithmetic theory a formal but suggestive
diagram:

(6.1) `-adic representations
⊗Q̄`
←− motives/F

⊗C
−→ automorphic representations,

The Weil–Deligne group is introduced in the context of `-adic representations,
thus on the left; the motivic groups, at least those introduced by Grothendieck can
be considered, for the present purposes, as being defined over Q; the group A is
defined over C. So an arrow from the extreme left to the extreme right is, without
further explanations, not immediately at hand. The further explanations necessary
are not, given the theorems and conjectures currently at hand, particularly difficult.
The Weil–Deligne group has two disadvantages: (i) it introduces isomorphisms
between fields that have no natural relation to each other, namely `-adic fields and
the complex field; (ii) it introduces classes of representations that are not semisimple.
Neither of these is overwhelming, but both are unnecessary and clumsy. It is best
to introduce a second SL(2) factor, either in the local A or in the local M. This
second factor is not present over R or C.

Our immediate task, however, is to introduce the appropriate local structures
on the left-hand side, for which all we have at hand are the `-adic representations.
We begin with them in their local form, taking the necessary material from [T].
Suppose that the local field F = Fv is nonarchimedean with residue characteristic
p and ` 6= p. The theory of p-adic representations is more difficult and certainly
pertinent, but not for this article.

In [T] a Frobenius element 8 is an element of the Galois group such that
8−1x = xq on the residue field. I follow this convention. The elements of the
Galois group that concern us are those that can be written as a product 8nι, where
ι lies in the inertia group. They form a dense subgroup, to be identified with the
Weil group, of the Galois group. There is a homomorphism of the inertia group
onto

∏
p 6=` Z`. Let it send ι to

∏
6̀=p t`(ι). In [T] the notion of an `-adic W D-

representation or a representation of the Weil–Deligne group on a finite-dimensional
`-adic vector space is introduced. A “representation” of this group is not a true
representation, it is a pair (r, N ), where N is a nilpotent transformation of a finite-
dimensional vector space V over Q̄` and r a representation of the Weil group on
the same space. The representation r is to be continuous, so that its kernel is open
in W . Moreover

(6.2) r(8)Nr(8−1)= q−1 N ,

a condition imposed for every choice of8. Thus N commutes with the inertia group.
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There are supplementary conditions that can be imposed. One, that the Zariski
closure Gr of the image of r is reductive, seems especially important. We impose it.
As a consequence the image r(8nι) of any element of the Weil group is semisimple.
Other conditions of a topological or analytical nature are of lesser importance
and we leave them aside for the moment. There is then a second representation
associated to the pair (r, N ),

ρ :8nι 7→ r(8nι) exp(tl(ι)N ).

Clearly ρ determines r and N , but it is the pair to which we attach here the most
importance, not the `-adic representation ρ.

The restriction of r to the inertia group is defined by a representation of a
finite quotient of this group. There is, consequently, an integer m 6= 0 such that
r(8mι)= r(ι8m) for all ι in the inertia group. If r(8) is equal to8ss8un=8un8ss,
with 8ss semisimple and 8un unipotent, then

8m
ssr(ι)= r(ι)8m

ss, 8m
unr(ι)= r(ι)8m

un,

for all ι in the inertia group. The second equation implies that r(ι)8un=8unr(ι) for
all ι. Consequently we can introduce a new representation rss such that rss(ι)= r(ι)
for all ι, while rss(8)=8ss. The representation rss is a canonical semisimplification
of r . This is a representation of the Weil group.

It may seem idle, but we want to be able to replace the homomorphism r by
a homomorphism of the W D-group to any L-group L G, taken not over C but
over Q̄`. This is easily done. The definitions are identical to those just given
for L G = GL(n, Q̄`). We shall continue in this vein for it allows us to consider
homomorphisms of the categories we construct into the category of (algebraic)
representations of L G(Q̄`). We retain the assumption that the Zariski closure
of the image of the Weil group in L G is reductive, not forgetting the necessary
compatibility with projections to finite Galois groups.

The construction of the W D-group is, unfortunately, clumsy and misleading,
because it permits a passage to quotients by kernels of the transformation N . In order
to avoid this possibility, we appeal to the Jacobson–Morozov lemma as formulated
in [K], but we use it not over C, rather over Q̄`. Let N be a nilpotent element
in the Lie algebra Lg of a reductive group L G. The superscript on Lg serves a
largely mnemonic function. There exists an X ∈ ad N (Lg) such that [X, N ] = 2N .
In addition, for each such X there exists a unique N ′ such that [X, N ′] = 2N ′,
[N , N ′] = X . The algebra s = {N ′, X, N } is therefore isomorphic to the algebra
sl(2). Let σ be the isomorphism

σ :

(
0 1
0 0

)
7→ N ,

(
1 0
0 −1

)
7→ X,

(
0 0
1 0

)
7→ N ′
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of the algebra sl(2) with s.
For us, N is the element in the equation (6.2). Corresponding to this equation,

there is a character of the Galois group GalF , such that

r(ι)Nr(ι)−1
= χ(ι)N , ∀g ∈ GalF .

On the inertial group χ(ι)= 1.
Let h be the centralizer of the image of the inertial group in the algebra Lg. The

algebra h is reductive because, by hypothesis, the image of r is reductive. We apply
the Jacobson–Morozov theorem to the algebra h and the element N ∈ h. Let H
be the connected component of the identity in the centralizer of the inertia group
in L G and S the connected subgroup of H corresponding to s. The group S has
a unique Cartan subgroup, isomorphic to the multiplicative group of the field Q̄`,
whose Lie algebra contains X and this subgroup contains an element P such that
Ad(P)(N )= q−1 N , P = q−X/2. Define ψ by the relation

(6.3) ψ(8nι)= P−nr(8nι).

The set of products8nι, n ∈Z, is of course the Weil group and ψ is a representation
of it. Since ψ(ι)= r(ι),

(6.4a) Ad(ψ(ι))N = N , Ad(ψ(ι))X = X, Ad(ψ(ι))N ′ = N ′.

Moreover,

(6.4b) Ad(ψ(8))N = N , Ad(ψ(8))X = X.

Consequently, Ad(ψ(8))N ′ satisfies the conditions of the theorem of Jacobson–
Morozov, so that Ad(ψ(8))N ′= N ′. As a consequence, rather than a representation
of the W D-group in the sense given to it in [T] and other sources, we may use the
representation (σ, ψ) of the thickened Weil group W. I prefer this. Of course, σ
has to be interpreted as a representation of the group, rather than of the algebra,
and we have to replace C by Q̄`. There is nothing to be done about this. It can be
effected by an imbedding Q̄` ↪→ C, disturbing but in the nature of things. We can,
if we prefer, rather take the thickened Weil group not over C but over Q̄`.

This possibility raises many questions. Since we do not yet have a complete
theory of the representations of reductive groups over nonarchimedean local fields,
we do not have a parametrization of the various classes, tempered, arbitrary, or
the class introduced by Arthur. Moreover, even over archimedean fields there is,
so far as I know, no clear indication, even at the speculative level, that there will
be a stable theory for arbitrary irreducible representations. On the other hand, the
classification of tempered representations, over R or, presumably, any other local
field, will certainly demand a constraint of relative compactness on the image of
ψ in, for example, (2.1), and this condition is not one that is invariant under an
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imbedding of Q̄` in C. So there is room for reflexion on the local form of (6.1).
We take the imbeddings Q̄ ↪→C and Q̄ ↪→ Q̄` as given; so the algebraic closures

of Q in the two fields are identified. The considerations that follow would lead to
definitions that are independent of this identification.

There is a distinguished subgroup of Q, the group S1 of algebraic numbers β all
of whose conjugates have absolute value 1 in C. We introduce, at a local level, the
set of parameters ψ , or (σ, ψ), or (σ1, σ2, ψ) such that there is a homomorphism

(6.5) ξ : GL(1)→ L G

for which:

(i) The image of ξ commutes with the image of ψ and, if appropriate, the image
of σ or σ1× σ2.

(ii) For every Frobenius element 8, every element ι of the group of inertia, every
integer m, and for every (algebraic) representation ρ of L G all the eigenvalues
of ρ(ξ(|w|−m/2)ψ(8mι)) lie in S1.

If ξ exists it is determined by r so that when there is no danger of misunderstanding
it need not be explicitly given. The distinction between ψ and r is somewhat
pedantic. In (6.4a) and (6.4b), r is given and ψ depends on the choice of a square
root of q; the representation r does not. In (ii) we are, in effect, making a further
modification of ψ , leading to a further dependence on the choice of the square root
q1/2. The second condition does not, however, depend on the choice of the square
root q1/2. We must, nevertheless, take care that no implicit dependence on this
choice occurs in other definitions, for example, in the L-functions associated to
`-adic representations. This would be a different dependence than that entailed by
the simultaneous imbeddings of Q̄ in C̄ and Q̄`. In a global context, ξ would first
be given and then the various conditions would be satisfied by the local restrictions
and this fixed ξ .

For the field Q̄` — and for L G =GL(n)— these are the parameters that, because
of the last Weil conjecture, yield the `-adic representations with which we are
principally concerned. According to the yet to be established local parametrization —
for tempered and nontempered representations — they would correspond not only to
tempered representations — for ξ trivial — but often to nontempered representations.
Thus, it is entirely appropriate to introduce weighted parameters locally as well as the
attendant global modifications. At a nonarchimedean place the local parametrization
consist of pairs {σ × ψ, ξ} that satisfy the conditions described, or, for Arthur
parameters, pairs {σ1× σ2×ψ, ξ}. At an archimedean place, they would just be
pairs {ψ, ξ} or {σ ×ψ, ξ}, the first condition remaining unchanged, but the second
being replaced by the condition that the eigenvalues of ρ

(
ξ(|w|−1)ψ(w)

)
have

absolute value 1. The local form of the relation (6.1) would no longer be mediated
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by motives. It would be

(6.6) weighted `-adic representations−→ (automorphic) representations.

The arrow is now independent of the imbedding Q̄` ↪→ C, at least in so far as it is
compatible with the identification of Q̄⊂ C and Q̄⊂ Q̄`. All this, in view of the
scarcity of general results, has a very pedantic air, but, for my own sake, I find it
useful to have a clear notion of the goals. They are not always clearly understood
or formulated. Locally, what is often wanted — apart from careful, appropriate
definitions — is simply an independent description of A or M, in terms of familiar
objects: the Weil group, the Galois group, or differentials. Globally, at least for
arithmetical fields, it is a matter of proving the existence of both A and M, deciding
what their relation is and proving it. All three are major problems. For the global
geometric theory, it is not clear to me at the moment, whether it is a description of
A in classical terms that is wanted, or whether there is a motivic group M to be
introduced and a relation of A and M to be discovered. The following two sections
suggest that there is no M in the geometric theory, but they are hardly conclusive.

I add that the supplementary Arthur parameters may not play a role in the
correspondence (6.6). It appears to me that the image is likely to consist of objects
whose supplementary Arthur parameter is trivial, so that the homomorphism of
groups, which is from the right-hand side to the left, will be trivial on the SL(2)
component of the global automorphic A.

There are many relatively simple examples of the various parameters that it might
be appropriate to introduce here: (i) for the Arthur parameters, the conjecture of
Jacquet for SL(n) proved by Mœglin and Waldspurger; (ii) for the second SL(2)
parameter, the reciprocity for elliptic curves with nonintegral j-invariant, a very
important and very early example in the development of a general reciprocity.
Although they are well-known, they belong in any introduction to the theory. This
is none the less only the prologue to an introduction. So I omit them.

7. The geometric theory for the group GL(1)

For the local arithmetic theory, we can identify the group AF as the Weil group
or — for Arthur packets or if the local field is nonarchimedean — as a modified
form of the Weil group, but we are not yet able to supply the necessary proofs.
For the local geometric theory the abelian quotient, thus the group appropriate for
G = GL(1), of the local group AF is readily identified, although the definitions
are somewhat forced. The description of this quotient for the global geometric
theory can be deduced, as we shall describe, from the classical theory of abelian
integrals on a Riemann surface. The description of the abelian quotient of AF

suggests, both locally and globally, a definition of AF itself, but as I discovered, one
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is faced almost immediately with the need for theories that have yet to be developed.
I stress that, although the concepts emphasized here differ in some ways from those
preferred by Edward Frenkel and have been influenced as well by the proof of a
theorem of Weil, the initial impulse has been taken from his writings.

I should perhaps confess as well that, although the references [CFT; CLG; GT],
from which I profited considerably, were, together with a letter from their author,
my introduction to the geometric theory, my impulses, aesthetic and mathematical,
are more analytic, less formal, perhaps less geometric, than those of their author.
Even though I have not yet succeeded in exploiting the analytic possibilities of the
theory, I do want to draw them to the reader’s attention.

For the geometric theory, the local field at a point x is the field Fx of formal
Laurent series

f (z)=
∞∑

n=k

anzn, k ∈ Z.

In the present context reciprocity — not the correct word in this context, in which
our goal is simply the description of the local automorphic galoisian group AFv —
is, at least at first, simply a matter of expressing the characters of F×x , or rather
the group formed by these characters, in some appealing arithmetic or geometric
manner. We must of course fix the choice of characters — unitary, nonunitary,
holomorphic, whatever.

The local group F×x is abelian with two particularly important subgroups,

(7.1)
O×x = {a+ bz+ cz2

+ · · · | a 6= 0},

O+x = {1+ bz+ cz2
+ · · · },

and O×x = C×O+x , O+x \O
×
x ' C×, O×x \F

×
x ' Z. The elements of the group O+x are

best written in exponential form

(7.2) exp(α1z+α2z2
+ · · · ).

The characters of O×x are, for our purposes, most conveniently given by the
residues of the differential forms defined by the product of the logarithm of

f = α0 exp(α1z+α2z2
+ · · · ), α0 6= 0,

and a given local differential form

(7.3) ω=
β−k+1

zk +
β−k+2

zk−1 +· · ·+
β−1

z2 +
β0

z
+

∞∑
j=1

β j z j−1, β j ∈C ∀ j, β0 ∈Z,
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although the coefficients β j , j > 0, which are redundant and present only in
anticipation of the global theory, do not affect the pairing.

(7.4) (ω, f )= (ω, f )x = exp(i Re(resω ln f )),

resω ln f = β0 lnα0+

k−1∑
i=1

αiβ−i .

There is a second pairing implicit in (7.4), obtained on replacing Re(resω ln f )
by the real linear form Im(resω ln f ). It is understood that both are to be used,
alone and in products. If β0 = 0 one of them is redundant, since Im(resω ln f )=
Re(res(−iω ln f )). If β0 6= 0, iω is not admissible, because iβ0 6∈ Z. These
characters are unitary. There is another possibility,

f 7→ exp(Re(ω ln f )).

These characters are not unitary, but are pertinent in a more geometric theory, like
that of [CFT], if ramification is admitted. We keep them in mind, because the two
theories, analytic and geometric, are conceived as parallel to each other.

The group O+x is an infinite-dimensional complex vector space, the inverse limit
of finite-dimensional vector spaces. Its dual space is taken to be a direct limit not
of the complex dual spaces of the distinguished finite-dimensional spaces defined
by the inverse limit, but of the distinguished real linear forms defined by the real
and imaginary parts of the complex forms. Since Im(ω, f ) = Re(−iω, f ), this
leads to a real vector space of dimension twice — and not four times — the complex
spaces from which they arise. The dual space of C× = O+\O× is taken to be R×Z,
α→ αm ᾱn , m + n ∈ R, m − n ∈ Z. Here, however, we need to use both the real
and the imaginary parts of (ω, f ), thus β0 Re lnα0 and β0 Im ln ᾱ0, because β0 is
constrained to be integral, in particular, real. The pairing (ω, f ) is linear in ω and
multiplicative in f .

There seems to be no natural or unique way to extend this identification of the
space �x of local differential forms ωx at x , implicitly taken modulo their regular
parts and modulo the identification described, with the character group of O×x to
a concrete identification of F×x , thus no way to incorporate naturally the dual of
O×x \F

×
x 'Z. This dual can be taken to be C×. There will be a commutative diagram

(7.5)

{1} C× �̃x �x {1}

{1} C× Char(F×x ) Char Ox {1},

η̃ η

in which the kernel of η̃ is equal to the kernel of η, but a natural precise description
is not available. To split the extension, a local parameter must be chosen.
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This said and the necessary precisions kept in mind, we have defined the local
group A for the abelian geometric theory in terms of local differentials with singu-
larities. For the global theory on a Riemann surface X , there are not only global
differential forms, there are a number of supplementary objects, whose purpose
took me some time to recognize. I brought with me from the arithmetic theory a
notion of an automorphic form as a function on G(F)\G(AF ). I shall return to the
notion for a general group in §8. For now, I recall it for GL(1). It is the quotient IF

of the restricted districted product IF =
∏∐

x∈X
F×x by the diagonally imbedded F×.

There is a filtration
{1} ⊂ I tr

F ⊂ I unr
F ⊂ I 0

F ⊂ IF

of the group of ideles IF = F×\IF of the group of idele classes, with

I tr
F =

∏
x∈X

O+x , I unr
F = C×\

∏
x

O×,

I 0
F = F×\I0

F =

{
x =

∏
fx ∈ IF

∣∣∣ ∑
x

ordx( fx)= 0
}
.

The quotients are
I tr

F\I
unr
F = C×\

∏
x

C×,

where C× is diagonally imbedded,

I unr
F \I

0
F =

{
(nx) ∈

⊕
x

Z

∣∣∣ ∑
x

nx x = div( f ), f ∈ F×
} ∖ {

(nx) ∈
⊕

x
Z

∣∣∣ ∑
x

nx = 0
}
,

thus the group of divisors of degree 0 modulo principal divisors, and I 0
F\IF = Z.

The idele-class characters in the geometric theory are continuous functions on IF

equal to 1 on a subgroup
∏

x /∈S O×x , S a finite set of points in X , and on
∏

x∈S F×x
to a product of the local characters already introduced.

These characters, or these automorphic forms, certainly need to be considered,
but the geometric theory takes a broader view that it took me a good deal of time
to appreciate and to reconcile with my simple ideas. The pertinent clue lies in the
statement of Theorem 3 of §3.8 of [CFT].

Assertion. For each irreducible rank n local system E on X there exists a perverse
sheaf AutE on Bunn which is a Hecke eigensheaf with respect to E. Moreover,
AutE is irreducible on each connected component Bund

n .

For the moment, I take G = GL(1), thus G to be not a general reductive group,
and not GL(n), with n arbitrary as in the assertion, but with n = 1, and try to
understand the meaning of this assertion. Among other things, it will be important
to be clear, as soon as the initial explanations are concluded, about the nature of the
difference between automorphic forms in the naive, but legitimate sense taken from
the arithmetic theory, even those that are eigenfunctions of the Hecke operators,
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and a Hecke eigensheaf, at first when there is no ramification. It is an immediate
result of Diagram I that for the group GL(1) a local system is just a coset in
H 1(X,Z)\H 1(X,C). This is not emphasized in [CFT] or even mentioned, perhaps
because the emphasis is on nonabelian groups. Handicapped by my inexperience,
I am often, in the theory of algebraic curves, at a loss to distinguish theorems
from definitions. Our first task will be to acquire some concrete understanding
of the Assertion for n = 1 and to introduce its geometric counterpart. I do find it
convenient, when reflecting on the Assertion and its analytic counterpart, to fix in
mind the dimensions that appear. We shall see, for example, that the line bundles on
X are parametrized by a 2g-dimensional torus and the local systems attached to a
given line bundle by a 2g-dimensional real vector space, so that in the Assertion the
possibilities are parametrized by the quotient of a 4g-dimensional vector lattice by
a 2g-dimensional lattice. Such information assures a failing memory that nothing
has been forgotten and nothing counted twice.

The quotient of IF by
∏

x O×x is the group of divisors on the nonsingular algebraic
curve X for which the global theory is to be developed, taken modulo linear
equivalence; it can be given the structure of an algebraic variety. The connected
component of this variety, formed by the divisors of degree 0, is then the jacobian
of X , which could be identified with the moduli space P0 of line bundles of degree
0 on X , but we do not do so. The full group is the Picard variety P itself, which
can be identified with the quotient F×

∏
x O×x \IF , but once again it is convenient

to distinguish them.
We can be more precise. Let g be the genus of X . We introduce a complex

vector space 4 of dimension g, the dual space of the space of differential forms of
the first kind on X and a lattice 1 in 4, given by the complex linear forms

(7.6a) ω 7→

∫
δ

ω,

δ ∈ H1(X,Z), thus, more informally, but more instructively, δ being a closed curve
on X . We introduce as well the real dual space 4̂ of 4 (sometimes identified with
the space of conjugate linear complex-valued forms, but often with the space of
complex linear forms) on4 by sending the conjugate linear formµ, µ(αx)= ᾱµ(x),
to Re(µ) and the lattice 1̂ defined by δ̂ ∈ 1̂ if and only if Re(δ̂(δ)) ∈ 2πZ for all
δ ∈1. It is difficult to distinguish 4 and 4̂ or 1 and 1̂, but 1= H1(X,Z) and 4̂
may, of course, be identified with the space of differential forms of the first kind
on X . Then, thanks to the Abel–Jacobi theory, the map that assigns to the divisor
p1+ · · ·+ pn − q1− · · ·− qn the linear form

ω 7→

n∑
i=1

∫ pi

qi

ω
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defines an isomorphism — for both the group structure and the holomorphic struc-
ture — of 1\4 with the jacobian of X . The group and 1̂\4̂ the group (or moduli
space) P0 of line bundles of degree 0, thus the connected component of the Picard
group. Each of these line bundles admits a connection and the family of connections
is given by a coset of 1̂ in 4̂. More precisely, as is explained on page 313 of [GH]
in the context of complex tori, but the explanation is also valid here, the exact
sequence of sheaves

(7.7) H 1(X,Z)→ H 1(X,O)→ H 1(X,O×)→ H 2(X,Z),

in which there is a factor 2π in the first arrow that must not be forgotten, leads to
an identification

(7.8) P0
= H 1(X,Z)\H 1(X,O), 4̂= H 1(X,O)= H 0,1(X), 1̂= H 1(X,Z),

the notation H 0,1(X) being taken from Hodge theory, where the space H 1,0(X) is the
space of differentials of the first kind. Unfortunately, I have difficulty remembering
which is which because of the reversal of the order of the 0 and the 1 in the relations
H 1(X,O)= H 1(X, �0)' H 0,1(X), H 0(X, �1)' H 1,0(X).

It is undoubtedly best that I be as precise as I can because my experience
with differentials and Hodge theory, even on curves, is limited. For example,
H 1(X,O)= H 0,1(X) is the complex conjugate of H 1,0(X), the space of differential
forms of the first kind, this identification being given by the Hodge ?-operator ([GH,
page 82]). There are two isomorphisms of H 1,0(X) as a vector space over R to 4̂;
they are given by the real and imaginary parts of the periods (7.6a). To continue,
I return to an enlarged form of the diagram (7.7), suppressing the explicit reference
to X from the notation.

{0} H 1(Z) H 1(C) H 1(C×) H 2(Z) H 2(C)= C

{0} H 1(Z) H 1(O) H 1(O×) H 2(Z) H 2(O)= {0}

Diagram I

The central square of the diagram is summarized in [GT, §2], although with
reference to a general group G, not just GL(1): “A flat connection has two com-
ponents. The (0, 1) component, with respect to the complex structure on X , defines
holomorphic structure, and the (1, 0) component defines a holomorphic connection.”
According to the Hodge theory an element of H 1(C)= H 1,0(X)⊕ H 0,1(X) is real-
ized uniquely as a sum of a holomorphic form and an antiholomorphic form. In the
diagram, the third vertical arrow, H 1(C)→ H 1(O), is the projection on the second
factor. Since the last arrow in the first line is an injection, the kernel of H 1(C×)→

H 1(O×) is a complex vector space of dimension g, isomorphic to H 1,0(X).
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A flat connection is a connection in which there is a local notion of constant
section; these are obviously given by H 1(C×), while H 1(O×) parametrizes line
bundles. Since the Chern class, given by the degree of a line bundle, is the image
of its parameter in H 2(Z), we see that the collection of connections on a given
line bundle is parametrized by H 1,0(X). Thus the collection of flat connections on
a given line bundle, which are parametrized by the inverse image of an element
of H 1(O×) form an affine space over H 1,0(X). A line bundle of degree 0, thus
of Chern class 0, is an element of H 1(O×), thus an element of H 1(Z)\H 1(O)

or a coset of H 1(Z) in H 1(O) = H 0,1(X) or, as seems to be demanded by the
formalism, by its complex (thus ?-)conjugate in H 1,0(X). The comment of [GT]
cited is the observation that an element of H 1(C×) is the image of an element
of H 1(C)= H 0,1

⊕ H 1,0. Mapping this element to H 1(O) amounts to projection
on its first component. The horizontal arrow then yields a line bundle. So the
bundle determines the first component. (As a test for my orientation: this is H 1(�0)

appearing in the Hodge theory as H 0(�), thus as an antiholomorphic differential,
whose orthogonal complement lies in the holomorphic direction ∂/∂z.) To determine
the image of the upper horizontal arrow, we need to know both the first and the
second component. So the supplementary information needed to determine the
second component of an element of H 1(C) is contained in its image in H 1(C×),
thus in the connection.

It will be worthwhile to return to the geometric theory at the end of this section,
just to understand better what the Assertion means for n = 1 and how it can be
proved, but our principal goal is to introduce an analytic form of it that will allow
us to introduce a candidate for the abelian quotient Aab of A. The analytic form
has quite a different flavor.

We have already defined 4̂ as H 1,0(X) and defined the periods of an element
of H 1,0(X), thus of a differential form of the first kind, by (7.6a). Then the
conjugate space 4̂conj is H 0,1(X) and their sum can be identified with H 1(X,C), a
2g-dimensional space, represented by holomorphic differential forms with arbitrary
periods. We conclude that the span of the periods, either the real periods or the
complex periods, for both are not simultaneously necessary,

δ 7→ Re
∫
δ

ω, δ 7→ Im
∫
δ

ω, ω ∈ H 1,0(X),

is just 4, treated as a real vector space, thus the real dual of 4̂. If we express the
surface X in the usual way as a disc with boundary

δ1δg+1δ
−1
1 δ−1

g+1 · · · δgδ2gδ
−1
g δ−1

2g ,

the various segments on the boundary being identified as indicated by the subscripts,
then any additive mapping of this sort is determined by its values on δ1, . . . , δ2g.
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Observe that, because there is a multiplication by 2π i , z→ 2π i z, the image of
H 1(X,Z) is characterized by the conditions that the real parts of the periods are 0
and the imaginary parts lie in 2πZ.

If ω ∈ 1̂ and p0 is an arbitrary but fixed point on X , then

(7.6b) p 7→ exp
(

i Im
∫ p

p0

ω

)
is a continuous character of the jacobian (or of the Picard variety P0) and, as ω
varies over 1̂, we obtain in this way a family of Z2g characters of I 0

F , which can,
of course, be extended to IF , but this is a secondary matter, the choice of a nonzero
constant. The character is defined by its differential equation,

(7.9a) χ−1
R dχR = i Reω = iωR or χ−1

I dχI = i Imω = iωI ,

either of which defines in some sense a holonomic system or a perverse sheaf, but
in a real context. The usual holonomic system would be given by the complex
equation

(7.9b) χ−1dχ = ω,

which may also be treated as two real equations. So it has more boundary conditions,
thus conditions of periodicity. If the local coordinate is z= x+iy, ω= (µ+iν)(dx+
idy), and if χ = exp(α(x, y)+ iβ(x, y), then (7.9b) amounts to(

∂α

∂x
,
∂β

∂x

)
= (µ, ν),

(
∂α

∂y
,
∂β

∂y

)
= (−ν, µ).

For the second equation, that in (7.9b), periodic conditions are not appropriate; for
one or the other of the first, they are. For the second, boundary conditions would
be to combine both conditions of (7.9a). So they are again usually impossible to
satisfy. In the analytic or arithmetic theory, it is the second of equations (7.9a) that
is pertinent. In the context of perverse sheaves, thus in the context of the Assertion,
the issue of a global solution of the differential equation is inappropriate. I was
troubled and confused by this difference for some time. Its source has become
clearer. One thinks of the exponential function exp λz on the interval [0, 1], with
0 and 1 identified. If one wants functions, one needs λ ∈ 2π iZ; if one accepts
sheaves, thus the differential equation

dh
dz
= constant

is acceptable. One reflects an analytic impulse, my dominant impulse; the other a
geometric impulse, by which [CFT] is guided. The notion of a Hecke eigensheaf
that appears there is, as we shall see, a clever way of admitting this greater generality.
As already observed, it can also be incorporated into the analytic theory mediated
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by characters of the fundamental group The two possibilities could be examined
separately, but as my purpose here was to adumbrate an analytic theory that would
not lag behind the geometric theory, I have preferred to incorporate some to-and-fro
in the exposition, as well as some redundancy.

To add to it, we reflect just a minute on the equation

1
h

dh
dz
= λ

on the circle, realized as the real line modulo 2π z. On the line it defines a flat
connection on the trivial bundle because the quotient of any two solutions c1 exp(λz),
c2 exp(λz) differ by a multiplicative constant. It also defines a flat connection on
the circle because c1 exp(λz), c1 exp(λ(z + 2π)) also differs by a multiplicative
constant. It does not, however, define a section of the trivial bundle as a bundle on
Z\R. Trivial as the difference is, I find it, as the reader will discover, hard to fix in
my mind. The integral of a constant function becomes linear and after passing to
the exponential even more difficult to recognize. This becomes even worse with
a curve and its jacobian. The jacobian is a quotient of a linear space on which a
differential of the first kind is just a constant element of the dual; on the curve itself,
it is hardly linear. The danger of confusing the intuition is even more severe for
differentials with values in a vector bundle or in a Lie algebra. Another feature that
leads to confusion is that the equations (7.9a) and (7.9b) describe the development
of a complex line, thus of a real plane, or better a local section of a U(1)⊂ GL(1)
bundle over X , even of a local system of X , because for it there is a local notion
of constant section. I have only increased the possibility of confusion by referring
to boundary conditions; at best, we are dealing with boundary conditions on a
rectangle.

In the analytic theory, we are dealing with characters, thus with functions with
values in the group U(1) of complex numbers of absolute value 1. So we are dealing
with one or the other of the equations (7.9a), say the first, or, in other words, with
U(1)-bundles. The sequence

{1} → Z→ R→ U(1)→ {1}

yields an analogue of Diagram I, in which the vertical arrow H 1(R)→ H 1(O) is
an isomorphism.

{0} H 1(Z) H 1(R) H 1(U(1)) H 2(Z) H 2(R)= R

{0} H 1(Z) H 1(O) H 1(O×) H 2(Z) H 2(O)= {0}.

Diagram II
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The significance of the diagram is that every holomorphic line bundle is realized
as a U(1)-bundle, that each of them carries a unique local system in the real sense,
thus with constant transition functions in U(1). All this is simple, but it has taken
me some time to appreciate the consequence: the analytic theory is closely related
to the holomorphic theory but different from it. In the analytic theory, the local
systems have automorphisms: sections of the associated U(1)-bundle. These are
automorphic forms, but this may not be pertinent.

It is worthwhile to explain this further. In the theory of algebraic curves, there
is a great deal of structure crammed into a very small space and it is difficult to
describe it in an orderly fashion. Starting with an element η in H 1(O)= H 0,1, we
add its image ?η, which lies in H 0(�1) = H 1,0, to it and divide by 2 to obtain a
form Reω. Then the element of H 1(U(1)), thus a flat sections of the bundle is
given by

exp
(

2π i
∫ p

p0

Reω
)
.

Notice that, because of the presence of H 1(Z) at the beginning of each line and
because of the factor 2π i that appears in the passage from R to U(1), Reω is
determined only up to a form with integral periods.

When the geometric theory is treated as an offshoot of the arithmetic theory, the
restriction to unramified representations or forms is unnatural. It is also unnecessary.
For the global theory on a nonsingular algebraic curve X , the space of differentials of
the first kind is replaced by the space�=�X of global meromorphic differentials ω
with local expressions ωx . There is one condition on the forms ω considered that one
might be tempted to impose: the residue at each point must be integral. I omit it for
a brief moment, because it took me sometime to understand the significance of such
a condition, but I shall very quickly impose it. Even if it is unnecessary, there are
already enough other complications to master. One consequence is that the solutions
of the differential equation d f/ f = ω are single-valued in a neighborhood of each
point, so that no singularities are introduced locally into the sheaf of solutions. So
the distinction is — perhaps — between a sheaf, thus by the differential equation,
that is by ω, which is well defined in all cases, and, up to a constant, a single-valued
function, its solution, which is not! The analytic impulse, as well as the arithmetic,
is to emphasize the function; the geometric impulse is to emphasize the sheaf.
The consequences of the two points of view have already revealed themselves. If
the condition of integrality is imposed, the periods of ω, thus its integrals over
one-cycles, are well-defined modulo 2π iZ. In particular the real and imaginary
parts are defined modulo 2πZ. The periods as such are not defined because an
integral of ω even over a cycle homologous to zero is given by the sum of the
residues in the 1-chain that it bounds.
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There are two difficulties in the Assertion, apart from understanding how it is
verified. First of all, it is an assertion only in an unramified context. Coming
from the arithmetic theory of automorphic forms or representations, I find this an
unacceptable restriction. We shall remove it. Secondly, there is no immediate link
to a theorem of Weil that we shall recall later and that offers a partial solution to
the problem of identifying the geometric galoisian group A, a kind of self-duality
similar to that of class field theory.

I recall the structure of the vector space of meromorphic differentials on X .
First of all the space of differentials without singularities, thus differentials of
the first kind, has dimension equal to g, the genus of the curve. Secondly, the
singularities may be assigned almost arbitrarily. There is only one constraint: the
sum of the residues must be 0. This is a consequence of, for example, the theorem
of Riemann–Roch, which can be cited in the form given in [Sp]. Take a finite set
of points x1, . . . , xn on the curve X and integers d1, . . . , dn . Then the space of
possible singularities concentrated on this finite set and of degree at most di at xi

is of dimension
∑

i di . If a given singularity can be realized by a meromorphic
differential ω then any other realization is of the form ω+ω′, where ω′ lies in the
g-dimensional space of holomorphic differentials. So to prove that differentials can
be assigned arbitrarily, we need only verify that for all choices of x1, . . . , xn and of
d1, . . . , dn with

(7.10) d1+ · · ·+ dn > 0,

the space of differentials with the singularities allowed by these choices is of
dimension g− 1+

∑
i di . The condition (7.10) takes account of the constraint that

the sum of the residues is 0. Take the divisor a on page 264 of Springer’s book [Sp]
to be −

∑
i di xi . Then, according to the form of the Riemann–Roch theorem given

there, the dimension of the space of possible differentials is

i(a)= g− 1+
∑

di ,

because, in the notation of [Sp], d(a)=−
∑

di and r(−a)= 0.
It is convenient to introduce an increasing sequence of differential forms: the

forms with no singularities, thus the forms of the first kind; the forms whose only
singularities are simple poles; finally, the forms with arbitrary singularities. We
can then add the supplementary condition, already introduced, that the residues be
integral. If δ1, δ2, . . . , δ2g is the base of the integral cycles, then ω→ Re

∫
δi
ω (or

Im
∫
δi
ω) defines 2g linear forms linearly independent over R on the g-dimensional

complex space of forms of the first kind. Moreover, as ω varies, the 2g-dimensional
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vectors in R2n or, perhaps better, in 4̂,

(7.11)
$R = {$R,i } =

{
Re
∫
δi
ω
∣∣ i = 1, . . . , 2g

}
,

$I = {$I,i } =
{
Im
∫
δi
ω
∣∣ i = 1, . . . , 2g

}
,

are arbitrary, but not independently arbitrary. Without the condition on the residues,
they are both path-dependent. Even if the condition on the residues is imposed,
the second is only defined modulo 2πZ, but, as already observed, that is all we
need because we use exp(i Im

∫
ω). The condition on the residue prevents us from

multiplying all ω by i or −i , so that the set of $I and $R may be different.
For the moment, we are dealing with line bundles, so that n = 1. My impulse

was to look for a theorem in which irreducible, thus one-dimensional, automorphic
representations of the geometric form of the group of idele classes appear. If there is
no ramification — and if we admit as automorphic representations only continuous
functions in the parameter x ∈ X , thus only continuous characters of the group of
divisors modulo those linearly equivalent to 0, a group whose connected component
is the jacobian, thus a complex variety of a dimension g that, as a group, may be
identified with U2g, U= {z ∈ C× | |z| = 1}— its group of unitary characters, thus
the set of irreducible unramified automorphic representations, is isomorphic to Z2g,
or to the group of differentials ω of the first kind for which $I lies in (2πZ)2g. It
is easy enough to make the isomorphism explicit in terms of F×\I0

F — rather than
in terms of the jacobian — by applying the method of [GH] for proving a theorem
of Weil, and we shall do so.

What then is the purpose of the remaining ω, either the remaining ω of the first
kind or, more generally, the differentials with singularities? For the comparison
with the Assertion, which is implicitly stated in an unramified context, it is the
differentials of the first kind that are relevant, but for the description of the global
group A in the geometric context, it will be necessary to admit differentials with
singularities, thus with negative powers in their local Laurent expansions. For this
prologue, however, it is best to consider only those with integral residue, since a
nonintegral residue introduces ramification in the line bundles themselves — local
sections at some points behave like zα, α ∈ C. That would, at this stage, be one
complication too many.

For the moment, we remain with differentials with no singularities. We count —
once again — the parameters available. I refer to Diagram I. It is clear from the
lower line of the diagram that line bundles are parametrized by Z2g

\R2g. The
upper line then shows that the possible local systems on a given line bundle are
parametrized by H 1,0(X)= H 0(X, �1), thus by R2g. So all in all, we need Z2g

\R4g

to specify a local system. On the other hand, in the analytic/arithmetic context the
set of unramified automorphic forms is given by the Z2g characters of the jacobian,



A PROLOGUE TO “FUNCTORIALITY AND RECIPROCITY”, PART I 629

or rather by their extensions to characters of F×\IF , parametrized by U or by
characters of I0

F\IF . These extensions are incidental to the central issue. So the
puzzling matter is the presence in the geometric theory of supplementary parameters
in Z4g

\R4g. We shall introduce them artificially. I was, initially, made more than a
little uneasy by the artifice.

We shall return to this point, but only after broaching the question of attaching,
in the geometric theory, an idele-class character to a differential ω, perhaps singular
but with integral residues. It turns out that this entails an enlargement of the notion
of idele class. We take the product of IF with 4g copies of Z, thus with two copies
ZR and ZI of Z2g, so that the dual of the modified group is the group of characters
of IF multiplied by two copies of the 2g-fold product of Z\R = U(1) with itself.
We introduce an imbedding of F× in IF = ZR ×ZI × IF by

(7.12) f 7→
2g∏

i=1

∫
δi

d ln f

2π i
×

2g∏
i=1

∫
δi

d ln f

2π i
× f.

There will be a finite number of points q1, q2, . . . at which ω has a singularity
and, for any given idele f , a finite number of points p1, p2, . . . at which f =

∏
x fx

has a zero or pole. If the sets Dω={q1, q2, . . . } and D f ={p1, p2, . . . } are disjoint
and if f ∈ F× is a principal idele we may introduce λR as the difference of

(7.13a) Re
{∑

j

resq j (ω ln f )−
∑

i

ordpi ( f )
∫ pi

p
ω− γ

∑
i

ordpi ( f )
}

and

(7.13b)
1

2π i

g∑
k=1

{
$R,g+k ·

∫
δk

d ln f −$R,k ·

∫
δg+k

d ln f
}
,

where γ is a supplementary complex parameter, p is a supplementary point, and a
choice of path from p to pi that avoids the singularities of ω is implicit for each i . It
modifies the value of λR only by an additive constant in 2πZ. We want to introduce
a pairing (ω, f )R = exp(iλR) defined for all ideles f . The expression (7.13a)
is certainly defined; the expression (7.13b) is not, but it is defined if we replace
f by an element f̃ of ZR × ZI × IF and

∫
δk

d ln f by 2π times the appropriate
coordinate of the ZR component of f̃ . This defines (ω, f̃ )R in general. We define
(ω, f̃ )I in the same manner. It is simpler to abbreviate f̃ to f , and I do so in the
following discussion, inserting the tilde if its omission would lead to confusion or
as a reminder.

The parameter γ only affects the pairing at those f whose total degree
∑

i ordpi f
does not vanish and two pairs (ω, γ ), (ω′, γ ′) yield the same pairing if γ ′−γ =

∫ p′

p ω.
As we did for the local parameters, we shall have to use both pairings (ω, f )R
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and (ω, f )I unless all the residues β0 of ω are zero. So the parametrization of
characters might best be expressed in terms of pairs ($R,$I ) with an appropriate
equivalence relation, but this would be too fastidious for a prologue and, in any
case, obvious.

The key to the global definition of (ω, f )R or (ω, f )I , whose properties have
yet to be discussed, is a generalization of a theorem attributed in [GH] to Weil. I
formulate the generalization as a lemma that implies that, for each ω, f 7→ (ω, f )R ,
f 7→ (ω, f )I define idele-class characters.

Lemma 7.1. If f is a principal idele and Dω and D f are disjoint, then (ω, f )R =

(ω, f )I = 1.

The theorem of Weil affirms that if f and g are meromorphic functions on the
compact Riemann surface X such that the set of zeros and poles of f is disjoint
from the set of zeros and poles of G then

(7.14)
∏

p

f (p)ordp(g) =
∏

p

g(p)ordp( f ).

For the simplest example, the projective line P1, the theorem is elementary and easy
to prove. Suppose, for example that f = (x − a1)/(x − b1), g = (x − a2)/(x − b2).
Then

( f, g)=
g(a1)

g(b1)

f (b2)

f (a2)
=

a1−a2

a1−b2

b1−b2

b1−a2

b2−a1

b2−b1

a2−b1

a2−a1
= 1

In general, the theorem is a consequence of a relation like that of the lemma, but
for ω = dg/g. The idele f is still to be principal. The relation becomes

(7.15)
∑

j

resq j (ω ln f )−
∑

i

ordpi ( f )
∫ pi

p
ω = λ ∈ 2π iZ.

The new relation is stronger, or, rather, more compact, because the periods of ω
themselves now lie in 2π iZ. This is not just a condition on the real or imaginary
parts. We recall the proof given on page 229 and on pages 242–243 of [GH],
following, so far as possible, the notation of that book. We have already followed it
with the usual description of the basic cycles δ1, . . . , δg, δg+1, . . . , δ2g that display
the surface as a planar polygon 1 with sides identified. We have a function f with
poles and zeros at pi and a form ω = dg/g with first-order poles at q j . The sets
{pi } and {q j } are taken to be disjoint. The pi and the q j are to lie in the interior of
the planar region and we join each pi to a common point p on the boundary by a
curve αi that avoids the q j , thus introducing incisions that reduce 1 to a region 1′

and add several curves to its boundary, the curve αi and the curve in the inverse
direction.
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Since
∑

i ordpi ( f )= 0 and φ(pi )= ln
∫ pi

p ω is well-determined up to a constant
independent of pi , the possible ambiguities, for example in the choice of the base
point p, have no affect on the relation (7.15).

As in [GH], we integrate the form ϕ = ω ln f over the boundary of 1′. By the
residue theorem, this integral is given by

(7.16)
∫
∂1′
ϕ = 2π i

∑
q j

resq j ϕ = 2π i
∑
q j

resq j (ω ln f ).

We collect terms as in [GH]. First of all, for identified pairs p, p′ on the arc δi and
on the inverse arc δ−1

i ,

(7.17) ln f (p′)= ln f (p)+
∫
δg+i

d ln f,

so that

(7.18)
∫
δi+δ

−1
i

ϕ =

(∫
δi

ω

)(
−

∫
δg+i

d ln f
)
.

In the same way,

(7.19)
∫
δg+i+δ

−1
g+i

ϕ =

(∫
δg+i

ω

)(
−

∫
δi

d ln f
)
.

Moreover for identified points p ∈ αi and p′ ∈ α−1
i ,

(7.20) ln f (p′)− ln f (p)=−2π i ordpi ( f ).

so that1 ∫
αi+α

−1
i

ϕ = 2π i ordpi ( f )
∫ pi

p
ω.

As in [GH], the conclusion is that

2π i
{∑

j

resq j (ω ln f )−
∑

i

ordpi ( f )
∫ pi

p
ω

}
is equal to

(7.21′)
g∑

k=1

{

∫
δk

d ln f ·
∫
δg+k

ω−

∫
δk

ω ·

∫
δg+k

d ln f }

1In the diagram of [GH], δ0 is meant to be s0, an arbitrarily chosen point on the boundary of the
planar region. I have denoted it above by p.
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or

(7.21′′)
g∑

k=1

{∫
δk

d ln f ·
∫
δg+k

d ln g−
∫
δk

d ln g ·
∫
δg+k

d ln f
}
.

In (7.21′′), all four integrals are of functions all of whose residues are integral and
all integrals are over closed curves. The conclusion is, as in [GH], that the sum is
an integral multiple of (2π i)2. The relation (7.14) follows.

To prove the lemma itself, we deal with (ω, · )R and, implicitly, (ω, · )I with
essentially the same sequence of formulas. Since f is now a principal idele, the
term in (7.13a) that contains γ is 0, and (7.13a) itself is reduced to the real part of

(7.22) λ=
∑

j

resq j {ω ln f (q j )}−
∑

i

ordpi ( f )
∫ pi

p
ω

and the assertion is that the difference between the real part of (7.22) and (7.13b)
lies in 2πZ. The proof is the same as before; we deal with (7.22) as we dealt with
(7.15), collecting terms in the same way:∫
δi+δ

−1
i

ϕ =

(∫
δi

ω

)(
−

∫
δg+i

d ln f
)
;

∫
δg+i+δ

−1
g+i

ϕ =

(∫
δg+i

ω

)(
−

∫
δi

d ln f
)
.

The conclusion is that

2π i
∑

j

(
resq j (ω) ln f (q j )−

∑
i

ordpi ( f )
∫ pi

p
ω

)
is equal to

(7.23)
g∑

k=1

(∫
δk

d ln f ·
∫
δg+k

ω−

∫
δk

ω ·

∫
δg+k

d ln f
)
.

To calculate λ, we take the imaginary part of this, divide by 2π , and subtract (7.13b).
This yields

(7.24)
g∑

k=1

(∫
δk

d ln f ·
(

Re
∫
δg+k

ω−$R,g+k

)
−

(
Re
∫
δk

ω−$R,k

)
·

∫
δg+k

d ln f
)
.

The periods of d ln f are all multiples of 2π i and the numbers Re
∫
δk
ω− ωR,k ,

k = 1, . . . , 2g, are also all integral multiples of 2π . Indeed they are 0, but that is
not the point here. This proves the lemma!

There is a difficulty with the pairings (ω, f )R and (ω, f )I that is resolved by
the lemma. For a given ω, it is not defined for all ideles f , or, to be precise, f̃ ,
only for those for which D f and Dω are disjoint. We can extend it to all ideles by
setting any given idele f equal to f1 f2, where f2 is principal and f1 is an idele
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whose set of zeros and poles is disjoint from the set of singularities of ω. Then we
set ($R, f )= ($R, f1), ($I , f )= ($I , f1). Thanks to the lemma, the result will
be independent of the choice of the factorization of f .

There is a second difficulty, not resolved by the lemma, at least not without
closer examination. What do we do if the function f or the differential ω has a
singularity at a point x on the boundary of 4, say in δl and thus in δ−1

l . So it can
be approached in two ways from within 4, one through a half-neighborhood of
a subinterval of δl , the other through a half-neighborhood of δ−1

l . If the limiting
results for the differences of (7.13a) and (7.13b) are the same modulo 2π , there is
no problem. We just deform δl a little around the offending point and the choice of
the deformation, whether we deform a little to the left in the sense of δl or in the
sense of δ−1

l to make the calculation does not matter. Since the singularities of ω
are assumed not to fall on the singularities of f , we can treat the two independently.

The contribution of a singularity of ω to the first term of (7.13a) does not depend
on the relation of its position to the curve δl . On the other hand, the second term is
affected as are the factors $R,k . The first is affected because the integral, inside 4,
from p to pi as a point on δ−1

l is replaced by an integral over a path inside 4 from
p to pi as a point on δl . The difference is a multiple of 2π i and is multiplied by
ordpi ( f ). So it causes no problem. The factor $R,l is deformed but the result is an
additive modification by 2π i times the residue of ω, which is assumed to be integral.

The singularities of f appear in both (7.13a) and (7.13b). Since it is easier,
we consider first the effect on (7.13b). The path δl first passes to the right of the
point and then to the left. So the modification in

∫
δl

d ln f is 2π i ordpi ( f ), and in
(7.13b) ±$R,g+l ′ ordpi f , where l ′ is l or l − g according as l ≤ g or g < l ≤ 2g.
It is evident that something similar will happen with (7.13a). The factor ordpi f
is already in evidence. The modification is therefore given by the negative of the
integral over the path from the point p0 to pi on δl followed by the inverse path
from pi on δ−1

l to p0. The two together, with sign, yield a closed path within 4
from pi on δ−1

l to pi on δl . Since we can deform the path inside the contour at the
cost of adding an integral multiple of 2π , we might as well move directly along the
boundary. The integrals along δl and δ−1

l cancel and we are left with the integral
along δl+g if l ≤ g and along the inverse of δl−g if l > g. So up to an additive factor
that is an integral multiple of 2π , the difference does not change. I apologize to the
more skillful reader for the clumsy argument. I hope it is correct!

The conclusion is that we have attached to ω two characters f̃ 7→ (ω, f̃ )R and
f̃ 7→ (ω, f̃ )I of F×\IF . In order to persuade ourselves that we indeed have, in a
useful way, identified all idele class characters, but also to understand what we have
in hand, we remind ourselves of the structure of the group of ideles, or rather of
ZF , and of its character group, and then of the structure of the group of characters
constructed from the admissible differentials.
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I observe first of all, to make the task easier, that ZR × ZI is a subgroup of
F×\IF and that the characters (ω, · )R and (ω, · )I , certainly yield, upon restriction,
all characters of this subgroup. The restrictions are trivial if

(7.25) $R,i ≡ 0 (mod 2π), $I,i ≡ 0 (mod 2π), 1≤ i ≤ 2g.

So the issue is whether we obtain all characters of F×\IF from forms ω satisfying
one or the other of the two conditions.

We are dealing with a great deal of structure in a very small space. We begin with
the curve X , an intuitively difficult object. Then we pass to its jacobian jacX , the
quotient of a vector space 4, which is a vector space over C and thus over R as well
by a distinguished lattice1. The jacobian carries not only the structure of a complex
manifold, but also the structure of an algebraic variety, and of a group. There are also
algebraic mappings of X×X , (x, y) 7→ x− y of X×X to jacX . Analytically — and
if we exclude all ramification — the functions of immediate interest are functions on
a subgroup of the group of idele-classes, namely on the group I unr

F \I
0
F = F×Iunr

\I0
F ,

indeed they are characters of this group. Such characters are determined by their
values on the elements represented by fu,v =

∏
x fx , where fx = 1, except for

x = u, v and fu = z−1
u , fv = zv , zu and zv being local parameters at u and v. Such

functions are obtained by taking characters χ of 1\4 and pulling them back to
functions χ ′ on I unr

F \I
0
F by setting χ ′( f u, v)= χ(u− v), u− v being the image of

(u, v) in the jacobian. This does not function in the geometric context because the
functions χ are not holomorphic. It does function in the geometric context if we
take χ as a holomorphic character of 4, thus a function exp(λ( · )) where λ lies in
the dual of 4 as a complex space. This appears to be the expedient found by the
geometers. It suggests that analysts, too, not demand that χ be a character of 1\4,
only that it be given by a real linear form λ on 4, χ( · )= exp(i Re λ( · )). This is
effectively what we have done.

Each element of the parameters that we propose for the characters of IF is
determined by two elements Reω, Imω′— the first element satisfying the first set
of conditions (7.25), the second the second set — because we allow products of
(ω, · )R and (ω′, · )I , where ω′ may or may not be equal to ω, and by a constant γ
that may be taken as real and is only pertinent modulo 2πZ. It is clear that with
the duality proposed, the function of γ is to generate the characters of I 0

F\IF . It
is the characters determined by Reω and Imω′ that matter. We pass to them, thus
implicitly passing to the quotient by the subgroup of characters generated by the
γ . It has already been observed that there is a classical filtration: forms of the first
kind (with no singularities) are a subset of forms of the third kind (with at most
simple poles, where for our purposes the residues must be integral), and these are
in turn a subset of the forms with singularities of arbitrarily high order (but always
with integral residues.)
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If ω is a form of the first kind, the form iω satisfies the condition on the residue
of integrality because the residues are all 0. It is therefore unnecessary to include
the second ω(= ω′) or, rather, the contribution (ω′, · )I . More precisely, we have
to divide by pairs (ω, ω′) of differentials of the first kind for which ω = iω′, but
this is a fastidious point of the parametrization. Since we know that γ accounts for
all characters of I 0

\I , to establish the desired duality we need only examine the
restriction of the remaining characters to I 0. The p that appears in (7.22) is a matter
of indifference. The differential forms of the first kind can be regarded as complex
linear forms on the complex vector space defining the jacobian. For the exponential
exp(i Re

∫ p
0 ω) to define a character of the jacobian, the real parts of the 2g periods

of ω must lie in 2πZ. This is the real part of the condition (7.25). The imaginary
part is not relevant here. It clearly defines a lattice in the g-dimensional complex
dual of the space defining the jacobian. Thus the characters defined by the ω chosen
give exactly the continuous characters of I unr

\I 0, which by the classical theory may
be identified with the jacobian. This is a repetition — and not the first — of previous
reflections. I should probably observe as well that with the conditions (7.25), the
formula for λR given by the difference between (7.13a) and (7.13b) reduces when
γ = 0 to

(7.13c) Re
{∑

j

resq j (ω ln f )−
∑

i

ordpi ( f )
∫ pi

p
ω

}
Since the differential forms of the first kind give, what may be regarded as

a complete set of characters on the quotient I unr
\I , all we have to do is assure

ourselves that differentials with arbitrary singularities, but otherwise satisfying
our conditions, give a complete set of characters on I unr, where, of course, the
characters defined by the differential forms of the first kind give 1. We must now
employ both ω and ω′. On the other hand, we need no longer concern ourselves
with the behavior outside of I tr. If we can match, at least on I tr, a given continuous
character χ with one χ1 given by a differential, then we can complete the matching
by identifying χχ−1

1 with a character associated to a differential form of the first
kind, perhaps multiplied, in addition, by the character associated to one of the
supplementary parameters γ ∈R. We first consider forms of the third kind, or rather
their real and imaginary parts, treating the two separately. They define characters
of I tr
\I unr.

It is clear from (8.6) that for a form ω of the third kind and an idele in I unr the
value of (ω, f )R is ∏

x

( fx f̄x)
inx/2 =

∏
x

exp(inxax)

where nx is the residue of ω at x , the only constraint being
∑

x nx = 0, and where

fx = exp(ax + ibx).
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For the imaginary part we obtain

∏
x

(
fx

f̄x

)nx/2

=

∏
x

exp(inx bx).

These together yield a complete set of characters of I tr
\I unr. The differentials of

the first kind yield of course the trivial character.
All that is left to show is that the real and the imaginary parts of all differentials

yield all characters of I tr, the differentials of the third kind yielding the trivial
character. This is clear from formula (7.4)

One point of view, the analytic, has been explained. Although it is not the
immediate issue in this prologue, it is important to explain how the geometric
theory and the notion of Hecke eigensheaf accommodate the same — or similar —
structures. It seems to me that with some of these matters, whether geometric or
analytic, one is walking a fine line between the manipulation of definitions and
genuine theorems. So there is reason to be uneasy. One goal, here and in the
following section, is to offer, at least conjecturally, a precise description of the
group A in the global geometrical theory. For its abelian quotient this will be, almost
inevitably, a reformulation of classical results for abelian integrals, well understood
by specialists and, to some extent, familiar to all. We have just rehearsed those
necessary for the analytic theory. I found that there was a kaleidoscopic variability
in the way these results presented themselves. I hope I have finally arrived at a stable
configuration of the constitutive elements. I now describe briefly the geometric
theory, but without attempting to include ramification. In the analytic theory, the
parametrization by PX = Bun1(X) is optional; it seems, on the other hand, to be
intrinsic to the Assertion.

The Hecke eigensheaves are supported, according to the definitions of [CFT]
on Bun G, thus in the context of G = GL(1) on Bun= Bun1. This is also a double
coset space of G(AF ), namely

B= G(F)\G(AF )/K ,

where F is the field of algebraic functions on F , K =
∏

x∈X Kx , where Kx =G(Ox)

for almost all x but for a finite number of places, thus for x ∈ S, Kx lies between
G(Ox) and a congruence subgroup {g ∈G(Fx) | g≡ I (mod zn

x)}, n ∈N. Of course,
G(AF )=

∏∐
G(Fx). In [CFT] — for Bun G itself — the set S is taken to be empty,

but this can scarcely be necessary, and it must be possible, with just a little care, to
incorporate the congruence conditions into the discussion. They may even simplify
matters, because the introduction of a level structure can remove, I suppose, the
vexing complications introduced by stacks.
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Hecke eigensheaves accommodate many possibilities because they are sheaves,
namely perverse sheaves, but for our purposes here, which is just to make the
connection between the geometric theory and the analytic theory, we can take these
perverse sheaves to be a local systems of dimension 1, thus line bundles with a
connection or locally distinguished constant sections. According to my innocent
reading of the notion of perverse sheaf, these are the simplest possibilities. A
possibility at a higher level would be the flat structure given not by differentials
of the first kind, but by differentials with singularities. Whether they have to be
singularities with integral residue, so that the sheaves are single valued locally, I am
not yet certain. Perverse sheaves with support are outside my range of experience,
as is the extension of a local system over the complement of a proper subvariety to
a perverse sheaf over the whole variety. For a first explanation of the notion of a
Hecke eigensheaf and its relation with geometric automorphic forms — in the more
general form envisaged as functions on F×\IF — differentials of the first kind
are adequate. The rest the reader can discover on his own. We shall incorporate
ramification into the discussion only in so far as necessary to make the ideas clear,
perhaps not at all. It is important to understand that the complexities introduced by
ramification are an essential feature of the theoretical structure even in the geometric
theory, but that the notion of a Hecke eigensheaf as such is of interest in itself and
that its extension to the ramified context offers only a very modest addition to one’s
intuitive understanding.

In the context of line bundles, we consider the Picard group P, which is the
moduli space for line bundles. Given a line bundle L on X , thus a point in P, and a
point x ∈ X , we can create a bundle Lx on X by modifying the notion of a section
of L in a neighborhood of x . If the local coordinate near x on X is taken to be z,
z(x)= 0, then the sections of the modified bundle Lx are the sections of L divided
by z. As a part of the construction of P as an algebraic variety, which is, of course, a
core element of the theory of algebraic curves, the map h from X×P to itself given
by x×L→ x×Lx is algebraic or, if one prefers, holomorphic, with a holomorphic
inverse. A perverse sheaf K on P can be pulled back to X ×P and then transferred
by h to one on the same space. For our purposes at present, this perverse sheaf
need be nothing more than a line bundle provided with a local notion of a constant
section, thus a local system, but it is best to be aware of the possibilities. I denote
the new sheaf by h∗K. The sheaf K is called a Hecke eigensheaf with respect to a
local system E on X if

(7.26) h∗K= E ⊗K.

For those who, like me, are not fully at ease with contemporary mathematics, I recall
that a local system is also a perverse sheaf. For n = 1, the Assertion is that, given
E , we can find a K that satisfies this equation.
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The intuition is clear. Translating within P by the action of x ∈ X , we modify K ,
but not in a way that can be detected locally, not even locally over X , although it can
be detected globally over X . It is difficult, however, not to become entangled in the
various strands of the geometry. The connected component P0 of the Picard variety
parametrizes bundles of degree 0 and differs only slightly from the full variety, but
it differs in an important way. The homology and cohomology groups of P0 over Z

and C are the same as those of X in degrees 0 and 1. So, in the following form the
first part of Diagram I applies to both X and P0,

(7.27)
{0} H 1(Z) H 1(C) H 1(C×)

{0} H 1(Z) H 1(O) H 1(O×)c1=0,

where in the lower right-hand corner only those elements with Chern class equal to
0 are allowed, thus line bundles of degree 0.

Consequently, in the case of P0, we may continue to consider local systems on
P0 as line bundles together with a differential form of the first kind. Local systems
on P — the only kind of perverse sheaf that I want to consider here — are just pieced
together from local systems on its various components. Different components are
linked by (7.26), which appears in [CFT] as Equation (3.9). Let Pn be the elements
of P of degree n, n ∈ Z. The comparison (7.26) effectively compares a sheaf on
the connected component Pn on the right with the same sheaf but over Pn+1 on the
left, but on both sides there is an extra parameter, one of which, that on the left, is
modifying the sheaf, while the other does not. So if we apply the equality twice,
once in one sense, once in the other, and take the varying parameters into account,
we see that we are imposing a condition on K, a condition that is described by E .
All we need to do is ensure that the condition is satisfied as we pass from 0 to 1 and
then, back again, from 1 to 0. That takes care of the necessary equality at the level
0, and then (7.26) routinely takes us through the other integers n =±1,±2, . . . .

From the identity of (7.27) for X and P0, we may identify a line bundle with
Chern class 0 on X and with one on P0 and a flat connection on the first with one
on the second. How does this function? We denote the construction in which rather
than admitting a pole of order 1 at x , we add a zero, passing from L to L−x and
introduce the corresponding map from X ×P to P by h′ : x×L→ x×L−x . Then
y× x ×L→ y× x ×Lx−y takes X × X ×P0 to P0 and (7.26) is replaced by an
equation for the restriction K0 of K to P0,

(7.28) h′
∗
h∗K0

= E−1
⊗ E ⊗K0

on X × X ×P0. The notation Lx−y is simply a more elegant, and perhaps more
suggestive, way of writing (Lx)−y .
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To prove (7.28) we need to know:

(?) The jacobian, thus the group of divisors of degree 0, is identical with the
elements of degree 0 in P, this identification being given by mapping the
divisor δ =

∑
i ±xi , xi ∈ X to the line bundle Lδ whose sections are functions

f with div f + δ ≥ 0.

(??) The isomorphism between the various cohomology groups appearing in Dia-
gram I on the one hand and (7.27) on the other can be obtained by pull-back
from x→ Lx−y with a fixed y and a fixed L.

So (7.28) is simply the assertion that E is the pull-back of K. It seems to be much
ado about nothing, but that would be, I suspect, a view that failed to appreciate the
marvels of the theory created by Abel, Jacobi and others.

This discussion suggests that, at least for GL(1), one neither wins nor loses by
working with the arithmetic/analytic structures rather than the geometric, but it does
not suggest to me a direct equivalence. The space Bun1(X)=P is implicated in an
essential way in the statement of the (geometric) Assertion. In the analytic theory
Bun1(X), or rather its connected component, appears as an optional enlargement of
the group of characters. There is one respect in which the analytic theory appears
to offer an advantage: the description of the group A. This description, which shall
be formulated and verified for GL(1) in this section, and for general quasisplit G
in the following section, but only as a conjecture that will not be entirely precise,
has to serve as my apology for an irritatingly lengthy rehearsal of familiar classical
material and the modern geometrical viewpoint.

For the local theory, an analytic theory, the group to be parametrized is formed
by the characters of F×x . Apart from the ambiguities in the extension of diagram
(7.5), the parametrization is given by differentials. So, to be as precise as possible,
because we are (almost!) dealing with definitions rather than theorems, just as the
characters of GL(1, Fx) are identified with homomorphisms of the Weil group into
GL(1) in the local arithmetic, so characters of GL(1, Fx) (or, at first, GL(1,Ox))
are associated with differentials ω with values in the Lie algebra of GL(1) over Fx ,
or rather with their principal parts. These form a group and should be regarded
as the abelian form Ax of the local Weil group in the geometric context, with
multiplication given by addition of differentials, except that the extension of �x to
�̃x of diagram (7.5) is needed to complete the construction.

Globally, we have introduced a similar relation between differentials and char-
acters, except that there is no longer a question of discarding the regular parts of
the differentials. Moreover, the characters are not characters of idele classes IF

but of an enlarged group F×\IF . Multiplication of characters becomes addition of
differentials. It is this group, or rather an extension of it by the group of characters
of the group P0

\P ' Z, that functions as the abelianized form Aab of the group
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AF . So it is an analogue of the abelianized Weil group with multiplication given by
addition of differentials,

(7.29)
d f
f
= ω1+ω2.

I add that class field theory has accustomed us to identify, in the arithmetic theory,
the abelianized form of the Weil group with IF and the Weil group itself with a
subgroup of the Galois group. There is a merging of definition and theorems that,
if we are not careful, obscures for us the accomplishments of the past.

Before turning to the theory for a general group, I remark that I may have found
partial answers to two questions while struggling not with proofs, but just with the
formulation of conjectures and assertions in the geometric theory: (i) what are the
respective merits of the geometric and analytic standpoint? (ii) what is the interest
of the geometric theory in itself, thus what are the principal theorems or conjectures,
independently of any relation to quantum field theory? The response to the second
question is best left to §9. The response to the first question is tentative, especially
as there are a number of clumsy aspects to the analytic theory for a general group
and even for GL(1). The difficulty with the geometric theory is that there are so
many possibilities that they are never exhausted. In the theory of Fourier transforms
there are many possibilities: the spectral theory for square-integrable functions;
Paley–Wiener theorems; theorems related to Schwartz distributions of various sorts;
the Laplace transform. I am inclined to take the spectral theory as central. For
the geometric theory, there is a similar difficulty. What is the core problem? My
hope for a spectral theory is that one could formulate a clearly defined spectral
problem, thus an L2-problem — differential operators with boundary conditions —
whose solutions on BunG could be regarded in at least some respects as a definitive
formulation of the existence problem for Hecke eigensheaves: an eigensheaf (or
eigenfunction) K= AutE on BunG with eigenvalue a L G local system E on X is a
pair characterized by a certain set of conditions on E and by the relation between
E and K.

The eigenvalue — in a sense like that of the geometric theory — is exp(i Reω). It
is Reω (or Imω) that is characterized by a differential equation, as the real part of an
analytic function it is harmonic outside of the singularities and with circumscribed
behavior at the singularities, for the residue is integral. Notice, in passing, that
we can recover Imω or ω— up to an unimportant constant from Reω— and the
Cauchy–Riemann equations. The function Reω is moreover implicitly subject to
a boundary condition. We have made the boundary condition more flexible, even
removed it, by introducing ZR (or ZI ), but that was necessary only to keep up with
the geometers. The boundary condition is a condition not on Reω as a function on
X but on the function (sheaf for the geometers) associated to it on K. Boundary
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conditions on ω itself would double their number and yield an overdetermined
eigenvalue problem.

When we allow singularities, K is replaced by a quotient IF/
∏

x Kx , where
Kx =O×x for almost all x , but for a finite number of x it is the set of fx ∈O× that are
congruent to 1 modulo some positive power znx

x of zx . It may not be immediately
apparent, but the definitions (7.13a), (7.13b), and the formulas for (ω, · )R , (ω, · )I

are an expression of the condition (7.26), although that condition refers more to
the characters defined by ω = Reω+ i Imω. In the geometric theory it is only
the local conditions on ω that matter, not the boundary conditions or conditions of
periodicity. As a consequence, or so it seems to me, there is for a general group
some difficulty in formulating the problem of existence.

It is difficult to recognize the equation (7.26) in the conditions (7.13a) and
(7.13b) for at least three reasons: (i) the condition (7.13b) is a matter of conditions
of periodicity; (ii) the final term of (7.13a) is constant on connected components of
Bun1, so that in the geometric or sheaf-theoretic context it has no meaning; (iii) the
first term is not present when ω has no singularities. Although the geometers are
well aware of the possibility of singularities [FG], they are not studied in [CLG].
Even when singularities are present, (7.26) is likely to remain, in that form, the
telling geometric condition.

One of the purposes of the next section is to begin the search, for a general
G, for a construction of automorphic representations analogous to that given for
GL(1) by (ω, · )R or (ω, · )I . Since these are unitary characters, we have to expect
unitary characters (representations) for a general group as well. The middle term
of expression 7.12.a controls the unramified contribution. The first term controls
the character on each O×x . The condition that the residue nx of ω at each point x
be integral implies that (ω, · )R and (ω, · )I yield respectively r in or eimn , where
n = resq j ω, f (q j )= reim .

8.a. The geometric theory for a general group (provisional)

Such a theory is not yet available even in embryonic form, although some reflections
are suggested by the previous constructions. As I observed in the previous section,
these constructions are perhaps not merely my interpretation of those explained
in [CFT], but are implicit in the proof of Weil’s theorem. The relation between
Lemma 7.1 and the calculation that yields it differ on the face of things from formula
(7.28) and its proof. Their interpretations are also informed by a different impulse:
sheaves are replaced by differential equations. For regular holonomic systems, there
is presumably an equivalence available [HTT]. After the admission of differentials
with more general singularities, this may no longer be so, although that is unlikely.
My impulse arises, however, from other sources: from a greater familiarity and
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perhaps even greater ease with differential equations than with sheaves, or perhaps
from a suspicion that, important, powerful, and fascinating as they are, in recent
decades an excessive, sometimes inappropriate, appeal to sheaves has, inadvertently,
had an unhealthy influence on some parts of mathematics or, rather, on some of its
practitioners; and from an attachment, already expressed, to representation theory,
as introduced, in a remarkable, but little read, sequence of papers by Frobenius,
in response to a suggestion of Dedekind and then developed by several major
mathematicians of the twentieth century.

For a general group G, even if it is split, as I suppose in this text, there is not only
no global geometric theory yet available, there is also no local theory. Moreover,
there is an extra question. What is the relation between, on the one hand, the
functoriality of the geometric theory, the identification of the group A = Ageom,
and a description of its properties and, on the other, the Langlands duality featured
in gauge theory? Are they one and the same, or are they different? That they are
different, occurred to me on reading a brief, but instructive and suggestive letter, that
I received from David Nadler in March of 2011. Nadler writes: “The 6-dimensional
theory Z depends not on a group G but only on the combinatorics of G in a way
that is unbiased towards G and its dual group G∨.” This is not so for the theory to
whose preliminary exploration this section is devoted: G and L G (or G∨) do not
play symmetric roles! Moreover, there is no 6-dimensional field theory in sight. So
there is a great deal left for me, and perhaps not for me alone, to understand. It will
be best not to broach this question until Section 9, yet to be written. It requires a
good deal of supplementary reflection, informed by some knowledge of field theory.

Indeed, even my attempt to broach the purely mathematical questions turned
out to be premature. One of the principal mathematical problems of the geometric
theory, perhaps the principal one, is the identification of the geometric galoisian
group Ageom in terms of differentials, thus the general form of the identification of
its abelian quotient in the previous section. This is by no means a simple matter, for
it demands a serious understanding, not merely a formal understanding, of moduli
spaces for vector bundles and G-bundles, of the differential geometry of these
bundles as in [Si], and of the relation between D-modules and perverse sheaves.
These are all very rich subjects, of which I could not hope to acquire an adequate
understanding before the deadline imposed by the editor of this volume, if ever. So
I was forced to content myself with some provisional suggestions just to intimate
to the reader what I have in mind. As will be almost immediately evident, there are
major unresolved difficulties left open.

The identification of Ageom entails functoriality for the geometric theory. If there
is some form of reciprocity — different as our title implies from functoriality — in
the geometric theory, I do not know how to formulate it. The geometric Langlands
program as envisioned in [KW] contains, I suspect, much, much more than the
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identification of the geometric galoisian group Ageom in terms of differentials
envisaged in this section. It may, indeed, have little relation to it. It does contain a
kind of duality, but it may be best to distinguish this duality from the reciprocity
in the arithmetic theory and from any concrete identification of Ageom, although it
is clearly related to this. It had been my intention to begin, in a ninth section, the
attempt to understand [KW] and, more generally, the many and various contributions
to the geometric theory and its relation to quantum field theory, but that, as I have
already confessed, is matter for an even more distant and more uncertain future.

In Section 7, the emphasis was on functions on BunG =PX , G=GL(1); sheaves
were not emphasized. There is, indeed, a major difference. The forms ω were
parametrized by a local system and then by a second parameter in H 1(Z). Two
elements of H 1(R) in the first line of Diagram I that differ by an element of H 1(Z),
define isomorphic local systems or, viewed from another angle, an automorphism of
a given line bundle replacing one local system by another, thus, in terms of one of
the local systems multiplication of the flat connection by the character exp(i Reω),
where the exponent is constrained to be the imaginary part of a holomorphic function.
So there is a mixing of a real (unitary) theory and a complex (holomorphic) theory.
This brings with it advantages but also difficulties. One of the difficulties for
me is that — as is clear from [Si] and the works there cited — the mixing for a
general group demands very serious differential-geometric preparation, not merely
the Cauchy–Riemann equations. One advantage, already explained, is that, in the
analytic theory, we can hope to formulate the problems in the context of a spectral
theory in an L2-space.

I expected, on first reflecting on the matter, that, as for GL(1), the group Ageom

will be given by a kind of inverse limit of differentials with values in Lg, the inverse
limit being taken over ω→ ω′, where ω′ is the image of ω under a homomorphism
L G→ L G ′ in the sense of L-groups. So the inverse limit is over the group, the direct
limit over the differentials. In order to deal with all automorphic representations,
we would have to admit, as for GL(1), differentials with singularities. Whether
there should be restrictions on the residues similar to those we described for GL(1)
can be left moot. Even for those without singularities, there is a great deal of theory
to understand.

As an aside, I mention that, following [CFT], I shall take the group action on
G-bundles and on L G-bundles to be on the right. So, once we have fixed a local
trivialization, the differentials generate along curves a function with values in L G
according to the differential equation dg · g−1

= ω.
My first expectations were perhaps, in the light of our understanding of the

geometric theory, too naive, too influenced by the construction of the geometric
Aab. If there is homomorphism L H → L G, then the differential with values in
ĥ transfers to ĝ, so that if a parametrization of automorphic representations or
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forms in the geometric theory is established, functoriality will be an immediate
consequence. In the arithmetic theory the definition of the galoisian group Aarith is
based on functoriality and on the notion of a hadronic representation, itself based
on the properties of L(s, π, ρ), ρ : L G→ GL(n). This assumes, in particular, that
in establishing functoriality we have also completely understood the nature of the
Ramanujan conjecture and the Arthur parameters. Although I have alluded to these
in the arithmetic context, I have not attempted any, even conjectural, definition in
a geometric context. This would be reckless without more experience with the
classification of bundles for specific groups on specific curves, with the parameters,
and with the corresponding automorphic representations. We need more concrete
assurance that the parametrization proposed here is correct and some insight into
its specific consequences. There may be surprises. This is one of the many reasons
that this section is provisional. In one way or another, the parameter obtained from
ω on transfer to GL(n) under an irreducible ρ will be a direct sum of irreducible
parameters, ωi , for GL(ni ),

∑
i ni = n,

(8.1) ω→
⊕

i

ωi .

The initial parameter ω would be hadronic if there were no i for which ni = 1 and
ωi is trivial.

There are also many other many other matters to consider. We have somehow
to reconcile the unitary and holomorphic (or meromorphic) forms of this equation.
I am not yet in a position to do so and am uneasy about suggesting definitions
that I do not understand. For the moment, the definition of Ageom remains, at best,
imprecise. To make it clear that anyone who, like me, has little or no differential
geometrical experience has much to learn, I quote one of the first paragraphs in [Si],
which treats GL(n), which can for us be regarded as typical. Although our concern
is with complete nonsingular curves, the statement in [Si] refers more generally
to smooth, projective X . “A harmonic bundle on X is a C∞ vector bundle E with
differential operators δ and δ̄ and algebraic operators θ and θ̄ (operators from E
to one-forms with coefficients in E), such that the following hold. There exists
a metric K so that ∂ + ∂̄ is a unitary connection and θ + θ̄ is self-adjoint. And
if we set D = ∂ + ∂̄ + θ + θ̄ and D′′ = δ̄+ θ , then D2

= 0 and (D′′)2 = 0. With
these conditions, (E, D) is a vector bundle with flat connection, and (E, ∂̄) is a
Higgs bundle: a holomorphic vector bundle with holomorphic section θ such that
θ ∧ θ = 0.” Of course, for a surface some of the assertions are superfluous. This
statement is followed by a theorem whose first sentence I repeat. “There is a natural
equivalence between the categories of harmonic bundles on X and semisimple flat
bundles (or representations of π1(X)).” I observe that this statement does not take
into account a possibility that we encountered for GL(1): automorphisms of the
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unitary bundles and associated automorphic forms.
There are so many questions in the geometric theory, both local and global, that

have never been touched, that I am more than a little uncertain of the similarities and
differences between it and the arithmetic theory. Perhaps we should begin by stating
clearly the difference between the objects in the analytic theory and the objects in
the geometric theory. They are all constructed from the curve X , a set of points, but
also a Riemann surface and the “set” BunG(X) of G-bundles on X , with or without
the extra structure that allows the introduction of ramified automorphic forms. The
set BunG may be identified with G(F)\G(AF )/

∏
x∈X G(Ox) (see [CLG]) or, if

there is extra structure, with G(F)\G(AF )/
∏

x∈X Kx , where Kx is equal to G(Ox)

for almost all x , say x /∈ S, S finite, and, for example, equal to Gnx
x for x ∈ S, where

nx is a nonnegative integer and Gnx
x the set of elements in G(Ox) congruent to 1

modulo m
nx
x , where mx is the maximal ideal in Ox , but it may also be constructed

geometrically.
Although these two descriptions yield the same two sets, they yield functionally

dissimilar objects. As identified with G(F)\G(AF )/
∏

x∈X G(Ox), BunG(X) is a
set in the familiar sense; constructed as a stack it has, essentially, the structure of an
algebraic variety, which can be recovered from that on the quotients G(Fx)/G(Ox),
a matter to which we shall return but not to examine it in depth. In the one context,
the appropriate objects are functions; in the others, sheaves. As we have seen, we
can expect — or hope — that for functions more precision is possible because more
structure is possible.

It is not clear where it is best to begin, perhaps by reviewing the very little we
know about the local theory, or, if one prefers, what we clearly do not know. Like
the theory over a number field or one of its completions, the analytic theory over the
function field and over its completions Fx is a theory about representations, usually
infinite-dimensional. The group G(Fx) has a sequence of decreasing subgroups:
G(Fx)⊃ Gunr

x ⊃ G tr
x , where Gunr

x = G(Ox), G tr
x = G1

x is the set of g in Gunr
x whose

power series expansion begins with the identity. These subgroups are of course
not normal, but we can consider, as a first, coarse classification locally, irreducible
representations whose restriction to one or the other of the subgroups contains this
or that irreducible representation. The most important are those whose restriction
to Gunr

x contains the trivial representations. Their theory is the theory of spherical
functions and characters of the Hecke algebra. We can admit all characters; we can
admit “tempered” characters; we can admit those characters that correspond over
a local arithmetic field to Arthur parameters, although Arthur parameters in the
geometric context are certainly not a topic to broach in this prologue. The theory
of spherical functions, a generalized form of the theory of elementary divisors, will
be, in many respects, the same for the geometric theory as for the arithmetic theory.
So unramified characters will be parametrized by a conjugacy class t in L G(C), or,
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even, if we assume, as we have done, that G is split, by a semisimple class in Ĝ(C).
We can take this class to be arbitrary and this corresponds to a geometric theory or
we can take it to lie in a compact form Û (R) of Ĝ(C) and this corresponds to the
tempered analytic theory, the adjectives “geometric” and “analytic” having for the
moment only the imprecise meaning suggested by various remarks in the previous
section.

In contrast to the arithmetic theory, the representations of the group Gunr
x /G tr

x
may be infinite-dimensional. There are two possibilities. We can consider either
representations of G(C) or the representations of its compact form U (R). As for
GL(1), when dealing with a higher-dimensional G we have to choose between
a holomorphic theory and an analytic theory. I choose, because of preferences
already acknowledged and for reasons already explained, the analytic theory. It
is not entirely clear what this implies even locally. The abelian theory suggests
that it is the representations of G(C) that we need. Although this is a noncompact
reductive group and the distinctions of §2 — the class of tempered representations,
the Arthur class, general representations whether unitary or not — may be pertinent,
it may be the finite-dimensional representations, these suggested because the trivial
representation certainly appears in the unramified theory, to which we should pay the
most attention. They can be holomorphic or antiholomorphic or some mixture of the
two. The usual (Langlands) classification parametrizes the tempered representations
by conjugacy classes of homomorphisms of WC =C× into L G, thus by z = reiθ

→

rλeiµ(θ) where λ is a real linear combination of weights of G and µ a weight
of G, the pair (λ, µ) being given up to conjugation up to the action of the Weyl
group. The holomorphic finite-dimensional representations correspond to unitary
representations of the unitary form of G and these correspond to homomorphisms
of U (1) into L G, thus to λ = 0. The similarity of the parametrizations of the
characters of the Hecke algebra (related to unramified representations) and of
certain representations of Gunr

x /G tr
x (related to tamely ramified representations) is

curious and gives pause for reflection.
It is suggested by the theory for GL(1)— and confirmed by various reflections,

although by no means certain — that a central role will be played by differentials
with values in the Lie algebra ĝ= Lg and their real parts, taken in an appropriate
sense, which I hesitate to attempt to make precise without a better understanding of
the differential geometric theory [Si]. They will define the local system E of the
Assertion of §7 or of the related Conjecture that follows in this section. What are
the restrictions on these differentials and what do we mean by their real parts? The
first question to be answered is what the nature of their residues must be, for — as
I suppose — the residue at a point controls, when their is no higher order singularity,
the representation of Gunr

x /G tr
x . So far as I know, the representations of Gunr

x /Gn
x ,

n > 1, have been little studied, nor, of course, have those of G(Fx)/Gn
x , n ≥ 1. The
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discussion in this section is predicated on the hypothesis that they are controlled by
the singular part of a Laurent expansion of a differential ω with values in ĝ. The
residue, thus the coefficient of 1/z, will be an element of ĝ. The demand that it be
integral is compatible with our discussion of the tamely ramified parameter µ in
the preceding paragraph.

The group G tr
x is an infinite-dimensional Lie group. We shall only be con-

cerned with representations of the finite-dimensional quotients G tr
x /Gn

x . It is a
finite-dimensional simply connected nilpotent Lie group and its irreducible unitary
representations are classified by the method of coadjoint orbits [VE], thus by
conjugacy classes in the dual of the Lie algebra over C of G1

x/Gn
x . Thanks to the

sequence G1
x ⊃ G2

x ⊃ · · · these coadjoint orbits form an increasing sequence of
sets. This can be interpreted to state that they are parametrized by the singular parts
of local differentials ω at x with residue 0 and values in ĝ.

These facts together suggest, but hardly prove, that the local parametrization for
a general group is very much like that of the diagram (7.5) for GL(1), although
I do not yet know how to define in general the patching of conjugacy classes of
GL(C) that appears in its upper line. This suggestion will be taken as an hypothesis
for the remainder of this section. I have made no attempt to prove it. The local
theory is only a part of the unresolved difficulties, and this prologue, even the essay
Functoriality and Reciprocity that I hope will follow it, is intended to be no more
than a first exploration of possibilities.

As with the arithmetic theory, the major issues in the geometric theory will be
global. They may not be so difficult as for the arithmetic theory, but the theory of
vector bundles or of G-bundles on curves over C is very rich and for me largely
unfamiliar, so that I could very easily overstep the limits of my knowledge, which
are severe. It would certainly be presumptuous for me to say too much at this stage,
but I do want to sketch the possibilities. Although the problem of describing the
global geometrical galoisian Ageom may be more accessible than that of describing
Aarith, we can expect it to be difficult and to require a good deal of experience and
technical skill. It is my hope that the arguments for GL(1), especially the proof of
Lemma 7.1 in which the calculus of residues is applied, will serve as a model.

The principal issue is to understand the unramified theory or, better, the theory
at the unramified places. For the unramified theory, the basic object is

(8.2a)
G(F)

∖ ∏∐
x∈X

G(Fx)
/∏

x
G(Ox)= lim

−→T
GT (F)

∖ ∏
x∈T

G(Fx)
∏

x /∈T
G(Ox)

/∏
x

G(Ox),

GT (F)= G(F)∩
{ ∏

x∈T
G(Fx)

∏
x /∈T

G(Ox)
}
,

where T can be taken as large as appropriate. If there is ramification, the first line
will be replaced by
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(8.2b) G(F)
∖ ∏∐

x∈X
G(Fx)

/∏
x

Kx = lim
−→T

GT (F)
∖ ∏

x∈T
G(Fx)

∏
x /∈T

G(Ox)
/∏

x
Kx ,

where Kx is open in G(Ox) for all x and Kx = G(Ox) for x /∈ S ⊂ T .
The set (8.2a) is BunG and the set (8.2b) is BunG with frills. There are expla-

nations to be given because BunG is, whether as a variety, as an injective limit of
varieties, or as a stack, an algebro-geometric object. For us, however, who want
to make the connection with the geometric theory of automorphic forms, it is also
simply a set. Whether as a variety or as a set it is a quotient. We begin in the
unramified context with the trivial G-bundle, which we modify by an element of∏

x∈T gx , gx ∈G(F). If we take gx = 1, x ∈ T ′−T , T ′⊃ T , this can be regarded as
an element of

∏
x∈T ′ G(Fx)/

∏
x∈T ′ G(Ox), so that we have an injective family of

sets. Since each gx is defined in a neigborhood of x and regular in this neighborhood
except at x and since we can enlarge T to T ′, we can suppose these neighborhoods
cover X , so that the collection {gx} defines a G-bundle. We can even suppose that
gx ∈ G(F) because the set gx G(Ox)∩G(F) will not be empty, and we can replace
gx by an element of this set. The choice does not affect the bundle. The conclusion
is that any choice of g ∈

∏∐
G(Fx) defines a G-bundle on X and that all G-bundles

are obtained in this way.
Thus BunG is constructed as a limit of the quotient of∏

x∈T

G(Fx)/G(Ox)

by GT (F). Each point of G(Fx)/G(Ox) represents a modification of BunG at the
point x ; it is an extremely complicated variety, the direct limit of finite-dimensional
subvarieties. Thus, starting from single point of Bun G, the trivial bundle, and
repeatedly modifying the bundle, each modification at perhaps a different point, we
can reach any bundle. So there are two sources of complexity in the construction
of BunG . They are the modifications and the divisions by GT (F). It is well to
give some examples for vector bundles, thus for the groups SL(n) and GL(n), to
see how the parameters in G(Fx)/G(Ox) and the parameter x together lead to very
complex modifications that may, because of the division by GT (F), yield a bundle
isomorphic to that with which we began. The topological or geometrical structure
is a combination of the double parametrization: by the parameter of x ∈ X and by
the coordinates on G(Fx)/G(Ox). For GL(1) this double parametrization is simple
because G(Fx)/G(Ox)' Z. Thus, as in the second term on the left of (7.15), the
only relevant parameters are pi , basically a point in a neigborhood of p, and the
integer ordpi ( f ). For groups of higher dimension, the parameters are far more
complex.

Consider G = GL(n) and, first of all, the structure of Bunx = G(Fx)/G(Ox)

as a space or variety, whose dimension is infinite, on which G(Ox) acts to the
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left. If z is the local coordinate at x , the representatives of the double cosets in
G(Ox)\G(Fx)/G(Ox) are the matrices

t (m1, . . . ,mn)=


zm1 0 0 . . . 0
0 zm2 0 . . . 0
0 0 zm3 . . . 0
...

...
...

...

0 0 0 . . . zmn

 ,

where the mi are integers, implicitly subject to the condition m1 ≥ m2 ≥ · · · ≥ mn .
The variety Bunx is a union of the connected components Bunx,m defined by the
condition

∑
i mi = m. Multiplying by a scalar matrix, we replace Bunx,m by

Bunx,m+kn , k ∈ Z. We shall consider some examples, taking small values of m and
n.

For m = 0 and all n, there is a distinguished point,

q0 = G(Ox)t (0, 0, . . . , 0)G(Ox)/G(Ox).

If n = 1, it is the only point in Bunx,0. In general,
(8.3)
Bunx,m1,...,mn =G(Ox)t (m1, . . . ,mn)G(Ox)/G(Ox)'G(Ox)/P(m1,m2, . . . ,mn),

where
P(m1,m2, . . . ,mn)= G(Ox)∩ (tG(Ox)t−1

∩G(Ox))

= {(ai, j ) � ai, j ≡ 0 (mod zmi−m j )},

with t = t (m1, . . . ,mn).
As in [CFT], we can try to grasp the full space G(Fx)/G(Ox) by writing the

elements of G(Fx) as products nak, where n is unipotent and upper-triangular, thus
n ∈ N (Fx), a is a diagonal matrix T = t (m1, . . . ,mn) = diag(tm1, . . . , tmn ), and
k ∈ G(Ox). The connected components are then given as algebraic varieties by

(8.4) N (Fx)/(N (Fx)∩ T G(Ox)T−1)×G(Ox),

which is closed in the full variety. The structure of the first factor has to be explained,
but it is intuitively clear. For example, if n = 2 and m =m1−m2, then a full set of
representatives for the quotient in (8.4) is given by

(8.5) n(p)=
(

1 p(t)
0 1

)
,

where p is a finite Laurent series with an indefinite number of nonzero terms of
negative degree, p(t)=

∑
k<m ak tk . If p(t) is identically 0, then n(p)T lies in the
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double coset with parameter (m′1,m′2), where {m′1,m′2} = {m1,m2} and m′1 ≥ m′2.
Otherwise, let l be the least k for which ak 6= 0. Then

(8.6) n(p)T =
(

tm1 tm2+lα(t)
0 tm2

)
,

where α(t) is a polynomial with nonzero constant term. If m2+ l ≥min{m1,m2},
this lies in the same double coset as when p(t)= 0, otherwise it lies in the double
coset with parameter {m′1,m′2} = {m1− l,m2+ l} and m1− l ≥ m2+ l. Since we
can choose l to lie as far to the left as we like and then let all the coefficients of
α(t) approach 0, we conclude that one coset can lie in the closure of many others.

On the other hand, some of the double cosets (8.3) are closed. If m1 ≥ m2, the
relation between the parameters at the end of the preceding paragraph is m1− l ≥
m1≥m2≥m2+l. If (m1−l)−(m2+l)= 1, this is out of the question. If m2≥m1,
the relation is m1− l ≥ m2 ≥ m1 ≥ m2+ l and there is the same difficulty. So the
set Bunx,1,0 is closed.

There are clear relations of containment between the various groups P(m1,m2,

. . . ,mn), that yield mappings between the various sets Bunx,m1,...,mn or, more
generally, between the analogous varieties for a general G. They are usually
referred to as a blowing-up or a blowing-down, or as Hecke correspondences, or as
modifications. It is certainly appealing and useful to keep the geometric language
and the geometric context in mind, but we shall not always do so. A partial order
on the weights of the usual kind and, for example, arguments along the lines of the
discussion of the previous paragraph provide a partial order by inclusion on the set
of closures Bunx,τ of the varieties Bunx,τ = G(Ox)τ/Gal Ox) and these closures
are complete. The element τ is a matrix t (m1, . . . ,mn) for GL(n) and an element
in, say, a split torus for a general (split) G. The varieties themselves are open in their
closure. It is possible — it is so already for GL(1)— that we cannot find a cofinal
set of Bunx,τ , but we can find a cofinal family of finite unions

⋃
i Bunx,τi . So we

can introduce the union of these varieties to obtain a variety Bunx =G(Fx)/G(Ox),
infinite-dimensional but the union of closed, finite-dimensional subvarieties.

This is very likely all familiar. We use it to construct the global BunX . Let T be
a finite set in X and {τx , x ∈ T } a collection of τ . Consider

(8.7)
∏
x∈T

Bunx,τx ⊂

∏∐
Bunx,τx ,

where for the imbedding of the left side in the right, it is understood that τx = 1,
x /∈ T . In principle, we can fix T and take a union to arrive at

(8.8a)
∏
x∈T

G(Fx)/G(Ox),
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which we can divide by

(8.8b) GT (F)= G(F)∩
{∏

x∈T

G(Fx)
∏
x /∈T

G(Ox)

}
,

but this will lead to a discrete object. There is a second, more important limit
implicit in (8.8a). We can first fix the number of elements in T = {x1, . . . , xn} ∈

X× . . . X = X (n), so that we introduce n supplementary parameters, as in the theory
of the Picard variety, although repetitions are not necessary. They are already at
hand in (8.8a). It is presumably better to take the limits in the order opposite to
that suggested in (8.2a) with a finite number of double cosets at first but with all
possible T . Then, as for GL(1) and the Picard variety, we may reach the limit before
exhausting the possibilities offered by (8.8a). This construction poses problems of
various kinds, with stability, stacks and with other matters. I am in no position to
deal with them at the moment and prefer to pass on to another issue, the central
question of this section. So I simply take them as solved or, at least, solvable. In
essence, however, we arrive at the algebro-geometric form of the set appearing as a
limit in the modified form of (8.2a),

(8.8c) lim
n

⋃
|T |=n

GT (F)\
∏
x∈T

G(Fx)/G(Ox).

It appears that, in spite of its formidable appearance, the algebro-geometric result
is finite-dimensional. Indeed, for some curves X , it is, I find, strangely simple [At;
Le].

The central question for us here is whether the method used in the previous section
to construct a character from the differential form ω can function for nonabelian
groups. There are three issues raised by formula (7.13a) and (7.13b): the periods
that appear in (7.13b) and whose existence was accommodated by the introduction
of ZR and ZI ; the contributions of the singularities of ω; the contributions of the
singularities of f . It is clear thatω in both its holomorphic (in general, meromorphic)
and unitary form will yield a homomorphism of the fundamental group into G(C)
or into its unitary form, thus a nonabelian form of the periods. Any study of this
will have to wait until I better understand the issues arising from a study of [Si].

We do not yet understand the local ramified theory. So we have to exclude, at
least provisionally, all ramification. One possibility is to assume that ω itself has
no singularities. Another possibility to keep in mind is that we can fix a finite set
S ⊂ X , which T is always supposed to contain, and, for x ∈ S, fix gx ∈ G(Fx) and
a nonnegative integer nx and work not on (8.8a) but on

(8.9)
∏
x∈S

gx Gnx (Ox)
∏

x∈T/S

G(Fx)/G(Ox)
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and to divide not by (8.8b) but by the subset of this set consisting of g for which
ggx Gnx ⊆ gx Gnx , for all x ∈ S. If we work on the set (8.9), we are excluding the
effect of the singularities of ω, thus effectively imposing the condition of Lemma 7.1
that the singularities of f and ω be disjoint. So we are left with the middle term
of (7.13a).

What is the issue? For GL(1), the form ω leads not immediately but in connection
with the Abel–Jacobi theory to a Hecke parameter at every place and the identity of
Lemma 7.1 obtained from the residue theorem shows that the character constructed
as a product of the local parameters is an idele-class character. Apart from the
ambiguity already noted, which has to be resolved, the form ω should also give a
local parameter everywhere and thus local spherical functions φx (normalized, say,
to be 1 at the identity). The problem is to show that the local parameters together
yield an admissible global parameter. In other words, there is a compatible family
of functions fT (associated in some way to a perverse sheaf) on the varieties of
(8.2a), each fT being, first of all, a linear combination (perhaps in some general
sense — a direct image of some perverse sheaf) of left-translations of

∏
x φx and,

secondly, invariant under the group GT (F). The function fT once chosen — in
whatever way imagination suggests — integration around the outside of 4′ and the
residue, can with any luck, be used to show that it is invariant under GT (F). There
is, as will be apparent, a gulf here, maybe two, that I make, for the moment, no
proposal for bridging.

I had initially hoped that even if I was unable in this, the first part of the prologue,
to reach the relation of the geometric theory to quantum field theory, I would be able
to make a convincing suggestion about the construction of the mathematical theory,
thus about the construction of the group Ageom. The possibility of constructing it in
terms of differentials with values in Lg is suggested by the abelian theory and I had
hoped — and still hope — that one could prove the appropriate theorem with the help
of the residue theorem as for Lemma 7.1. There are encouraging signs, but there are,
as I have just explained, also obstacles: for example the full determination from the
differentials of the parameters of the spherical functions at each unramified place.
On the other hand, the example of elliptic curves [At] suggests that the moduli
spaces for G-bundles may be simpler, at least in some respects, than one fears.
Although I still had a few weeks grace until the deadline for submitting the paper,
I concluded in the face of this and other formidable obstacles that it would be best to
stop at the point I had reached, where an uncertain optimism was still possible, and
to give myself the leisure — more than a few weeks — to understand better not only
the spaces BunG and their differential-geometric and algebro-geometric properties
but also the quotients G(Fv)/G(Ov) and the geometrical spherical “functions”.

Certainly my limited understanding of the construction of BunG is a handicap.
There are two puzzles that I have already mentioned. The first is the construction
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of the local parameters µx ∈
L G for the spherical functions, defined only at the

unramified points. I have suggested that for the abelian theory they are to be
defined by the integral of the differential form as exp

∫ p
p0
ω = µpµ

−1
p0

, but without
being myself sufficiently clear of how µp0 was defined. In fact, for G = GL(1),
BunX = PicX =

⋃
n∈Z Pn and p0 ∈ X is to be interpreted as a point in P1, the

bundle attached to it being the trivial bundle modified by permitting a pole at p0.
The value µp0 is given by γ in formula (7.13a), thus by a supplementary parameter,
so that the parameter of the automorphic representations contains, in addition, to
the differential ω a complex number eiγ of absolute value 1. Until I understand
better the nature of differentials on X with values in L G and the structure of BunG ,
it is idle to make suggestions about the form of Ageom that are more precise than
that already made at the beginning of this section.

Although I prefer to fix my attention on the geometrical theory as a theory of
automorphic forms, thus on functions on BunG , it is still necessary to reckon with
algebro-geometric aspects of the problem. Geometrically, the Hecke algebra has, it
appears, to be defined geometrically. The double-coset space

G(Ov)\G(Fv)/G(Ov)

may be discrete, but G(Ox) and the spaces G(Fv)/G(Ov) are algebraic varieties, so
that convolution of two elements in the Hecke algebra, formally

∫
f1(gh−1) f2(h)dh,

has to be defined — so far as I can seen — not as an integral but in terms of direct
images of (perverse) sheaves under the mapping of (g1, g2) 7→ g = g1g2. I would
suppose that, if convolution is to be defined, the spherical functions will also have
to be interpreted as sheaves, again perverse, and as sheaves will not have support
in a compact subvariety of G(Fv) or G(Fv)/G(Ov). I am not absolutely certain
that we will need a formula for these sheaves, but suspect we will; I am also not
certain what form it will take. I take the existence of the formula, in some form, for
granted below. The necessary formula could very well be discovered and proved
by taking the theory over p-adic fields as a model. So far as I know this has not yet
been done. What we have to do, at least for the unramified theory, is first establish,
or at least surmise, what the local parameters are. Each of them is supposed to
be a conjugacy class in L G(C) or even, if a form of the Ramanujan conjecture
is valid, in the unitary form LU of this group, although my interpretation of the
results of [At] suggests that the possibility of Arthur parameters intervening has to
be kept in mind. It may be that some authors have reflected on the presence of the
distinctions familiar from the arithmetic context — tempered or of Arthur type — in
the geometric context.

The potential local parameters for a given differential form on hand, one has
to show that among the “linear combinations” of left translates of the associated
spherical function on (8.8a), a product — over T , a set that has to be allowed to
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grow larger and larger — of the spherical functions on the individual factors, there
is one invariant under the group (8.8b). I should think that to establish this it would
be a help to have an explicit formula for the spherical functions.

With the reader’s permission, I introduce an intuitive fashion of thinking, based
on our experience with spherical functions over archimedean and nonarchimedean
local fields. In the representation of G(Fv) (resp.

∏
T G(Fx)) on G(Fx)/G(Ox)

(resp.
∏

T G(Fv)/G(Ov)) each representation that occurs, occurs with multiplicity
one. We consider the representation with parameter µx or rather, at this stage,
with parameter

∏
T µx . We need to establish that it contains a vector fixed by all

elements of GT (F). For GL(1), this vector was essentially unique and could be
determined by integrating the differential. For a general group, we can expect,
because of endoscopy and multiplicity, both familiar from the arithmetic theory,
the unicity to fail.

We have, at the same time, to contend with something more serious. Functions
are not sheaves; sheaves are not functions. Rather they are not, even with the
Riemann–Hilbert correspondence, uniquely functions. As I have already made
clear, it seems to me that completeness theorems, to assure that we have in hand all
pertinent objects of some given sort, require something less ethereal than sheaves,
even than perverse sheaves. Nevertheless, for the sake of the argument I confound
briefly, in the following observations, functions and sheaves.

The object BunG(X) as defined in terms of (8.8a) and (8.8b) appears far too
large, far too coarse, to admit any analysis, but the goal of the theory of moduli
spaces as expounded in [Le] is to show that they are, in essence, algebraic varieties,
on which differential equations of various sorts can be introduced and studied, so
that the exclusive use of sheaves, as in [CFT] is not obligatory, not, in my view,
even to be recommended! The general theory does, however, differ from the abelian
theory in that a given parameter does not correspond to a single function — up to a
scalar factor — but to an infinite-dimensional space of functions, but many of us
are already familiar with this from the arithmetic theory.

So what are we to do, keeping in mind that we are working — initially — with
the group GT ? The function/sheaf for which we are searching will be a product
of spherical functions

∏
x /∈T φx times some linear combination of left-translates of∏

x∈T φx , presumably by elements in G F (T ). We cannot at first take an average
because G F (T ) is infinite, but also because, so far as I know, we cannot take
the average of sheaves. On the other hand, we might be able to calculate the
change in the function imposed by the translations by g ∈ GT (F) by adding up
the local modifications as an integral around the boundary of 4′ finding either
that the total change is 0 or that it permits an averaging. This is, at the moment,
where the problem stands. Nothing is certain, but there is a great deal on which



A PROLOGUE TO “FUNCTORIALITY AND RECIPROCITY”, PART I 655

to reflect!
At this point, I cannot be very much clearer about this proposal for constructing

Ageom. A few observations are, however, in order. It is useful, first of all, to compare
it with a conjecture in §6.1 of [CFT], although this conjecture is formulated only in
an unramified context.

Conjecture. Let E be an irreducible L G-local system on X. Then there exists a
nonzero Hecke eigensheaf AutE on BunG with the eigenvalue E whose restriction
to each connected component of BunG is an irreducible perverse sheaf.

The earlier Assertion is this conjecture for GL(n). Let me try to explain the
general form and its relation with our tentative proposal.

As will be obvious, I have been strongly influenced when composing this section
by the geometric and sheaf-theoretic formalism for the Hecke theory with which this
conjecture is expressed. This formalism is very elegant, but I did not understand the
intuition that informs it. Perhaps I still do not. Nonetheless, if I had not struggled
to interpret it in a perhaps more mundane but also more concrete analytic context,
it may never have meant anything to me at all. Implicit in the conjecture there are
conventions and conceptions — familiar in some circles, less so in those to which
I belong — of which we remind ourselves before explaining the relation between it
and our goal. Locally the trivial bundle is G(Ox), a set on which G(Ox) acts from the
right. If γ ∈ G(Fx) then the action of G(Ox) to the right on G(Ox)γG(Ox) defines
a G-bundle on G(Ox)γG(Ox)/G(Ox), an operation of blowing-up or modification
that we can, if desired, repeat, passing to G(Ox)γ

′G(Ox)γG(Ox)/G(Ox), and so
on, or just blowing up a given point of G(Ox)γG(Ox)/G(Ox). At all events, this
operation allows us to introduce a G-bundle structure on⋃

T

∏
x∈T

G(Fx)/G(Ox)

and then, passing to the limit over T = {x1, . . . , xn} as before, first over all possi-
bilities for the set T with a given n and then over n, we arrive, at BunG and the
G-bundle over it.

It is bundles and modifications that are the preferred form of expression in [CFT].
A central diagram is found in §6.1 of those lectures.

(8.10)
Hecke

BunG X ×BunG

h← h→

I do not find the definition of Hecke in [CFT, §6.1] perfectly transparent, but I think
it safe to take it to be the union over increasing T of the union (or sum) over x ∈ T
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of the quotient of 2

(8.11)
{

x ×G(Fx)×G(Fx)/G(Ox)
}
×

∏
y∈T
y 6=x

G(Fy)/G(Oy)

by GT (F), whose action on G(Fx)×G(Fx)/G(Ox) is through the first factor alone,
a definition compatible — I hope and, indeed, believe — with that of [CFT]. The
arrow on the left of (8.10) takes x×hx×gx×

∏
y∈T,y 6=x gy to x×hx×

∏
y∈T,y 6=x gy ;

the arrow on the right takes it to x×hx gx ×
∏

y∈T,y 6=x gy . This seems equivalent to
the assertion in [CFT], which I have difficulty understanding, and I, myself, see no
reasonable alternative to (8.11). Informally, the object Hecke consists of quadruples
(M,M′, x, β), where M is a G-bundle on X , M′ is a modification at a single point
x , and β is an expression of the identity of M and M′ outside of x . Of course T
grows to include more and more points. Observe that it defines a correspondence
that commutes with the action of GT (F).

In the Conjecture, the initial object is the local system. Our initial object is
more, it is the differential. The difference is somewhat difficult to describe, but its
source is clear. It is the difference between a local system and a local system with
isomorphism. For example, in the analytic context, there is, on the curve X or on its
jacobian, the trivial bundle itself, but there is also the trivial bundle plus a section,
exp(i Reω), where ω is a holomorphic differential with real periods in 2πZ, a set
parametrized by Z2g. Here we distinguish between them. In the Conjecture and in
the earlier Assertion, both taken from [CFT], they are confounded. The advantage
of the local systems with isomorphism is that it refers to the set of solutions of a
precise analytic problem, an eigenvalue problem for the Laplacian, so that we can
treat the set without having to exhibit its individual elements. This is what, I hope,
the differentials — with whatever supplementary data are necessary — will offer in
general.

Having affirmed, for the second time, that there is a difference between the local
system and the differential, I now retract and explain that, when trying to understand
the meaning of the conjecture, I discovered that this supposed difference was the
result either of my careless reading of [CFT] or of the author’s careless writing. The
author speaks of local systems, local systems for vector bundles and “local systems”
for L G-bundles — the latter seem to be no more than L G-bundles — for they are
what allow the definition of the vector bundles V E

λ , which are local systems, defined

2The pertinent phrase from [CFT] is, “Note that the fiber of Hecke is the moduli space of pairs
(M, β), where M is a G-bundle on X and β :M′|X\x . It is known that this moduli space is isomorphic
to a twist of Grx = G(Fx )/G(Ox ) by the G(Ox )-torsor M′(Ox ) of sections of M′ over SpecOx :

(h→)−1(x,M′)=M′(Ox )×G(Ox ) Grx .”

I hope it means what I suggest.
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by the constant sections of an L G-bundle. For groups with no center, the distinction
between the two notions of local system is barely perceptible, and this may be the
source of the confusion. The emphasis in [CFT] is often on semisimple groups.
The group GL(1) that we were examining in §7 is, however, all center!

This confusion, all being well, clarified, let us try to understand the conjecture.
Certainly, whatever we manage to establish, we want it to imply the conjecture!
What does it mean for the sheaf F on BunG to be an eigensheaf with eigenvalue E?
The condition is formulated sheaf-theoretically as equations (6.1) and (6.2) of [CFT].

Hλ(F)= h→
∗
(h∗←F⊗ ICλ);(CFT-6.1)

ιλ : Hλ(F)' V E
λ � F, λ ∈ P+.(CFT-6.2)

The first line is a definition. In the second line λ is a dominant weight of L G
or a double coset G(Ox)τλG(Ox), ιλ is an isomorphism and V E

λ is the vector
bundle E×L G Vλ. The sheaf ICλ is a perverse sheaf associated to the subvariety
G(Ox)τλ/G(OF ) of Bunx,τλ , the Goresky–MacPherson or intersection cohomology
sheaf described in [CFT] and many other places. It appears to be the cohomolog-
ical representative of this subvariety in the context of perverse sheaves, thus the
cohomological representative of a spherical function, the characteristic function of
a double coset. In any case, the second line is the condition that F has eigenvalue
E . The almost imperceptible mixing of G-bundles and L G-bundles is striking!

We replace the L G local system by the differential ω or rather by the set of param-
eters {µx | x ∈ X} associated to it, without troubling ourselves by the imprecisions
that this entails at this stage. Let us try to understand the situation in the context of
group representations, but only in a grossly informal manner. At all but a finite set
S of points in X , we have a representation πx = π(µx) of G(Fx), a representation
that contains a nonzero vector fixed by G(OF ). It occurs in the space of functions
on G(Fx)/G(Ox) and, as we infer — for the sake of the argument — from the usual
theories of spherical functions, with multiplicity one. So we have a clearly defined
space of functions on

∏
x∈T G(Fx)/G(Ox). On each G(Fx), we take a left translate

of the spherical function with parameter µx . Then we take a tensor product of
such functions over x ∈ T and then linear combinations, perhaps in a topological
sense — for example, by convolution with a function, a measure, or a distribution.
The group

∏
x∈T G(Fx) acts on this space and we assume that there is a nonzero

vector 8 in it invariant under GT (F). That would be our solution of the problem.
Does it offer a sheaf F = AutE satisfying the conditions of the conjecture? The
question, at the moment, is not in what sense it might be a sheaf, or in what sense a
function, but whether and why we can expect the equation (CFT-6.2) to be valid.

The appropriate construction works entirely from the right, so that the invariance
under GT (F) on the left plays no role in the arguments. It only assures, because the
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constructions are undertaken from the right, that the result continues to be invariant
under GT (F), so that it can be transferred to BunG . In other words, we replace the
diagram (8.10) with

(8.12)

H

∏
x∈T G(Fx)/G(Ox) T ×

∏
y∈T G(Fy)/G(Oy)

h← h→

The diagram defines H ; it is given by (8.11), but there is now no division by GT (F),
neither of H nor of

∏
G(Fy)/G(Oy)

If h← and h→ can be interpreted as actions on the right, then (8.12) may be
interpreted as a covering of (8.10). A typical element of H is (x, hx , gx ,

∏
y 6=x gy).

The maps h← and h→ are defined independently on the various summands and on
the various factors, in particular:

(8.13) h←x : (hx , gx) 7→ hx G(Ox); h→x : x × (hx , gx) 7→ x × hx gx G(Ox).

All these morphisms commute with the action of GT (F). The fiber of h→ over
(x, gx G(Ox)) is, if I am not mistaken, the set {(x, hx , h−1

x gx)}, thus G(Fx). It is
perhaps important to stress as well that the local factors of ICλ are sheaves on
G(Fx)/G(Ox), so that the global product is a sheaf

The intersection cohomology sheaves I Cλ are defined in [CFT] locally, one
at each point of X . We have agreed that a provisional section of a prologue is
not the place to describe them precisely. They are, as suggested, the intersection-
cohomological representatives of the subvarieties

G(Ox)τλG(Ox)/G(Ox)

of G(Fx)/G(Ox). It is plausible that, whatever the precise definition is, we can, as
in [CFT] extend it from a local construct to a global construct. Indeed, from the
point of view adopted in this prologue, we just define it on (8.11) by pulling back
the local ICλ through the projection on gx ∈ G(Fx)/G(Ox), the third coordinate
in (8.11). The result is not invariant under GT (F). Moreover, there are implicit
parameters with an algebraic or function-theoretical significance that are being kept
in reserve, the points x in T . One might want to verify that the constructions were
compatible with this aspect of the construction — but not now.

I am a tyro here and have by no means understood in any genuine sense intersec-
tion cohomology. So I am reduced to guessing what the relations (CFT-6.1) and
(CFT-6.2) mean not only in that context, but in the context of functions, if they
have an interpretation there. In (CFT-6.1) the sheaf F or our function 8 depends
on the first coordinates hx alone; the sheaf 9 = ICλ depends on the coordinate gx
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alone. The direct image H→
∗

is an integral, in this case,

(8.14)
∫
8(hg)9(g−1)dg =

∏
x

∫
8x(hx gx)9x(g−1

x ) dgx

thus convolution on the right by 9, which does not destroy the invariance under
GT (F).

The function 8 has moreover been obtained as a limit of linear combination
of left translates of a product of spherical functions ⊗xφx , whose eigenvalues we
know. If we have a formula for these functions, we can calculate∏

x

∫
8x(hx gx)9x(g−1

x ) dgx ,

explicitly. This achieved, it should not be too difficult to deduce the relation
CFT-6.2)!

On closer examination, there are several troubling aspects to these reflections.
It appears to me, as already explained, that the theory of spherical functions in
the geometric context necessarily entails the use of sheaves because there is no
G-invariant measure with respect to which convolutions of spherical functions on
G(Fx) can be defined. The integral in (8.14) is fictional. A graver flaw is that we
have not succeeded in introducing into our discussion the essential ingredient of the
proof of Weil’s identity and Lemma 7.1, namely the residue theorem. To a large
extent, although not entirely, this is because I am working around my ignorance of
the theory of BunG . The conviction that we can deal, even in a geometric context,
with automorphic forms on BunG as functions is because the spaces defined by
(8.2a), or at least large pieces of them, are finite-dimensional algebraic varieties.
Their construction as such is difficult and technical and it is fatuous to attempt, as
I have been doing, to discuss the geometric theory without having understood it
and its results.

The form ω defines a L G-bundle with singularities, the bundle E of (CFT - 6.2)
Then each irreducible representation ρ = ρλ of L G, λ being the highest weight of ρ,
defines a local system, the local system V E

λ of that formula. If, as before, µx are the
parameters defined by integrating ω, α ∈ Vλ, α? ∈ V ∗λ , its dual space, then α∗(µxα)

is a function on BunG . The question is how to combine it with a rational function
f on X with values in G so that the result can be integrated over the boundary of
4
′ as in the proof of Lemma 7.1. Although there is a duality between G and L G or

between g and Lg, it is coarse and I cannot see, at the moment, how it can be used.
I am handicapped not only by an aging brain but also by a lack of facility with
all the pertinent notions. In addition, the meddle of promising clues and doubtful
juxtapositions is daunting to all but the very determined. Nevertheless, although
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I have less confidence in the suggestions of this section than in those of the first six,
I think there is something to be done.

For example, it is troubling that, as I have observed, the pairing between G and
L G or, perhaps better, g and Lg is very coarse, apparently at most a pairing at the
level of conjugacy classes, but that may be just as well, because what we sum are
residues or products of residues with factors defined by ω with values in Lg. The
residues themselves are logarithmic derivatives d f · f −1. The following relations
are clear.

(i) If f1 = u f ,
d f1 · f −1

1 = du · u−1
+ ud f · f −1u−1,

and the first term has no residue at x if u ∈ G(Ox). The conjugacy class of the
second term is that of d f · f −1

(ii) There is a similar relation for f1 = f u,

d f1 · f −1
1 = d f · f −1

+ f du · u−1 f −1.

If u ∈ G(Ox), the conjugacy class of the second term is regular at x .

(iii) If f1 = u f u−1,

d f1 · f −1
1 = du · u−1

+ ud f · f −1u−1
− u f −1(u−1du) f u−1.

Thus any linear function of the residue at x of d f · f −1 that is invariant under
conjugation does not change on passing from f to f1. This linear function should
be the substitute for the right-hand side of (7.20). It will have to be matched with a
substitute for

∫
ω as in the proof of the lemma.

Consider for example the group GL(n), then if z is a local parameter at x , the
matrix-valued function f may be written locally as u1T u2, where u1, u2 lie in
G(Ox) and

T = t (−m1,−m2, . . . ,−mn), m1 ≥ m2 · · · ≥ mn, mi ∈ Z,

so that the residue of f −1d f is the matrix

−


m1 0 . . . 0
0 m2 . . . 0
...

...
...

0 0 . . . mn

 ,
which can be considered a parameter for the double cosets G(Ox)\G(Fx)/G(Ox),
or as a highest weight for Ĝ or L G. We of course have a pairing of it with the Lie
algebra of L G or with the group L G itself, through the trace of the corresponding
representation, thus with ω or

∫
ω.
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So there are a good number of clues that could lead to a nonabelian theory similar
to the abelian theory of §7. I do not have a clear notion of how to follow them.
I hesitate moreover to search for the theory so long as I have not mastered the
techniques for constructing moduli spaces described in [Le]. The moduli space as
described in (8.8a) and (8.8b) is convenient in some respects, but it is analytically
awkward and, as we found when discussing the conjecture, it encourages us to
work not with functions, thus not with solutions of partial differential equations,
but with sheaves, for which convolution is possible, at least in a topological sense.
I tried in the essay to pass from one to the other by sleight-of-hand, but was not, as
even a casual examination reveals, successful. The usual convolution is not defined
because G(Fx)/G(Ox) does not carry an invariant measure. On the other hand,
the moduli spaces — or at least large parts of them — are finite-dimensional, even
compact, as with the jacobians, algebraic varieties and we might expect to define
the eigensheaves as functions satisfying differential equations. I do not yet know
what these might be. Moreover, whatever form the final theory takes, I certainly
hope it embraces all possibilities: sheaf-theoretic, analytic, and geometric.

It seems best to leave all these questions aside until I acquire a more intimate
understanding not only of the nature, both algebro-geometric and differential-
geometric, of the moduli spaces, but also of the contributions of the mathematical
physicists to what they refer to as the geometric Langlands program.

Contrary to my hopes, which were, in part, unreasonable, the last two sections
of this first half of the prologue have turned out to differ sharply from the first six.
Although the first six are speculative, they are informed by years of reflection, which
has sufficiently matured that I have considerable confidence not only in the correct-
ness of the theory suggested but also in the soundness of the methods proposed for
arriving at it. This is not so for the last section, for which the penultimate section
was preparation. The last section is only provisional. I hope that on returning to the
material in §8.b I can do better!
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1. Introduction

In this short note we study truncation of Eisenstein series. The truncation operator
was introduced by Arthur [1980]. It plays a ubiquitous role in the trace formula. In
the case of a cuspidal Eisenstein series (that is, one induced from a cuspidal repre-
sentation) one can write its truncation as a modified Eisenstein series (previously
introduced by Langlands). From this, one obtains the Maass–Selberg relations
for the inner product of truncated Eisenstein series [Arthur 1980, §4] (see also
Section 3). In the case of Eisenstein series induced from the discrete spectrum,
Arthur [1982] obtained an asymptotic formula for the inner product above. His
method was rather indirect and in particular, it required Langlands’ description of
the discrete spectrum in terms of residues of Eisenstein series. A different approach
which avoids this description was taken in [Lapid 2011]. It uses the regularized
integral developed in [Jacquet et al. 1999]. While the approach of [Lapid 2011] is
reasonably conceptual, one still encounters some unpleasant technical difficulties.
The purpose of this short paper is to rederive Arthur’s asymptotic result more directly

Lapid was partially supported by the Israel Science Foundation Center of Excellence, grant 1691/10.
Ouellette would like to thank the Hebrew University of Jerusalem for its hospitality.
MSC2010: 11F70, 11F72.
Keywords: Eisenstein series, spectral theory.
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by writing down explicitly the truncation of a general Eisenstein series. This is a
pleasant combinatorial exercise in truncation. As explained in [Lapid 2011], the
asymptotic formula can be used to compute the inner product of Eisenstein integrals,
a key fact in Langlands spectral theory.

We cannot close the introduction without recalling our deep appreciation to our
teacher Jonathan Rogawski. His unlimited encouragement and keen interest in
mathematics, even in difficult times, will not be forgotten. We miss him greatly.

2. Notation and conventions

Let F be a number field and A its ring of adeles. Throughout, we denote by boldface
letters, such as Y , algebraic varieties over F and we write Y = Y(F), YA = Y(A).
Sometimes we will not distinguish between Y and Y . Let G be a reductive group
over a number field F . (Henceforth, all the algebraic subgroups of G that we
consider are implicitly assumed to be defined over F .) We fix a maximal F-split
torus T0 and a minimal parabolic subgroup P0 containing T0. We have a Levi
decomposition P0 = M0 n U0 where M0 = CG(T0). Let a∗0 be the R-vector space
spanned by the lattice X∗(T0) of F-rational characters of T0 (or alternatively, by
the commensurable lattice X∗(M0) of F-rational characters of M0). The dimension
of a∗0 is the split rank of G. The dual space a0 of a∗0 is the R-vector space spanned
by the lattice of cocharacters X∗(T0) of T0. We write a0,C for the complexification
of a0. We denote by 10 ⊆ X∗(T0) the set of simple roots of T0 on Lie U0 and by
1∨0 ⊆ X∗(T0) the set of simple coroots.

We write H g
= gHg−1 for any subgroup H ⊆ G and an element g ∈ G.

For any algebraic group Y , we write δY for the modulus function on YA. We also
write Y 1

A =
⋂

Ker|χ | where χ ranges over the lattice of F-rational characters of Y
and |χ |(y)=

∏
v|χv(yv)|v for y = (yv) ∈ YA.

Let P = M n U be a standard parabolic subgroup of G defined over F , with
M ⊃ M0. Let 1M

0 ⊆10 be the set of simple roots of T0 in Lie(U0∩M) and denote
the span of 1M

0 by (aM
0 )
∗. Let TM be the identity component of the split part of the

center of M — a subtorus of T0. We identify a∗M = X∗(TM)⊗R= X∗(M)⊗R with
a subspace of a∗0. Occasionally we also write aP = aM . In particular, aP0 = aM0 = a0.
We write r(P) = r(M) = dim aM . We have a0 = aM ⊕ aM

0 and similarly for a∗0.
Denote by 1M =1P ⊆ X∗(TM) the simple roots of TM on Lie U — these are the
projections of 10 \1

M
0 to a∗M . For any α ∈1P we have the corresponding coroot

α∨ ∈ X∗(TM).
We reserve the letters P = MU and Q = LV (possibly appended with primes or

subscripts) for standard parabolic subgroups of G with their standard Levi decom-
position. Since M and P determine each other, we often use them interchangeably
as subscripts or superscripts in various notation. Occasionally we will use R and S
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to denote auxiliary standard parabolic subgroups. We write MR for the standard
Levi subgroup of R and NR for its unipotent radical.

For any Q ⊆ P , we write 1M
L = 1

P
Q ⊆ 1Q for the simple roots of TL on

Lie(V ∩M). We have aL = aM
L ⊕ aM where aM

L = aP
Q is the span of

(1P
Q)
∨
= (1M

L )
∨
= {α∨ : α ∈1P

Q}.

Consequently, a0 = aL
0 ⊕ aM

L ⊕ aM . The dual basis of (1M
L )
∨ in (aM

L )
∗ will be

denoted by 1̂M
L . We write X P

Q or X M
L for the image of X ∈ a0 under the projection

from a0 to aM
L .

We write [P, Q] for the set of parabolic subgroups of Q containing P . Thus,
[P0,G] is the set of all standard parabolic subgroups of G.

Denote by W =WG the Weyl group NG(T0)/M0 of G. For any M , we identify
the cosets W M

\W (resp. W/W M ) with the set of left- (resp. right-) W M reduced
elements of W , that is, those for which w−1α > 0 (resp. wα > 0) for all α ∈1M

0 .
Now let M and L be standard Levi subgroups. We identify W M

\W/W L with
the set of left-W M and right-W L reduced elements of W . Define subsets

W (L ,M)⊆W (L;M)⊆W M
\W/W L

by

W (L ,M)= {w ∈W M
\W : Lw = M} = {w ∈W M

\W : w1L
0 =1

M
0 }

and

W (L;M)= {w ∈W M
\W : Lw ⊆ M} = {w ∈W M

\W : w1L
0 ⊆1

M
0 }.

Note that if L ′ ⊆ L then W (L;M)⊆W (L ′;M).
We write C0,− for the closed negative obtuse Weyl chamber

C0,− =

{∑
α∈10

xαα∨ : xα ≤ 0 for all α
}
.

More generally, for any Q ⊆ P we write

CP
Q,− =

{ ∑
α∈1P

Q

xαα∨ : xα ≤ 0 for all α
}
.

We fix a positive definite W -invariant scalar product, and hence a norm ‖·‖ on
a0. This defines a measure on any subspace of a0.

We fix a “good” maximal compact subgroup K of GA. Using the Iwasawa
decomposition, we define H : GA → a0 to be the left-U0,A right-K invariant
function such that

e〈χ,H(m)〉 =
∏
v

|χv(mv)|v
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for any χ ∈ X∗(M) where m = (mv)v and χv is the extension of χ to M(Fv).
Let A0 be the identity component of T0(R)⊆ T0,A where R is embedded in A

diagonally at the archimedean places. The map H gives rise to an isomorphism
A0→ a0. We denote by X 7→ eX the inverse map. More generally, for any M let
AM = A0 ∩ TM . The map H restricts to an isomorphism AM → aM .

Let a0,+ be the positive Weyl chamber

a0,+ = {X ∈ a0 : 〈α, X〉> 0 for all α ∈10}.

Similarly, we write for any P

a∗M,+ = {λ ∈ a∗M : 〈λ, α
∨
〉> 0 for all α ∈1P}.

Let AP be the space of automorphic forms on PUA\GA, that is, the smooth,
K-finite, and z-finite functions of moderate growth where as usual z is the center
of the universal enveloping algebra of the complexified Lie algebra of G(R). We
write An

P for those ϕ ∈AP such that ϕ(ag)= δP(a)
1
2ϕ(g) for all a ∈ AM , g ∈ G.

We denote by A2
P the subspace of An

P consisting of the functions such that

〈ϕ, ϕ〉AM UA M\GA
= ‖ϕ‖22 =

∫
AM UA M\GA

|ϕ(g)|2 dg <∞

and by A
cusp
P the subspace consisting of the cuspidal automorphic forms.

For any ϕ ∈AP and λ ∈ a∗M let

ϕλ(g)= e〈λ,HP (g)〉ϕ(g), g ∈ GA.

For any Q ⊃ P the Eisenstein series is defined by

E Q
P (g, ϕ, λ)=

∑
γ ∈P\Q

ϕλ(γ g).

(If Q =G we omit it from the notation.) The series converges absolutely for Re λ∈
a∗P,+ sufficiently regular. We will assume that E( · , ϕ, λ) admits meromorphic
continuation with hyperplane singularities. This is proved in [Langlands 1976]
(cf. [Mœglin and Waldspurger 1994]) first for ϕ ∈ A

cusp
P and then for ϕ ∈ A2

P as
a consequence of the description of the discrete spectrum in terms of residues of
Eisenstein series. An argument of Bernstein gives such a result (for any ϕ ∈AP )
without appealing to Langlands’ description of the discrete spectrum. Unfortunately,
this argument is still unpublished. However, for our purposes we will simply admit
it.

Alongside, we have the intertwining operators

M(w, λ) :AP →AP ′
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for any w ∈W (M,M ′) given by

(M(w, λ)ϕ)wλ(g)=
∫
(U ′A∩Uw

A )\U
′

A

ϕλ(w
−1ug) du.

Once again, the integral converges absolutely provided that Re〈λ, α∨〉 � 0 for all
roots α of TM on Lie(U ) such thatwα< 0. We admit the meromorphic continuation
of M(w, λ) and the functional equations

M(w1w2, λ)= M(w1, w2λ)M(w2, λ).

for any w1 ∈W (M ′, L) and w2 ∈W (M,M ′). In particular,

M(w, λ)−1
= M(w−1, wλ).

We also have
M(w, λ)∗ = M(w−1,−wλ̄)

on A2
P ′ . Thus, M(w, λ) is unitary (and in particular, holomorphic) on A2

P for
λ ∈ ia∗M .

For any ϕ ∈AP and Q ⊆ P , we write ϕQ for the constant term along Q, namely

ϕQ(g)=
∫

V \VA

ϕ(vg) dv =
∫
(V∩M)\(VA∩MA)

ϕ(vg) dv.

Occasionally we also write ϕV or ϕL for ϕQ .
For any w ∈ W M

\W/W L let Pw ⊆ P be the parabolic subgroup with Levi
Mw = M ∩ Lw and let Qw be the parabolic subgroup with Levi Lw = L ∩Mw−1

.
Note that w ∈ W (Lw,Mw). The constant term of the Eisenstein series EP(ϕ, λ)

along Q is given by

(1)
∑

w∈W M\W/W L

E Q
Qw
(M(w−1, λ)ϕPw , w

−1λ).

This is proved in [Mœglin and Waldspurger 1994, II.1.7] in the case ϕ ∈A
cusp
P , in

which only the terms involving w such that Lw ⊃ M (that is, Mw = M) contribute.
The proof easily extends to the general case — there are simply more contributions.
Note that (1) is an identity of meromorphic functions on a∗M,C; the terms in (1) are
absolutely convergent for Re λ ∈ a∗P,+ sufficiently regular.

It will also be useful to introduce the following notation for any ϕ ∈AP , w ∈
W (L;M), and λ ∈ a∗M,C:

BQ(g, ϕ,w, λ)= (M(w−1, λ)ϕLw)w−1λ(g)

so that BQ(ϕ,w, λ) ∈AQ . The following result is standard. For completeness we
include the proof.
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Lemma 1. Suppose that w ∈ W (L ′;M) and L ⊆ L ′. Then the constant term of
BQ′(ϕ,w, λ) along Q is BQ(ϕ,w, λ).

Proof. Let Q = LV (resp. Q′ = L ′V ′, R, R′) be the parabolic subgroups with Levi
parts L (resp. L ′, Lw, L ′w). Since w ∈W (L ′;M) we have

(V ∩ L ′)w = NR ∩ L ′w.

The constant term of BQ′(ϕ,w, λ) along Q is∫
(V∩L ′)\(VA∩L ′A)

∫
V ′A∩Nw−1

R′,A \V
′

A

(ϕL ′w)λ(wuv · ) du dv.

Since V ∩ L ′ normalizes both V ′A and Nw−1

R′,A we can change variables in u to get∫
(V∩L ′)\(VA∩L ′A)

∫
V ′A∩Nw−1

R′,A \V
′

A

(ϕL ′w)λ(wvu · ) du dv

or∫
(NR∩L ′w)\(NR,A∩L ′wA )

∫
V ′A∩Nw−1

R′,A \V
′

A

(ϕL ′w)λ(vwu · ) du dv

=

∫
V ′A∩Nw−1

R′,A \V
′

A

(ϕLw)λ(wu · ) du.

We have V = V ′ o (V ∩ L ′) and NR = NR′ o (NR ∩ L ′w). Therefore Nw−1

R =

Nw−1

R′ o (V ∩ L ′), and we can rewrite the integral above as∫
VA∩Nw−1

R,A \VA

(ϕLw)λ(wu · ) du = (M(w−1, λ)ϕLw)w−1λ

as required. �

2.1. Truncation. For convenience we recall a few facts about Arthur’s truncation
operator 3T [Arthur 1980]. For any P ⊆ Q, let τ Q

P be the characteristic function
of the Weyl chamber

(a
Q
P )+ = {X ∈ a

Q
P : 〈α, X〉> 0 for all α ∈1Q

P }

and let τ̂ Q
P be the characteristic function of the obtuse Weyl chamber{ ∑

α∈1
Q
P

xαα∨ : xα > 0 for all α
}
.

We extend τ Q
P and τ̂ Q

P to a0 by letting τ Q
P (X)= τ

Q
P (X

Q
P ) and τ̂ Q

P (X)= τ̂
Q
P (X

Q
P ).

For T sufficiently regular in a+0 , the truncation operator is given by

3Tϕ(g)=
∑

P⊃P0

(−1)r(P)−r(G)
∑

γ ∈P\G

ϕP(γ g)τ̂P(H(γ g)− T )
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for any locally bounded measurable function ϕ on G\G1
A. It defines an orthogonal

projection on L2(G\G1
A). If ϕ is of uniform moderate growth, then 3Tϕ is rapidly

decreasing.
More generally, for any Q, one defines the relative truncation with respect to Q

by

3T,Qϕ(g)=
∑

P∈[P0,Q]

(−1)r(P)−r(Q)
∑

γ ∈P\Q

ϕP(γ g)τ̂ Q
P (H(γ g)− T ).

By the Langlands combinatorial lemma, we have the inversion formula

(2) ϕP(g)=
∑
Q⊆P

∑
γ ∈Q\P

3T,QϕQ(γ g)τ P
Q (H(γ g)− T )

[Arthur 1980, Lemma 1.5].
For any ϕ ∈AP and Q ⊆ P , we write EQ(ϕ)= EQ(ϕQ)⊆ a∗Q,C for the multiset

of cuspidal exponents of ϕ along Q — see [Mœglin and Waldspurger 1994, I.3.4].
We also write E⊆P(ϕ) =

⋃
Q∈[P0,P] EQ(ϕ). In the case P = G we simply write

E(ϕ) for E⊆G(ϕ).
For a multiset A={λ1, . . . , λm}⊆a∗0,C (including multiplicities) we write PE(A)

for the space of polynomial exponential functions on a0 with exponents ⊆ A. This
means that any f ∈ PE(A) has the form

f (X)=
∑
λ∈A

Pλ(X)e〈λ,X〉,

where for any λ ∈ A, Pλ is a polynomial in a0 whose degree is smaller than the
multiplicity of λ in A. Equivalently, f ∈ PE(A) if and only if for any v1, . . . , vm ∈

a0, f is annihilated by the differential operator
m∏

i=1

(Dvi −〈λi , vi 〉),

where Dv denotes taking the partial derivative along v ∈ a0. We also write PE− =

PE(C0,− \ {0}), where we limit the exponents λ to C0,− \ {0}, but we do not limit
the degree of Pλ.

The following lemma is a simple consequence of the properties of truncation.

Lemma 2 [Lapid and Rogawski 2003, Proposition 8.4.1]. For any automorphic
forms ϕi ∈An

G , i = 1, 2, we have

〈ϕ1,3
Tϕ2〉G\G1

A
∈ PE(E(ϕ1)+ E(ϕ2)).

Moreover, if ϕ1, ϕ2 ∈A2
G then

〈ϕ1,3
Tϕ2〉G\G1

A
−〈ϕ1, ϕ2〉G\G1

A
∈ PE−.
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We also recall the following elementary fact.

Lemma 3. Let C=
{∑m

i=1 aivi : a1, . . . , am ≥ 0
}

be a salient1 polyhedral cone in
a finite dimensional vector space V over R (for some v1, . . . , vm ∈ V \ {0}). Then
for any A ⊆ V ∗ and f ∈ PE(A) the function∫

V
1C(X − T ) f (X)e〈λ,X〉 d X

converges for {λ∈ V ∗
C
:Re〈λ, vi 〉� 0, i = 1, . . . ,m} and extends to a meromorphic

function on V ∗
C

with hyperplane singularities. As a function of T , it belongs to
PE(A+ λ).

This is a straightforward computation if C is simplicial. Otherwise, it follows by
subdivision of C into simplicial subcones.

3. Cuspidal Eisenstein series

For the convenience of the reader we recall the results of Langlands and Arthur for
cuspidal Eisenstein series.2

For any w ∈W (L ,M) let φwL be the function on aG
L given by

φwL

(∑
α∈1Q

xαα∨
)
=

{
(−1)#{α∈1Q :xα>0} if {α∈1Q : xα>0} = {α∈1Q : wα<0},
0 otherwise.

The Laplace transform of φwL is given by

(3)
∫

aG
L

e〈λ,X〉φwL (X) d X =
vol(aG

L /Z1
∨

Q)∏
α∈1Q
〈λ, α∨〉

, λ ∈ (aG
L )
∗

C, Rewλ ∈ a∗P,+.

By [Arthur 1980, Lemma 4.1], for Re λ ∈ a∗P,+ sufficiently regular we have

(4) 3T EP(ϕ, λ)

=

∑
Q∈[P0,G]

∑
w∈W (L ,M)

∑
γ ∈Q\G

(M(w−1, λ)ϕ)w−1λ(γ g)φwL (H(γ g)− T ).

Suppose that ϕ j ∈A
cusp
Pj

, j = 1, 2. Set fi = EPi (ϕi , λi ), i = 1, 2. Using (4) we
write 〈 f1,3

T f2〉G\G1
A

as the sum over Q and w2 ∈W (L ,M2) of〈
f1,

∑
γ ∈Q\G

(M(w−1
2 , λ2)ϕ2)w−1

2 λ2
(γ g)φw2

L (H(γ g)− T )
〉
G\G1

A

1That is, such that C∩−C= {0}.
2A similar argument to the one below was given by Labesse in the 1983 Friday morning seminar

on the twisted trace formula. See lecture 12 in http://www.math.ubc.ca/~cass/Langlands/friday/
friday.html and [Labesse and Waldspurger 2012, §5.4].
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provided Re λ2 ∈ a∗M2,+
is sufficiently regular. (This will be justified in Lemma 14

below.) Each summand is equal to

〈( f1)Q, (M(w−1
2 , λ2)ϕ2)w−1

2 λ2
φ
w2
L (H( · )− T )〉Q\G1

A
.

Using the formula for the constant term, we get

(5) (EP1(ϕ1, λ1),3
T EP2(ϕ2, λ2))G\G1

A

=

∑
Q

∑
w1∈W (L ,M1)

∑
w2∈W (L ,M2)

〈
(M(w−1

1 , λ1)ϕ1)w−1
1 λ1

,

(M(w−1
2 , λ2)ϕ2)w−1

2 λ2
φ
w2
L (H( · )− T )

〉
Q\G1

A

.

Finally, using (3) we get

(EP1(ϕ1, λ1),3
T EP2(ϕ2, λ2))G\G1

A
=MT (ϕ1, λ1, ϕ2, λ2),

where

(6) MT (ϕ1, λ1, ϕ2, λ2)

=

∑
Q

∑
w1∈W (L ,M1)

∑
w2∈W (L ,M2)

e〈w
−1
1 λ1+w

−1
2 λ̄2,T 〉∏

α∈1Q
〈w−1

1 λ1+w
−1
2 λ̄2, α∨〉

vol(aG
L /Z1

∨

Q)〈M(w
−1
1 , λ1)(ϕ1),M(w−1

2 , λ2)(ϕ2)〉AL VA L\GA
.

These are the usual Maass–Selberg relations proved in [Arthur 1980, §4]. Note that
the intricate residue calculus of [loc. cit.] is unnecessary.

4. Some combinatorial lemmas

In order to analyze the truncation of Eisenstein series and the Maass–Selberg
relations in the general case we will need a few combinatorial definitions and
lemmas in the spirit of [Arthur 1978, §6].

Let L ′ and M be standard Levi subgroups and let w ∈ W (L ′;M) and Q ⊃ Q′.
For any X ∈ a0 with X Q

Q′ =
∑

α∈1
Q
Q′

xαα∨ ∈ a
Q
Q′ we set

DQ
Q′,+(X)= {α ∈1

Q
Q′ : xα > 0} ⊆1Q

Q′ .

Observe that for any Q2 ⊃ Q1, DQ
Q2,+

(X) consists of the nonzero projections of
the elements of DQ

Q1,+
(X).

Also set

φ
Q
L ′,M,w(X)=

{
(−1)|D

Q
Q′,+(X)| if DQ

Q′,+(X)={α∈1
Q
Q′ : wα<0 or wα∈1M

(L ′)w},

0 otherwise.

Note that the condition wα ∈1M
(L ′)w is equivalent to (wα)M = 0.
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As usual, we suppress the superscript if Q = G.
Note that if w ∈ W (L ,M) then φL ,M,w is the function denoted by φwL in the

previous section. In particular, in this case

(7)
∫

aG
L

e〈λ,X〉φL ,M,w(X) d X =
vol(aG

L /Z1
∨

Q)∏
α∈1Q
〈λ, α∨〉

, λ ∈ (aG
L )
∗

C, Rewλ ∈ a∗P,+.

Lemma 4. Suppose that R ⊆ S ⊆ Q and w ∈W (MS;M). Then∑
Q′∈[R,S]

φ
Q
L ′,M,w(X)=

{
φ

Q
S,M,w(X) if DQ

R,+(X)∩1
S
R =∅,

0 otherwise.

Proof. We observe that for any Q′ ∈ [R, S] we have φQ
L ′,M,w(X) 6= 0 if and only if

φ
Q
MS,M,w(X) 6= 0 and DQ

Q′,+(X)⊃1
S
Q′ . In this case,

φ
Q
L ′,M,w(X)= (−1)r(Q

′)−r(S)φ
Q
MS,M,w(X).

The lemma follows from [Arthur 1978, Proposition 1.1]. �

We also recall the following version of Langlands’ combinatorial lemma.

Lemma 5 (Arthur). Let w ∈W (L ′;M) and Q ⊃ Q′. Then we have∑
R∈[Q′,Q]

φR
L ′,M,w(X)τ

Q
R (X)=

{
1 if wα > 0 and wα /∈1M

(L ′)w for all α ∈1Q
Q′,

0 otherwise.

In particular, taking Q′ = P and w = 1, for any X ∈ aP there exists a unique
Q ∈ [P,G] such that τQ(X) = 1 and X Q

∈ CQ
P,−. Moreover, 〈α, X〉 > 0 for any

α ∈1P \1
Q
P and DP,+(X)⊃1P \1

Q
P .

This follows from [Arthur 1978, Lemma 6.3] by taking 3 = −w−130 where
30 ∈ a∗M,+.

For nonnegative quantities A and B (depending on parameters) we will write
A� B if there exists a constant c > 0 (independent of the parameters) such that
A ≤ cB.

Lemma 6. Suppose that P ∈ [R, Q], X ∈ a
Q
R , and

DQ
R,+(X)∩1

P
R = {α ∈1

P
R : 〈α, X〉 ≤ 0}.

Then ‖X‖� ‖X M‖.

Proof. Write X =
∑

α∈1R
xαα∨ as X1+ X2 where

X1 =
∑
α∈1P

R

xαα∨ and X2 =
∑

α∈1R\1
P
R

xαα∨.
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We have to show that under the conditions of the lemma we have ‖X1‖ ≤ C‖X2‖

for some constant C which is independent of X . Let S(X) be such that

1
S(X)
R = {α ∈1P

R : 〈α, X〉> 0} =1P
R \ DQ

R,+(X).

Fix λ ∈ (aS(X)
R )∗

+
. Since the coefficients of λ in the basis 1S(X)

R are positive, we
have

0≤ 〈λ, X〉 = 〈λ, X1〉+ 〈λ, X2〉.

On the other hand, we have λ=
∑

$∈1̂
Q
R
λ$$ where λ$ > 0 for $ ∈ 1̂Q

R \ 1̂
Q
S(X)

and λ$ ≤ 0 for $ ∈ 1̂Q
S(X). Thus,∑

α∈1
S(X)
R

|xα| � −〈λ, X1〉.

(There are of course only finitely many possibilities for S(X), so the dependence
of the implied constant on λ is immaterial.)

Similarly, fix µ ∈ (aS′(X)
R )∗

+
where

1
S′(X)
R =1P

R \1
S(X)
R =1P

R ∩ DQ
R,+(X).

Then
〈µ, X1〉 ≤ −〈µ, X2〉

and ∑
α∈1

S′(X)
R

|xα| � 〈µ, X1〉.

Thus, 〈µ−λ, X1〉 ≤ 〈λ−µ, X2〉 while ‖X1‖� 〈µ−λ, X1〉. The claim follows. �

As before, fix P and Q. For any R ⊆ Q and w ∈W (MR;M) define

(8) χ
Q
MR,M,w(X)=

∑
Q′∈[R,Q]:w∈W (L ′;M)

τ
Q′
R (X)φ

Q
L ′,M,w(X).

Lemma 7. We have

χ
Q
MR,M,w(X)=


(−1)|D

Q
R,+(X)| if DQ

R,+(X)= {α ∈1
Q
R : wα < 0 or

(wα ∈1M
Mw

R
and 〈α, X〉 ≤ 0)},

0 otherwise.

Furthermore, if χQ
MR ,M,w(X) 6= 0 and X ∈ a

Q
R then wX ∈ CMw

R ,−
and ‖X‖ �

‖(wX)M‖.

Proof. Let R1 ∈ [R, Q] be the parabolic subgroup such that

1
R1
R = {α ∈1

Q
R : wα ∈1

M
Mw

R
}
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so that w ∈W (L ′;M) if and only if Q′ ∈ [R, R1]. Let R2 ∈ [R, Q] be such that

1
R2
R = {α ∈1

Q
R : 〈α, X〉> 0}

so that τ Q′
R (X)= 1 if and only if Q′ ⊆ R2. Let S = R1 ∩ R2. Then

χ
Q
MR,M,w(X)=

∑
Q′∈[R,S]

φ
Q
L ′,M,w(X).

The first part now follows from Lemma 4.
In order to prove the second part, let X ∈ a

Q
R and write X =

∑
α∈1

Q
R

xαα∨.
Suppose that χQ

MR,M,w(X) 6= 0 and let

A = {α ∈1Q
R : wα ∈1

M
Mw

R
and 〈α, X〉 ≤ 0}.

Let Q1 be the parabolic subgroup with Levi Mw
R . We write

wX =
∑
α∈A

xαwα∨+
∑
α /∈A

xαwα∨

and observe that the first sum is a linear combination of roots in wA ⊆1M
Q1

with
positive coefficients, while the second sum lies in CQ1,−

. Thus, DQ1,+
(wX)⊆wA.

Using Lemma 5, let R1 ∈ [Q1,G] be such that τR1(wX)= 1 and (wX)R1 ∈ CR1
Q1,−

.
Then 〈α,wX〉 > 0 for all α ∈ 1Q1 \ 1

R1
Q1

and DQ1,+
(wX) ⊃ 1Q1 \ 1

R1
Q1

. In
particular, 1Q1 \1

R1
Q1
⊆ wA. On the other hand, from the definition of A, we have

〈wα,wX〉 = 〈α, X〉 ≤ 0 for any α ∈ A. It follows that R1=G, that is, wX ∈ CQ1,−

as required.
It remains to show that ‖X‖�‖(wX)M‖ if X ∈ a

Q
R and χQ

MR ,M,w(X) 6= 0. Write
X = X1+ X2 where

X1 =
∑

α∈1
Q
R :wα∈1

M
MwR

xαα∨ and X2 =
∑

α∈1
Q
R :wα /∈1

M
MwR

xαα∨.

We can apply Lemma 6 (with L ∩Mw−1
instead of M) to infer that ‖X1‖� ‖X2‖.

On the other hand, since

(wX2)M =
∑

α∈1
Q
R :wα /∈1

M
MwR

xα(wα∨)M

and each wα∨ has the opposite sign of xα, we conclude that ‖X2‖ � ‖(wX2)M‖.
Our claim follows. �

Corollary 8. For any k, we have∫
aG

R

χMR,M,w(X)e
k‖X‖+〈w−1λ,X〉 d X <∞

for any λ ∈ a∗M,+ sufficiently regular (depending on k).
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For the rest of the section, suppose that we are given Q, Mi , and wi ∈W (L;Mi ),
i = 1, 2.

Corollary 9. For any k and Q ⊆ Q2 we have∫
aG

Q

χ
Q2
L ,M1,w1

(X)χL2,M2,w2(X)e
k‖X‖+〈w−1

1 λ1+w
−1
2 λ2,X〉 d X <∞

provided that λ1 ∈ a∗M1,+
is sufficiently regular (depending on k) and λ2 ∈ a∗M2,+

is
sufficiently regular (depending on λ1 and k).

Proof. It follows from Lemma 7 that for any C > 0 we have

−〈λ2, w2 X〉 ≥ C‖X Q2‖

if χL2,M2,w2(X) 6= 0 provided that λ2 ∈ a∗M2,+
is sufficiently regular (depending on

C , but not on X ). Similarly, for any C > 0 we have

−〈λ1, w1 X〉 = −〈λ1, w1 X Q2〉− 〈λ1, w1 X Q2〉 ≥ C‖X Q2‖−C2‖X Q2‖

if χQ2
L ,M1,w1

(X) 6= 0 provided that λ1 ∈ a∗M1,+
is sufficiently regular, depending on

C , but not on X , and with C2 depending only on λ1. Thus for any C , we have

−〈w−1
1 λ1+w

−1
2 λ2, X〉 ≥ C‖X‖

if χQ2
L ,M1,w1

(X)χL2,M2,w2(X) 6= 0, provided that λ1 ∈ a∗M1,+
is sufficiently regular

(depending on C) and λ2 ∈ a∗M2,+
is sufficiently regular (depending on λ1 and C).

The corollary follows. �

We define

9L ,M1,w1,M2,w2(X)=
∑

Q2⊃Q :w2∈W (L2;M2)

χ
Q2
L ,M1,w1

(X)χL2,M2,w2(X).

We can explicate the function 9L ,M1,w1,M2,w2 as follows.

Proposition 10. Let Ri , i = 1, 2, be such that

1
Ri
Q = {α ∈1Q : wiα ∈1

Mi
Lwi }

and let R′1 be such that

1
R′1
Q = {α ∈1Q : w1α > 0 and w1α /∈1

M1
Lw1 }.

Then

9L ,M1,w1,M2,w2(X)=


(−1)|DQ,+(X)| if DQ,+(X)= {α ∈1Q : w2α < 0}

∪(1
R2
Q \({α∈1

R1
Q : 〈α, X〉>0}∪1

R′1
Q )),

0 otherwise.

Note that 9L ,M1,w1,M2,w2 6≡9L ,M2,w2,M1,w1 .
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Proof. Note that for L i ⊃ L , we have wi ∈ W (L i ;Mi ) if and only if Qi ⊆ Ri ,
i = 1, 2. Thus, upon substituting (8) for χ , we get that 9L ,M1,w1,M2,w2(X) is equal
to ∑

Q2∈[Q,R2]

∑
Q1∈[Q,Q2∩R1]

τ
Q1
Q (X)φQ2

Q1,M1,w1
(X)

∑
Q′2∈[Q2,R2]

τ
Q′2
Q2
(X)φQ′2,M2,w2(X).

We write this differently as∑
Q1∈[Q,R1]

τ
Q1
Q (X)

∑
Q′2∈[Q1,R2]

φQ′2,M2,w2(X)
∑

Q2∈[Q1,Q′2]

φ
Q2
Q1,M1,w1

(X)τ
Q′2
Q2
(X).

By Lemma 5, we get

9L ,M1,w1,M2,w2(X)=
∑

Q1∈[Q,R1]

τ
Q1
Q (X)

∑
Q′2∈[Q1,R2∩Q]

1]

φQ′2,M2,w2(X),

where Q]

1 is such that

1
Q]

1
Q1
= {α ∈1Q1 : w1α > 0 and w1α /∈1

M1

L
w1
1
}.

Observe that 1
Q]

1
Q1

consists of the projections of 1
R′1
Q , that is,

1
Q]

1
Q =1

Q1
Q ∪1

R′1
Q

(disjoint union). In particular, Q]
= R′1. Thus, by Lemma 4, we get

9L ,M1,w1,M2,w2(X)=
∑

τ
Q1
Q (X)φR2∩Q]

1,M2,w2
(X),

where the sum is over Q1 ∈ [Q, R1 ∩ R2] such that DQ1,+
(X)∩1

R2∩Q]

1
Q1

= ∅, or
equivalently, Q1 ∈ [S1(X), R1 ∩ R2] where

1
S1(X)
Q =1

R2∩R′1
Q ∩ DQ,+(X).

On the other hand, let S2(X) be such that

1
S2(X)
Q = {α ∈1Q : 〈α, X〉> 0}.

Then τ Q1
Q (X)= 1 if and only if Q1 ⊆ S2(X). All in all, we get∑

Q1∈[S1(X),R1∩R2∩S2(X)]

φR2∩Q]

1,M2,w2
(X).

Note that since R1∩ R′1 = Q and S1(X)⊆ R′1, we have S1(X)⊆ R1∩ R2∩ S2(X) if
and only if S1(X)= Q. In this case, the map Q1 7→ R2∩Q]

1 is a bijection between
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[S1(X), R1 ∩ R2 ∩ S2(X)] and [R2 ∩ R′1, S′2(X)] where S′2(X) = R2 ∩ (R1 ∩ R2 ∩

S2(X))]. We thus get (assuming S1(X)= Q)∑
Q′1∈[R2∩R′1,S

′

2(X)]

φQ′1,M2,w2(X).

Invoking Lemma 4 once again, we get that

9L ,M1,w1,M2,w2(X)= φS′2(X),M2,w2(X)

if S1(X)= Q and

(9) DR2∩R′1,+
(X)∩1

S′2(X)
R2∩R′1

=∅.

Otherwise, 9L ,M1,w1,M2,w2(X)= 0. We can rewrite condition (9) equivalently as

DQ,+(X)∩1
S′2(X)
Q ⊆1

R2∩R′1
Q .

Once again, since R1 ∩ R′1 = Q, this becomes

1
R1∩R2∩S2(X)
Q ∩ DQ,+(X)=∅.

The proposition follows. �

Corollary 11. For any k we have∫
aG

Q

9L ,M1,w1,M2,w2(X)e
k‖X‖+〈w−1

1 λ1+w
−1
2 λ2,X〉 d X <∞

provided that λ1 ∈ a∗M1,+
is sufficiently regular (depending on k) and λ2 ∈ a∗M2,+

is sufficiently regular (depending on λ1 and k). Moreover, for any fi ∈ PE(Ai ),
i = 1, 2,∫

aG
Q

9L ,M1,w1,M2,w2(X − T ) f1(w1 X) f2(w2 X)e〈w
−1
1 λ1+w

−1
2 λ2,X〉 d X

has meromorphic continuation for λi ∈a∗Mi ,C
, i =1, 2, with hyperplane singularities,

and as a function of T , it belongs to PE(w−1
1 A1+w

−1
2 A2+w

−1
1 λ1+w

−1
2 λ2).

Proof. The first part follows from Corollary 9 and the defining expression for
9L ,M1,w1,M2,w2 . Alternatively, we can deduce it from Proposition 10 as follows.
Suppose that

X =
∑
α∈1Q

xαα∨

and 9L ,M1,w1,M2,w2(X) 6= 0. Write X = X1+ X2+ X3 where

X1 =
∑

α∈1Q\1
R2
Q

xαα∨, X2 =
∑

α∈1
R2
Q \1

R1
Q

xαα∨, and X3 =
∑

α∈1
R1∩R2
Q

xαα∨.
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By Proposition 10, the coefficients xα in X1 are positive precisely when w2α < 0,
the coefficients in X2 are positive precisely whenw1α<0, and the coefficients in X3

are positive precisely when 〈α, X〉 ≤ 0. Then w2 X = w2 X1+w2(X2+ X3) where
w2 X1 ∈ C0,− and w2(X2 + X3) ∈ w2a

R2
Q ⊆ aM2

0 . Thus, 〈λ2, w2 X〉 = 〈λ2, w2 X1〉.
Note that the kernel of the map X 7→ (w2 X)M2 is aR2

Q . Therefore, for any C1 > 0,
we have

−〈w−1
2 λ2, X〉 = −〈λ2, w2 X〉 ≥ C1‖X1‖

provided that λ2 ∈ a∗M2,+
is sufficiently regular (depending on C1, but not on X ).

We also have w1 X2 ∈ C0,− and 〈λ1, w1 X〉 = 〈λ1, w1 X1〉+ 〈λ1, w1 X2〉. By the
same reasoning, we infer that for any C2 > 0, we have

−〈w−1
1 λ1, X〉 = −〈λ1, w1 X〉 ≥ C2‖X2‖−C3‖X1‖

for all λ1 ∈ a∗M1,+
sufficiently regular (depending on C2 but not on X ) where C3

depends on λ1 but not on X .
Thus for any C > 0 and for λ1 ∈ a∗M1,+

sufficiently regular (depending on C)
and λ2 ∈ a∗M2,+

sufficiently regular (depending on C and λ1), we have

(10) −〈λ1, w1 X〉− 〈λ2, w2 X〉 ≥ C‖X1+ X2‖.

On the other hand, by Lemma 6, it follows that ‖X3‖� ‖X1+ X2‖ on the support
of 9L ,M1,w1,M2,w2 . Thus we can replace the right-hand side of (10) by C‖X‖. The
first part of the corollary follows.

The second part follows from Lemma 3. �

5. Truncation of a general Eisenstein series

We will use the notation of the previous sections.
We have the following generalization of (4).

Lemma 12. For Re λ ∈ a∗P,+ sufficiently regular we have

(11) 3T,Q EP(g, ϕ, λ)

=

∑
Q′∈[P0,Q],w∈W (L ′;M)

∑
γ ∈Q′\Q

BQ′(γ g, ϕ,w, λ)φQ
L ′,M,w(H(γ g)− T ).

Proof. Let E = EP(ϕ, λ). Then

3T,Q EP(g, ϕ, λ)

=

∑
P ′∈[P0,Q]

(−1)r(P
′)−r(Q)

∑
γ ∈P ′\Q

(EP(ϕ, λ))P ′(γ g)τ̂ Q
P ′(H(γ g)− T ).
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Using (1) for the constant term of Eisenstein series we get∑
P ′∈[P0,Q]

(−1)r(P
′)−r(Q)

∑
γ ∈P ′\Q

∑
w∈W M\W/W M ′

E P ′
P ′w
(γ g,M(w−1, λ)ϕPw , w

−1λ)

× τ̂
Q
P ′(H(γ g)− T ),

where Pw (resp. P ′w) is the standard parabolic with Levi part Mw = M ∩ M ′w

(resp. M ′w = M ′ ∩Mw−1
). Unfolding the Eisenstein series, we get∑

P ′∈[P0,Q]

(−1)r(P
′)−r(Q)

∑
w∈W M\W/W M ′

∑
γ ∈P ′w\Q

BPw(γ g, ϕ,w, λ)τ̂ Q
P ′(H(γ g)− T ).

The sum is absolutely convergent by the assumption on λ. For any w ∈ W M
\W

/W M ′ , we have w ∈W (M ′w;M). Therefore, we may rearrange the sums differently
as

(12)
∑

Q′∈[P0,Q]

∑
w∈W (L ′;M)

∑
γ ∈Q′\Q

BQ′(γ g, ϕ,w, λ)∑
P ′∈[P0,Q]:w∈W/W M ′ ,P ′w=Q′

(−1)r(P
′)−r(Q)τ̂

Q
P ′(H(γ g)− T ).

It remains to analyze the inner sum. Fix Q′, w ∈W (L ′;M), γ ∈ Q′\Q, and g ∈GA.
Let X = H(γ g) − T and let R ∈ [Q′, Q] be the parabolic subgroup such that
1̂

Q
R = {$ ∈ 1̂

Q
Q′ : 〈$, X〉 > 0}. Note that τ̂ Q

P ′(H(γ g)− T ) = 1 if and only if
P ′ ∈ [R, Q]. On the other hand, we can rewrite the conditions w ∈ W/W M ′ and
P ′w = Q′ as P ′ ∈ [Q′, S] where S ∈ [Q′, Q] is such that

1S
Q′ = {α ∈1

Q
Q′ : wα > 0 but wα /∈1M

L ′w}.

We infer that the inner sum of (12) is nonzero only if S = R and this happens
exactly when φQ

L ′,M,w(X) 6= 0. In this case, φQ
L ′,M,w(X) = (−1)r(S)−r(Q). The

lemma follows. �

The lemma just proved is not so useful as it stands, for in practice, it may be
difficult to work analytically with the right-hand side of (11) since the constant
terms of ϕ are not rapidly decreasing in general. We seek a similar expression
where BQ′ is replaced by a function which is rapidly decreasing on L ′\L ′1A. To that
end we will use the inversion formula (2) to rewrite the right-hand side of (11) as∑
Q′∈[P0,Q]

∑
w∈W (L ′;M)

∑
γ ∈Q′\Q

∑
R⊆Q′

∑
δ∈R\Q′

3T,R BQ′(δγ g, ϕ,w, λ)

τ
Q′
R (H(δγ g)− T )φQ

L ′,w,M(H(γ g)− T ).

Applying Lemma 1 (with R instead of Q) and combining the sums over γ and δ,
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we get:

Proposition 13. With χ given by Lemma 7,

3T,Q EP(ϕ, λ)

=

∑
R∈[P0,Q]

∑
w∈W (MR;M)

∑
γ ∈R\Q

3T,R BR(γ g, ϕ,w, λ)χQ
MR,M,w(H(γ g)− T ).

6. Maass–Selberg relations

We will use Proposition 13 to obtain the Maass–Selberg relations in this context.
First we need a lemma.

Lemma 14. Let f be a function of moderate growth on G\G1
A and let ϕ be a

function of moderate growth on QVA\GA which is rapidly decreasing in L\L1
A×K .

Then for any w ∈W (L;M) and for Re λ ∈ a∗M,+ sufficiently regular, we have〈
f,

∑
γ ∈Q\G

ϕw−1λ(γ g)χL ,M,w(H(γ g)− T )
〉
G\G1

A

= 〈 fQ, ϕw−1λχL ,M,w(H( · )− T )〉Q\G1
A
.

Proof. This is the usual unfolding. In order to justify it, we need to show the
convergence of ∫

Q\G1
A

| f |Q(g)|ϕw−1λ(g)χL ,M,w(H(g)− T )| dg.

We use Iwasawa decomposition to write this as∫
K

∫
aG

L

∫
L\L1

A

| f |Q(eX lk)|ϕ(eX lk)|δQ(eX )−1eRe〈w−1λ,X〉
|χL ,M,w(X−T )| dl d X dk.

By the moderate growth of f and ϕ, there exist c and N such that

| f |Q(eX lk)|ϕ(eX lk)| ≤ c(e‖X‖‖l‖)N , X ∈ aG
L , l ∈ LA, k ∈ K .

The convergence follows from the rapid decay of ϕ in L\L1
A and Corollary 8. �

Proposition 15. We have the identity (in the sense of meromorphic continuation)

(13) 〈EP1(ϕ1, λ1),3
T EP2(ϕ2, λ2)〉G\G1

A
=

∑
Q

∑
w1∈W (L;M1)

∑
w2∈W (L;M2)

〈3T,Q BQ(ϕ1, w1, λ1), BQ(ϕ2, w2, λ2)9L ,M1,w1,M2,w2(H( · )− T )〉Q\G1
A
,

where each summand converges for Re λ1 ∈ a∗M1,+
sufficiently regular and Re λ2 ∈

a∗M2,+
sufficiently regular (depending on Re λ1) and as a function of T belongs to

PE(E⊆Lw1 (ϕ1)+ E⊆Lw2 (ϕ2)+w
−1
1 λ1+w

−1
2 λ̄2).
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Interestingly, because of the asymmetry of 9, the individual terms on the right-
hand side are not invariant (up to complex conjugation) under interchanging ϕi , wi ,
and Mi .

Proof. Set fi = EPi (ϕi , λi ), i =1, 2. Using Proposition 13 we write 〈 f1,3
T f2〉G\G1

A

as the sum over Q2 and w2 ∈W (L2;M2) of〈
f1,

∑
γ ∈Q2\G

3T,Q2 BQ2(γ g, ϕ2, w2, λ2)χL2,M2,w2(H(γ g)− T )
〉
G\G1

A

provided that each term is defined. By Lemma 14, this is indeed the case for
Re λ2 ∈ a∗M2,+

sufficiently regular and each summand is equal to

〈( f1)Q2,3
T,Q2 BQ2(ϕ2, w2, λ2)χL2,M2,w2(H( · )− T )〉Q2\G1

A
.

This is equal to

〈3T,Q2 f1, BQ2(ϕ2, w2, λ2)χL2,M2,w2(H( · )− T )〉Q2\G1
A
.

Using Proposition 13 once more, we obtain the sum over Q1 ∈ [P0, Q2] and
w1 ∈W (L1;M1) of〈 ∑
γ ∈Q1\Q2

3T,Q1 BQ1(γ g, ϕ1, w1, λ1)χ
Q2
L1,M1,w1

(H(γ g)− T ),

BQ2(ϕ2, w2, λ2)χL2,M2,w2(H( · )− T )
〉

Q2\G1
A

.

Using the argument of Lemma 14 together with Corollary 9 and applying Lemma 1
we get∑
Q1⊆Q2

∑
w1∈W (L1;M1)

∑
w2∈W (L2;M2)

〈3T,Q1 BQ1(ϕ1, w1, λ1)χ
Q2
L1,M1,w1

(H( · )− T ),

BQ1(ϕ2, w2, λ2)χL2,M2,w2(H( · )− T )〉Q1\G1
A
.

Upon rewriting, we obtain (13) from the definition of 9L ,M1,w1,M2,w2 . The last part
follows from Corollary 11 and Lemma 2. �

Remark 16. The careful reader would have noticed that the exact description of
9L ,M1,w1,M2,w2 provided by Proposition 10 was not really used in the argument
above. It will be of interest to describe the Laplace transform of 9L ,M1,w1,M2,w2

explicitly, thereby explicating further the Maass–Selberg relations above. We
will not go in this direction in this paper. We mention, however, the following
special case: the volume olume of the truncated fundamental domain, namely
〈1,3T 1〉G\G1

A
, was computed explicitly in [Kim and Weng 2007].

If ϕ j ∈A
cusp
Pj

, the identity (13) reduces to (5), which is equal to the expression
MT (ϕ1, λ1, ϕ2, λ2) defined in (6).

In the case where ϕ j ∈A2
Pj

we recover Arthur’s asymptotic result.



684 EREZ LAPID AND KEITH OUELLETTE

Proposition 17 [Arthur 1982]. Suppose ϕ j ∈A2
Pj

and λ j ∈ ia∗M j
, j = 1, 2 . Then

〈EP1(ϕ1, λ1),3
T EP2(ϕ2, λ2)〉G\G1

A
=MT (ϕ1, λ1, ϕ2, λ2)+ET (ϕ1, λ1, ϕ2, λ2),

where
ET (ϕ1, λ1, ϕ2, λ2) ∈ PE−.

Proof. Consider the right-hand side of (13). Each summand belongs to PE− unless
w1 ∈W (L ,M1) and w2 ∈W (L ,M2). In this case, the summand is equal to

〈(3T,Q(M(w−1
1 , λ1)ϕ1)w−1

1 λ1
, (M(w−1

2 , λ2)ϕ2)w−1
2 λ2

φQ,M2,w2(H( · )− T )〉Q\G1
A
.

The proposition follows from Lemma 2 applied with L instead of G, using the
Iwasawa decomposition and (7) �

As in [Lapid 2011, §8] one can infer from Proposition 17 the holomorphy of
E(ϕ, λ) on λ∈ ia∗M for any ϕ ∈A2

P . Moreover, for any smooth compactly supported
function ϕ : ia∗M →A2

P with values in a finite-dimensional subspace of A2
P , define

the Eisenstein integral

2P,ϕ =

∫
ia∗M

E(ϕ(λ), λ) dλ.

Then 2P,ϕ ∈ L2(G\G1
A) and

(14) 〈2P,ϕ,2P ′,ϕ′〉G\G1
A
=

∫
ia∗M

∑
w∈W(M,M ′)

〈M(w, λ)ϕ(λ), ϕ′(wλ)〉AM ′U
′

A M ′\GA
dλ.

We note that the argument in [Lapid 2011, §8] depends on the second half of [ibid.,
§7] (which is elementary), but is otherwise self-contained.

We can write (14) more symmetrically as follows. For any parabolic subgroup
R, write

ϕ
P,R
# (λ)=

∑
w∈W (P,R)

M(w,w−1λ)ϕ(w−1λ), λ ∈ ia∗R.

By the properties of the intertwining operators, we have

ϕ
P,Q
# (sλ, g)= M(s, λ)ϕP,R

# (λ, g)

for any s ∈ W (R, Q). Therefore, for any Q and s ∈ W (P, Q) we can write the
right-hand side of (14) as∫

ia∗Q

〈M(s, s−1µ)ϕ(s−1µ), ϕ′
P ′,Q
# (µ)〉AL VA L\GA

dµ.

Averaging over Q and s we get

〈2P,ϕ,2P ′,ϕ′〉G\G1
A
= n(aP)

−1
∑

Q

∫
ia∗Q

〈ϕ
P,Q
# (µ), ϕ′

P ′,Q
# (µ)〉AL VA L\GA

dµ,
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where n(aP) =
∑

Q |W (P, Q)| is the number of chambers for aP [Arthur 1978,
p. 919].
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SOME COMMENTS ON WEYL’S
COMPLETE REDUCIBILITY THEOREM

JONATHAN ROGAWSKI AND V. S. VARADARAJAN

In memoriam: Jonathan Rogawski

In this note we discuss a purely algebraic proof of Weyl’s theorem that all
finite-dimensional representations of a complex semisimple Lie algebra are
completely reducible. We give a simple and direct proof which is elementary
in the sense that it does not use cohomology, and which is a synthesis of the
older proofs of Casimir – van der Waerden and of Brauer.

1. Introduction

In the theory of semisimple Lie algebras, one of the central results is the theorem of
Weyl that says that all finite-dimensional representations of a complex semisimple
Lie algebra g are completely reducible, that is, direct sums of the irreducible ones. In
this note we present a purely algebraic proof of this result. Our aim is pedagogical,
and so we have made an effort to explain in detail facts that are usually taken
for granted in expositions, so as to make this accessible to graduate students and
advanced undergraduates. The result is valid over any field of characteristic 0; but
this generalization can be deduced from the complex case by standard arguments.
Hence we restrict ourselves to working over C.

The complete reducibility theorem was first proved by Hermann Weyl [1968]
in his great series of papers on the theory of representations of semisimple Lie
groups. Although Elie Cartan had already obtained a complete description of the
irreducible representations, he did not go seriously into the issue of how an arbitrary
representation could be built out of irreducible representations.

Weyl’s proof remains one of the most beautiful in the entire theory of representa-
tions. The basis of his proof is the following: there is a real form u of g, the so-called
compact form, with the property that the simply connected group U corresponding
to u is compact; here we recall that to say that u is a real form of g is to require that
u is a real Lie subalgebra of g whose real dimension is the complex dimension of g.

MSC2010: 17B20, 22E46.
Keywords: Weyl’s reducibility theorem.
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Once the existence of u is assumed, the proof is straightforward. The representations
of g correspond naturally to the representations of u; in one direction one restricts
from g to u and in the other direction one extends from u to g by complexification.
On the other hand, there is a natural correspondence between the representations
of u and the continuous representations of U . Now the compactness of U means
that any continuous representation of U is unitarizable, that is, is equivalent to a
unitary representation, namely a continuous homomorphism of U into the group
of unitary operators on a finite-dimensional complex Hilbert space. So, assuming
the representation is unitary, its complete reducibility is immediate, because for
any U -invariant subspace M , its orthogonal complement M⊥ is also U -invariant
and is moreover complementary to M ; the complete irreducibility is then clear
by induction on the dimension of the representation. The unitarizability of any
representation of U means that if we start with any representation, we can find a
U -invariant scalar product in the representation space. To do this, we start with an
arbitrary scalar product in the representation space and then introduce the scalar
product which is the group average of its transforms by elements of U ; this latter
scalar product is invariant under U so that U is unitary with respect to it (see
[Varadarajan 1984, Chapter 4, §4.11]; see also [Hawkins 2000, pp. 465–484]).

This proof is essentially transcendental: it uses invariant integration on the
compact group and also the topological fact that the universal covering group of
the adjoint group of the compact form is still compact. And neither of these is
elementary. The reduction to the compact form u and the compact group U was
named the unitarian trick by Weyl.

It must be mentioned that the idea of averaging on special compact groups (such
as the orthogonal group) goes back to Hurwitz and Schur. For Hurwitz, the goal
was to prove the finite generation of the invariants for actions of SL(n,C) and
SO(n,C). Although these groups are not compact, they contain the compact groups
SU(n) and SO(n,R), and invariance with respect to these will imply invariance
with respect to the complex groups they are contained in (this is the first instance of
the unitarian trick); this is because a holomorphic function on the complex groups
which vanishes on the relevant compact subgroup is identically 0. For Schur, the
goal was the representation theory of the compact groups SU(n) and SO(n,R), and
he used integration over the group to determine all the irreducible representations,
their characters, and their dimensions. The work of Hurwitz and Schur triggered
Weyl’s imagination, and after he got the results for all semisimple compact groups,
he described them in a letter to Schur (see [Borel 1986] for references to the work
of Hurwitz and Schur and to Weyl’s letter to Schur).

So in the years after Weyl’s proof appeared, the question of a purely algebraic
proof became a natural issue. The first such algebraic proof was given by Casimir
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and van der Waerden [1935].1 They give a beautiful purely algebraic argument
which is elementary in the sense that it relies only on the known structure of
irreducible modules as highest-weight modules, and the Casimir operator. A key
element of their proof is a delicate calculation in sl(2).

After the original proof, additional algebraic proofs appeared in [Brauer 1936]
and [Rashevski 1953]. There was also a proof that was cohomological: here it is a
question of first establishing that H 1(g,M)= 0 for any semisimple Lie algebra g

and any finite-dimensional g-module M , from which the complete reducibility will
follow via standard arguments (see [Varadarajan 1984, Chapter 3, §§3.12–3.13]).

In this note we shall present a proof which is in some sense a synthesis of the
earlier proofs of [Casimir and van der Waerden 1935; Brauer 1936]. It is very
short and very direct. It uses the Casimir operator in an essential manner (as do all
other proofs), the fact that any irreducible module is the one with highest weight
equal to some λ, and the fact that it is enough to lift invariant vectors from the
quotient of a module to the module itself. All modules considered from now on are
finite-dimensional.

For a detailed historical account of Weyl’s theorem and the various proofs of it,
see [Borel 1998].

2. The Casimir operator and the lifting of invariant vectors

Let g be a complex semisimple Lie algebra. If (X i ) is a basis for g and (X i ) is the
dual basis with respect to the Cartan–Killing form ( · , · ) (that is, (X i , X j )= δi j ),
then the Casimir operator is

ω =
∑

i

X i X i
;

it is independent of the choice of the basis and lies in the center of the enveloping
algebra of g. It commutes with the action of g and hence it goes into a scalar in any
irreducible module for g. We write gλ for the value of this scalar when the module
is Vλ, the irreducible module of highest weight λ. Here we have chosen a Cartan
subalgebra h, and a positive system of roots, so that λ ∈ h∗. The isomorphism
between h and h∗ carries the form on h to one on h∗ which is denoted by the same
symbol. It is known that ( · , · ) is real and positive definite on the real span of the
roots, which includes all the highest weights. If λ is a highest weight, (λ, α)≥ 0
for all roots α > 0.

The first lemma is the calculation of gλ. As usual, let

ρ = 1
2

∑
α>0

α.

1V. S. V. was fortunate to hear an exposition by Casimir himself of this proof in a conference in
Utrecht in 1985. See the Appendix.
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Lemma 1 [Casimir and van der Waerden 1935]. The scalar gλ is given by

gλ = (λ+ρ, λ+ρ)−(ρ, ρ).

Moreover,
gλ = 0 ⇐⇒ λ= 0.

In other words, an irreducible module where ω is 0 is necessarily the trivial module.

Proof. We select an ON basis (Ki ) for h and root vectors Xα with (Xα, X−α)= 1
for all roots α. Then

ω =
∑

i

K 2
i +

∑
α>0

(XαX−α + X−αXα)=
∑

i

K 2
i +

∑
α>0

Hα + 2
∑
α>0

X−αXα.

If mλ is a highest-weight vector for Mλ, then

ωmλ = gλmλ.

Since the Xα(α > 0) annihilate mλ and Hmλ = λ(H)mλ for H ∈ h, it follows that

gλ =
∑

i

λ(Ki )
2
+

∑
α>0

λ(Hα)= (λ, λ)+
∑
α>0

(λ, Hα)

= (λ, λ)+ 2(λ, ρ)= (λ+ ρ, λ+ ρ)− (ρ, ρ).

If λ= 0, then gλ= 0. Conversely, suppose that gλ= 0. Then (λ, λ)+2(λ, ρ)= 0.
As both (λ, λ) and (λ, ρ) are ≥ 0, we must have (λ, λ)= 0, so that λ= 0. �

The second lemma is that invariant vectors can be lifted. A vector v in a g-module
is invariant if gv = 0.

Lemma 2. Let
M→ P→ 0

be an exact sequence of g-modules and let p ∈ P be an invariant vector. Then we
can lift p to an invariant vector in M , namely, find an invariant u ∈ M such that u
maps to p.

Proof. Replacing M by the preimage of the line Cp, we may assume that P = Cp.
Now M is the direct sum of the generalized subspaces Mr of the Casimir operator,
Mr being the largest subspace where ω has the single eigenvalue r . The Mr are
stable under g, and as ωp = 0, it follows that all the Mr for r 6= 0 map to 0 in P .
Since M maps onto P , this means that M0 6= 0 and maps onto P . In other words,
we may assume that M = M0. But then, by Lemma 1, M has a Jordan composition
series consisting only of trivial modules. Let Hi , X i , Yi (1≤ i ≤ r = rank of g) be
the usual Chevalley generators for g. Then, for each i , Hi has the sole eigenvalue 0
in M . If M[Hi : a] is the generalized eigensubspace of Hi for the eigenvalue a, it is
standard that X i (resp. Yi ) maps M[Hi : a] into M[Hi : a+2] (resp. M[Hi : a−2]).
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But as 0 is the only eigenvalue for Hi in M , it follows that X i and Yi act as 0 on M .
But then Hi = [X i , Yi ] also acts as 0, so that g acts trivially on M . This means that
any vector u of M above p satisfies our requirements. �

3. Proof of Weyl’s theorem

Weyl’s theorem can now be obtained by a standard general argument.

Weyl’s theorem. All g-modules are completely reducible.

Proof. Suppose M is a g-module and N a proper submodule. It is a question of
finding a submodule Q such that M = N ⊕ Q. If P = M/N , we have an exact
sequence of g-modules

0→ N → M→ P→ 0.

So we get the exact sequence g-modules

0→ Hom(P, N )→ Hom(P,M)→ Hom(P, P)→ 0.

Now the identity I in Hom(P, P) is an invariant element, and so, by Lemma 2, can
be lifted to an invariant element t in Hom(P,M). Since t maps to I , we see that t
splits the map M→ P . Since t is invariant, the range Q of t is a submodule of M
complementary to N . �

Remark. The reduction to trivial modules goes back to [Brauer 1936]. It was
resurrected by Chevalley [1955] in his proof of Weyl’s theorem. Later on, when
Mumford [1965] needed a characteristic p version of Lemma 2, he formulated it as
follows: if G is a connected semisimple group over an algebraically closed field
K of characteristic p > 0, and V,W are G-modules with V →W → 0 exact, and
if w ∈W is an invariant vector, there are an integer d > 0 and an invariant vector
v ∈ Sd(V ) which maps to wd (here Sd refers to the component of degree d in the
symmetric algebra). It is known that the smallest value of d is a power pm of p.

Appendix: A historical note on Casimir and his operator

Hendrik Brugt Gerhard Casimir (1909–2000) was a physicist whose Leiden thesis
[1933] on the theory of diatomic molecules introduced the operator now known
as the Casimir operator, as an element of the enveloping algebra of the rotation Lie
algebra o. It commutes with all the elements of o and so is a scalar in any irreducible
representation of o. Shortly afterwards, he discovered the analogue of this for any
semisimple Lie algebra [1931]. The corresponding operator in any representation of
the Lie algebra eventually became known as the Casimir operator. It plays a central
role in harmonic analysis and representation theory, even though for groups of higher
dimension its value on an irreducible representation no longer determines the rep-
resentation, unlike what happens for sl(2). In [Casimir 1931], he himself pioneered
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the idea that the Casimir operator should be viewed as a second-order differential
operator on the group manifold, and that the matrix elements of irreducible repre-
sentations of the group are eigenfunctions for this operator. The connection between
representation theory and differential equations on the group manifold introduced
by Casimir found its full force and scope only with the work of Harish-Chandra.

Casimir was one of the great Dutch physicists of the twentieth century who made
significant contributions to both experimental and theoretical physics as well as to
pure mathematics. In addition, he had a big influence on industry as the head of the
research division of Philips. His mathematical contributions include the discovery
and use of the Casimir operator as described above. In experimental physics, he
predicted what is now known as the Casimir effect, which is a quantum mechanical
attraction between conducting plates. His theoretical contributions are quite well
known, such as his work on Lars Onsager’s microscopic reversibility. One of us
(V. S. V.) was present at a conference on semisimple Lie groups in Utrecht in 1985
when Casimir gave a talk on the history of the proof of Weyl’s complete reducibility
theorem and presented a brief sketch of the algebraic proof given in [Casimir and
van der Waerden 1935]. His autobiography [Casimir 1983] is a wonderful document
of great interest and humanity.

From the modern perspective, the Casimir operator is an element in the center of
the universal enveloping algebra of a semisimple Lie algebra. For simple Lie alge-
bras of dimension greater than 3, the Casimir element does not generate the center of
the enveloping algebra. Some of the additional elements of the center were written
down by Giulio Racah (1909–1965), an Israeli physicist and mathematician. Racah
[1965] determined in some implicit manner the full center of the enveloping algebra
of an arbitrary semisimple Lie algebra. The generators of the center discovered by
Racah are known to physicists as generalized Casimir operators. For many in the
1950’s and early 1960’s (including V. S. V.), the Racah notes [1965] were almost the
only sources of information on the structure and representations of semisimple Lie
algebras till the appearance of [Blanchard et al. 1955] and [Jacobson 1962]. From
the mathematical side, the center of the enveloping algebra was first investigated by
Harish-Chandra (1923–1983). Harish-Chandra constructed what is now known as
the Harish-Chandra isomorphism of the center of the universal enveloping algebra
of a general semisimple Lie algebra g with the algebra of Weyl group invariants of
the algebra of polynomials on a Cartan subalgebra of g. The center is very closely
related to the algebra of polynomial invariants on the Lie algebra, and this was
determined by Claude Chevalley (1909–1984), who proved that it is isomorphic,
via restriction to a Cartan subalgebra, to the Weyl group invariants of the algebra of
polynomials on the Cartan subalgebra. The Harish-Chandra isomorphism, and its
p-adic twin, the Satake isomorphism, play a fundamental role in harmonic analysis
on semisimple groups.
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ON EQUALITY OF ARITHMETIC AND ANALYTIC FACTORS
THROUGH LOCAL LANGLANDS CORRESPONDENCE

FREYDOON SHAHIDI

To the memory of Jonathan Rogawski

In this article we pursue the problem of equality of Artin factors with those
defined on the representation theoretic (analytic) side by the local Lang-
lands correspondence. We propose a set of axioms for the factors on the
analytic side which allows us to prove the equality of the factors. In the case
of L-functions the equality can be proved in a number of cases appearing
in the Langlands–Shahidi method since one of the axioms, stability under
highly ramified twists, is already available for the L-functions coming from
this method.

Introduction

The local Langlands correspondence (LLC) for GL(n) is formulated through the
equality of the Artin factors attached to tensor products on the Galois side with
the factors defined on the representation theoretic side, namely those of Rankin–
Selberg product L-functions for GL(n) × GL(m) [Jacquet et al. 1983; Shahidi
1984]. The LLC, which was proved for GL(n) in [Harris and Taylor 2001; Henniart
2000], also suggests that other Artin (or arithmetic) factors should be equal to
their representation theoretic (or analytic) counterparts, if they exist. In fact, one
important fact about analytic objects is that they always correspond to a global
theory and thus are of automorphic significance. On the other hand so long as
the problem of global parametrization or the global Langlands correspondence, a
problem whose formulation is still unavailable [Langlands 2012], is not settled,
one cannot expect to produce a global theory of L-functions from those defined by
local Artin factors. The problem is thus to show the equality of Artin factors with
the corresponding analytic ones whenever LLC is available.

The purpose of this article is to formulate a set of axioms to be satisfied by the
objects on the analytic side attached to every representation r of the L-group so

Partially supported by NSF grant number DMS–1162299.
MSC2010: primary 11F66, 11F70, 11F80; secondary 22E50.
Keywords: Artin root numbers and L-functions, automorphic root numbers and L-functions, stability

of root numbers.
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as to imply the equality of arithmetic (Artin) factors with analytic (representation
theoretic or automorphic) factors through LLC (Theorem 2.1). This formalizes and
generalizes some ideas of Harris [1998] as pursued later by Henniart [2010].

While the equality of γ -functions requires the validity of stability (Axiom 2), our
Theorem 3.1 proves the equality of L-functions in certain special cases coming from
Langlands–Shahidi method [Shahidi 1990; 2010] through LLC with no assumptions.
They include the cases of twisted exterior square L-functions for GL(n) as well as
twisted exterior cube for GL(6). This equality can be used to prove special cases of
the generic Arthur packet conjecture [Arthur 1984; Shahidi 2011] as we explain in
Section 3. Finally in Section 4 we address the issue of stability of γ -factors within
our method and discuss the progress made on it and some of its consequences.

1. Axiomatic r-theory

Let G be a connected reductive algebraic group over a local field F of characteristic
zero. Denote by L G its L-group. Let W ′F be the Weil–Deligne group of F . Let
ρ :W ′F →

L G be an admissible homomorphism (see [Arthur 1984; Shahidi 2011]).
Let r be an irreducible complex representation of L G on a finite dimensional
complex vector space V , i.e., r : LG → GL(V ) is an analytic homomorphism.
Then r · ρ :W ′F → GL(V ) defines a representation of W ′F , which we assume to be
Frobenius-semisimple.

Let us now assume we have a theory of L-functions attached to r . More precisely,
assume that for each irreducible admissible representation π of G(F), there are
defined an L-function L(s, π, r) and an ε-factor ε(s, π, r, ψF ), where s ∈ C and
ψF is a nontrivial additive character of F , satisfying (1) multiplicativity (additivity),
(2) stability under highly ramified character twists, (3) a global functional equation
whenever π becomes a local component of a global cusp form, and (4) archimedean
matching, each of which we shall now explain. It is best to formulate them in terms
of γ -functions

γ (s, π, r, ψF )= ε(s, π, r, ψF )L(1− s, π, r̃)/L(s, π, r).

1) Multiplicativity. This basically expresses γ -functions of a particular constituent
of an induced representation as a product of γ -functions for the inducing data.
One special and important case of it is that of Langlands quotients [Langlands
1989; Silberger 1978]. If π is an irreducible admissible representation of G(F),
then Langlands classification determines a standard parabolic subgroup P with a
Levi decomposition P = M N and a quasitempered representation σ of M(F), in
the “positive Weyl chamber”, such that π = J (P, σ ). Here J (P, σ ) is the unique
irreducible quotient of I (P, σ ), which is the representation of G(k) induced by
σ . Note that fixing the minimal parabolic subgroup P0 ⊂ P , making P standard,
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automatically determines the unique positive Weyl chamber. Now, let

ι : LM ↪→ LG

be the natural embedding. Let ρM :W ′F →
LM be the parameter defining σ (or its

L-packet), if known. Then ρ = ι · ρM will be the parameter for π . Let r be a finite
dimensional irreducible complex representation of L G as before. Decompose

(1-1) r · ι=
⊕

j

r M
j

into its irreducible constituents. Multiplicativity in this case simply requires

γ (s, π, r, ψF )=
∏

j

γ (s, σ, r M
j , ψF ),(1-2)

L(s, π, r)=
∏

j

L(s, σ, r M
j ),(1-3)

ε(s, π, r, ψF )=
∏

j

ε(s, σ, r M
j , ψF ).(1-4)

In fact, this is how these factors are defined: One first defines the factors for
quasitempered but unitary data and then extends the unitary complex parameters
to all of the complex dual of the complex Lie algebra of the split component of
the center of M [Langlands 1989; Shahidi 1990]. When F is an archimedean field,
LLC was established by Langlands [1989] and the L-functions were defined to be
those of Artin attached to the parameter. They satisfy Equations (1-2)–(1-4).

When one restricts oneself to those representations r that appear in constant
terms of Eisenstein series (Langlands–Shahidi method [Langlands 1971a; 1976;
Shahidi 2010]), in which case G will be assumed to be quasisplit, then these
formulas play a central role. In fact, what is defined with no reservations is the γ -
function γ (s, π, r ′i , ψF ), where r ′i is any irreducible constituent of the adjoint action
of LM ′ on Ln′, the Lie algebra of the complex Lie group LN ′ [Langlands 1971a;
Shahidi 1990; 2010]. The representation π is any irreducible admissible ψF -generic
representation of M ′(F), where P ′ = M ′N ′ is the defining parabolic subgroup for
the Eisenstein series which we may assume to be maximal. Here F is a completion
of the number field defining the Eisenstein series. As explained in [Shahidi 1990;
2010], the knowledge of γ -factors immediately defines the L-functions and ε-factors
if π is also tempered. The extension to any irreducible admissible representation
(not necessarily generic) π of M ′(F) is given by Langlands classification and
Equations (1-3) and (1-4) [Shahidi 1990]. In this case multiplicativity is valid
when π is the unique ψF -generic constituent of IndM ′(F)

M(F)N (F) σ ⊗ 1, where P is
any standard parabolic subgroup of M ′ defined over F and σ is any irreducible
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admissible ψF -generic representation of M(F), P = M N . One then has the
appropriate version of (1-2) for each γ -function γ (s, π, r ′i , ψF ), where r ′i is an
irreducible constituent of the adjoint action of LM ′ on Ln′ [Shahidi 1990; 2010].

Example. Assume G = GL(n1+ n2) and M = GL(n1)×GL(n2). Let rN be 32,
the exterior square representation of GL(N ,C) for any positive integer N . Then
one has

LM = GL(n1,C)×GL(n2,C)

and

(1-5) rn1+n2 |
LM = rn1 ⊕ rn2 ⊕ (ρn1 ⊗ ρn2),

where ρN is the standard representation of GL(N ,C). If π is the Langlands quotient
or the unique irreducible generic constituent of IndG(F)

M(F)N (F) σ1⊗ σ2⊗ 1, where σi ,
i = 1, 2, is an irreducible generic representation of GLni (F), which we will assume
to be quasitempered in the positive Weyl chamber if π is the Langlands quotient,
then

γ (s, π,32, ψF )= γ (s, σ1,3
2, ψF )γ (s, σ2,3

2, ψF )γ (s, σ1× σ2, ψF ).

Here γ (s, σ1×σ2, ψF ) is the Rankin–Selberg product γ -function defined in [Jacquet
et al. 1983]. It is also obtained from the Langlands–Shahidi method if we consider
M ′ = GL(n1)×GL(n2) inside G = GL(n1+ n2); see [Shahidi 1984].

One simple way of seeing the branching rule (1-5) is to consider M ′ = GLn1+n2

as the Siegel Levi subgroup of G = SO(2n1 + 2n2). Here one gets only one
irreducible representation r ′1 of LM ′ = GL(n1 + n2,C) in Ln′, r ′1 = 3

2
n1+n2

. One
can then immediately see the restriction decomposition (branching rule) (1-5) if
one considers the adjoint action of LM = GLn1(C)× GLn2(C) on Ln′ which is
isomorphic to (the second diagonal) skew-symmetric elements of complex matrices
of size n1+ n2.

Finally we remark that if one knows LLC and lets ρ be the parameter of π , and
further assume the equality

(1-6) γ (s, π, r, ψF )= γ (s, r · ρ,ψF ),

where the factor on the right is that of Artin attached to the representation r · ρ,
then one immediately has

γ (s, π, r, ψF )= γ (s, r · ρ,ψF )

= γ (s, r · ι · ρM , ψF )

= γ (s,⊕r M
j · ρM , ψF )

=

∏
j

γ (s, r M
j · ρM , ψF )=

∏
j

γ (s, σ, r M
j , ψF ),
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where σ is a member of the L-packet attached to ρM . This immediately implies
(1-2). The point is that even if one knows LLC, one would know the equality (1-6)
only for certain r [Langlands 1971a; Shahidi 1990; 2010] and not necessarily for
the family of L-functions attached to a given r . In practice one would need to know
multiplicativity for γ -functions γ (s, π, r, ψF ) on the representation theoretic side
in order to prove (1-6) for a given r .

2) Stability. This is again a local statement. Moreover, F will need to be assumed
to be nonarchimedean. We also need to assume X (G)F 6= {1}, i.e., that G has a
nontrivial F-rational character. This clearly rules out G being semisimple. Choose
and fix 1 6= ν ∈ X (G)F . Note that ν(G(F))⊂ F∗ is of finite index and thus open.
Let χ be a highly ramified character of F∗. Then χ · ν is what we call a highly
ramified character of G(F).

Let π1 and π2 be two irreducible admissible representations of G(F). Let ωπi

denote the central character of πi , i = 1, 2. Stability requires:

Assume ωπ1 = ωπ2 = ω. Then for every sufficiently highly ramified character χ
of G(F) with the level of ramification depending on π1 and π2, one has

γ (s, π1⊗χ, r, ψF )= γ (s, π2⊗χ, r, ψF ),(1-7)

L(s, π1⊗χ, r)= L(s, π2⊗χ, r)≡ 1,(1-8)

and thus

(1-9) ε(s, π1⊗χ, r, ψF )= ε(s, π2⊗χ, r, ψF ).

By virtue of [Deligne 1973], stability is valid for all the Artin factors, and as in
multiplicativity, stability will also be true for our factors (see [Cogdell, Shahidi and
Tsai ≥ 2012]) if LLC is valid and moreover our factors are equal to those of Artin.
But again stability is a tool which is needed to prove this equality which is known
in only a few cases.

At present this is the only result that needs to be established even in the context of
L-functions that come from the Langlands–Shahidi method [Shahidi 2002; 2010],
although special cases of it are available from either methods of L-functions. More
precisely, stability is known for the Rankin product factors γ (s, π1×π2, ψF ), where
π1 and π2 are irreducible admissible representations of GL(n1, F) and GL(n2, F),
respectively [Jacquet and Shalika 1985], or of GL1(F)= F∗ and G(F), whenever
G is a group for which the derived group of L G0 is a classical group [Cogdell et al.
2001; 2004; 2005; 2008; Kim and Krishnamurthy 2005; Asgari and Shahidi 2006;
2011].

On the other hand, in the context of L-functions in [Langlands 1989; Shahidi
1990; 2010], a stability statement for L-functions to the effect that
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L(s, π ⊗χ, ri )≡ 1

for every L-function obtained from our method, and suitably highly ramified char-
acters χ , was proved in [Shahidi 2000]. Thus it is the stability of γ -functions
γ (s, π, ri , ψF ) which needs to be proved in a given case. We will discuss this
problem shortly.

We conclude by pointing out that in the case of G ×GL(1) discussed above
stability has been an important tool to prove functorial transfers from the generic
spectrum of G(Ak) to appropriate GL(N ,Ak) [Cogdell et al. 2001; 2004; Kim and
Krishnamurthy 2005; Asgari and Shahidi 2006; 2011]. Here Ak is the ring of adeles
of a number field k.

3) Functional equations. The main reason for introducing local Artin root num-
bers (ε-factors) in [Dwork 1956; Langlands 1970; 1971b; Deligne 1973] was to
decompose Artin’s global root numbers and ε-factors into products of local objects.
Under the validity of LLC, these local Artin factors can be used to define local
factors attached to irreducible admissible representations (L-packets) of groups
over local fields. On the other hand if one considers cuspidal automorphic forms
over a global number field, then for each r one expects global functional equations
whose root numbers will have to be a product of local ones. One thus needs to
define a collection of local ε-factors and L-functions within the same machinery
that establishes the global functional equations [Jacquet et al. 1983; Cogdell and
Piatetski-Shapiro 2004; Shahidi 1990; 2010]. It is thus by no means clear that these
factors are equal to those defined by Artin factors through LLC, and the challenge
is to show that they are in fact equal. This is done by using these global functional
equations, but for a very special class of cusp forms, those attached to certain
irreducible continuous representations of global Galois (or Weil) group. We now
formulate this as follows.

Let k be a global field whose ring of adeles is Ak and let π =
⊗

v πv be an
automorphic cuspidal representation of G(Ak), where G is a connected reductive
group over k. Let r be an irreducible complex analytic representation (thus finite
dimensional and conversely) of L G. Let ηv : LGv→

L G be the natural map, where
L Gv is the L-group of G as a group over kv. Write rv = r · ηv. Let S be a finite set
of places of k such that for all v 6∈ S both the group G, as a group over kv, and πv
are unramified. Fix a complex number s. Let L(s, πv, rv) and ε(s, πv, rv, ψv) be
the local L-function and root number attached to this data from our theory, where
ψ =

⊗
v ψv is a nontrivial additive character of A/k with ψv unramified outside S.

Set

(1-10) L(s, π, r)=
∏
v

L(s, πv, rv),
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and

(1-11) ε(s, π, r)=
∏
v

ε(s, πv, rv, ψv),

where (1-10) converges absolutely for Re s� 0 while (1-11) is just a finite product.
Then

(1-12) L(s, π, r)= ε(s, π, r)L(1− s, π, r̃).

Here r̃ denotes the contragredient of r . In terms of γ -functions this can be written
as

(1-13) L S(s, π, r)=
∏
v∈S

γ (s, πv, rv, ψv)L S(1− s, π, r̃),

where

(1-14) L S(s, π, r)=
∏
v 6∈S

L(s, πv, rv).

Here by an unramified group we mean a quasisplit group to split over an unramified
extension. It will then have a hyperspecial maximal compact subgroup with respect
to which πv has an invariant (one dimensional) subspace if πv is unramified.

There are a good number of cases where these functional equations are proved.
The most general results here are those in the Langlands–Shahidi method, using
Eisenstein series [Langlands 1989; Shahidi 1990; 2010]. On the other hand, they
are also proved using the method of integral representations in a number of cases,
most notably and completely by Jacquet, Piatetski–Shapiro and Shalika for Rankin
product L-functions for GL(n1)×GL(n2) as discussed earlier [Jacquet et al. 1983;
Cogdell and Piatetski-Shapiro 2004]. We refer to [Soudry 2006] for a survey of the
results obtained from the integral representations method for other groups.

4) Archimedean matching. When k is a number field one has the benefit of using
the Langlands classification [Langlands 1989; Silberger 1978] and thus LLC for real
groups to define local factors at archimedean primes to be those of Artin through
LLC. The theory must then require:

Let F be either R or C and, for each irreducible admissible representation π
of G(F), let ρ : WF →

L G be the corresponding parameter. Then for each finite
dimensional irreducible complex representation r of L G we have

γ (s, r · ρ,ψF )= γ (s, π, r, ψF ).

We also have similar identities for root numbers and L-functions.
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Again, the most general case of this is proved within the context of the Langlands–
Shahidi method [Shahidi 1990; 2010]. The work is carried on in [Shahidi 1985]
when “local coefficients” are expressed as Artin factors. We recall that the γ -factors
within this method are defined inductively by these local coefficients.

We refer to [Jacquet and Shalika 1990; Cogdell and Piatetski-Shapiro 2004] for
the archimedean work within Rankin–Selberg theory for GL(n).

In the case of function fields, where no distinguished archimedean place stands
out, other techniques are needed to develop the theory. We refer to L. Lomelí’s
work in [Lomelí 2009; Henniart and Lomelí 2011], where the method is developed
at least for classical groups.

Definition 1.1. Let F be a local field together with a nontrivial additive character
ψ and let G be a connected reductive group over F . Fix a (finite dimensional)
complex analytic representation r of L G. We will say we have a theory of L-
functions attached to r , or in short an r-theory, if there exist complex functions
L(s, π, r) and ε(s, π, r, ψF ) satisfying axioms 1–4.

2. Equality of Artin (arithmetic) and automorphic (analytic) factors

With notation as in the previous section, let

θ : L G ↪→ GL(N ,C)×W ′F

be a minimal embedding. Let r be a finite dimensional complex representation

r : GL(N ,C)×W ′F → Aut V .

Let ρ :W ′F→
L G be an admissible homomorphism and let π(ρ) be a fixed element

in the L-packet attached to ρ. Then

γ (s, r · θ · ρ,ψ)= γ (s, π(ρ), r · θ, ψ)

= γ (s, π(θ · ρ), r, ψ)

if the middle factor γ (s, π(ρ), r ·θ, ψ) is defined. Here π(θ ·ρ) is the representation
of GL(N , F) attached to θ · ρ as in [Harris and Taylor 2001; Henniart 2000]. In
particular, r -factors for GL(N , F) define r · θ -factors for G(F). We may therefore,
at least for r · θ -factors of the group G, appeal to r -factors of GL(N ).

Let us therefore concentrate on GL(N ), where LLC is already established [Harris
and Taylor 2001; Henniart 2000]. Assume our theory of γ -factor axioms (1)–(4)
of the previous section. We thus consider a parameter ρ : W ′F → GL(N ,C) and
let π(ρ) be the corresponding irreducible admissible representation of GLN (F)
through LLC.
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If ρ1 and ρ2 are two homomorphisms (representations) of W ′F ,

ρi :W ′F → GL(ni ,C),

we let r be a representation of GL(n1+ n2,C) and assume a branching rule of the
form

(2-1) r · (ρ1⊕ ρ2)= r · ρ1⊕ r · ρ2⊕ R(ρ1, ρ2),

where R(ρ1, ρ2) is a representation of GL(n1,C)×GL(n2,C), ni = dim ρi , i = 1, 2,
in which r · ρ1 and r · ρ2 do not appear; or said in other terms, they appear in
r · (ρ1⊕ρ2) with multiplicity one. We can in fact write R(ρ1, ρ2) as the composite
of

R : GL(n1,C)×GL(n2,C)→ GL(N ,C),

N = dim R, and

(ρ1, ρ2) :W ′F → GL(n1,C)×GL(n2,C)

w 7→ (ρ1(w), ρ2(w)).

We note that

ρ1⊕ ρ2 :W ′F → GL(n1,C)×GL(n2,C) ↪→ GL(n1+ n2,C),

to which r can be applied. Here are some examples. Let r = 32, in which case
R(ρ1, ρ2) = ρ1⊗ ρ2, or r = 33, for which R(ρ1, ρ2) = 3

2ρ1⊗ ρ2⊕ ρ1⊗3
2ρ2.

Similar examples can be given for Sym3 or higher powers of both3 and Sym [Fulton
and Harris 1991]. We recall that exterior powers are irreducible representations of
highest weight δi , fundamental weights of SL(N ,C). We will then assume that we
also have

(2-2) γ (s, R · (ρ1, ρ2), ψF )= γ (s, (π(ρ1), π(ρ2)), R, ψF ),

which of course requires the validity of an R-theory for GL(n1)×GL(n2).
Tracing through the tables in [Langlands 1971a; Shahidi 1988; 2010], it can be

seen that the existence of corresponding R-theories for 33 may be available within
the same machinery, at least for n ≤ 6 as we explain in the next section.

Now, fix a representation r with an r-theory and assume one has an R-theory
for the representation R appearing in (2-1). We will briefly sketch how to show:

Theorem 2.1. Fix r satisfying branching rule (2-1). Assume the existence of an
r-theory and the corresponding R-theory for R satisfying (2-2). Then

γ (s, r · ρ,ψF )= γ (s, π(ρ), r, ψF )
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for every n-dimensional continuous complex Frobenius-semisimple representation ρ
of W ′F , where π(ρ) is the irreducible admissible representation of GLn(F) attached
to ρ by LLC.

Proof. We pursue the ideas presented in [Harris 1998; Henniart 2010]. By Brauer’s
theorem ρ is a Z-linear combination of monomial representations. Thus monomial
representations, i.e., those induced from characters of subgroups of finite index in
W ′F , form a basis for the Grothendieck ring of W ′F . Starting with a local monomial
representation ρ, one chooses a global monomial representation ρ̃ which has ρ as
ρ̃|W ′F , where F = kv at one place of the global field k as in [Harris 1998; Henniart
2010; Cogdell, Shahidi and Tsai ≥ 2012]. For each place w of k, let ρ̃w = ρ̃|W ′kw ,
and consider π(ρ̃) :=

⊗
w π(ρ̃w), where π(ρ̃w) is the representation of GL(n, kw)

attached to ρ̃w by LLC. (We remind the reader that there are serious restrictions
present in the choices of k and ρ as explained in [Harris 1998; Henniart 2010].)

Then π(ρ̃) is an automorphic representation of GLn(Ak), given by an automor-
phic induction from a grössencharacter. We then twist π(ρ̃) by a grössencharacter
χ̃ =

⊗
w χ̃w that is highly ramified at all finite places where π(ρ̃w) is ramified

except at v. By stability we get

γ (s, rw · (ρ̃w⊗ χ̃w), ψ̃w)= γ (s, π(ρ̃w)⊗ χ̃w, rw, ψ̃w),

which can be seen by computing each side, using a principal series with the same
central character as π(ρ̃w) on the representation theoretic side and [Deligne 1973]
on the Artin side.

We will assume χ̃v≡ 1. By archimedean matching the factors are equal whenever
w =∞. Comparing functional equations for ρ̃ and π(ρ̃), we get

γ (s, r · ρ,ψF )= γ (s, π(ρ), r, ψF )

for every member of a basis for the Grothendieck ring of W ′F . Here ψF = ψv for a
global nontrivial character ψ =

⊗
w ψw of k\Ak .

Next we appeal to our R-theory satisfying (2-2), and multiplicativity, to extend
the equality to the full Grothendieck ring. This completes our sketch of the proof. �

3. Equality of L-functions through LLC

While the equality of γ -factors in Theorem 2.1 requires availability of stability for
them, stability for L-functions, expressed as Equation (1-8), is a lot less subtle. In
what follows, we will show the equality of L-functions defined by the Langlands–
Shahidi method with those of Artin in a number of cases previously not available.

A result like this has an interesting application in proving the generic A-packet
conjecture discussed in [Shahidi 2011]. This is a kind of converse to the tempered
L-packet conjecture, which asserts that every tempered L-packet of a quasisplit
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group has a generic member [Shahidi 1990; Vogan 1978]. On the other hand,
the generic A-packet conjecture states that if the L-packet attached to φψ , the
Langlands parameter attached to an Arthur parameter ψ , has a generic member,
then φψ is tempered. We note that the elements of φψ are supposed to provide the
main nontempered members of ψ (see [Arthur 1984]), i.e., those which have not
already appeared in other A-packets. The proof given in [Shahidi 2011] is based on
the matching of only L-functions for certain Levi factors through LLC.

The work of Y. Kim [2012], where he uses the matching for the twisted exterior
and symmetric square L-functions for GL(n) [Henniart 2010] and those of certain
Rankin product ones [Asgari and Shahidi 2006; 2011], has now established this
for split GSpin groups, generalizing the work of Ban [2006] and Liu [2011] for
classical groups. Moreover, the examples of 33 discussed below should handle
some cases of exceptional groups. More precisely, using [Shahidi 2011] the work
in [Kim 2012] proves that if ψ is an Arthur packet for GSpin(F), where F is a
p-adic field, then the Langlands packet φψ attached to ψ has a generic member
only if φψ is tempered. This clearly gives a converse to the tempered (or generic)
L-packet conjecture [Shahidi 1990; Vogan 1978]. For an archimedean field F this
is proved in [Shahidi 2011] and follows from the equality of Artin factors with
those defined by the Langlands–Shahidi method [Langlands 1989; Shahidi 1985].
Here is now the matching theorem for L-functions:

Theorem 3.1. Let (G,M) be a pair of a quasisplit connected reductive group and
one of its maximal Levi subgroups defined over a local field F. Assume there
exists a homomorphism ϕ : M → GL(n) × GL(1) that is an isomorphism on
derived groups, i.e., MD ' SL(n). Let π = π0 ⊗ η be an irreducible admissible
representation of GL(n, F)×F∗ and consider it as one of M(F). Assume π =π(ρ),
ρ :W ′F → GL(n,C)×GL(1,C). Let ri be an irreducible constituent of the adjoint
action of L M on Ln, the Lie algebra of L N. Using the dual map

(3.1.1) Lϕ : GL(n,C)×C∗→ LM,

we then have

(3.1.2) L(s, π ·ϕ, ri )= L(s, π, ri ·
Lϕ).

Assume ri ·
Lϕ satisfies the branching rule (2-1). Moreover, assume the equality

(2-2), but only for L-functions, that is, the validity of

(3.1.3) L(s, R · (ρ1, ρ2))= L(s, (π(ρ1), π(ρ2)), R).

Then

(3.1.4) L(s, ri ·
Lϕ · ρ)= L(s, π(ρ), ri ·

Lϕ).
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Remark. The extension from generic representations to any irreducible admissible
one is rather routine as explained on page 322 of [Shahidi 1990].

Proof. We may assume F is p-adic. We again use Brauer’s theorem and prove
(3.1.4) for monomial representations as in Theorem 2.1. We choose k and ρ̃ such
that kv = F , ρ̃|W ′F = ρ and consider π(ρ̃) :=

⊗
v π(ρ̃w), where ρ̃w = ρ̃|W ′kw . We

again twist π(ρ̃) by a grössencharacter χ̃ =
⊗

w χ̃w that is highly ramified at all
finite places where π(ρ̃w) is ramified except v, where we will assume χ̃v ≡ 1. Then
for each finite ramified w, w 6= v, stability for L-functions, i.e., (1-8), implies

(3.1.5) γ
(
s, π(ρ̃w)⊗ χ̃w, ri,w ·

Lϕ,ψF
)
= cwq−nw s

w ,

where cw ∈C∗, nw ∈Z and qw is the cardinality of the residue field of k at w. Using
the equality at archimedean primes for γ -functions we thus have

(3.1.6)
∏
w∈S
w 6=v

cwq−nw s
w γ

(
s, π(ρ), ri ·

Lϕ,ψF
)
=

∏
w∈S
w 6=v

c′wq−n′w s
w γ

(
s, ri ·

Lϕ ·ρ,ψF
)
,

where c′w and n′w are the corresponding objects on the Artin side and S is the set of
ramified finite primes, whenever ρ is monomial.

On the other hand, by equality (3.1.3) of L-functions for constituents of our
branching rule, we get an equality like (3.1.6) for every pair γ (s, R · (ρ1, ρ2), ψF )

and γ (s, (π(ρ1), π(ρ2)), R, ψF ). We can then extend (3.1.6) from monomial rep-
resentations, that is, a Z-basis for the Grothendieck ring of W ′F , to the full ring.

We now assume ρ is bounded so that π(ρ) is tempered. We then have that
L(s, π(ρ), ri ·

Lϕ) gives the zeros of γ (s, π(ρ), ri ·
Lϕ) [Shahidi 1990; 2010]. The

same is true of L(s, ri ·
Lϕ · ρ) and γ (s, ri ·

Lϕ · ρ). By standard properties of
L-functions, we then get the equality (3.1.4) for a bounded ρ. The case of arbitrary
ρ and π(ρ) now follows from Langlands classification upon which factors for π(ρ)
are defined [Langlands 1989; Shahidi 1990; 2010] as well as those of Artin. This
completes the proof of Theorem 3.1. �

Remark 3.2. One may replace Equation (3.1.3) with the equality of γ -factors only
up to a monomial in q−s , which is a much weaker statement than (2-2).

Example 3.3 (twisted exterior and symmetric square L-functions for GL(n)). The
pair in this case is G = GSpin and M is generated by all simple roots but the last
one, i.e., the Siegel parabolic of G. In the case of exterior squares the equality is

(3.3.1) L(s,32ρ0⊗ η)= L(s, π(ρ0)⊗ η,3
2
⊗ St)

= L(s, π0,3
2
⊗ η),
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where the L-functions on the right are from [Shahidi 1990; 2010]. This was first
proved in [Henniart 2010]. The case of twisted symmetric square is similar. Here
St denotes the standard representation of GL1(C).

Example 3.4 (twisted exterior cube for GL(6)). Here the pair is (E sc
6 ,Mα4), where

Mα4 is the Levi subgroup generated by 1−{α4}, 1 being the set of simple roots.
This is case (x) in [Langlands 1971a] or equally (E6,i i ) in [Shahidi 2010]. The
map ϕ is defined in 2.5.3 of [Kim 2005]. With notation as in Theorem 3.1 here

(3.4.1) ri ·
Lϕ = r1 ·

Lϕ =33
⊗ St,

and thus Theorem 3.1 should imply

(3.4.2) L(s,33ρ0⊗ η)= L(s, r1 ·
Lϕ · (ρ0⊗ η))

= L(s, π(ρ), r1 ·
Lϕ)

= L(s, π(ρ0)⊗ η,3
3
⊗ St)

= L(s, π0,3
3
⊗ η),

where π(ρ0) = π0, π = π0⊗ η and ρ = ρ0⊗ η, if we can show (2-2) and (3.1.3)
hold. We remark that in this case dim r2 = 1 and there are no other constituents.

As discussed in Section 2, the branching rule (2-1) in this case reads

(3.4.3) R(ρ1, ρ2)=3
2ρ1⊗ ρ2⊕ ρ1⊗3

2ρ2.

Dimensions ni = dim ρi , i = 1, 2, are a partition of 6, i.e., n1+n2= 6. By symmetry
we need to know the validity of

(3.4.4) L(s,32ρ1⊗ ρ2)= L(s, (π(ρ1), π(ρ2)),3
2
⊗ St),

1≤ n1 ≤ 5, n1+n2= 6, where St denotes the standard representation of GL(n2,C).
When 1≤ n1 ≤ 3, (3.4.3) is valid by [Harris and Taylor 2001; Henniart 2000].

For n1 = 5 and thus n2 = 1, (3.4.4) is Example 3.3. It remains to address the
case n1 = 4 and n2 = 2. Equality (3.4.4) in this case follows from Kim’s work on
functoriality for 32

: GL4(C)→ GL6(C). In fact, (3.4.4) is equivalent to

(3.4.5) L(s,32ρ1⊗ ρ2)= L(s, π(32ρ1)×π(ρ2)),

by [Harris and Taylor 2001; Henniart 2000] in which 32ρ1 is a six dimensional
continuous representation of W ′F . What we need to verify is the equality

(3.4.6) L(s,32ρ1⊗ ρ2)= L(s,32(π(ρ1))×π(ρ2))

= L(s, (π(ρ1), π(ρ2)),3
2
⊗ St).

This is proved by Kim [2003]. We collect this as:
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Proposition 3.5. Let (ρ, π(ρ)) be a pair with ρ = ρ0⊗ η a representation of W ′F
into GL(6,C)×GL(1,C). Let π0 = π(ρ0). Then

(3.5.1) L(s,33ρ0⊗ η)= L(s, π0,3
3
⊗ η)

= L(s, π(ρ0)⊗ η,3
3
⊗ St).

Remark 3.6. The pairs (E sc
7 ,Mα4) and (E8,Mα4) give L(s, π0 ⊗ η, 33

⊗ St),
where η ∈ F̂∗ and π0 is an irreducible admissible representation of either GL(7, F)
or GL(8, F), respectively [Langlands 1971a; Shahidi 2010]. To get equality (3.5.1)
in these cases requires equality (3.4.6) for n1 = 5 and 6, respectively, which
unfortunately are not yet available.

4. Comments on stability of γ -functions

As explained in Section 1, it is the stability of γ -functions, condition (2) of our r -
theory, which is not available in any generality, even within the Langlands–Shahidi
method. On the other hand γ -functions within this method are defined inductively
by means of “local coefficients” [Shahidi 1990; 2010]. These are complex functions
defined by means of standard intertwining operators and Whittaker functionals
for induced representations [Shahidi 2010]. Their definition clearly requires the
representation π of M(F) be generic. But γ -functions defined through the method
can be extended even to cases where π is not generic. This is done by means of
Langlands classification (page 322 of [Shahidi 1990]).

It is thus enough to show that each local coefficient is stable under twists by
highly ramified characters. We shall now briefly explain how one expects to prove
stability.

As before, we assume (G,M) is a pair of a quasisplit connected reductive group
G and a Levi subgroup M of one of its maximal parabolics, P = M N , both defined
over F which we will assume to be a p-adic field of characteristic zero. We let α
denote the unique simple root in N . The method is now being developed for fields
of positive characteristic mainly by Luis Lomelí with some collaboration by Guy
Henniart (see [Lomelí 2009; Henniart and Lomelí 2011]).

With notation as in the previous section, we let L M act on Ln and let ri , 1≤ i ≤m,
be its irreducible subrepresentations ordered as in [Shahidi 1990; 2010]. The γ -
factors γ (s, π, ri , ψF ), when π is an irreducible admissible generic representation
of M(F), satisfy

(4.1) C(s, π)= CψF (s, π)= λG(ψF , w0)
−1

m∏
i=1

γ (is, π, r̃i , ψ F ),

where C(s, π) is the corresponding local coefficient. Here π is assumed to be
generic with respect to the generic character of UM(F) defined by ψF and a fixed
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F-splitting of G (and thus M). For simplicity we call π ψF -generic, not men-
tioning the splitting. The factor λ(ψF , w0) is a product of Langlands λ-functions,
Hilbert symbols, and w0 is the representative of the element w̃`w̃−1

`,M of Weyl group
W (G, T ). Here B = T U is a fixed Borel subgroup over F , giving our splitting,
M ⊃ T , U ⊃ N , UM =U ∩M . We recall that fixing the splitting leads to a choice
of a representative for any Weyl group element, w0 representing that of w̃`w̃−1

ρ,M .
We refer to Chapter 8 of [Shahidi 2010], specifically Remarks 8.2.1 and 8.2.2, for a
complete discussion of these factors and their choices.

With notation as in Section 1, item 2 (stability), one can formulate stability for
C(s, π) as follows:

Conjecture 4.1. Given a pair of irreducible admissible ψF -generic representations
π1 and π2 of M(F) with same central characters,

C(s, π1⊗χ)= C(s, π2⊗χ),

where χ is a suitably highly ramified character of M(F).

As experience has shown, at least in a number of important cases [Asgari and
Shahidi 2006; 2011; Cogdell et al. 2004; 2005; 2008; ≥ 2012; Kim and Krishna-
murthy 2005], this can be proved by expressing C(s, π) as a Mellin transform of a
Bessel function on M(F). This was attained by establishing an integral representa-
tion for C(s, π)−1 in [Shahidi 2002]. The formula is under the assumption that P
is self-associate. This means that N = w0 Nw−1

0 = N−, where N− is the unipotent
subgroup opposed to N .

We first recall the partial Bessel function involved. Let ωπ be the central character
of π and define w0(ωπ )(z)= ωπ (w−1

0 zw0). Given s ∈ C, set πs = π ⊗ q〈sα̃,HM (·)〉

and define

(4.2) ωπs (z)= ωπ (z)q
〈sα̃,HM (z)〉.

We refer to [Shahidi 1988] for the definition of α̃. Fix a sufficiently large open
compact subgroup N 0 ⊂ N . Let ϕ denote its characteristic function.

For almost all n ∈ N (F),

(4.3) w−1
0 n = mn′n,

m ∈ M(F), n′ ∈ N (F), n ∈ N (F). This sets up a densely defined map

n 7→ (m, n)

from N (F) into M(F)× N (F). While n 7→ n is a bijection, n 7→ m may not be
one; see [Shahidi 2002].
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Let Wv be a Whittaker function in the space W (πs) of πs such that Wv(e)= 1.
Given z ∈ Z M(F), we define the partial Bessel function

(4.4) jv,ϕ(m, n, z) :=
∫

UM,n(F)\UM (F)
Wv(mu−1)ϕ(zunu−1z−1)ψF (u) du.

Let α be the unique simple root of T in U generating N .
We may assume H 1(F, ZG)= 1, which we can attain by enlarging G without

changing its derived group. It will not affect our results. Lemma 5.2 of [Shahidi
2002] then implies existence of a map α∨ from F∗ into Z0

M = ZG(F)\Z M(F) such
that α′(α∨(t))= t , t ∈ F∗, for any root α′ of T that restricts to α.

We need to define a scalar xα defined by n. It is simply the α-coordinate of
w−1

0 nw0 ∈ N by means of our fixed splitting.
Given y ∈ F∗, set

(4.5) jv,ϕ(m, n, y) := jv,ϕ(m, n, α∨(y−1
· xα)),

whenever xα 6= 0.
We also let Z0

MUM(F) act on N (F) by conjugation and write Z0
MUM(F)\N (F)

for the corresponding quotient space.

Theorem 4.2 [Shahidi 2002, Theorem 6.2, second part]. Suppose ωπ (w0ω
−1
π ) is

ramified. Fix y0 ∈ F such that ordF (y0)=−d − f , where d and f are conductors
of ψF and ω−1

π · (w0ωπ ), respectively. Then up to an abelian Tate γ -factor attached
to ωπ · (w0ω

−1
π ) and ψF ,

(4.6) C(s, π)−1

∼

∫
Z0

M UM (F)\N (F)
jṽ,ϕ(m, n, y0)ω

−1
πs
(xα)(w0ωπs )(xα)q

〈sα̃+ρ,HM (m)〉dṅ.

Here xα is embedded in Z M(F) through α∨ and v= ṽ⊗q〈sα̃,HM ( )〉. More precisely,
ṽ is the vector in the space of π that goes to v in the space of πs .

We refer to [Shahidi 2009] for some of the geometric issues in analyzing the
integral in (4.6).

It is Equation (4.6) which has been the main tool in proving stability in a number
of important cases, all of significance in establishing functoriality [Cogdell and
Piatetski-Shapiro 1998; Cogdell et al. 2004; 2005; 2008; Kim and Krishnamurthy
2005; Asgari and Shahidi 2006; 2011].

What one has to do is to prove an asymptotic expansion for the partial Bessel
function jṽ,ϕ . In fact, in the cases of classical or GSpin groups, one basically needs
to deal with M =GL(1)×G1, where G1 is one of these groups, as a maximal Levi
subgroup inside a larger group G of the same type.
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The philosophy of expressing γ -functions as a Mellin transform of a partial
Bessel function goes back to Cogdell and Piatetski-Shapiro [1998] who proved such
a formula as well as the asymptotic expansion for the corresponding partial Bessel
functions when G1 = SO(2n+ 1). Using Equation (4.6), which was established in
[Shahidi 2002], the corresponding stability for other cases were proved in [Cogdell
et al. 2004; 2005; 2008; Kim and Krishnamurthy 2005; Asgari and Shahidi 2006].

In [Cogdell, Shahidi and Tsai ≥ 2012], the authors study the case (G,M) =
(GSp(2n), GL(n)×GL(1)), where the γ -factor γ (s, π,32, ψF ) appears. Using a
robust deformation argument which should apply more generally whenever LLC is
available, the equality

(4.7) γ (s,32
· ρ,ψF )= γ (s, π(ρ),32, ψF )

is reduced to a proof of stability for only when ρ is irreducible and thus only when
π = π(ρ) is supercuspidal in [Cogdell, Shahidi and Tsai ≥ 2012]. A proof of
stability in the supercuspidal case also seems to be within reach, using (4.6) and the
asymptotics of the full Bessel functions for GL(n) proved by Jacquet and Ye [1996].
In particular, it is shown that the asymptotics of the partial Bessel function jṽ,ϕ can
still be deduced from those of full Bessel functions and thus germ expansions in
[Jacquet and Ye 1996]. The case of symmetric squares

(4.8) γ (s,Sym2
·ρ,ψF )= γ (s, π(ρ),Sym2, ψF )

follows immediately from

γ (s, π ×π,ψF )= γ (s, π,32, ψF )γ (s, π,Sym2, ψF ),(4.9)

γ (s, ρ⊗ ρ,ψF )= γ (s,32
· ρ,ψF )γ (s,Sym2

·ρ,ψF ),(4.10)

and

(4.11) γ (s, ρ⊗ ρ,ψF )= γ (s, π(ρ)×π(ρ), ψF ),

the last being part of LLC in [Harris and Taylor 2001; Henniart 2000]. The γ -factors
γ (s, π,32, ψF ) and γ (s, π,Sym2, ψF ) are those defined by the Langlands–Shahidi
method as special cases of the general definition given in [Shahidi 1990].

The case of Rankin product L-functions for GL(n)×GL(n) using this approach
has been addressed in [Tsai 2011]. The cases of non-self-associate maximal parabol-
ics are also being addressed, and an analogue of (4.6) for GL(n)×GL(m), n 6= m,
seems to be in hand. This seems to be the most complicated among the cases to be
considered.

For the record, we also refer to [Ramakrishnan 2000] and [Kim and Shahidi
2002], where the equality of certain triple product factors is proved, but using other
techniques such as base change, combined with functoriality.
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We should finally mention the possible application of (4.6), or rather its more
general form (6.38) or its initial form (6.55), both of [Shahidi 2002], in establishing
the local Langlands correspondence for GSp(4) over function fields through Deligne–
Kazhdan philosophy of close fields. If successful the problem is then reduced to
that of LLC for GSp(4) over number fields, already established in [Gan and Takeda
2011]. We refer to [Ganapathy 2012] for a discussion of this philosophy and the
treatment of LLC for GL(n) through this approach.
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