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Let C be a curve defined over a complete discrete valuation subfield of C p.
Assuming that C has good reduction over the residue field, we compute the
syntomic regulator on a certain part of K (3)

4 (C). The result can be expressed
in terms of p-adic polylogarithms and Coleman integration. We also com-
pute the syntomic regulator on a certain part of K (3)

4 (F) for the function
field F of C . The result can be expressed in terms of p-adic polylogarithms
and Coleman integration, or by using a trilinear map (“triple index”) on
certain functions.

1. Introduction

Let K be a complete discrete valuation field of characteristic zero, R its valuation
ring, and κ its residue field. Assume κ is of positive characteristic p. If X/R is a
scheme, smooth and of finite type, then, after tensoring with Q, one can decompose
the algebraic K-theory of X according to the Adams weight eigenspaces, that is,

Kn(X)⊗Z Q=
⊕

j

K ( j)
n (X),

where K ( j)
n (X) consists of those α in Kn(X)⊗Z Q such that ψk(α) = k jα for all

Adams operators ψk ; see [Soulé 1985, Proposition 5]. The cup product on K∗(X)
results in cup products K (i)

m (X)× K ( j)
n (X)→ K (i+ j)

m+n (X). There is a regulator map

regp : K
( j)
n (X)→ H 2 j−n

syn (X, j) ;

see [Besser 2000b]. In many interesting cases the target group of the regulator
is isomorphic to the rigid cohomology group of the special fiber Xκ , in the sense
of Berthelot, H 2 j−n−1

rig (Xκ/K ). We shall be interested in the situation where X

is a proper, irreducible, smooth curve C over R with a geometrically irreducible
generic fiber C , and the K -group is K (3)

4 (C). K (3)
4 (C) is known to be isomorphic
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to K (3)
4 (C) under localization; see Section 2.2. The target group for the regulator in

this case is H 1
rig(Cκ/K )∼= H 1

dR(C/K ). The cup product gives a pairing

H 1
dR(C/K )× H 1

dR(C/K )
∪
−→ H 2

dR(C/K )∼= K ,

where the last isomorphism is given by the trace map. We will denote this pairing
by ∪ as well. If α is an element of K (3)

4 (C) and ω is an element of H 1
dR(C/K ), we

want to compute ω∪ regp(α) ∈ K .
To achieve this goal, we first of all need to be able to write elements in the above

mentioned K -group. We do this using an integral version of the motivic complexes
introduced by the second named author. The complex M(3)(F) was defined in
[de Jeu 1995, Section 3] for any field F of characteristic zero. It consists of three
terms in cohomological degrees 1, 2 and 3:
(1.1) M3(F)→ M2(F)⊗ F∗Q→ F∗Q⊗

∧2 F∗Q ,

with F∗
Q
= F∗⊗ZQ, and Mn(F) a Q-vector space on symbols [x]n for x in F\{0, 1},

modulo nonexplicit relations depending on n. The maps in the complex are given by

(1.2)
d[x]3 = [x]2⊗ x,

d
(
[x]2⊗ y

)
= (1− x)⊗ (x ∧ y).

There are maps

H i (M(3)(F))→ K (3)
6−i (F)

for i = 2, 3, and for i = 3 this is an isomorphism. Quotienting out by a suitable
subcomplex (see Section 2.4.2) one obtains the complex
(1.3) M̃(3)(F) : M̃3(F)→ M̃2(F)⊗ F∗Q→

∧3 F∗Q ,

which is quasiisomorphic to M(3)(F) in degrees 2 and 3. Its shape is more in line
with conjectures (see for instance [Goncharov 1994, Conjecture 2.1]) and it is easier
to work with for explicit examples. Each M̃i (F) is a quotient of Mi (F), and the
image of [x]i in M̃i (F) is still denoted [x]i .

We can apply this with F the function field K (C) of C , but as the syntomic
regulator needs some information over the residue field, we have to use an analo-
gous complex.

Notation 1.4. For the curve C as above with generic fiber C/K , we let O⊂ F be
the local ring consisting of functions that are generically defined on the special
fiber Cκ .

In Section 2.5.2 we shall construct a complex

(1.5) M(3)(O) : M3(O)→ M2(O)⊗O∗Q→ O∗Q⊗
∧2O∗Q ,
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with, in this case, Mn(O) a Q-vector space on symbols [u]n for u in O[, the special
units of O, namely those u in O∗ for which 1 − u is also in O∗, again modulo
nonexplicit relations depending on n, and O∗

Q
= O∗⊗Z Q. The maps in the complex

are given by (1.2) as before, and there is a natural map M(3)(O)→ M(3)(F) of
complexes. In fact, one may view M2(O)⊆ M2(F); see Remark 2.45. The complex
comes with maps

(1.6) H i (M(3)(O))→ K (3)
6−i (O)

for i = 2 and 3.
Similar constructions, satisfying in particular (1.6), can be made in the following

situation.

Notation 1.7. Suppose k ⊂ K is a number field and let R′ be the local ring R ∩ k.
For C′ a smooth, proper, geometrically irreducible curve over R′, let O′ denote the
local ring of rational functions on C′ that are generically defined on the special fiber
above the maximal ideal of R′.

In this case one has an additional map

M2(O
′)⊗Q O′∗

Q

∂1
−→

∐
x

M̃2(k(x)) ,

where M2(O
′) is now a Q-vector space on symbols [u]2 with u in O′∗ such that

1− u is also in O′∗, the coproduct is over all closed points of the generic fiber
C ′ = C′⊗R′ k, given by

∂1,x([g]2⊗ f )= ordx( f ) · [g(x)]2 ,

with the convention that [0]2 = [1]2 = [∞]2 = 0.
To explain the terms in which the formula for the regulator will be expressed,

we need to introduce Coleman integration theory (see Section 4). Coleman [1982;
Coleman and de Shalit 1988] defined an integration theory on curves over Cp with
good reduction and on certain rigid analytic subdomains of these, which he termed
“wide open spaces”. One first needs to choose a branch of the p-adic logarithm,
that is, a group homomorphism log : C∗p→ Cp, such that around z = 1, it is given
by the usual power series expansions for log(1+ y). This amounts to specifying
log(p) in Cp. Once this is done, the theory includes single valued iterated integrals
on the appropriate domain, called “Coleman functions”. In particular, we have the
functions

(1.8)

Li2(z)=−
∫ z

0 log(1− x) dlog x,

L2(z)= Li2(z)+ log(z) log(1− z),

Lmod,2(z)= Li2(z)+ 1
2 log(z) log(1− z).

The function Li2(z) is defined on Cp \ {1}; see the beginning of Section VI
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in [Coleman 1982]. Consequently, all 3 functions are defined everywhere except
possibly 0, 1,∞. They, and other Coleman functions, can be assigned a value at
these points as follows.

For every point y ∈ P1(Cp), the residue disc Uy is the collection of points
reducing to the same point as y. For each such y, and in terms of a local parameter
z= zy on Uy , a Coleman function G can be expanded as G(z)=

∑n
i=0 fi (z) logi (z),

where all fi (z) are in Cp[[z, z−1
]]. We define the constant term cz(G) at y with

respect to the parameter z as the constant term of f0; see Definition 7.7. In general
the constant term will depend on the choice of the local parameter z, but there are
many Coleman functions for which the constant term is independent of this choice.
In such a case we will write G(y) for this constant term. In particular, this is the
case at all points y for Lmod,2(z) and

∫
L2(g)ω for any rational function g (it is in

fact sufficient that ω is holomorphic at y), as well as for Li2(z) and L2(z) at all
points except∞ (see Lemmas 10.7 and 10.9 as well as Corollary 10.8). We further
define all three functions from (1.8) to be 0 at 0 and∞ (this is the constant term
with respect to the standard parameter). For any Coleman function G, which is the
integral of a form η, and divisor D =

∑
ni yi , we will define

G(D)=
∫

D
η :=

∑
ni G(yi ),

where we will be assuming that either G is defined at each yi , or its constant term
there is independent of the parameter.

We note that Lmod,2(z)+ Lmod,2(z−1) = 0 for z in Cp \ {0, 1} [Coleman 1982,
Proposition 6.4(ii)], and that this extends to all values using constant terms. Similarly
we have L2(z)+L2(z−1)= 1

2 log2(z).
We shall state the theorems in the introduction in a way that allows comparison

with similar results in the classical case over C. The formulas in that case can be
easily transformed by using Stokes’ theorem, whereas it seems the formulas in the
syntomic case are not as flexible. Consequently, in the syntomic case we have to
state a larger number of theorems. In order to enable a comparison in Remark 10.14
of the syntomic formulas below (especially those in Theorems 1.12 and 1.13) with
those in the classical case, we recall and reformulate some of the classical results
in Section 3.

We are now ready to state the first main theorem. In it, and the remaining
theorems in the introduction, we assume that K is a closed subfield of Cp and
evaluate Coleman functions at closed points of C by working over a finite extension
of K over which all such points are rational. The result will be in K by Galois
equivariance of Coleman integration.

Theorem 1.9. Suppose, in the situation of Notation 1.4, that ω is a holomorphic
form on C.
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(1) The assignment

[g]2⊗ f 7→ 2
∫
( f )

L2(g)ω

gives a well-defined map 9p,ω : M2(O) ⊗ O∗
Q
→ K , and this induces a

map 9p,ω : H 2(M(3)(O))→ K .

(2) Suppose k ⊂ K is a number field, and C′ is a smooth, proper, geometrically
connected curve over the local ring R′ = R ∩ k. Let O′ be as in Notation 1.7
and put C= C′⊗R′ R. Let α′ in H 2(M(3)(O

′)) be such that ∂1(α
′)= 0. Then

there exists a unique β ′ in K (3)
4 (C′) whose image in K (3)

4 (O′) under localization
equals the image of α′ under (1.6) modulo K (2)

3 (k)∪O′∗
Q

. If β is the image of
β ′ under K (3)

4 (C′)→ K (3)
4 (C), then we have

ω∪ regp(β)=9p,ω(α),

where α is the image of α′ in H 2(M(3)(O)).

Remark 1.10. The reader should compare the above formula for the regulator with
the formula obtained by Coleman and de Shalit [1988], which is known to be the
syntomic regulator by [Besser 2000c]. There, the regulator is obtained by sending
the symbol { f, g} in K2(F) to

∫
( f ) log(g)ω. The similarity with the present formula

should be clear.

The rest of our results concern the K-theory of open curves over R and not over
a number field. Thus, they are more general on the one hand, but progressively
harder to state. Indeed, the first theorem is special because we are able to simplify
matters by taking account of boundary terms over number fields.

As we are now computing on an open scheme, we no longer have a nontrivial cup
product pairing, so we first need to explain what it is that we are computing. Under
the regulator, each element of K (3)

4 (O) maps to H 1
dR(U/K ) for some wide open

space U in C in the terminology of Coleman. There exists a canonical projection
H 1

dR(U/K )→ H 1
dR(C/K ), compatible with restriction to a smaller U ; see [Besser

2000c, Proposition 4.8] and (9.13) below. We denote by reg′p the composition

K (3)
4 (O)→ H 1

dR(U/K )→ H 1
dR(C/K ).

Theorem 1.11. Suppose ω is a holomorphic form on C. The assignment

[g]2⊗ f 7→ 2
∫
( f )

L2(g)ω− 2
∑

y

ordy( f )Fω(y)Lmod,2(g(y)),

where in the sum y runs through the closed points of C , gives a well-defined
map 9 ′p,ω : M2(O)⊗O∗

Q
→ K . It induces a map 9 ′p,ω : H

2(M(3)(O))→ K , which
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coincides with the composition

H 2(M(3)(O))→ K (3)
4 (O)

reg′p
−−→ H 1

dR(C/K )
ω∪
−−→ K .

Over the complex numbers, it is known that computing the cup product of the
regulator with holomorphic forms suffices to describe it completely in the case
we are considering because those linear maps surject onto the dual of the target
space of the regulator (see the beginning of Section 4 of [de Jeu 1996], especially
Proposition 4.1). This is not true over the p-adics. It is therefore important to have
formulas for the cup product of the regulator with a general cohomology class (such
a class can be represented by a form of the second kind on C , that is, a meromorphic
form all of whose residues are 0). This can be done at the cost of introducing further
machinery — the notion of the triple index. It is a generalization of the “local index”
that was introduced in [Besser 2000c, Section 4].

Informally speaking, working on an annulus e over Cp, e ∼= {r < |z|< 1}, the
triple index associates to the integrals F , G and H of three rigid analytic 1-forms
on e (in this case these forms are simply Laurent series converging on e multiplied
by dz) together with choices of integrals for F dG, F dH and G dF , a number
〈F,G; H〉e in Cp that is supposed to be a generalization of Rese FG dH . Note
that the integrals appearing in the data for the triple index make perfect sense once
one admits a log function to correspond to the integral of dz/z, and are determined
up to a constant by the form they integrate. Suppose now that C/Cp is a curve
with good reduction and that C contains discs Di ∼= {|z|< 1}. The rigid analytic
domain U = C \

⋃
i (Di − ei ), where ei ⊂ Di is the annulus corresponding to

{r < |z|< 1}, is called a wide open space by Coleman. The ei ⊂U are called the
ends of U . Suppose that F , G and H are Coleman functions defined on U such
that restricted to the ei they are of the type allowing us to compute the triple indices
〈F |ei ,G|ei ; H |ei 〉ei . We may use auxiliary data composed of Coleman integrals
restricted to ei for computing these. It sometimes turns out that the sum of triple
indices over all the ei depends only on F , G, and H and not on the auxiliary data.
This applies in particular to the sum of triple indices in the two theorems below. It is
further known that this sum of triple indices behaves well with respect to shrinking
the wide open space U . Finally, if everything is defined over a complete subfield
K of Cp then this sum of triple indices is in K .

Theorem 1.12. Let ω be a form of the second kind on C. The assignment

[g]2⊗ f 7→
∑

e

〈
log( f ), log(g);

∫
Fω dlog(1− g)

〉
e
,

where Fω is any Coleman integral of ω, and the sum of triple indices is over all
ends e of a wide open space U on which all f, g and 1−g are invertible and ω is
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holomorphic, gives a well-defined map 9 ′′p,ω : M2(O)⊗O∗
Q
→ K . It induces a map

9 ′′p,ω : H
2(M(3)(O))→ K , which coincides with the composition

H 2(M(3)(O))→ K (3)
4 (O)

reg′p
−−−→ H 1

dR(C/K )
ω∪
−−→ K .

The complex M̃(3)(F) defined in (1.3) is easier to work with in explicit computa-
tions than the complex M(3)(F). Therefore, just as in [de Jeu 1996, Remark 4.5],
it is desirable to have a formula for the regulator using this complex. With that in
mind, we define in Section 2.5.5 a complex

M̃(3)(O) : M̃3(O)→ M̃2(O)⊗O∗Q→
∧3O∗Q

such that its cohomology in degrees 2 and 3 is isomorphic to that of the complex
M(3)(O) in (1.5). There is a natural map M̃(3)(O)→ M̃(3)(F) of complexes, and
one may view M̃2(O)⊆ M̃2(F). Corresponding to the statements in Theorems 1.11
and 1.12 for M(3)(O), we have the following two expressions for the regulator in
this case.

Theorem 1.13. 1. Let ω be a form of the second kind on C. The assignment

[g]2⊗ f 7→ 2
3

∑
e

〈
log( f ), log(g);

∫
Fω dlog(1− g)

〉
e

−
2
3

∑
e

〈
log( f ), log(1− g);

∫
Fω dlog(g)

〉
e

gives a well-defined map 9 ′′′p,ω : M̃2(O)⊗O∗
Q
→ K . It induces a map

9 ′′′p,ω : H
2(M̃(3)(O))→ K ,

which coincides with the composition of maps

H 2(M̃(3)(O))
'
−→ H 2(M(3)(O))→ K (3)

4 (O)
reg′p
−−−→H 1

dR(C/K )
ω∪
−−→K ,

with the leftmost map being the isomorphism alluded to before.

2. If ω is a holomorphic form on C , then the same holds for the assignment

[g]2⊗ f 7→ 2
3

∫
( f )
(3L2(g)− log(1− g) log(g))ω+ 2

3

∫
(g)

log( f ) log(1− g)ω

−2
∑

y

ordy( f )Fω(y)Lmod,2(g(y)) .

A key complex for doing computations is C•(O) : C1(O)→ C2(O) in cohomo-
logical degrees 1 and 2, which we shall construct in Section 2.5.4. The theorems in
this introduction admit analogous results expressed in terms of this complex. We
avoided these results for clarity in the introduction. However, they are very useful
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in applications since it is easier to find explicit examples to which these results
apply, for instance, for certain elliptic curves; see [de Jeu 1996, Section 6].

We end the introduction with a conjecture. The regulator formulas that we obtain
do not depend on any integrality assumptions. This is only required because the
syntomic regulator is a map from the K-theory of an integral model. Thus we
conjecture the following.

Conjecture 1.14. Theorems 1.9, 1.11, 1.12 and 1.13 hold, with the same formulas,
with O replaced by F and C replaced by C .

Notation 1.15. Unless stated otherwise, throughout the paper, we will be working
with the following notation.

K will be a discrete valuation field of characteristic zero with valuation ring R
and residue field κ of positive characteristic p, which is a subfield of Fp. In various
places, k will be a number field inside K . In that case we denote by F ⊆ κ the
residue field of the local ring R′ = k ∩ R.

C will be a smooth, proper, geometrically irreducible curve over R. The generic
fiber is denoted C , the special fiber is denoted Cκ . We let F = K (C), and O⊂ F
will be the valuation ring for the valuation on F corresponding to the generic point
of Cκ , which consists of those elements in F that are generically defined on Cκ .

If k ⊂ K is a number field, and C′ is a smooth, proper, geometrically irreducible
curve over R′ = R ∩ k, then the generic fiber is denoted C ′, the special fiber
is denoted C′F. We let F ′ = k(C ′), and O′ ⊂ F ′ will be the valuation ring for
the valuation on F ′ corresponding to the generic point of C′F. In particular, if
C= C′⊗R′ R, then O′ = O∩ F ′.

If S is a subset of a group, then we denote by <S> the subgroup generated
by S, and if S is a subset of a Q-vector space, we denote by <S>Q the Q-vector
subspace generated by S.

All tensor products will be over Q, unless specified otherwise.

For the convenience of the reader, we give a commutative diagram that plays the
role of a two-dimensional Leitfaden (“Leitteppich”) for the proofs in this paper. In
the left lower square we may also use O′ instead of O, in which case C =C ′⊗R′ K .

(1.16)

H 2(M(3)(C
′)) //

��

K (3)
4 (C′)⊕ K (2)

3 (k)∪O′∗
Q

��

H 2(M(3)(O)) //

��

K (3)
4 (O)

reg′p //

��

H 1
dR(C/K )

ω∪·

��
H 1(C•(O)) // K (3)

4 (O)/K (2)
3 (O)∪O∗

Q
// K
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The constructions in algebraic K-theory will be carried out in Section 2. The top
left square comes from the natural map M(3)(C

′)→M(3)(O
′) (see Section 2.5.3),

and is justified by (2.58), whereas the bottom left square is (2.67). The map

K (3)
4 (O)

reg′p
−−→ H 1

dR(C/K )

already factorizes through the quotient map K (3)
4 (O)→ K (3)

4 (O)/K (2)
3 (O)∪O∗

Q
(see

Corollary 9.5). The resulting composition in the bottom line of (1.16) is then
computed in Section 9, using the techniques developed in the preceding sections. In
Section 10 we then finish the proofs of the theorems above, based on this calculation.

2. K-theory

2.1. Introduction. Consider a proper, smooth, geometrically irreducible curve C

over R as in Notation 1.4, or C′ over R′ as in Notation 1.7. We shall construct
various cohomological complexes whose cohomologies are related to that of F ,
O, F ′ or O′. The main idea is the same as in [de Jeu 1996], but the fact that we
shall be working with a discrete valuation ring rather than a field gives rise to some
complications. In order to highlight the idea we start with a more gentle exposition.
For the proofs of the statements that are used in the construction, we refer the reader
to [de Jeu 1995], especially Sections 2.1 through 2.3 and 3. There most of the work
was done over Q, but in fact the proofs hold over our base O, a discrete valuation
ring of characteristic zero, without any change.

It will be clear from the constructions that the complexes are natural in terms
of F , F ′, O and O′, which we shall use later in this paper. In particular, if we
start with C′ over R′ and let C = C′⊗R′ R, then there are natural maps from the
complexes for F ′ to those for F , and from those for O′ to those for O.

If B is a Noetherian scheme of finite Krull dimension d , then according to [Soulé
1985, Proposition 5], one can write

(2.1) Kn(B)⊗Z Q=

n+d⊕
j=min{2,n}

K ( j)
n (B)

where K ( j)
n (B) consists of all α in Kn(B)⊗Z Q such that ψk(α) = k jα for all

Adams operators ψk . (The regularity assumption at the beginning of Section 4 of
[loc. cit.] is not necessary; see [Gillet and Soulé 1999, Proposition 8].) If in addition
B is separated and regular, then the pullback K∗(B)→ K∗(A1

B) is an isomorphism;
see [Quillen 1973, §7]. The weight behaves naturally with respect to pullback,
also giving us K ( j)

m (B)' K ( j)
m (A1

B) under pullback. And under suitable hypotheses
for a closed embedding, there is a pushforward Gysin map with a shift in weights
corresponding to the codimension; see, for instance, [de Jeu 1995, Proposition 2.3].
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Let X B = P1
B \ {t = 1} with t the standard affine coordinate on P1

B . Write �1
B

for the closed subset {t = 0,∞} in P1
B . Then the relative exact sequence for the

couple (X B;�1
B) gives us

· · · → Kn+1(X B)→ Kn+1(�
1
B)→ Kn(X B;�

1
B)→ Kn(X B)→ Kn(�

1
B)→ · · ·

for n ≥ 0. Because the map pullback Kn+1(B)→ Kn+1(X B) is an isomorphism,
combining it with the pullback Kn+1(X B) → Kn+1(�1

B) = Kn+1(B)2 shows
that the map Kn+1(X B) → Kn+1(�1

B) corresponds to the diagonal embedding
Kn+1(B) → Kn+1(B)2. As this holds for all n ≥ 0, we get that we have an
isomorphism Kn(X B;�1

B) ' Kn+1(B) for n ≥ 0. Note that we have a choice of
sign here in the isomorphism of the cokernel of Kn(B)→ Kn(B)2 with Kn(B).
This results in similar choices of signs in the maps H i (M(n)(O))→ K (n)

2n−i (O) and
H i (M̃(n)(O))→ K (n)

2n−i (O) later on in this section.
We will have to go up one level in the relativity. If we let �2

B be shorthand for
{t1 = 0,∞}; {t2 = 0,∞}, then we can get a long exact sequence

· · · → Kn+1(X2
B; {t1 = 0,∞})→ Kn+1({t2 = 0,∞}; {t1 = 0,∞})

→ Kn(X2
B;�

2
B)→ Kn(X2

B; {t1= 0,∞})→ Kn({t2= 0,∞}; {t1= 0,∞})→· · · .

The composition

Kn+1(X B; {t1 = 0,∞})
'
−→ Kn+1(X2

B; {t1 = 0,∞})

→ Kn+1({t2 = 0,∞}; {t1 = 0,∞})' Kn+1(X B; {t1 = 0,∞})2

(with the first the pullback along the projection (t1, t2) 7→ t2) is the diagonal embed-
ding, hence we obtain an isomorphism Kn(X2

B;�
2
B)' Kn+1(X B;�1

B) for n ≥ 0.
Therefore we get

Kn(X2
B;�

2
B)' Kn+1(X B;�

1
B)' Kn+2(B) for n ≥ 0.

A similar argument with weights gives us an isomorphism

K ( j)
n (X2

B;�
2
B)' K ( j)

n+2(B) for n ≥ 0.

In order to get elements in Kn+2(X2
B;�

2
B), we use localization sequences. We

first explain the idea for Kn+1(X B;�1
B), because for Kn+2(X2

B;�
2
B) the process

involves a spectral sequence. If u is an element in our discrete valuation ring O

such that both u and 1− u are units, then we get an exact localization sequence

· · · → Km(O)→ Km(XO;�
1
O)→ Km(XO,loc;�

1
O)→ Km−1(O)→ · · ·

where XO,loc = XO \ {t = u} and we identified {t = u} ⊂ XO with O (or rather
Spec(O)). We used here that u and 1− u are units in O so that {t = u} does not
meet �1

O or {t = 1}, and that O is regular in order to identify Km(O) with K ′m(O). (If
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we want to leave out {t = u} and {t = v} simultaneously for two distinct elements
u and v in O such that all of u, v, 1− u and 1− v are units, which we shall do
below, this already becomes far more complicated and one is forced to use a spectral
sequence.) The image of K2(O)→ K2(XO;�1

O) can be controlled by looking at
the weights, which for the bit that we are interested in gives us

· · · → K (1)
2 (O)→ K (2)

2 (XO;�
1
O)→ K (2)

2 (XO,loc;�
1
O)→ K (1)

1 (O)→ · · · .

Because of weights in K-theory, one knows that K (1)
2 (O)= 0, so that

K (2)
3 (O)' Ker(K (2)

2 (XO,loc;�
1
O)→ K (1)

1 (O)),

and we can analyze K (2)
2 (XO;�1

O) as a subgroup of K (2)
2 (XO,loc;�1

O). In [de Jeu
1995, Section 3.2] universal elements [S]n were constructed, of which we want to
use [S]2 here. It gives rise to an element [u]2 in K (2)

2 (XO,loc;�1
O) with boundary

(1−u)−1 in K (1)
1 (O). If we use this for various u (suitably modifying the localization

sequence above into a spectral sequence) and also consider elements coming from
the cup product

K (1)
1 (XO,loc;�

1
O)× K (1)

1 (O)→ K (2)
2 (XO,loc;�

1
O, )

we can get part of K (2)
2 (XO;�1

O)' K (2)
3 (O) by intersecting the kernel of the map

corresponding to K (2)
2 (XO,loc;�1

O) → K (1)
1 (O) with the space generated by the

symbols [u]2 and the image K (1)
1 (XO,loc;�1

O)∪ K (1)
1 (O) of the cup product.

2.2. Preliminary material. We describe some basic facts about the various K -
groups of F , O, C and C, or F ′, O′, C ′ and C′, including those mentioned in the
introduction. The two cases are very similar so we shall treat them together.

We shall first consider the case where F = k(C ′) for a smooth, projective curve
C′ over R′ with geometrically irreducible generic fiber C ′. Let C′F be the special
fiber of C′, which is a smooth, projective curve over the finite field F. Because C′F
is regular, there is an exact localization sequence

(2.2) · · · → K (2)
4 (F(C′F))→ K (3)

4 (O′)→ K (3)
4 (F ′)→ K (2)

3 (F(C′F))→ · · · .

By [Harder 1977, Korollar 2.3.2], Kn(L) is torsion for n ≥ 2 for all function fields
L of curves over finite fields, so in particular, K (3)

4 (O′)
'
−→ K (3)

4 (F ′). If F = K (C),
then we get

· · · → K (2)
4 (κ(Cκ))→ K (3)

4 (O)→ K (2)
3 (F)→ K (2)

3 (κ(Cκ))→ · · · .

By our assumptions (see Notation 1.15), κ ⊆ Fp. According to [Quillen 1973,
Proposition 2.2] or [Srinivas 1996, Lemma 5.9], Kn(κ(Cκ)) is the direct limit of Kn

of function fields of curves over finite fields, hence is torsion as well, and we
find K (3)

4 (O)' K (3)
4 (F).
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From the exact localization sequence

· · · →

∐
x∈C′(1)F

K (1)
n (F(x))→ K (2)

n (C′F)→ K (2)
n (F(C′F))→ · · ·

and the fact that K (1)
n (L) is zero for any field L for n ≥ 2, we see that K (2)

n (C′F) is
trivial for n ≥ 2. From the exact localization sequence

· · · → K (2)
4 (C′F)→ K (3)

4 (C′)→ K (3)
4 (C ′)→ K (2)

3 (C′F)→ · · ·

we see that K (2)
n (C′F) is trivial for n ≥ 2, hence K (3)

4 (C′)' K (3)
4 (C ′). Using a direct

limit argument as before, we then see that K (3)
4 (C)' K (3)

4 (C) as well.

Remark 2.3. We now have two identifications fitting into a commutative diagram

K (3)
4 (C′) // K (3)

4 (O′)

K (3)
4 (C ′) // K (3)

4 (F ′)

and similarly for F , O, C and C . From the exact localization sequence

· · · →

∐
x∈C ′(1)

K (2)
4 (k(x))→ K (3)

4 (C ′)→ K (3)
4 (F ′)

∂
−→

∐
x∈C ′(1)

K (2)
3 (k(x))→ · · ·

we see that the map K (3)
4 (F ′)→ K (3)

4 (C ′) is injective because K (2)
4 (L)= 0 for any

number field L . Hence the map K (3)
4 (C′)→ K (3)

4 (O′) is also injective.

Remark 2.4. We have

K (3)
4 (C ′)⊕ K (2)

3 (k)∪ F ′∗Q inside K (3)
4 (F ′).

(This makes sense because F ′∗
Q
= K (1)

1 (F ′).) Namely, K (3)
4 (C) = Ker(∂) in the

localization sequence in Remark 2.3. On the other hand, for f in F∗
Q

and α in
K (2)

3 (k), ∂(α ∪ f )= α ∪ div( f ) in
∐

x∈C (1) k(x)∗
Q

, hence this is trivial only if f is
in k∗

Q
. But

K (2)
3 (k)∪ k∗Q ⊆ K (3)

4 (k),

which is zero since k is a number field. Therefore K (2)
3 (F) ∪ F∗

Q
injects into∐

x∈C (1) k(x)∗
Q

under ∂ .

Remark 2.5. Note that a local parameter of R′ is also a local parameter for O′,
so F ′∗ is generated by O′∗ and that local parameter. This implies that

K (2)
3 (k)∪O′∗Q = K (2)

3 (k)∪ F ′∗Q ,

again because K (2)
3 (k)∪ k∗

Q
is trivial.
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We shall need the following result at several places later on.

Proposition 2.6. For a discrete valuation ring O, with residue field κ and field of
fractions F , for all n ≥ 1, the sequence O∗

Q
⊗n
→ K (n)

n (F)→ K (n−1)
n−1 (κ)→ 0 is

exact.

Proof. Since K (n)
n (L) ' K M

n (L)Q for any field L by [Soulé 1985, Théorème 2],
with K M

n (L) the Milnor K-theory of L , it suffices to show that

(O∗)⊗Zn
→ K M

n (F)→ K M
n−1(κ)→ 0

is exact. If π is a uniformizer of O, then K M
n (F) is generated by symbols {u1, . . . ,un}

and {u1, . . . , un−1, π}, with all uj in O∗. The map K M
n (F)→ K M

n−1(κ) is the tame
symbol, which is trivial on the first type of generator, and maps the second to
{ū1, . . . , ūn−1}. It is clearly surjective. So we only have to show that if α in
(O∗)⊗Z(n−1) maps to the trivial element under the composition

(O∗)⊗Z(n−1)
→ (κ∗)⊗Z(n−1)

→ K M
n−1(κ),

then the image of α ⊗ π in K M
n (F) is in the image of (O∗)⊗Zn . Noticing that

the Steinberg relations · · · ⊗ x ⊗ · · · ⊗ (1− x)⊗ · · · in (O∗)⊗Z(n−1) surject onto
those in (κ∗)⊗Z(n−1), we see that we may assume that α is in the kernel of the map
(O∗)⊗Z(n−1)

→ (κ∗)⊗Z(n−1). From the exact sequence

1→ 1+Oπ→ O∗→ κ→ 1

and the fact that, if we have exact sequences 0→ Ai→ Bi→Ci→ 0 (i = 1, . . . ,m)
of Abelian groups, then the kernel of B1⊗Z · · · ⊗Z Bm→ C1⊗Z · · · ⊗Z Cm is the
image of A1⊗Z B2⊗Z · · ·⊗Z Bm+ B1⊗Z A2⊗Z B3⊗Z · · ·⊗Z Bm+· · · , we see α
lies in the image of

(1+Oπ)⊗Z O∗⊗Z · · · ⊗Z O∗+O∗⊗Z (1+Oπ)⊗Z · · · ⊗Z O∗+ · · · .

But each element {u1, . . . , un−1, π} with all ui in O∗ and at least one of them in
1+Oπ lies in the image of (O∗)⊗Zn . Namely, an element in 1+Oπ is of the form
1−πdu for some u in O∗, d > 0. If d = 1 we can rewrite {. . . , 1−πu, . . . , π} =
−{. . . , 1−πu, . . . , u}. If d > 1, then using that

1−πdu
1−π

= 1−π π
d−1u−1
1−π

,

we find that {. . . , 1− πdu, . . . , π} = {. . . , 1− π π
d−1u−1
1−π , . . . , π}, which reduces

to the case d = 1 as (πd−1u− 1)/(1−π) is in O∗. �

Assumption 2.7. Throughout the construction of the complexes in the various
subsections below, we let F be a field of characteristic zero. In the constructions
for complexes for O, O will be a discrete valuation ring, with residue field κ and
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field of fractions F , which we assume to be of characteristic zero. We shall always
assume that |κ|> 2, so that O[ is nonempty and 〈O[〉 = O∗.

2.3. A few more preliminaries. It will be convenient to introduce the notation
F[ = F∗ \ {1}, as well as O[ = {u in O∗ such that 1−u is in O∗}, and κ[ = κ∗ \ {1}.

Throughout the remainder of Section 2, we shall let X loc
F be the scheme obtained

from X F =P1
F \ {t = 1} by removing all points t = u with u in F[. We write X2,loc

F
for (X loc

F )
2. Similarly, we let XO = P1

O \ {t = 1}, we write X loc
O for the scheme

obtained from XO by removing all subschemes t = u with u in O[, and we write
X2,loc

O for (X loc
O )2. Finally, for κ , we let Kκ = P1

κ \ {t = 1}, we write X loc
κ for the

scheme obtained from Xκ by removing all subschemes t = u with u in κ[, and
we write X2,loc

κ for (X loc
κ )

2. (Of course, we would have to remove such a closed
subscheme for only a finite set of u’s first, and then take a direct limit. But by
[Quillen 1973, Proposition 2.4] and some exact sequences in relative K-theory
this will give us the K-theory of X loc

κ anyway. Moreover, as such a direct limit
over finite subsets of O[ or F[ is clearly filtered, hence exact, this procedure will
commute with taking spectral sequences, etc., below, so that we work directly in
the direct limit.)

Since writing {t = 0,∞} or {t1 = 0,∞}; {t2 = 0,∞} can be rather too long in
places, we often abbreviate the first by writing �, and the second by writing �2.

Let (1+ I )∗ = K (1)
1 (X loc

F ;�). From the exact sequence

· · · → K (1)
2 (�)→ K (1)

1 (X loc
F ;�)→ K (1)

1 (X loc
F )→ K (1)

1 (�)→ · · ·

we see that (1+ I )∗⊂ K (1)
1 (X loc

F ) as K (1)
2 (�)' K (1)

2 (F)⊕2
= 0. So we can describe

(1+ I )∗ explicitly as those elements in K (1)
1 (X loc

F ) that restrict to 1 at t = 0 and
t = ∞. Because K1(X loc

F ) is given by the units in the ring corresponding to a
localization of the affine line, we find that

(1+ I )∗ =
{∏

j

( t−uj

t−1

)n j
with uj in F[, n j in Z, such that

∏
j

un j
j = 1

}
⊗Z Q .

Note that in particular the divisor map

(2.8) (1+ I )∗→
∐
t∈F[

K (0)
0 (F)

is an injection.
Note that, if A is any Q-subspace of K (l)

n (X loc
F ;�), and we use the cup product

(1+ I )∗ ∪ A→ K (l+1)
n+1 (X

2,loc
F ;�2) by pulling (1+ I )∗ back along the first projec-

tion, and A along the second, then d((1+ I )∗ ∪ A)= (d(1+ I )∗)∪ A− (1+ I )∗ ∪
(dA), and

∐
t1∈F[ A/(d(1+ I )∗)∪ A ' A⊗ F∗

Q
because F[ generates F∗, and the

functions in (1+ I )∗ (without · · · ⊗Z Q ) give exactly the multiplicative relations
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among the elements in F[. Of course, by reversing the role of the projections
we can do this with t2 instead of t1 instead. This will be used in order to change∐

t∈F[ · · · into · · · ⊗Q F∗
Q

in localization sequences or spectral sequences below.
Under Assumption 2.7, we can do the same for O. Namely, define

(1+ I )∗O = K (1)
1 (X loc

O ;�).

Because K (1)
2 (O)= 0 and K (1)

1 (O)= O∗
Q

, one sees by exactly the same argument as
for (1+ I )∗ that

(2.9) (1+ I )∗O =
{∏

j

( t−uj

t−1

)n j
∣∣∣ uj in O[, n j in Z, such that

∏
j

un j
j = 1

}
⊗Z Q .

In particular, we have (1+ I )∗O ⊆ (1+ I )∗ under localization of the base from O

to F . Note that we used here that (1+ I )∗O gives us exactly the relations needed to
turn

∐
t∈O[ · · · into · · ·⊗O∗

Q
, as (1+ I )∗O (without · · ·⊗Z Q ) gives the multiplicative

relations among elements in O[, and O[ generates O∗.
Finally, we like to mention that for x in F , under the map

K (0)
0 (F)|t=x → K (1)

0 (X F ;�)' F∗Q,

1 is mapped to x±1; see [de Jeu 1995, Lemma 3.14]. The same holds for O instead
of F , and this is compatible with products.

2.4. Construction of the complexes for F and C ′. Several parts of the construc-
tions of the complexes in this section and in Section 2.5 below were carried out in
earlier papers [de Jeu 1995; 1996; Besser and de Jeu 2003], but we review them
so that we can refer to the relevant details in some new constructions for O and in
the calculations relating to regulators in later sections. Also, in various cases the
constructions were carried out more generally, in which case they tend to become
dependent on assumptions on weights in K-theory, and our exposition below will
avoid such assumptions.

2.4.1. Construction of the complexes M(2)(F) and M̃(2)(F). The principle of the
construction of the complex M(2)(F) was first used in Bloch’s Irvine notes (finally
published as [Bloch 2000]). The construction of M(2)(F) and M̃(2)(F) can be found
in [de Jeu 1995, Section 3].

We start with the localization sequence

(2.10) · · · →
∐
t∈F[

K (1)
2 (F)→ K (2)

2 (X F ;�)→ K (2)
2 (X loc

F ;�)→∐
t∈F[

K (1)
1 (F)→ K (2)

1 (X F ;�)→ · · · .

Because K (1)
2 (F)= 0 for any field F by (2.1), this means that the cohomological
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complex (in degrees 1 and 2)

(2.11) RC(2)(F) : K
(2)
2 (X loc

F ;�)→
∐
t∈F[

K (1)
1 (F)

has cohomology groups H 1(RC(2)(F))' K (2)
3 (F) and H 2(RC(2)(F))' K (2)

2 (F).
In [de Jeu 1995, Section 3.2] (see also [Bloch 1990]), for every x in F[ an

element [x]2 was constructed in K (2)
2 (X loc

F ;�) with the property that its boundary
in
∐

K (1)
1 (F) is (1− x)−1

|t=x . Let

Symb1(F)= K (1)
1 (F)= F∗Q,

Symb2(F)= 〈[x]2 with x in F[〉Q+ (1+ I )∗ ∪Symb1(F).

Then we get a subcomplex of (2.11):

(2.12) Symb2(F) : Symb2(F)→
∐
t∈F[

Symb1(F).

Letting F∗
Q

act on the right in (2.8) gives the subcomplex

(2.13) (1+ I )∗ ∪ F∗Q→ d(· · · ),

which is acyclic by [de Jeu 1995, Lemma 3.7]. Taking the quotient of (2.12) by
(2.13), we obtain the complex

M(2)(F) : M2(F)→ F∗Q⊗ F∗Q,

where we used that d(1+ I )∗ gives exactly the right relations to turn
∐

t∈F[ · · ·

into · · · ⊗ F∗
Q

, as F[ generates F∗, and

M2(F)= Symb2(F)/(1+ I )∗ ∪Symb1(F)= Symb2(F)/(1+ I )∗ ∪ F∗Q.

Then M2(F) is a Q -vector space generated by the [x]2, x in F[, and the boundary
of [x]2 is (1− x)⊗ x .

Note that from the maps M(2)(F)← Symb2(F)→ RC(2)(F), with the left one
a quasiisomorphism, we obtain maps

H i (M(2)(F))→ K (2)
4−i (F)

for i = 1 and 2. The map for i = 1 is an injection as the corresponding statement
holds for RC(2)(F) and Symb2(F) is a subcomplex, and we are in the lowest degree.
For i = 2 the map is an isomorphism because K (2)

2 (F) is the quotient of F∗
Q
⊗ F∗

Q

by 〈x ⊗ (1− x) with x in F[ 〉.
We shall quotient out the complex M(2)(F) in order to end up with a second

term
∧2 F∗

Q
rather than F∗

Q
⊗ F∗

Q
. The shape of the quotient complexes M̃(2)(F)

here and M̃(3)(F) in Section 2.4.2 is more in line with conjectures; see for instance
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[Goncharov 1994, Conjecture 2.1]. Besides, the definition of complex M(3)(C ′)
depends on the complexes M̃(2)(L) for number fields L .

Namely, consider the subcomplex of M(2)(F)

(2.14) N2(F)→ d(· · · )

with

(2.15) N2(F)= 〈[u]2+ [u−1
]2 with u in F[〉Q ⊆ M2(F).

As d([x]2+ [x−1
]2) = x ⊗ x , the second term is in fact Sym2(F∗

Q
). By the proof

of [de Jeu 1995, Corollary 3.22], (2.14) is acyclic. Taking the quotient complex
we get

(2.16) M̃(2)(F) : M̃2(F)→
∧2 F∗Q,

with M̃2(F)= M2(F)/N2(F), and d[x]2 = (1− x)∧ x .
Because M̃(2)(F) is quasiisomorphic to M(2)(F) we have maps

(2.17) H i (M̃(2)(F))→ K (2)
4−i (F).

Again this map is an injection for i = 1 and an isomorphism for i = 2.
There are essentially two ways of generalizing the complex M(2)(F). The first

one is to look at another part of the localization sequence (2.10), the other to replace
X F by Xn

F for n ≥ 2, and use localization there, which will give a spectral sequence.
The first will be used to construct the complex C•(F) in Section 2.4.4 below, the
second (with n = 2 ) will be used for constructing the complex M(3)(F) below.

2.4.2. Construction of the complexes M(3)(F) and M̃(3)(F). Those complexes were
also defined in [de Jeu 1995, Section 3]. The complex M(3)(F) consists of three
terms in cohomological degrees 1, 2 and 3,

(2.18) M3(F)→ M2(F)⊗ F∗Q→ F∗Q⊗
∧2 F∗Q,

and comes equipped with maps

H 2(M(3)(F))→ K (3)
4 (F) and H 3(M(3)(F))→ K (3)

3 (F).

The last of those two maps is in fact an isomorphism.
Although we shall need a similar complex M(3)(O) in order to have information

about the special fiber, we describe the complex M(3)(F) first, as it is notationally
easier. Moreover, in the part of the complex we are interested in, we can view
M(3)(O) as a subcomplex of M(3)(F) (see Remark 2.45).

Consider the divisors on X2
F defined by putting ti = uj for some uj in F[ for

i = 1 or 2. Then there is a spectral sequence (see [de Jeu 1996, page 257; de Jeu
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1995, page 221])

(2.19)
...

...
...

K (3)
2 (X2,loc

F ;�2)
∐

t1∈F[
K (2)

1 (X loc
F ;�)

∐ ∐
t2∈F[

K (2)
1 (X loc

F ;�)
∐

t1,t2∈F[
K (1)

0 (F)

K (3)
3 (X2,loc

F ;�2)
∐

t1∈F[
K (2)

2 (X loc
F ;�)

∐ ∐
t2∈F[

K (2)
2 (X loc

F ;�)
∐

t1,t2∈F[
K (1)

1 (F)

K (3)
4 (X2,loc

F ;�2)
∐

t1∈F[
K (2)

3 (X loc
F ;�)

∐ ∐
t2∈F[

K (2)
3 (X loc

F ;�)
∐

t1,t2∈F[
K (1)

2 (F)

...
...

...

converging to K (3)
∗ (X2

F ;�
2) ' K (3)

∗+2(F). The only terms in it that contribute to
K (3)

4 (F) are

K (3)
2 (X2,loc

F ;�2) and
∐

t1∈F[
K (2)

2 (X loc
F ;�)

∐ ∐
t2∈F[

K (2)
2 (X loc

F ;�)

because
∐

t1,t2∈F[K
(2)
1 (F) is trivial. Let RC(3)(F) be the cohomological complex in

degrees 1, 2 and 3, consisting of the row in (2.19) that begins with K (3)
3 (X2,loc

F ;�2):

(2.20) RC(3)(F) : K
(3)
3 (X2,loc

F ;�2)

→

∐
t1∈F[

K (2)
2 (X loc

F ;�)
∐ ∐

t2∈F[
K (2)

2 (X loc
F ;�)→

∐
t1,t2∈F[

K (1)
1 (F).

This complex was denoted C(3) in [de Jeu 1995, Section 3.1], but considering the
notational overload of the letter C in this paper, we prefer to think of it as a row
complex rather than just a complex.

Note that K (2)
1 (F) equals zero, so for i = 2 and 3 there is a map

(2.21) H i (RC(3)(F))→ K (3)
6−i (F) .

For x in F[, in addition to the element [x]2 in K (2)
2 (X loc

F ;�) of Section 2.4.1,
there is also an element [x]3 in K (3)

3 (X2,loc
F ;�2) (see [de Jeu 1995, Section 3.2])

with boundary

−[x]2|t1=x + [x]2|t2=x in
∐

t1∈F[
K (2)

2 (X loc
F ;�)

∐ ∐
t2∈F[

K (2)
2 (X loc

F ;�)
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in (2.19). Let us define Symbn(F) ⊆ K (n)
n (Xn−1,loc

F ;�n−1) for n = 1, 2 and 3
by setting

Symb1(F)= F∗Q,

Symb2(F)= 〈[u]2 with u in F[〉Q+ (1+ I )∗ ∪Symb1(F),

Symb3(F)= 〈[u]3 with u in F[〉Q+ (1+ I )∗ ∪̃Symb2(F).

For n ≤ 2, those are the definitions given in Section 2.4.1, and for n = 3, by ∪̃ we
mean the following. In the projection X2

F to X F , we can use one of the factors to
pull back (1+ I )∗, the other to pull back Symb2(F) and then take the product to
land in Symb3(F), giving us two cup products. The ∪̃ indicates that we take the
sum of the images of both possibilities for those cup products.

Because, in (2.20), d[u]2 = (1− u)−1
|t=u and d[u]3 = −[u]2|t1=u + [u]2|t2=u , it

follows that

(2.22) Symb(3)(F) : Symb3(F)

→

∐
t1∈F[

Symb2(F)
∐ ∐

t2∈F[
Symb2(F)→

∐
t1,t2∈F[

Symb1(F)

is a subcomplex of (2.20). It is shown in [de Jeu 1995, Lemma 3.9 and Remark 3.10]
that the subcomplex

(2.23) (1+ I )∗ ∪̃Symb2(F)

→

∐
t1∈F[

(1+ I )∗ ∪ F∗Q
∐ ∐

t2∈F[
(1+ I )∗ ∪ F∗Q+ d(· · · )→ d(· · · )

of (2.22) is acyclic.
S2 acts on the spectral sequence (2.19) by swapping t1 and t2. It therefore

also acts on the complex (2.20) above. Because the symbol [x]3 is alternating by
construction (see [de Jeu 1995, Section 3.2]), we can take the alternating parts of
(2.22) and (2.23), and form the quotient complex

M(3)(F) : M3(F)→ M2(F)⊗ F∗Q→ F∗Q⊗
∧2 F∗Q ,

where
M3(F)= Symb3(F)/((1+ I )∗ ∪̃Symb2(F))

alt,

M2(F)= Symb2(F)/(1+ I )∗ ∪ F∗Q ,

as before in Section 2.4.1. Note that, for n = 2 and 3, Mn(F) is a Q-vector space
on symbols [x]n for x in F[, modulo nonexplicit relations depending on n. The
maps in the complex are given by d[x]3 = [x]2⊗ x and

(2.24) d[x]2⊗ y = (1− x)⊗ (x ∧ y).



324 AMNON BESSER AND ROB DE JEU

As before, we used here that d(1+ I )∗ gives exactly the right relations to turn∐
t∈F[ · · · into · · · ⊗ F∗

Q
, as F[ generates F∗. As Symb(3)(F) is a subcomplex of

RC(3)(F), this gives us maps

M(3)(F)← Symb(3)(F)alt
→ RC(3)(F)alt

→ RC(3)(F)

with the left map a quasiisomorphism. Combining this with (2.21) gives us a map

(2.25) H i (M(3)(F))→ K (3)
6−i (F)

for i = 2 and 3. (For i = 1, starting with H 1(RC(3)(F))→ K (3)
5 (F)/K (2)

4 (F)∪ F∗
Q

,
we still obtain a map H 1(M(3)(F))→ K (3)

5 (F)/K (2)
4 (F)∪ F∗

Q
.)

Finally, we quotient out M(3)(F) in order to obtain M̃(3)(F), as follows. Let

N3(F)= 〈[u]3− [u−1
]3 with u in F[〉Q ⊆ M3(F)

(cf. (2.15); in general Nn(F) is generated by the [u]n+ (−1)n[u−1
]n ) and consider

the subcomplex

(2.26) N3(F)→ N2(F)⊗ F∗Q→ d(· · · )

of M(3)(F). By the proofs of [de Jeu 1995, Proposition 3.20, Corollary 3.22] it is
acyclic in degrees 2 and 3, hence for the quotient complex

M̃(3)(F) : M̃3(F)→ M̃2(F)⊗ F∗Q→
∧3 F∗Q ,

where M̃3(F)= M3(F)/N3(F), we get a map

(2.27) H i (M̃(3)(F))
'
←− H i (M(3)(F))→ K (3)

6−i (F) .

In M̃3(F) we still denote the class of [x]i with [x]i , so that the maps are now given
by d[u]3 = [u]2⊗ u and d[u]2⊗ v = (1− u)∧ u ∧ v.

The next remark, lemma, and corollary will be used in Section 10 to define the
various maps in the theorems in the introduction.

Remark 2.28. Consider the map

8 : (F∗Q)
⊗3
→ Sym2(F∗Q)⊗ F∗Q

a⊗ b⊗ c 7→ 2
3((a · b)⊗ c− (a · c)⊗ b),

where a1·a2=
1
2(a1⊗a2+a2⊗a1) in Sym2(F∗

Q
). Up to scaling,8 is the composition

of antisymmetrizing in the last two factors, followed by symmetrizing in the first
two factors, so it is trivial on F∗

Q
⊗Sym2(F∗

Q
). It is easy to check that 8 ◦8=8

and 8 maps a generator (a · a)⊗ c of Sym2(F∗
Q
)⊗ F∗

Q
to itself modulo Sym3(F∗

Q
).

In particular, id−8 maps Sym2(F∗
Q
)⊗ F∗

Q
+ F∗

Q
⊗Sym2(F∗

Q
) to F∗

Q
⊗Sym2(F∗

Q
).

For α̃ in M̃2(F)⊗ F∗
Q

, let α be a lift of α̃ to M2(F)⊗ F∗
Q

, so that (d⊗ id)(α)
is in (F∗

Q
)⊗3. Because of the statements just after (2.14), there is a unique βα in
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N2(F)⊗ F∗
Q
⊂ M2(F)⊗ F∗

Q
with 8 ◦ (d⊗ id)(α)= (d⊗ id)(βα). By definition, α

is unique up to adding β ′ in N2(F)⊗ F∗
Q

. But

8 ◦ (d⊗ id)(α+β ′)=8 ◦ (d⊗ id)(α)+8 ◦ (d⊗ id)(β ′)= (d⊗ id)(βα +β ′+ γ )

for some γ in d(N3(F))= 〈([h]2+[h−1
]2)⊗h〉 ⊂ N2(F)⊗F∗

Q
as (d⊗ id)(β ′) is in

Sym2(F∗
Q
)⊗F∗

Q
, hence (8−id)◦(d⊗id)(β ′) is in Sym3(F∗

Q
). So βα+β ′=βα+β ′+γ ,

hence the class of α−βα is well-defined in M2(F)⊗ F∗
Q
/d(N3(F)).

Let
4 : M̃2(F)⊗ F∗Q→ M2(F)⊗ F∗Q/d(N3(F))

α̃ 7→ α−βα modulo d(N3(F))

be the resulting map, so α in M2(F)⊗ F∗
Q

lifts α̃ and βα in N2(F)⊗ F∗
Q

satisfies
8◦(d⊗id)(α)= (d⊗id)(βα). Clearly, the quotient map M2(F)⊗F∗

Q
→ M̃2(F)⊗F∗

Q

gives a quotient map M2(F)⊗ F∗
Q
/d(N3(F))→ M̃2(F)⊗ F∗

Q
, and 4 is a section

of the latter. Hence

M2(F)⊗ F∗Q/d(N3(F))= im(4)⊕ N2(F)⊗ F∗Q/d(N3(F)).

Now assume α̃ is in the kernel of d : M̃2(F)⊗F∗
Q
→

∧3 F∗
Q

. If α in M2(F)⊗F∗
Q

lifts α̃, then (d⊗ id)(α) is in Sym2(F∗
Q
)⊗ F∗

Q
+ F∗

Q
⊗Sym2(F∗

Q
). The same holds

for η = (d⊗ id)(α−βα) with α−βα any representative of 4(α̃), so that α lifts α̃
and (d⊗ id)(βα)=8◦ (d⊗ id)(α). Therefore η−8(η) is in F∗

Q
⊗Sym2(F∗

Q
). But

8(η)=8◦(d⊗id)(α)−8◦8◦(d⊗id)(α)=0, hence α−βα is in (M2(F)⊗F∗
Q
)d=0,

and therefore 4 maps (M̃2(F)⊗ F∗
Q
)d=0 to (M2⊗ F∗

Q
)d=0/d(N3(F)). It is easy to

check that 4(d(M̃3(F)))= d(M3(F))/d(N3(F)), so that 4 induces the inverse to
the natural isomorphism H 2(M(3)(F))→ H 2(M̃(3)(F)).

Lemma 2.29. Let V be a Q-vector space.

(1) Suppose we have a linear map G : (F∗
Q
)⊗3
→ V . Then the assignment

[g]2⊗ f 7→ G((1− g)⊗ g⊗ f )

defines a linear map 9 : M2(F)⊗ F∗
Q
→ V .

(2) If this 9 is trivial on d(N3(F)), then 9 ◦4 maps [g]2⊗ f in M̃2(F)⊗ F∗
Q

to

G((1− g)⊗ g⊗ f )− 2
3 G(((1− g) · g)⊗ f )+ 2

3 G(((1− g) · f )⊗ g),

where a1 · a2 =
1
2(a1⊗ a2+ a2⊗ a1) in Sym2(F∗

Q
)⊂ (F∗

Q
)⊗2.

(3) Suppose that we have linear maps 9 : M2(F) ⊗ F∗
Q
/d(N3(F)) → V and

H : Sym2(F∗
Q
)⊗ F∗

Q
→ V , such that 9(([a]2+[a−1

]2)⊗b)= H((a ·a)⊗b).
Then 9 ◦4 maps [g]2⊗ f in M̃2(F)⊗ F∗

Q
to

9(g, f )− 2
3 H((1− g) · g)⊗ f )+ 2

3 H((1− g) · f )⊗ g).
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Proof. (1) The map 9 is the composition of G with d⊗ id, with d : M2(F)→ F∗
Q
⊗2

the differential in M(2)(F). For (2) and (3) we lift α = [g]2⊗ f in M̃2(F)⊗ F∗
Q

to [g]2⊗ f in M2(F)⊗ F∗
Q

to find 9 ◦4([g]2⊗ f )=9([g]2⊗ f )−9(β), with
β = βα, so it suffices to compute 9(β). For (2) we find

9(β)= G(d⊗ id(β))= G(8(d⊗ id([g]2⊗ f )))= G(8((1− g)⊗ g⊗ f ))

=
2
3 G(((1− g) · g)⊗ f )− 2

3 G(((1− g) · f )⊗ g)

For (3) we find the formula in a similar way by noting that β can be written as a
sum of elements of the form [a]2+ [a−1

]2 and that d([a]2+ [a−1
]2)= a · a. �

Corollary 2.30. Under the assumptions in (2) and (3) of Lemma 2.29, the composi-
tion H 2(M̃(3)(F))→ H 2(M(3)(F))→ V is given by the corresponding formulas.

2.4.3. Construction of the complex M(3)(C ′). In this section we consider the situa-
tion where we have smooth, projective, geometrically irreducible curve C ′ over a
number field k with function field F ′ = k(C ′).

Because we are interested in finding elements in K (3)
4 (C ′), we introduce yet

another complex, M(3)(C ′), which is the total complex associated to the double
complex:

M3(F ′)
d //

��

M2(F ′)⊗Q F ′∗
Q

d //

∂1

��

F ′∗
Q
⊗
∧2 F ′∗

Q

∂2
��

0 // ∐
x M̃2(k(x))

d // ∐
x
∧2k(x)∗

Q

(Although not needed in this paper, one could define the complex M̃(3)(C ′) by using
M̃(3)(F ′) in the top row.) Here the coproducts are over all closed points x of C ′.
The boundary maps are as follows. The d’s in the top row are as in M(3)(F ′). In
the bottom row, d[z]2 = (1− z)∧ z. For the vertical maps,

∂1,x([g]2⊗ f )= ordx( f ) · [g(x)]2,

with the convention that [0]2 = [1]2 = [∞]2 = 0. Finally, ∂2,x described as follows.
Let π be a uniformizer at x , uj units at x . Then ∂2,x is determined by

π ∧ u1 ∧ u2 7→ u1(x)∧ u2(x) and u1 ∧ u2 ∧ u3 7→ 0 .

Therefore, an element
∑

i [gi ]2⊗ fi in H 2(M(3)(F ′)) satisfies∑
i

(1− gi )⊗ (gi ∧ fi )= 0

in F ′∗
Q
⊗
∧2 F ′∗

Q
. The additional condition for it to lie in H 2(M(3)(C ′)) is that∑

i ordx( fi )[gi (x)]2 = 0 in M̃2(k(x)) for all closed points x in C ′, with the con-
vention that [0]2 = [1]2 = [∞]2 = 0.
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We have an obvious map M(3)(C ′)→M(3)(F ′), corresponding to the localization
map in (2.2). In [de Jeu 1996, Theorem 5.2], it is shown that this induces a
commutative diagram:

(2.31)

H 2(M(3)(C ′))

��

// H 2(M(3)(F ′))

��

K (3)
4 (C ′)⊕ K (2)

3 (k)∪ F ′∗
Q

// K (3)
4 (F ′)

Note that it was shown in Remark 2.4 that K (3)
4 (C ′)⊕ K (2)

3 (k)∪ F ′∗
Q

is indeed a
direct sum, and that the lower horizontal map is an injection.

Remark 2.32. If k is totally real then K (2)
3 (k) is zero. But in general we can use

the projection

K (3)
4 (C ′)⊕ K (2)

3 (k)∪ F ′∗Q → K (3)
4 (C ′)

to get a map H 2(M(3)(C ′))→ K (3)
4 (C ′) as the composition

H 2(M(3)(C ′))→ K (3)
4 (C ′)⊕ K (2)

3 (k)∪ F ′∗Q → K (3)
4 (C ′).

2.4.4. Construction of the complex C•(F). The complex C•(F) is described in
[de Jeu 1996, Section 3], but it was first constructed in [Bloch 1990]. We recall its
construction in order to clarify the construction of the corresponding complex for O

in Section 2.5.4.
One starts with another part of the exact localization sequence (2.10) in rela-

tive K-theory.

(2.33) · · · →
∐
t∈F[

K (2)
3 (F)→ K (3)

3 (X F ;�)→ K (3)
3 (X loc

F ;�)

→

∐
t∈F[

K (2)
2 (F)→ K (3)

2 (X F ;�)→ · · · .

Because K (3)
2 ((X F ;�))' K (3)

3 (F)' K M
3 (F)Q, so that the map∐

t∈F[
K (2)

2 (F)→ K (3)
2 (X F ;�)

is surjective, this shows that the cohomological complex in degrees 1 and 2,

AC(3)(F) : K
(3)
3 (X loc

F ;�)→
∐
t∈F[

K (2)
2 (F),

has maps H 1(AC(3)(F))' K (3)
4 (F)/K (2)

3 (F)∪ F∗
Q

and H 2(AC(3)(F))' K (3)
3 (F).

(Here AC stands for “auxiliary complex”.)
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Again we have an acyclic subcomplex

(1+ I )∗ ∪ K (2)
2 (F)→ d(· · · ),

and therefore the quotient complex C•(F) is a cohomological complex in degree 1
and 2,

C•(F) : C1(F)→ C2(F),

with

C1(F)=
K (3)

3 (X loc
F ;�)

(1+ I )∗∪K (2)
2 (F)

and C2(F)= K (2)
2 (F)⊗ F∗Q .

It comes with maps

(2.34) H 1(C•(F))' K (3)
4 (F)/K (2)

3 (F)∪ F∗Q

and H 2(C•(F))' K (3)
3 (F .)

Note that if g is in F[, and f is in F∗, then [g]2 ∪ f lies in K (3)
3 (X loc

F ;�). In
fact, if we take the class of [g]2 in M2(F) instead, then we do get a well-defined
class in C1(F), as (1+ I )∗ ∪ F∗

Q
∪ f goes to zero in C1(F) by definition. Under

the differential in the complex, [g]2 ∪ ( f ) is mapped to

{(1− g)−1, f }⊗ g =−{1− g, f }⊗ g,

so the condition for an element
∑

i [gi ]2 ∪ ( fi ) to be in H 1(C•(F)) is that∑
i

{1− gi , fi }⊗ gi = 0 in K (2)
2 (F)⊗ F∗Q.

The map M(2)(F)⊗ F∗
Q
→ C1(F) given by [g]2 ⊗ f 7→ [g]2 ∪ f fits into a

commutative diagram

(2.35)

M3(F) //

��

M2(F)⊗ F∗
Q

//

��

F∗
Q
⊗
∧2 F∗

Q

��
0 // C1(F) // C2(F)

where we map f ⊗ g ∧ h to { f, g} ⊗ h − { f, h} ⊗ g. Multiplying the map
H 2(M(3)(F))→ K (3)

4 (F) by −1 if necessary, we obtain a commutative diagram
(see [de Jeu 1996, Proposition 3.2]):

(2.36)

H 2(M(3)(F)) //

��

K (3)
4 (F)

��

H 1(C•(F)) // K (3)
4 (F)/K (2)

3 (F)∪ F∗
Q
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2.5. Construction of the complexes for O and C′.

Remark 2.37. At various stages there will be some properties of the complexes
for O that depend on K (2)

3 (κ) being trivial. Clearly, this applies to O as in Section 1
by our remarks about the K -groups of κ(Cκ) and F(C′F) in Section 2.2.

2.5.1. Construction of the complex M(2)(O). When we try to imitate the localization
sequence (2.10) for O rather than F , we are dealing with the two dimensional
scheme XO, and we end up with a spectral sequence instead,

(2.38)

...
...

K (2)
1 (X loc

O ;�)
∐
t∈O[

K (1)
0 (F)

K (2)
2 (X loc

O ;�)
∐
t∈O[

K (1)
1 (F)

∐
t∈κ[

K (0)
0 (κ)

K (2)
3 (X loc

O ;�)
∐
t∈O[

K (1)
2 (F)

∐
t∈κ[

K (0)
1 (κ)

...
...

...

which converges to K (2)
∗ (XO;�)' K (2)

∗+1(O).
Because K (1)

2 (F), K (0)
1 (κ) and K (0)

2 (κ) are all trivial, if we let RC(2)(O) be the
cohomological complex in degrees 1, 2 and 3, given by

(2.39) K (2)
2 (X loc

O ;�)→
∐
t∈O[

K (1)
1 (F)→

∐
t∈κ[

K (0)
0 (κ) ,

then there are maps H 1(RC(2)(O))' K (2)
3 (O) and H 2(RC(2)(O))→ K (2)

2 (O). The
last map is surjective by Proposition 2.6 and the exact sequence

· · · → K (1)
2 (κ)→ K (2)

2 (O)→ K (2)
2 (F)→ K (1)

1 (κ)→ · · ·

as K (1)
2 (κ) = 0. Note that the map K (1)

1 (F) → K (0)
0 (κ) is surjective, so that

H 3(RC(2)(O)) is zero, as is K (2)
1 (O).

Now let A ⊆ K (2)
2 (X loc

O ;�) be the inverse image of
∐

t∈O[ O∗
Q

in
∐

t∈O[ K (1)
1 (F).

Because K (1)
1 (O)= O∗

Q
is equal to

ker
(
K (1)

1 (F)→ K (0)
0 (κ)

)
,

this means that the subcomplex

(2.40) RC(2)(O) : A→
∐
t∈O[

O∗Q

of (2.39) has maps H 1(RC(2)(O))→ K (2)
3 (O) and H 2(RC(2)(O))→ K (2)

2 (O).
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We again use the element [u]2 in K (2)
2 (X loc

O ;�) for every u in O[, and put

Symb1(O)= K (1)
1 (O)= O∗Q ,

Symb2(O)= 〈[u]2 with u in O[〉Q+ (1+ I )∗O ∪O∗Q .

(See (2.9) for the definition of (1+ I )∗O.) Observe that, if u is in O[ and v is in O∗
Q

,
then [u]2 and (1+ I )∗O ∪ v are in A, so we get a subcomplex of (2.40)

(2.41) Symb2(O) : Symb2(O)→
∐
t∈O[

O∗Q ,

containing the acyclic subcomplex

(2.42) (1+ I )∗O ∪O∗Q→ d(· · · ).

We take the quotient complex of (2.41) by (2.42) to obtain the complex

(2.43) M(2)(O) : M2(O)→ O∗Q⊗O∗Q ,

with M2(O)= Sym2(O)/(1+ I )∗ ∪O∗
Q

. Then M2(O) is a Q-vector space generated
by the [u]2, u in O[, and d[u]2 = (1− u)⊗ u. (Again, we used that d(1+ I )∗O ∪O∗

Q

gives us exactly the right relations to change
∐

t∈O[ O∗
Q

into O∗
Q
⊗ O∗

Q
because O[

generates O∗.) Note that we now have maps

M(2)(O)← Symb2(O)→ RC(2)(O),

with the left one a quasiisomorphism, so we obtain maps

(2.44) H i (M(2)(O))→ K (2)
4−i (O)

for i = 1 and 2. Again the map for i = 1 is an injection (cf. (2.17)). For i = 2 the
map is a surjection by Proposition 2.6 because K (2)

2 (O)= ker
(
K (2)

2 (F)→ K (1)
1 (κ)

)
.

Localizing the base from O to F in (2.38) gives us (2.19), so that we get a map
of complexes M2(O)→ M2(F) since the various steps in the constructions of the
two complexes are compatible.

Remark 2.45. The map M2(O) → M2(F) is injective. Namely, because the
construction of the complexes for M(2)(O) and M(2)(F) is compatible with the
localization from O to F in (2.38), we have a commutative diagram

0 // H 1(M(2)(O)) //

��

M2(O) //

��

O∗
Q
⊗O∗

Q

��
0 // H 1(M(2)(F)) // M2(F) // F∗

Q
⊗ F∗

Q
,
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with H 1(M(2)(O)) ⊆ K (2)
3 (O) and H 1(M(2)(F)) ⊆ K (2)

3 (F). From the exact local-
ization sequence

· · · → K (1)
3 (κ)→ K (2)

3 (O)→ K (2)
3 (F)→ K (1)

2 (κ)→ · · ·

we see that K (2)
3 (O) ' K (2)

3 (F), so that the map on H 1’s must be injective. As
O∗

Q
⊗ O∗

Q
→ F∗

Q
⊗ F∗

Q
is clearly injective, M2(O)→ M2(F) must be injective as

well. So we may think of M2(O) as the subspace of M2(F) generated by the [u]2
with u in O[ ⊂ F[.

2.5.2. Construction of the complex M(3)(O). In this subsection, we shall be mak-
ing Assumption 2.7.

If we now try to imitate the construction of M(3)(F) using O instead of F , we
see some differences. For example, in the construction of the spectral sequence, in
codimension one, we shall end up with copies of {ti = u} for u in O[, which look
like XO, out of which we have to remove the intersections with all other such pieces
of codimension one of the form {ti = v} for i = 1 and 2, and v in O[. Note that, in
particular, we also cut out ti = v with u and v different elements in O[, but reducing
to the same in the residue field. Then ti = v cuts out the bit in the special fiber
in ti = u. We therefore end up with copies of X

′loc
F = X F \ {t = u with u in O[}.

So if we do this for O, we end up with the following spectral sequence, converging
to K (3)

∗ (X2
O;�

2)' K (3)
∗+2(O); see [Besser and de Jeu 2003, (3.7)]. For typographical

reasons, let us introduce the following abbreviations:

K ( j),m
n,O := K ( j)

n (Xm
O ;�

m), K ( j),1
n,F := K ( j)

n (X
′loc
F ;�), K ( j),1

n,κ := K ( j)
n (Xκ;�).

Then the spectral sequence is

(2.46)
...

...
...

K (3),2
2,O

(∐
t∈O[

K (2),1
1,F

)2 ∐
t1,t2∈O[

K (1)
0 (F)

∐(∐
t∈κ[

K (1),1
0,κ

)2

K (3),2
3,O

(∐
t∈O[

K (2),1
2,F

)2 ∐
t1,t2∈O[

K (1)
1 (F)

∐(∐
t∈κ[

K (1),1
1,κ

)2 ∐
t1,t2∈κ[

K (0)
0 (κ)

K (3),2
4,O

(∐
t∈O[

K (2),1
3,F

)2 ∐
t1,t2∈O[

K (1)
2 (F)

∐(∐
t∈κ[

K (1),1
2,κ

)2 ∐
t1,t2∈κ[

K (0)
1 (κ)

...
...

...
...
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Here the (· · · )2 corresponds to two copies, corresponding to a coproduct over t1 in
O[ or κ[, and t2 in O[ or κ[. As explained before, in order to obtain X

′loc
F out of X F ,

we only remove ti = uj with uj in O[.
Now notice that all K (0)

j (κ) are zero for j ≥ 1, that K (1)
j (F) is zero for j ≥ 2,

and finally that K (1)
j (X

loc
κ ;�) is zero as well for j ≥ 2: we consider the exact

localization sequence

· · · → K (1)
j (X

1
κ;�)→ K (1)

j (X
loc
κ ;�)→

∐
K (0)

j−1(κ)→ · · · ,

and use that K (1)
j (X

1
κ;�)' K (1)

j+1(κ), which is zero as K (1)
m (L)= 0 for m ≥ 2 for

any field L , as well as that K (0)
j−1(κ)=0 because j−1≥1. Therefore, with RC(3)(O)

the following cohomological complex in degrees 1 through 4 (corresponding to the
row in (2.46) starting with K (3)

3 (X2
O,loc;�

2)):

(2.47) RC(3)(O) : K
(3)
3 (X2,loc

O ;�2)→

(∐
t∈O[

K (2)
2 (X loc

F ;�)

)2

→

∐
t1,t2∈O[

K (1)
1 (F)

∐(∐
t∈κ[

K (1)
1 (X loc

κ ;�)

)2

→

∐
t1,t2∈κ[

K (0)
0 (κ)

has maps

(2.48) H i (RC(3)(O))→ K (3)
6−i (O)

for i = 2, 3 and 4.

Remark 2.49. Note that for i = 4 this statement is vacuous since from the local-
ization sequence

· · · → K (3)
3 (F)→ K (2)

2 (κ)→ K (3)
2 (O)→ K (3)

2 (F)→ · · ·

and the facts that K (3)
2 (F) is trivial and K (3)

3 (F) → K (2)
2 (κ) is surjective (see

Proposition 2.6), it follows that K (3)
2 (O) is zero.

Remark 2.50. The map K (2)
2 (X loc

O ;�)→ K (2)
2 (X

′loc
F ;�)→ K (2)

2 (X loc
F ;�) is in-

jective. Namely, we have an exact localization sequence

· · · → K (1)
2 (X loc

κ ;�)→ K (2)
2 (X loc

O ;�)→ K (2)
2 (X

′loc
F ;�)→ · · · ,

and K (1)
2 (X loc

κ ;�) equals zero, as seen above. Also, we have an exact localization
sequence

· · · →

∐
t∈F∗\F[

⋃
{1}

K (1)
2 (F)→ K (2)

2 (X
′loc
F ;�)→ K (2)

2 (X loc
F ;�)→ · · · ,

and again K (1)
2 (F) is zero.
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Remark 2.51. Note that, because we can localize O to F , we have a natural
map of the spectral sequence in (2.46) to the one in (2.19), which, at the level
of the complexes (2.20) and (2.47), simply forgets the terms over κ , includes a
coproduct over O[ into the corresponding coproduct over F[, and uses the maps
K (2)

2 (X loc
O ;�) → K (2)

2 (X loc
F ;�) and K (3)

3 (X2,loc
O ;�2) → K (3)

3 (X
′2,loc
F ;�2). By

Remark 2.50, the first one is always injective, and the second is injective if K (2)
5 (κ)

and K (2)
4 (F) are zero.

Let us try to create a jewel in the crown of the scary notation in (2.47). Define
Symbn(O)⊆ K (n)

n (Xn−1,loc
O ;�n−1) for n = 1, 2 and 3 by setting

Symb1(O)= O∗Q ,

Symb2(O)= 〈[u]2 with u in O[〉Q+ (1+ I )∗O ∪Symb1(O),

as before, and

Symb3(O)= 〈[u]3 with u in O[〉Q+ (1+ I )∗O ∪̃Symb2(O).

Again, by ∪̃ we denote that we use both products, coming from the two ways of
projecting X2

O to XO.
Note that for n = 1, Symb1(O)= O∗

Q
⊆ Symb1(F)= F∗

Q
, and that for n = 2, we

can view Symb2(O)⊆ Symb2(F) inside K (2)
2 (X loc

F ;�) by Remark 2.50, as

K (2)
2 (X loc

O ;�)⊆ K (2)
2 (X loc

F ;�).

Because d[u]2 = (1− u)−1
|t=u , and d[u]3 = −[u]2|t1=u + [u]2|t2=u (where both

terms lie in a copy of K (2)
2 (X loc

O ;�) inside K (2)
2 (X loc

F ), again by Remark 2.50), it
follows that

(2.52) Symb(3)(O) : Symb3(O)→

(∐
t∈O[

Symb2(O)

)2

→

∐
t1,t2∈O[

O∗Q

is a subcomplex (in degrees 1, 2 and 3) of (2.47). Note that we used here that
elements in O[ never give rise to a pole or zero over κ , so the map to

∐
K (0)

0 (κ) is
zero. Also, we used that an element [u]2 with u in O[ under the localization (of its
construction),

K (2)
2 (XO \ {t = u};�)→ K (1)

1 (O)→ · · ·

maps to (1− u)−1, so under the boundary in (2.46) it never hits the K (1)
1 (X loc

κ ;�)
components. Similarly, the elements in (1+ I )∗O ∪O∗

Q
never hit these components.

Again, one shows that the subcomplex of (2.52) given by

(1+ I )∗O ∪̃Symb2(O)→

(∐
t

(1+ I )∗O ∪O∗Q

)2

+ (· · · )→ d(· · · )
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is acyclic; see [de Jeu 1995, Lemma 3.7 and Remark 3.10].
Taking the quotient complex and the alternating part for the action of S2 under

swapping the coordinates, we finally get a complex

M3(O)→ M2(O)→ O∗Q⊗
∧2O∗Q .

Here
M3(O)= Symb3(O)/

(
(1+ I )∗O ∪̃Symb2(O)

)alt

and, as before,
M2(O)= Symb2(O)/(1+ I )∗O ∪O∗Q .

Note that Mn(O) is a Q-vector space on symbols [u]n for u in O[, modulo nonexplicit
relations depending on n. The maps in the complex are given by d[u]3 = [u]2⊗ u
and d[u]2⊗ v = (1− u)⊗ (u ∧ v).

In particular, the condition for an element
∑

i [ui ]⊗ vi in M2(O)⊗O∗
Q

to lie in
H 2(M(3)(O)) is that

(2.53)
∑

i

(1− ui )⊗ (ui ∧ vi )= 0 in O∗Q⊗
∧2O∗Q .

Again S2 acts on the various complexes by swapping the coordinates, and we
get maps

M(3)(O)← Symb(3)(O)alt
→ RC(3)(O)alt

→ RC(3)(O)

with the left map a quasiisomorphism. Combining this with (2.48) gives us a map

(2.54) H i (M(3)(O))→ K (3)
6−i (O)

for i = 2 and 3, where the map for i = 3 is a surjection if K (2)
3 (κ) = 0 by

Proposition 2.6 and the localization sequence

· · · → K (2)
3 (κ)→ K (3)

3 (O)→ K (3)
3 (F)→ K (2)

2 (κ)→ · · · .

Remark 2.55. Notice that by construction (that is, by compatibility of everything
we did with the localization of O to F ), these maps for i = 2 or 3 fit into a
commutative diagram:

(2.56)

H i (M(3)(O)) //

��

K (3)
6−i (O)

��

H i (M(3)(F)) // K (3)
6−i (F)

We also note that it was proved in Remark 2.45 that the map M2(O)→ M2(F) is
injective. Because we clearly have that O∗

Q
→ F∗

Q
is an injection, this means that,

in degrees 2 and 3, M(3)(O) injects into M(3)(F).
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2.5.3. Construction of the complex M(3)(C
′). In this subsection we imitate the

definition of the complex M(3)(C ′) in Section 2.4.3, but using the complex M(3)(O
′)

rather than M(3)(F ′) in the top row. The advantage of using the complex M(3)(C
′)

(just like the advantage of using any O′-complex over the corresponding F ′-complex)
is that the syntomic regulator gets the input it needs on the special fiber of C′.

We therefore put ourselves in the situation of Notation 1.7, so assume we have a
number field k ⊂ K , a proper, smooth, irreducible curve C′ over R′ = O∩ k, and
that the generic fiber C ′=C′⊗R′ k is geometrically irreducible. We put F ′= k(C ′),
and O′ the discrete valuation ring in F ′ corresponding to the generic point of the
special fiber of C′. We have a commutative diagram as follows:

M3(O
′)

d //

��

M2(O
′)⊗Q O′∗

Q

d //

∂1

��

O′∗
Q
⊗
∧2O′∗

Q

∂2
��

0 // ∐
x M̃2(k(x))

d // ∐
x
∧2k(x)∗

Q
.

The d’s in the top row are as in M(3)(O
′). The vertical maps and the map in the

bottom row are given by the same formulas as before (see 2.4.3), via the natural
map M(3)(O

′)→M(3)(F ′) corresponding to the localization from O′ to F ′.
We let M(3)(C

′) be the cohomological complex in degrees 1 through 4, given by
the total complex associated to the double complex in the commutative diagram
above. Note that therefore in particular, an element

∑
i [ui ]2⊗ vi in M2(O

′)⊗O′∗
Q

is in H 2(M(3)(C
′)) if and only if it satisfies (2.53) as well as, for every closed

point x in C ′,

(2.57)
∑

i

ordx(vi )[ui (x)]2 = 0

in M̃2(k(x)), with the convention that [0]2 = [1]2 = [∞]2 = 0.
The map to K-theory is similar to the map for M(3)(F ′), but now we get

H 2(M(3)(C
′))→ H 2(M(3)(O

′))→ K (3)
4 (O′),

where the first arrow corresponds to forgetting the bottom row in M(3)(C
′). In

fact, because this is compatible with the localization to F ′ (that is, with the map
M(3)(O

′)→M(3)(F ′)), from (2.31) we find that we have a commutative diagram

(2.58)

H 2(M(3)(C
′)) //

��

K (3)
4 (C′)⊕ K (2)

3 (k)∪O′∗
Q

H 2(M(3)(C ′)) // K (3)
4 (C ′)⊕ K (2)

3 (k)∪ F ′∗
Q
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where the group on the right is contained in K (3)
4 (O′)= K (3)

4 (F ′), and we used that
K (3)

4 (C′)⊕K (2)
3 (k)∪ F ′∗

Q
= K (3)

4 (C ′)⊕K (2)
3 (k)∪O′∗

Q
by Remarks 2.3 and 2.5. This

proves that the top square in (1.16) exists and commutes.
Note that in Theorem 1.9(2), the condition ∂1(α

′)= 0 on α′ in H 2(M(3)(O
′)) is

exactly that α′ satisfies (2.57), hence lies in the subspace H 2(M(3)(C
′)). Therefore

we have proved the existence of β ′ in the theorem. Its uniqueness is clear because
the direct sum above gives an injection K (3)

4 (C′)→ K (3)
4 (O′)/K (2)

3 (k)∪O′∗
Q

.

Remark 2.59. Just as in Remark 2.32, we can consider the projection

K (3)
4 (C′)⊕ K (2)

3 (k)∪O′∗Q→ K (3)
4 (C′)

to get a map H 2(M(3)(C
′))→ K (3)

4 (C′) as the composition

H 2(M(3)(C
′))→ K (3)

4 (C′)⊕ K (2)
3 (k)∪O′∗Q→ K (3)

4 (C′).

2.5.4. Construction of the complex C•(O). The remainder of the theorems in the
introduction will be proved in Section 10. The necessary calculations will in fact
depend heavily on the analogue of C•(F) for O, C•(O).

Because we are dealing with the two dimensional scheme XO, the localization
sequence (2.33) becomes a spectral sequence (cf. (2.38)):

(2.60)

...
...

...

K (3)
2 (X loc

O ;�)
∐
t∈O[

K (2)
1 (F)

∐
t∈κ[

K (1)
0 (κ)

K (3)
3 (X loc

O ;�)
∐
t∈O[

K (2)
2 (F)

∐
t∈κ[

K (1)
1 (κ)

K (3)
4 (X loc

O ;�)
∐
t∈O[

K (2)
3 (F)

∐
t∈κ[

K (1)
2 (κ)

...
...

...

converging to K (3)
∗ (XO;�)' K (3)

∗+1(O). Let us notice that K (1)
2 (κ) and K (1)

3 (κ) are
zero, and that the exact localization sequence

· · · → K (1)
3 (κ)→ K (2)

3 (O)→ K (2)
3 (F)→ K (1)

2 (κ)→ K (2)
2 (O)→ K (2)

2 (F)→ · · ·

tells us that K (2)
2 (O) ⊆ K (2)

2 (F) and K (2)
3 (O) ' K (2)

3 (F). Therefore we get an
exact sequence

0→
K (3)

4 (O)

K (2)
3 (O)∪O∗

Q

→ K (3)
3 (X loc

O ;�)→ ker
(∐

t∈O[

K (2)
2 (F)→

∐
t∈κ[

K (1)
1 (κ)

)
.
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In the middle row of the spectral sequence (2.60) above, let B ⊆ K (3)
3 (X loc

O ;�) be
the inverse image of

∐
K (2)

2 (O) (with the coproduct over all of O[). Then we have
a cohomological complex in degrees 1 and 2,

(2.61) AC(3)(O) : B→
∐
t∈O[

K (2)
2 (O),

an isomorphism

H 1(AC(3)(O))'
K (3)

4 (O)

K (2)
3 (O)∪O∗

Q

,

and a map H 2(AC(3)(O))→ K (3)
3 (O).

Remark 2.62. If K (2)
3 (κ)= 0, or more generally, the map K (3)

4 (F)→ K (2)
3 (κ) is

surjective, then from the exact localization sequence

· · · → K (3)
4 (F)→ K (2)

3 (κ)→ K (3)
3 (O)→ K (3)

3 (F)→ K (2)
2 (κ)→ · · · ,

Proposition 2.6 and (2.44), we see that the map
∐

t∈O[ K (2)
2 (O)→ K (3)

3 (O), and
hence the map H 2(AC(3)(O))→ K (3)

3 (O), are surjective.

Remark 2.63. Because K (2)
1 (F) and K (1)

2 (κ) are zero, and K (2)
2 (F)→ K (1)

1 (κ) is
surjective, from (2.60) we get that there is an exact sequence

Ker
(∐

t∈O[

K (2)
2 (F)→

∐
t∈κ[

K (1)
1 (κ)

)
→ K (3)

2 (XO;�)→ K (3)
2 (X loc

O ;�)→ 0.

If K (2)
3 (κ) is zero, or, more generally, the map K (3)

4 (F)→ K (2)
3 (κ) surjective, then

Proposition 2.6 tells us that
∐

t∈O[ K (2)
2 (O) surjects onto K (3)

2 (XO;�) ' K (3)
3 (O),

and we can conclude that K (3)
2 (X loc

O ;�) is zero.

Now we consider the acyclic subcomplex (1+ I )∗O∪K (2)
2 (O)→ d(· · · ) of (2.61),

and quotient out to find a complex C•(O) : C1(O)→ C2(O), where

(2.64) C1(O)=
B

(1+ I )∗O∪K (2)
2 (O)

and C2(O)= K (2)
2 (O)⊗O∗

Q
. We still have an isomorphism

(2.65) H 1(C•(O))' K (3)
4 (O)/K (2)

3 (O)∪O∗Q

and a map H 2(C•(O))→K (3)
3 (O), which by Proposition 2.6 and (2.44) is a surjection

if K (3)
4 (F)→ K (2)

3 (κ) is surjective, for example, if K (2)
3 (κ)= 0.



338 AMNON BESSER AND ROB DE JEU

Observe that if g is in O[, and f is in O∗
Q

, then [g]2 ∪ ( f ) is in C1(O), and has
boundary {(1− g)−1, f } ⊗ g = −{(1− g), f } ⊗ g in C2(O). The condition for∑

i [gi ]2 ∪ ( fi ) to be in H 1(C•(O)) is therefore that∑
i

{1− gi , fi }⊗ gi = 0 in C2(O)= K (2)
2 (O)⊗O∗Q.

Note that because the construction of the spectral sequence in (2.60) is compatible
with localizing the base from O to F and enlarging the coproduct from being
over O[ to F[ (in which case it becomes the localization sequence in (2.33)), and
that (1+ I )∗O is contained in (1+ I )∗, and K (2)

2 (O)⊆ K (2)
2 (F), we have an obvious

map of complexes, C•(O)→ C•(F), which fits into the commutative diagram

(2.66)

H 1(C•(O)) //

��

K (3)
4 (O)/K (2)

3 (O)∪O∗
Q

��

H 1(C•(F)) // K (3)
4 (F)/K (2)

3 (F)∪ F∗
Q

and similarly for H 2.
Finally, we have a commutative diagram

M3(O) //

��

M2(O)⊗O∗
Q

//

��

O∗
Q
⊗
∧2O∗

Q

��
0 // C1(O) // C2(O)

as follows. We map [u]2⊗ v to [u]2 ∪ v, and u⊗ v∧w to {u, v}⊗w−{u, w}⊗ v.
This gives rise to a commutative diagram

(2.67)

H 2(M(3)(O)) //

��

K (3)
4 (O)

��

H 1(C•(O)) // K (3)
4 (O)/K (2)

3 (O)∪O∗
Q
,

which is the bottom left square of (1.16). Obviously, the two diagrams above are
compatible with (2.35) and (2.36) under the localization from O to F .

2.5.5. Construction of the complexes M̃(2)(O) and M̃(3)(O). For n = 2 and 3, let
Nn(O)= 〈[u]n + (−1)n[u−1

]n with u in O[〉Q ⊆ Mn(O). Consider the subcomplex
of M(2)(O) given by N2(O)→d(· · · ). Because the corresponding subcomplex (2.14)
of M(2)(F) is acyclic and the natural map M2(O)→ M2(F) is an injection (see
Remark 2.45), this subcomplex is acyclic. The second term is Sym2(O∗

Q
), and the

resulting quotient complex of M(2)(O) is
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(2.68) M̃(2)(O) : M̃2(O)→
∧2O∗Q ,

with M̃2(O)= M2(O)/N2(O), and d[u]2 = (1− u)∧ u.
Because M̃(2)(O) is quasiisomorphic to M(2)(O) we have maps

H i (M̃(2)(O))→ K (2)
4−i (O) .

For i = 1 this is again an injection. There is a map M̃(2)(O)→ M̃(2)(F) obtained
by localizing the construction from O to F , and for i = 1, 2 a commutative diagram

H i (M̃(2)(O))

��

H i (M(2)(O)) //'oo

��

K (2)
4−i (O)

��

H i (M̃(2)(F)) H i (M(2)(F)) //'oo K (2)
4−i (F) .

In this diagram for i = 1 the central vertical map is injective by the discussion in
Remark 2.45. Hence the same holds for the map H 1(M̃(2)(O))→ H 1(M̃(2)(F)),
the map M̃2(O)→ M̃2(F) is an injection, and M̃(2)(O) is a subcomplex of M̃(2)(F).

By Remark 2.45, in the commutative diagram

M3(O) //

��

M2(O)⊗O∗
Q

//

��

O∗
Q
⊗
∧2O∗

Q

��

M3(F) // M2(F)⊗ F∗
Q

// F∗
Q
⊗
∧2 F∗

Q

the two right-most maps are injective. (If we knew (as part of the rigidity conjecture)
that H 1(M(3)(O))→ H 1(M(3)(F)) were injective, then this would also hold for the
left-most map.) We can quotient out the complex M(3)(O) in the first row by the
subcomplex

N3(O)→ N2(O)⊗O∗Q→ d(· · · ),

which maps to the subcomplex (2.26) of the second row. We saw earlier that
d : N2(O)→ Sym2(O∗

Q
) is an isomorphism, so as in the proof of [de Jeu 1995,

Corollary 3.22] one sees that this subcomplex is acyclic in degrees 2 and 3. The
quotient complex is

M̃(3)(O) : M̃3(O)→ M̃2(O)⊗O∗Q→
∧3O∗Q ,

where M̃3(O)= M3(O)/N3(O), and the natural map M̃(3)(O)→ M̃(3)(F) is an injec-
tion in degrees 2 and 3 because, as we saw earlier, M̃2(O) injects into M̃2(F). Still
denoting the class of [x]i with [x]i , the maps are now given by d[u]3= [u]2⊗u and

(2.69) d[u]2⊗ v = (1− u)∧ u ∧ v.
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Using (2.54) we see that for i = 2, 3 we have a commutative diagram

H i (M̃(3)(O))

��

H i (M(3)(O))

��

'oo // K (3)
6−i (O)

��

H i (M̃(3)(F)) H i (M(3)(F))
'oo // K (3)

6−i (F) .

Remark 2.70. Using the statements just before (2.68), the arguments in Remark
2.28 can also be given for O instead of F . This way we obtain a map

M̃2(O)⊗O∗Q→ M2(O)⊗O∗Q/d(N3(O)),

which we still denote by 4. It yields a decomposition

M2(O)⊗O∗Q/d(N3(O))= im(4)⊕ N2(O)⊗O∗Q/d(N3(O)),

and induces the inverse to the natural isomorphism H 2(M(3)(O))→ H 2(M̃(3)(O)).
The formulas in Lemma 2.29 and Corollary 2.30 apply in this case as well.

2.6. A diagram. For the convenience of the reader, we give in Figure 1 a com-
mutative diagram summarizing the cohomology groups of most of the complexes
introduced, and the maps. We have kept the layout of the diagram in the same
spirit as the relativity in the plane. Note that the outer square is only relevant in
the situation of Notation 1.7, and that we may replace F and O elsewhere in the
diagram with F ′ and O′ in this case.

The top half of this diagram is the top of the one in (1.16). The vertical maps
correspond to the maps from constructions over O to the corresponding constructions
over F . The horizontal maps are the maps on cohomology of complexes constructed
in the previous subsections, and the diagonal maps correspond to the maps in (2.35),
(2.56), (2.58) and (2.66).

Note that by Remarks 2.3 and 2.5 the rightmost vertical map is an isomorphism.

3. The classical case

In Proposition 3.1 below, we rephrase the results in Theorem 4.2 and Remarks 4.3
and 4.5 of [de Jeu 1996], which concern a curve C over C with function field
F = C(C) and associated analytic manifold Can, in a way that resembles the
formulas in Theorems 1.12 and 1.13(1). (See Remark 10.14 for some thoughts on
this comparison.) In fact, Sections 7 and 8 grew out of attempts to obtain syntomic
analogues of those results of [loc. cit.], but the resulting formulas seem to be less
flexible than the classical ones so we rephrase the latter.

In this section we let H 1
dR(F,R(2))= lim→

U
H 1

dR(U,R(2)) where the limit is over
U with Can \U finite, and similarly for other cohomology groups, or forms. Here
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H 2(M(3)(C
′)) //

��

$$

K (3)
4 (C′)⊕ K (2)

3 (k)∪O′∗
Q

��

zz

H 2(M(3)(O)) //

��

""

K (3)
4 (O)

��

||

H 1(C•(O)) //

��

K (3)
4 (O)

K (2)
3 (O)∪O∗

Q

��

H 1(C•(F)) // K (3)
4 (F)

K (2)
3 (F)∪F∗

Q

H 2(M(3)(F)) //

<<

K (3)
4 (F)

bb

H 2(M(3)(C ′)) //

::

K (3)
4 (C ′)⊕ K (2)

3 (k)∪ F ′∗
Q

dd

Figure 1. Diagram summarizing cohomology groups (see previous page).

R(m)= (2π i)mR⊂C. Ifω is holomorphic on Can, then by [loc. cit., Proposition 4.6]
one has a well-defined map H 1

dR(F,R(2))→ C by taking a representative β of a
class in H 1

dR(F,R(2)) satisfying [loc. cit., (9)], and computing
∫

Can
ω∧β.

The signs of the maps in the following proposition are normalized to be compat-
ible with the ones in the theorems in the introduction (see Remark 3.3).

Proposition 3.1. Let C be a smooth, proper, irreducible curve over C with function
field F = C(C), and let Can be the analytic manifold associated to C(C). For a
holomorphic 1-form ω on Can, the maps

9 ′′
∞,ω : M2(F)⊗ F∗Q→ C

[g]2⊗ f 7→ 4
∫

Can

log | f | log |g| dlog |1− g| ∧ω,

9 ′′′
∞,ω : M̃2(F)⊗ F∗Q→ C

[g]2⊗ f 7→ 8
3

∫
Can

log | f |(log |g| dlog |1−g| − log |1−g| dlog |g|)∧ω

are well-defined, and induce maps H 2(M(3)(F)) → C and H 2(M̃(3)(F)) → C,
respectively. Moreover, with regC : K

(3)
4 (F)→ H 2

D(F,R(3))' H 1
dR(F,R(2)) the
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Beilinson regulator map, the compositions

H 2(M(3)(F))
(2.25)
−−−→ K (3)

4 (F)
∫

Can
ω∧regC(·)

−−−−−−−−→ C,

H 2(M̃(3)(F))
(2.27)
−−−→ K (3)

4 (F)
∫

Can
ω∧regC(·)

−−−−−−−−→ C

coincide with these induced maps.

Proof. Since d⊗id :M2(F)⊗F∗
Q
→ F∗

Q
⊗F∗

Q
⊗F∗

Q
maps [g]2⊗ f to (1−g)⊗g⊗ f ,

9 ′′
∞,ω is well-defined. That it induces the stated map on H 2(M(3)(F)), and that this

induced map has the stated property, follows from Proposition 3.2 and (the proof
of) Theorem 4.2 of [de Jeu 1996], where we normalize the maps as explained in
Remark 3.3 below. (The condition in [loc. cit.] that C is defined over a number
field is not used in the proof of Theorem 4.2. The same holds for the condition
with respect to complex conjugation on ω, which guaranteed only that the value of
the integral was in R(1)⊂ C.)

Applying Corollary 2.30 shows that 9 ′′′
∞,ω maps [g]2⊗ f to

4
3

∫
Can

(3 log | f | log |g|dlog |1−g|+log |1−g|(log |g|dlog | f |−log | f |dlog |g|))∧ω.

Using a limit version of Stokes’ theorem we may subtract 0 =
∫

Can
d(α ∧ ω) for

α = 4
3 log |g| log |1− g| log | f |, which gives the formula in the proposition. �

Remark 3.2. The Bloch–Wigner dilogarithm D(z) :P1
C
\{0, 1,∞}→ (2π i)R⊂C

satisfies dD(z) = log |z|di arg(1− z)− log |1− z|di arg(z) and extends to a con-
tinuous function on P1

C
. It is the function in the classical case that corresponds

to Lmod,2(z) in the sense that they have similar functional equations, for example,
D(z) + D(z−1) = 0. Because d log(g) ∧ ω = d log(1 − g) ∧ ω = 0, we find
d(P2,Zag(g) log | f |ω) equals

P2,Zag(g) dlog | f | ∧ω+ log | f |(log |1− g| dlog |g| − log |g| dlog |1− g|)∧ω.

Hence 9 ′′′
∞,ω is also given by mapping [g]2⊗ f to 8

3

∫
Can

log | f |D(g)ω.

Remark 3.3. The signs in Proposition 3.1 and Remark 3.2 are chosen in a way that
is compatible with the ones in the p-adic case in Remark 5.25 below. In [de Jeu
1996] it is shown that, for a holomorphic 1-form ω, the map

K (3)
4 (F)

∫
Can

ω∧regC(·)

−−−−−−−−→ C

factorizes through the quotient map K (3)
4 (F)→ K (3)

4 (F)/K (2)
3 (F)∪ F∗

Q
in (2.36),

giving maps H 2(M(3)(F))→ H 1(C•(F)) ' K (3)
4 (F)/K (2)

3 (F) ∪ F∗
Q
→ C. This

composition is the one used in Proposition 3.1, and there is a choice of sign in the
isomorphism here, which we normalize as follows.
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The regulator map gives us

regC : K
(3)
3 (X loc

F ;�)→ H 3
D(X

loc
F ;�;R(3))' H 2

dR(X
loc
F ;�;R(2)).

Computing the last cohomology group here as

(3.4)

{
(ε, ε∞, ε0)

∣∣ ε ∈ A2(X loc
F ), εs ∈ A1(F), dε = 0, dεs = ε|t=s(s = 0,∞)

}{
(dψ,ψ|t=∞+ d f∞, ψ|t=0+ d f0)

∣∣ ψ ∈ A1(X loc
F ), fs ∈ A0(F)

} ,

we can map the class of (ε, ε∞, ε0) to

(3.5) 1
2π i

∫
X×Can

ω∧ dlog(t)∧ ε−
∫

Can

ω∧ (ε∞− ε0),

where the integral is taken with the product orientation on X ×Can, because this is
trivial on (dψ,ψ|t=∞, ψ|t=0) with ψ in A1(F). The calculations in [de Jeu 1996]
are carried out using ε in A∗(X loc

F ) that restrict to 0 for t = 0 or∞, which yield the
same cohomology group. The calculations in the proof of Proposition 3.1 therefore
use the first term in (3.5).

The connecting map

H 1
dR(F;R(2))|t=∞⊕ H 1

dR(F;R(2))t=0→ H 2
dR(X F ;�;R(2))

in the long exact sequence for relative cohomology maps (ε∞, ε0) to (0, ε∞, ε0).
The map in (3.5) therefore factorizes the composition

H 2
dR(X F ;�;R(2))

'
−→ H 1

dR(F;R(2))
∫

Can
ω∧·

−−−−−→ C

(with one of the two natural choices of isomorphism in the first map) over the
localization map H 2

dR(X F ;�;R(2))→ H 2
dR(X

loc
F ;�;R(2)).

For this choice of isomorphism we have a commutative diagram

(3.6)

K (3)
3 (XC ;�)

' //

regC

��

K (3)
4 (C)

regC

��
H 2

dR(XCan;�;R(2))
' // H 1

dR(Can;R(2))

by normalizing the isomorphism at the top in the same way, and using the same
convention in all localizations. This fixes the choice of sign in (2.34). Finally, there
is a choice in the sign of the map H 2(M(3)(F))→ H 1(C•(F)) (see (2.36)), but we
choose this so that the formulas in Proposition 3.1 hold.

For O, one can give a similar discussion on the K-theory side using the diagram
(2.67), and this is compatible with the one here by the commutativity of (2.66) and
the compatibility of (2.67) with (2.36). In particular, the choices of signs on the
K-theory side for O are compatible with those for F .
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In Remark 5.25 we give a description of the maps on the p-adic side, using
the description of syntomic cohomology in (5.5) that matches our description
above. Comparing the sign of the term ε∞− ε0 in both cases, and taking into
account that we are ultimately cupping on the left with ω in the p-adic case as
well (see Proposition 5.22), it is then clear that we have normalized the formulas in
Proposition 3.1 and those in the theorems in the introduction in the same way.

4. Coleman integration

In this short section we briefly discuss Coleman’s integration theory in the one-
dimensional case only. The interested reader may refer to [Besser 2000b] for
more details.

Coleman theory is done on wide open spaces in the sense of Coleman [1988].
In general these are the overconvergent spaces described in Section 5. In the one-
dimensional case these can be described concretely in the following way. Let X
be a curve over Cp with good reduction (there is a minor assumption that it is
obtained by extension of coefficients from a curve over a complete discretely valued
subfield, which will always be satisfied in our applications). The rigid analytic
space X (Cp) is set-theoretically decomposed as the union X =

⋃
x Ux where x

varies over the points in the reduction of X and Ux is the residue disc (tube in
the language of Berthelot) of points reducing to x . By the assumption of good
reduction each residue disc is isomorphic to a disc |z|< 1. A wide open space U is
obtained from X by fixing a finite and nonempty set of points S in the reduction and
throwing away the discs inside the residue discs Ux , x ∈ S, isomorphic to |z|< r
for arbitrarily large r < 1. The space U should be thought of as the inverse limit of
the corresponding spaces Ur .

Coleman theory associates to U the Cp-algebra Acol(U ) and the Acol(U )-modules
�i

col(U ) with differentials forming a complex. The key property is that this complex
is exact at the one and zero forms, that is, there is an exact sequence

0→ Cp→ Acol(U )→�1
col(U )→�2

col(U ).

The space �1
col(U ) contains the space �1(U ) of overconvergent forms on U , that

is, those forms that are rigid analytic on some Ur . Similarly, the space Acol(U )
contains the space A(U ) of overconvergent functions. The differential extends the
usual differential on the subspaces.

The whole picture extends to higher dimensions. We shall only need the case
where U is one-dimensional. In this case the space �2

col(U ) is already 0.
Coleman functions may be interpreted as locally analytic functions on U . More

precisely, again in the one-dimensional case, for x /∈ S, the intersection of the residue
disc Ux with U is Ux , while for x ∈ S it is an annulus ex isomorphic to an annulus
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of the form r < |z|< 1. A Coleman function is analytic on each disc Ux and is in
the polynomial algebra A(ex)[log(z)] where z is a local parameter on an annulus
Ux (here, there is an implicit global choice of a branch of the p-adic logarithm).

We define the space Acol,1(U ) to be the inverse image of�1(U )⊆�1
col(U ) under

the differential d. The space of differentials �1
col,1(U ) is Acol,1(U ) ·�1(U ).

Ifω∈�1(Ur ) and y, z∈Ur the integral
∫ y

z ω is clearly well-defined as f (y)− f (z)
where f ∈ Acol(Ur ) and d f = ω. It is a basic property of Coleman integration
that if X,U, ω, z, y are all defined over the complete subfield K , then so is the
integral

∫ y
z ω.

For f ∈ A(U ) the function log( f ) is in Acol,1(U ). Pullback by a rigid analytic
endomorphism φ of U (such as the Frobenius endomorphisms that will appear in
the next section) preserves Coleman functions and in particular Acol,1(U ).

5. Regulators

In this section we compute the regulator on C1(O) in (modified) syntomic cohomol-
ogy. In case the element lies in the subspace H 1(C•(O)), we also explain how we
wish to interpret the cup product of this regulator with the cohomology class of
a form ω of the second kind on C , and what are the obstacles for doing so, thus
paving the way for constructions in the next sections.

We first write down the relevant spaces and the (modified) syntomic complexes
computing their cohomology. For the full story the reader should consult [Besser
2000b].

We begin with a smooth proper relative curve C/R. Related to that is the space
XC :=P1

C\{t=1}. The superscript loc will denote various localizations, obtained by
removing the image of a finite number of R-sections. We note that the computations
in this section can be done after a finite base change, so we may easily get from
more general localizations into this situation by further localization. We shall use
localizations Cloc of C or X loc

C of XC. If the localization is nontrivial, and we may
and do assume this, then all localized schemes are affine.

Our goal is to compute the syntomic regulator K (3)
4 (C)→ H 2

syn(C, 3). According
to [Besser 2000b, Proposition 8.6.3] there is an isomorphism, commuting with
the regulator, H 2

syn(C, 3)
'
−→H̃ 2

ms(C, 3), where H̃ms is the Gros style modified rigid
syntomic cohomology, in the sense of loc. cit. From now on we shall therefore
concentrate on modified syntomic cohomology. We shall refer to it simply as
syntomic cohomology.

Let us recall one of the possible models for modified syntomic cohomology
for affine schemes. Let A be an affine R-scheme. We assume we have an open
embedding A ↪→ A, where A is proper. From the embedding A ↪→ A one obtains
the overconvergent space A†. This space can be made sense of in Grosse-Klönne’s
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[2000] theory of overconvergent spaces as the space whose affine ring, O(A†), is
the weak completion, in the sense of Monsky–Washnitzer, of O(A). However, here
we shall simply think of A† formally as the inverse system of strict neighborhoods
of the special fiber of A in that of A.

We further assume that we have an R-linear endomorphism φ : A†
→ A† whose

reduction is a power of Frobenius, say of degree q = pr . We call φ a Frobenius
endomorphism. Standard results [Coleman 1985, Theorem A-1; van der Put 1986,
Theorem 2.4.4.ii] imply one always has such φ.

With the above data, we have

H̃ n
ms(A, j)= H n(MF(F j�•(A†)

1−φ∗/q j

−−−−−→�•(A†))).

Here, the filtration is the stupid filtration on the space of differentials and MF
denotes the mapping fiber (cone shifted by −1). To be more precise, one really
needs to take the limit of these cohomology groups with respect to powers of φ,
in a way explained in [Besser 2000b], but it is also explained there that one can
ignore this point.

The cohomology groups H̃ms are in fact functorial with respect to arbitrary maps
of schemes. This functoriality is not at all obvious from the definition except in the
case where the maps extend to the dagger spaces and commute with φ. Fortunately,
this will always be the case for us. In this situation, one may also construct relative
cohomology in the obvious way (the reader is advised to look at [Besser and
de Jeu 2003, Section 5] for constructions of complexes computing relative syntomic
cohomology).

To end this general review we recall that the corresponding syntomic regulator
is defined by the formula

(5.1) f ∈ O(A)∗ ⊂ K1(A) 7→ (dlog( f ), log( f0)/q) ∈ H̃ 1
ms(A, 1),

where f0 = f q/φ∗( f ) and has the property that log( f0) is in O(A†). We also recall
from[Besser 2000b, Definition 6.5] that the cup product

H̃•ms(A, i)× H̃•ms(A, j)→ H̃•ms(A, i + j)

is given by

(5.2) (ω1, ε1)∪ (ω2, ε2)

=

(
ω1∧ω2, ε1∧

(
γ+(1−γ )φ

∗

q j

)
ω2+(−1)degω1

((
(1−γ )+γ φ

∗

q i

)
ω1

)
∧ε2

)
for some constant γ , which can be taken arbitrarily (producing homotopic products).

We now write these constructions for the affine schemes we are considering. To
simplify notation we write U for (Cloc)†, U ′ for (X loc

C )†, and XU for (XCloc)†. We
may localize so that U ′ ⊂ XU . We fix a Frobenius endomorphism φ :U →U . We
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can then take the Frobenius endomorphism for XU to be the product of φ with the
map t 7→ tq and for U ′ the restriction of this endomorphism to U ′. Since t 7→ tq

fixes 0 and∞ we can use the embedding of U in U ′ at t = 0 and t =∞ to create the
complex computing relative cohomology. With this we have the following models
for syntomic cohomology.

(5.3) H̃ i
ms(X

loc
C , i)

=

{
(ω, ε), ω ∈�i (U ′), ε ∈�i−1(U ′), dω = 0, dε =

(
1− φ∗

q i

)
(ω)

}
{(0, dε), ε ∈�i−2(U ′)}

for i = 1, 2. Now, for relative syntomic cohomology one we can write, by throwing
away terms which are forced to be 0,

(5.4) H̃ 2
ms(X

loc
C ,�, 2)={

(ω, ε, ε∞, ε0),
ω ∈�2(U ′), ε ∈�1(U ′), εs ∈ O(U ), s = 0,∞,

dω = 0, dε =
(
1− φ∗

q2

)
(ω), dεs = ε|t=s, s = 0,∞

}
{(

0, dε, ε|t=∞, ε|t=0
)
, ε ∈ O(U ′)

} .

The map between H̃ 2
ms(XC,�, 2) and H̃ 2

ms(XC, 2) remembers only ω and ε. Since
U ′ is two dimensional and therefore does not support forms of degree 3, we also have

(5.5) H̃ 3
ms(X

loc
C ,�, 3)

=
{(ε, ε∞, ε0), ε ∈�

2(U ′), εs ∈�
1(U ), dε = 0, dεs = ε|t=s(s = 0,∞)}

{(dε, ε|t=∞+ dε∞, ε|t=0+ dε0), ε ∈�1(U ′), ε∞, ε0 ∈ O(U ′)}
.

If we replace U ′ by XU we obtain a model for H̃ 3
ms(XCloc,�, 3).

The last model is

(5.6) H̃ 2
ms(C

loc, 3)= {ε ∈�
1(U ), dε = 0}

{dε, ε ∈ O(U )}
.

This is of course just the first de Rham cohomology of U . However, the “correct”
isomorphism with this cohomology is not the obvious one but rather the one twisted
by 1−φ∗/q3, that is,

(5.7) H 1
dR(U/K )→ H̃ 2

ms(C
loc, 3), [η] 7→ [(1−φ∗/q3)η]

(for an explanation of this see [Besser 2000b, Proposition 10.1.3]). Here, and in
what follows, we denote the cohomology class of an element in square brackets.

At this point, we are able to make more precise the definition of the p-adic
regulator for open curves that was hinted at in the introduction before stating
Theorem 1.11. As explained there, for each U as above, one has a canonical projec-
tion H 1

dR(U/K )
p
−→H 1

dR(C/K ). This is the unique Frobenius equivariant splitting of
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the natural restriction map in the other direction. These projections are compatible
in the obvious way when restricting to a smaller U .

Definition 5.8. The regulator map

reg′p : K
(3)
4 (Cloc)→ H 1

dR(C/K )

is the composition

K (3)
4 (Cloc)→ H 1

dR(U/K )
p
−→ H 1

dR(C/K ) .

Using the compatibility of the maps p mentioned above for all possible Cloc, from
K (3)

4 (O) = lim
−→Cloc K (3)

4 (Cloc) (see [Quillen 1973, Proposition 2.2; Srinivas 1996,
Lemma 5.9]) we also obtain a well defined regulator map

reg′p : K
(3)
4 (O)→ H 1

dR(C/K ).

We need a formula for the cup product

H̃ 2
ms(X

loc
C ,�, 2)× H̃ 1

ms(X
loc
C , 1)→ H̃ 3

ms(X
loc
C ,�, 3)

in terms of the models (5.4), (5.3) and (5.5) respectively. Using the formula for
a cup product between a cone and a complex and (5.2) with γ = 0 we find the
following formula:

(5.9) (ω, ε, ε∞, ε0)∪ (η, h)=
(

hω+ ε∧ φ
∗

q
η, ε∞η, ε0η

)
.

Suppose now that f and g are in O∗(Cloc) (see Section 2.5.4). To compute the
regulator of [g]2 ∪ ( f ) we start with [g]2 in K (2)

2 (X loc
C ,�). It maps in K (2)

2 (X loc
C )

to −((t − g)/(t − 1))∪ (1− g), by pulling back along g the corresponding result
for the universal elements [Besser and de Jeu 2003, Proposition 6.7].

Lemma 5.10. We have in H̃ 2
ms(X

loc
C , 2) that

− regp

( t−g
t−1
∪ (1− g)

)
= (ωg, εg)

in the model (5.3) with

ωg =− dlog
( t−g

t−1

)
∧ dlog(1− g)

εg =
1
q

log(1− g)0 dlog
( t−g

t−1

)
−

1
q2 log

( t−g
t−1

)
0

dlogφ∗(1− g)

Proof. This follows from the formula (5.1) for the regulators of functions, the
compatibility of regp with cup products and the cup product formula (5.2). �

In what follows, the notation [a1, . . . , ai ] will denote the class of (a1, . . . , ai ) in
(5.4) or (5.5), depending on whether i = 3 or 4.
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Proposition 5.11. We have in H̃ 2
ms(X

loc
C ,�, 2), using the model (5.4),

regp([g]2)= [ωg, εg, 0,2(g)]

where

(5.12) d2(g)= εg|t=0 =
1
q

log(1− g)0 dlog g− 1
q2 log g0 dlogφ∗(1− g).

Proof. We are looking for a closed four-tuple, whose first two coordinates represent
the cohomology class of (ωg, εg). It is easy to see that we may assume that the first
two coordinates are indeed (ωg, εg). Then the closedness condition implies that the
differentials of the next two coordinates give the restrictions to t =∞ and t = 0,
respectively, of εg. These are, respectively, 0 and εg|t=0, so the result is clear. �

Remark 5.13. 1. One can show that there exists a function 2 on P1 such that
2(g) is indeed the composition of 2 and g, but we shall not need to use this.

2. The determination of the regulator at this stage is incomplete, since we have
only determined 2(g) up to a constant. It will turn out that for the regulator
computation this is irrelevant. For the computation of the boundary this
becomes much trickier. We in fact failed to determine the boundary of the
regulator directly. When we need this towards the end of Section 10 for the
proof of Theorem 1.9, we shall use a trick to overcome this difficulty, which
in particular forces us to assume working over a number field at that stage.

Proposition 5.14. The regulator of [g]2∪ ( f ) in H̃ 3
ms(X

loc
C ,�, 3) is represented by

the following element in the model (5.5),

ε(g, f ) :=
(1

q
log f0ωg +

1
q
εg ∧φ

∗ dlog f, 0, 1
q
2(g)φ∗ dlog f

)
.

Proof. This follows again from the compatibility of the regulator with cup products
and from the formulas for the cup product in relative syntomic cohomology (5.9). �

Suppose now that α =
∑

i [gi ]2 ∪ ( fi ) belongs to

H 1(C•(O))' K (3)
4 (O)/K (2)

3 (O)∪O∗Q;

see (2.65). Note that α is only determined up to an element in (1+ I )∗O ∪O∗
Q

; see
(2.61) and (2.64). A term in the latter space consists explicitly of elements of the
form

(5.15) δ =
∑

j

δ1, j ∪ δ2, j ,

with δ1, j ∈ K (1)
1 (X loc

C ,�) and δ2, j ∈ K (2)
2 (Cloc), for all possible localizations. There-

fore, for an appropriately chosen Cloc, there exists β ∈ K (3)
3 (XCloc,�) whose restric-

tion to (X loc
C ,�) is α+δ, where δ is as in (5.15). If we write regp(β)= [ε, ε∞, ε0],
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with the ε’s on XU , then we have [ε, ε∞, ε0]|(X loc
C ,�) =

∑
[ε(gi , fi )] + regp(δ).

Writing this explicitly, this means that

(ε, ε∞, ε0)|(U ′,�) =
∑

ε(gi , fi )+ regp(δ)+ (dλ, λ|t=∞, λ|t=0)

for some λ∈�1(U ′) and where now regp(δ)means any form representing this class.
The isomorphism T∞0 : H̃

3
ms(XCloc,�, 3)∼= H̃ 2

ms(C
loc, 3) is obtained by integra-

tion from 0 to∞. More precisely it is given by

(5.16) [ε, ε∞, ε0] 7→

[(∫
∞

0
ε

)
− (ε∞− ε0)

]
where the integration is only with respect to the variable t ;

(5.17)
∫
∞

0
( f (x, t) dt ∧ dx)=

(∫
∞

0
f (x, t) dt

)
dx .

Note that we are integrating forms on XU . For forms on U ′ we may do Coleman
integration instead (Section 4). This technique was introduced in [Besser and de Jeu
2003, Section 5]. Note that we only discussed Coleman integration over Cp. The
extension of scalars of U and the fibers of U ′→U , to Cp are wide open space in
the sense of Coleman so one can do Coleman integration on them. By abuse of
notation we shall continue to denote this extension of scalars by the same letters.
Coleman integration will be the same as ordinary integration if the forms extend
to XU . The theory of Coleman integration is not sufficiently developed yet to tell
us that what we do makes sense in general, so we must be careful to check that it
makes sense for the particular forms we are working with.

Now we check what happens to the term ε(g, f ) under this integration, which
we continue to denote by T∞0 . The integral of the first term is∫
∞

0

1
q

log f0ωg +
1
q
εg ∧φ

∗ dlog f = 1
q

log f0

∫
∞

0
ωg +

1
q

(∫
∞

0
εg

)
∧φ∗ dlog f

=
1
q

log f0 log g dlog(1− g)− 1
q2 log(1− g)0 log gφ∗ dlog f.

The last equality follows because
∫
∞

0 dlog((t − g)/(t − 1))=− log g and the term
involving log((t−g)/(t−1))0 vanishes because it does not involve a dt . Subtracting
the term ε∞− ε0 we obtain

(5.18) T∞0 ε(g, f )= 1
q

log f0 log g dlog(1− g)

−
1
q2 log(1− g)0 log gφ∗ dlog f + 1

q
2(g)φ∗ dlog f.

Note that this integral belongs to �1
col,1(U ), in the notation of Section 4.
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Lemma 5.19. For δ in (1+ I )∗O ∪ K (2)
2 (O) we have T∞0 (regp(δ))= 0.

Proof. As in (5.15) δ is a sum of terms of the form δ1∪ δ2 with δ1 in K (1)
1 (X loc

C ,�)
and δ2 in K (2)

2 (Cloc). That T∞0 vanishes on these elements follows from the proof
of [Besser and de Jeu 2003, Proposition 7.2]. �

Now we deal with the term (dλ, λ|t=∞, λ|t=0).

Proposition 5.20. Suppose that X loc
C is obtained from XCloc by removing the graphs

of t = h j (x) for j = 1, . . . , n. Assume further that the reductions of those graphs
are either disjoint or identical (which we can achieve by shrinking Cloc). Then there
are a j (x), a(x) ∈ O(U ) such that we have

T∞0 (dλ, λ|t=∞, λ|t=0)= d(a+
∑

j

a j log(h j )),

where, if there are two h j with identical reduction, one may take just one of them.
In particular, it belongs to �1

col,1(U ).

Proof. We have global coordinates x and t on U ′ so we can write λ= f (x, t) dx +
g(x, t) dt . Then

dλ=
(
∂ f
∂t
−
∂g
∂x

)
dt ∧ dx .

Therefore ∫ t=∞

t=0
dλ= ( f (x,∞)− f (x, 0)) dx −

(∫ t=∞

t=0

∂g
∂x

dt
)

dx .

But the first term is exactly λ|t=∞− λ|t=0 so we find

T∞0 [dλ, λ|t=∞, λ|t=0] = −d
(∫ t=∞

t=0
g(x, t) dt

)
.

Consider now the two-form γ =g(x, t)dx∧dt ∈�2(U ′). This is closed so represents
a cohomology class in H 2

rig((X
loc
C )κ/K ). We have a short exact sequence

H 2
rig((XCloc)κ/K )→ H 2

rig((X
loc
C )κ/K

Res
−−→⊕i H 1

rig((C
loc)κ/K ),

where the map Res = ⊕ j Res j is the sum of the boundary maps on the reduc-
tions of t = h j (x), composed with the pullback under the isomorphisms of these
graphs with (Cloc)κ . Suppose that Res j (γ ) is the cohomology class of a j (x) dx ∈
�1(U ). Let γ j := a j (x) dx ∧ dlog(t − h j (x)). Clearly Resl(γ j ) = 0 if l 6=
j . We claim that Res j (γ j ) = Res j (γ ). This can be seen easily by applying
the map (x, t) → (x, t − h j (x)), transforming γ j to a j (x) dx ∧ dlog(t). Thus,
γ −

∑
j γ j extends to H 2

rig((XCloc)κ/K ) and its integral is a holomorphic one
form on U . Let this form be a(x) dx . Since

∫ t=∞
t=0 γ j = ±a j (x) log(h j (x))dx
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we find ±
∫ t=∞

t=0 γ = (a(x)+
∑

a j (x) log(h j (x))) dx and dividing by dx we find∫ t=∞
t=0 g(x, t) dt =±(a(x)+

∑
a j (x) log(h j (x))). This completes the proof. �

These results give us a strategy for breaking the regulator into a sum of terms,
each depending on the pairs (gi , fi ), as follows. Suppose that ω is a form of the
second kind on C and let [ω] be its cohomology class in H 1

dR(C/K ).

Definition 5.21. A functional Lω : �1
col,1(U )→ Cp will be called good if it has

the following properties:

• it kills terms of the forms da and d(a log f ) for a, f ∈ O(U ),

• if η is in �1(U ) then we have Lω(η)= [ω] ∪p([η]).

Proposition 5.22. Suppose that an element β in K (3)
4 (Cloc) maps to

∑
i [gi ]2∪ ( fi )

in H 1(C•(O)) under the natural map

K (3)
4 (Cloc)→ K (3)

4 (O)→ K (3)
4 (O)/K (2)

3 (O)∪O∗Q

(see (2.65)), and that regp(β)= [η0] in the model (5.6). Then we have, for a good
functional Lω,

[ω] ∪p([η0])=
∑

i

Lω
(
T∞0 ε(gi , fi )

)
.

Proof. We must first show that the map

K (3)
4 (Cloc)

regp
−−→ H̃ 2

ms(C
loc, 3)

η0 7→Lω(η0)
−−−−−−→ Cp

factors via K (3)
4 (O)/K (2)

3 (O)∪O∗
Q

. By further localizing, it suffices to show that
the map above vanishes on elements of the form γ ∪ f with γ ∈ K (2)

3 (Cloc) and
f ∈ O∗(Cloc). We have

(5.23) H̃ 1
ms(C

loc, 2)= {(0, ε), ε ∈ O(U ), dε = 0} = {(0, ε), ε ∈ K }.

Thus regp(γ ) = (0, α) for some α ∈ K . On the other hand, by (5.1) we have
regp( f )= (dlog f, log( f0)/q) (here it does not matter what f0 is). Using (5.2) we
obtain, in the model (5.6)

regp(γ ∪ f )= (0, α)∪ (dlog f, log( f0)/q)= α dlog f.

The factorization thus follows from first property of the good functional. Next,
by Proposition 5.20 the first property also implies that Lω kills all terms of the
form T∞0 [dλ, λ|t=∞, λ|t=0]. The result now follows immediately from the discus-
sion above. �

Remark 5.24. There is a final wrinkle here because of the normalization (5.7) for
the syntomic regulator. For β as in the corollary, the regulator of β is in fact [η]
with (1− (φ∗/q3))[η] = [η0]. Thus, once we have the functional Lω we shall be
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able to compute [ω] ∪p(η0) but will in fact want [ω] ∪p(η). Fortunately, it is easy
to see (and will be explained) that if we know [ω] ∪ p(η0) for all ω, then we also
know [ω] ∪p(η) for all ω. In fact, as in previous computations, the result with η is
much simpler than with η0, confirming the “correctness” of our normalization.

Remark 5.25. As with some of our previous works on syntomic regulators, one
can ask about the sign compatibility between the p-adic and classical regulators;
see [Besser et al. 2009, Remark 4.16]. As explained in Remark 3.3, the signs in the
various isomorphisms induced by using relative K-theory and relative Deligne or
de Rham cohomology are normalized by choosing one of the natural isomorphisms
H 2

dR(XCan;�;R(2))' H 1
dR(Can;�;R(2)), in this case by choosing (3.5), and then

demanding that (3.6) commutes. The same approach works for the syntomic
regulator, using (5.16) and the analogue of (3.6) for syntomic cohomology.

Because the descriptions of relative cohomology in 3.3 and (5.5) and the signs in
front of the term ε∞−ε0 in (3.5) and (5.16) are the same (note that just as in Section 3
we are ultimately cupping on the left with ω; see Proposition 5.22), we have chosen
the “relativity isomorphism” for Deligne (or de Rham) cohomology and syntomic
cohomology in a compatible way. Therefore (3.6) and its analogue for syntomic
cohomology lead to the same sign for the K-theory (under the compatibility of the
constructions for O and F as explained in Section 2).

6. Wishes

This section is highly speculative. It contains no formal proofs. Nevertheless, we
feel it is vital for the understanding of a significant portion of the computations
to come. It also suggests interesting research directions into a more canonical
representation of syntomic cohomology, one that would make the computations in
the syntomic case equivalent to the complex case.

We want to follow a strategy that proved very successful in computing syntomic
regulators on K2 of curves; see the discussion after Proposition 5.2 in [Besser 2000c].
We argue heuristically, in some make-believe world where syntomic cohomology
looks much more like Deligne cohomology from the computational standpoint,
and get a formula for the regulator. Then we try to relate this formula with the
formula we obtained in the previous section and see what needs to be proved to
show that the two formulas are equivalent. That the make-believe formula turns out
to be correct is a strong indication that one should be able to turn the make-believe
computation into a rigorous one.

The make-believe computation is based on the following assumptions:

• The “cohomology” is given by the pairs (ω, h) where ω is an i-form and h is
an i − 1 form with dh = ω. Of course h is not an actual form but something
like a Coleman form, for example a Coleman function.
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• The “regulator” of a function f is the pair (dlog( f ), log( f )).

• The cup product is given by (ω1, h1)∪(ω2, h2)= (ω1∧ω2, ω1∧h2 or h1∧ω2).

With these rules, we can redo the computation from the previous section in this
make-believe language: We have in H̃ 2

ms(X
loc
C , 2) that

− regp

( t−g
t−1
∪ (1− g)

)
= (ωg, εg)

with ωg as in Lemma 5.10 and

εg =− log(1− g) dlog
( t−g

t−1

)
.

Since the restriction of εg to t = 0 is − log(1− g) dlog(g) = d Li2(g) we have,
following the proof of Proposition 5.11, that

regp([g]2) ∈ H̃ 2
ms(X

loc
C ,�, 2) equals [ωg, εg, 0,Li2(g)].

Cupping with (dlog( f ), log( f )) we get

ε̃(g, f ) := regp([g]2 ∪ ( f ))=
[
−log( f ) dlog

( t−g
t−1

)
∧ dlog(1− g)), 0, 0

]
.

Applying T∞0 we find T∞0 (ε̃(g, f ))= log( f ) log(g) dlog(1− g).
We now compare this with T∞0 ε(g, f ) of (5.18). Continuing to mimic the

discussion of the K2 in [Besser 2000c], the former version should be an untwisted
version of the latter, that is, without the “twist” by (1− (φ∗/q3)). To see this, we
use the formalism described in [Besser 2000c, Remark 3.1] to get

(6.1)
(

1− φ
∗

q3

)
[log( f ) log(g) dlog(1− g)] =

1
q

log( f0) log(g) dlog(1− g)+ 1
q2 logφ∗( f ) log(g) dlog(1− g)0

+
1
q3 log(g0) logφ∗( f )φ∗ dlog(1− g).

This already begins to look similar to T∞0 ε(g, f ), but there are differences. We want
to argue that the difference is “exact”. This cannot be taken to simply mean being
the differential of something, since in Coleman’s theory every form is integrable.
Experience has shown that things are exact if they are the differential of a product
of functions. We shall use two such assertions. Each one will correspond to a
precise statement in the following sections, which will be justified by the techniques
we shall introduce. To remind ourselves where these occurred, we shall call them
“Wishes”, and mark them explicitly.

Wish 6.2. We have in cohomology that 2(g) dlogφ∗( f )=−logφ∗( f ) d2(g).
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Using this wish we can write the term 1
q2(g) dlogφ∗( f ) in (5.18) as

−
1
q

d2(g) logφ∗( f )

=−
1
q

(
1
q

log(1− g)0 dlog g− 1
q2 log g0 dlogφ∗(1− g)

)
logφ∗( f )

=−
1
q2 log(1− g)0 dlog(g) logφ∗( f )+ 1

q3 log(g0) dlogφ∗(1− g) logφ∗( f ),

so we obtain

T∞0 ε(g, f )= 1
q

log( f0) log(g) dlog(1− g)− 1
q2 log(1− g)0 log(g)φ∗ dlog( f )

−
1
q2 log(1− g)0 dlog(g) logφ∗( f )+ 1

q3 log(g0) dlogφ∗(1− g) logφ∗( f ).

Comparing this with (1− (φ∗/q3))(log( f ) log(g) dlog(1− g)) given in (6.1) we
see that the first and last terms are the same, and that therefore we get our desired
equality, “twisted” by 1− (φ∗/q3) if we get our second wish to come true.

Wish 6.3. We have in cohomology that

log(1− g)0 log(g)φ∗(dlog( f ))+ log(1− g)0 logφ∗( f ) dlog(g)

+ log(g) logφ∗( f ) dlog(1− g)0

is trivial.

In Sections 7 and 8 we shall introduce triple indices. The wishes described
above correspond to precise results stated in terms of triple indices, which we can
indeed prove.

7. The triple index, local theory

We first briefly recall the theory of the “local index” from [Besser 2000c, Section 4].
In our new context this should be called the double index. To make things slightly
simpler, we work in an algebraic context. The transition to working with annuli is
straightforward.

Let K be a field of characteristic 0. We consider the algebra Alog :=K ((z))[log(z)]
of polynomials over the formal variable log(z), over the field of finite to the left
Laurent power series in z. We further consider the module of differentials Alog · dz.
It is an easy exercise in integration by parts to see that every form in Alog ·dz has an
integral in Alog in a unique way up to a constant. We distinguish in Alog the subfield
Mer := K ((z)) of meromorphic functions and the subspace Alog,1=Mer+K · log(z)
consisting exactly of all functions whose differential is in Mer · dz. To F ∈ Alog,1
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we can associated the residue of its differential Res dF ∈ K . If F ∈ Alog,1, then
F ∈Mer if and only if Res dF = 0.

Definition 7.1 [Besser 2000c, Proposition 4.5]. The double index is the unique an-
tisymmetric bilinear form 〈 · , · 〉 : Alog,1× Alog,1→ K such that 〈F,G〉 =Res F dG
whenever this last expression makes sense.

We recall that the construction of this index is essentially trivial: one notices that
the antisymmetry forces 〈log(z), log(z)〉 = 0 and that 〈F,G〉 = −Res G dF when-
ever this expression makes sense. Then one writes F=α log(z)+ f , G=β log(z)+g
with f, g ∈Mer and then one uses the bilinearity to write 〈F,G〉 as a sum of terms
that can be computed.

The triple index turns out to be a bit more complicated. First of all we need to
explain on which data it is evaluated:

• three functions F,G, H in Alog,1,

• for each two functions R and S out of F,G, H a choice of
∫

R dS (that is, a
function in Alog whose differential is R dS) and of

∫
S dR in such a way that

(7.2)
∫

R dS+
∫

S dR = RS.

As it will turn out this information is a bit redundant: clearly
∫

R dS determines∫
S dR. Also it will turn out that the index will be independent of

∫
F dG. Still,

these symmetric data are very convenient. To not carry around too much notation,
we shall simply denote these data by (F,G; H), where the additional choices
should be understood from the context. In particular, any permutation of F,G, H
induces an obvious permutation of the additional data. Also, if (Fi ,G; H), i = 1, 2
are given with all their additional data then there is a natural choice of data for
(F1+ F2,G; H), and similarly in the second and third positions. If we do need to
indicate a change in the auxiliary data we shall write this as (F,G; H |IFdG, . . . ),
where the subscript F dG indicates that I is an integral of F dG.

Proposition 7.3. There exists a unique function from data as above to K , denoted
(F,G; H) 7→ 〈F,G; H〉, called the triple index, such that the following conditions
are satisfied.

(1) Trilinearity: the triple index is linear in each of the three variables, which
means that 〈α1 F1 + α2 F2,G; H〉 = α1〈F1,G; H〉 + α2〈F2,G; H〉 provided
that all auxiliary data are chosen in the way indicated above, and similarly for
linearity in G and H.

(2) Symmetry: we have 〈F,G; H〉 = 〈G, F; H〉, again with the choice of auxiliary
data indicated above.
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(3) Triple identity: we have, again with the obvious additional choices,

〈F,G; H〉+ 〈F, H ;G〉+ 〈G, H ; F〉 = 0.

(4) Reduction to the double index: if G ∈ Mer then 〈F,G; H〉 = 〈F,
∫

G dH〉,
where

∫
G dH is taken from the auxiliary data and is in Alog,1 because by

assumption G dH ∈Mer · dz.

Proof. We first show that the dependency on the choices of integrals is forced by
the properties of the triple index.

Lemma 7.4. Suppose that the triple index exists. We then have the following change
of constant formulas:

(1) If C is a constant, then

〈F,G; H |(I +C)GdH , (J −C)HdG〉 = 〈F,G; H |IGdH , JHdG〉−C ·Res dF,

〈F,G; H |(I +C)FdH , (J −C)HdF 〉 = 〈F,G; H |IFdH , JHdF 〉−C ·Res dG.

(2) The triple index is independent of the integral
∫

F dG.

Proof. We use the trilinearity. Consider the data (F, 0; H), where the additional
data are the same for F and H but we take the integral of 0 dH to be C , hence
we are forced to take that of H d0 to be −C . We take

∫
0 dF = 0. The trilinearity

implied that 〈F,G; H〉 and 〈F, 0; H〉 gives the left-hand side of the formula. But
reduction to the double index means that 〈F, 0; H〉 = 〈F,C〉 = −Res C dF . An
identical argument proves the second case. Finally, if in the above argument we
take instead

∫
0 dF = D and

∫
0 dH = 0, we see from exactly the same argument

that the integral is independent of the auxiliary choice
∫

F dG. �

We now check that the triple index is uniquely defined on all data where at least
one of F , G, H is in Mer. Clearly in this case we can use reduction to the double
index together with symmetry and the triple formula to compute the index, so it is
clearly unique. The following lemma gives existence.

Lemma 7.5. Consider the following recipe:

(1) if G ∈Mer define 〈F,G; H〉 = 〈F,
∫

GdH〉,

(2) if F ∈Mer define 〈F,G; H〉 = 〈G, F; H〉 where the last expression is defined
as in (1),

(3) if H ∈Mer define 〈F,G; H〉=−(〈F, H ;G〉+〈G, H ; F〉) where each of these
terms is defined as in 1.

Then this recipe gives a well-defined 〈F,G; H〉 in all cases where at least one of
F , G and H is in Mer and restricted to this subset it satisfies all properties of the
triple index.
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Proof. To show that this expression is well-defined we need to consider what happens
when two of F,G, H are in Mer: If F,G ∈ Mer we check that 〈F,

∫
G dH〉 =

〈G,
∫

F dH〉. This follows because by the definition of the double index both
expressions equal Res FG dH . Next we check that if G, H ∈Mer then

〈F,
∫

G dH〉+ 〈F,
∫

H dG〉+ 〈G,
∫

H dF〉

= 〈F,G H〉+ 〈G,
∫

H dF〉 by bilinearity of the double index and (7.2)

=−Res G H dF +Res G H dF = 0.

Thus we find that we have a well-defined expression. We need to check that all
properties of the expected triple index hold in this case. Trilinearity is essentially
clear from the bilinearity of the double index. Symmetry is also easy: if F or G
are in Mer then symmetry follows from the first two rules. If H is in Mer then the
expression in (3) is clearly symmetric in F and G. The triple identity is forced
by (3) and the reduction to the double index is an immediate consequence of our
check that the triple index is well-defined. �

Note that the proof of Lemma 7.4 applies verbatim for this partial triple index,
so we know the dependency on the choices of integrals.

To extend the triple index to all F , G and H we first check the case where
F = G = H = log(z). Then we can arrange that all auxiliary data equal 1

2 log2(z).
The triple formula implies immediately that (with these data)

(7.6) 〈log(z), log(z); log(z)〉 = 0.

We can now demonstrate uniqueness for the triple index. Suppose Fi =αi log(z)+ fi ,
i = 1, 2, 3 where αi ∈ K and fi ∈Mer. Choose some auxiliary data

∫
R dS for any

two R and S out of fi and αi log(z), where we continue to take
∫

log(z) dlog(z)=
1
2 log2(z). Using trilinearity and (7.6) we can write 〈F1, F2; F3〉, with some choice
of auxiliary data, as the sum with some coefficients of triple indices where at
least one of the entries is in Mer, which are therefore computable by previous
considerations. Now we can use change of constant to write 〈F1, F2; F3〉 with
arbitrary auxiliary data. This shows uniqueness and gives a formula for the general
index. We need to check that this formula is well-defined, which, given the fact
that all the summands are well-defined thanks to Lemma 7.5, amounts to checking
independence of the choices of the auxiliary data. This is just a tedious formal
check: suppose for example that we add C to

∫
α1 log(z) d f3, and correspondingly

subtract C from
∫

f3α1 dlog z. This will have the effect that
∫

F1 dF3 will have
C added to it and

∫
F3dF1 will have C subtracted from it. This procedure will

subtract α2C = C Res dF2 from 〈α1, α2 log(z); f3〉 and will not change any of the
other indices. This shows that the change does not alter the index.
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It remains to check that our formula satisfies all the properties for the triple index.
First the change of constant formula of Lemma 7.4 is clear because we used it in
the definition and we showed that the formula we get is well-defined. Now given
change of constant it easy to see that it is enough to check trilinearity, symmetry
and triple identity for one choice of auxiliary data. The derivation of these three
formulas is then completely formal. Finally, reduction to the double index can only
occur if at least one αi is 0. But in this case we clearly get the triple index for the
case where Fi ∈Mer so we know this formula already. �

To compute the triple index in some concrete situations, which will be needed
later, we introduce the notion of the constant term.

Definition 7.7. The constant term with respect to the variable z is the linear func-
tional cz : Alog→ K , first defined on Mer by

cz

(∑
anzn

)
= a0,

and then in general by

cz

( ∞∑
i=0

fi (z) logi (z)
)
= cz( f0).

Note that the unlike the triple index, the constant term definitely depends on
the choice of the local parameter z. For example, for α ∈ K and the function
f (z)= log(z)= log(αz)− log(α) we have cz( f )= 0 but cαz( f )=−log(α).

Proposition 7.8. Let F , G and H be 3 functions in Alog,1 whose differentials (which
are in Mer dz) have at most simple poles at 0. The choice of integrals

∫
F dH and∫

G dH gives auxiliary data for the computation of 〈F,G; H〉 and with respect to
this choice we have

〈F,G; H〉=cz(F)·cz(G)·Res dH−Res dF ·cz

(∫
G dH

)
−Res dG·cz

(∫
F dH

)
.

Proof. We have a bilinear map

(F, H)→
∫
′

F dH := unique
∫

F dH with cz

(∫
F dH

)
= 0.

Therefore, we see that the map

(F,G, H)→ 〈F,G; H〉′ :=
〈
F,G; H

∣∣∣∣ ∫ ′F dHFdH ,

∫
′

G dHGdH

〉
is trilinear and symmetric in F and G. By Lemma 7.4 it suffices to prove that

(7.9) 〈F,G, H〉′ = cz(F) · cz(G) ·Res dH ,
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and as both sides are trilinear and symmetric in F and G, and as F = a log(z)+
f (z) with f (z) holomorphic and similarly for G and H , it suffices to treat the
following cases:

(1) When f , g and h are holomorphic we have

〈 f, g, h〉′ = Res f g dh = 0= cz( f )cz(g)Res dh

since Res dh = 0.

(2) Suppose F = G = H = log(z). Since cz(log2(z)/2) = 0 we see that the
local index computed with all auxiliary data set equal to log2(z)/2 is given by
〈log(z), log(z); log(z)〉′, and this we know is 0 by (7.6). On the other hand,
the right-hand side of (7.9) is also zero since cz(log(z))= 0.

(3) If g and h are holomorphic we have

〈log(z), g; h〉′ = 〈log(z),
∫
′

g dh〉 =−Res
(∫

′

g dh
)

dlog z =
(∫

′

g dh
)
(0)= 0,

which equals cz(log(z))cz(g)Res dh as required.

(4) If f and g are holomorphic we find

〈 f, g; log(z)〉′ = Res f g dlog z = f g(0)= cz( f )cz(g)Res dlog z .

(5) If g is holomorphic and a = cz(g) we see that∫
′

(g− a) dlog z =
∫
′

g dlog z− a log(z).

Using this we find

〈log(z), g; log(z)〉 =
〈
log(z),

∫
′

g dlog z
〉
=

〈
log(z),

∫
′

(g− a) dlog z
〉

=−Res
(∫

′

(g− a) dlog z
)

dlog z = 0,

since
∫
′
(g − a) dlog z is holomorphic and has constant term 0. This again

equals the right-hand side.

(6) The final case is for 〈log(z), log(z); h〉with h holomorphic. As cz(h log(z))=0,
we have the equation

∫
′ h dlog z+

∫
′ log(z) dh = h log(z). We therefore im-

mediately deduce this case from the previous one and the triple identity. �

8. The triple index, global theory

At this point we shall switch for convenience to assuming that our ground field
is Cp. Suppose now that we consider an open annulus V ∼= {r < |z| < s} with a
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parameter z. Then exactly the same analysis as in Section 7 gives us a triple index
on V . Note that while a parameter is used for proving the existence of the index,
the uniqueness statement is parameter-free, hence so is the index.

The uniqueness of the triple index immediately implies the following result
(cf. [Besser 2000c, Lemma 4.6]).

Lemma 8.1. If φ : V → V is an endomorphism of degree n, let φ∗(F,G; H) be
defined in the obvious way, pulling back by φ all the auxiliary data. Denote these
data simply by (φ∗F, φ∗G;φ∗H). Then we have the formula

〈φ∗F, φ∗G;φ∗H〉 = n〈F,G; H〉.

Consider now a wide open space U over Cp, with set of ends End(U ). We shall
denote the triple index with respect to the end e by the subscript e. When we are
given Coleman functions F , G and H in Acol,1(U ), in other words, such that their
differentials are in �1(U ), we may choose Coleman integrals for all forms R dS
when R and S are among F , G and H , and we may do so in such a way that∫

R dS+
∫

S dR = RS globally. This allows us to compute 〈F,G; H〉e at each end
e and we may consider the global triple index

〈F,G; H〉gl =
∑

e∈End(U )

〈F,G; H〉e.

Lemma 8.2. For F,G, H ∈ Acol,1(U ), the expression 〈F,G; H〉gl is independent
of the auxiliary choices, so depends only on F , G and H.

Proof. Since the possible integrals differ from one another by a global constant, if
we change for example

∫
G dH by a constant C , the change of constant formula

implies that the global triple index changes by∑
e

C Rese dF = C
∑

e

Rese dF = C · 0= 0. �

Unlike the global double index, the global triple index does not depend solely
on the cohomology classes of dF, . . . , and not even just on the differentials of the
functions. For example, if C is a constant we have the formula

〈F,C; H〉gl =
∑

e

〈
F,
∫

C dH
〉

e
= C

∑
e

〈F, H〉e.

However, we do have the following.

Lemma 8.3. If F,G ∈ Acol,1(U ) and C is a constant then 〈F,G;C〉gl = 0.
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Proof. Indeed,

〈F,G; 1〉gl =−〈F, 1,G〉gl−〈G, 1, F〉gl by the triple identity

=−〈F,
∫

dG〉gl−〈G,
∫

dF〉gl by reduction to the double index

=−〈F,G〉gl−〈G, F〉gl = 0,

where the last two equalities follow because the global double index is independent
of the choice of the integral and by the antisymmetry of the double index. �

The lemma suggests that the global triple index is quite an interesting creature.
It deserves further study. For our purposes we only need the following results:

Proposition 8.4. Let F , G, H in Acol(U ) have dF, dG, dH in�1(U ), and suppose
that the classes [dF] and [dG] in H 1

dR(U/K ) are eigenvectors for Frobenius with
eigenvalue q. Then 〈F,G; H〉gl = 0.

Proof. We begin by establishing the following formulas. If r ∈ A(U ) then

(8.5) 〈F, r, H〉gl =
∑

e

〈
F,
∫

r dH
〉

e
= 0,

where the last equality follows from [Besser 2000c, Corollary 4.11]. Similarly we
find that if also s ∈ A(U ) then 〈s,G, H〉gl = 0. Now if h ∈ A(U ), then

〈F,G; h〉gl =−〈F, h;G〉gl−〈G, h; F〉gl = 0,

by application of (8.5). This last formula shows that for fixed F and G the function
H 7→〈F,G; H〉gl depends only on the cohomology class of dH , [dH ]∈H 1

dR(U/K ).
Let φ be a Frobenius lift on U . The assumption on F and G implies the existence of
r, s ∈ A(U ) such that φ∗F = q F+r and φ∗G= qG+s. Using this we can compute

q〈F,G; H〉gl = 〈φ
∗F, φ∗G;φ∗H〉gl

= 〈q F + r, qG+ s;φ∗H〉gl = q2
〈F,G;φ∗H〉gl,

using bilinearity and (8.5). This shows that the functional [dH ] 7→ 〈F,G; H〉gl is
an eigenvector for the action of φ∗ with eigenvalue 1/q. Such a functional must
be 0 because the eigenvalues of φ∗ on H 1

dR(U/K ) are either q or Weil numbers of
weight 1. �

Note that this proposition applies in particular when F and G are of the form
r+ log( f ) where r, f ∈ A(U ). This follows since by [Coleman and de Shalit 1988,
Lemma 2.5.1], log( f q/φ∗( f )) is in A(U ).

Proposition 8.6. Suppose ω in �1(U ) has trivial residues on all ends, so that its
Coleman integral Fω is in fact analytic on the ends. Let F,G, H be Coleman
functions on U whose differentials are holomorphic and represent eigenvectors for
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Frobenius with eigenvalue q on H 1
dR(U/K ). Then, choosing the integrals globally

as Coleman integrals,

(8.7)∑
e

〈
F,G;

∫
Fω dH

〉
e
+

∑
e

〈
H, F;

∫
Fω dG

〉
e
+

∑
e

〈
G, H ;

∫
Fω dF

〉
e
= 0.

Proof. Note that the expression above makes sense since on each end e the form
Fω dH is analytic, so the corresponding triple index is defined, and similarly with
H replaced by F and G. Note also that this is of course not a global index in the
sense of this section, since Fω dH is not holomorphic. The strategy for the proof is
the same as for Proposition 8.4. First we notice that if Fω is in fact holomorphic,
then the identity holds by Proposition 8.4. It follows that the expression factors
via the cohomology class [ω]. Suppose now that we replace F by a holomorphic
function u. We then have∑

e

〈
u,G;

∫
Fω dH

〉
e
=

∑
e

〈
G,
∫

Fωu dH
〉

e
,

∑
e

〈
u, H ;

∫
Fω dG

〉
e
=

∑
e

〈
H,
∫

Fωu dG
〉

e
,

by reduction to the double index, and

∑
e

〈
G, H ;

∫
Fωdu

〉
e

=

∑
e

〈
G, H ; Fωu−

∫
uω
〉

e
=

∑
e

〈G, H ; Fωu〉e by Proposition 8.4

=−

∑
e

〈G, Fωu; H〉−
∑

e

〈H, Fωu;G〉 by the triple identity

=−

∑
e

〈
G,
∫

Fωu dH
〉

e
−

∑
e

〈
H,
∫

Fωu dG
〉

e

by reducing to the double index again as Fω is analytic. This shows that if we
replace F by u in the formula to be proved we indeed get 0. Similarly we get the
same result if we replace G by a holomorphic v, H by a holomorphic w, or if we
do 2 or 3 of these replacements at the same time. Now, exactly as in the proof of
Proposition 8.4, writing the left-hand side of (8.7) as T (F,G, H, ω), we easily get
from the previous computation that

qT (F,G, H, ω)= T (φ∗F, φ∗G, φ∗H, φ∗ω)= q3T (F,G, H, φ∗ω).
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Defining the functional γ by γ ([ω])= T (F,G, H, ω), this shows that γ satisfies
γ (φ∗[ω]) = q−2γ ([ω]), so that γ ((q2φ∗ − id)[ω]) = 0. By the theory of Weil
numbers, it follows that γ = 0. This proves what we want. �

9. A formula for the regulator

In this section we obtain our first explicit regulator formula, Theorem 9.10, using
the theory of the triple index. For technical reasons, the syntomic regulator itself
must be developed over a discretely valued field. However, since we have formulas
for the regulator that make sense over Cp as well, we work from now until the end
of this paper over Cp.

Now that we have at our disposal the triple index, we can interpret our make-
believe computation of Section 6 in such a way that it will become true. We continue
with the notation of the previous section, so U is a wide open space over Cp.

The first thing that the triple index allows us to do is to extend the cup product
to some Coleman differential forms. We first need a lemma.

Lemma 9.1. The map �1
col,1(U )→ H 1(U )⊗�1(U ) given by∑

Fωiηi 7→
∑
[ωi ]⊗ ηi

is well-defined.

Proof. This is [Besser 2002, Corollary 6.2]. �

Proposition 9.2. There is a unique bilinear map

<<<< · , · >>>> : Acol,1(U )⊗�1
col,1(U )→ Cp

such that we have, for any F , G, H in Acol,1(U ),

(9.3) <<<< F,G dH >>>> = 〈F,G; H〉gl.

Proof. By definition, �1
col,1(U ) is generated by forms like G dH so uniqueness

is clear. To show the existence we first note that by Lemma 8.3 the right-hand
side depends only on dH . This shows that <<<< · , · >>>> is well-defined as a map
Acol,1(U ) ⊗ Acol,1(U ) ⊗ �1(U ) → Cp, where the tensors are taken over Cp.
Lemma 9.1 shows that the kernel of the map G⊗ dH → G dH from Acol,1(U )⊗
�1(U ) to �1

col,1(U ) is contained in A(U )⊗�1(U ) so it is enough to observe that
if g in A(U ) then 〈F, g; H〉gl = 〈F,

∫
g dH〉gl indeed depends only on the form

g dH . �

The interest in the pairing <<<< · , · >>>> is justified by the fact that its restriction to
Acol,1(U )⊗�1(U ) is given by <<<< F, dG >>>> = 〈F,G〉gl. The pairing on the right was
studied in [Besser 2000c].
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Let us now fix ω in �1(U ) such that [ω] extends to C , or equivalently, that it
has trivial residues on all ends, and let F = Fω in Acol,1(U ) be a Coleman integral
of ω. Let p([ω]) be the canonical projection of [ω] on H 1

dR(C/K ).

Proposition 9.4. The functional Lp([ω])(η)= <<<< F, η >>>> on �1
col,1(U ) is good in the

sense of Definition 5.21.

Proof. Note that we are not claiming that this functional is independent of the
choice of the constant of integration. We first need to prove that Lp([ω]) vanishes
on forms of type d(a log f ), with a and f in A(U ). This is easily established:

<<<< F, d(a log f ) >>>> = <<<< F, a dlog f >>>> + <<<< F, log f da >>>>

= 〈F, a; log f 〉gl+〈F, log f ; a〉gl

= 〈a, log f ; F〉gl = 0

by Proposition 8.4. The second property of a good functional is immediate from
the formula 〈F,G〉gl = p([dF])∪p([dG]) [Besser 2000c, Proposition 4.10]. �

We will henceforth denote the above functional simply by Lω. This is literally
the case if ω is of the second kind on C , as in this case p(ω)= [ω].

Corollary 9.5. The p-adic regulator K (3)
4 (O)

reg′p
−−→ H 1

dR(C/K ) factors through the
quotient map K (3)

4 (O)→ K (3)
4 (O)/K (2)

3 (O)∪O∗
Q

.

Proof. By Proposition 5.22 and the normalization (5.7), the fact that a good func-
tional for any cohomology class α ∈ H 1

dR(C/K ) exists implies that the composition

K (3)
4 (O)

reg′p
−−→ H 1

dR(C/K )
1−φ∗/q3

−−−−−→ H 1
dR(C/K )

α∪
−−→ K

factors. As this is true for any α it follows that

K (3)
4 (O)

reg′p
−−→ H 1

dR(C/K )
1−φ∗/q3

−−−−−→ H 1
dR(C/K )

factors, but 1−φ∗/q3 is invertible on H 1
dR(C/K ) so the result follows. �

Propositions 9.4 and 5.22 suggest that in order to get an explicit formula for reg′p
we need to compute <<<< F, T∞0 ε(g, f ) >>>> , where the ε(g, f ) are computed in (5.18).
We shall manipulate this by “making our wishes come true” in the form of the
following proposition.

Proposition 9.6. Let F be as in Proposition 9.4 and let g, f ∈ O∗(Cloc) with g 6= 1.
Let T∞0 ε(g, f ) be as in (5.18). Then we have

(9.7) <<<< F, T∞0 ε(g, f ) >>>> =
∑

e

T(g, f, F)e ,
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where (choosing the integrals globally as Coleman integrals)

(9.8) T(g, f, F)e =
1
q
〈log f0, log g;

∫
F dlog(1− g)〉e

+
1
q2 〈logφ∗( f ), log(g);

∫
F dlog(1− g)0〉e

+
1
q3 〈logφ∗( f ), log(g0);

∫
Fφ∗ dlog(1− g)〉e .

Proof. We have by (5.18) and (9.3)

<<<< F, T∞0 ε(g, f ) >>>>

=

∑
e

(1
q
〈F, log g;

∫
log f0 dlog(1− g)〉e

−
1
q2 〈F, log g;

∫
log(1− g)0 dlogφ∗( f )〉e+

1
q
〈F,2(g); logφ∗( f )〉e

)
.

Note that dF = ω is in �1(U ) and has trivial residues along all ends. It follows
that F is holomorphic on each end.

At every annulus e we obtain the identities

〈F, log g;
∫

log f0 dlog(1− g)〉e = 〈log(g),
∫

F log f0 dlog(1− g)〉e

= 〈log f0, log g;
∫

F dlog(1− g)〉e,

〈F, log g;
∫

log(1− g)0 dlogφ∗( f )〉e = 〈log g,
∫

F log(1− g)0 dlogφ∗( f )〉e

= 〈log g, F log(1− g)0; logφ∗( f )〉e ,

〈F,2(g); logφ∗( f )〉e = Rese F2(g) dlogφ∗( f )

=−〈logφ∗( f ),2(g)F〉e,

so we obtain

<<<< F, T∞0 ε(g, f ) >>>>

=

∑
e

( 1
q
〈log f0, log g;

∫
F dlog(1− g)〉e

−
1
q2 〈log g, F log(1− g)0; logφ∗( f )〉e−

1
q
〈logφ∗( f ),2(g)F〉e

)
.

To equate this with the right-hand side of (9.7) we now realize our wishes one by
one. First we notice that the first summands in each expression are identical. The
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realization of the first wish corresponds to the formula∑
e

〈logφ∗( f ),2(g)F〉e

=

∑
e

〈logφ∗( f ),
∫

F d2(g)〉e+
∑

e

〈logφ∗( f ),
∫
2(g) dF〉e

=

∑
e

〈logφ∗( f ),
∫

F d2(g)〉e ,

as the second sum on the second line vanishes by [Besser 2000c, Corollary 4.11].
Now we may use the formula (5.12) for d2(g) to write this as∑

e

(
1
q
〈logφ∗( f ), F log(1− g)0; log(g)〉e

−
1
q2 〈logφ∗( f ), log(g0);

∫
Fφ∗ dlog(1− g)〉e

)
,

so the left-hand side of (9.7) becomes∑
e

(
1
q
〈log f0, log g;

∫
F dlog(1− g)〉e−

1
q2 〈log g, F log(1− g)0; logφ∗( f )〉e

−
1
q2 〈logφ∗( f ), F log(1− g)0; log(g)〉e

+
1
q3 〈logφ∗( f ), log(g0);

∫
Fφ∗ dlog(1− g)〉e

)
.

Now the first and last terms both agree with those on the right-hand side of (9.7)
and we are left with verifying the realization of the second wish in the form of∑

e

(
〈log g, F log(1− g)0; logφ∗( f )〉e+〈logφ∗( f ), F log(1− g)0; log(g)〉e

+〈logφ∗( f ), log(g);
∫

F dlog(1− g)0〉e

)
= 0 .

If we could replace the last triple index by

〈logφ∗( f ), log(g); F log(1− g)0〉e

the result would be an immediate consequence of the triple identity; indeed,∑
e

〈logφ∗( f ), log(g);
∫

F dlog(1− g)0〉e

=

∑
e

〈logφ∗( f ), log(g); F log(1− g)0〉e

−

∑
e

〈logφ∗( f ), log(g);
∫

log(1− g)0 dF〉e,

and the last sum is 0 by Proposition 8.4. �
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Proposition 9.9. Let G be such that dG lies in �1(U ) and G is holomorphic on
ends. Then, with the notation of Proposition 9.6, we have

T(g, f, φ∗G)e =
〈
log( f ), log(g);

∫ (
φ∗−

1
q2

)
G dlog(1− g)

〉
e
.

Proof. Let F = φ∗G. We replace each term of the form h0 by q log(h)− logφ∗(h)
in (9.8). Then we get

T(g, f, F)e =
1
q
〈q log( f )− logφ∗( f ), log g;

∫
F dlog(1− g)〉e

+
1
q2 〈logφ∗( f ), log(g); q

∫
F dlog(1−g)−

∫
F dlogφ∗(1−g)〉e

+
1
q3 〈logφ∗( f ), q log(g)− logφ∗(g);

∫
Fφ∗ dlog(1− g)〉e,

which after some cancellations equals

〈log( f ), log(g);
∫

F dlog(1−g)〉e−
1
q3 〈logφ∗( f ), logφ∗(g);

∫
F dlogφ∗(1−g)〉e.

After substituting φ∗G for F and noting that

〈logφ∗( f ), logφ∗(g);
∫
φ∗G dlogφ∗(1− g)〉e

= q 〈log( f ), log(g);
∫

G dlog(1− g)〉e

by Lemma 8.1, this becomes

〈log( f ), log(g);
∫
φ∗G dlog(1− g)〉e−

1
q2 〈log( f ), log(g);

∫
G dlog(1− g)〉e

=

〈
log( f ), log(g);

∫ (
φ∗−

1
q2

)
G dlog(1− g)

〉
e
,

as required. �

We now proceed to apply this theory to elements in K-theory.

Theorem 9.10. 1. Suppose that an element β ∈ K (3)
4 (Cloc) maps to

∑
i [gi ]2∪ fi

in H 1(C•(O)) under the composition (with the last isomorphism from (2.65))

(9.11) K (3)
4 (Cloc)→ K (3)

4 (O)→ K (3)
4 (O)/K (2)

3 (O)∪O∗Q
'
−→ H 1(C•(O)) ,

and that regp(β) ∈ H̃ 2
ms(C

loc, 3) is the image of [η] ∈ H 1
dR(U/K ) under the

isomorphism (5.7). Let ω in �1(U ) have trivial residues along all ends of U.
Then

(9.12) 〈Fω, Fη〉gl =
∑

i

∑
e

〈log( fi ), log(gi );
∫

Fω dlog(1− gi )〉e,

where Fω and Fη are any Coleman integrals of ω and η respectively.
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2. In particular, the composition

K (3)
4 (Cloc)

regp
−−→ H̃ 2

ms(C
loc, 3)

[η]7→〈Fω,Fη〉gl
−−−−−−−−−→ Cp

factors via (9.11).

Proof. First one easily checks that the validity of the formula depends only on the
cohomology class of ω. Since the operator φ∗−1/q2 is invertible on H 1(U ) we can
assume that ω= (φ∗−1/q2)µ with µ in �1(U ) and that Fω = (φ∗−1/q2)G with
G a Coleman integral of µ. Notice that G satisfies the condition of Proposition 9.9.
Let η0 be regp(β) ∈ H̃ 2

ms(C
loc, 3) in the model (5.6) so that by (5.7) we have

η0 = (1− φ∗/q3)η (up to an exact form, but this is irrelevant for global index
computations). We can take the Coleman integral of η0 to be Fη0 = (1−φ

∗/q3)Fη.
Let F = φ∗G. By Proposition 9.4 the functional Lω(η)= <<<< F, η >>>> is good in the
sense of Definition 5.21. It follows that we may apply Proposition 5.22 to obtain

<<<< F, η0 >>>> =
∑

i

<<<< F, T∞0 ε(gi , fi ) >>>>

=

∑
i

∑
e

T(gi , fi , F)e by Proposition 9.6

=

∑
i

∑
e

〈
log( f ), log(g);

∫ (
φ∗−

1
q2

)
G dlog(1− g)

〉
e

=

∑
i

∑
e

〈
log( f ), log(g);

∫
Fω dlog(1− g)

〉
e

by Proposition 9.9. On the other hand, we have

<<<< F, η0 >>>> = 〈F, Fη0〉gl =

〈
F,
(

1− φ
∗

q3

)
Fη
〉
gl
=

〈
φ∗G, Fη−

φ∗

q3 Fη
〉
gl

= 〈φ∗G, Fη〉gl−

〈 1
q2 G, Fη

〉
gl
=

〈(
φ∗−

1
q2

)
G, Fη

〉
gl
= 〈Fω, Fη〉gl .

The last two equations immediately give the result. �

We can restate the first part of Theorem 9.10 in a form that is more convenient for
the rest of this paper. As explained in the introduction, one has a canonical projection
H 1

dR(U/K )
p
−→H 1

dR(C/K ). This is the unique Frobenius equivariant splitting of the
natural restriction map in the other direction.

Recall now the Definition 5.8 of the regulator map reg′p, using the projection
map p. It follows from [Besser 2000c, Proposition 4.10] that p can be described in
the following way. It is the unique map such that for any η ∈�1(U ) and for any
form of the second kind ω on C , which is holomorphic on U , one has

(9.13) [ω] ∪ (pη)= 〈Fω, Fη, 〉gl .
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Corollary 9.14. Suppose that an element β ∈ K (3)
4 (Cloc) maps to

∑
i [gi ]2 ∪ fi

in H 1(C•(O)) under (9.11). Let ω be a form of the second kind on C that is
holomorphic on U. Then [ω] ∪ reg′p(β) is given by the right-hand side of (9.12).

10. End of the proofs

In this section we prove our main theorems. These will all follow from manipulations
of Theorem 9.10 and Corollary 9.14.

Fix a form ω of the second kind on C and a Coleman integral Fω of ω. We begin
with the proof of Theorem 1.12.

Lemma 10.1. The assignment

[g]2⊗ f 7→
∑

e

〈
log( f ), log(g);

∫
Fω dlog(1− g)

〉
e

extends to a well-defined map 9 ′′p,ω : M2(F)⊗ F∗
Q
→ K .

Proof. For functions f, g, h ∈ F the map

(10.2) G(h, g, f )=
∑

e

〈
log( f ), log(g);

∫
Fω dlog(h)

〉
e

is trilinear by the properties of the triple index. The result follows from Lemma 2.29.
�

Lemma 10.3. The restriction of 9 ′′p,ω to (M2(O)⊗O∗
Q
)d=0 coincides with the com-

position

(M2(O)⊗O∗Q)
d=0
→ H 2(M(3)(O))→ K (3)

4 (O)
reg′p
−−→ H 1

dR(C/K )
ω∪
−−→K .

Proof. This is an immediate consequence of diagram (2.67), noting the vertical map
on the left there is [g]2⊗ f 7→ [g]2 ∪ f , and of Corollary 9.14. �

Proof of Theorem 1.12. The only part of the theorem not proven already in Lem-
mas 10.1 and 10.3 is that the map 9 ′′p,ω factors via H 2(M(3)(O)), but this follows
immediately from Lemma 10.3. �

Proof of part 1 of Theorem 1.13. By Corollary 2.30, which applies with F replaced
with O by Remark 2.70, the fact that 9 ′′p,ω factors via H 2(M(3)(O)) implies that
9 ′′p,ω ◦4 : H

2(M̃(3)(O))→ K is induced by the following map, with G as in (10.2):

[g]2⊗ f 7→ G((1− g)⊗ g⊗ f )− 1
3 G((1− g)⊗ g⊗ f )− 1

3 G(g⊗ (1− g)⊗ f )

+
1
3 G((1− g)⊗ f ⊗ g)+ 1

3 G( f ⊗ (1− g)⊗ g)

= G((1− g)⊗ g⊗ f )− 1
3 G(g⊗ (1− g)⊗ f )+ 1

3 G( f ⊗ (1− g)⊗ g)

=
2
3 G((1− g)⊗ g⊗ f )− 2

3 G(g⊗ (1− g)⊗ f ),
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where we used that G is symmetric in the last two positions by Proposition 7.3(2),
and that G( f ⊗ (1− g)⊗ g) = −G((1− g)⊗ g⊗ f )− G(g⊗ f ⊗ (1− g)) by
Proposition 8.6. This is the formula in the first part of Theorem 1.13 by (10.2). �

For the proofs of Theorems 1.11 and 1.9, as well as part 2 of Theorem 1.13, we
now assume that ω is a holomorphic form on C .

Lemma 10.4. The associations

[g]2⊗ f 7→
∫
(1−g)

log(g)Fω dlog( f )−
∫
(g)

log(1− g)Fω dlog( f )

[g]2⊗ f 7→
∫
( f )

L2(g)ω

[g]2⊗ f 7→
∑

y

ordy( f )Fω(y)Lmod,2(g(y))

induce well-defined maps on M̃2(F)⊗ F∗
Q

(first) and M2(F)⊗ F∗
Q

(last two).

Proof. All three assertions follow from Lemma 2.29. This is essentially clear for the
first association. For the second association, observe that dL2 = log(z) dlog(1− z)
by (1.8). Consider the association

(h, g, f ) 7→
∫
( f )

(
ω ·

∫
log(g) dlog(h)

)
.

Here, the integral
∫

log(g) dlog(h) is a Coleman integral defined only up to a
constant. However, if the constant changes, the entire expression changes by the
same constant multiplied by

∫
( f ) ω, which equals 0 as it is the p-adic Abel–Jacobi

map applied to the principal divisor ( f ); see [Besser 2000a]. This association is
therefore well-defined, clearly trilinear, and we obtain the required result again by
Lemma 2.29. For the third association, one first needs to note that Lmod,2(g(y))
is the value of Lmod,2(g) at y (this is not obvious in general because we are using
the generalized way of assigning values to Coleman functions by taking constant
terms, discussed in the introduction) as we shall see in Corollary 10.8, so the entire
expression can be written as Fω ·Lmod,2(g) evaluated at the divisor of f . It is now
possible to proceed as in the previous case, given that

dLmod,2(g)= (log(g) dlog(1− g)− log(1− g) dlog(g))/2,

by associating to f, g, h the value of Fω ·
∫
(log(g) dlog(h)− log(h) dlog(g)) at

( f ), where the constant of integration does not matter for exactly the same reason
it did not in the previous case. �

By Lemma 10.4, the maps 9p,ω in Theorem 1.9 and 9 ′p,ω in Theorem 1.11
from M2(O)⊗O∗

Q
to K exist. (The existence of the maps in Theorem 1.13 will be

deduced from those in Theorems 1.11 and 1.12 later.)
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Next, we shall derive the formulas for the regulator. In all cases, we already
have a formula for the regulator, expressed in terms of a sum of local indices on
annuli. We can use the argument in the proof of [Besser 2000c, Proposition 5.5]
using Proposition 8.4 to replace the sum over ends by a sum over points.

Let α =
∑

i [gi ]2⊗ fi be an element of (M2(O)⊗O∗
Q
)d=0. By the above we have

9 ′′p,ω(α)=
∑

i

∑
y∈C

〈
log( fi ), log(gi );

∫
Fω dlog(1− gi )

〉
y
.

We again extend scalars to Cp, so in particular points are Cp valued. Fix a
local parameter at each point y, which we shall call zy , or, whenever there is
no risk of confusion, simply z. Consider a single point y in C . We recall that
with respect to the local parameter z at y we define, for a rational function f ,
f̄ (y) = ( f/zordy( f ))(y). For such a function f we have cz(log( f )) = log( f̄ (y)).

We also have Resy(Fω dlog( f )) = ordy( f ) · Fω(y). Thus, using Proposition 7.8,
we obtain

(10.5) 9 ′′p,ω(α)=
∑

i

∑
y∈C

[
ordy(1− gi )Fω(y) log f̄i (y) log ḡi (y)

− ordy( fi )cz

(∫
log(gi )Fω dlog(1− gi )

)
− ordy(gi )cz

(∫
log( fi )Fω dlog(1− gi )

)]
.

Let A (respectively B) be the subgroup of k(C)∗ generated by the fi and gi

(respectively by the 1− gi ). By choosing bases for A and B and then choosing
appropriate integrals we can arrange it so that for each f in A and h in B an integral∫

log( f )Fω dlog h is chosen such that the map ( f, h) 7→
∫

log( f )Fω dlog h is
bilinear. Since the overall sum in (10.5) is independent of the choice of integrals,
we may and do assume from now on that the integrals there are chosen as above.

Lemma 10.6. If
∑

i [gi ]2⊗ fi is in (M2(F)⊗F∗
Q
)d=0, then for every y in C we have

∑
i

ordy( fi ) cz

(∫
log(gi )Fω dlog(1− gi )

)
=

∑
i

ordy(gi ) cz

(∫
log( fi )Fω dlog(1− gi )

)
.

Proof. With the choices above the map

( f, g, h) 7→ ordy( f )cz

(∫
log(g)Fω dlog(h)

)
−ordy(g)cz

(∫
log( f )Fω dlog(h)

)
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is trilinear and antisymmetric with respect to f and g. The lemma follows since∑
(1− gi )⊗ (gi ∧ fi )= 0 by (2.24). �

We recall that the function L2(z) is defined by L2(z)=Li2(z)+ log(z) log(1− z)
and that we have dL2(z)= log(z) dlog(1−z). Note that this last form is holomorphic
in the residue disc of 1 and as a consequence so is L2(z).

Lemma 10.7. Let g be a rational function. The constant term at y of L2(g) equals
L2(g(y)) if g(y) 6= 0,∞, equals 0 if g(y) = 0 or 1 and equals log2(ḡ(y))/2 if
g(y) = ∞, where ḡ is computed with respect to the same local parameter as
the constant term. In addition, the expansion of L2(g) with respect to any local
parameter z contains no summands of the form Const · zn with n < 0.

Proof. This is clear if g(y) 6= 0,∞. Suppose g(y)= 0. Since Li2 is holomorphic
near 0 and has value 0 there, we see that the constant term and terms of the form zn

for n< 0 are the same as in log(g) log(1−g). Near y, log(g(z))= ordy(g) log(z)+ ,
a holomorphic function in z. Also, log(1− g) is holomorphic near y with value
0 there. Thus the result is clear. Finally, by [Coleman 1982, Proposition 6.4], we
have L2(g)+L2(1/g)= log2(g)/2 (from which it also follows that L2(1)= 0) so
the result at g(y)=∞ is deduced from that of 1/g when g(y)=∞. �

Corollary 10.8. The constant term of Lmod,2(z) at 0, 1 and ∞ is 0, regardless
of parameter. Furthermore, setting the value of Lmod,2 at these points to be the
above constant term, we have that for any rational function g the constant term of
Lmod,2(g) at any point y equals Lmod,2(g(y)).

Proof. Since Lmod,2(z) = L2(z)− log(z) log(1− z)/2 it is easy to check that the
constant term of Lmod,2(g) is 0 at either g(y)=0, 1,∞, and the result easily follows.

�

Lemma 10.9. For any point y in C and for any choice of a Coleman integral∫
L2(g)ω the quantity cz(

∫
L2(g)ω) is independent of the choice of the local pa-

rameter z at y.

Proof. Let fω be the unique Coleman integral of ω that vanishes at y. We may
choose a Coleman integral

∫
fωdL2(g) in such a way that the integration by parts

formula ∫
L2(g)ω = L2(g) fω−

∫
fω dL2(g)

holds. It is therefore sufficient to show that the constant term of each of the
summands on the right is independent of the parameter. From the last assertion in
Lemma 10.7 and the fact that fω(y)= 0 it is easy to see that the constant term of
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the first summand is 0. For the second summand we have∫
fω dL2(g)=

∫
fω log(g) dlog(1− g)

= log(g)
∫

fω dlog(1− g)−
∫ (∫

fω dlog(1− g)
)

dlog(g)

for appropriate choices of integrals. As fω dlog(1− g) is holomorphic at y, we
may arrange it so that

∫
fω dlog(1− g) vanishes at y. Then in the last formula the

first term has constant term 0 while the second term is holomorphic at y hence its
constant term is independent of z. �

Using the last lemma we may set∫
L2(g)ω|y := cz

(∫
L2(g)ω

)
with respect to any parameter z at y. Using this we can define

∫
D L2(g)ω for any

divisor D of degree zero. If we change
∫

L2(g)ω by a constant, its value at y in
the above sense will change by the same constant. Thus when D has degree 0 the
integral

∫
D L2(g)ω does not depend on the constant of integration even if D and

the divisor of g have a common support. This explains the general definition of the
integral in Theorem 1.9.

Lemma 10.10. Choose integrals such that the integration by parts formula∫
log(g)Fω dlog(1− g)= FωL2(g)−

∫
L2(g)ω

is satisfied. Then we have at a point y and with respect to the local parameter z,

cz

(∫
log(g)Fω dlog(1− g)

)
= Fω(y)cz(L2(g))−

∫
L2(g)ω|y .

Proof. One just applies cz to the integration by parts formula and observes that by
Lemma 10.7 we have cz(FωL2(g))= Fω(y)cz(L2(g)). �

Proof of Theorem 1.11. We already saw that the association gives a well-defined
map on M2(O)⊗ O∗

Q
. It therefore suffices to show that it gives the same map on

(M2(O)⊗O∗
Q
)d=0 as 9 ′′p,ω in Theorem 1.12. Consider (10.5). By Lemma 10.6 we

can choose our integrals such that for each point y the sum over i of each of the
last two terms is identical. The term

ordy( fi )cz
(∫

log(gi )Fω dlog(1− gi )
)
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is computed in Lemmas 10.10 and 10.7. Substituting the results we see that we
have the equation

9 ′′p,ω(α)=
∑

i

∑
y∈C

(ordy(1− gi )Fω(y) log f̄i (y) log ḡi (y))+ 2
∫
( fi )

L2(gi )ω

−

∑
y∈C

ordy( fi )Fω(y)×


0 gi (y)= 0,
2L2(gi (y)) gi (y) 6= 0,∞,
log2(ḡi (y)) gi (y)=∞.

.
In the first sum over y, only terms with gi (y)=∞ can be nonzero. Thus neither
sum over y contributes for gi (y)= 0, and the right-hand side becomes

(10.11)
∑

i

[
2
∫
( fi )

L2(gi )ω− 2
∑

gi (y) 6=0,∞

ordy( fi )Fω(y)L2(gi (y))

+

∑
gi (y)=∞

Fω(y)λy( fi , gi )

]
with

λy( f, g)= ordy(1− g) log f̄ (y) log ḡ(y)− ordy( f ) log2 ḡ(y)

= log ḡ(y)(ordy(1− g) log f̄ (y)− ordy( f ) log ḡ(y))

= log 1− g(y)(ordy(g) log f̄ (y)− ordy( f ) log ḡ(y))

because g(y)=∞ implies ordy(1− g)= ordy(g) and ḡ(y)=−1− g(y).
For y in C , the function

µy( f, g, h)= log h(y)(ordy(g) log f̄ (y)− ordy( f ) log ḡ(y))

is trilinear in f , g and h and antisymmetric in f and g. As
∑

i (1−gi )⊗(gi∧ fi )=0
by (2.53), we find

(10.12)
∑

i

µy( fi , gi , 1− gi )= 0 .

If gi (y)= 0 then µy( fi , gi , 1− gi )= 0, while if g(y) 6= 0,∞ then

µy( fi , gi , 1− gi )=− ordy( fi ) log gi (y) log(1− gi (y)),

where we set the value of log(y) log(1− y) at 1 to be 0, which is its constant term.
Thus, summing (10.12) multiplied by Fω(y) over all y in C we see that∑

i

∑
gi (y)=∞

Fω(y)λy( fi , gi )=
∑

i

∑
gi (y)6=0,∞

ordy( fi )Fω(y) log gi (y) log(1− gi (y)).
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Substituting this into (10.11), and using that L2(z)−log(z) log(1−z)/2=Lmod,2(z)
by definition, we obtain

9 ′′p,ω(α)= 2
∑

i

∫
( fi )

L2(gi )ω− 2
∑

i

∑
gi (y) 6=0,∞

ordy( fi )Fω(y)Lmod,2(gi (y)).

This formula finishes the proof of Theorem 1.11 as Lmod,2(0)= Lmod,2(∞)= 0. �

Proof of Theorem 1.9. That the assignment is well-defined is part of Lemma 10.4.
In order to see that it vanishes on [ f ]2⊗ f , we note that we already know this is true
for the assignment in Theorem 1.11, and that the second term in that assignment is
trivial on such terms because Lmod,2(z) vanishes at 0 and∞.

For part (2), consider (1.16). That ∂1(α
′) = 0 means that α′ satisfies (2.57),

which is equivalent with α′ being in H 2(M(3)(C
′)) inside H 2(M(3)(O

′)) (recall from
Section 2.5.3 that the two vertical maps at the top in this diagram are injections
if we use O′ instead of O everywhere). The existence and uniqueness of β ′ was
therefore proven just after (2.58). In fact, β ′ is the K (3)

4 (C′) component of the
image of α′ in K (3)

4 (C′)⊕ K (2)
3 (k)∪ O′∗

Q
, and the images of α′ and β ′ in K (3)

4 (O′)

differ by some γ ′ in the image of K (2)
3 (k) ∪ O′∗

Q
. But ω ∪ reg′p(γ

′) = 0 by the
commutativity of the bottom right square, so that, after extending from O′ to O, we
have ω∪ reg′p(β) = 9

′
p,ω(α) by Theorem 1.11. It therefore suffices to show that

the contribution of each ordy( f )Fω(g(y))Lmod,2(g(y)) in 9 ′p,ω(α) is trivial.
Note that in Theorem 1.11 this sum has to be computed after a suitable finite

extension K̃ of K that makes the relevant y rational, but that further extending the
field to Cp as we are using here gives the same result. In fact, because we start over
the number field k, the relevant y become rational over some number field L ⊂ K̃
containing k. The M̃2(·) are compatible with field extensions, and clearly the same
holds for ∂1. Therefore (2.57) gives us that for each closed point y of C ′L , ∂1,y(α

′)

is trivial in M̃2(L). Because Fω(y) is just a constant, comparing with the definition
of ∂1,y in Section 2.4.3, we see that it suffices to show that the map

H 1(M̃(2)(L))→ K̃∑
i

[ai ]2 7→
∑

i

Lmod,2(ai )

is well-defined. It is conjectured in [Besser and de Jeu 2003, Conjecture 1.14] that
this map is the syntomic regulator map on as composition (with OL the ring of
integers in L)

H 1(M̃(2)(L))→ K (2)
3 (L)' K (2)

3 (OL)→ H 1
syn(OL , 2)' K ,
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which would imply what we need. However, extending the domain of the map, we
can show by more basic means that the map

M̃2(L)→ K̃

[a]2 7→ Lmod,2(a)

is well-defined, which will prove what we want.
Namely, for any field L of characteristic zero, let B ′2(L) be the free Q-vector

space on elements {b}2 with b in F , b 6= 0, 1, modulo the five term relation

(10.13) {b}2+{c}2+
{ 1−b

1−bc

}
2
+{1− bc}2+

{ 1−c
1−bc

}
2
= 0.

It is shown in [de Jeu 2000, Lemma 5.2] that there is a map B ′2(L)→ M̃2(L), given
by sending {b}2 to [b]2. In the case where L is a number field, this was already
done on page 240 of [de Jeu 1995] (where the relations were not made explicit and
the group was called B2(L)), and the map was shown to be an isomorphism in that
case. Finally, in [Coleman 1982, Corollaries 6.4(ii), (iii) and 6.5b] Coleman shows
that Lmod,2 (which is called D there) satisfies

Lmod,2(z−1)=−Lmod,2(z)

Lmod,2(1− z)=−Lmod,2(z)

as well as (with signs corrected)

Lmod,2(z1z2)=Lmod,2(z1)+Lmod,2(z2)+Lmod,2

( z1(1−z2)

z1−1

)
+Lmod,2

( z2(1−z1)

z2−1

)
.

Substituting z1 = (bc)−1, z2 = c in the last relation and using the first two, one
sees that Lmod,2 satisfies the relation corresponding to (10.13). Therefore it induces
a map

M̃2(L)' B ′2(L)→ K

mapping [b]2 to Lmod,2(b). This finishes the proof of Theorem 1.9. �

Proof of part 2 of Theorem 1.13. Since by Theorem 1.11, the map 9 ′p,ω factors via
H 2(M(3)(O)), we may again use Corollary 2.30, which applies with F replaced by
O by Remark 2.70. Recall that 9 ′p,ω is induced by

[g]2⊗ f 7→ 2
∫
( f )

L2(g)ω− 2
∑

y

ordy( f )Fω(y)Lmod,2(g(y)).

Since Lmod,2(z)+Lmod,2(z−1)=0, while L2(z)+L2(z−1)= 1
2 log2(z), we see that we

are in the situation of part (3) of Lemma 2.29 with H(a ·b⊗c)=
∫
(c) log(a) log(b)ω.
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Applying the corollary, the composition 9 ′p,ω ◦4 : H
2(M̃(2)(O))→ K is given by

[g]2⊗ f 7→ 2
∫
( f )

L2(g)ω− 2
∑

y

ordy( f )Fω(y)Lmod,2(g(y))

−
2
3

∫
( f )

log(1− g) log(g)ω+ 2
3

∫
(g)

log( f ) log(1− g)ω,

as required. �

Remark 10.14. We would like to explain a bit of the heuristics suggesting that
Theorem 1.13 gives a formula which is the p-adic analogue of the complex analytic
formula for the regulator in Section 3.

Experience has taught us that complex surface integrals translate in the p-adic
world to a similar formula involving local indices. For example, the complex
analytic formula for the regulator of the symbol { f, g} in K2(F),∫

C
log |g| dlog f ∧ω = 2

∫
C

log |g| dlog | f | ∧ω,

where ω is holomorphic, translates in the p-adic world into the formula

〈log f, Fω; log g〉gl.

Note that, using the rules for the triple index, this is the same as the formula∑
e〈log f,

∫
(Fω dlog(g))〉e obtained in [Besser 2000c, Propositon 5.1]. This corre-

sponds to the regulator on an open curve using the same projection on H 1
dR(C/K )

we have been using in this paper. For a sum { fi , gi } in the kernel of the tame
symbol, we may, for every pair ( f, g)= ( fi , gi ), replace 〈log f, Fω; log g〉gl with∫
( f ) log(g) ·ω, obtaining the formula of Coleman and de Shalit [1988, (1)]. This is

similar to Theorem 1.11 specializing to Theorem 1.9.
Relying on these considerations, the maps 9 ′′p,ω and 9 ′′′p,ω in Theorems 1.12

and 1.13 are precise analogues, up to a factor of 4, of the maps 9 ′′
∞,ω and 9 ′′′

∞,ω

in Proposition 3.1. Factors that are powers of 2 appear in comparison with other
regulator formulas; see for example the introduction of [Besser 2012].

Acknowledgments

The authors would like to thank the European Community for support through
the RTN network Arithmetic Algebraic Geometry, which enabled them to meet
on various occasions during the long gestation period of this paper. Rob de Jeu
would like to thank the Newton Institute in Cambridge, where part of this paper
was written, for a conducive atmosphere.



THE SYNTOMIC REGULATOR FOR K4 OF CURVES 379

This paper is dedicated to the memory of Jon Rogawski. One of us (AB) still
remembers Jon’s help and advice as a young postdoc at UCLA. He was a great
mentor with his calm and assured guidance. He will be greatly missed.

References

[Besser 2000a] A. Besser, “A generalization of Coleman’s p-adic integration theory”, Invent. Math.
142:2 (2000), 397–434. MR 2001i:14032 Zbl 1053.14020

[Besser 2000b] A. Besser, “Syntomic regulators and p-adic integration, I: Rigid syntomic regulators”,
pp. 291–334 in Proceedings of the Conference on p-adic Aspects of the Theory of Automorphic
Representations (Jerusalem, 1998), vol. 120, 2000. part B. MR 2002c:14035 Zbl 1001.19003

[Besser 2000c] A. Besser, “Syntomic regulators and p-adic integration, II: K2 of curves”, pp. 335–359
in Proceedings of the Conference on p-adic Aspects of the Theory of Automorphic Representations
(Jerusalem, 1998), vol. 120, 2000. part B. MR 2002c:14036 Zbl 1001.19004

[Besser 2002] A. Besser, “Coleman integration using the Tannakian formalism”, Math. Ann. 322:1
(2002), 19–48. MR 2003d:11176 Zbl 1013.11028

[Besser 2012] A. Besser, “On the syntomic regulator for K1 of a surface”, Israel J. Math. 190 (2012),
29–66. MR 2956231

[Besser and de Jeu 2003] A. Besser and R. de Jeu, “The syntomic regulator for the K -theory of
fields”, Ann. Sci. École Norm. Sup. (4) 36:6 (2003), 867–924. MR 2005f:11133 Zbl 1106.11024

[Besser et al. 2009] A. Besser, P. Buckingham, R. de Jeu, and X.-F. Roblot, “On the p-adic Beilin-
son conjecture for number fields”, Pure Appl. Math. Q. 5:1 (2009), 375–434. MR 2010k:19006
Zbl 1192.19003

[Bloch 1990] S. Bloch, Letter to C. Deninger, 1990.

[Bloch 2000] S. J. Bloch, Higher regulators, algebraic K -theory, and zeta functions of ellip-
tic curves, CRM Monograph Series 11, American Mathematical Society, Providence, RI, 2000.
MR 2001i:11082 Zbl 0958.19001

[Coleman 1982] R. F. Coleman, “Dilogarithms, regulators and p-adic L-functions”, Invent. Math.
69:2 (1982), 171–208. MR 84a:12021 Zbl 0516.12017

[Coleman 1985] R. F. Coleman, “Torsion points on curves and p-adic abelian integrals”, Ann. of
Math. (2) 121:1 (1985), 111–168. MR 86j:14014 Zbl 0578.14038

[Coleman and de Shalit 1988] R. Coleman and E. de Shalit, “p-adic regulators on curves and special
values of p-adic L-functions”, Invent. Math. 93:2 (1988), 239–266. MR 89k:11041 Zbl 0655.14010

[Gillet and Soulé 1999] H. Gillet and C. Soulé, “Filtrations on higher algebraic K -theory”, pp. 89–148
in Algebraic K -theory (Seattle, WA, 1997), edited by W. Raskind and C. Weibel, Proc. Sympos.
Pure Math. 67, Amer. Math. Soc., Providence, RI, 1999. MR 2001i:19005 Zbl 0951.19003

[Goncharov 1994] A. B. Goncharov, “Polylogarithms and motivic Galois groups”, pp. 43–96 in
Motives (Seattle, WA, 1991), edited by U. Jannsen et al., Proc. Sympos. Pure Math. 55, Amer. Math.
Soc., Providence, RI, 1994. MR 94m:19003 Zbl 0842.11043

[Grosse-Klönne 2000] E. Grosse-Klönne, “Rigid analytic spaces with overconvergent structure sheaf”,
J. Reine Angew. Math. 519 (2000), 73–95. MR 2001b:14033 Zbl 0945.14013

[Harder 1977] G. Harder, “Die Kohomologie S-arithmetischer Gruppen über Funktionenkörpern”,
Invent. Math. 42 (1977), 135–175. MR 57 #12780 Zbl 0391.20036

[de Jeu 1995] R. de Jeu, “Zagier’s conjecture and wedge complexes in algebraic K -theory”, Compo-
sitio Math. 96:2 (1995), 197–247. MR 96h:19005 Zbl 0868.19002



380 AMNON BESSER AND ROB DE JEU

[de Jeu 1996] R. de Jeu, “On K (3)4 of curves over number fields”, Invent. Math. 125:3 (1996),
523–556. MR 97d:19006 Zbl 0864.11059

[de Jeu 2000] R. de Jeu, “Towards regulator formulae for the K -theory of curves over number fields”,
Compositio Math. 124:2 (2000), 137–194. MR 2002e:19005 Zbl 0985.19002

[van der Put 1986] M. van der Put, “The cohomology of Monsky and Washnitzer”, pp. 4, 33–59
in Introductions aux cohomologies p-adiques (Luminy, 1984), Mém. Soc. Math. France (N.S.) 23,
Société Mathématique de France, Paris, 1986. MR 88a:14022 Zbl 0606.14018

[Quillen 1973] D. Quillen, “Higher algebraic K -theory, I”, pp. 85–147 in Algebraic K -theory, I:
Higher K -theories (Seattle, 1972), edited by H. Bass, Lecture Notes in Math. 341, Springer, Berlin,
1973. MR 49 #2895 Zbl 0292.18004

[Soulé 1985] C. Soulé, “Opérations en K -théorie algébrique”, Canad. J. Math. 37:3 (1985), 488–550.
MR 87b:18013 Zbl 0575.14015

[Srinivas 1996] V. Srinivas, Algebraic K -theory, 2nd ed., Progress in Mathematics 90, Birkhäuser,
Boston, MA, 1996. MR 97c:19001 Zbl 0860.19001

Received July 21, 2012.

AMNON BESSER

DEPARTMENT OF MATHEMATICS

BEN-GURION UNIVERSITY OF THE NEGEV

P.O.B. 653
84105 BE’ER-SHEVA

ISRAEL

bessera@math.bgu.ac.il
http://www.math.bgu.ac.il/~bessera/

ROB DE JEU

FACULTEIT DER EXACTE WETENSCHAPPEN, AFDELING WISKUNDE

VU UNIVERSITY AMSTERDAM

DE BOELELAAN 1081A

1081 HV AMSTERDAM

NETHERLANDS

r.m.h.de.jeu@vu.nl
http://www.few.vu.nl/~jeu/



PACIFIC JOURNAL OF MATHEMATICS
http://pacificmath.org

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Don Blasius
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Alexander Merkurjev
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

merkurev@math.ucla.edu

V. S. Varadarajan (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pacific@math.ucla.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, pacific@math.berkeley.edu

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or pacificmath.org for submission instructions.

The subscription price for 2012 is US $420/year for the electronic version, and $485/year for print and electronic.
Subscriptions, requests for back issues from the last three years and changes of subscribers address should be sent to Pacific Journal of
Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. Prior back issues are obtainable from Periodicals Service Company,
11 Main Street, Germantown, NY 12526-5635. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt
MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 969 Evans
Hall, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704,
and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA
94704-0163.

PJM peer review and production are managed by EditFlow® from Mathematical Sciences Publishers.

PUBLISHED BY
mathematical sciences publishers

http://msp.org/
A NON-PROFIT CORPORATION

Typeset in LATEX
Copyright © 2012 Pacific Journal of Mathematics

http://pacificmath.org/
mailto:blasius@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:merkurev@math.ucla.edu
mailto:pacific@math.ucla.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:popa@math.ucla.edu
mailto:yang@math.princeton.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:qing@cats.ucsc.edu
mailto:pacific@math.berkeley.edu
http://pacificmath.org/
http://www.periodicals.com/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.emis.de/ZMATH/
http://www.inist.fr/PRODUITS/pascal.php
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
http://msp.org
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 260 No. 2 December 2012

Special issue
devoted to the memory of Jonathan Rogawski

257In memoriam: Jonathan Rogawski
DON BLASIUS, DINAKAR RAMAKRISHNAN and V. S. VARADARAJAN

261p-adic Rankin L-series and rational points on CM elliptic curves
MASSIMO BERTOLINI, HENRI DARMON and KARTIK PRASANNA

305The syntomic regulator for K4 of curves
AMNON BESSER and ROB DE JEU

381Unique functionals and representations of Hecke algebras
BENJAMIN BRUBAKER, DANIEL BUMP and SOLOMON FRIEDBERG

395A relative trace formula for PGL(2) in the local setting
BROOKE FEIGON

433On the degrees of matrix coefficients of intertwining operators
TOBIAS FINIS, EREZ LAPID and WERNER MÜLLER

457Comparison of compact induction with parabolic induction
GUY HENNIART and MARIE-FRANCE VIGNERAS

497The functional equation and beyond endoscopy
P. EDWARD HERMAN

515A correction to Conducteur des Représentations du groupe linéaire
HERVÉ JACQUET

527Modular L-values of cubic level
ANDREW KNIGHTLY and CHARLES LI

565On occult period maps
STEPHEN KUDLA and MICHAEL RAPOPORT

583A prologue to “Functoriality and reciprocity”, part I
ROBERT LANGLANDS

665Truncation of Eisenstein series
EREZ LAPID and KEITH OUELLETTE

687Some comments on Weyl’s complete reducibility theorem
JONATHAN ROGAWSKI and V. S. VARADARAJAN

695On equality of arithmetic and analytic factors through local Langlands
correspondence

FREYDOON SHAHIDI

0030-8730(201212)260:2;1-A

Pacific
JournalofM

athem
atics

2012
Vol.260,N

o.2


	
	
	

