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Dedicated to the memory of Jon Rogawski

This article presents a new proof of a theorem of Karl Rubin relating values
of the Katz p-adic L-function of an imaginary quadratic field at certain
points outside its range of classical interpolation to the formal group loga-
rithms of rational points on CM elliptic curves. The approach presented
here is based on the p-adic Gross–Zagier type formula proved by the three
authors in previous work. As opposed to the original proof which relied on
a comparison between Heegner points and elliptic units, it only makes use
of Heegner points, and leads to a mild strengthening of Rubin’s original re-
sult. A generalization to the case of modular abelian varieties with complex
multiplication is also included.

1. Introduction

The aim of this article is to present a new proof of a theorem of Karl Rubin
(see [Rubin 1992] and Theorem 1 below) relating values of the Katz p-adic L-
function of an imaginary quadratic field at certain points outside its range of
classical interpolation to the formal group logarithms of rational points on CM
elliptic curves. This theorem has been seminal in providing a motivation for Perrin-
Riou’s formulation 1993; 2000 of the p-adic Beilinson conjectures. The new
proof described in this work is based on the p-adic Gross–Zagier type formula of
[Bertolini et al. 2012b], and only makes use of Heegner points as opposed to the
original proof, which relied on a comparison between Heegner points and elliptic
units. Hence, it should be adaptable to more general situations, for example to the
setting of general CM fields.

Let A be an elliptic curve over Q with complex multiplication by the ring of
integers of a quadratic imaginary field K . A classical result of Deuring identifies
the Hasse–Weil L-series L(A, s) of A with the L-series L(νA, s) attached to a
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Hecke character νA of K of infinity type (1, 0). When p is a prime which splits
in K and does not divide the conductor of A, the Hecke L-function L(νA, s) has
a p-adic analog, namely the Katz two-variable p-adic L-function attached to K .
It is a p-adic analytic function, denoted by ν 7→ Lp(ν), on the space of Hecke
characters equipped with its natural p-adic analytic structure. Section 3A recalls the
definition of this L-function: the values Lp(ν) at Hecke characters of infinity type
(1+ j1,− j2) with j1, j2 ≥ 0 are defined by interpolation of the classical L-values
L(ν−1, 0). Letting ν∗ := ν ◦ c, where c denotes complex conjugation on the ideals
of K , it is readily seen by comparing Euler factors that L(ν, s) = L(ν∗, s). A
similar equality need not hold in the p-adic setting, because the involution ν 7→ ν∗

corresponds to the map ( j1, j2) 7→ ( j2, j1) on weight space and therefore does not
preserve the lower right quadrant of weights of Hecke characters that lie in the range
of classical interpolation. Since νA lies in the domain of classical interpolation, the
p-adic L-value Lp(νA) is a simple multiple of L(ν−1

A , 0)= L(A, 1). Suppose that
it vanishes. (The Birch and Swinnerton-Dyer conjecture predicts then that A(Q) is
infinite; this is known to be true when the order of vanishing is exactly one.) The
value Lp(ν

∗

A) is a second, a priori more mysterious p-adic avatar of the leading
term of L(A, s) at s = 1. Rubin’s theorem gives a formula for this quantity in the
analytic rank-one case:

Theorem 1 [Rubin 1992]. Let νA be a Hecke character of type (1, 0) attached to an
elliptic curve A/Q with complex multiplication, and suppose that L(A, s) vanishes
to order one at the central point s = 1. Then there exists a global point P ∈ A(Q)
of infinite order such that

(1-1) Lp(ν
∗

A)=�p(A)−1 logωA
(P)2 (mod K×),

where

• �p(A) is the p-adic period attached to A as in Section 2C;

• ωA ∈�
1(A/Q) is a regular differential on A over Q, and logωA

: A(Qp)→Qp

denotes the p-adic formal group logarithm with respect to ωA.

(For a more precise statement without the K× ambiguity, see [Rubin 1992].)
Formula (1-1) is peculiar to the p-adic world and suggests that p-adic L-functions
encode arithmetic information that is not readily apparent in their complex counter-
parts.

Rubin’s proof of Theorem 1 breaks up naturally into three parts:

(1) He exploits the Euler system of elliptic units to construct a global cohomology
class κA belonging to a pro-p Selmer group Selp(A/Q) attached to A. The close
connection between elliptic units and the Katz p-adic L-function is then parlayed
into the explicit evaluation of two natural p-adic invariants attached to κA: the p-adic
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formal group logarithm logA,p(κA) and the cyclotomic p-adic height 〈κA, κA〉:

logA,p(κA)= (1−β−1
p )−1Lp(ν

∗

A)�p(A),(1-2)

〈κA, κA〉 = (1−α−1
p )−2L′p(νA)Lp(ν

∗

A),(1-3)

where

• αp and βp denote the roots of the Hasse polynomial x2
−ap(A)x+ p, ordered

in such a way that ordp(αp)= 0 and ordp(βp)= 1;

• the quantity L′p(νA) denotes the derivative of Lp at νA in the direction of the
cyclotomic character.

(2) Independently of the construction of κA, the theory of Heegner points can be used
to construct a canonical point P ∈ A(Q), which is of infinite order when L(νA, s)=
L(A, s) vanishes to exact order one at s = 1. The Selmer group Selp(A/Q)⊗Q is
of rank one (by the results of Kolyvagin) and the image κP ∈Selp(A/Q) of P under
the connecting homomorphism of Kummer theory supplies us with a generator
for Selp(A/Q)⊗Q. Furthermore, the p-adic analog of the Gross–Zagier formula
proved by Perrin-Riou [1987] shows that

(1-4) 〈κP , κP〉 = L′p(νA)�p(A)−1 (mod K×).

Finally, a theorem of Bertrand shows that the p-adic height pairing is nondegenerate
in the above situation, that is, 〈κP , κP〉 6= 0. In particular, one concludes from (1-4)
that L′p(νA) 6= 0.

(3) Using that L′p(νA) is nonzero, Rubin shows that κA is nonzero in Selp(A/Q)⊗Q

and therefore is a second generator of this one-dimensional Qp-vector space. (See
Theorem 8.1 and Corollary 8.3 of [Rubin 1992].) Equations (1-2) and (1-3) then
show that Lp(ν

∗

A) 6= 0, and further, for any generator κ of the Qp-vector space
Selp(A/Q)⊗Q, one has

(1-5)
log2

A,p(κ)

〈κ, κ〉
=
(1−β−1

p )−2Lp(ν
∗

A)�p(A)2

(1−α−1
p )−2L′p(νA)

,

since the quantity on the left-hand side does not depend on the choice of κ . Rubin
obtains Theorem 1 by setting κ = κP in (1-5) and using (1-4) to eliminate the
quantities 〈κP , κP〉 and L′p(νA).

The reader will note the key role that is played in Rubin’s proof by both the Euler
systems of elliptic units and of Heegner points. The new approach to Theorem 1
described in this paper relies solely on Heegner points, and requires neither elliptic
units nor Perrin-Riou’s p-adic height calculations. Instead, the key ingredient in this
approach is the p-adic variant of the Gross–Zagier formula, arising from the results
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of [Bertolini et al. 2012b], which is stated in Theorem 3.12. This formula expresses
p-adic logarithms of Heegner points in terms of the special values of a p-adic
Rankin L-function attached to a cusp form f and an imaginary quadratic field K ,
and may be of some independent interest insofar as it exhibits a strong analogy with
Rubin’s formula but applies to arbitrary — not necessarily CM — elliptic curves
over Q. When f is the theta series attached to a Hecke character of K , Theorem 1
follows from the factorization of the associated p-adic Rankin L-function into a
product of two Katz L-functions, a factorization which is a simple manifestation of
the Artin formalism for these p-adic L-series.

One might expect that the statement of Theorem 1 should generalize to the setting
where νA is replaced by an algebraic Hecke character ν of infinity type (1, 0) of a
quadratic imaginary field K (of arbitrary class number) satisfying

(1-6) ν|AQ
= εK · N,

where εK is the quadratic Dirichlet character associated to K/Q and N :A×
Q
→R×

is the adelic norm character. Chapter 3 treats this more general setting, which
(although probably amenable as well to the original methods of [Rubin 1992]) is not
yet covered in the literature. Assumption (1-6) implies that the classical functional
equation relates L(ν, s) to L(ν, 2− s). Assume further that the sign wν in this
functional equation satisfies

(1-7) wν =−1,

so that L(ν, s) vanishes to odd order at s = 1. For technical reasons, it will also be
convenient to make two further assumptions. Firstly, we assume that

(1-8) the discriminant −D of K is odd.

Secondly, we note that assumption (1-6) implies that dK :=
√
−D necessarily

divides the conductor of ν, and we further restrict the setting by imposing the
assumption that

(1-9) the conductor of ν is exactly divisible by dK .

The statement of Theorem 2 below requires some further notions, which we now
introduce. Let Eν be the subfield of C generated by the values of the Hecke character
ν, and let Tν be its ring of integers. A general construction which is recalled in
Sections 2B and 3F attaches to ν an abelian variety Bν over K of dimension [Eν : K ],
equipped with inclusions

Tν ⊂ EndK (Bν), Eν ⊂ EndK (Bν)⊗Q.
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Given λ ∈ Tν , denote by [λ] the corresponding endomorphism of Bν , and set

�1(Bν/Eν)Tν := {ω ∈�1(Bν/Eν) | [λ]∗ω = λω, for all λ ∈ Tν},(1-10)

(Bν(K )⊗ Eν)Tν := {P ∈ Bν(K )⊗Z Eν | [λ]P = λP, for all λ ∈ Tν}.(1-11)

The vector space �1(Bν/Eν)Tν is one-dimensional over Eν .
After fixing a p-adic embedding K ⊂ Qp, the formal group logarithm on Bν

gives rise to a bilinear pairing

〈 , 〉 :�1(Bν/K )× Bν(K )→Qp,

(ω, P) 7→ logω P,

satisfying 〈[λ]∗ω, P〉 = 〈ω, [λ]P〉 for all λ ∈ Tν . This pairing can be extended by
Eν-linearity to an Eν ⊗Qp-valued pairing between �1(Bν/Eν) and Bν(K )⊗ Eν .
When ω and P belong to these Eν-vector spaces, we will continue to write logω(P)
for 〈ω, P〉.

Theorem 2. Let ν be an algebraic Hecke character of infinity type (1, 0) satisfying
(1-6), (1-7), (1-8) and (1-9) above. Then there exists Pν ∈ Bν(K )⊗Q such that

Lp(ν
∗)=�p(ν

∗)−1 logων (Pν)
2 (mod E×ν ),

where �p(ν
∗) ∈ Cp is the p-adic period attached to ν in Definition 2.13, and

ων is a nonzero element of �1(Bν/Eν)Tν . The point Pν is nonzero if and only if
L ′(ν, 1) 6= 0.

Remark 3. Assumptions (1-8) and (1-9) could certainly be relaxed with more work.
For instance, (1-8) is needed since the main theorem of [Bertolini et al. 2012b] is
only proved for imaginary quadratic fields of odd discriminant. Likewise, removing
(1-9) would require generalizing the cited result to the case of Shimura curves
over Q.

Remark 4. In [Bertolini et al. 2012c], we give a conjectural construction of ratio-
nal points on CM elliptic curves (called Chow–Heegner points) using cycles on
higher-dimensional varieties. While this construction of points is contingent on
a certain case of the Tate conjecture, the corresponding construction at the level
of cohomology classes can be made unconditionally. The results of this paper
(especially Theorem 2 above) combined with those of [Bertolini et al. 2012b] are
used in [Bertolini et al. 2012c] to establish that these cohomology classes indeed
correspond to global points via the Kummer map.

The careful reader will notice that the hypothesis in Theorem 2 on the order
of vanishing of L(ν, s) is weaker than that in [Rubin 1992], since L(ν, s) is only
assumed to vanish to odd order rather than to exact order one. In the case that
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the order of vanishing is at least 3, the point Pν (which comes from a Heegner
construction) is torsion, so Theorem 2 just says that Lp(ν

∗)= 0.

Corollary 5. Let ν be an algebraic Hecke character of infinity type (1, 0) satisfying
(1-6), (1-7), (1-8) and (1-9) above. Suppose that Lp(ν

∗) 6= 0. Then

(1) L(ν, s) vanishes to exact order one at the center s = 1.

(2) (Bν(K )⊗ Eν)Tν is one-dimensional over Eν .

(3) The Shafarevich–Tate group X(Bν) is finite.

Indeed, the nonvanishing of Lp(ν
∗) implies that a Heegner point on Aν is

nontorsion, and the conclusion then follows from results of Gross–Zagier and
Kolyvagin (see [Kolyvagin 1990; Kolyvagin and Logachëv 1989]). Corollary 5
appears to be new; it would be interesting to see if it can also be obtained via the
more indirect methods of [Rubin 1992].

Remark 6. The methods used in the proof of Theorem 2 also give information
about the special values Lp(ν

∗) for Hecke characters ν of type (1+ j,− j) satisfying
(1-6) with j ≥ 0. A discussion of this point will be taken up in future work. (See
[Bertolini et al. 2012a].)

The results of this article concern p-adic L-functions for the unitary group U(1);
its proofs rely on p-adic L-functions for the unitary group U(2), as well as the
theorem of Waldspurger relating periods of automorphic forms on U(2) along an
embedded U(1) to central values of Rankin–Selberg L-functions, the latter being
the main ingredient in the proof of the main result of [Bertolini et al. 2012b]. One
should expect fruitful generalizations of the present work to the setting of higher-
dimensional unitary groups. The authors are therefore pleased to dedicate this
article to the memory of Jon Rogawski, whose deep ideas on automorphic forms,
periods and L-functions for unitary groups are destined to play a key role in such
eventual generalizations.

2. Hecke characters and periods

Throughout this article, all number fields that arise are viewed as being embedded
in a fixed algebraic closure Q̄ of Q. A complex embedding Q̄→ C and p-adic
embeddings Q̄→ Cp for each rational prime p are also fixed from the outset, so
that any finite extension of Q is simultaneously realized as a subfield of C and
of Cp.

2A. Algebraic Hecke characters. We will briefly recall some key definitions re-
garding algebraic Hecke characters, mainly to fix notation. The reader is referred
to [Schappacher 1988, Chapter 0] for more details. Let K and E be number fields.
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Given a Z-linear combination

φ =
∑
σ

nσσ ∈ Z[Hom(K , Q̄)]

of embeddings of K into Q̄, we define

αφ :=
∏
σ

(σα)nσ ,

for all α ∈ K×. Let If denote the group of fractional ideals of K which are prime
to a given integral ideal f of K , and let

Jf := {(α) | α >> 0 and α− 1 ∈ f} ⊆ If.

Definition 2.1. An E-valued algebraic Hecke character (or simply Hecke character)
of K of infinity type φ and conductor dividing f is a homomorphism

χ : If→ E×

such that

(2-1) χ((α))= αφ, for all (α) ∈ Jf.

The smallest integral ideal g such that χ can be extended to a Hecke character of
conductor dividing g is called the conductor of χ , and is denoted fχ .

The most basic examples of algebraic Hecke characters are the norm characters
on Q and on K respectively, which are given by

N((a))= |a|, NK := N ◦NK
Q .

Note that the infinity type φ of a Hecke character χ must be trivial on all totally
positive units congruent to 1 mod f. Hence, the existence of such a χ implies
there is an integer w(χ) (called the weight of χ or of φ) such that for any choice of
embedding of Q̄ into C,

nσ + nσ̄ = w(χ), for all σ ∈ Hom(K , Q̄).

Let Uf ⊂U ′f ⊂ A×K be the subgroups defined by

U ′f :=
{
(xv) ∈ A×K

∣∣∣∣ xv ≡ 1 (mod f) for all v |f,
xv > 0 for all real v

}
and

Uf := {(xv) ∈U ′f | xv ∈ O×Kv
, for all nonarchimedean v}.

A Hecke character χ of conductor dividing f may also be viewed as a character on
A×K /Uf (denoted by the same symbol by a common abuse of notation),

(2-2) χ : A×K /Uf→ E×, satisfying χ |K× = φ.



268 MASSIMO BERTOLINI, HENRI DARMON AND KARTIK PRASANNA

To wit, given x ∈A×K , we define χ(x) by choosing α ∈ K× such that αx belongs to
U ′f , and setting

(2-3) χ(x)= χ(i(αx))φ(α)−1,

where the symbol i(x) denotes the fractional ideal of K associated to x . This
definition is independent of the choice of α by (2-1). In the opposite direction,
given a character χ as in (2-2), we can set

χ(a)= χ(x) for any x ∈U ′f such that i(x)= a.

The subfield of E generated by the values of χ on If is easily seen to be independent
of the choice of f and will be denoted Eχ .

Definition 2.2. The central character εη of a Hecke character η of K is the finite-
order character of Q given by

η|A×
Q
= εη · Nw(η).

The infinity type φ defines a homomorphism ResK/Q(Gm)→ ResE/Q(Gm) of
algebraic groups, and therefore induces a homomorphism

φA : A
×

K → A×E

on adelic points. Given a Hecke character χ with values in E and a place λ of E
(either finite or infinite), we may use φA to define an idèle class character

χλ : A
×

K /K×→ E×λ ,

by setting
χλ(x)= χ(x)/φA(x)λ.

If λ is an infinite place, the character χλ is a Grossencharacter of K of type A0. If λ
is a finite place, then χλ factors through Gab

K and gives a Galois character (denoted
by ρχ,λ) valued in E×λ , satisfying

ρχ,λ(Frobp)= χ(p)

for any prime ideal p of K not dividing fλ.
Let g be any integral ideal of K . The L-function and L-function with modulus g

attached to χ are defined by

L(χ, s)=
∏
p

(
1−

χ(p)

Nps

)−1
, Lg(χ, s)=

∏
p-g

(
1−

χ(p)

Nps

)−1
.

Note that L(χ, s)= L fχ (χ, s).
The following definition will only be used in Section 3F.
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Definition 2.3. Let E =
∏

i Ei be a product of number fields. An E-valued alge-
braic Hecke character of conductor dividing f is a character

χ : If→ E×

whose projection to each component Ei is an algebraic Hecke character in the sense
defined above.

2B. Abelian varieties associated to characters of type (1, 0). In this section, we
limit the discussion to the case where K is an imaginary quadratic field. Let
τ : K 7→ C be the given complex embedding of K . A Hecke character of infinity
type φ = nτ τ + nτ̄ τ̄ will also be said to be of infinity type (nτ , nτ̄ ).

Let ν be a Hecke character of K of infinity type (1, 0) and conductor fν , let
Eν ⊃ K denote the subfield of Q̄ generated by its values, and let Tν be the ring
of integers of Eν . The Hecke character ν gives rise to a compatible system of
one-dimensional `-adic representations of G K with values in (Eν ⊗Q`)

×, denoted
ρν,`, satisfying

ρν,`(σa)= ν(a), for all a ∈ Ifν`,

where σa ∈ Gal(K̄/K ) denotes the Frobenius conjugacy class attached to a. The
theory of complex multiplication realizes the representations ρν,` on the division
points of CM abelian varieties:

Definition 2.4. A CM abelian variety over K is a pair (B, E) where

(1) B is an abelian variety over K ;

(2) E is a product of CM fields equipped with the structure of a K -algebra and an
inclusion

i : E→ EndK (B)⊗Q

satisfying dimK (E)= dim B;

(3) for all λ∈K ⊂ E , the endomorphism i(λ) acts on the cotangent space�1(B/K )
as multiplication by λ.

The abelian varieties (B, E) over K with complex multiplication by a fixed E form
a category denoted CMK ,E in which a morphism from B1 to B2 is a morphism
j : B1→ B2 of abelian varieties over K for which the diagrams

B1
j //

e
��

B2

e
��

B1
j // B2
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commute, for all e ∈ E which belong to both EndK (B1) and EndK (B2). An isogeny
in CMK ,E is simply a morphism in this category arising from an isogeny on the
underlying abelian varieties.

If (B, E) is a CM abelian variety, its endomorphism ring over K contains a
finite-index subring T 0 of the integral closure T of Z in E . After replacing B by the
K -isogenous abelian variety HomT0(T, B), we can assume that EndK (B) contains
T . This assumption, which is occasionally convenient, will consistently be made
from now on.

Let (B, E) be a CM-abelian variety with E a field, and let E ′ ⊃ E be a finite
extension of E with ring of integers T ′. The abelian variety B⊗T T ′ is defined to
be the variety whose L-rational points, for any L ⊃ K , are given by

(B⊗T T ′)(L)= (B(Q̄)⊗T T ′)Gal(Q̄/L).

This abelian variety is equipped with an action of T ′ by K -rational endomorphisms,
described by multiplication on the right, and therefore (B⊗T T ′, E ′) is an object
of CMK ,E ′ . Note that B⊗T T ′ is isogenous to t := dimE(E ′) copies of B, and that
the action of T on B⊗T T ′ agrees with the “diagonal” action of T on B t .

Let ` be a rational prime. For each CM abelian variety (B, E), let

T`(B) := lim
←,n

B[`n
](K̄ ), V`(B) := T`(B)⊗Z` Q`

be the `-adic Tate module and `-adic representation of G K attached to B. The
Q`-vector space V`(B) is a free E ⊗Q`-module of rank one via the action of E
by endomorphisms. The natural action of G K := Gal(K̄/K ) on V`(B) commutes
with this E ⊗Q`-action, and the collection {V`(B)} thus gives rise to a compatible
system of one-dimensional `-adic representations of G K with values in (E⊗Q`)

×,
denoted ρB,`. We note in passing that for any extension E ′ ⊃ E where T ′ is the
integral closure of T in E ′, we have

T`(B⊗T T ′)= T`(B)⊗T T ′, V`(B⊗T T ′)= V`(B)⊗E E ′.

The following result is due to Casselman (cf. [Shimura 1971, Theorem 6]).

Theorem 2.5. Let ν be a Hecke character of K of type (1, 0) as above, and let ρν,`
be the associated one-dimensional `-adic representation with values in (Eν⊗Q`)

×.
Then:

(1) There exists a CM abelian variety (Bν, Eν) satisfying

ρBν ,` ' ρν,`.

(2) The CM abelian variety Bν is unique up to isogeny over K . More generally, if
(B, E) is any CM abelian variety with E ⊃ Eν satisfying ρB,` ' ρν,`⊗Eν E as
(E⊗Q`)[G K ]-modules, then there is an isogeny in CMK ,E from B to Bν⊗Tν T .
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Let ψ be a Hecke character of infinity type (1, 0), and let χ be a finite-order
Hecke character of K , so that ψχ−1 also has infinity type (1, 0). In comparing the
abelian varieties Bψ and Bψχ−1 , it is useful to introduce a CM abelian variety Bψ,χ
over K , which we now describe.

Let Eχ denote the field generated by K and the values of χ . We denote by Eψ,χ
the compositum of Eψ and Eχ , and by Tψ,χ ⊂ Eψ,χ its ring of integers. We also
write Hχ for the abelian extension of K which is cut out by χ viewed as a Galois
character of G K . Consider first the abelian variety over K with endomorphisms by
Tψ,χ :

B0
ψ,χ := Bψ ⊗Tψ Tψ,χ .

The natural inclusion iψ : Tψ → Tψ,χ induces a morphism

(2-4) i : Bψ → B0
ψ,χ

with finite kernel, which is compatible with the Tψ -actions on both sides and is
given by

i(P)= P ⊗ 1.

Lemma 2.6. Let F be any number field containing Eψ,χ . With notations as in
Equation (1-10) of the Introduction, the restriction map i∗ induces an isomorphism

(2-5) i∗ :�1(B0
ψ,χ/F)Tψ,χ →�1(Bψ/F)Tψ

of one-dimensional F-vector spaces.

Proof. The fact that Bψ and B0
ψ,χ are CM abelian varieties over F implies that

the spaces �1(Bψ/F) and �1(B0
ψ,χ/F) of regular differentials over F are free of

rank one over Tψ ⊗OK F and Tψ,χ ⊗OK F respectively. In particular, the source
and target in (2-5) are both one-dimensional over F . The space �1(B0

ψ,χ/F) is
canonically identified with HomTψ (Tψ,χ , �

1(Bψ/F)), and under this identification,
the pullback

i∗ :�1(B0
ψ,χ/F)→�1(Bψ/F)

corresponds to the natural restriction

HomTψ (Tψ,χ , �
1(Bψ/F))→�1(Bψ/F)

sending the function ϕ to ϕ(1). (To see this, consider the map i∗ on tangent spaces
and dualize.) It follows directly from this description that

ker(i∗)∩�1(B0
ψ,χ/F)Tψ,χ = 0;

hence the restriction of i∗ to the one-dimensional F-vector space �1(B0
ψ,χ/F)Tψ,χ

is injective. �
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Fix ωψ ∈�1(Bψ/Eψ)Tψ and define ω0
ψ,χ ∈�

1(B0
ψ,χ/Q̄)

Tψ,χ by

(2-6) i∗(ω0
ψ,χ )= ωψ .

It follows from Lemma 2.6 that such an ω0
ψ,χ exists and is unique (once ωψ has

been fixed), and further that ω0
ψ,χ belongs to �1(B0

ψ,χ/Eψ,χ ).
The character χ−1

: Gal(Hχ/K )→ T×χ can be viewed as a one-cocycle in

H 1(Gal(Hχ/K ), T×ψ,χ
)
⊂ H 1(Gal(Hχ/K ),AutK (B0

ψ,χ )
)
.

Let

(2-7) Bψ,χ := (B0
ψ,χ )

χ−1

denote the twist of B0
ψ,χ by this cocycle. There is a natural identification B0

ψ,χ (K̄ )=
Bψ,χ (K̄ ) of sets, arising from an isomorphism of varieties over Hχ , where Hχ is
the extension of K cut out by χ . The actions of G K on B0

ψ,χ (K̄ ) and Bψ,χ (K̄ ),
denoted ∗0 and ∗ respectively, are related by

(2-8) σ ∗ P = (σ ∗0 P)⊗χ−1(σ ), for all σ ∈ G K .

In particular, for any L ⊃ K , we have

(2-9) Bψ,χ (L)=
{

P ∈ Bψ(Q̄)⊗Tψ Tψ,χ
∣∣ σ P = P ·χ(σ), for all σ ∈Gal(Q̄/L)

}
.

Likewise, the natural actions of G K on �1(B0
ψ,χ/K̄ ) and on �1(Bψ,χ/K̄ ) are

related by

(2-10) σ ∗ω = [χ−1(σ )]∗(σ ∗0 ω) for all σ ∈ G K .

The isomorphism of B0
ψ,χ and Bψ,χ as CM abelian varieties over Hχ gives

natural identifications

�1(B0
ψ,χ/Hχ )=�1(Bψ,χ/Hχ ), �1(B0

ψ,χ/E ′ψ,χ )
Tψ,χ =�1(Bψ,χ/E ′ψ,χ )

Tψ,χ ,

where E ′ψ,χ denotes the subfield of Q̄ generated by Hχ and Eψ,χ .
Let ωψ,χ be any generator of�1(Bψ,χ/Eψ,χ )Tψ,χ as an Eψ,χ -vector space. Since

ω0
ψ,χ (defined in (2-6)) and ωψ,χ both generate �1(Bψ,χ/E ′ψ,χ )

Tψ,χ as an E ′ψ,χ -
vector space, they necessarily differ by a nonzero scalar in E ′ψ,χ . To spell out the
relation between ω0

ψ,χ and ωψ,χ more precisely, it will be useful to introduce the
notion of a generalized Gauss sum attached to any finite-order character χ of G K .
Given such a character, let

E{χ} :=
{
λ ∈ Eχ Hχ

∣∣ λσ = χ(σ)λ for all σ ∈ Gal(Eχ Hχ/Eχ )
}
.
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This set is a one-dimensional Eχ -vector space in a natural way. It is not closed
under multiplication, but

(2-11) E{χ1} · E{χ2} = E{χ1χ2} (mod (Eχ1 Eχ2)
×).

Definition 2.7. An Eχ -vector space generator of E{χ} is called a Gauss sum
attached to the character χ , and is denoted g(χ).

By definition, the Gauss sum g(χ) belongs to E{χ} ∩ (Eχ Hχ )×, but is only
well-defined up to multiplication by E×χ . It follows from (2-11) that
(2-12)

g(χ1χ2)= g(χ1)g(χ2) (mod (Eχ1 Eχ2)
×), g(χ−1)= g(χ)−1 (mod E×χ ).

The following lemma pins down the relationship between the differentials ω0
ψ,χ

and ωψ,χ .

Lemma 2.8. For all Hecke characters ψ and χ as above,

ωψ,χ = g(χ)ω0
ψ,χ (mod E×ψ,χ ).

Proof. Let λ ∈ (Hχ Eψ,χ )× be the scalar satisfying

(2-13) ωψ,χ = λω
0
ψ,χ .

Since ωψ,χ is an Eψ,χ -rational differential on Bψ,χ , for all σ ∈ Gal(K̄/Eψ,χ ) we
have

(2-14) ωψ,χ = σ ∗ωψ,χ = [χ
−1(σ )]∗σ ∗0 ωψ,χ = χ

−1(σ )λσω0
ψ,χ ,

where the second equality follows from (2-10) and the last from the fact that the
differential ω0

ψ,χ belongs to �1(B0
ψ,χ/Eψ,χ )Tψ,χ . Comparing (2-13) and (2-14)

gives λσ = χ(σ)λ, and hence λ= g(χ) (mod E×ψ,χ ). �

The following lemma relates the abelian varieties Bψ,χ and Bν , where ν=ψχ−1.

Lemma 2.9. There is an isogeny defined over K :

iν : Bψ,χ → Bν ⊗Tν Tψ,χ ,

which is compatible with the action of Tψ,χ by endomorphisms on both sides.

Proof. The pair (B0
ψ,χ , Eψ,χ ) is a CM abelian variety having ψ (viewed as taking

values in Eψ,χ ) as its associated Hecke character. The Hecke character attached
to the Galois twist Bψ,χ is therefore ψχ−1

= ν. The second part of Theorem 2.5
implies that Bψ,χ and Bν⊗Tν Tψ,χ are isogenous over K as CM abelian varieties. �



274 MASSIMO BERTOLINI, HENRI DARMON AND KARTIK PRASANNA

2C. Complex periods and special values of L-functions. This section recalls cer-
tain periods attached to the quadratic imaginary field K and to Hecke characters of
this field. We begin by fixing:

(1) An elliptic curve A with complex multiplication by OK , defined over a finite
extension F of K . (Note that F necessarily contains the Hilbert class field
of K .)

(2) A regular differential ωA ∈�
1(A/F).

(3) A nonzero element γ of H1(A(C),Q).

The complex period attached to this data is defined by

(2-15) �(A) := 1
2π i

∫
γ

ωA.

Note that �(A) depends on the pair (ωA, γ ). A different choice of ωA or γ has the
effect of multiplying �(A) by a scalar in F×, and therefore �(A) can be viewed
as a well-defined element of C×/F×.

For any Hecke character ψ of K , recall that ψ∗ is the Hecke character defined
as in the Introduction by ψ∗(x)= ψ(x̄). Suppose that ψ is of infinity type (1, 0),
and as before let Eψ ⊂ Q̄ ⊂ C denote the field generated by the values of ψ (or,
equivalently, ψ∗). Choose (arbitrary) nonzero elements

ωψ ∈�
1(Bψ/Eψ)Tψ , γ ∈ H1(Bψ(C),Q),

with Bψ the CM abelian variety attached to ψ by Theorem 2.5, and �1(Bψ/Eψ)Tψ

defined in (1-10). The period �(ψ∗) attached to ψ∗ is defined by setting

�(ψ∗)=
1

2π i

∫
γ

ωψ (mod E×ψ ).

Note that the complex number �(ψ∗) does not depend, up to multiplication by E×ψ ,
on the choices of ωψ and γ that were made to define it.

Lemma 2.10. Ifψ is a Hecke character of infinity type (1, 0), and χ is a finite-order
character, then

(2-16) �(ψ∗χ)=�(ψ∗)g(χ∗)−1 (mod E×ψ,χ ).

Proof. Choose a nonzero generator γ of H1(B0
ψ,χ (C),Q) = H1(Bψ,χ (C),Q)

(viewed as a one-dimensional Eψ,χ vector space via the endomorphism action). By
definition,

�
(
(ψχ−1)∗

)
=

∫
γ

ωψ,χ = g(χ)

∫
γ

ω0
ψ,χ = g(χ)�(ψ∗) (mod E×ψ,χ ),

where the second equality follows from Lemma 2.8. The result now follows after
substituting χ∗−1 for χ . �
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As in [Schappacher 1988, §1.8], one can also attach a period�(ψ) to an arbitrary
Hecke character ψ of K ; these satisfy the following relations:

Proposition 2.11. Let ψ be a Hecke character of infinity type (k, j). Then

(1) The ratio
�(ψ∗)

(2π i) j�(A)k− j

is algebraic.

(2) For all ψ and ψ ′,

�(ψψ ′)=�(ψ)�(ψ ′) (mod E×ψ,ψ ′),

where Eψ,ψ ′ is the subfield of Q̄ generated by Eψ and Eψ ′ .

The following theorem is due to Goldstein and Schappacher [1981] in certain
cases and Blasius [1986] in the general case (even CM fields).

Theorem 2.12. Suppose that ψ has infinity type (k, j) with k > j , and that m is a
critical integer for L(ψ−1, s). Then

L(ψ−1,m)
(2π i)m�(ψ∗)

belongs to Eψ ,

and for all τ ∈ Gal(Eψ/K ),(
L(ψ−1,m)
(2π i)m�(ψ∗)

)τ
=

L
(
(ψ−1)τ ,m

)
(2π i)m�

(
(ψ∗)τ

) .
Here the action of τ ∈ Gal(Eψ/K ) on ψ−1 and ψ∗ is defined by viewing them as
Eχ -valued characters on ideals and applying τ to their values.

2D. p-adic periods. Fix a prime p that splits in K . We will need p-adic analogs
of the periods �(A) and �(ν∗). The p-adic analog �p(A) of �(A) is obtained
by considering the base change ACp of A to Cp (via our fixed embedding of F
into Cp). Assume that A has good reduction at the maximal ideal of OCp , that is,
that ACp extends to a smooth proper model AOCp

over OCp . The p-adic completion
ÂOCp

of A along its special fiber is isomorphic to Ĝm . Following [de Shalit 1987,
II, §4.4], choose an isomorphism ιp : Â→ Ĝm over OCp , and define �p(A) ∈ C×p
by the rule

(2-17) ωA =�p(A) · ι∗p(du/u),

where u is the standard coordinate on Ĝm . The invariant �p(A) ∈ C×p thus defined
depends on the choices of ωA and ιp, but only up to multiplication by a scalar
in F×. Observe also that �(A) and �p(A) each depend linearly in the same way
on the choice of the global differential ωA.



276 MASSIMO BERTOLINI, HENRI DARMON AND KARTIK PRASANNA

The p-adic period �p(A) can be used to define p-adic analogs of the complex
periods that appear in the statement of Theorem 2.12.

Definition 2.13. Let ν be a Hecke character of K of type (1, 0). The p-adic period
�p(ν

∗) is defined by

�p(ν
∗) :=�p(A) ·

�(ν∗)

�(A)
.

More generally, for any character ν of infinity type (k, j), we define

�p(ν
∗) :=�p(A)k− j

·
�(ν∗)

(2π i) j�(A)k− j .

It can be seen from this definition that the period �p(ν
∗), like its complex

counterpart �(ν∗), is well-defined up to multiplication by a scalar in E×ν . The
following p-adic analog of Lemma 2.10 is a direct consequence of this lemma
combined with the definition of �p(ψ):

Lemma 2.14. If ψ is a Hecke character of infinity type (1, 0), and χ is a finite
order character, then

(2-18) �p(ψ
∗χ)=�p(ψ

∗)g(χ∗)−1 (mod E×ψ,χ ).

Likewise, Proposition 2.11 implies:

Proposition 2.15. Let ψ be a Hecke character of infinity type (k, j). Then:

(1) The ratio
�p(ψ

∗)

(2π i) j�p(A)k− j

is algebraic.

(2) For all ψ and ψ ′,

(2-19) �p(ψψ
′)=�p(ψ)�p(ψ

′) (mod E×ψ,ψ ′).

3. p-adic L-functions and Rubin’s formula

3A. The Katz p-adic L-function. Throughout this chapter, we will fix a prime p
that is split in K . Let c be an integral ideal of K which is prime to p, and let 6(c)
denote the set of all Hecke characters of K of conductor dividing c. Denote by p

the prime above p corresponding to the chosen embedding K ↪→ Q̄p.
A character ν ∈6(c) is called a critical character if L(ν−1, 0) is a critical value

in the sense of Deligne, that is, if the 0-factors that arise in the functional equation
for L(ν−1, s) are nonvanishing and have no poles at s = 0. The set 6crit(c) of
critical characters can be expressed as the disjoint union

6crit(c)=6
(1)
crit(c)∪6

(2)
crit(c),
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Figure 1. Critical infinity types for the Katz p-adic L-function.

where

6
(1)
crit(c)= {ν ∈6(c) of type (`1, `2) with `1 ≤ 0, `2 ≥ 1},

6
(2)
crit(c)= {ν ∈6(c) of type (`1, `2) with `1 ≥ 1, `2 ≤ 0}.

The possible infinity types of Hecke characters in 6(2)crit(c) lie in the shaded region
in Figure 1 whose reflection about the principal diagonal corresponds likewise to
6
(1)
crit(c). Note in particular that when c= c̄, the regions 6(1)crit(c) and 6(2)crit(c) are inter-

changed by the involution ν 7→ ν∗. The set 6crit(c) is endowed with a natural p-adic
topology as described in Section 5.2 of [Bertolini et al. 2012b]. The subsets 6(1)crit(c)

and 6(2)crit(c) are each dense in the completion 6̂crit(c) relative to this topology.
Recall that p is the prime above p induced by our chosen embedding of K

into Cp. The following theorem on the existence of the p-adic L-function is due to
Katz. The statement below is a restatement of [de Shalit 1987, II, Theorem 4.14]
with a minor correction, and restricted to characters unramified at p. We remark
that since our characters are unramified at p, the Gauss sum in the interpolation
formula in [loc. cit.] is equal to 1.

Theorem 3.1. There exists a p-adic analytic function ν 7→ Lp,c(ν) (valued in Cp)
on 6̂crit(c) which is determined by the interpolation property
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(3-1)
Lp,c(ν)

�p(A)`1−`2
=

(√D
2π

)`2
(`1− 1)!

(
1− ν(p)/p

)(
1− ν−1(p̄)

)Lc(ν
−1, 0)

�(A)`1−`2
,

for all critical characters ν ∈6(2)crit(c) of infinity type (`1, `2).

The right-hand side of (3-1) belongs to Q̄, by part (1) of Proposition 2.11 and
Theorem 2.12 with m = 0. Equation (3-1) should be interpreted to mean that the
left-hand side also belongs to Q̄, viewed as a subfield of Cp under the chosen
embeddings, and agrees with the right-hand side. Note that although both sides of
(3-1) depend on the choice of the differential ωA that was made in the definition of
the periods�(A) and�p(A), the quantity Lp,c(ν), just like its complex counterpart
Lc(ν

−1, 0), does not depend on this choice.

Remark 3.2. Once a choice of c is fixed, we shall often drop the subscript c and
simply write Lp for the p-adic L-function.

The following corollary is the p-adic counterpart of Theorem 2.12.

Corollary 3.3. Suppose that ν ∈6(2)crit(c). Then

Lp,c(ν)

�p(ν∗)
belongs to Eν .

Proof. Suppose that ν has infinity type (`1, `2). By the definition of �p(ν
∗) and

the interpolation property of the Katz p-adic L-function in Theorem 3.1, we have

Lp,c(ν)

�p(ν∗)
=

Lp,c(ν)

�p(A)`1−`2
×
(2π i)`2�(A)`1−`2

�(ν∗)

=
√
−D

`2
· (`1− 1)!

(
1− ν(p)

)(
1− ν−1(p̄)

)Lc(ν
−1, 0)

�(ν∗)
.

The result is now a direct consequence of Theorem 2.12 with m = 0. �

Corollary 3.3 expresses Lp,c(ν) as an Eν-multiple of a p-adic period �p(ν
∗),

when ν lies in the range 6(2)crit(c) of classical interpolation for the Katz p-adic L-
function. On the other hand, the characters in 6(1)crit(c) are outside the range of
interpolation, and so Corollary 3.3 does not directly say anything about these values,
and indeed the main goal of this paper is to obtain analogous results for certain
characters in 6(1)crit(c). It turns out that the methods of this paper only allow us to
study Lp,c(ν) for characters ν in 6(2)crit(c) satisfying the following auxiliary (but not
unnatural) condition:

(3-2) ν is a self-dual Hecke character with εν = εK .

For the benefit of the reader, we now recall this key definition.
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Definition 3.4. A Hecke character ν ∈6crit(c) is said to be self-dual or anticyclo-
tomic if

νν∗ = NK .

The reason for the terminology in Definition 3.4 is that the functional equation
for the L-series L(ν−1, s) relates L(ν−1, s) to L(ν−1,−s), and therefore s = 0 is
the central critical point for this complex L-series. Note that a self-dual character
is necessarily of infinity type (1+ j,− j) for some j ∈ Z. Also the conductor of a
self-dual character is clearly invariant under complex conjugation. If c is an integral
ideal such that c= c̄, we denote by 6sd(c) the set of self-dual Hecke characters of
conductor exactly c, and write

6
(1)
sd (c)=6

(1)
crit(c)∩6sd(c), 6

(2)
sd (c)=6

(2)
crit(c)∩6sd(c).

In particular, the possible infinity types of characters in 6(2)sd (c) correspond to the
black dots in Figure 1.

For convenience, we restate Theorem 3.1 for self-dual characters.

Proposition 3.5. For all characters ν ∈ 6(2)sd (c) of infinity type (1+ j,− j) with
j ≥ 0,

(3-3)
Lp,c(ν)

�p(A)1+2 j =
(
1− ν−1(p̄)

)2
×

j ! (2π) j Lc(ν
−1, 0)

√
D

j
�(A)1+2 j

.

Remark 3.6. In the proposition above, we could equally write L(ν−1, 0) instead
of Lc(ν

−1, 0), since ν has conductor exactly equal to c.

Remark 3.7. The central character of such a ν is very restricted. Indeed, for any
Hecke character ν, it is clear that εν̄ = εν , while εν∗ = εν . Further, if ν is a self-dual
character, it follows that for any x ∈ A×K ,

ν
(
NK

Q(x)
)
= ν(x x̄)= (νν∗)(x)= NK (x)= N

(
NK

Q(x)
)
.

Hence
ν|NK

Q
A×K
= N and εν |NK

Q
A×K
= 1.

This implies that the central character εν of a self-dual character ν is either 1 or εK ,
where εK denotes the quadratic Dirichlet character corresponding to the extension
K/Q. Conversely, it is easy to see that if ν is a Hecke character with w(ν)= 1 and
εν = 1 or εK , then ν is a self-dual character.

We define:

(3-4) 6sd(c)
+
:= {ν ∈6sd(c); εν = 1}, 6sd(c)

−
:= {ν ∈6sd(c); εν = εK }.

The sets 6(1)sd (c)
± and 6(2)sd (c)

± are defined similarly.
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Our approach to studying Lp,c(ν) for characters ν satisfying (3-2), that is, those
ν lying in 6(1)sd (c)

− for some c, relies on a different kind of p-adic L-function. This
latter p-adic L-function is attached to Rankin–Selberg L-series and is recalled in
the following section.

3B. p-adic Rankin L-series. In this section, we consider p-adic L-functions ob-
tained by interpolating special values of Rankin–Selberg L-series associated to
modular forms and Hecke characters of a quadratic imaginary field K of odd
discriminant. We briefly recall the definition of this p-adic L-function that is given
in Section 5 of [Bertolini et al. 2012b], referring the reader to that work for a more
detailed description.

Let Sk(00(N ), ε) denote the space of cusp forms of weight k ≥ 2 and character
ε on 00(N ). Let f ∈ Sk(00(N ), ε) be a normalized newform and let E f denote the
subfield of C generated by its Fourier coefficients.

Definition 3.8. The pair ( f, K ) is said to satisfy the Heegner hypothesis if OK

contains a cyclic ideal of norm N , that is, an integral ideal N of OK with OK /N=

Z/NZ.

Assume from now on that ( f, K ) satisfies the Heegner hypothesis, and let N

be a cyclic OK -ideal of norm N . We write Nε for the unique ideal dividing N of
norm Nε, where Nε is the conductor of ε.

Definition 3.9. A Hecke character χ of K of infinity type (`1, `2) is said to be
central critical for f if

`1+ `2 = k and εχ = ε.

The reason for the terminology of Definition 3.9 is that when χ satisfies these
hypotheses, the complex Rankin L-series L( f, χ−1, s) is self-dual and s = 0 is its
central (critical) point.

Definition 3.10. Let c be a rational integer prime to pN . Then 6cc(c,N, ε) is
defined to be the set of Hecke characters χ of K such that

(1) χ is central critical for f ;

(2) fχ = c ·Nε;

(3) the local sign εq( f, χ−1)=+1 for all finite primes q .

It is easily checked that this agrees with the definition of 6cc(c,N, ε) given in
[Bertolini et al. 2012b, §4.1], where this is just denoted 6cc(N). Further, as in [loc.
cit.], given conditions (1) and (2) above, condition (3) is automatic except possibly
for primes q lying in the set S f defined by

S f := {q : q |(N , D), q - Nε}.
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Figure 2. Critical infinity types for the p-adic Rankin L-function.

The set 6cc(c,N, ε) can be expressed as a disjoint union

6cc(c,N, ε)=6(1)cc (c,N, ε)∪6
(2)
cc (c,N, ε),

where 6(1)cc (c,N, ε) and 6(2)cc (c,N, ε) denote the subsets consisting of characters
of infinity type (k + j,− j), with 1− k ≤ j ≤ −1 and j ≥ 0 respectively. We
shall also denote by 6̂cc(c,N, ε) the completion of 6cc(c,N, ε) relative to the
p-adic compact open topology on 6cc(c,N, ε), which is defined in Section 5.2 of
[Bertolini et al. 2012b]. The infinity types of Hecke characters in 6(1)cc (c,N, ε)
and 6(2)cc (c,N, ε) correspond respectively to the white and black dots in the shaded
regions in Figure 2. We note that the set 6(2)cc (c,N, ε) of classical central critical
characters “of type 2” is dense in 6̂cc(c,N, ε).

For all χ ∈6(2)cc (c,N, ε) of infinity type (k+ j,− j) with j ≥ 0, let E f,χ denote
the subfield of C generated by E f and the values of χ , and let E f,χ,ε be the field
generated by E f,χ and by the abelian extension of Q cut out by ε. The algebraic
part of L( f, χ−1, 0) is defined by the rule

(3-5) Lalg( f, χ−1, 0) := w( f, χ)−1C( f, χ, c) ·
L( f, χ−1, 0)
�(A)2(k+2 j) ,
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where w( f, χ)−1
∈ E f,χ,ε and C( f, χ, c) are respectively the scalar (of complex

norm 1) and the explicit real constant defined in [Bertolini et al. 2012b, (5.1.11)
and Theorem 4.6]; we have

(3-6) C( f, χ, c)=
2k+2 j−2π k+2 j−1 j ! (k+ j − 1)!wK

√
D

k+2 j−1
ck+2 j−1

∏
q|c

q − εK (q)
q − 1

,

where wK = #O×K is the number of roots of unity in K . Theorems 5.5 and 5.10 of
[loc. cit.] show respectively that the values Lalg( f, χ−1, 0) belong to Q̄, and that
they interpolate p-adically:

Proposition 3.11. Let χ 7→ L p( f, χ) be the function on 6(2)cc (c,N, ε) defined by
(3-7)
L p( f, χ) :=�p(A)2(k+2 j)(1−χ−1(p̄)ap( f )+χ−2(p̄)ε(p)pk−1)2Lalg( f, χ−1, 0),

for χ of infinity type (k+ j,− j) with j ≥ 0. This function extends (uniquely) to a
p-adically continuous function on 6̂cc(c,N, ε).

The function χ 7→ L p( f, χ) on 6̂cc(c,N, ε) will be referred to as the p-adic
Rankin L-function attached to the cusp form f .

3C. A p-adic Gross–Zagier formula. In this section, we specialize to the case
where the newform f is of weight k = 2, and assume that χ is a finite-order Hecke
character of K satisfying

χNK belongs to 6(1)cc (c,N, ε).

In particular, the character χNK lies outside the domain 6(2)cc (c,N, ε) of classical
interpolation defining L p( f,− ). The p-adic Gross–Zagier formula alluded to in
the title of this section relates the special value L p( f, χNK ) to the formal group
logarithm of a Heegner point on the modular abelian variety attached to f .

The Eichler–Shimura construction associates to f an abelian variety B f with en-
domorphism by an order in the ring of integers T f ⊂ E f , and a surjective morphism

8 f : J1(N )→ B f

of abelian varieties over Q, called the modular parametrization, which is well-
defined up to a rational isogeny. Let

ω f = 2π i f (τ ) dτ ∈�1(X1(N )/E f
)

be the differential form on X1(N ) attached to f ; we use the same symbol ω f to
denote the associated one-form on J1(N ). Let ωB f ∈�

1(B f /E f )
T f be the unique

one-form satisfying

(3-8) 8∗f (ωB f )= ω f .
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Let A′ be an elliptic curve with endomorphism ring isomorphic to the order
Oc = Z+ cOK of conductor c, defined over the ring class field Hc of conductor c.
The pair (A′, A′[N]) corresponds to a point on X0(N )(Hc). Let t be any generator
of A′[N]. Then the triple (A′, A′[N], t) corresponds to a point in X1(N ), whose
field of definition Hc,N is an abelian extension of K , independent of the choice of t ,
and the finite-order Hecke character χ can be viewed as a character

χ : Gal(Hc,N/K )→ Eχ .

Fix a cusp∞ of X1(N ) which is defined over Q, and let

(3-9) 1= [A′, A′[N], t] − (∞) ∈ J1(N )(Hc,N).

To the pair ( f, χ) we associate a Heegner point by letting G = Gal(Hc,N/K )
and setting

(3-10) P f (χ) :=
∑
σ∈G

χ−1(σ )8 f (1
σ ) ∈ B f (Hc,N)⊗T f E f,χ .

Note that, since P f (χ)
σ
= P f (χ) for any σ ∈Gal(Hc,N/Hχ ), the point P f (χ) lies

in the subspace B f (Hχ )⊗T f E f,χ . The embedding of Q̄ into Cp that was fixed
from the outset allows us to consider the formal group logarithm

logωB f
: B f (Hc,N)→ Cp.

We extend this function to B f (Hc,N)⊗T f E f,χ by E f,χ -linearity.

Theorem 3.12. With notations and assumptions as above,

L p( f, χNK )=
(
1−χ−1(p̄)p−1ap( f )+χ−2(p̄)ε(p)p−1)2 log2

ωB f
(P f (χ)).

Proof. Let

E( f, χ) :=
(
1−χ−1(p̄)p−1ap( f )+χ−2(p̄)ε(p)p−1)2

∈ E×f,χ

be the Euler factor appearing in the statement of Theorem 3.12. Let F ′ denote the
p-adic completion of Hc,N. Theorem 5.13 of [Bertolini et al. 2012b] in the case
k = 2 and r = j = 0, with χ replaced by χNK , gives

(3-11) L p( f, χNK )= E( f, χ)×
(∑
σ∈G

χ−1(σ ) ·AJF ′(1
σ )(ω f )

)2

.

Note that in this context, the p-adic Abel–Jacobi map AJF ′ that appears in (3-11)
is related to the formal group logarithm by

AJF ′(1)(ω f )= logω f
(1).
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Therefore,

(3-12) L p( f, χNK )= E( f, χ)
(∑
σ∈G

χ−1(σ ) logω f
(1σ )

)2

.

Theorem 3.12 follows from this formula and the fact that, by (3-8),

logω f
(1)= log8∗f (ωB f )

(1)= logωB f
(8 f (1)). �

In the special case where f has rational Fourier coefficients and χ = 1 is the
trivial character, the abelian variety B f is an elliptic curve quotient of J0(N ) and
the Heegner point P f := P f (1) belongs to B f (K ). Theorem 3.12 implies in this
case that

(3-13) L p( f, NK )=

(
p+ 1− ap( f )

p

)2

log2(P f ),

where log : B f (Kp)→ Kp is the formal group logarithm attached to a rational
differential on B f /Q. Equation (3-13) exhibits a strong analogy with Theorem 1
of the Introduction, although it applies to arbitrary (modular) elliptic curves and
not just elliptic curves with complex multiplication.

The remainder of Chapter 3 explains how Theorem 3.12 can in fact be used to
prove Theorems 1 and 2 of the Introduction. The key to this proof is a relation
between the Katz p-adic L-function of Section 3A and the p-adic Rankin L-function
L p( f, χ) of Section 3B in the special case where f is a theta series attached to
a Hecke character of the imaginary quadratic field K . This explicit relation is
described in the following section.

3D. A factorization of the p-adic Rankin L-series. This section focuses on the
Rankin L-function L p( f, χ) of f and K in the special case where f is a theta
series associated to a Hecke character of the same imaginary quadratic field K .

More precisely, let ψ be a fixed Hecke character of K of infinity type (k− 1, 0)
with k = r + 2≥ 2. Consider the associated theta series

θψ :=
∑

a

ψ(a)qNa
=

∞∑
n=1

an(θψ)qn,

where the first sum is taken over integral ideals of K . The Fourier coefficients of
θψ generate a number field Eθψ which is clearly contained in Eψ .

The following classical proposition is due to Hecke and Schoenberg. (See [Ogg
1969] or Section 3.2 of [Zagier 2008]).

Proposition 3.13. The theta series θψ belongs to Sk(00(N ), ε), where

(1) the level N is equal to DM , with M = NK
Q

fψ ;

(2) the Nebentypus character ε is equal to εK εψ .
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Lemma 3.14. If the conductor fψ of ψ is a cyclic ideal m of norm M prime to D,
then f := θψ satisfies the Heegner hypothesis relative to K .

Proof. In this case, the modular form θψ is of level N = DM , by Proposition 3.13.
But then the ideal

(3-14) N := dK m,

with dK := (
√
−DK ), is a cyclic ideal of K of norm N . �

We will assume from now on that the condition in Lemma 3.14 is satisfied. Further-
more, we will always take N to be the ideal in (3-14).

The goal of this section is to factor the p-adic Rankin L-function L p(θψ , · ) as a
product of two Katz p-adic L-functions. As a preparation to stating the main result,
we record the following two lemmas:

Lemma 3.15. For f := θψ , the L-function L( f, χ−1, s) factors as

L( f, χ−1, s)= L(ψχ−1, s) · L(ψ∗χ−1, s).

Proof. Let (ρ f,`) denote the compatible system of `-adic Galois representations
associated to f . The factorization above then follows from the fact that L( f, χ−1, s)
is the L-function of the compatible system of Galois representations

ρ f,`|Gal(K̄/K )⊗χ
−1
` = (ψ`⊕ψ

∗

` )⊗χ
−1
` = ψ`χ

−1
` ⊕ψ

∗

`χ
−1
` . �

Lemma 3.16. Let c be an integer prime to pN and let χ be any character in
6cc(c,N, ε).

(1) If χ belongs to 6(2)cc (c,N, ε), then ψ−1χ belongs to 6(2)sd (cdK )
− and ψ∗−1χ

belongs to 6(2)sd (cdK M)−.

(2) If χ belongs to 6(1)cc (c,N, ε), then ψ−1χ belongs to 6(1)sd (cdK )
− and ψ∗−1χ

belongs to 6(2)sd (cdK M)−.

Proof. We first note that when χ is of type (k+ j,− j), then ψ−1χ is of infinity type
(1+ j,− j) andψ∗−1χ is of infinity type

(
k+ j, 1−(k+ j)

)
. Since χ ∈6cc(c,N, ε),

we have
εχ = ε = εψ · εK .

Thus εψ−1χ equals εK and the same holds for εψ∗−1χ since εψ∗ = εψ . It follows
then from Remark 3.7 that ψ−1χ and ψ∗−1χ are self-dual characters.

Let q be a rational prime dividing M . Since m is a cyclic OK -ideal, it follows
that q = qq̄ must be split in K , and exactly one of q, q̄ divides m. From this, it is
easy to see that εψ has conductor exactly M , and hence ε has conductor exactly N
and Nε =N. Thus fχ = cN= cdK m and fψ∗−1χ = cdK mm̄= cdK M . On the other
hand, since εχ = εψεK , it follows that fψ−1χ = cdK .
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The preceding remarks imply that if χ is in 6cc(c,N, ε), then ψ−1χ lies in
6sd(cdK )

− and ψ∗−1χ lies in 6sd(cdK M)−. To finish, we note that if j ≥ 0, then
both ψ−1χ and ψ∗−1χ lie in 6(2)sd , while if −(k− 1)≤ j ≤−1, then ψ∗−1χ is in
6
(2)
sd while ψ−1χ lies in 6(1)sd . �

Theorem 3.17. For all χ ∈6cc(c,N, ε),

(3-15) L p(θψ , χ)

=
w(θψ , χ)

−1wK

2ck+2 j−1

∏
q|c

q − εK (q)
q − 1

×Lp,cdK (ψ
−1χ)×Lp,cdK M(ψ

∗−1χ).

Proof. Since 6(2)cc (c,N, ε) is dense in 6̂cc(c,N, ε), it suffices to prove the formula
for the characters χ in this range, where it follows directly from the interpolation
properties defining the respective p-adic L-functions. More precisely, by (3-7),

(3-16)
L p(θψ , χ)

�p(A)2(k+2 j) =
(
(1−ψχ−1(p̄))(1−ψ∗χ−1(p̄))

)2Lalg(θψ , χ
−1, 0).

Let
δc :=

∏
q|c

q − εK (q)
q − 1

.

By Lemma 3.15 and the definition of Lalg(θψ , χ
−1, 0) given in (3-5) and (3-6),

(3-17) Lalg(θψ , χ
−1, 0)= w(θψ , χ)−1C(θψ , χ, c)

L(θψ , χ−1, 0)
�(A)2(k+2 j)

= w(θψ , χ)
−1wK δc

2r+2 jπ k+2 j−1 j ! (k+ j − 1)!
√

D
k+2 j−1

ck+2 j−1

×
L(ψχ−1, 0)L(ψ∗χ−1, 0)

�(A)2(k+2 j)

=
w(θψ , χ)

−1wK δc

2ck+2 j−1

(
j ! (2π) j L(ψχ−1, 0)
√

D
j
�(A)1+2 j

)

×

(
(k+ j − 1)! (2π)k+ j−1L(ψ∗χ−1, 0)
√

D
k+ j−1

�(A)1+2(k+ j−1)

)
.

Combining (3-16) and (3-17) with the interpolation property of the Katz p-adic
L-function given in Proposition 3.5, we obtain

(3-18)
L p(θψ , χ)

�p(A)2(k+2 j) =
w(θψ , χ)

−1wK δc

2ck+2 j−1 ×
Lp,cdK (ψ

−1χ)

�p(A)1+2 j ×
Lp,cdK M(ψ

∗−1χ)

�p(A)1+2(k+ j−1) .

Clearing the powers of �p(A) on both sides gives the desired result. �
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The Nebentypus character ε can be viewed as a finite-order Galois character
of GQ. Recall that Eψ,χ,ε denotes the smallest extension of Eψ,χ containing the
field through which this character factors.

Corollary 3.18. For all χ ∈6cc(c,N, ε),

L p(θψ , χ)= Lp,cdK (ψ
−1χ)×Lp,cdK M(ψ

∗−1χ) (mod E×ψ,χ,ε).

Proof. This follows from Theorem 3.17 in light of the fact that the constant that
appears on the right-hand side of (3-15) belongs to E×ψ,χ,ε. �

3E. Proof of Rubin’s theorem. The goal of this section is to prove Theorem 2
of the Introduction. Let c= c̄ be an integral ideal in OK invariant under complex
conjugation and let ν ∈6sd(c)

− be a Hecke character of K of infinity type (1, 0).
Since εν = εK , it follows that dK |c. We will also assume that ν satisfies the
following additional conditions:

(i) The sign wν of the functional equation of the L-function L(ν, s) is −1.

(ii) dK ||c. Thus c = (c)dK for a unique positive rational integer c that is prime
to D.

Let p be a rational prime split in K that is prime to c.

Definition 3.19. A pair (ψ, χ) of Hecke characters is said to be good for ν if it
satisfies the following conditions.

(1) The character ψ is of type (1, 0) and has conductor m, where m is a cyclic OK -
ideal prime to pD. Thus θψ is a newform in S2(00(N ), ε), where N = M D
and ε = εψεK is a Dirichlet character of conductor exactly N . Let N :=mdK .

(2) The character χ is of finite order, and χNK belongs to 6(1)cc (c,N, ε). This
implies (on account of Lemma 3.16 applied to χNK ) that ψ−1χNK lies in
6
(1)
sd (c) and ψ∗−1χNK lies in 6(2)sd (cM).

(3) The character ψχ−1 is equal to ν, that is, ψ−1χNK = ν
∗.

(4) The classical L-value L(ψ∗χ−1 N−1
K , 0)= L(ψ∗χ−1, 1) is nonzero, and hence

Lp,cM(ψ
∗−1χNK ) 6= 0.

Remark 3.20. Suppose that a pair (ψ, χ) satisfies (1) and (3) above with m prime
to c. Then such a pair automatically satisfies (2) also. Indeed, the character
χNK = ψν

∗ is of type (1, 1) and its central character is equal to

εχ = εψεν∗ = εψεK = ε,

where ε is the Nebentypus character attached to θψ . Further, fχ = fψ fν∗ =m · cdK .
It follows that the character χNK belongs to 6cc(c,N, ε), with N = dK m. (The
set Sθψ in the discussion below Definition 3.10 is empty, since D |Nε.)
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Remark 3.21. Suppose that a pair (ψ, χ) satisfies conditions (1), (2) and (3) above.
Since χNK lies in6(1)cc (c,N, ε), the sign in the functional equation of L(θψ , χ−1, s)
is −1. As seen previously, this L-function factors as

L
(
θψ , (χNK )

−1, s
)
= L(ψχ−1 N−1

K , s)L(ψ∗χ−1 N−1
K , s)

= L(νN−1
K , s)L(ψ∗χ−1 N−1

K , s).

The normalization here is such that the central point is s = 0. Since the sign of
L(ν, s) is −1, it follows that the sign of L(ψ∗χ−1 N−1

K , s) is +1. Hence condition
(4) would be expected to hold generically.

The modular abelian variety Bθψ attached to ψ is a CM abelian variety in the
sense of Definition 2.4. Hence it is K -isogenous to the CM abelian variety Bψ
constructed in Section 2B. In particular, the modular parametrization 8ψ :=8θψ
can be viewed as a surjective morphism of abelian varieties over K :

(3-19) 8ψ : J1(N )→ Bψ .

Given a good pair (ψ, χ), recall the Heegner divisor 1 ∈ J1(N )(Hc,N) that was
constructed in Section 3C, and the Heegner point

(3-20) Pψ(χ) := Pθψ (χ)=
∑
σ∈G

8ψ(1
σ )⊗χ−1(σ ) ∈ Bψ(Hχ )⊗Tψ Eψ,χ

that was defined in Equation (3-10) of that section with f = θψ . Recall also that
ωψ is an Eψ -vector space generator of �1(Bψ/Eψ)Tψ . Viewing the point Pψ(χ)
as a formal linear combination of elements of Bψ(Hχ ) with coefficients in Eψ,χ ,
we define the expression logωψ (Pψ(χ)) by Eψ,χ -linearity.

In the rest of this section, we will denote by E ′ψ,χ the subfield of Q̄ generated by
Eψ , Eχ , and the abelian extension H ′χ of K cut out by the finite-order characters χ
and χ∗. The motivation for singling out good pairs for a special definition lies in
the following proposition.

Proposition 3.22. For any pair (ψ, χ) which is good for ν,

(3-21) Lp,c(ν
∗)=�p(ν

∗)−1 log2
ωψ
(Pψ(χ)) (mod (E ′ψ,χ )

×),

where �p(ν
∗) is the p-adic period from Definition 2.13.

Proof. By Theorem 3.12 applied to f = θψ ,

(3-22) L p(θψ , χNK )= log2
ωψ
(Pψ(χ)) (mod E×ψ,χ ).

On the other hand, since E ′ψ,χ contains Eψ,χ,ε, Corollary 3.18 implies that

(3-23) L p(θψ , χNK )= Lp,c(ψ
−1χNK )Lp,cM(ψ

∗−1χNK ) (mod (E ′ψ,χ )
×)

= Lp,c(ν
∗)Lp,cM(ψ

∗−1χNK ) (mod (E ′ψ,χ )
×),
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where the second equality follows from condition (3) in the definition of a good
pair. The value Lp,cM(ψ

∗−1χNK ) is nonzero by condition (4) in the definition of
a good pair. Therefore, by Corollary 3.3,

(3-24) Lp,cM(ψ
∗−1χNK )=�p(ψ

−1χ∗NK ) (mod E×ψ,χ ).

Since ψχ−1
= ν, we have

(3-25) �p(ψ
−1χ∗NK )=�p(ν

−1χ−1χ∗NK )

=�p(ν
∗
·χ∗/χ)=�p(ν

∗) (mod (E ′ψ,χ )
×),

where the last equality follows from Lemma 2.14. The proposition now follows by
combining Equations (3-22) through (3-25). �

To go further, we will analyze the expression logωψ (Pψ(χ)) and relate it to
quantities depending solely on ν and not on the good pair (ψ, χ). It will be useful
to view the point Pψ(χ) appearing in (3-21) as an element of B0

ψ,χ (Hc,N) or as
a K -rational point on the abelian variety Bψ,χ that was introduced in Section 2B.
More precisely, after setting

(3-26) Pψ(χ) :=
∑
σ∈G

8ψ(1
σ )⊗χ−1(σ ) ∈ Bψ(K̄ )⊗Tψ Tψ,χ = B0

ψ,χ (K̄ ),

we observe that, for all τ ∈ Gal(K̄/K ),

τ ∗0 Pψ(χ)=
∑
σ∈G

8ψ(1
τσ )⊗χ−1(σ )=

∑
σ∈G

8ψ(1
σ )⊗χ−1(στ−1)= Pψ(χ)χ(τ).

The point Pψ(χ) therefore belongs to Bψ,χ (K ) by (2-9). For the following lemmas,
recall the differentials ω0

ψ,χ ∈�
1(B0

ψ,χ/Eψ,χ )Tψ,χ and ωψ,χ ∈�1(Bψ,χ/Eψ,χ )Tψ,χ .

Lemma 3.23. For all good pairs (ψ, χ) attached to ν = ψχ−1,

logωψ (Pψ(χ))= logω0
ψ,χ
(Pψ(χ)).

Proof. Let G = Gal(Hc,N/K ) and let P =8ψ(1). Also, let i be the map defined
in (2-4). Then

logωψ (Pψ(χ))=
∑
σ∈G

χ(σ)−1 logωψ (P
σ )=

∑
σ∈G

χ(σ)−1 logi∗(ω0
ψ,χ )
(Pσ )

=

∑
σ∈G

χ(σ)−1 logω0
ψ,χ
(Pσ ⊗ 1)=

∑
σ∈G

logχ(σ)−1ω0
ψ,χ
(Pσ ⊗ 1)

=

∑
σ∈G

logω0
ψ,χ
(Pσ ⊗χ(σ)−1)

= logω0
ψ,χ

(∑
σ∈G

Pσ ⊗χ(σ)−1
)
= logω0

ψ,χ
(Pψ,χ ). �
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Lemma 3.24. logω0
ψ,χ
(Pψ(χ))= logωψ,χ (Pψ(χ)) (mod (E ′ψ,χ )

×).

Proof. This follows from Lemma 2.8 since the Gauss sum g(χ) lies in (E ′ψ,χ )
×. �

Lemma 3.25. There exist Pν ∈ Bν(K )⊗Q and ων ∈�1(Bν/Eν)Tν such that

logωψ,χ (Pψ(χ))= logων (Pν) (mod (E ′ψ,χ )
×).

The point Pν is nonzero if and only if L(ν, s) vanishes to exact order one at s = 1.

Proof. Recall from Lemma 2.9 that there is a K -rational isogeny

Bν ⊗Tν Tψ,χ → Bψ,χ .

Composing it with the natural morphism Bν → Bν ⊗Tν Tψ,χ , we obtain a Tν-
equivariant morphism j : Bν → Bψ,χ defined over K with finite kernel. By the
Gross–Zagier theorem (see [Gross and Zagier 1986; Yuan et al. 2011] and the
remark below), the point Pψ(χ) is nonzero if and only if L ′(θψ , χ−1, 1) 6= 0. By
Remark 3.21, we have

L ′(θψ , χ−1, 1)= L ′(ν, 1) · L(ψ∗χ−1, 1).

Since L(ψ∗χ−1, 1) 6= 0, we see that Pψ(χ) is nonzero if and only if L ′(ν, 1) 6= 0.
Thus, if L(ν, s) vanishes to order strictly greater than one (hence order ≥ 3), the
lemma holds with Pν := 0.

We may assume therefore that L(ν, s) has a simple zero at s= 1. This implies (by
[Gross and Zagier 1986] and [Kolyvagin 1990]; see also [Kolyvagin and Logachëv
1989]) that Bν(K )⊗Q is one-dimensional over Eν , and therefore that Bψ,χ (K )⊗Q

is one-dimensional over Eψ,χ . In particular, if Pν is any generator of Bν(K )⊗Q,
we may write

Pψ(χ)= λ j (Pν)

for some nonzero scalar λ ∈ E×ψ,χ . But letting

ων = j∗(ωψ,χ ) ∈�1(Bν/E ′ψ,χ )
Tν ,

we have

logωψ,χ (Pψ(χ))= logωψ,χ (λ j (Pν))= logλ∗ωψ,χ ( j (Pν))= λ logωψ,χ ( j (Pν))

= λ log j∗ωψ,χ (Pν)= λ logων (Pν).

The lemma now follows after multiplying ων by an appropriate scalar in (E ′ψ,χ )
×

so that it belongs to �1(Bν/Eν)Tν . �

Remark 3.26. The original result of [Gross and Zagier 1986] is not general enough
to include the situation above. However, Yuan et al. [2011] have proved a very
general GZ formula with no assumptions on ramification. This formula relates
the height of a Heegner point to a derivative of a Rankin–Selberg L-function, but
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involves some extra local integrals at bad places that depend on particular choices of
test vectors. To deduce that the Heegner point is nontorsion from the nonvanishing
of the derivative of the L-function, one needs in addition to know that the local zeta
integrals are nonzero; this follows in our case from the computations of [Bertolini
et al. 2012b, Section 4.6].

Proposition 3.27. There exist ων ∈�1(Bν/Eν)Tν and Pν ∈ Bν(K )⊗Q such that

(3-27) Lp,c(ν
∗)=�p(ν

∗)−1 log2
ων
(Pν) (mod (E ′ψ,χ )

×),

for all good pairs (ψ, χ) attached to ν. The point Pν is nonzero if and only if
L(ν, s) vanishes to exact order one at s = 1.

Proof. This follows immediately from Proposition 3.22 and Lemmas 3.23 through
3.25. �

While Proposition 3.27 brings us close to Theorem 2 of the Introduction, it is
somewhat more vague in that both sides of the purported equality may differ a priori
by a nonzero element of the typically larger field E ′ψ,χ . The alert reader will also
notice that this proposition is potentially vacuous for now, because the existence of
a good pair for ν has not yet been established! The next proposition repairs this
omission, and directly implies Theorem 2 of the Introduction.

Proposition 3.28. The set Sν of pairs (ψ, χ) that are good for ν is nonempty.
Furthermore,

(3-28)
⋂

(ψ,χ)∈Sν

E ′ψ,χ = Eν .

The proof of Proposition 3.28 rests crucially on a nonvanishing result of Rohrlich
[1984] and Greenberg [1985] for the central critical values of Hecke L-series. In
order to state it, we fix a rational prime ` which is split in K and let

K−
∞
=
⋃

n≥0
K−n

be the so-called anticyclotomic Z` extension of K ; it is the unique Z`-extension of K
which is Galois over Q and for which Gal(K−

∞
/Q)= Z`o (Z/2Z) is a generalized

dihedral group.

Lemma 3.29 [Greenberg 1985; Rohrlich 1984]. Let ψ0 be a self-dual Hecke char-
acter of K of infinity type (1, 0). Assume that the signwψ0 in the functional equation
of L(ψ0, s) is equal to 1. Then there are infinitely many finite-order characters χ of
Gal(K−

∞
/K ) for which L(ψ0χ, 1) 6= 0.

Proof. Let c′ be the conductor of ψ0. In light of the hypothesis that wψ0 = 1,
Theorem 1 of [Greenberg 1985] implies that the Katz p-adic L-function (with
p = `) does not vanish identically on any open `-adic neighborhood of ψ0 in
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6sd(c
′). (See the discussion in the first paragraph of the proof of Proposition 1 on

p. 93 of [Greenberg 1985].) If U is any sufficiently small such neighborhood, then:

(1) The restriction to U of the Katz p-adic L-function is described by a power
series with p-adically bounded coefficients, and therefore admits only finitely
many zeros by the Weierstrass preparation theorem.

(2) The region U contains a dense subset of points of the form ψ0χ , where χ is a
finite-order character of Gal(K−

∞
/K ).

Lemma 3.29 follows directly from these two facts. �

Proof of Proposition 3.28. Let S̄ν ⊃ Sν be the set of pairs satisfying conditions
(1)–(3) in the definition of a good pair, but without necessarily requiring the more
subtle fourth condition. The proof of Proposition 3.28 will be broken down into
four steps.

Step 1. The set S̄ν is nonempty.
To see this, letψ be any Hecke character of K of infinity type (1, 0) and conductor

m, where m is a cyclic OK -ideal prime to c. Setting χ = ψν−1, the pair (ψ, χ)
satisfies conditions (1) and (3) by construction, and (2) as well on account of
Remark 3.20. Therefore, the pair (ψ, χ) belongs to S̄ν .

Step 2. Given (ψ, χ) ∈ S̄ν , there exist (ψ1, χ1) and (ψ2, χ2) ∈ Sν with

E ′ψ1,χ1
∩ E ′ψ2,χ2

⊂ E ′ψ,χ .

To see this, let ` = λλ̄ be a rational prime which splits in K and is relatively
prime to the class number of K and the conductors of ψ and χ , and which is
unramified in E ′ψ,χ/Q. For such a prime, let

K∞ =
⋃

n≥0
Kn, K ′

∞
=
⋃

n≥0
K ′n

be the unique Z`-extensions of K which are unramified outside of λ and λ̄ respec-
tively, with [Kn : K ] = `n and likewise for K ′n . The condition that ` does not divide
the class number of K implies that the fields Kn and K ′n are totally ramified at λ and
λ̄ respectively. If α is any character of Gal(K∞/K ), the pair (ψ1, χ1) := (ψα, χα)

still belongs to S̄ν , with m in condition 1 replaced by mλn for a suitable n ≥ 0.
Furthermore,

(3-29) L(ψ∗1χ
−1
1 N−1

K , 0)= L
(
ψ∗χ−1 N−1

K · (α
∗/α), 0

)
.

The character α∗/α is an anticyclotomic character of K of `-power order and
conductor, and all such characters can be obtained by choosing α appropriately. The
fact that (ψ, χ) satisfies conditions (1)–(3) of a good pair implies (see Remark 3.21)
that the sign wψ∗χ−1 is equal to +1. Hence, by Lemma 3.29, there exists a choice
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of α for which the L-value appearing on the right of (3-29) is nonvanishing. The
corresponding pair (ψ1, χ1) belongs to Sν and satisfies

E ′ψ1,χ1
⊂ E ′ψ,χ,`,n := E ′ψ,χQ(ζ`n )Kn K ′n

for some n. Note that the extension E ′ψ,χ,`,n/E ′ψ,χ has degree dividing `∞(`− 1).
Repeating the same construction with a different rational prime `′ in place of ` such
that `′ − 1 is prime to ` yields a second pair (ψ2, χ2) ∈ Sν and a corresponding
extension E ′ψ,χ,`′,n′ , whose degree over E ′ψ,χ divides `′∞(`′− 1), and such that

E ′ψ2,χ2
⊂ E ′ψ,χ,`′,n′ .

Let
E ′′ := E ′ψ,χ,`,n ∩ E ′ψ,χ,`′,n′ .

We see then using degrees that E ′′/E ′ψ,χ has degree dividing (`− 1), and hence
E ′′ ⊆ E ′ψ,χQ(ζ`). Since ` is unramified in E ′ψ,χ/Q, the extension E ′′/E ′ψ,χ must
be totally ramified at the primes above `. On the other hand, being a subextension of
E ′ψ,χ,`′,n′/E ′ψ,χ , it is also unramified at the primes above `, and hence E ′′ = E ′ψ,χ .
It follows that E ′ψ1,χ1

∩ E ′ψ2,χ2
⊂ E ′ψ,χ .

Thanks to Step 2, we are reduced to showing that

(3-30)
⋂

(ψ,χ)∈S̄ν

E ′ψ,χ = Eν .

The next step shows that the fields E ′ψ,χ can be replaced by Eψ,χ in this equality.

Step 3. For all (ψ, χ) ∈ S̄ν , there exists a finite-order character α of G K such that
the pair (ψα, χα) belongs to S̄ν and

(3-31) E ′ψ,χ ∩ E ′ψα,χα ⊆ Eψ,χ .

To see this, note that the finite-order character χ has cyclic image, isomorphic to
Z/nZ say. Pick α such that conditions (i)–(iii) below are satisfied:

(i) α has order n and is ramified at a single prime λ of K which lies over a rational
prime ` that is split in K .

(ii) λ is prime to the conductors of χ and χ∗.

(iii) ` is unramified in E ′ψ,χ/Q.

Conditions (i) and (ii) imply:

(iv) The field Hχα/K is totally ramified at λ and unramified at λ∗ while Hχ∗α∗ is
unramified at λ and totally ramified at λ∗.
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Taking
L = Eψ,χ , M1 = Hχ Hχ∗, M2 = HχαHχ∗α∗,

we see from (iii) and (iv) that:

(v) L M1/L is unramified at all primes above `.

(vi) Any subextension of L M2/L is ramified at some prime above λ or λ∗.

Thus, L M1∩L M2= L . But L M1= Eψ,χ Hχ Hχ∗ = E ′ψ,χ . Also, since α has order n,
we have Eψ ′,χ ′ = Eψ,χ and

L M2 = Eψ,χ HχαHχ∗α∗ = Eψ ′,χ ′HχαHχ∗α∗ = E ′ψ ′,χ ′,

so (3-31) follows.

Step 4. We are now reduced to showing

(3-32)
⋂

(ψ,χ)∈S̄ν

Eψ,χ = Eν .

We will do this by showing:

(3-33) There exists a pair (ψ, χ) ∈ S̄ν such that Eψ,χ = Eν .

We begin by choosing an ideal m0 of OK with the property that OK /m0 = Z/MZ is
cyclic, and an odd quadratic Dirichlet character εM of conductor dividing M . Let
ψ0 be any Hecke character satisfying

ψ0((a))= εM(a mod m0)a

on principal ideals (a) of K . Such a ψ0 satisfies condition (1) in Definition 3.19,
and therefore, after letting χ0 be the finite-order character satisfying

ν∗ = ψ−1
0 χ0NK ,

it follows that (ψ0, χ0) belongs to S̄ν . Furthermore, the restriction of ψ0 to the
group of principal ideals of K takes values in K , and therefore

(3-34) χ0(σ ) ∈ Eν, for all σ ∈ G H := Gal(K̄/H).

The character ψ0 itself takes values in a CM field of degree [H : K ], denoted E0,
which need not be contained in Eν in general. To remedy this problem, let H0 be
the abelian extension of the Hilbert class field H cut out by the character χ0. Next,
let H ′0 be any abelian extension of K containing H such that:
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(1) There is an isomorphism u : Gal(H ′0/K )→ Gal(H0/K ) of abstract groups
such that the diagram

(3-35) 0 // Gal(H ′0/H) //

��

Gal(H ′0/K ) //

��

Gal(H/K ) // 0

0 // Gal(H0/H) // Gal(H0/K ) // Gal(H/K ) // 0

commutes, where the dotted arrows indicate the isomorphisms induced by u
and the other arrows are the canonical maps of Galois theory.

(2) The relative discriminant of H ′0 over K is relatively prime to its conjugate (and
therefore to the discriminant of K , in particular).

If the bottom exact sequence of groups in (3-35) is split, then the extension H ′0 is
readily produced, using class field theory. To handle the general case, we follow
an approach that is suggested by the proof of Proposition 2.1.7 in [Serre 1992].
Let 8̃ := Gal(H0/K ) and let 9 : G K → 8̃ be the homomorphism attached to the
extension H0. Since H is everywhere unramified over K , the restriction 9v of
9 to a decomposition group at any prime v of K maps the inertia subgroup Iv
to C := Gal(H0/H). After viewing C as a module of finite cardinality endowed
with the trivial action of G K , let H 1

S (K ,C) := Hom(G K ,S,C) denote the group
of homomorphisms from G K to C which are unramified outside a given finite set
S of primes of K , and let H 1

[S](K ,C
∗) denote the dual Selmer group attached to

H 1
S (K ,C) in the sense of, for example, Theorem 2.18 of [Darmon et al. 1997]. Here

C∗ := Hom(C, Gm) is the Kummer dual of C, which is isomorphic to µn when
C = Z/nZ is cyclic of order n. Kummer theory (along with the nondegeneracy
of the local Tate pairing) identifies H 1

[S](K , µn) with the subgroup of K×/(K×)n

consisting of elements α for which

ordv(α)= 0 (mod n) for all v, resv(α) ∈ (K×v )
n for all v ∈ S.

Let S be any finite set of primes of K at which 9 is unramified, satisfying the
further conditions

(3-36) v ∈ S⇒ v̄ /∈ S and H 1
[S](K ,C

∗)= 0.

The existence of such a set S follows from the statement that for any

α ∈ K×− (K×)n,

there is a set of primes v of K of positive Dirichlet density for which the image of
α in K×v is not an n-th power. (This statement follows in turn from the Chebotarev
density theorem applied to the extension K (µn, α

1/n).) Now let T be any finite set
of places which is disjoint from S. Comparing the statement of Theorem 2.18 of
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[Darmon et al. 1997] in the case M = C and L = S and L = S ∪ T respectively,
and noting that both H 1

[S](K ,C
∗) and (a fortiori) H 1

[S∪T ](K ,C
∗) are trivial, gives

#H 1
S∪T (K ,C)

#H 1
S (K ,C)

=

∏
v∈T

#H 1(Kv,C)

#C
=

∏
v

# Hom(Iv,C).

It follows that the rightmost arrow in the tautological exact sequence

0→ H 1
S (K ,C)→ H 1

S∪T (K ,C)→
∏
c∈T

Hom(Iv,C)

is surjective. Letting T be the set of places at which 9 is ramified, it follows that
there is a homomorphism ε : G K → C satisfying

εv =9v on Iv, for all v /∈ S.

After possibly enlarging the set S satisfying (3-36) and translating ε by a suitable
homomorphism unramified outside S, we may further assume that the homomor-
phism 9ε−1 maps G K surjectively onto 8̃; the field H ′0 can then be obtained as
the fixed field of the kernel of the homomorphism 9ε−1.

With the extension H ′0 in hand, let α : Gal(H ′0/K )→ E×χ be the finite-order
Hecke character given by

α(σ)= χ0(u(σ ))−1,

and set (ψ, χ) = (ψ0α, χ0α). By construction, (ψ, χ) belongs to S̄ν . We claim
that χ and ψ take values in Eν . Since ν∗ = ψ−1χNK , it is enough to prove this
statement for χ . Observe that, for all integral ideals a prime to the conductors of
χ0, χ , and ψ , we have

χ(a)= χ0(σa)/χ0(u(σa))= χ0(σau(σa)
−1).

But the element σau(σa)
−1 belongs to Gal(H0/H) by construction, and hence

χ0(σ
−1
a u(σa)) belongs to Eν by (3-34). It follows that ψ and χ are Eν-valued, and

therefore Eψ,χ = Eν , as claimed in (3-33). �

3F. Elliptic curves with complex multiplication. Theorem 2 of the Introduction
admits an alternate formulation involving algebraic points on elliptic curves with
complex multiplication rather than K -rational points on the CM abelian varieties
Bν of Theorem 2.5. The goal of this section is to describe this variant. As in
the Introduction, we just write Lp for the p-adic L-function Lp,c, where c is the
conductor of ν.

We begin by reviewing the explicit construction of Bν in terms of CM elliptic
curves. The reader is referred to §4 of [Goldstein and Schappacher 1981], whose
treatment we largely follow, for a more detailed exposition. Let F be any abelian
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extension of K for which

(3-37) νF := ν ◦NF/K

becomes K -valued. There exists an elliptic curve A/F with complex multiplication
by OK whose associated Grossencharacter is νF . (See Theorem 6 of [Shimura 1971]
and its corollary on p. 512.) Let

B := ResF/K (A).

It is an abelian variety over K of dimension d := [F : K ]. Let G := Gal(F/K )=
HomK (F, Q̄), where the natural identification between these two sets arises from the
distinguished embedding of F into Q̄ that was fixed from the outset. By definition
of the restriction of scalars functor, there are natural isomorphisms

B/F =
∏
σ∈G

Aσ , B(K̄ )= A(K̄ ⊗K F)=
∏
σ∈G

Aσ (K̄ )

of algebraic groups over F and abelian groups respectively. In particular, a point
of B(K̄ ) is described by a d-tuple (Pτ )τ∈G , with Pτ ∈ Aτ (K̄ ). Relative to this
identification, the Galois group G K acts on B(K̄ ) on the left by the rule

ξ(Pτ )τ = (ξ Pτ )ξτ , for all ξ ∈ G K .

Consider the “twisted group ring”

(3-38) T :=
⊕
σ∈G

HomF (A, Aσ )=
{∑
σ∈G

aσσ
∣∣∣∣ aσ ∈ HomF (A, Aσ )

}
,

with multiplication given by

(3-39) (aσσ)(aτ τ)= aσaστ στ,

where the isogeny aστ belongs to HomF (Aσ , Aστ ) and the composition of isogenies
in (3-39) is to be taken from left to right. The right action of T on B(K̄ ) defined
by

(3-40) (Pτ )τ ∗ (aσσ) := (aτσ (Pτ ))τσ

commutes with the Galois action described in Section 3F, and corresponds to a
natural inclusion T ↪→ EndK (B). The K -algebra E := T ⊗Z Q is isomorphic to a
finite product

E =
∏

i

Ei

of CM fields, and dimK (E)= dim(B). Therefore, the pair (B, E) is a CM abelian
variety in the sense of Definition 2.4. The compatible system of `-adic Galois
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representations attached to (B, E) corresponds to an E-valued algebraic Hecke
character ν̃ in the sense of Definition 2.3, satisfying the relation

(3-41) σa(P)= P ∗ ν̃(a), for all a ∈ If` and P ∈ B(K̄ )`∞,

where σa ∈ Gab
K denotes as before the Artin symbol attached to a ∈ If`.

The element ν̃(a) ∈ T is of the form ϕaσa, where

(3-42) ϕa : A→ Aσa

is an isogeny of degree Na satisfying

(3-43) ϕa(P)= Pσa,

for any P ∈ A[g] with (g, a)= 1. Note that the isogenies ϕa satisfy the following
cocycle condition:

(3-44) ϕab = ϕ
σa

b ◦ϕa.

The following proposition relates the Hecke characters ν̃ and ν.

Proposition 3.30. Given any homomorphism j ∈ HomK (E,C), let ν j := j ◦ ν̃
be the corresponding C-valued Hecke character of K of infinity type (1, 0). The
assignment j 7→ ν j gives a bijection from HomK (E,C) to the set 6ν,F of Hecke
characters ν ′ of K (of infinity type (1, 0)) satisfying

ν ′ ◦NF/K = ν ◦NF/K .

Proposition 3.30 implies that there is a unique homomorphism jν ∈HomK (E,C)

satisfying jν ◦ ν̃ = ν. In particular, jν maps E to Eν and T to a finite-index subring
of Tν . The abelian variety Bν attached to ν in Theorem 2.5 can now be defined as
the quotient B⊗T, jν Tν . In subsequent constructions, it turns out to be more useful
to realize Bν as a subvariety of B, which can be done by setting

(3-45) Bν := B[ker jν].

The natural action of T on Bν factors through the quotient T/ ker( jν), an integral
domain having Eν as field of fractions.

Consider the inclusion

(3-46) iν : Bν(K ) ↪→ B(K )= A(F),

where the last identification arises from the functorial property of the restriction
of scalars. The following proposition gives an explicit description of the image of
(Bν(K )⊗ Eν)Tν in A(F)⊗OK Eν under the inclusion iν obtained from (3-46).
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Proposition 3.31. Let Ẽ be any field containing Eν . The inclusion iν of (3-46)
identifies (Bν(K )⊗ Ẽ)Tν with

(A(F)⊗OK Ẽ)ν :=
{

P ∈ A(F)⊗OK Ẽ such that ϕa(P)= ν(a)Pσa, for all a ∈ If
}
.

Proof. It follows from the definitions that B(K ) is identified with the set of (Pτ ),
with Pτ ∈ Aτ (K̄ ) satisfying

(3-47) ξ Pτ = Pξτ , for all ξ ∈ G K .

Furthermore, if such a (Pτ ) belongs to (Bν(K )⊗ Eν)Tν , then after setting ν̃(a)=
ϕaσa as in (3-42), we also have

(3-48) (ϕτa (Pτ ))τσa = (Pτ )τ ∗ ν̃(a)= (ν(a)Pτ )τ .

Equating the σa-components of these two vectors gives

ϕa(P1)= ν(a)Pσa = ν(a)σa P1,

where 1 is the identity embedding of F and the last equality follows from (3-47).
The proposition follows directly from this, after noting that the identification of
B(K ) with A(F) is simply the one sending (Pτ )τ to P1. �

Given a global field F as in (3-37), let Fν denote the subfield of Q̄ generated by
F and Eν . Recall that ωA ∈�

1(A/F) is a nonzero differential and that �p(A) is
the associated p-adic period.

Theorem 3.32. There exists a point PA,ν ∈ (A(F)⊗OK Eν)ν such that

Lp(ν
∗)=�p(A)−1 log2

ωA
(PA,ν) (mod F×ν ).

The point PA,ν is nonzero if and only if L ′(ν, 1) 6= 0.

Proof. Theorem 2 of the Introduction asserts that

(3-49) Lp(ν
∗)=�p(ν

∗)−1 log2
ων
(Pν),

for some point Pν ∈ Bν(K )⊗Q which is nontrivial if and only if L ′(ν, 1) 6= 0. By
Lemma 2.14, we find

(3-50) �p(ν
∗)−1
=�p(A)−1 (mod F×ν ).

Also, by Proposition 3.31, we can view Pν as a point PA,ν ∈ (A(F)⊗OK Eν)ν , and
we have

(3-51) logων (Pν)= logωA
(PA,ν) (mod F×ν ).

Theorem 3.35 now follows by rewriting (3-49) using (3-50) and (3-51). �
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3G. A special case. This section is devoted to a more detailed and precise treatment
of Theorem 3.32 under the following special assumptions:

(1) The quadratic imaginary field K has class number one, odd discriminant,
and unit group of order two. This implies that K = Q(

√
−D), where D :=

−Disc(K ) belongs to the finite set

S := {7, 11, 19, 43, 67, 163}.

(2) ψ0 is the Hecke character of K of infinity type (1, 0) given by the formula

(3-52) ψ0((a))= εK (a mod dK )a.

The character ψ0 determines (uniquely, up to an isogeny) an elliptic curve
A/Q satisfying

EndK (A)= OK , L(A/Q, s)= L(ψ0, s).

After fixing A, we will also write ψA instead of ψ0. It can be checked that the
conductor of ψA is equal to dK , and that

ψ∗A = ψ̄A, ψAψ
∗

A = NK , εψA = εK .

Remark 3.33. The rather stringent assumptions on K that we have imposed
exclude the arithmetically interesting, but somewhat idiosyncratic, cases where
K =Q(

√
−3), Q(i), and Q(

√
−2).

With the above assumptions, the character ψA can be used to give an explicit
description of the set 6sd(cdK ):

Lemma 3.34. Let c be an integer prime to D, and let ν be a Hecke character in
6sd(cdK ). Then ν is of the form

ν = ψAχ
−1,

where χ is a finite-order ring class character of K of conductor c.

Proof. The fact that ν and ψA both have central character εK implies that χ is a
ring class character that is unramified at dK , and hence has conductor exactly c. �

Given a ring class character χ of conductor c as above with values in a field Eχ ,
let

(3-53)
(

A(Hc)⊗OK Eχ
)χ

:=
{

P ∈ A(Hc)⊗OK Eχ such that σ P =χ(σ)P, for all σ ∈Gal(Hc/K )
}
.

Finally, choose a nonzero differential ωA ∈ �
1(A/K ), and write �p(A) for the

p-adic period attached to this choice as in Section 3A. Since A= Bψ0 is the abelian
variety attached to ψ0, it follows that �p(ψ

∗

A)=�p(A).
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The following theorem is a more precise variant of Theorem 3.32.

Theorem 3.35. Let χ be a ring class character of K of conductor prime to dK .
Then there exists a point PA(χ) ∈

(
A(Hχ )⊗OK Eχ

)χ such that

Lp(ψ
∗

Aχ)=�p(A)−1g(χ) log2
ωA
(PA(χ)) (mod E×χ ).

The point PA(χ) is nonzero if and only if L ′(ψAχ
−1, 1) 6= 0.

Proof. By Theorem 2 of the Introduction,

(3-54) Lp(ψ
∗

Aχ)= Lp(ν
∗)=�p(ν

∗)−1 log2
ων
(Pν) (mod E×ν ),

for some point Pν ∈ Bν(K )⊗Q which is nontrivial if and only if L ′(ψAχ
−1, 1) 6= 0.

Since χ∗−1
= χ and Eν = Eχ , we find from Lemma 2.14 that

(3-55) �p(ν
∗)−1
=�p(ψ

∗

Aχ
∗−1)−1

=�p(A)−1g(χ)−1 (mod E×χ ).

After noting that, as in (2-7), Bν = Bψ,χ = (A⊗OK Tχ )χ
−1

as abelian varieties over
K , we observe that ων = ωψ,χ and that the point Pν ∈ Bν(K ) can be written as

Pν =
∑
σ∈G

Pσ ⊗χ−1(σ ),

for some P ∈ A(Hc)⊗Q. Letting PA,χ be the corresponding element in

A(Hc)⊗OK Eχ

given by
PA,χ =

∑
σ∈G

χ−1(σ )Pσ ,

we have
(3-56)

log2
ων
(Pν)= log2

ωψ,χ
(Pν)= g(χ)2 log2

ω0
ψ,χ

(Pν)= g(χ)2 log2
ωA
(PA,χ ) (mod E×χ ),

where the second equality follows from Lemma 2.8 and the last from Lemma 3.23.
Theorem 3.35 now follows by rewriting (3-54) using (3-55) and (3-56). �

In the special case where χ is a quadratic ring class character of K , cutting out
an extension L = K (

√
a) of K , we obtain

(3-57) Lp(ψ
∗

Aχ)=�p(A)−1√a log2
ωA
(P−A,L) (mod K×),

where P−A,L is a K -vector space generator of the trace 0 elements in A(L)⊗Q.
Since in this case ψAχ is the Hecke character attached to a CM elliptic curve
over Q, from (3-57) one recovers Rubin’s Theorem 1 of the Introduction.
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