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We develop the local Kuznetsov trace formula on a unitary group in two
variables for an unramified quadratic extension of local, non-Archimedean
fields E/F and compare it to a local relative trace formula on PGL(2, E).
To define the local distributions for the relative trace formula, we define a
regularized local period integral and prove that it is a PGL(2, F)-invariant
linear functional. By comparison of the two local trace formulas, we get an
equality between a local PGL(2, F)-period and local Whittaker functionals.
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1. Introduction

Base change is an important type of functoriality which is useful in the study of au-
tomorphic forms by relating automorphic representations on different groups. Hervé
Jacquet shed light on a new technique for attacking certain cases of Robert Lang-
lands’ important functoriality conjectures by comparing the relative and Kuznetsov
trace formulas in the global setting. Jacquet’s comparison of trace formulas leads
to global identities that characterize the image of the base change map associating
automorphic representations of a unitary group for a quadratic extension of number
fields E/F to automorphic representations of GL(2,AE) in terms of distinguished
representations. While Jacquet’s global identities factor, they do not give unique
local identities.
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This paper uses techniques of James Arthur to define and develop a local
Kuznetsov trace formula on U(2) and a local relative trace formula on GL(2).
Both local trace formulas are expanded geometrically in terms of orbital integrals
and spectrally in terms of local Bessel distributions and local relative Bessel dis-
tributions. The latter involve regularized local period integrals. We then carry out
Jacquet’s comparison in the local setting by relating these two local trace formulas
for matching functions. This comparison yields identities between local Bessel
distributions for automorphic representations on U(2) and local relative Bessel
distributions for automorphic representations on GL(2).

Before we describe more precisely the local relative trace formula developed
in this paper, let us recall the relative trace formula for GL(2). Take E/F to be
a quadratic extension of number fields and AF to be the adeles of F . Let ψ ′ be
a character on F\AF ∼= N (F)\N (AF ) where N is the upper triangular unipotent
matrices of GL(2). Let ψ = ψ ′ ◦ trE/F .

A cuspidal automorphic representation π of GL(2,AE) with central character
trivial on GL(2,AF ) is distinguished by GL(2,AF ) if there exists a φ ∈ Vπ , the
vector space associated to π , such that the period integral, P(φ), is nonzero:

P(φ) :=
∫

GL(2,F)Z(AF )\GL(2,AF )

φ(h) dh 6= 0.

Where π ′ is a cuspidal automorphic representation of the quasisplit unitary group
U (2,AF ) and φ′ ∈ Vπ ′ , let

W (φ′)=

∫
N (F)\N (AF )

φ′(n)ψ ′(n) dn and W (φ)=

∫
N (E)\N (AE )

φ(n)ψ(n) dn.

We define the Bessel distribution as

B ′π ′( f ′) :=
∑

i

W ′(π ′( f ′)φ′i )W ′(φ
′

i ),

and the relative Bessel distribution as

Bπ ( f ) :=
∑

j

P(π( f )φ j )W (φ j ),

where the summations are over an orthonormal basis of Vπ ′ and Vπ respectively.
Flicker [1991], following related work of Jacquet and Lai [1985] and Ye [1989],
showed that for “matching functions” f ′ on U (2,AF ) and f on GL(2,AE), if π ′

maps to π under the unstable base change, then

(1-1)
∑

i

W ′(π ′( f ′)φ′i )W ′(φ
′

i )=
∑

j

P(π( f )φ j )W (φ j ).

In particular, this equality characterizes the image of the unstable base change
lift associating every automorphic representation of U (2,AF ) to an automorphic
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representation of GL(2,AE) in terms of GL(2,AF ) distinguished representations.
The equality above is proved via the relative trace formula [Jacquet 2005], which
tells us that for f and f ′ matching functions we have∫
(N (F)\N (AF ))2

K f ′(n1, n2)ψ
′(n−1

1 n2) dn1 dn2

=

∫
GL(2,F)Z(AF )\GL(2,AF )

∫
N (E)\N (AE )

K f (h, n)ψ(n) dn dh

where
K f (x, y)=

∑
δ∈Z(E)\GL(2,E)

f (x−1δy).

The distributions B ′π ′( f ′) and Bπ ( f ) occur in the spectral expansions of the respec-
tive trace formulas.

In a different direction, Arthur [1989; 1991] developed a local version of the
classical Arthur–Selberg trace formula. Let G be a connected reductive algebraic
group over a local field F of characteristic zero. Diagonally embed G(F) into
G(F)×G(F). Then L2(G(F)) is isomorphic to L2(G(F)\G(F)×G(F)) by

φ 7→ ((y1, y2) 7→ φ(y−1
1 y2)).

For φ ∈ L2(G(F)), let (ρ(g1, g2)φ)(x) = φ(g−1
1 xg2). The right regular repre-

sentation of G(F) × G(F) on L2(G(F)\G(F) × G(F)) is equivalent to ρ of
G(F)×G(F) on L2(G(F)). Thus to develop the local trace formula we look at
ρ( f ) where f = f1⊗ f2 ∈ C∞c (G(F)×G(F)). Then

(ρ( f )φ)(x)=
∫

G(F)

∫
G(F)

f1(g) f2(y)φ(g−1xy) dg dy

is an integral operator on L2(G(F)) with kernel

K f (x, y)=
∫

G(F)
f1(g) f2(x−1gy) dg.

The local trace formula develops an explicit formula for the regularized trace
of ρ( f ).

The main result of this paper is that, when evaluated with matching functions,
the two local trace formulas described in Theorems 1.3 and 1.4 below, that is the
local Kuznetsov trace formula and the local relative trace formula, are equal. Thus
there is an equality between their local distributions on the spectral sides. This
equality is stated in Theorem 1.1. This is the natural local counterpart to the global
comparison from (1-1). In order to develop the local relative trace formula stated
in Theorem 1.4, we have to define a local regularized period integral, prove it is
a GL(2, F)×GL(2, F)-invariant linear functional and relate it to the truncated
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period integral that initially appears in the relative trace formula. We state these
properties about the local regularized period integral in Proposition 1.2.

To describe our results more precisely we need to introduce some further notation.
Let E/F now denote an unramified extension of local non-Archimedean fields
of characteristic 0. Let OF (respectively OE ) denote the ring of integers in F
(respectively E). Let H = GL(2)/F , G = ResE/F H and let

G ′ = U(2, F)=
{

g ∈ G : t g
(

0 1
−1 0

)
g =

(
0 1
−1 0

)}
.

Let N ′ and N be the upper triangular unipotent matrices of G ′ and G, respectively,
and let M ′ and M be the diagonal subgroup of G ′ and G, respectively. Let Z
and Z ′ denote the center of G and G ′, respectively. For any subgroup X of G let
X̃ = Z ∩ X\X and let X H = X ∩ H . Let ψ ′ be an additive character on F with
conductor OF and let ψ(x) = ψ ′ ◦ trE/F . Let f = f1⊗ f2 ∈ C∞c (G̃(F)× G̃(F))
and f ′ = f ′1⊗ f ′2 ∈ C∞c (G̃

′(F)× G̃ ′(F)).
We define the local Kuznetsov trace formula as the equality between the geo-

metric expansion (in terms of orbital integrals) and spectral expansion (in terms of
representations) of

lim
t→∞

∫
(N ′×N ′)(F)

K f ′(n1, n2)ψ
′(n−1

1 n2)u(n1, t)u(n2, t) dn1 dn2

and the local relative trace formula as the equality between the expansions of

lim
t→∞

∫
H̃(F)

∫
N (F)

K f (h, n)ψ(n)u(h, t)u(n, t) dn dh.

In this local setting

K f (x, y)=
∫

G̃(F)
f1(g) f2(x−1gy) dg, K f ′(x, y)=

∫
G̃ ′(F)

f ′1(g) f ′2(x
−1gy) dg

and u(n, t) and u(h, t) are truncation parameters that are needed due to convergence
issues. They are defined analogously to Arthur’s truncation [1991, Section 3].

We use the following ideas in this paper to rewrite these local trace formulas in
terms of orbital integrals and representations:

• methods of Arthur [1991] from the local trace formula,

• methods of Flicker [1991], Jacquet [2005] and Ye [1989] from the relative
trace formula,

• Harish-Chandra’s Plancherel formula [Harish-Chandra 1984; Waldspurger
2003],

• Jacquet, Lapid and Rogawski’s methods for regularizing period integrals
[Jacquet et al. 1999; Jacquet ≥ 2012].
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The power of the two trace formulas lies in the comparison. For “matching
functions”, the geometric expansions of the two local relative trace formulas are
equal. By comparing the spectral expansions in these two trace formulas, we get an
analogue of (1-1), giving the following identity between local Bessel distributions for
functions on U (2) and local relative Bessel distributions for functions on GL(2, E),
and therefore local periods and local Whittaker functionals:

Theorem 1.1. If σ is a supercuspidal representation on G̃(F) that is the unstable
base change lift of the supercuspidal representation σ ′ of G̃ ′(F), and

f ′ = f ′1⊗ f ′2 ∈ C∞c (G̃
′(F)× G̃ ′(F)) and f = f1⊗ f2 ∈ C∞c (G̃(F)× G̃(F))

are matching functions, then

(1-2) d(σ ′)
∑

S′∈B(σ ′)

W ′σ ′(σ
′( f ′2)S

′σ ′( f ′∨1 ))W
′

σ ′(S
′)

= d(σ )
∑

S∈B(σ )

Pσ (σ ( f2)Sσ( f ∨1 ))Wσ (S),

where d(σ ) is the formal degree of σ , B(σ ) is an orthonormal basis of the Hilbert
space of Hilbert–Schmidt operators on Vσ ,

W ′σ ′(S
′)=

∫
N ′(F)

tr(σ ′(n)S′)ψ ′(n−1) dn,

Wσ (S)=
∫

N (F)
tr(σ (n)S)ψ(n−1) dn,

Pσ (S)=
∫

H̃(F)
tr(σ (h)S) dh.

The Bessel and relative Bessel distributions B ′π ′( f ′) and Bπ ( f ) factor into
local (relative) Bessel distributions B ′π ′v ( f ′v) and Bπv ( fv), but it is not clear how to
normalize the local distributions. The distributions on the left and right-hand side
of (1-2) are each the product of two local distributions and (1-2) can be restated as

d(σ ′)B ′σ ′( f ′2)B
′

σ ′∗( f ′1)= d(σ )Bσ ( f2)Bσ ∗( f1).

We note that the local period integral Pσ (S) is not a convergent integral if σ is
not a discrete series representation. To develop the local relative trace formula we
have to define a local regularized period integral. Let K =G(OF ) and let P = N M .
For λ ∈C and m =

(
α 0
0 β
)

let eλHM (m) = |α/β|E where | · |E denotes the normalized
valuation on E . For a principal series representation π of G̃ and u, v ∈ π we define
the matrix coefficient fu,v(g)= 〈π(g)u, v〉. Asymptotically on M , fu,v will equal
a finite sum of functions of the form eλHM (m). We define the regularized period



400 BROOKE FEIGON

integral as:∫
∗

H̃(F)
fu,v(h) dh :=

∫
H̃(F)

fu,v(h)u(h, t) dh

+

∫
K̃ H×K̃ H

∫ ]

M̃+H (F)
DPH (m) fu,v(k1mk2)(1− u(m, t)) dm dk1 dk2

where ∫ ]

M̃+H (F)
eλHM (m)(1− u(m, t)) dm

is the meromorphic continuation at ν = 0 of∫
M̃+H (F)

e(ν+λ)HM (m)(1− u(m, t)) dm,

which is absolutely convergent for Re(ν)� 0.
We prove that the regularized period integral is an H(F)×H(F)-invariant linear

functional, and we relate it to the truncated period integral that initially appears
in the local relative trace formula as follows. By abuse of notation we identify a
character χ of M̃(F) with a character χ of E× by letting χ

(
a 0
0 b

)
= χ(a)χ−1(b).

For λ ∈ C we let χλ(m) = χ(m)eλ(HM (m)). We let IP(χλ) be the parabolically
induced normalized representation acting on the Hilbert space HP(χ). Then for
S ∈BP(χ),

tr(IP(χλ, k1gk2)S)= EP(g, 9S, λ)k1,k2,

where EP(g, 9, λ) is the Eisenstein integral and

(C P EP)(m, ψ, λ)= (cP|P(1, λ)ψ)(m)eλHM (m)+ (cP|P(w, λ)ψ)(m)e−λHM (m).

We fix a uniformizer $ in F (and E) and q−1
= |$ |F .

Proposition 1.2. Fix a character χ of E× such that χ($)= 1. Then for t � 0,∫
H̃(F)

tr(IP(χλ, h)S)u(h, t) dh =
∫
∗

H̃(F)
tr(IP(χλ, h)S) dh

−δ(χ)(1+ q−1)

(
q2λ(t+1)

1−q2λ

∫
K̃ H×K̃ H

c(1, λ)9S(1)k1,k2 dk1 dk2

+
q−2λ(t+1)

1−q−2λ

∫
K̃ H×K̃ H

c(w, λ)9S(1)k1,k2 dk1 dk2

)
,

where δ(χ)= 1 if χ |O×F = 1 and δ(χ)= 0 if χ |O×F 6= 1.

Denote the action of the nontrivial element in Gal(E/F) on x ∈ E by x̄ . Denote
by NE/F the norm map from E× to F×. Let E1

= {x ∈ E× : NE/F (x)= 1}. Let η
denote an element in G(F) such that η−1η =

(
0 1
1 0

)
.
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We define

D′χ ′λ( f ′)=
∑

S′∈BP (χ ′)

W ′
χ ′λ
(S′λ[ f

′
])W ′

χ ′λ
(S′) and Dχλ( f )=

∑
S∈BP (χ)

Pχλ(Sλ[ f ])Wχλ(S),

where

W ′
χ ′λ
(S′)= lim

t→∞

∫
N ′(F)

tr(IP ′(χ
′

λ, n)S′)ψ ′(n−1)u(n, t) dn,

Wχλ(S)= lim
t→∞

∫
N (F)

tr(IP(χλ, n)S)ψ(n−1)u(n, t) dn,

Pχλ(S)=
∫
∗

H̃(F)
tr(IP(χλ, h)S) dh,

Sλ[ f ] = IP(χλ, f2)SIP(χλ, f ∨1 ).

We let 52(G̃ ′(F)) be a set of equivalence classes of irreducible, tempered square
integrable representations of G̃ ′(F). We identify unitary characters on M̃ ′(F)
with characters on E× that are trivial on E1. We let {52(M̃ ′(F))} be a set of
representatives of unitary characters χ ′ on M̃ ′(F) such that χ ′($) = 1. We let
µ(χ ′λ) be Harish-Chandra’s µ-function. We take the analogous definitions for G̃(F).

Theorem 1.3 (local Kuznetsov trace formula). For any

f ′ = f ′1⊗ f ′2 ∈ C∞c (G̃
′(F)× G̃ ′(F)),

we have

lim
t→∞

∫
N ′(F)

∫
N ′(F)

K f ′(n1, n2)ψ
′(n−1

1 n2)u(n1, t)u(n2, t) dn1 dn2

=

∫
a∈E×/E1

O ′
(

f1, ψ
′, a
)
O ′
(

f ′2, ψ̄
′, a
)
|a|E d×a

=

∑
σ ′∈52(G̃ ′(F))

d(σ ′)D′σ ′( f ′)+ 1
2

∑
χ ′∈{52(M̃ ′(F))}

d(χ ′)
∫ π i/log q

0
µ(χ ′λ)D

′

χ ′λ
( f ′) dλ,

where

O ′( f ′i , ψ
′, a)=

∫
N ′(F)

∫
N ′(F)

f ′i
(
n−1

1

(
0 1
−1 0

)( a 0
0 a−1

)
n2
)
ψ ′(n−1

1 n2) dn1 dn2.

Theorem 1.4 (local relative trace formula). For any

f = f1⊗ f2 ∈ C∞c (G̃(F)× G̃(F)),

we have
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lim
t→∞

∫
H̃(F)

∫
N (F)

K f (h, n)ψ(n)u(h, t)u(n, t) dn dh

=

∫
a∈E×/E1

O
(

f1, ψ, a
)
O
(

f2, ψ̄, a
)
|a|E d×a

=

∑
σ∈52(G̃(F))

d(σ )Dσ ( f )+ 1
2

∑
χ∈{52(M̃(F))}
χ2
6=1,χ |F×=1

D̃χ ( f )

+
1
2

∑
χ∈{52(M̃(F))}

χ |E1=1

d(χ)
∫ π i/log q

0
µ(χλ)Dχλ( f ) dλ

where

O( fi , ψ, a)=
∫

H̃(F)

∫
N (F)

fi

(
h−1η

(
a 0
0 1

)
n
)
ψ(n) dn dh.

The representations that occur on the right-hand side of Theorem 1.4 are exactly
the representations that are in the image of the unstable base change lift on G̃ ′(F).
The additional discrete term D̃χ ( f ) corresponds to the representations that lift from
discrete series on G̃ ′(F) to principal series on G̃(F).

In addition to the spectral comparison, these local trace formulas also have
applications on the geometric side. If we define the inner product of two functions
g1, g2 on E×/E1 by

〈g1, g2〉 =

∫
a∈E×/E1

g1(a)g2(a)|a|E d×a,

then:

Proposition 1.5 (orthogonality relations). For f1 and f2 matrix coefficients of the
supercuspidal representations σ1 and σ2 of G̃(F) and f ′1 and f ′2 matrix coefficients
of the supercuspidal representations σ ′1 and σ ′2 of G̃ ′(F),〈

O ′( f ′1, ψ
′, · ), O ′( f ′2, ψ

′−1, · )
〉
6= 0 ⇐⇒ σ ′1 ∼ σ

′

2,〈
O( f1, ψ, · ), O( f2, ψ

−1, · )
〉
6= 0 ⇐⇒ σ1 ∼ σ2.

The rest of this paper is organized as follows. In Section 2 we define notation
and give normalizations of measures. In Section 3 we develop the local Kuznetsov
trace formula. For the geometric expansion we rewrite our trace formula in terms of
orbital integrals corresponding to the N ′\G ′/N ′ double cosets. The orbital integrals
for f ′1 and f ′2 initially depend on the truncation and are intertwined. It is only
through the multiplication of the two orbital integrals, integration over the space
of double cosets, and the nontriviality of the character ψ ′, that we are able to
untangle the orbital integral for f ′1 from the orbital integral for f ′2. For the spectral



A RELATIVE TRACE FORMULA FOR PGL(2) IN THE LOCAL SETTING 403

expansion we apply Harish-Chandra’s Plancherel formula to rewrite the local kernel
in terms of representations. We are left with truncated integrals over the unipotent
subgroup of matrix coefficients against the character ψ ′. By the smoothness of the
matrix coefficients and the appearance of the character, we show these distributions
stabilize for t large.

In Section 4 we develop the local relative trace formula of H\G/N . In the spectral
expansion we have truncated integrals of matrix coefficients over H that do not
converge without the truncation. We define the regularized period integral Pχλ(S).
We use the asymptotics of matrix coefficients of tempered representations to prove
the truncated integral is a polynomial exponential function in the truncation param-
eter t . We define the regularized integral as the constant term of this polynomial,
and prove that this is an H × H invariant linear functional and the relevant term in
the local relative trace formula.

In Section 5 we compare our two local trace formulas. There is a bijection
between the “admissible” N ′\G ′/N ′ cosets and the “admissible” H\G/N cosets
and both of these sets can be parametrized by E×/E1. This bijection allows us
to compare the geometric sides. By work of Ye and Flicker, we know that for
any f ′ there is an f such that the orbital integrals are equal for corresponding
cosets. Thus, by their geometric expansions, our local trace formulas are equal for
matching functions. This gives an equality of the spectral expansions and of local
distributions.

This paper would not have come into being had it not been for my teacher and
advisor, Jonathan Rogawski. These thoughts originated as my PhD thesis under
his direction, and his ideas, support, and guidance were critical to its completion. I
am fortunate and will be forever grateful to have had him as a mentor. He could
explain complicated math in a clear and simple way that aimed at the heart of the
problem. He served, and continues to serve, as the role model of the inquisitive,
patient, and approachable mathematician.

2. Notation

Let F be a non-Archimedean local field of characteristic 0 and odd residual charac-
teristic q . Let E be an unramified quadratic extension of F . Let OF and OE denote
the rings of integers in F and E , respectively. Let $ denote a uniformizer in the
maximal ideal of OF . Thus $ is also a uniformizer in E . Let v( · ) denote the
valuation on F , extended to E . Let | · |F and | · |E denote the normalized valuations
on F E , respectively. Thus for a ∈ F×, |a|E = |a|2F . Denote the action of the
nontrivial element in Gal(E/F) on x ∈ E by x̄ . Denote by NE/F the norm map
from E× to F×. Let E1

= {a ∈ E× : NE/F (a)= 1}.
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Let H = GL(2)/F and let G = ResE/F H , the restriction of scalars of GL(2)
from E to F . Thus G(F)= GL(2, E). Let

G ′ = U(2, F)=
{

g ∈ G : t g
(

0 1
−1 0

)
g =

(
0 1
−1 0

)}
.

We note that by defining the quasisplit unitary group in this way, SL(2, F)⊂G ′(F).
Let N ′ and N be the upper triangular unipotent matrices of G ′ and G, respectively.
Let M ′ and M be the diagonal subgroups of G ′ and G, respectively. That is,

M ′(F)=
{(

a 0
0 a−1

)
: a ∈ E×

}
and M(F)=

{(
a 0
0 b

)
: a, b ∈ E×

}
.

Occasionally by abuse of notation we let n =
(

1 n
0 1

)
and a =

( a 0
0 ā−1

)
. Let P = N M

and P ′ = N ′M ′. Let K = G(OF ) and K ′ = G ′(OF ). Let Z and Z ′ denote the
centers of G and G ′, respectively. For any subgroup X of G let X̃ = Z ∩ X\X
and X H = X ∩ H . By abuse of notation we identify a character χ of M̃(F) with a
character χ of E× by letting χ

(
a 0
0 b

)
= χ(a)χ−1(b).

Let ψ ′ be an additive character on F with conductor OF . Let ψ be the additive
character on E defined by ψ(x) = ψ ′(x + x). By abuse of notation we will also
denote by ψ and ψ ′ the corresponding characters on N (F) and N ′(F), respectively.
Let f = f1⊗ f2 ∈ C∞c (G̃(F)× G̃(F)) and f ′ = f ′1⊗ f ′2 ∈ C∞c (G̃

′(F)× G̃ ′(F)).
For a function f on G, let f ∨(g)= f (g−1).

To define the local Kuznetsov trace formula and local relative trace formula we
first multiply our function by the characteristic function of a large compact subset
of G̃(F) via Arthur’s local truncation [1991, §3], and then take the limit of the
integral of the truncated function. For g ∈ G(F), t ∈ Z+, let

u(g, t)=
{

1 if g = zk1
(

1 0
0 α

)
k2, for some k1, k2 ∈ K , z ∈ Z(F), 0≤ v(α)≤ t ,

0 otherwise.

We note that u( · , t) is well-defined on G̃(F) and

u
((

1 x
0 1

)
, t
)
=

{
1 if x ∈$ [−t/2]OE ,

0 otherwise,

where [x] is the integral part of x .
If X is a closed subgroup of G̃(F) with the subgroup topology, supp(u( · , t))∩X

is a compact set.
We normalize the Haar measure dx on F so that vol(OF ) = 1. We define the

multiplicative measure d×x on F× as

d×x = 1
1−q−1

1
|x |F

dx .
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Thus vol(O×F )= 1. We let N (F) and M(F) have the measures induced by dx and
d×x . We normalize the Haar measure dk on K so that vol(K )= 1. We define the
measure dg on G(F) by∫

G(F)
f (g) dg =

∫
M(F)

∫
N (F)

∫
K

f (mnk) dk dn dm.

We define dg′ on G ′(F) similarly. We normalize Haar measure on K̃ by taking
vol(K̃ )= 1.

We let d×a be the unique Haar measure on E×/E1 such that

vol(O×E/E1)=
1

1+q−1 .

3. The local Kuznetsov trace formula for U(2)

In this section we develop a local Kuznetsov trace formula for the quasisplit unitary
group in two variables. We expand this local Kuznetsov trace formula geometrically
in terms of separate orbital integrals for f ′1 and f ′2. Then we use Harish-Chandra’s
Plancherel formula to rewrite this expression spectrally in terms of representations.

We define the local Kuznetsov trace formula for

f ′ = f ′1⊗ f ′2 ∈ C∞c (G̃
′(F)× G̃ ′(F))

as the equality between the geometric and spectral expansions of

lim
t→∞

∫
(N ′×N ′)(F)

K f ′(n1, n2)ψ(n−1
1 n2)u(n1, t)u(n2, t) dn1 dn2

where
K f ′(n1, n2)=

∫
G̃ ′(F)

f ′1(g) f ′2(n
−1
1 gn2) dg.

We will show that for a fixed f ′ this limit stabilizes, that is, there exists a T such
that for all t ′ ≥ T ,∫
(N ′×N ′)(F)

K f ′(n1, n2)ψ
′(n−1

1 n2)u(n1, t ′)u(n2, t ′) dn1 dn2

= lim
t→∞

∫
(N ′×N ′)(F)

K f ′(n1, n2)ψ(n−1
1 n2)u(n1, t)u(n2, t) dn1 dn2.

3A. The geometric expansion. In this subsection we rewrite

lim
t→∞

∫
N ′(F)

∫
N ′(F)

K f ′(n1, n2)ψ
′(n−1

1 n2)u(n1, t)u(n2, t) dn1 dn2

as an integral over admissible cosets of a product of an orbital integral for f ′1 and
an orbital integral for f ′2.
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3A1. Integration formula. Let w =
( 0 1
−1 0

)
. For a ∈ E×, let βa =

( a 0
0 a−1

)
and

γa = w
( a 0

0 a−1

)
. By the Bruhat decomposition, G ′ = P ′ t P ′wP ′. Thus{

βa :
a is in a set of
representatives for E×/E1

} ⋃ {
γa :

a is in a set of
representatives for E×/E1

}
is a set of representatives for the double cosets of N ′(F)\G̃ ′(F)/N ′(F).

For g ∈ G ′(F) let

Cg(N ′(F)× N ′(F))

= {(n1, n2) ∈ N ′(F)× N ′(F) : n−1
1 gn2 = zg for some z ∈ Z ′(F)}.

Definition 3.1. An element g ∈ G̃ ′(F) and its corresponding orbit are called ad-
missible if the map

Cg(N ′(F)× N ′(F))→ C : (n1, n2) 7→ ψ ′(n−1
1 n2)

is trivial.

By a simple calculation we see that

Cβa (N
′(F)× N ′(F))=

{((
1 x
0 1

)
,

(
1 x

aa
0 1

))
: x ∈ F

}
,

Cγa (N
′(F)× N ′(F))= 1.

Thus the orbits represented by {β1} ∪ {γa : a ∈ E×/E1
} are admissible.

We use the following integration formula to rewrite K f ′(n1, n2) as an integral
over the admissible cosets. Unlike in the global case the trivial admissible coset, β1,
will not contribute to the trace formula.

For any F ∈ Cc(G̃ ′(F)),

(3-1)
∫

G̃ ′(F)
F(g) dg =

∫
E×/E1

∫
(N ′×N ′)(F)

F(n−1
1 γan2) dn1 dn2|a|E d×a.

3A2. Separating the orbital integrals. Let

K t( f ′)=
∫

N ′(F)

∫
N ′(F)

K f ′(n1, n2)ψ(n−1
1 n2)u(n1, t)u(n2, t) dn1 dn2.

Clearly K t( f ′) is absolutely convergent because f ′1 and u( · , t) have compact
support on G̃ ′(F) and N ′(F) respectively. By changing the order of integration
and using (3-1), we see that K t( f ′) equals∫

E×/E1

∫
(N ′×N ′)(F)

∫
(N ′×N ′)(F)

f ′1(n̂
−1
1 γa n̂2) f ′2(n

−1
1 n̂−1

1 γa n̂2n2)

×ψ ′(n−1
1 n2)u(n1, t)u(n2, t) dn1 dn2 dn̂1 dn̂2|a|E d×a.
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This integral is absolutely convergent because the map

N ′(F)× E×/E1
× N ′(F)→ G̃ ′(F)

defined by

(n1, a, n2) 7→ n−1
1 γan2

is injective and f ′1 has compact support. By a change of variables we have

K t( f ′)=
∫

E×/E1
K t(γa, f ′)|a|E d×a,

where

K t(γa, f ′)=
∫
(N ′×N ′)(F)

∫
(N ′×N ′)(F)

f ′1(n̂
−1
1 γa n̂2) f ′2(n

−1
1 γan2)ψ

′(n−1
1 n̂1n̂−1

2 n2)

×u(n̂−1
1 n1, t)u(n̂−1

2 n2, t) dn1 dn2 dn̂1 dn̂2.

To complete the geometric expansion of the local Kuznetsov trace formula we
rewrite K t( f ′) for t � 0 as an integral of two separate orbital integrals. We begin
by examining the dependence of the integrand on the truncation.

Lemma 3.2. Let f ′1, f ′2 ∈ Cc(G̃ ′(F)). For each t0 > 0 there exists a T > 0 such
that for all t ≥ T ,

f ′1(x
−1
1 γ y1) f ′2(x

−1
2 γ y2)u(x−1

1 x2, t)u(y−1
1 y2, t0)

= f ′1(x
−1
1 γ y1) f ′2(x

−1
2 γ y2)u(y−1

1 y2, t0)

for all x1, x2, y1, y2, γ ∈ G̃ ′(F).

Proof. Let

�1 = supp( f ′1), �2 = supp( f ′2), �3 = supp(u( · , t0))∩ G̃ ′(F).

These sets are all compact on G̃ ′(F). If f ′1(x
−1
1 γ y1) f ′2(x

−1
2 γ y2)u(y−1

1 y2, t0) 6= 0,
then the following conditions must hold:

• x−1
1 ∈�1 y−1

1 γ−1.

• x2 ∈ γ y2�
−1
2 .

• y−1
1 y2 ∈�3.

Thus if f ′1(x
−1
1 γ y1) f ′2(x

−1
2 γ y2)u(y−1

1 y2, t0) 6= 0, then x−1
1 x2 ∈�1�3�

−1
2 . Because

this is a compact set, there exists a T > 0 such that �1�3�
−1
2 ⊆ supp(u(g, T )).

The lemma now follows. �
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Now we use this lemma, along with the character ψ ′, to separate the two orbital
integrals. By abuse of notation, in the proof of the following lemma we let

$ n
=

(
$ n 0
0 $−n

)
and a =

(
a 0
0 a−1

)
.

Lemma 3.3. For f ′ = f ′1⊗ f ′2 ∈ C∞c (G̃
′(F)× G̃ ′(F)), there exists a T such that

for all t ≥ T and n ∈ Z,

(3-2)
∫

a∈$ nO×E/E1
K t(γa, f ′) d×a =

∫
a∈$ nO×E/E1

O ′( f ′1, ψ
′, a) O ′( f ′2, ψ̄

′, a) d×a,

where

O ′( f ′, ψ ′, a)=
∫

N ′(F)

∫
N ′(F)

f ′(n−1
1 γan2)ψ ′(n−1

1 n2) dn1 dn2.

Proof. We show that there is a hidden truncation on the right-hand side of (3-2) that
comes from the fact that the two orbital integrals are simultaneously evaluated at
the same γa . Let K1 be an open compact subgroup of G̃ ′(F) such that f ′1 and f ′2
are bi-K1-invariant. There exists a positive constant c such that

(
a 0
0 a−1

)
∈ K1 for all a ∈ (1+$ cOE)E1.

By definition∫
a∈$ nO×E/E1

K t(γa, f ′) d×a

=

∫
a∈O×E/E1

∫
(N ′×N ′)(F)

f ′1(n̂
−1
1 w$ nan̂2)ψ

′(n̂1n̂−1
2 )

∫
(N ′×N ′)(F)

f ′2(n
−1
1 w$ nan2)

×ψ ′(n−1
1 n2)u(n̂−1

1 n1, t)u(n̂−1
2 n2, t) dn2 dn1 dn̂2 dn̂1 d×a

=

∑
η∈O×E/(1+$

cOE )E1

∫
a∈(1+$ cOE )E1/E1

∫
(N ′×N ′)(F)

f ′1(n̂
−1
1 w$ nηan̂2)ψ

′(n̂1n̂−1
2 )

×

∫
(N ′×N ′)(F)

f ′2(n
−1
1 w$ nηan2)ψ

′(n−1
1 n2)u(n̂−1

1 n1, t)

× u(n̂−1
2 n2, t) dn2 dn1 dn̂2 dn̂1 d×a.
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By a change of variables and the fact that f ′ is locally constant the right-hand side
of this equation is equal to∑
η∈O×E/(1+$

cOE )E1

∫
(N ′×N ′)(F)

f ′1(n̂
−1
1 w$ nηn̂2)ψ

′(n̂1)

×

∫
(N ′×N ′)(F)

f ′2(n
−1
1 w$ nηn2)ψ

′(n−1
1 )u(n̂−1

1 n1, t) dn1 dn̂1

×

∫
a∈(1+$ cOE )E1/E1

ψ ′(a−1n̂−1
2 n2a)u(a−1n̂−1

2 n2a, t) d×a dn2 dn̂2.

We can rewrite the inner integral as

u(n̂−1
2 n2, t)

∫
a∈(1+$ cOE )E1/E1

ψ ′((n2− n̂2)(aā)−1) d×a

= u(n̂−1
2 n2, t)

∫
b∈1+$ cOF

ψ ′(b(n2− n̂2)) d×b

= u(n̂−1
2 n2, t) 1

1−q−1 ψ
′(n2− n̂2)

∫
b∈$ cOF

ψ ′(b(n2− n̂2)) db

= u(n̂−1
2 n2, t)u(n̂−1

2 n2, 2c) vol($ cOF )

1−q−1 ψ ′(n̂−1
2 n2).

Thus for t ≥ 2c,∫
a∈$ nO×E/E1

K t(γa, f ′) d×a =
∫

a∈$ nO×E/E1

∫
(N ′×N ′)(F)

f ′1(n̂
−1
1 γa n̂2)ψ

′(n̂1n̂−1
2 )

×

∫
(N ′×N ′)(F)

f ′2(n
−1
1 γan2)ψ

′(n−1
1 n2)u(n̂−1

1 n1, t)u(n̂−1
2 n2, 2c) dn2 dn1 dn̂2dn̂1d×a.

By Lemma 3.2 there exists a T > 0 such that for all t ≥max{T, 2c},∫
a∈$ nO×E/E1

K t(γa, f ′) d×a

=

∫
a∈$ nO×E/E1

∫
(N ′×N ′)(F)

f ′1(n̂
−1
1 γa n̂2)ψ

′(n̂1n̂−1
2 ) dn̂1

×

∫
(N ′×N ′)(F)

f ′2(n
−1
1 γan2)ψ

′(n−1
1 n2)u(n̂−1

2 n2, 2c) dn2 dn1 dn̂2 d×a

=

∫
a∈$ nO×E/E1

∫
(N ′×N ′)(F)

f ′1(n̂
−1
1 γa n̂2)ψ

′(n̂1n̂−1
2 ) dn̂2 dn̂1

×

∫
(N ′×N ′)(F)

f ′2(n
−1
1 γan2)ψ

′(n−1
1 n2) dn2 dn1 d×a. �

We have shown that the truncated local Kuznetsov trace formula stabilizes.
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Proposition 3.4. For any f ′ = f ′1⊗ f ′2 ∈ C∞c (G̃
′(F)× G̃ ′(F)) and t � 0,∫

N ′(F)

∫
N ′(F)

K f ′(n1, n2)ψ
′(n−1

1 n2)u(n1, t)u(n2, t) dn1 dn2

=

∫
a∈E×/E1

O ′( f ′1, ψ
′, a)O ′( f ′2, ψ̄

′, a)|a|E d×a.

3B. The spectral expansion. Now we derive a spectral expansion for the local
Kuznetsov trace formula,

lim
t→∞

∫
N ′(F)

∫
N ′(F)

K f ′(n1, n2)ψ
′(n−1

1 n2)u(n1, t)u(n2, t) dn1 dn2.

Our main tool is the Plancherel formula for p-adic groups, which was first stated,
with an outlined proof, by Harish-Chandra [1984]. Silberger [1996] later filled in
an important proof of one of the steps in the theorem. More recently Waldspurger
[2003] provided a complete proof.

As in [Arthur 1991, §2], we begin by rewriting K f ′(x, y) using the Plancherel
formula. First we introduce some additional notation. For an irreducible representa-
tion (σ, Vσ ) of G ′(F) let B(σ ) be the Hilbert space of Hilbert–Schmidt operators
on Vσ . The inner product on B(σ ) is defined as

〈S, S′〉 := tr(SS′∗)

for S, S′ ∈ B(σ ), where tr(SS′∗) =
∑

o.n.b.Vσ 〈SS′∗ui , ui 〉 and this sum converges
absolutely and does not depend on the basis. For a discrete series representation σ
of a group G let d(σ ) be the formal degree of σ .

Let 52(G̃ ′(F)) be a set of representatives for the equivalence classes of irre-
ducible, tempered square integrable representations of G̃ ′(F) and let {52(M̃ ′(F))}
be a set of representatives of unitary characters χ on M̃ ′(F) such that χ($)=1. For
a character χ of M ′(F) and λ∈C, let χλ(m)=χ(m)eλ(HP ′ (m)). For χ ∈{52(M̃ ′(F))},
I G ′

P ′ (χλ) = IP ′(χλ) is the normalized induced representation of G̃ ′(F) acting on
a Hilbert space HP ′(χ) of vector-valued functions on K ′. Let BP ′(χ) be a fixed
K ′-finite orthonormal basis of the Hilbert space of Hilbert–Schmidt operators on
HP ′(χ).

Let m(σ ) be the Plancherel density. We normalize our measures following
[Arthur 1991, §1]. The Plancherel density satisfies m(χλ) = d(χ)µ(χλ), where
µ(χλ) is Harish-Chandra’s µ-function.

For a fixed x ∈ G ′(F), let

h(v)=
∫

G̃ ′(F)
f ′1(xu) f ′2(uvx) du.
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Then h ∈ C∞c (G̃
′(F)) and K f ′(x, y)= h(yx−1), so by the Plancherel formula,

K f ′(x, y)=
∑

σ∈52(G̃ ′(F))

d(σ ) tr(σ (R(yx−1)h))

+
1
2

∑
χ∈{52(M̃ ′(F))}

∫ π i
log q

0
tr(IP ′(χ, R(yx−1)h))m(χλ) dλ.

Because IP ′(χλ, R(yx−1)h) = IP ′(χλ, f ′∨1 )IP ′(χλ, x)IP ′(χλ, f ′2)(IP ′(χλ, y))∗,
we have

tr(IP ′(χλ, R(yx−1)h))

=

∑
S∈BP ′ (χ)

(IP ′(χλ, f ′∨1 )IP ′(χλ, x)IP ′(χλ, f ′2), S∗)(IP ′(χλ, y), S∗)

=

∑
S∈BP ′ (χ)

tr(IP ′(χλ, f ′∨1 )IP ′(χλ, x)IP ′(χλ, f ′2)S)tr(IP ′(χλ, y)S)

=

∑
S∈BP ′ (χ)

tr(IP ′(χλ, x)Sλ[ f ′])tr(IP ′(χλ, y)S),

where Sλ[ f ′] = IP ′(χλ, f ′2)SIP ′(χλ, f ′∨1 ).
For f ′ ∈C∞c (G̃

′(F)), π an admissible representation, π( f ′) has finite rank. Thus
the sum over S is a finite sum of an orthonormal basis of operators on HP(χ)

K0

for some open compact K0.
Putting everything together we have∫

N ′(F)

∫
N ′(F)

K f ′1⊗ f ′2(n1, n2)ψ
′(n−1

1 n2)u(n1, t)u(n2, t) dn1 dn2

=

∑
σ∈52(G̃ ′(F))

d(σ )
∑

S∈B(σ )

(∫
N ′(F)

tr(σ (n)(σ ( f ′2)Sσ( f ′∨1 )))ψ
′(n−1)u(n, t) dn

×

∫
N ′(F)

tr(σ (n)S)ψ ′(n−1)u(n, t) dn
)

+
1
2

∑
χ∈{52(M̃ ′(F))}

d(χ)×
∫ π i

log q

0

( ∑
S∈BP ′ (χ)

∫
N ′(F)

tr(IP ′(χλ, n)Sλ[ f ′])ψ ′(n−1)u(n, t) dn

×

∫
N ′(F)

tr(IP ′(χλ, n)S)ψ ′(n−1)u(n, t) dn
)
µ(χλ) dλ.

To finish the spectral expansion we show that the above unipotent integrals stabi-
lize. We first note that in the discrete series case the above integrals are absolutely
convergent without any truncation for reasons similar to those in Section 4B1.

Lemma 3.5 (spectral stabilization). For any complex-valued function φ on G̃ ′(F)
that is biinvariant under a fixed open compact subgroup, there exists a positive
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integer c such that for all t ≥ c,∫
N ′(F)

φ(n)ψ ′(n)u(n, t) dn =
∫

N ′(F)
φ(n)ψ ′(n)u(n, c) dn.

This c only depends on the open compact subgroup under which φ is biinvariant.

Proof. Let K1 be an open compact subgroup of G̃ ′(F) under which φ is biinvariant.
K1 must contain a neighborhood of the identity, so there exists a positive integer c′

such that (
a 0
0 a−1

)
∈ K1 for all a ∈ (1+$ c′OE)E1.

We show that for m > c′,∫
$−m O×F

φ

((
1 x
0 1

))
ψ ′(x) dx = 0.

We note that (
a 0
0 a−1

)(
1 x
0 1

)(
a−1 0

0 a

)
=

(
1 aax
0 1

)
.

Thus for x ′ ∈ 1+$ c′OF ,

φ

((
1 x ′x
0 1

))
= φ

((
1 x
0 1

))
.

Hence∫
$−m O×F

φ

((
1 x
0 1

))
ψ ′(x) dx

=

∑
α∈O×F/(1+$

c′OF )

∫
$−m(1+$ c′OF )

φ

((
1 αx
0 1

))
ψ ′(αx) dx

=

∑
α∈O×F/(1+$

c′OF )

φ

((
1 $−mα

0 1

))
ψ ′($−mα)

∫
$ c′−m OF

ψ ′(x) dx .

The last line equals 0 for m > c′. Thus for t > 2c′,∫
N ′(F)

φ(n)ψ ′(n)u(n, t) dn =
∫

N ′(F)
φ(n)ψ ′(n)u(n, 2c′) dn. �

We have now proved the following.
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Proposition 3.6. For any f ′ = f ′1⊗ f ′2 ∈ C∞c (G̃
′(F)× G̃ ′(F)),

lim
t→∞

∫
N ′(F)

∫
N ′(F)

K f ′(n1, n2)ψ
′(n−1

1 n2)u(n1, t)u(n2, t) dn1 dn2

=

∑
σ ′∈52(G̃ ′(F))

d(σ ′)D′σ ′( f ′)+ 1
2

∑
χ ′∈{52(M̃ ′(F))}

d(χ ′)
∫ π i

log q

0
D′
χ ′λ
( f ′)µ(χ ′λ) dλ,

where
D′σ ′( f ′)=

∑
S∈B(σ ′)

W ′σ ′(σ
′( f ′2)Sσ

′( f ′∨1 ))W
′

σ ′(S),

W ′σ ′(S)=
∫

N ′(F)
tr(σ ′(n)S)ψ ′(n−1) dn,

D′
χ ′λ
( f ′)=

∑
S∈BP ′ (χ

′)

W ′
χ ′λ
(IP ′(χ

′

λ, f ′2)SIP ′(χ
′

λ, f ′∨1 ))W
′

χ ′λ
(S),

W ′
χ ′λ
(S)= lim

t→∞

∫
N ′(F)

tr(IP ′(χ
′

λ, n)S)ψ ′(n−1)u(n, t) dn.

We note that Theorem 1.3 now follows from the results of Propositions 3.4
and 3.6.

4. The local relative trace formula and periods for PGL(2)

In this section we define a local relative trace formula for PGL(2). We expand
this local relative trace formula geometrically in terms of separate orbital integrals
of f1 and f2. Then we use Harish-Chandra’s Plancherel formula to rewrite this
expression spectrally in terms of representations. We define a regularized period
integral, show that it is an H × H -invariant linear functional and that it is the term
that appears in the spectral expansion of the local relative trace formula.

We define the local relative trace formula for f = f1⊗ f2 ∈C∞c (G̃(F)× G̃(F))
as the equality between the geometric and spectral expansions of

lim
t→∞

∫
H̃(F)

∫
N (F)

K f (h, n)ψ(n)u(h, t)u(n, t) dn dh

where
K f (h, n)=

∫
G̃(F)

f1(g) f2(h−1gn) dg.

As we did with the local Kuznetsov trace formula, we show that for a fixed f this
limit stabilizes.

4A. The geometric expansion. We will rewrite

lim
t→∞

∫
H̃(F)

∫
N (F)

K f (h, n)ψ(n)u(h, t)u(n, t) dn dh
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as an integral over admissible cosets of a product of an orbital integral for f1 and
an orbital integral f2.

4A1. Integration formula. As pointed out in [Jacquet et al. 1999, §VI.13], by
[Springer 1985], G(F) = H(F)P(F) t H(F)ηP(F), where η is any element
in G(F) such that η−1η =

(
0 1
1 0

)
. Let ηa = η

(
a 0
0 1

)
and γα =

( 1 0
0 α+

√
τ

)
, where

E = F(
√
τ). Then{(

1 0
0 1

)}
∪ {γα : α ∈ F} ∪ {ηa : a is in a set of representatives for E×/E1

}

is a set of representatives for the double cosets of H̃(F)\G̃(F)/N (F).
For g ∈ G(F), let

Cg(H̃(F)× N (F))= {(h, n) ∈ H̃(F)× N (F) : h−1gn = zg for some z ∈ Z(F)}.

Definition 4.1. An element g ∈ G̃(F) and its corresponding orbit is called admis-
sible if the map Cg(H̃(F)× N (F))→ C : (h, n) 7→ ψ(n) is trivial.

By a short calculation we see that

Cγα (H̃(F)× N (F))=
{((

1 y
0 1

)
,

(
1 y(α+

√
τ)

0 1

))
: y ∈ F

}
,

Cηa (H̃(F)× N (F))= 1.

Thus the orbits represented by {ηa : a ∈ E×/E1
} ∪ {γ0} are admissible.

We have the following integration formula. For any F ∈ Cc(G̃(F)),

(4-1)
∫

G̃(F)
F(g) dg =

∫
E×/E1

∫
H̃(F)×N (F)

F(h−1ηan) dn dh|a|E d×a.

4A2. Separating the orbital integrals. Let

Rt( f )=
∫

H̃(F)

∫
N (F)

K f (h, n)ψ(n)u(h, t)u(n, t) dn dh.

Rt( f ) is absolutely convergent because f1(g), u(h, t) and u(n, t) have compact sup-
port on G̃(F), H̃(F) and N (F) respectively. By changing the order of integration
and applying (4-1) we see that Rt( f ) equals∫

E×/E1

∫
H̃(F)×N (F)

∫
H̃(F)×N (F)

f1(h−1
1 ηan1) f2(h−1

2 h−1
1 ηan1n2)

×ψ(n2)u(h2, t)u(n2, t) dn2 dh2 dn1 dh1|a|E d×a.

By a change of variables we have

Rt( f )=
∫

E×/E1
Rt(ηa, f )|a|E d×a,
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where

Rt(ηa, f )=
∫

H̃(F)×N (F)

∫
H̃(F)×N (F)

f1(h−1
1 ηan1) f2(h−1

2 ηan2)ψ(n−1
1 n2)

×u(h−1
1 h2, t)u(n−1

1 n2, t) dn2 dh2 dn1 dh1.

To complete the geometric expansion of the local relative trace formula we
rewrite Rt( f ) for t � 0 as an integral of a product of two separate orbital integrals
that are not truncated. We omit the proof the lemma below as it is very similar to
the proof of Lemma 3.3.

Lemma 4.2. For f ∈C∞c (G̃(F)×G̃(F)), there exists a T >0 such that for all t≥T
and n ∈ Z,∫

$ nO×E/E1
Rt(ηa, f ) d×a =

∫
$ nO×E/E1

O( f1, ψ, a)O( f2, ψ, a) d×a

where

O( f, ψ, a)=
∫

H̃(F)

∫
N (F)

f (h−1ηan)ψ(n) dn dh.

We have proved the following proposition.

Proposition 4.3. For any f = f1⊗ f2 ∈ C∞c (G̃(F)× G̃(F)),

lim
t→∞

∫
H̃(F)

∫
N (F)

K (h, n)ψ(n)u(h, t)u(n, t) dn dh

=

∫
a∈E×/E1

O( f1, ψ, a) O( f2, ψ, a)|a|E d×a.

Here, as in the local Kuznetsov trace formula, we have actually shown that the
limit of the truncated local relative trace formula stabilizes.

4B. The spectral expansion and period integrals. We want to develop a spectral
expansion for the local relative trace formula,

lim
t→∞

∫
H̃(F)

∫
N (F)

K f (h, n)ψ(n)u(h, t)u(n, t) dn dh.

As in the previous section, we expand the kernel via the Plancherel formula:

(4-2)
∫

H̃(F)

∫
N (F)

K (h, n)ψ(n)u(h, t)u(n, t) dn dh

=

∑
σ∈52(G̃(F))

d(σ )Dt
σ ( f )+ 1

2

∑
χ∈{52(M̃(F))}

d(χ)
∫ π i

log q

0
µ(χλ)Dt

χλ
( f ) dλ
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where

Dt
σ ( f )=

∑
S∈B(σ )

P t
σ (σ ( f2)Sσ( f ∨1 ))W t

σ (S),

Dt
χλ
( f )=

∑
S∈BP (χ)

P t
IP (χλ)

(IP(χλ, f2)SIP(χλ, f ∨1 ))W
t
IP (χλ)

(S),

W t
π (S)=

∫
N (F)

tr(π(n)S)ψ(n−1)u(n, t) dn,

P t
π (S)=

∫
H̃(F)

tr(π(h)S)u(h, t) dh.

By Lemma 3.5, there exists a positive integer c, such that for t > c,

W t
π (S)=

∫
N (F)

tr(π(n)S)ψ(n−1)u(n, c) dn.

Thus as in the previous section, we define

Wσ (S)=
∫

N (F)
tr(σ (n)S)ψ(n−1) dn,

Wχλ(S)= lim
t→∞

∫
N (F)

tr(IP(χλ, n)S)ψ(n−1)u(n, t) dn.

To finish the spectral expansion of the local relative trace formula we need to
define the regularized integral∫

∗

H̃(F)
tr(IP(χλ, h)S) dh

because tr(IP(χλ,−)S) is not integrable over H̃(F).
Many of the techniques in this section are inspired by the work of Jacquet, Lapid

and Rogawski in [Jacquet et al. 1999]. In that paper they define a regularized
period integral for an automorphic form φ on G(A) integrated over H where G is a
reductive group over a number field F and H is the fixed point set of an involution
of G. They focus on the case G = ResE/F H where E/F is a quadratic extension
and they obtain explicit results for G = GL(n, E), H = GL(n, F).

For λ ∈ C and m =
(
α 0
0 β
)
∈ M(F), let eλHM (m) = |α/β|λE . If g =m(g)n(g)k(g),

m(g) ∈ M(F), n(g) ∈ N (F), k(g) ∈ K , we let eλHP (g) = eλHM (m(g)). Let δP(m)=
eHM (m). We give analogous definitions for eλHMH and δPH so that for m ∈ MH (F),
eλHM (m) = e2λHMH (m).

We recall the Cartan decomposition H(F)= K H M+H (F)K H , where

M+H (F)=
{(
α 0
0 β

)
∈ M(F) : v

(
α

β

)
≤ 0

}
.
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Then for any absolutely integrable function f∫
H̃(F)

f (h) dh =
∫

K̃ H

∫
K̃ H

∫
M̃+H (F)

DPH (m) f (k1mk2) dm dk2 dk1,

where

DPH

((
α 0
0 β

))
=

{
|α/β|F (1+ |$ |F ) v(α/β)≤ 0,
0 v(α/β) > 0.

To define the regularized integral, we begin by defining a regularized integral on
M+H (F). We note that

1− u
((

1
α

)
, t
)
=

{
0 0≤ v(α)≤ t,
1 v(α) > t.

For Re ν <−Re λ,

(4-3)
∫

M̃+H (F)
e(ν+λ)HM (m)(1− u(m, t)) dm =

∞∑
n=t+1

q2n(ν+λ)
=

q(t+1)2(ν+λ)

1−q2(ν+λ) .

We write ∫ ]

M̃+H (F)
eλHM (m)(1− u(m, t)) dm

to denote the meromorphic continuation at ν = 0 of (4-3). This is well-defined so
long as λ 6= 0. Let

(4-4)

φ(k1mk2)=

r∑
i=1

φi (k1, k2) fi (m)eλi HM (m), k1, k2 ∈ K H ,

m =
(

1
$ n

)
, n ≥ 0, fi ∈ Cc(M̃(F))

with λi 6= −
1
2 . We define for t � 0,∫ ]

H̃(F)
φ(h)(1− u(h, t)) dh

=

r∑
i=1

∫
K̃ H×K̃ H

φi (k1, k2)

∫ ]

M̃+H (F)
DPH (m)e

λi HM (m)(1− u(m, t)) dm

= (1+ q−1)

r∑
i=1

∫
K̃ H×K̃ H

φi (k1, k2)

∫ ]

M̃+H (F)
e(λi+1/2)HM (m)(1− u(m, t)) dm.

If φ is a matrix coefficient of IP(χλ) where χ($)= 1 then by smoothness and
the asymptotics of matrix coefficients there exists a function C Pφ of the form in
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(4-4) with λi ∈ {λ−
1
2 ,−λ−

1
2} and for n� 0,

C Pφ

(
k1

(
1
$ n

)
k2

)
= φ

(
k1

(
1
$ n

)
k2

)
.

Note that the condition for the regularized integral to exist is now that λ 6= 0.

Definition 4.4. For any matrix coefficient φ of IP(χλ) such that χ($)=1 and λ 6=0,∫
∗

H̃(F)
φ(h) dh :=

∫
H̃(F)

φ(h)u(h, t) dh+
∫ ]

H̃(F)
φ(h)(1− u(h, t)) dh

for t � 0.

One can check that this definition of the regularized integral is independent of t
and agrees with the usual integral if we start with something that is integrable. Now
we will prove that it is H -invariant and then we will explicitly relate the regularized
period to the truncated period that occurs in the local trace formula.

Let φh0(x) = φ(xh0) for h0 ∈ H̃ . Note that if φ is a matrix coefficient of π
then φh0 is as well.

Lemma 4.5. Fix h0 ∈ H, λ 6= 0 and a character χ of E× with χ($)= 1. Then for
any matrix coefficient φ of IP(χλ) and t � 0,∫

K̃ H×K̃ H

∫ ]

M̃H (F)
DPH (m)φ

h0(k1mk2)(1− u(k1mk2h0, t)) dm dk1 dk2

=

∫
K̃ H×K̃ H

∫ ]

M̃H (F)
DPH (m)φ(k1mk2)(1− u(m, t)) dm dk1 dk2.

Proof. For g ∈ G(F) let M(g) ∈ M+(F) be such that g = k1M(g)k2, k1, k2 ∈ K .
For Re ν� 0 and t � 0,∫

K̃ H×K̃ H

∫
M̃H (F)

DPH (m)φ
h0(k1mk2)

× eν(HM (M(k1mk2h0)))(1− u(k1mk2h0, t)) dm dk1 dk2

=

∫
H̃(F)

φ(hh0)eν(HM (M(hh0)))(1− u(hh0, t)) dh

=

∫
H̃(F)

φ(h)eν(HM (M(h)))(1− u(h, t)) dh

=

∫
K̃ H×K̃ H

∫
M̃H (F)

DPH (m)φ(k1mk2)eν(HM (m))(1− u(m, t)) dm dk1 dk2

by the invariance of Haar measure, since both sides are absolutely convergent. For
t � 0, if h ∈ supp(1− u( · , t)), then M(hh0)=M(h)M(k2h0). Thus both sides of
the equation above have a meromorphic continuation whose value at ν = 0 gives
the statement of the lemma. �
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Proposition 4.6 (H -invariance). Let φ be a matrix coefficient of IP(χλ), where
χ($)= 1 and λ 6= 0, and let h0 ∈ H(F). Then∫

∗

H̃(F)
φh0(h) dh =

∫
∗

H̃(F)
φ(h) dh.

Proof. By the definition of the regularized integrals, the statement of the proposition
will follow once we prove the following equality:∫

K̃ H×K̃ H

∫ ]

M̃+H (F)
DPH (m)φ

h0(k1mk2)(1− u(m, t)) dm dk1 dk2

−

∫
K̃ H×K̃ H

∫ ]

M̃+H (F)
DPH (m)φ(k1mk2)(1− u(m, t)) dm dk1 dk2

=

∫
H̃(F)

φ(h)u(h, t) dh−
∫

H̃(F)
φh0(h)u(h, t) dh.

First we note that by Lemma 4.5∫
K̃ H×K̃ H

∫ ]

M̃+H (F)
DPH (m)φ

h0(k1mk2)(1− u(m, t)) dm dk1 dk2

−

∫
K̃ H×K̃ H

∫ ]

M̃+H (F)
DPH (m)φ(k1mk2)(1− u(m, t)) dm dk1 dk2

=

∫
K̃ H×K̃ H

∫ ]

M̃+H (F)
DPH (m)φ(k1mk2)(1− u(mk2h−1

0 , t))) dm dk1 dk2

−

∫
K̃ H×K̃ H

∫ ]

M̃+H (F)
DPH (m)φ(k1mk2)(1− u(m, t)) dm dk1 dk2.

For fixed h0 and t sufficiently large, u( · h−1
0 , t)− u( · , t) has support contained in

an annulus. From this fact one can easily check that the previous line is equal to
the convergent integral∫

K̃ H×K̃ H

∫
M̃+H (F)

DPH (m)φ(k1mk2)[u(m, t)− u(mk2h−1
0 , t)] dm dk1 dk2.

=

∫
H̃(F)

φ(h)[u(h, t)− u(hh−1
0 , t)] dh

=

∫
H̃(F)

φ(h)u(h, t) dh−
∫

H̃(F)
φh0(h)u(h, t) dh. �

We note that Proposition 4.6 also holds if we replace φh0 with φ(h0−) so our
regularized integral is H × H invariant.

Now we derive an explicit formula relating regularized periods to truncated peri-
ods for the matrix coefficients that appear in the trace formula. We begin by recalling
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some definitions of Harish-Chandra’s. For σ an admissible, tempered representation
of G, Aσ (G) is the space of functions on G spanned by K-finite matrix coefficients
of σ , Atemp(G) is the sum of Aσ (G) over all admissible tempered representations of
G and A2(G) is the sum of Aσ (G) over all unitary, square integrable representations.
For τ a finite dimensional, unitary, two-sided representation of K ,

Aσ (G, τ )= { f ∈Aσ (G)⊗ Vτ : f (k1gk2)= τ(k1) f (g)τ (k2), g ∈ G, k1, k2 ∈ K }.

Then Atemp(G, τ ) and A2(G, τ ) are defined similarly.
Let τM = τ |K∩M . By [Harish-Chandra 1984, §3] for f ∈Aσ (G, τ ) there exists

a unique function C P f ∈A(M, τM) such that

lim
|
α
β
|E→∞

∣∣∣∣δP

((
α 0
0 β

)) 1
2

f
((
α 0
0 β

))
− (C P f )

((
α 0
0 β

))∣∣∣∣= 0.

We call C P f the weak constant term of f .
For two parabolics P1, P2 with Levi component M , let

VP1|P2 = {v ∈ V : τ(n1)vτ(n2)= v, n1 ∈ NP1 ∩ K , n2 ∈ NP2 ∩ K }

and let τP1|P2 be the subrepresentation of τM on VP1|P2 . For 9 ∈A2(M, τP|P) and
λ ∈ [0, π i/log q], the Eisenstein integral EP(g, 9, λ) ∈Atemp(G, τ ) is defined as

EP(g, 9, λ)=
∫

K
τ(k)−19P(kg)e(λ+1/2)(HM (kg)) dk

where 9P extends 9 to G by 9P(nmk)=9(m)τ (k) for n ∈ N , m ∈ M , k ∈ K .
The weak constant term of the Eisenstein integral uniquely defines Harish-

Chandra’s c-functions [1984, §6]. For each element w in the Weyl group W of
G̃, the c-function cP|P(w, λ) is a linear map from A2(M, τP|P) to A2(M, τP|P)

such that

(C P EP)(m, 9, λ)= (cP|P(1, λ)9)(m)eλHM (m)+ (cP|P(w, λ)9)(m)e−λHM (m)

where w is a representative for the nontrivial element in the Weyl group of G̃.
Let cP|P(s, λ)χ denote the restriction of cP|P(s, λ) to Aχ (M, (τ0)P|P). We have

µ(χλ)
−1
= cP|P(s, λ)∗χcP|P(s, λ)χ .

For the rest of this section we let c(1, λ)= cP|P(1, λ)χ and c(w, λ)= cP|P(w, λ)χ .
We note that the S we consider are actually in HP(χ)

K0 for some open compact
K0. Harish-Chandra [1976, §7] gives an isomorphism S→9S from End(HP(χ)

K )

onto Aχ (M, (τ )P|P) where Vτ is a particular subspace of L2(K × K ) such that

tr(IP(χλ, k1gk2)S)= EP(g, 9S, λ)k1,k2 .
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We can now relate the regularized integral to what appears in the local relative
trace formula.

Proposition 4.7. For χ = (χ, χ−1) ∈ {52(M̃(F)}, χ($)= 1, λ 6= 0, t � 0,∫
∗

H̃(F)
tr(IP(χλ, h)S) dh

=

∫
H̃(F)

tr(IP(χλ, h)S)u(h, t) dh

+δ(χ)(1+ q−1)

(
q2λ(t+1)

1−q2λ

∫
K̃ H×K̃ H

c(1, λ)9S(1)k1,k2 dk1 dk2

+
q−2λ(t+1)

1−q−2λ

∫
K̃ H×K̃ H

c(w, λ)9S(1)k1,k2 dk1 dk2

)
,

where δ(χ)= 1 if χ |O×F = 1 and δ(χ)= 0 if χ |O×F 6= 1.

Proof. For S ∈BP(χ), 9S ∈Aχ (M, (τ0)P|P) and

c(1, λ)9S, c(w, λ)9S ∈Aχ (M, (τ0)P|P).

Therefore 9 =9S can be written as a sum of matrix coefficients of χ . Thus

C P EP(m, 9, λ)k1,k2

= c(1, λ)9(m)k1,k2eλHM (m)+ c(w, λ)9(m)k1,k2e−λHM (m)

= χ(m)
[
(c(1, λ)9)(1)k1,k2eλHM (m)+ (c(w, λ)9)(1)k1,k2e−λHM (m)

]
where χ(m) ∈ C×. Hence for t � 0,∫

M̃+H (F)
DPH (m) tr(IP(χλ, k1mk2)S)eν(HM (m))(1− u(m, t)) dm

=

∫
M̃+H (F)

DPH (m)δ
−

1
2

P (m)(c(1, λ)9)(1)k1,k2e(λ+ν)(HM (m))χ(m)(1− u(m, t)) dm

+

∫
M̃+H (F)

DPH (m)δ
−

1
2

P (m)(c(w, λ)9)(1)k1,k2e(−λ+ν)(HM (m))χ(m)(1−u(m, t)) dm

= (1+ q−1)(c(1, λ)9)(1)k1,k2

∫
M̃+H (F)

e(λ+ν)(HM (m))χ(m)(1− u(m, t)) dm

+ (1+ q−1)(c(w, λ)9)(1)k1,k2

∫
M̃+H (F)

e(−λ+ν)(HM (m))χ(m)(1− u(m, t)) dm

= (1+ q−1)

∫
O×F

χ(α) d×α
∞∑

n=t+1

[
(c(1, λ)9)(1)k1,k2q2(λ+ν)n

+ (c(w, λ)9)(1)k1,k2q2(−λ+ν)n].
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Clearly
∫

O×F
χ(α) d×α = 0 unless χ |O×F = 1. If χ |O×F = 1, the previous line equals

(1+ q−1)

(
q2(λ+ν)(t+1)

1−q2(λ+ν) c(1, λ)9(1)k1,k2 +
q2(−λ+ν)(t+1)

1−q2(−λ+ν) c(w, λ)9(1)k1,k2

)
.

Therefore for t � 0∫ ]

M̃+H (F)
DPH (m) tr(IP(χλ, k1mk2)S)(1− u(m, t)) dm

= δ(χ)(1+ q−1)

(
q2λ(t+1)

1−q2λ c(1, λ)9S(1)k1,k2 +
q−2λ(t+1)

1−q−2λ c(w, λ)9S(1)k1,k2

)
and the proposition now follows. �

Lemma 4.8. Let χ = (χ, χ−1) where χ is a character of E× such that χ($)= 1.
Then

(1) If χ |F× 6= 1 and χ |E1 6= 1, then∫
∗

H̃(F)
tr(IP(χλ, h)S) dh =

∫
H̃(F)

tr(IP(χλ, h)u(h, t) dh = 0.

(2) If χ |F× 6= 1 and χ |E1 = 1, then for t � 0,∫
∗

H̃(F)
tr(IP(χλ, h)S) dh =

∫
H̃(F)

tr(IP(χλ, h)S)u(h, t) dh.

(3) If χ |F× = 1 and χ |E1 6= 1, then
∫
∗

H̃ tr(IP(χλ, h)S) dh is 0 whenever defined and∫
K̃ H×K̃ H

c(1, λ)9S(1)k1,k2 dk1 dk2 =

∫
K̃ H×K̃ H

c(s, λ)9S(1)k1,k2 dk1 dk2

at λ= 0.

(4) If χ |F× = 1 and χ |E1 = 1, then χ2
= 1. In this case c(1, λ) and c(s, λ) have

a simple pole at λ = 0 and so µ(χλ) has a zero of order two at λ = 0 and
µ(χλ)c(1, λ)= µ(χλ)c(s, λ)= 0 at λ= 0.

In all cases,

µ(χλ)

∫
∗

H̃(F)
tr(IP(χλ, h)S) dh

is holomorphic for all λ ∈ iR, S ∈BP(χ).

Proof. In this proof we follow the techniques of [Jacquet ≥ 2012]. Case 2 is obvious
from the above work. Case 1 is obvious from the above work and the H -invariance
of
∫
∗

H̃ tr(IP(χλ, h)S) dh [Jacquet et al. 1999, Proposition 22].
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The vanishing of the regularized period for λ 6= 0 in case 3 also follows from
H -invariance. Then by the previous proposition we know that for λ 6= 0,

∫
H̃(F)

tr(IP(χλ, h)S)u(h, t) dh

=−(1+ q−1)

(
q2λ(t+1)

1−q2λ

∫
K̃ H×K̃ H

c(1, λ)9S(1)k1,k2 dk1 dk2

+
q−2λ(t+1)

1−q−2λ

∫
K̃ H×K̃ H

c(w, λ)9S(1)k1,k2 dk1 dk2

)
.

Both sides are holomorphic and the left-hand side is also defined and holomorphic
for λ= 0. As

Resλ=0
q2λ(t+1)

1−q2λ =
−1

2 log q
and Resλ=0

q−2λ(t+1)

1−q−2λ =
1

2 log q
,

we must have that

∫
K̃ H×K̃ H

c(1, 0)9(1)k1,k2 dk1 dk2 =

∫
K̃ H×K̃ H

c(w, 0)9(1)k1,k2 dk1 dk2.

In case 4 the poles and zeros are well-known and can also be seen by explicit
computations of the intertwining operators. We have that

µ(χλ)

∫
H̃(F)

tr(IP(χλ, h)S)u(h, t) dh

= µ(χλ)

∫
∗

H̃(F)
tr(IP(χλ, h)S) dh

−(1+ q−1)µ(χλ)

(
q2λ(t+1)

1−q2λ

∫
K̃ H×K̃ H

c(1, λ)9S(1)k1,k2 dk1 dk2

+
q−2λ(t+1)

1−q−2λ

∫
K̃ H×K̃ H

c(w, λ)9S(1)k1,k2 dk1 dk2

)
.

The left-hand side is 0 at λ= 0 and the last two terms are holomorphic at λ= 0 so
the first term must be holomorphic at λ= 0. �
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Let

Dχλ( f )=
∑

S∈BP (χ)

Pχλ(Sλ[ f ])Wχλ(S),

Pχλ(S)=
∫
∗

H̃(F)
tr(IP(χλ, h)S) dh,

Sλ[ f ] = IP(χλ, f2)SIP(χλ, f ∨1 ),

D̃χ ( f )= (1+ q−1)µ(χ0)
∑

S∈BP (χ)

Wχ0(S)
∫

K̃ H×K̃ H

c(1, 0)ψS0[ f ](1)k1,k2 dk1 dk2.

We now relate the distributions above to the truncated distributions from (4-2).

Lemma 4.9. Let χ = (χ, χ−1) where χ is a character of E× such that χ($)= 1.

(1) If χ |F× 6= 1 and χ |E1 6= 1, then

lim
t→∞

∫ π i
log q

0
µ(χλ)Dt

χλ
( f ) dλ= 0.

(2) If χ |F× 6= 1 and χ |E1 = 1, then

lim
t→∞

∫ π i
log q

0
µ(χλ)Dt

χλ
( f ) dλ=

∫ π i
log q

0
µ(χλ)Dχλ( f ) dλ.

(3) If χ |F× = 1 and χ |E1 6= 1, then

lim
t→∞

∫ π i
log q

0
µ(χλ)Dt

χλ
( f ) dλ= D̃χ ( f ).

(4) If χ |F× = 1 and χ |E1 = 1, then

lim
t→∞

∫ π i
log q

0
µ(χλ)Dt

χλ
( f ) dλ=

∫ π i
log q

0
µ(χλ)Dχλ( f ) dλ.

Proof. First we note that∫ π i
log q

0
µ(χλ)Dt

χλ
( f ) dλ=

∫ π i
log q

0
µ(χλ)

∑
S∈BP (χ)

P t
IP (χλ)

(Sλ[ f ])Wχλ(S) dλ

=

∑
S∈BP (χ)

∫ π i
log q

0

(∫
N (F)

tr(IP(χλ, n)S)ψ(n−1)u(n, t) dn
)

×µ(χλ)

∫
H̃(F)

tr(IP(χλ, h)Sλ[ f ])u(h, t) dh dλ.
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Cases 1 and 2 now follow directly from Lemma 4.8. For the remaining cases we
note that by Proposition 4.7 for t � 0,∫

H̃(F)
tr(IP(χλ, h)Sλ[ f ])u(h, t) dh

=

∫
∗

H̃(F)
tr(IP(χλ, h)Sλ[ f ]) dh

+δ(χ)
1+q−1

qλ−q−λ

(
q2λ(t+ 1

2 )

∫
K̃ H×K̃ H

c(1, λ)9Sλ[ f ](1)k1,k2 dk1 dk2

−q−2λ(t+ 1
2 )

∫
K̃ H×K̃ H

c(w, λ)9Sλ[ f ](1)k1,k2 dk1 dk2

)
.

In case 3, by Lemma 4.8 the regularized period vanishes and we are left computing

(4-5) (1+ q−1) lim
t→∞

∫ π i
log q

0
µ(χλ)Wχλ(S)(

q2λ(t+1/2)

qλ−q−λ

∫
K̃ H×K̃ H

c(1, λ)9Sλ[ f ](1)k1,k2 dk1 dk2

−
q−2λ(t+1/2)

qλ−q−λ

∫
K̃ H×K̃ H

c(w, λ)9Sλ[ f ](1)k1,k2 dk1 dk2

)
dλ.

Let

f1(λ)=
1+q−1

2
µ(χλ)Wχλ(S)

(∫
K̃ H×K̃ H

c(1, λ)9Sλ[ f ](1)k1,k2 dk1 dk2

−

∫
K̃ H×K̃ H

c(w, λ)9Sλ[ f ](1)k1,k2 dk1 dk2

)
,

f2(λ)=
1+q−1

2
µ(χλ)Wχλ(S)

(∫
K̃ H×K̃ H

c(1, λ)9Sλ[ f ](1)k1,k2 dk1 dk2

+

∫
K̃ H×K̃ H

c(w, λ)9Sλ[ f ](1)k1,k2 dk1 dk2

)
.

Then (4-5) equals

lim
t→∞

∫ π i
log q

0

f1(λ)(q2λ(t+ 1
2 )+q−2λ(t+ 1

2 ))

qλ−q−λ

+ lim
t→∞

∫ π i
log q

0

f2(λ)(q2λ(t+ 1
2 )−q−2λ(t+ 1

2 ))

qλ−q−λ
dλ.

By Lemma 4.8, f1(0)= 0. Hence by Fourier analysis the first integral will vanish.
The limit of the second integral will be f2(0), which, by the identity in case 3 of
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Lemma 4.8, equals

(1+ q−1)µ(χ0)Wχ0(S)
∫

K̃ H×K̃ H

c(1, 0)9S0[ f ](1)k1,k2 dk1 dk2.

For case 4 by Lemma 4.8 when multiplied by µ(χλ)Wχλ(S), f1(λ) and f2(λ) are
holomorphic functions of λ and vanish at λ= 0, thus by similar analysis as above the
last two terms vanish in the limit and we are left with the statement of the lemma. �

4B1. Discrete series representations. Because the matrix coefficient of a supercus-
pidal representation σ has compact support it is obvious that

lim
t→∞

∫
H̃(F)

tr(σ (h)S)u(h, t) dh =
∫

H̃(F)
tr(σ (h)S) dh.

Now we will prove that this is also true for Steinberg representations.

Lemma 4.10. For σ = St (χ), χ2
= 1, the matrix coefficients are absolutely con-

vergent over H̃(F). Thus the limit

lim
t→∞

∫
H̃(F)

tr(σ (h)S)u(h, t) dh

exists and equals ∫
H̃(F)

tr(σ (h)S dh.

Proof. By [Borel and Wallach 1980, XI.4.3; Casselman 1995, 4.2.3], a matrix
coefficient for σ evaluated at

(
a 0
0 b

)
is equal to a matrix coefficient for the Jacquet

functor σN , evaluated at the same value, for
∣∣a

b

∣∣
E sufficiently small. The Jacquet

functor of σ is δP . Thus outside some compact set, our original matrix coeffi-
cient will behave like δP on M−H (F). When we integrate over H̃(F), using the
K H M−H (F)K H decomposition, we get a measure factor of δ−1/2

P . Thus outside a
set of compact support our integral will look like

∫
|a|<c|a|F d×a for some c> 0. �

Putting everything together we have proved the following.

Proposition 4.11. For any f ∈ C∞c (G̃(F)× G̃(F)),

lim
t→∞

∫
H̃(F)

∫
N (F)

K f (h, n)ψ(n)u(h, t)u(n, t) dn dh

=

∑
σ∈52(G̃(F))

d(σ )Dσ ( f )+ 1
2

∑
χ∈{52(M̃(F))}
χ2
6=1,χ |F×=1

D̃χ ( f )

+
1
2

∑
χ∈{52(M̃(F))}

χ |E1=1

d(χ)
∫ π i

log q

0
µ(χλ)Dχλ( f ) dλ,
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where

Dχλ( f )=
∑

S∈BP (χ)

Pχλ(Sλ[ f ])Wχλ(S),

Pχλ(S)=
∫
∗

H̃(F)
tr(IP(χλ, h)S) dh,

D̃χ ( f )= (1+ q−1)µ(χ0)
∑

S∈BP (χ)

Wχ0(S)
∫

K̃ H×K̃ H

c(1, 0)ψS0[ f ](1)k1,k2 dk1 dk2,

Dσ ( f )=
∑

S∈B(σ )

Pσ (σ ( f2)Sσ( f ∨1 ))Wσ (S),

Pσ (S)=
∫

H̃(F)
tr(σ (h)S) dh.

This proposition combined with Proposition 4.3 proves Theorem 1.4.

5. Comparison of local trace formulas and applications

We now combine the results of the previous two sections to compare the two trace
formulas. Let ωE/F be the quadratic character of F× associated to E/F and let ω
denote its trivial extension to E×.

Definition 5.1. We say that f ′ ∈ C∞c (G̃
′(F)) and f ∈ C∞c (G̃(F)) are matching

functions if O ′( f ′, ψ ′, a)= ω(a)O( f, ψ, a) for all a ∈ E×.

By work of Ye [1989] and Flicker [1991, Proposition 3], we know that for
any f ′ ∈C∞c (G̃

′(F)) there exists a matching f ∈C∞c (G̃(F)) and vice versa. In fact,
by the Fundamental Lemma, for f ′ spherical, we know that f is the corresponding
function from the base change map between their Hecke algebras. Thus by the
geometric expansion of the trace formulas in Propositions 3.4 and 4.3 we have the
following statement.

Proposition 5.2. For f ′i ∈ C∞c (G̃
′(F)) and fi ∈ C∞c (G̃(F)) matching functions

for i = 1, 2,

lim
t→∞

∫
N ′(F)

∫
N ′(F)

K f ′1⊗ f ′2(n1, n2)ψ
′(n−1

1 n2)u(n1, t)u(n2, t) dn1 dn2

= lim
t→∞

∫
H̃(F)

∫
N (F)

K f1⊗ f2(h, n)ψ(n)u(h, t)u(n, t) dn dh.

Now we use the equality of the trace formulas to compare the spectral expansions.
By Propositions 3.6, 4.11 and 5.2 we have the following result.
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Theorem 5.3. For fi and f ′i matching functions for i = 1, 2,

∑
σ ′∈52(G̃ ′(F))

d(σ ′)D′σ ′( f ′1⊗ f ′2)+
1
2

∑
χ ′∈{52(M̃ ′(F))}

d(χ ′)
∫ π i

log q

0
µ(χ ′λ)D

′

χ ′λ
( f ′1⊗ f ′2) dλ

=

∑
σ∈52(G̃(F))

d(σ )Dσ ( f1⊗ f2)+
1
2

∑
χ∈{52(M̃(F))}
χ2
6=1,χ |F×=1

D̃χ ( f1⊗ f2)

+
1
2

∑
χ∈{52(M̃(F))}

χ |E1=1

d(χ)
∫ π i

log q

0
µ(χλ)Dχλ( f1⊗ f2) dλ.

The unstable base change map associated toω lifts principal series representations
of G̃ ′ to principal series representations IP(χ) of G̃ such that χ |E1 = 1. It also lifts
certain square integrable representations of G̃ ′ to the principal series representations
of G̃ defined by IP(χω) such that χ2

6= 1, χ |F× = 1. It lifts the remaining square
integrable representations of G̃ ′ to square integral representations of G̃ [Rogawski
1990; Flicker 1982]. Thus we could rephrase the right-hand side of Theorem 5.3 in
terms of summing over the representations of G̃ that are the unstable base change
lifts of representations of G̃ ′. The extra discrete term W̃χ ( f ) corresponds exactly to
the representations that lift from the discrete series of G̃ ′ to the principal series of G̃.

We also note that the only representations that appear on the right-hand side of
Theorem 5.3 are those σ or IP(χλ) for which there is a matrix coefficient such that
the regularized integral over H is nonzero. This gives us a more explicit description
of the nonvanishing H invariant linear functional that characterizes the image of
the unstable base change map.

We would like to relate our distributions to the local factors in the Bessel and
relative Bessel distributions. Recall from the introduction that Jacquet’s global
relative trace formula tells us that for f ′ on U (2,AF ) and f on GL(2,AE)matching
functions, if a cuspidal representation π ′ of U (2,AF ) maps to π of GL(2,AE)

under unstable base change, then

B ′π ′( f ′)= Bπ ( f )
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where

B ′π ′( f ′)=
∑

φ′∈o.n.b.(Vπ ′ )

W ′(π ′( f ′)φ′)W ′(φ′),

Bπ ( f )=
∑

φ∈o.n.b.(Vπ )

P(π( f )φ)W (φ),

W ′(φ′)=
∫

N ′(F)\N ′(AF )

φ′(n)ψ ′(n) dn,

W (φ)=

∫
N (E)\N (AE )

φ(n)ψ(n) dn,

P(φ)=
∫

GL(2,F)Z(AF )\GL(2,AF )

φ(h) dh 6= 0.

While B ′π ′( f ′) and Bπ ( f ) factor into local Bessel distributions B ′π ′v ( f ′v) and Bπv ( fv),
it is not clear how to normalize the local Bessel distributions. We can rewrite
our local distributions as a product of two local Bessel (or local relative Bessel)
distributions:

Lemma 5.4. (1) For σ ′ an irreducible supercuspidal representation of G̃ ′(F),
there exists a local Bessel distribution B ′σ ′ , unique up to a constant of absolute
value 1, such that

D′σ ′( f ′1⊗ f ′2)= B ′σ ′( f ′2)B
′

σ ′∗( f ′1).

(2) For σ an irreducible supercuspidal representation of G̃(F), there exists a local
relative Bessel distribution Bσ , unique up to a constant of absolute value 1,
such that

Dσ ( f1⊗ f2)= Bσ ( f2)Bσ ∗( f1).

Proof. We recall that

D′σ ′( f ′)=
∑

S′∈B(σ ′)

∫
N ′(F)

tr(σ ′(n1)σ
′( f ′2)S

′σ ′∗( f ′1))ψ
′(n1)

−1 dn1∫
N ′(F)

tr(σ ′(n2)S′)ψ ′(n2)−1 dn2.

Let V = Vσ ′ . As S′ is an endomorphism on V there exist v ∈ V, v∗ ∈ V ∗ such that
S′ = v⊗ v∗. Then the linear functional on V ⊗ V ∗ that acts by

v⊗ v∗ 7→

∫
N ′(F)

tr(σ ′(n)v⊗ v∗)ψ ′(n)−1 dn
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transforms under n on v and v∗ by ψ ′. Thus it is a Whittaker functional on V ⊗V ∗.
By the uniqueness of Whittaker models,∫

N ′(F)
tr(σ ′(n)S′)ψ ′(n)−1 dn =W ′(v)W ′(v∗).

Thus
D′σ ′( f ′)=

∑
v⊗v∗

W ′(σ ′( f ′2)v)W ′(v)W
′(σ ′∗( f ′1)v

∗)W ′(v∗)

= B ′σ ′( f ′2)B
′

σ ′∗( f ′1).

We note that if we change B ′σ ′ by a constant c, then B ′σ ′∗ will change by c.
The proof for the local relative Bessel distributions is similar, using the uniqueness

of the H -invariant linear functional [Hakim 1991; Flicker 1991, Proposition 11]. �

We can also describe matching functions by an equality of all the Bessel distri-
butions.

Lemma 5.5 (density). (1) If f ′1 ∈ C∞c (G̃
′(F)) is such that D′σ ′( f ′1 ⊗ f ′2) = 0

for all irreducible tempered representations σ ′ of G̃ ′(F) and all f ′2, then
O ′( f ′1, ψ

′−1, a)= 0 for all a ∈ E×.

(2) If f1 ∈C∞c (G̃(F)) is such that Dσ ( f1⊗ f2)= 0 and D̃σ ( f1⊗ f2)= 0 for all ir-
reducible tempered representations σ of G̃(F) and f2, then O( f1, ψ

−1, a)= 0
for all a ∈ E×.

Proof. If D′σ ′( f ′1⊗ f ′2)= 0 for all σ ′, then by Theorem 1.3,∫
a∈E×/E1

|a|E O ′( f ′1, ψ
′−1, a)O ′( f ′2, ψ

′, a) d×a = 0

for all f ′2 ∈C∞c (G̃
′(F)). As O ′( f ′1, ψ

−1, a) is a locally constant function of a there
exists some open compact U such that O ′( f ′1, ψ

′−1, a) is biinvariant under it. Then
by choosing f ′2 such that O ′( f ′2, ψ

′−1, a) has support contained in U we see that
O ′( f ′1, ψ

′−1, a)= 0. The second case follows from the first one. �

Combining Theorem 5.3 with Lemma 5.4 and the global relative trace formula,
we have the following result:

Corollary 5.6. If σ is the supercuspidal representation of G̃(F) that is the unstable
base change lift of the supercuspidal representation σ ′ on G̃ ′(F), and f ′i and fi are
matching functions for i = 1, 2, then

d(σ ′)Dσ ′( f ′1⊗ f ′2)= d(σ )Dσ ( f1⊗ f2).

Proof. From the global comparison of relative trace formulas [Flicker 1991; Lapid
2006; Ye 1989] and a standard globalization argument we know there exists a
constant cσ such that B ′σ ′( f ′i )= cσ Bσ ( fi ) for all matching fi , f ′i . Take f ′1 and f2 to
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be matrix coefficients of σ ′ and σ such that B ′σ ′( f ′1) 6= 0 and Bσ ( f2) 6= 0. Take f ′2
a matching function to f2 and f1 a matching function to f ′1. Then by Theorem 5.3,

d(σ ′)D′σ ′( f ′)= d(σ )Dσ ( f ). �

In addition to the spectral comparison, these local trace formulas also have
applications on the geometric side. If we define the inner product of two functions
g1, g2 on E×/E1 by

〈g1, g2〉 =

∫
a∈E×/E1

g1(a)g2(a)|a|E d×a,

then:

Corollary 5.7 (orthogonality relations). For f1 and f2 matrix coefficients of the
supercuspidal representations σ1 and σ2 of G̃(F),〈

O( f1, ψ, · ), O( f2, ψ
−1, · )

〉
6= 0 ⇐⇒ σ1 ∼ σ2.

For f ′1 and f ′2 matrix coefficients of the supercuspidal representations σ ′1 and σ ′2 of
G̃ ′(F), 〈

O ′( f ′1, ψ
′, · ), O ′( f ′2, ψ

′−1, · )
〉
6= 0 ⇐⇒ σ ′1 ∼ σ

′

2.

Proof. This follows directly from the local Kuznetsov and local relative trace
formulas. �
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