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Let F be a nonarchimedean locally compact field of residual characteris-
tic p, let G be a connected reductive F-group, and let K be a special para-
horic subgroup of G(F). We choose a parabolic F-subgroup P of G with
Levi decomposition P = MN in good position with respect to K . Let C be an
algebraically closed field of characteristic p, and V an irreducible smooth
C-representation of K . We investigate the natural intertwiner from the com-
pact induced representation c-IndG(F)

K V to the parabolic induced represen-
tation IndG(F)

P(F)

(
c-IndM(F)

M(F)∩K VN(F)∩K
)
. Under a regularity condition on V ,

we show that the intertwiner becomes an isomorphism after localization at
a specific Hecke operator. When F has characteristic 0, G is F-split and K
is hyperspecial, the result was essentially proved by Herzig. We define the
notion of K -supersingularity for an irreducible smooth C-representation of
G(F) which extends Herzig’s definition for admissible irreducible represen-
tations and we give a list of irreducible representations which are neither
supercuspidal nor K -supersingular.
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1. Introduction

Let F be a nonarchimedean locally compact field of residual characteristic p, let
G be a reductive connected F-group, and let C be an algebraically closed field
of characteristic p. We are interested in smooth admissible C-representations of
G(F). Two induction techniques are available: compact induction c-IndG(F)

K from
a compact open subgroup K of G(F) and parabolic induction IndG(F)

P(F) from a
parabolic subgroup P(F) with Levi decomposition P(F)= M(F)N (F). Here we
want to investigate the interaction between the two inductions.

More specifically, assume that G(F)= P(F)K and

P(F)∩ K = (M(F)∩ K )(N (F)∩ K ).

We construct (Definition 2.1), for any finite-dimensional smooth C-representation
V of K , a canonical intertwiner

IV : c-IndG(F)
K V → IndG(F)

P(F)

(
c-IndM(F)

M(F)∩K VN (F)∩K
)
,

where VN (F)∩K stands for the N (F)∩K -coinvariants in V , and a canonical algebra
homomorphism

S′ :H(G(F), K , V )→H
(
M(F),M(F)∩ K , VN (F)∩K

)
,

where, as in [Henniart and Vigneras 2011], the Hecke algebra H(G(F), K , V ) is
EndG(F) c-IndG(F)

K V seen as an algebra of double cosets of K in G, and similarly
for

H
(
M(F),M(F)∩ K , VN (F)∩K

)
.

By construction, (
IV (8( f ))

)
(g)= S′(8)

(
IV ( f )(g)

)
,

for f ∈ c-IndG(F)
K V,8 ∈H(G(F), K , V ), g ∈ G(F).
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Let V ∗ be the contragredient representation of V . We constructed in [Henniart
and Vigneras 2011] a Satake homomorphism

S :H(G(F), K , V ∗)→H
(
M(F),M(F)∩ K , (V ∗)N (F)∩K ).

Here we show that S′ and S are related by a natural anti-isomorphism of Hecke
algebras (Proposition 2.3).

We study IV further in the particular case where K is a special parahoric subgroup
and V is irreducible. Such a V is trivial on the pro-p-radical K+ of K . The
quotient K/K+ is the group of k-points of a connected reductive k-group Gk ,
so that we can use the theory of finite reductive groups in natural characteristic.
We write K/K+ = G(k). The image of P(F)∩ K = P0 in G(k) is the group of
k-points of a parabolic subgroup of Gk . We write P0/P0 ∩ K+ = P(k), and we
use similar notations for M and N , for the opposite parabolic subgroup P = MN
(Section 4A), and for a minimal parabolic F-subgroup B of G contained in P , of
Levi decomposition B = ZU .

We say that V is P-regular when the stabilizer PV (k) in G(k) of the line V U (k)

is contained in P(k) (this does not depend on the choice of B). An equivalent
definition is that, for h ∈ K which does not belong to P0 P0, the kernel of the
quotient map V → VN (k) contains hV N (k) (Definition 3.6 and Corollary 3.19).

We choose a maximal F-split torus S in M such that K stabilizes a special vertex
in the apartment of G(F) associated to S. We choose an element s ∈ S(F) which is
central in M(F) and strictly N -positive, in the sense that conjugation by s strictly
contracts the compact subgroups of N (F). There is a unique Hecke operator TM in
H
(
M(F),M0, VN (k)

)
with support in M0s and value at s the identity morphism of

VN (k). We prove (Proposition 4.5):

Proposition 1.1. The map S′ is a localization at TM .

This means that S′ is injective, that TM belongs to the image of S′ and is central
and invertible in H

(
M(F),M0, VN (k)

)
, and that

H
(
M(F),M0, VN (k)

)
= S′

(
H(G(F), K , V )

)
[T−1

M ].

This is a consequence of the analogous property of S proved in [Henniart and
Vigneras 2011].

In this particular case, following a suggestion of Abe, we show that IV is injective.
We introduce the localization 2 of IV at TM . As IV is injective, its localization 2
is injective. Our main theorem is this:

Theorem 1.2 (Theorem 4.6). The map

2 :H
(
M(F),M0,VN (k)

)
⊗H(G(F),K ,V ),S′c-IndG(F)

K V→ IndG(F)
P(F)

(
c-IndM(F)

M(F)∩K VN (k)
)

is bijective if V is P-regular.
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The special case when F has characteristic 0, G is F-split, and K is hyperspecial
was proved in [Herzig 2011] (see also [Abe 2011]). In this case the Hecke algebras
are commutative.

Writing ZG(V ) for the center of H(G(F), K , V ) and ZM(VN (k)) for the center
of H

(
M(F),M(F)∩ K , VN (k)

)
, the theorem implies by specialization:

Corollary 1.3. If V is P-regular, for any right ZM(VN (k))-module χ , the represen-
tations of G(F)

χ ⊗ZG(V ),S′ c-IndG(F)
K V and IndG(F)

P(F)

(
χ ⊗ZM (VN (k)) c-IndM(F)

M(F)∩K VN (k)
)

are isomorphic.

To prove the theorem, we follow the method of Herzig and decompose IV as the
composite IV = ζ ◦ ξ of two G(F)-equivariant maps: the natural inclusion ξ of
c-IndG(F)

K V in c-IndG(F)
K

(
c-IndG(k)

P(k) VN (k)
)

and the natural map

ζ : c-IndG(F)
K

(
c-IndG(k)

P(k) VN (k)
)
→ IndG(F)

P(F)

(
c-IndM(F)

M(F)∩K VN (k)
)
,

associated to the quotient map c-IndG(k)
P(k) VN (k)→ VN (k) (see (2) below). We write

P for the parahoric subgroup inverse image of P(k) in K and TP for the Hecke
operator in H(G(F),P, VN (k)) with support PsP and value at s the identity of
VN (k). With no regularity assumption on V , we prove

ζ ◦ TP = TM ◦ ζ.

Seeing c-IndG(F)
K

(
c-IndG(k)

P(k) V
)
= c-IndG(F)

P VN (k) and IndG(F)
P(F)

(
c-IndM(F)

M(F)∩K VN (k)
)

as C[T ]-modules via TP and TM , the map ζ is C[T ]-linear, and using Corollary 6.5
we prove:

Theorem 1.4. The localization at T of ζ is an isomorphism.

To study ξ , we consider the Hecke operator TG in H(G(F), K , V ) with support
K sK and value at s the natural projector V → V N (k), and the Hecke operator TK ,P

from c-IndG(F)
P VN (k) to c-IndG(F)

K V with support K sP and value at s given by
the natural isomorphism VN (k)→ V N (k). With no regularity assumption on V , we
prove

TK ,P ◦ ξ = TG .

Assuming that V is P-regular, we prove

ξ ◦ TK ,P = TP,

S′(TG)= TM .

Seeing c-IndG(F)
K V as a C[T ]-module via TG = (S

′)−1(TM), the map ξ is C[T ]-
linear and:
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Theorem 1.5. The localization at T of ξ is an isomorphism when V is P-regular.

These two theorems imply that 2 is an isomorphism when V is P-regular.

Following Herzig and Abe, we define the notion of K -supersingularity.

Definition 1.6. We say that an irreducible smooth C-representation π of G(F) is
K -supersingular when

H
(
M(F),M0, VN (k)

)
⊗H(G(F),K ,V ),S′ HomG(F)

(
c-IndG(F)

K V, π
)
= 0

for any irreducible smooth C-representation V of K and any standard Levi subgroup
M 6= G.

If π is a smooth irreducible C-representation of G(F), we say that π is super-
cuspidal if π is not a subquotient of a proper parabolically induced representation
IndG(F)

P(F) τ , P 6= G, from an irreducible smooth C-representation τ . Note that for
an admissible π , our requirement for supercuspidality is stronger than the one
used in [Herzig 2011, Definition 9.12]: he only asks that π not be a subquotient
of a proper parabolically induced representation from an irreducible admissible
C-representation. In their context and with Herzig’s definition, Herzig and Abe
[Abe 2011, Corollary 5.10] show that, for admissible π , K -supersingularity is
equivalent to supercuspidality. We expect that the same is true, for admissible π , in
our more general context and with our definition. Here are the partial results we
have in that direction:

Theorem 1.7. Let π be an irreducible smooth C-representation of G(F).

i. If π is isomorphic to a subrepresentation or is an admissible quotient of
IndG(F)

P(F) τ as above, then π is not K -supersingular.

ii. If π is admissible and

(1) H
(
M(F),M0, VN (k)

)
⊗H(G(F),K ,V ),S′ HomG(F)

(
c-IndG(F)

K V, π
)
6= 0

for some Q-regular irreducible subrepresentation V of π |K and some standard
parabolic subgroups P = MN ⊂ Q = L N ′ 6= G, then π is a quotient of
IndG(F)

Q(F) τ for an admissible irreducible smooth C-representation τ of L(F).

2. Generalities on the Satake homomorphisms

In this chapter we give a functorial construction of Herzig’s Satake transform S′

in a rather general situation. Let C be a field, G a locally profinite group, K
an open subgroup of G, and P a closed subgroup of G satisfying the “Iwasawa
decomposition” G = K P . We choose a smooth C[K ]-module V . As in [Henniart
and Vigneras 2011], we assume that P is the semidirect product of a closed normal
subgroup N and of a closed subgroup M , and that K ∩ P is the semidirect product
of N ∩ K by M ∩ K . We also impose:
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A1) Each double coset K gK in G is the union of a finite number of cosets K g′

and the union of a finite number of cosets g′′K (the first condition for g is
equivalent to the second for g−1).

A2) V is a finite-dimensional C-vector space.

The smooth C[K ]-module V gives rise to a compactly induced representation
c-IndG

K V and a smooth C[P]-module W gives rise to the full smooth induced
representation IndG

P W . We consider the space of intertwiners

J := HomG
(
c-IndG

K V, IndG
P W

)
.

By Frobenius reciprocity for compact induction (as K is open in G), the C-module
J is canonically isomorphic to HomK

(
V,ResG

K IndG
P W

)
; to an intertwiner I we

associate the function v 7→ I [1, v]K , where [1, v]K is the function in c-IndG
K V with

support K and value v at 1. By the Iwasawa decomposition and the hypothesis that K
is open in G, we get by restricting functions to K an isomorphism of C[K ]-modules
from ResG

K IndG
P W onto IndK

P∩K (ResP
P∩K W ). Using now Frobenius reciprocity for

the full smooth induction IndK
P∩K from P ∩ K to K , we finally get a canonical

C-linear isomorphism
J' HomP∩K (V,W )

(we now omit mentioning the obvious restriction functors in the notation); this map
associates to an intertwiner I the function v 7→ (I [1, v]K )(1).

We could have proceeded differently, first applying Frobenius reciprocity to
IndG

P W , getting J' HomP
(
c-IndG

K V,W
)
, then identifying ResG

P c-IndG
K V with

c-IndP
P∩K V , and finally applying Frobenius reciprocity to c-IndP

P∩K V . In this
way we also obtain an isomorphism of J onto HomP∩K (V,W ), which is readily
checked to be the same as the preceding one.

Assume also that W is a smooth C[M]-module, seen as a smooth C[P]-module
by inflation. Then IndG

P W is the parabolic induction of W , and HomP∩K (V,W )

identifies with HomM∩K (VN∩K ,W ), where VN∩K is the space of coinvariants of
N ∩K in V . With that identification, an intertwiner I is sent to the map from VN∩K

to W sending the image v of v ∈ V in VN∩K to (I [1, v]K )(1). By Frobenius reci-
procity again, HomM∩K (VN∩K ,W ) is isomorphic to HomM

(
c-IndM

M∩K VN∩K ,W
)
,

so overall we obtain an isomorphism

(2) j : J= HomG
(
c-IndG

K V, IndG
P W

)
→ HomM

(
c-IndM

M∩K VN∩K ,W
)
,

which associates to I ∈ J the C[M]-linear map sending [1, v]M∩K to (I [1, v]K )(1).
The reciprocal isomorphism sends I ′ ∈ HomM

(
c-IndM

M∩K VN∩K ,W
)

to the element
in HomG

(
c-IndG

K V, IndG
P W

)
which, for v ∈V , sends [1, v]K to the unique function

with value I ′([1, kv]M∩K ) at k ∈ K .
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For W = c-IndM
M∩K VN∩K , the isomorphism j is written jV :

jV : HomG
(
c-IndG

K V, IndG
P
(
c-IndM

M∩K VN∩K
))
→ EndM

(
c-IndM

M∩K VN∩K
)
.

Definition 2.1. We define IV in HomG
(
c-IndG

K V, IndG
P
(
c-IndM

M∩K VN∩K
))

such
that jV (IV ) is the unit element of EndM

(
c-IndM

M∩K VN∩K
)
. The intertwiner IV is

determined by the condition

(3) (IV [1, v]K )(1)= [1, v]M∩K

for all v ∈ V .

The isomorphism j is natural in V and W . The functor

FV :W 7→ HomG
(
c-IndG

K V, IndG
P W

)
from the category of smooth C[M]-modules to the category of sets is representable
by c-IndM

M∩K VN∩K . Let now V ′ be another finite-dimensional smooth C[K ]-
module. Any G-intertwiner

b : c-IndG
K V → c-IndG

K V ′

gives a morphism of functors FV ′→ FV . By the representability of FV and FV ′ ,
there is then a unique C[M]-morphism

S′(b) : c-IndM
M∩K VN∩K → c-IndM

M∩K V ′N∩K

such that the diagram

(4)

HomG
(
c-IndG

K V ′, IndG
P W

) j ′ //

I ′ 7→I ′◦b
��

HomM
(
c-IndM

M∩K V ′N∩K ,W
)

I ′ 7→I ′◦S′(b)
��

HomG
(
c-IndG

K V, IndG
P W

)
j

// HomM
(
c-IndM

M∩K VN∩K ,W
)

is commutative for all smooth C[M]-modules W (the horizontal maps are the
canonical isomorphisms constructed above, and the vertical maps are given by
composition with b or with S′(b)). Taking W = c-IndM

M∩K VN∩K , we get

(5) S′(b)= j (IV ′ ◦ b),

when VN∩K =V ′N∩K as a representation of M∩K . If V ′ is a third finite-dimensional
smooth C[K ]-module and

b′ : c-IndG
K V ′→ c-IndG

K V ′′
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is a G-intertwiner, then b′ ◦ b : c-IndG
K V → c-IndG

K V ′′ is a G-intertwiner and we
have obviously

(6) S′(b′ ◦ b)= S′(b′) ◦S′(b).

Taking V = V ′ = V ′′, we get an algebra homomorphism

S′ : EndG
(
c-IndG

K V
)
→ EndM

(
c-IndM

M∩K VN∩K
)

such that
j (I ◦ b)= j (I ) ◦S′(b)

for I in HomG
(
c-IndG

K V, IndG
P W

)
.

By the naturality of j in W , for any homomorphism α : W ′→ W of smooth
C[M]-modules, we have a commutative diagram

HomG
(
c-IndG

K V, IndG
P W ′

) j //

Ind(α)
��

HomM
(
c-IndM

M∩K VN∩K ,W ′
)

α

��
HomG

(
c-IndG

K V, IndG
P W

)
j

// HomM
(
c-IndM

M∩K VN∩K ,W
)

for any V . For W =W ′, we obtain j
(
(IndG

P α) ◦ I
)
= α ◦ j (I ) for α ∈ EndM(W ).

We have
j
(
(IndG

P α) ◦ IV
)
= α

for all α in HomM
(
c-IndM

M∩K VN∩K ,W
)
. For W = W ′ = c-IndM

M∩K VN∩K , we
deduce

IV ◦ b =
(
IndG

P S′(b)
)
◦ IV

for b ∈ EndG(c-IndG
K V ), by applying j−1

V to (5).
We now want to interpret the previous results in terms of actions of Hecke

algebras. By Frobenius reciprocity, HomG
(
c-IndG

K V, c-IndG
K V ′

)
identifies with

HomK
(
V,ResG

K c-IndG
K V ′

)
, as a C-module; to a G-intertwiner b we associate the

map v 7→ bv := b([1, v]K ). From such a b, we get a map

8b : G→ HomC(V, V ′), g 7→ (v 7→ bv(g)).

Thus we identify HomG
(
c-IndG

K V, c-IndG
K V ′

)
with the space H(G, K , V, V ′) of

functions 8 from G to HomC(V, V ′) such that:

(i) 8(k ′gk)= k ′ ◦8(g)◦k for k, k ′ in K , g in G, where we have written k, k ′ for
the endomorphisms v 7→ kv, v′ 7→ k ′v′ of V and of V ′;

(ii) The support of 8 is a finite union of double cosets K gK .
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The natural map H(G, K , V, V ′)× c-IndG
K V → c-IndG

K V ′ is given by convolu-
tion

(8 ∗ f )(g)=
∑

h∈G/K

8(h)( f (h−1g))=
∑

h∈K\G

8(gh−1)( f (h)).

The composition

H(G, K , V ′, V ′′)×H(G, K , V, V ′)→H(G, K , V, V ′′)

corresponding to the composition of intertwiners is given by convolution

(8 ∗9)(g)=
∑

h∈G/K

8(h)9(h−1g)=
∑

h∈K\G

8(gh−1)9(h)

(the term 8(h)9(h−1g)(v) vanishes, for fixed g ∈ G and v ∈ V , outside finitely
many cosets K h, so that the sum makes sense). The map

HomG
(
c-IndG

K V, c-IndG
K V ′

)
→ HomM

(
c-IndM

M∩K VN∩K , c-IndM
M∩K V ′N∩K

)
taking b to S′(b) translates into a map

S′ :H(G, K , V, V ′)→H(M,M ∩ K , VN∩K , V ′N∩K ).

The next proposition shows that our definition of S′ is equivalent to Herzig’s.

Proposition 2.2. The homomorphism

S′ :H(G, K , V, V ′)→H
(
M,M ∩ K , VN∩K , V ′N∩K

)
is given by

S′(8)(m)(v)=
∑

n∈(N∩K )\N

8(nm)(v) for m ∈ M, v ∈ V,

where bars indicate the image in VN∩K of elements in V and similarly for V ′.

Proof. Let b ∈HomG
(
c-IndG

K V, c-IndG
K V ′

)
and 8b ∈H(G, K , V, V ′) correspond-

ing to b. We have, by (5),

S′(8b)=8S′(b) =8 j (IV ′◦b).

For g ∈ G, v ∈ V,m ∈ M , we have 8b(g)(v)= b([1, v]K )(g) in V ′ and

S′(8b)(m)(v)=
(

j (IV ′ ◦ b)
)
([1, v]M∩K )(m)=

(
(IV ′ ◦ b)([1, v]K )(1)

)
(m)

in V ′N∩K . Using the Iwasawa decomposition, we write in c-IndG
K V

b([1, v]K )=
∑

h

h−1
[1,8b(h)(v)]K

for h running over a system of representatives of (P ∩ K )\P .
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We compute now the element IV ′
(
h−1
[1,8b(h)(v)]K

)
(1) of c-IndM

M∩K V ′N∩K .
As IV ′ is G-equivariant, we have in IndG

P
(
c-IndM

M∩K V ′N∩K

)
IV ′
(
h−1
[1,8b(h)(v)]K

)
= h−1 IV ′

(
[1,8b(h)(v)]K

)
.

Taking the value at the unit element 1 of G, we obtain(
h−1 IV ′

(
[1,8b(h)(v)]K

))
(1)= IV ′

(
[1,8b(h)(v)]K

)
(h−1)

= h−1(IV ′([1,8b(h)(v)]K )(1)
)
.

Recalling (3), this is equal to

h−1
[1,8b(h)(v)]M∩K = mh−1[1,8b(h)(v)]M∩K = m−1

h [1,8b(h)(v)]M∩K ,

where mh is the image of h in M . We deduce

(IV ′ ◦ b)([1, v]K )(1)=
∑

h

m−1
h [1,8b(h)(v)]M∩K .

For m in a system of representatives of (M ∩ K )\M , and n in a system of repre-
sentatives of (N ∩ K )\N , the elements nm form a system of representatives of
(P ∩ K )\P . We obtain

(IV ′ ◦ b)([1, v]K )(1)=
∑

m∈(M∩K )\M

m−1
[1, wm]M∩K ,

wm :=
∑

n∈(N∩K )\N

8b(nm)(v). �

In [Henniart and Vigneras 2011] we constructed a Satake homomorphism

S :H(G, K , V, V ′)→H(M,M ∩ K , V N∩K , V ′N∩K ),

S(8)(m)(v)=
∑

n∈N/(N∩K )

8(mn)(v),

for v ∈ V N∩K . To compare S′ with S we need to take the dual. Remark that K acts
on the dual space V ∗ = HomC(V,C) of V via the contragredient representation,
and that the dual of V ∗ is isomorphic to V by our finiteness hypothesis on V . It is
straightforward to verify that the map

ι :H(G, K , V ′∗, V ∗)→H(G, K , V, V ′), ι(8)(g) := (8(g−1))t ,

where the upper index t indicates the transpose, is a C-isomorphism, and satisfies

ι(8 ∗9)= ι(9) ∗ ι(8)

for 8 ∈H(G, K , V ′∗, V ∗), 9 ∈H(G, K , V ′′∗, V ′∗).
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The linear forms on V which are (N ∩ K )-fixed identify with the linear forms
on VN∩K ,

(VN∩K )
∗
' (V ∗)N∩K ,

and similarly for V ′ and V ′′. This leads to a natural C-linear isomorphism

ιM :H
(
M,M ∩ K , (V ′∗)N∩K , (V ∗)N∩K )

→H
(
M,M ∩ K , VN∩K , V ′N∩K

)
.

The following proposition describes the relation between the Satake homomor-
phisms S attached to V ′∗, V ∗ and S′ attached to V, V ′.

Proposition 2.3. The following diagram is commutative:

H(G, K , V ′∗, V ∗)
S //

ι

��

H
(
M,M ∩ K , (V ′∗)N∩K , (V ∗)N∩K

)
ιM

��
H(G, K , V, V ′)

S′ // H
(
M,M ∩ K , VN∩K , V ′N∩K

)
.

Proof. For 8 ∈H(G, K , V ′∗, V ∗),m ∈ M and v ∈ V of image v in VN∩K , we have:(
(ιM ◦S)8

)
(m)(v)=

(
S(8)(m−1)

)t
(v)

=

∑
n∈N/(N∩K )

(
8(m−1n)

)t
(v)

=

∑
n∈(N∩K )\N

(
8((nm)−1)

)t
(v)

=

∑
n∈(N∩K )\N

ι(8)(nm)(v)=
(
(S′ ◦ ι)8

)
(m)(v). �

By this proposition, the Satake map S is injective if and only if the map S′ is
injective because the maps ι and ιM are isomorphisms.

Proposition 2.4. Let V be a finite-dimensional smooth C-representation of K .
If the homomorphisms S′ : H(G, K , V ′, V )→ H

(
M,M ∩ K , V ′N∩K , VN∩K

)
are

injective for all irreducible C-smooth representations V ′ of K , then the intertwiner

IV : c-IndG
K V → IndG

P
(
c-IndM

M∩K VN∩K
)

is injective.

Proof. Assume that IV is not injective. Then the kernel of IV is a nonzero subrepre-
sentation of c-IndG

K V , and contains an irreducible smooth C[K ]-representation V ′.
By Frobenius reciprocity, we get a nonzero intertwiner

b ∈ HomG
(
c-IndG

K V ′, c-IndG
K V

)
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such that IV ◦ b = 0. By assumption, the map

S′ :H(G, K , V ′, V )→H
(
M,M ∩ K , V ′N∩K , VN∩K

)
is injective. By the relation (5), this means that the map

HomG
(
c-IndG

K V ′, c-IndG
K V

)
→ HomM

(
c-IndM

M∩K V ′N∩K , c-IndM
M∩K VN∩K

)
taking b to j (IV ◦ b) is injective, which gives a contradiction. �

This criterion for the injectivity of IV was communicated to us by Noriyuki Abe.

3. Representations of G(k)

Let C be an algebraically closed field of positive characteristic p, let k be a finite
field of the same characteristic p and of cardinality q, and let G be a connected
reductive group over k. We fix a minimal parabolic k-subgroup B of G with
unipotent radical U and maximal k-subtorus T . Let S be the maximal k-split
subtorus of T , let W = WG = W (S,G) be the Weyl group, let 8 = 8G be the
roots of S with respect to U (called positive), and let 1 ⊂ 8 be the subset of
simple roots. For a ∈8, let Ua be the unipotent subgroup denoted in [Bruhat and
Tits 1984, 5.1] by U(a). A parabolic k-subgroup P of G containing B is called
standard, and has a unique Levi decomposition P = MN with Levi subgroup M
(called standard) containing T . The standard parabolic subgroup P = MU =UM
is determined by M . There exists a unique subset1M ⊂1 such that M is generated
by T,Ua,U−a for a in the subset 8M of 8 generated by 1M . This determines a
bijection between the subsets of 1 and the standard parabolic k-subgroups of G.

Let B = T U be the opposite of B = T U , and P = MN the opposite of P . We
have B = w0 Bw−1

0 , where w0 = w
−1
0 is the longest element of W . The roots of S

with respect to U , that is, the positive roots for U , are the negative roots for U . The
simple roots for U are the roots −a for a ∈1.

For a ∈1, let Ga,k ⊂G(k) be the subgroup generated by the unipotent subgroups
Ua(k) and U−a(k), and let Ta,k := Ga,k ∩ T (k).

Definition 3.1. Let ψ : T (k)→ C∗ be a C-character of T (k). We denote by

1ψ := {a ∈1 | ψ(Ta,k)= 1}

the set of simple roots a such that ψ is trivial on Ta,k .

Example 3.2. G =GL(n) and S is the diagonal group. Then T = S and the groups
Ta for a ∈1 are the subgroups Ti ⊂ T for 1≤ i ≤ n−1, with coefficients xi = x−1

i+1
and x j = 1 otherwise. When k = F2 is the field with 2 elements, T (k) is the trivial
group.
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Let V be an irreducible C-representation of G(k). When P = MN is a standard
parabolic subgroup of G, we recall that the natural action of M(k) on V N (k) is
irreducible [Cabanes and Enguehard 2004, Theorem 6.12]. In particular, taking
the Borel subgroup B = T U , the dimension of the vector space V U (k) is 1 and the
group T (k) acts on V U (k) by a character ψV .

Proposition 3.3. The stabilizer in G(k) of the line V U (k) is PV (k), where PV =

MV NV is a standard parabolic subgroup of G associated to a subset 1V ⊂1ψV .

Proof. The stabilizer of V U (k) contains B(k), and hence is of the form PV (k) for
a standard parabolic subgroup PV of G associated to the set 1V of simple roots
a ∈ 1 such that U−a(k) acts trivially on V U (k). When U−a(k) acts trivially on
V U (k), so does Ga,k by definition of this group, implying that a belongs to 1ψV ,
by definition of this set. �

Corollary 3.4. The dimension of V is 1 if and only if PV = G.

Proof. If the dimension of V is 1, then V = V U (k) and PV = G. Conversely, if
PV = G, the line V U (k) is stable by G(k), and hence is equal to V because V is
irreducible. �

Corollary 3.5. When P = MN is a standard parabolic subgroup of G, the dimen-
sion of V N (k) is equal to 1 if and only if P ⊂ PV .

The group PV measures the irregularity of V . A 1-dimensional representation V
is as little regular as possible (PV = G), and in general V is as regular as possible
when PV = B.

Definition 3.6. Let P be any parabolic k-subgroup of G. We say that V is P-
regular when the stabilizer in G(k) of the line V U (k) is contained in P(k), where
U is the unipotent radical of a minimal parabolic k-subgroup of G contained in P .

The definition depends only on P and not on the choice of U . The reason is that
for a parabolic k-subgroup P ′ ⊂ P of G and g ∈ G(k), we have g P ′g−1

⊂ P if
and only if g ∈ P(k). As in the proof of [Borel and Tits 1965, Proposition 4.4 a)],
the inclusion P ′ ⊂ g−1 Pg ∩ P implies g−1 Pg = P , and g ∈ P(k) because P is
equal to its own normalizer and is conjugate to a unique k-subgroup containing P ′.

We recall the classification of the irreducible C-representations V of G(k).

Theorem 3.7. The isomorphism class of V is characterized by ψV and 1V ⊂1ψV .
For each C-character ψ of T (k) and each subset J ⊂ 1ψ , there exists a C-irre-
ducible representation V of G(k) such that ψV = ψ,1V = J .

Proof. [Curtis 1970, Theorem 5.7]. �

Definition 3.8. (ψV ,1V ) are called the standard parameters of V .
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Example 3.9. The irreducible representations V with ψV = 1 are classified by
the subsets of 1. They are sometimes called the special representations or the
generalized Steinberg representations. We denote by SpP the representation such
that 1V =1M for a standard parabolic group P = MN . The representation SpG is
the trivial character and SpB is the classical Steinberg representation.

Let P = MN be a standard parabolic k-subgroup of G. For V an irreducible
C-representation of G(k) with standard parameters (ψV ,1V ), the C-representation
V N (k) of M(k) is irreducible of standard parameters (ψV ,1V ∩1M) [Henniart and
Vigneras 2011, 5.7(i)].

Proposition 3.10. The P-regular irreducible C-representations V of G(k) are in
bijection with the irreducible representations of M(k) by the map V 7→ V N (k).
Those representations V with MV = M correspond to the characters of M(k).

Proof. Fix an irreducible representation W of M(k) with standard parameters
(ψW ,1W ). For an irreducible representation V of G(k) with standard parameters
(ψV ,1V ), we have V N (k)

' W if and only if ψV = ψW and 1W = 1V ∩1M .
Moreover, V is P-regular if and only if 1V ⊂ 1M . This implies the first claim,
and the second one follows from Corollary 3.5. �

If instead of choosing B, we choose the Borel subgroup B opposite to B, then
V has other parameters that we call antistandard and write (ψV ,1V ).

Lemma 3.11. The antistandard parameters of V areψV =w0(ψV ),1V =w0(1V ).

Proof. As B = w0 Bw−1
0 , the torus T (k) acts by the character w0(ψV ) on the line

V U (k) and PV = w0 PVw
−1
0 is the stabilizer of the line V U (k). Hence, the subset

1V of simple roots is equal to w0(1V )⊂−1. �

The contragredient representation V ∗ of V is irreducible and its standard param-
eters are:

Lemma 3.12. ψV ∗ = w0(ψV )
−1,1V ∗ =−w0(1V ).

Proof. By Lemma 3.11, it is equivalent to describe the antistandard parameters
(ψV ∗,1V ∗) of V ∗. The direct decomposition V = V U (k)

⊕ (1 − U (k))V (see
Proposition 3.14 below) gives a T (k)-equivariant isomorphism:

(V ∗)U (k) = (VU (k))
∗
' (V U (k))∗.

The group T (k) acts on the line V U (k) by the character ψV and on (V U (k))∗ by the
character ψ−1

V . Hence ψV ∗ = ψ
−1
V .

The space (V ∗)U (k) is the subspace of elements on V ∗ vanishing on (1−U (k))V .
This space is stable by MV (k) because the direct decomposition of V for B is
the same as for PV (Remark 3.15 below). Hence MV U ⊂ PV ∗ , or equivalently,
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−1V ⊂1V ∗ =w0(1V ∗). As V is isomorphic to the contragredient of V ∗ and −w0

is an involution on 1, we have also the inclusion in the other direction. �

Remark 3.13. In general, −w0 does not act trivially on 1 (for example for G =
GL(3)), and hence the stabilizer PV of V U (k) in G(k) is not the opposite of PV , and
the P-regularity of V is not equivalent to the P-regularity of V . The P-regularity
of V is equivalent to the P-regularity of V ∗.

For a subgroup H ⊂ G(k) and a subspace W ⊂ V , the notation (1 − H)W
denotes the subspace of V linearly generated by the elements v− hv for all h ∈ H
and v ∈W .

Proposition 3.14. We have the M(k)-equivariant direct decomposition

V = V N (k)
⊕ (1− N (k))V N (k)

= V N (k)
⊕ (1− N (k))V,

which gives an M(k)-isomorphism V N (k)
→ VN (k).

Proof. [Cabanes and Enguehard 2004, Theorem 6.12]. �

Remark 3.15. The decompositions of V for P = PV and for P = B are the same,
because V U (k)

= V NV (k) by the definition of PV .

Proposition 3.16. For g ∈ G(k), the image of gV U (k) in VN (k) is not 0 if and only
if g ∈ P(k)PV (k).

Proof. It is clear that the nonvanishing condition on g depends only on P(k)g PV (k)
and that the image is not 0 when g= 1 as V U (k)

⊂ V N (k)
' VN (k) (Proposition 3.14).

We prove that the image of gV U (k) in VN (k) is 0 when g does not belong to
P(k)PV (k). For convenience, we write in this proof PV = P ′ = M ′N ′.

a) We reduce to the case where Gder is simply connected by choosing a z-extension
defined over k,

1→ R→ G1→ G→ 1,

where R ⊂ G1 is a central induced k-subtorus and G1 is a connected reductive
k-group with G1,der simply connected. The sequence of rational points

1→ R(k)→ G1(k)→ G(k)→ 1

is exact. The parabolic subgroups of G1 inflated from P, P ′ are P1 = M1 N ,
P ′1 = M ′1 N ′, where 1→ R→ M1→ M → 1 and 1→ R→ M ′1→ M ′→ 1 are
z-extensions defined over k. We consider V as an irreducible representation of
G1(k) where R(k) acts trivially. The image of G1(k)− P1(k)P ′1(k) in G(k) is
G(k)− P(k)P ′(k). For g1 ∈ G1(k)− P1(k)P ′1(k) of image g ∈ G(k)− P(k)P ′(k),
the image of g1V N ′(k) in VN (k) is 0 if and only if the image of gV N ′(k) in VN (k) is 0.

b) The proposition can be reformulated in terms of Weyl groups because the equality
depends only on the image of g in P(k)\G(k)/P ′(k)=WM\W/WM ′ . We denote
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by ẇ a representative of w ∈ W in G(k). The proposition says that the image of
ẇV N ′(k) in VN (k) is 0 if w ∈W does not belong to WM WM ′ .

c) Given a), we now suppose that Gder is simply connected. In this case, V is the
restriction of an irreducible algebraic representation F(ν) of G with highest weight
ν equal to a q-restricted character of T [Herzig 2009, Appendix 1.3]. The stabilizer
Wν of ν in W is WM ′ , the irreducible algebraic representation F(ν) of M with
highest weight ν is F(ν)N , and F(ν)N is equal to the sum of all weight spaces
F(ν)µ with ν − µ ∈ Z8M ; for w ∈ W , wν is a weight of F(ν)N if and only if
w ∈WM WM ′ [Herzig 2011, Lemma 2.3, and proof of Lemma 2.17 in the split case].
The quotient map t : F(ν)→ F(ν)N restricts to an M-equivariant isomorphism
F(ν)N

→ F(ν)N . We deduce that the weights of F(ν)N are the weights of F(ν)N

and are disjoint from the weights of the kernel of the quotient map t . In particular,
for w ∈W , the space w(F(ν)U ) is not in the kernel of t if and only if w ∈WM WM ′ .

The space V N (k) is the restriction to M(k) of F(ν)N and the space VN (k) is the
restriction to M(k) of F(ν)N . This implies the proposition under the form given in
b). �

Corollary 3.17. Let P ′ = M ′N ′ be another standard parabolic subgroup. The
image of gV N ′(k) in VN (k) is not 0 if and only if g ∈ P(k)PV (k)P ′(k).

Proof. We have V N ′(k)
=
∑

h∈M ′(k) hV U (k) because the right-hand side is N ′(k)-
stable and V N ′(k) is an irreducible representation of M ′(k). �

Remark 3.18. The equality P PV P ′ = P P ′ is equivalent to PV ⊂ P P ′. The latter
inclusion is obviously true when V is P-regular or P ′-regular.

In our study of Hecke operators, we will use the following particular case:

Corollary 3.19. For g ∈ G(k), the image of gV N (k) in VN (k) is not 0 if and only if
g ∈ P(k)PV (k)P(k).

4. Representations of G(F)

4A. Notation. Let C be an algebraically closed field of positive characteristic p,
let F be a local nonarchimedean field of finite residue field k of characteristic p and
of cardinality q , of ring of integers oF and uniformizer pF , and let G be a reductive
connected group over F . We fix a minimal parabolic F-subgroup B of G with
unipotent radical U and maximal F-split F-subtorus S. The group B has the Levi
decomposition B = ZU , where Z is the G-centralizer of S. Let 8(S,U ) be the
set of roots of S in U (called positive for U ) and let 1⊂8(S,U ) be the subset of
simple roots. A parabolic k-subgroup P of G containing B is called standard (for U ),
and has a unique Levi decomposition P = MN with Levi subgroup M containing
Z (called standard), and unipotent radical N . The group (M ∩ B) = Z(M ∩U )
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is a minimal parabolic F-subgroup of M , and 1M =1∩8(S,M ∩U ) is the set
of simple roots of 8(S,M ∩U ). This procedure determines bijections between
the subsets of 1, the standard parabolic k-subgroups of G, and their standard Levi
subgroups.

The natural homomorphism v : S(F)→ Hom(X∗(S),Z), where X∗(S) is the
group of F-characters of S, extends uniquely to a homomorphism v : Z(F)→
Hom(X∗(S),Q); its kernel is the maximal compact subgroup of Z(F). For a
standard Levi subgroup M , we denote by Z(F)+N the monoid of elements z in
Z(F) which are N -positive, that is,

a(vZ (z))≥ 0 for all a ∈1−1M .

When these inequalities are strict, z is called strictly N -positive. We denote by
Z(F)+N the monoid of elements in Z(F) which are N -positive, that is, N -negative,

a(vZ (z))≤ 0 for all a ∈1−1M .

When N = U , we write Z(F)+ := Z(F)+U and Z(F)− := Z(F)+U , and if the
inequalities are strict, z is called strictly positive or strictly negative. These notations
extend to M ; we write Z(F)+M

= Z(F)+(U∩M).
In the building of the adjoint group Gad over F , we choose a special vertex in

the apartment attached to S and we write K for the corresponding special parahoric
subgroup, as in [Henniart and Vigneras 2011, 6.1]. The quotient of K by its
pro-p-radical K+ is the group of k-points of a connected reductive k-group Gk .
The group K/K+ is Gk(k). For H = B, S,U, Z , P,M, N , the image in Gk(k) of
H(F)∩ K is the group of k-points of a connected k-group Hk . Note that Bk is a
minimal parabolic subgroup of Gk , Sk is a maximal k-split torus in Bk , Zk (being
the centralizer of Sk in Gk) is a maximal k-subtorus of Bk , and Bk = ZkUk is a
Levi decomposition; moreover, there is a bijection between 1 and the set 1k of
simple roots of Sk (with respect to Uk), Pk is a standard parabolic subgroup of Gk

of standard Levi subgroup Mk and unipotent radical Nk , and the set1k,Mk of simple
roots of Sk in Mk is the image of 1M by the bijection above. We shall usually
suppress the indices k from the notation, write H0 = H(F) ∩ K , and identify a
character of Z(k) (with the notations in the chapter on representations of G(k) we
have T (k)= Z(k)) with a smooth character of Z0.

We now fix an irreducible C-representation V of G(k) with parameters (ψV ,1V )

(Definition 3.8), a proper standard parabolic subgroup P = MN of G, and an
element s ∈ S(F) central in M(F) and strictly N-positive (and hence U-positive).

4B. S′ is a localization. We also see V as a smooth C-representation of K , trivial
on K+. We apply the generalities of the Satake homomorphisms to the group G(F),
the compact subgroup K , and the closed subgroup P(F)= M(F)N (F). As K is a
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special parahoric subgroup, the Iwasawa decomposition G(F)= P(F)K is valid.
We have a G(F)-equivariant linear map (Definition 2.1)

(7) IV : c-IndG(F)
K V → IndG(F)

P(F)

(
c-IndM(F)

M0
VN (k)

)
and an algebra homomorphism (Proposition 2.2)

(8) S′ = S′M,G :H
(
G(F), K , V

)
→H

(
M(F),M0, VN (k)

)
,

related by IV (b f )= S′(b)IV ( f ) for b ∈H(G(F), K , V ) and f in c-IndG(F)
K V .

Proposition 4.1. The intertwiner IV and the algebra homomorphism S′ are injec-
tive.

Proof. Apply Proposition 2.4 and [Henniart and Vigneras 2011, 7.9], giving the
injectivity of the Satake homomorphism S appearing in Proposition 2.3 when V, V ′

are irreducible smooth representations of K over a field of characteristic p. �

We write S′G = S′Z ,G and denote by SG the corresponding Satake homomor-
phisms appearing in Proposition 2.3 when M = Z . We analogously define S′M and
SM with a commutative diagram of algebra homomorphisms:

H
(
M,M0, (V ∗)N (k)

) SM //

ιM

��

H
(
Z , Z0, (V ∗)U (k)

)
ιZ

��

H
(
M,M0, VN (k)

)0 S′M
0

// H
(
Z , Z0, VU (k)

)0
,

where (ι∗(8))(g) = 8(g−1)t for ∗ = M or Z (definition before Proposition 2.3).
In this diagram, A0 denotes the opposite of an algebra A and f 0

: A0
→ B0 is the

algebra homomorphism a 7→ f 0(a)= f (a) associated to an algebra homomorphism
f : A→ B. By the transitivity relation of the Satake homomorphisms [Henniart
and Vigneras 2011, Proposition 2.8] and by Proposition 2.3, we have

(9) S′G = S′M ◦S′.

Recalling the standard parameters (ψV ∗,1V ∗) of V ∗, we identify ψV ∗ with a
smooth character of Z0, and we denote by

ZV ∗ = {z ∈ Z(F) | ψV ∗(zxz−1)= ψV ∗(x) for all x ∈ Z0}

the stabilizer of ψV ∗ in Z(F). As ψV ∗ = w0(ψV )
−1 (Lemma 3.12), we have

ZV ∗ = w0(ZV ).

Proposition 4.2. The image of the map

S′G :H(G(F), K , V )→H(Z(F), Z0, VU (k))

is equal to H
(
Z(F)+ ∩ ZV ∗, Z0, VU (k)

)
.
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Proof. The support of a Hecke operator in H
(
Z(F), Z0, (V ∗)U (k)

)
is contained

in ZV ∗ . By [Henniart and Vigneras 2011, Theorem 1.8], the image of SG consists
of the Hecke operators with negative support, that is, with support contained in
Z(F)− ∩ ZV ∗ . The image of ιZ ◦SG consists of the Hecke operators with positive
support, that is, of support in Z(F)+ ∩ ZV ∗ , because the inverse map permutes the
monoids Z(F)+ and Z(F)− and respects ZV ∗ . �

Analogously, the image of S′M is H
(
Z(F)+M ∩ ZV ∗, Z0, VU (k)

)
.

Definition 4.3. A ring morphism f : A → B is a localization at b ∈ B if f is
injective, b ∈ f (A) is central and invertible in B, and B = ∪n∈N f (A)b−n .

There exists a unique Hecke operator TZ central in H
(
Z(F)+ ∩ ZV ∗, Z0, VU (k)

)
with support Z0s such that TZ (s)= 1, because s is U -positive and belongs to S(F)
contained in ZV ∗ .

The algebra H
(
Z(F)+M ∩ ZV ∗, Z0, VU (k)

)
is the localization of

H
(
Z(F)+ ∩ ZV ∗, Z0, VU (k)

)
at TZ because, for any U ∩M-positive element z ∈ Z(F), there exists a positive
integer n such that snz belongs to Z(F)+, because s ∈ S(F) is strictly N -positive.

Definition 4.4. As s is central in M(F) and contained in ZV ∗ , there exists a unique
Hecke operator TM in H(M(F),M0, VN (k)) with support M0s with value idVN (k)

at s.

The Hecke operator TM is central and invertible in H(M(F),M0, VN (k)); it acts
on c-IndM(F)

M0
VN (k) by TM([1, v]M0) = s−1

[1, v]M0 for v ∈ V . We also denote by
TM the G(F)-endomorphism of

IndG(F)
P(F)

(
c-IndM(F)

M0
VN (k)

)
,

such that TM( f )(g)= TM( f (g)) for f ∈ IndG(F)
P(F)

(
c-IndM(F)

M0
VN (k)

)
and g ∈ G(F).

Using Proposition 2.2, we see that

(10) S′M(TM)= TZ ,

because (U∩M)(F)z∩M0s=
(
(U∩M)(F)zs−1

∩M0
)
s= (U0∩M0)z if zs−1

∈ Z0

and is 0 otherwise. The Hecke operator TM belongs to the image of S′, because TZ

belongs to the image of S′G by construction, S′ is injective, and we have (10), (9).
We have shown:

Proposition 4.5. The map S′ is a localization at TM .

In (7), we consider the map IV as a C[T ]-linear map, T acting on the left side
by (S′)−1(TM) and on the right side by TM . By Proposition 4.5, the localization of
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IV at T is the
(
G(F),H(M(F),M0, VN (k))

)
-equivariant map

(11) 2 :H
(
M(F),M0, VN (k)

)
⊗H(G(F),K ,V ),S′ c-IndG(F)

K V

→ IndG(F)
P(F)

(
c-IndM(F)

M0
VN (k)

)
.

The map 2 is injective because IV is injective (Proposition 4.1). Our main theorem
is:

Theorem 4.6. 2 is surjective if V is P-regular.

The theorem will follow from Corollary 6.5 and Proposition 5.4.

4C. Decomposition of the intertwiner. Following Herzig, we write the intertwiner
IV as a composite of two G(F)-equivariant linear maps

(12)

c-IndG(F)
P VN (k)

ζ

))

c-IndG(F)
K V

IV

//

ξ
77

IndG(F)
P(F)

(
c-IndM(F)

M0
VN (k)

)
,

which we now define. In this diagram, P is the inverse image in K of P(k). The
image of P in G(k) is P(k) by [Bruhat and Tits 1984, 5.1.22]; P is a parahoric
subgroup of G(F).

Lemma 4.7. The parahoric subgroup P admits an Iwahori decomposition with
respect to M ,

(13) P= N0 M0 N 0+, N 0,+ := N (F)∩ K+,

with any order of the factors.

Proof. This decomposition is well known, but at the referee’s suggestion, we outline
a proof. By [Bruhat and Tits 1984, 4.6.4 and 5.1.31], K+ = U0+Z0+U 0+, with
the sign + indicating the intersection with K+ as above. As M0 is the parahoric
subgroup of M(F) fixing our special point, we have M0+= (U0+∩M0)Z0+(U 0+∩

M0). It follows that K+ = N0+M0+N 0+. From [Henniart and Vigneras 2011,
Theorem 6.5], we have P = N0 M0K+, and so P = N0 M0 N0+M0+N 0+. As M0

normalizes N0, N 0 and K+, it normalizes also N0+ and N 0+, and we have the
decomposition P= N0 M0 N 0+ with any order of the factors. �

The transitivity of compact induction implies that

(14) c-IndG(F)
P VN (k) ' c-IndG(F)

K

(
c-IndG(k)

P(k) VN (k)
)
.



478 GUY HENNIART AND MARIE-FRANCE VIGNERAS

Definition 4.8. The map ξ is the image by the compact induction functor c-IndG
K

of the natural embedding V → c-IndG(k)
P(k) VN (k).

For v ∈ V , ξ([1, v]K ) is the function in c-IndG(F)
P VN (k) with support contained

in K and value kv at k ∈ K .

Proposition 4.9. There is a unique G(F)-equivariant map

ζ : c-IndG(F)
P VN (k)→ IndG(F)

P(F)

(
c-IndM(F)

M0
VN (k)

)
,

which for v ∈ V , sends [1, v]P to the function fv with support contained in

P(F)P= P(F)N 0,+

and constant value [1, v]M0 on N 0,+.

Proof. The uniqueness is clear because the functions [1, v]P for v ∈ V generate the
representation c-IndG(F)

P VN (k). The existence can be proved directly, but we can
also apply the considerations of the beginning of Section 2 with V ′ := c-IndK

P (VN (k))

instead of V and W = c-IndM(F)
M0

VN (k).
The value at 1 from V ′ to VN (k) factorizes through the quotient map v′ 7→ v′

from V ′ to V ′N (k) and defines an M0-equivariant map r : V ′N (k)→ VN (k), such that
r(v′)= v′(1) for all v′ ∈ V ′. The image of r by the compact induction functor from
M0 to M(F) is an element in

HomM(F)
(
c-IndM(F)

M0
V ′N (k), c-IndM(F)

M0
VN (k)

)
which corresponds by the isomorphism (2) to an element in

HomG(F)
(
c-IndG(F)

K V ′, IndG(F)
P(F)

(
c-IndM(F)

M0
VN (k)

))
,

sending [1, v′]K to the unique function ϕv′ with value on k ∈ K equal to

[1, r(kv′)]M0 = [1, v
′(k))]M0,

for all v′ ∈ V ′. Applying the transitivity of the compact induction functor to
c-IndG(F)

K V ′, we obtain the element

ζ ∈ HomG(F)
(
c-IndG(F)

P VN (k), IndG(F)
P(F)

(
c-IndM(F)

M0
VN (k)

))
of the proposition. For v ∈ V with image v in NN (k), the morphism ζ sends [1, v]P
to ϕv′ , where v′ ∈ V ′ is the function on K of support P and equal to v at 1. It
remains to check that ϕv′ is equal to the function fv given in the proposition. Indeed,
the support of the function ϕv′ ∈ c-IndG(F)

P VN (k) is contained in P(F)P, we have
P(F)P = P(F)N 0,+ by the Iwahori decomposition of P, and for k ∈ N 0,+ we
have v′(k)= v. �
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Remark 4.10. Later we will use that, for g ∈ G(F), ζ(g−1
[1, v]P) has support in

P(F)Pg which contains 1 if and only if g ∈PP(F). Thus, for f ∈ c-IndG(F)
P VN (k),

the element ζ( f )(1) depends only on the restriction of f to PP(F).

Lemma 4.11. IV = ζ ◦ ξ .

Proof. This is clear from the definitions of IV , ξ, ζ . �

Remark 4.12. The map ξ is injective because IV is injective (Proposition 4.1).
We can give a direct proof: As V is irreducible and VN (k) 6= 0, the map V →
c-IndG(k)

P(k) VN (k) is injective. As the functor c-IndG
K is exact, the map ξ is injective.

The map ξ is not surjective because the map V → c-IndG(k)
P(k) VN (k) is not surjective,

as P 6= G by our running hypothesis. This can be seen by taking fixed points under
U (k).

5. Hecke operators

In this chapter, we introduce some Hecke operators associated to our fixed element
s ∈ S(F) central in M(F) and strictly N -positive, and we show the compatibility
of these Hecke operators with the maps ξ, ζ,S′ (sometimes we need to suppose
that V is P-regular).

The space of G(F)-equivariant homomorphisms from c-IndG(F)
K V to

c-IndG(F)
P VN (k),

is isomorphic to the space H
(
G(F), K ,P, V, VN (k)

)
of functions 8 : G(F)→

HomC(V, VN (k)) satisfying

(i) 8( jg j ′)= j ◦8(g) ◦ j ′ for j ∈ P, j ′ ∈ K ,

(ii) 8 vanishes outside finitely many double cosets PgK .

We call8 a Hecke operator. We shall usually use the same notation for the Hecke
operator and for the corresponding G(F)-equivariant homomorphism, defined by:
for all v ∈ V ,

(15) [1, v]K →
∑

g∈P\G(F)

g−1
[1,8(g)(v)]P.

The map ξ corresponds to the Hecke operator with support K and value at 1 the
projection V → VN (k) given by v 7→ v.

In the same way, the space of G(F)-equivariant homomorphisms

c-IndG(F)
P VN (k)→ c-IndG(F)

K V

corresponds to a space H
(
G(F),P, K , VN (k), V

)
of functions from G(F) to

HomC(VN (k), V ).
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5A. Definition of Hecke operators. Recall (Proposition 3.14) that the quotient
map v 7→ v from V to VN (k) induces an isomorphism V N (k)

→ VN (k). We write
ϕ : VN (k)→ V N (k) for the reciprocal isomorphism. Since s ∈ S(F) is U -positive
and belongs to ZV ∗ , we deduce from [Henniart and Vigneras 2011, 7.3 Lemma 1]:

Proposition 5.1. There exists a unique Hecke operator TG in H(G(F), K , V ) with
support K sK such that TG(s) ∈ EndC(V ) sends v ∈ V to ϕ(v).

The Hecke operator TM (Definition 4.4) could have been defined in the same
way. We shall prove later that S′(TG)= TM when V is P-regular. We define now
Hecke operators TP and TK ,P generalizing TG and TM .

Proposition 5.2. (i) There is a unique Hecke operator TP in H
(
G(F),P, VN (k)

)
with support PsP and value at s the identity of VN (k).

(ii) There is a unique Hecke operator TK ,P in H
(
G(F),P, K , VN (k), V

)
with

support K sP such that TK ,P(s) : VN (k)→ V sends v to ϕ(v).

Proof. (i) By the condition (i) for Hecke operators, we have to check that for
h, h′ ∈ P, the relation h′s = sh implies that the actions of h and of h′ on VN (k) are
the same. We use the Iwahori decomposition (13):

P= N 0+M0 N0.

Decomposing h = nmn, we have h′ = sns−1msns−1, since s is central in M(F).
Because s is N -positive, sns−1

∈ N0 and the condition h′ ∈ P means that sns−1
∈

N 0+. Consequently, both h and h′ act as m on VN (k).

(ii) We now have to check that for h′ ∈ K , h ∈P, the relation h′s = sh implies that
h′ϕ(v) = ϕ(hv) for all v ∈ V . Writing as above h = nmn, the condition h′ ∈ K
means sns−1

∈ N (F) ∩ K = N 0, so that n belongs to N 0+ because s is strictly
N -positive. Then ϕ(hv)= ϕ(mnv)=mϕ(nv)=mϕ(v). But sns−1 is in N0+ again
because s is strictly N -positive and h′ϕ(v)= mϕ(v) too. �

Remark 5.3. We note that, for v ∈ V :

• TP([1, v]P) is the function in c-IndG(F)
P VN (k) with support PsP and value v

on s N 0+.

• TK ,P([1, v]P) is the function in c-IndG(F)
K V with support K sP and value ϕ(v)

on s N 0+.

• TG([1, v]K ) is the function in c-IndG(F)
K V with support contained in K sK and

value ϕ(hv) on sh for all h ∈ K .

5B. Compatibilities between Hecke operators. In this section, following Herzig’s
method, we prove:
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Proposition 5.4. (i) The diagram on the left

(16)

c-IndG(F)
K V

ξ //

TG
��

c-IndG(F)
P VN (k)

TK ,P

ww

c-IndG(F)
K V

c-IndG(F)
P VN (k)

TK ,P

ww
TP

��

c-IndG(F)
K V

ξ
// c-IndG(F)

P VN (k)

is commutative; the diagram on the right is commutative when V is P-regular.

(ii) The diagram

c-IndG(F)
P VN (k)

ζ //

TP

��

IndG(F)
P(F)

(
c-IndM(F)

M0
VN (k)

)
TM

��

c-IndG(F)
P VN (k) ζ

// IndG(F)
P(F)

(
c-IndM(F)

M0
VN (k)

)
is commutative.

(iii) S′(TG)= TM when V is P-regular.

By (15), the G(F)-homomorphisms corresponding to ξ, TG, TP and TK ,P are
characterized by the following formulas, for v ∈ V :

ξ : [1, v]K 7→
∑

g∈P\K

g−1
[1, gv]P,

TG : [1, v]K 7→
∑

g∈K\K sK

g−1
[1, TG(g)(v)]K ,

TP : [1, v]P→
∑

g∈P\PsP

g−1
[1, TP(g)(v)]P,

TK ,P : [1, v]P 7→
∑

g∈K\K sP

g−1
[1, TK ,P(g)(v)]K .

To prove the proposition, it is useful first to simplify these formulas.

Lemma 5.5. We have

TP : [1, v]P 7→
∑

n∈s−1 N 0+s\N 0+

n−1s−1
[1, v]P,(17)

TK ,P : [1, v]P 7→
∑

n∈s−1 N 0s\N 0+

n−1s−1
[1, ϕ(v)]K ,(18)

TG : [1, v]K 7→
∑

h∈P\K

h−1
∑

n∈s−1 N 0s\N 0+

n−1s−1
[1, ϕ(hv)]K .(19)
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Proof. By the Iwahori decomposition P= N0 M0 N 0+, we get that PsP= Ps N 0+,
because s N0s−1

⊂ N0 and s M0s−1
= M0. Consequently, the map n 7→ sn induces

a bijection of s−1 N 0+s\N 0+ onto P\PsP. Since N 0+ acts trivially on VN (k), we
get the formula for TP.

A similar reasoning gives that K sP=K s N 0+ and that n 7→ sn induces a bijection
of s−1 N 0s\N 0+ onto K\K sP. This implies the formula for TK ,P.

To simplify the formula for TG , we note that the map h 7→ sh induces a bijection
from (K∩s−1K s)\K onto K\K sK . But K∩s−1K s is contained in P by [Henniart
and Vigneras 2011, Proposition 6.13], so that we can perform the sum in TG as a
sum over (K ∩ s−1K s)\P followed by a sum over P\K . By what we said in the
previous paragraph, the inclusion N 0+ ⊂ P induces a bijection of s−1 N 0s\N 0,+

onto (K ∩ s−1K s)\P, so that we finally get the formula for TG . �

We now give the proof of Proposition 5.4.

Proof. From the formulas for TG, TK ,P in Lemma 5.5 and the formula for ξ , we
immediately get

(20) TG = TK ,P ◦ ξ,

so that the left diagram in Proposition 5.4(i) is indeed commutative.
The elements [1, v]P for v ∈ V generate the representation c-IndG(F)

P VN (k), and
to prove the commutativity of the diagram in Proposition 5.4(ii), it thus suffices to
prove for v ∈ V the equality

(TM ◦ ζ )([1, v]P)= (ζ ◦ TP)([1, v]P).

From the value of ζ([1, v]P) for v ∈ V given in Proposition 4.9 and from

TM([1, v]M0)= s−1
[1, v]M0,

we see that the function (TM ◦ ζ )([1, v]P) vanishes outside P N 0+ and has constant
value s−1

[1, v]M0 on N 0+. From the formula for TP in Lemma 5.5, we have

(ζ ◦ TP)([1, v]P)=
∑

n∈s−1 N 0+s\N 0+

n−1s−1ζ([1, v]P),

and with the value of ζ([1, v]P), we see that this function is indeed the function
(TM ◦ ζ )([1, v]P) described above, so that the diagram in Proposition 5.4(ii) is
commutative.

Let us turn to the proof of the commutativity of the diagram on the right in
Proposition 5.4(i). We now assume that V is P-regular. From the formulas for
TK ,P in Lemma 5.5, we have, for v ∈ V ,

ξ ◦ TK ,P : [1, v]P 7→
∑

n∈s−1 N 0s\N 0+

n−1s−1
∑

h∈P\K

h−1
[1, hϕ(v)]P.
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We have seen that for h ∈ K , the image of hV N (k) in VN (k) is 0 unless h belongs to
PP (Corollary 3.19), so that the inner sum can be restricted to h ∈ N 0,+\N 0. Now
n−1s−1h−1

= n−1s−1h−1ss−1 and s−1hs runs through s−1 N 0,+s\s−1 N 0s, which
gives the result

ξ ◦ TK ,P([1, v]P)= TP([1, v]P).

We finally prove S′(TG) = TM , still assuming that V is P-regular. We have
just proved ξ ◦ TK ,P = TP and previously we got TK ,P ◦ ξ = TG , so we deduce
ξ ◦ TG = TP ◦ ξ . We also proved ζ ◦ TP = TM ◦ ζ , so we obtain

ζ ◦ ξ ◦ TG = ζ ◦ TP ◦ ξ = TM ◦ ζ ◦ ξ,

that is, IV ◦TG=TM◦ IV . Applying jV and Definition 2.1, this implies S′(TG)=TM .
�

Note that the trivial representation V is not P-regular, as M 6= G by our running
hypothesis; however, we can still have S′(TG)= TM when the representation V is
the trivial representation. We now present some examples of that phenomenon (the
referee remarks that even more examples result from [Herzig 2011, Proposition 5.1]).

Example 5.6. Take G=GL(2,− ), ZG the center, M the diagonal group, B= N M
the upper triangular subgroup, K = GL(2, oF ), and

sp :=

(
pF 0
0 1

)
.

The monoid of strictly positive elements in M(F) is ∪n≥1sn
p ZG(F)M0, where

M0=M(F)∩K . An irreducible smooth C-representation V of K is B-regular if and
only if it is B-regular if and only if it is not 1-dimensional. For g ∈G(F), we denote
by Tg the characteristic function of K gK in the Hecke C-algebra H(G(F), K ,C)'
C[K\G(F)/K ] of (the trivial C-representation of) K in G(F). For t ∈ M(F), we
denote by τt the characteristic function of t M0 in the Hecke algebra

H(M(F),M0,C)' C[M(F)/M0].

Claim. When s ∈ M(F) is strictly positive, we have S′(Ts) = τs if and only if
s ∈ sp ZG M0.

Proof. By [Barthel and Livné 1994, Proposition 8], the characteristic function Tn of
ZG(F)K sn

p K in the Hecke algebra H
(
G(F), ZG(F)K ,C

)
satisfies the relations

(21) Tn = T n
1 − T n−2

1 for n ≥ 2.

The natural surjective G(F)-equivariant map

σ : c-IndG(F)
K C→ c-IndG(F)

ZG(F)K C, 1K 7→ 1ZG K ,
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satisfies σ ◦ Ts = Tn ◦ σ when s ∈ sn
p pZG

F M0, n ≥ 1.
Indeed, we write K sK as a disjoint union of cosets K bi pr

F , where s ∈ sn
p pr

F M0

and bi ∈ B(F). For f ∈ c-IndG(F)
K C , we have

Ts( f )=
∑

i

p−r
F b−1

i f and (σ ◦ Ts)( f )=
∑

i

b−1
i σ( f ).

The double coset ZG(F)K sn
p K is the union of the cosets ZG(F)K bi . The union

remains disjoint because the equality of cosets ZG(F)K bi = ZG(F)K b j , equivalent
to b j b−1

i k = z for some z ∈ ZG(F), k ∈ K , implies that the determinant of z is a
unit. When this holds, z ∈ M0 ∩ ZG and K bi = K b j . For ϕ ∈ c-IndG(F)

ZG(F)K C , we
have

Tn(ϕ)=
∑

i

b−1
i ϕ and (Tn ◦ σ)( f )=

∑
i

b−1
i σ( f ).

We deduce σ ◦ Ts = Tn ◦σ . Then the relation (21) implies that Tsn
p

is different from
T n

sp
when n ≥ 2.

The value of S′(Ts) at t ∈ M(F) is the image in C of the number of b ∈ F/oF

such that nbt ∈ K sK , where

nb :=

(
1 b
0 1

)
.

The double coset K sp K is the disjoint union of K sp and of K
( 1 a

0 pF

)
for a in a

system of representatives of oF/pF oF . The characteristic of C being p, we deduce
that S′(Tsp) = τsp . Then we obtain S′(Tsn

p
) 6= τsn

p
when n ≥ 2, because S′ is an

injective algebra homomorphism and Tsn
p
6= T n

sp
. Our claim is proved for s = sn

p
and n ≥ 1. The general case s = sn

p pr
F t0 with r ∈ Z, t0 ∈ M0, reduces easily to this

case. �

Example 5.7. Let D be a quaternion division algebra over F . We write O for the
ring of integers of D, and v for its normalized valuation; we choose a uniformizer
pD of D such that p2

D = pF is a uniformizer of F ; the residue field kD of O is a
quadratic extension of the residue field k of F . We take for G the group such that
G(F)=GL(2, D), for S the group such that S(F) is the group of diagonal matrices
with coefficients in F∗, and for B = MN the groups such that M(F) is the group
of diagonal matrices and B(F) is the upper triangular subgroup of GL(2, D).

Let K = GL(2,O); the quotient of K by its pro-p-radical is isomorphic to
GL(2, kD). The Cartan decomposition says that G(F) is the disjoint union of
the double cosets K da,b K , for integers a, b ∈ Z with a ≥ b, where da,b is the
diagonal matrix with entries pa

D and pb
D down the diagonal. The strictly positive

elements of M(F) are those of the form s = m0da,b, for a, b ∈ Z with a > b and
m0 ∈ M0 = M(F)∩ K .
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An irreducible C-representation of GL(2, kD) which is not B-regular has di-
mension 1 and is given by a character g 7→ (ε ◦ det)(g), where ε : k∗D→ C∗ is a
character. We identify ε ◦ det with an irreducible smooth C-character of K and ε
with a smooth C-character of O∗.

The reduction of the conjugation by pD on O induces the nontrivial automorphism
σ of kD/k. The character ε of O∗ extends to a character of D∗ exactly when ε is
invariant under σ . In that case, the Hecke algebra H(D∗,O∗, ε) has support D∗

(the support of the Hecke algebra is the union of the supports of its elements). This
implies that the Hecke algebra H

(
M(F),M0, ε ⊗ ε

)
has support M(F), and by

the Satake isomorphism, that the Hecke algebra H
(
G(F), K , ε ◦ det

)
has support

G(F).
Assume now that ε is not invariant under σ . Then the support of the Hecke

algebra H(D∗,O∗, ε) is the set of elements in D∗ of even normalized valuation.
This implies that the support of H

(
M(F),M0, ε ⊗ ε

)
is the union of the cosets

M0d2a,2b for a, b∈Z, and that the support of the Hecke algebra H
(
G(F), K , ε◦det

)
is the union of the double cosets K d2a,2b K , for a, b ∈ Z and a ≥ b.

For a positive element s in the support of H
(
M(F),M0, ε ⊗ ε

)
, let τs be the

Hecke operator in H
(
M(F),M0, ε⊗ ε

)
of support M0s and value 1 at s, and let Ts

be the Hecke operator in H
(
G(F), K , ε ◦ det

)
of support K sK and value 1 at s.

Claim. S′(Ts)= τs for any choice of strictly positive s ∈ S(F).

Proof. It suffices to prove the claim for s = d2a,2b ∈ S(F) with a > b. We compute
S′(Ts) on d2α,2β with α ≥ β in Z,

S′(Ts)(d2α,2β)=
∑

x∈D/O

Ts

((
1 x
0 1

)(
pαF 0
0 pβF

))
.

The matrix (
1 x
0 1

)(
pαF 0
0 pβF

)
=

(
pαF xpβF
0 pβF

)
belongs to K d2α,2βK when x ∈ O.

If x 6∈ O, then putting v(x)=−γ , γ > 0, we have(
pαF xpβF
0 pβF

)
=

(
0 xpγD

−x−1 p−γD pγD

)(
p2α+γ

D 0
0 p2β−γ

D

)(
1 0

x−1 pα−βF 1

)
,

which consequently belongs to K d2α+γ,2β−γ K .
If (2α, 2β)= (2a, 2b), we see that only x ∈ O contributes to S′(Ts)(d2α,2β) and

that this contribution is 1. Hence S′(Ts)(d2α,2β)= 1.
If (2α, 2β)= (2a−γ, 2b+γ ) with γ > 0, we see that the only x contributing to

S′(Ts)(d2α,2β) are those with v(x)=−γ and that this contribution is 1. Therefore
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S′(Ts)(d2α,2β) is the number of x ∈ D/O of valuation −γ , and hence

S′(Ts)(d2α,2β)= q2γ
− q2(γ−1).

However, γ has to be even, so that S′(Ts)(d2α,2β)= 0.
For the other values of α, β in Z, we see that S′(Ts)(d2α,2β)= 0. �

6. Proof of the main theorem

We give three lemmas which will help us to study the map ζ (Proposition 4.9).

Lemma 6.1. The map ζ is injective on the set of functions f ∈ c-IndG(F)
P VN (k) with

support in PZ(F)+N K .

Proof. Let f be such that ζ( f ) = 0 with support in PZ(F)+N K . We claim that
f = 0 on PP(F). This implies that f = 0, because G(F) = P(F)K and for
k ∈ K , the function k−1 f satisfies the same conditions as f . To prove the claim,
we use only that ζ( f )(1)= 0 in c-IndM(F)

M0
VN (k). As ζ( f )(1) depends only on the

restriction of f to PP(F) (Remark 4.10), we assume, as we may, that the support
of f is contained in PP(F). The support of f is a finite disjoint union of Pzi ki

for zi ∈ Z(F)+N and ki ∈ K , with zi ki ∈ PP(F). We have PP(F)= N 0,+P(F),
and hence ki ∈ z−1

i N 0,+zi P(F). As zi is positive, z−1
i N 0,+zi ⊂ N 0,+. This implies

that we can suppose ki ∈ P(F)∩ K . As P(F)∩ K = N0 M0 and zi is positive, we
can suppose ki ∈ M0. We proved that the support of f is a finite disjoint union of
Pzi ki for zi ∈ Z(F)+N and ki ∈ M0. Taking the intersection with M(F), the sets
M(F)∩Pzi ki are also disjoint. Writing

f =
∑

i

(zi ki )
−1
[1, vi ]P,

we have ζ( f )(1)=
∑

i (zi ki )
−1
[1, vi ]M0 , and ζ( f )(1)= 0 is equivalent to vi = 0

for all i . �

Lemma 6.2. (i) A compact space P(F)\G(F) is given by the G(F)-translates
of P(F)\P(F)N 0,+sn , for all n ∈ N.

(ii) For any subset X ⊂ G(F) with finite image in P\G(F), there exists a large
integer n ∈ N such that sn X ⊂ PZ(F)+N K .

Proof [Herzig 2011, Lemma 2.20]. (i) The compact space P(F)\G(F) is the union
of the right G(F)-translates of the big cell P(F)\P(F)N (F), which is open, and
the s−n N 0,+sn for n ∈ N form a decreasing sequence of open subgroups of N (F)
converging to 1.

(ii) Let N be the normalizer of S in G and let B be the inverse image of B(k) in K
(an Iwahori subgroup). Then (G(F),B,N(F)) is a generalized Tits system [Morris
1993, 3.12]. We have:
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a) G(F)=BN(F)B.

b) For ν ∈ N(F), there is a finite subset Xν in N(F) such that, for all ν ′ ∈ N(F),
we have

ν ′Bν ⊂ ∪x∈XνBν
′xB.

c) As the parahoric group K is special, it contains representatives of the Weyl
group, so for any ν ∈ N(F), there exists z ∈ Z(F) such that νK = zK .

We deduce from a) and c) that G(F)=BZ(F)K . We may assume that X is a
finite union X = ∪i Pzi ki with zi ∈ Z(F), ki ∈ K . We deduce from b) that, for any
index i , there are finitely many ni, j ∈ N(F) such that zBzi ⊂ ∪ j Bzni, j B for all
z ∈ Z(F). It follows that for n ∈ N and z = sn , we have

zPzi ki ⊂ P0zN 0,+zi ki ⊂ ∪ j Pzni, j K ,

as N 0,+ ⊂ B. We choose zi, j ∈ Z(F) such that zi, j K = ni, j K , as we may
by c). There exists n ∈ N such that snzi, j ∈ Z(F)+N for all i, j . Hence sn X ⊂
∪ j Psnzi, j K ⊂ PZ(F)+N K . �

Let σ be a smooth C-representation of M(F). For any nonzero vector y in
the space of σ , there exists a function fy ∈ IndG(F)

P(F) σ with support P(F)N 0,+

and value y on N 0+ because the multiplication P(F)× N 0+→ P(F)N 0,+ is a
homeomorphism.

Lemma 6.3. Let σ be a smooth C-representation of M(F) generated by an element
x. Then the representation IndG(F)

P(F) σ is generated by the functions fs−n x , n ∈ Z,
with support P(F)N 0,+ and value s−nx on N 0+.

Proof. By Lemma 6.2, it is enough to show that any function fn,mx ∈ IndG(F)
P(F) σ

with support contained in P(F)N 0,+sn and value mx on N 0+sn , for n ∈ N and
m ∈ M(F), is contained in the subrepresentation generated by fs−r x for all r ∈ Z.
The function m−1 fn,mx has support in P(F)\P(F)N 0+snm and value s−nx on
the compact open subset m−1s−n N 0+snm of N (F); for some n′ ∈ N, this set is a
disjoint union of s−n′N 0+sn′n for n running through a finite subset of N (F). For
a nonzero y in the space of σ , the function (sn′n)−1 fy ∈ IndG(F)

P(F) σ has support
P(F)N 0+sn′n and value s−n′ y on s−n′N 0+sn′n. The sum over n of (sn′n)−1 fsn′−n x
is equal to m−1 fn,mx . �

Proposition 6.4. (i) The image of ξ contains TP

(
c-IndG(F)

P VN (k)
)

when V is
P-regular.

(ii) The kernel of the map ζ is the T∞P -torsion part of c-IndG(F)
P VN (k), and the

representation
c-IndG(F)

P(F)

(
c-IndM(F)

M0
VN (k)

)
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is generated by

(T−n
M ◦ ζ )([1, v]P), for all n ∈ Z,

for any fixed nonzero element v ∈ VN (k).

Proof. (i) This follows from Proposition 5.4(i).

(ii) We fix a nonzero v ∈ VN (k); then x = [1, v]M0 generates the representation
σ = c-IndM(F)

M0
VN (k). We note that for n ∈ Z, by Definition 4.4 and 4.8,

(T n
M ◦ ζ )([1, v]P)= fs−n x .

We obtain by Lemma 6.3 that the representation IndG(F)
P(F)

(
c-IndM(F)

M0
VN (k)

)
is gen-

erated by the elements (T n
M ◦ ζ )([1, v]P), when n runs through Z.

We now consider an element f in the kernel of ζ . The function f vanishes
outside of a compact set X with finite image in P\G(F). We choose an integer
n ∈ N such that sn X ⊂ PZ(F)+N K (Lemma 6.2(ii)). The support of T n

P is PsnP

by (13) and the positivity of s. The support of T n
P( f ) is contained in Psn X , and

hence in PZ(F)+N K . By Lemma 6.1, we conclude that T n
P( f )= 0. The converse

follows from Proposition 5.4(ii). �

In the diagram (12), the representations are C[T ]-modules, where T acts as
on the middle space by TK ,P, on the right space by TM , and on the left space by
(S′)−1(TM). Proposition 5.4 tells us that:

• The map ζ is C[T ]-linear.

• When V is P-regular, the map ξ is C[T ]-linear and (S′)−1(TM)= TG .

Corollary 6.5. (i) The T -localization ζT of ζ is an isomorphism.

(ii) When V is P-regular, the T -localization ξT of ξ is an isomorphism.

The map 2 is the T -localization of IV = ζ ◦ ξ . By Corollary 6.5(ii), the map
2= ζT ◦ ξT is surjective when V is P-regular.

Remark 6.6. We suppose that V is given by a character ε of K , and that there
exists a character εM of M(F) equal to ε on M0 (such a character εM does not
always exist). We consider the composite of IV with the surjective natural map

ψ : IndG(F)
P(F)

(
c-IndM(F)

M0
ε
)
→ IndG(F)

P(F) εM .

If εM extends to a character εG of G(F), the image of ψ◦ IV is the subrepresentation
εG of dimension 1 of IndG(F)

P(F) εM , and the map ψ ◦2 is nonsurjective.
But in the case where εM does not extend to a character εG of G(F), the map

ψ ◦2 can be surjective. For example, ψ ◦2 is surjective when IndG(F)
P(F) εM is

irreducible. This is the case, for any choice of εM , when G =U (2, 1) with respect
to an unramified quadratic extension of F , B is a Borel subgroup, and K is a special
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nonhyperspecial parahoric subgroup [Abdellatif 2011]; this is also the case when
G(F)=GL(2, D) with D a quaternion skew field over F , B is the upper triangular
subgroup, and K = GL(2, OD) [Ly ≥ 2012].

7. Supersingular representations of G(F)

We introduce first the notion of K -supersingularity for an irreducible smooth
representation π of G(F). Then we recall the notion of supercuspidality [Henniart
and Vigneras 2011, 1.7 footnote]. We expect that supercuspidality is equivalent
to K -supersingularity, at least for admissible representations. We will give some
partial results in this direction. Finally, when π is admissible, we give an equivalent
definition of K -supersingularity which coincides with the definition given by Herzig
and Abe when G is F-split, K is hyperspecial, and the characteristic of F is 0.

Let π be an irreducible smooth C-representation of G(F). For any smooth
irreducible C-representation V of K , we consider

HomG(F)
(
c-IndG(F)

K V, π
)

as a right module for the Hecke algebra H(G(F), K , V ).

Remark 7.1. Given π , there exists an irreducible representation V of K such that
HomG(F)

(
c-IndG(F)

K V, π
)
6= 0. Indeed, a nonzero element v ∈ π being fixed by an

open subgroup of K generates a K -stable subspace W of finite dimension; if V is
an irreducible subrepresentation of W , we have HomK (V, π) 6= 0, and hence the
result by Frobenius reciprocity.

For any standard parabolic subgroup P = MN , we consider the Satake map

S′ = S′M,G :H
(
G(F), K , V

)
→H

(
M(F),M0, VN (k)

)
.

We recall that S′ is a localization at some element TM (Proposition 4.5).

Definition 7.2. An irreducible smooth C-representation π of G(F) is called K -
supersingular when

H
(
M(F),M0, VN (k)

)
⊗H(G(F),K ,V ),S′ HomG(F)

(
c-IndG(F)

K V, π
)
= 0,

for all irreducible smooth C-representations V of K and all standard Levi subgroups
M 6= G.

The condition means that the localization of the right H(G(F), K , V )-module

HomG(F)
(
c-IndG(F)

K V, π
)

at TM is 0, that is, for any nonzero f ∈HomG(F)
(
c-IndG(F)

K V, π
)
, there is n∈N such

that S′−1
(T n

M)( f )= 0. If the space HomG(F)
(
c-IndG(F)

K V, π
)

is finite-dimensional,
this means that the eigenvalues of S′−1

(TM) on this space are 0, or equivalently,
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that the characters of Z(G(F), K , V ) appearing in

HomG(F)
(
c-IndG(F)

K V, π
)

vanish at S′−1
(TM). For admissible representations, our definition is equivalent to

the one given by Herzig [2011, Definition 4.7] and Abe [2011, Definition 5.1].

Definition 7.3. An irreducible smooth C-representation π of G(F) is called super-
cuspidal if π is not isomorphic to a subquotient of c-IndG(F)

P(F) τ for a proper standard
parabolic subgroup P = MN of G and for an irreducible smooth C-representation
τ of M(F).

The definition, which is valid for any field C , does not depend on the minimal
parabolic F-subgroup B of G used to define the standard parabolic subgroups, as
all such B’s are conjugate in G(F). Consequently, we get an equivalent definition
if we let P be any parabolic subgroup different from G.

Let V be an irreducible smooth C-representation of K , let P = MN be a proper
standard parabolic subgroup of G, and let σ be a smooth C-representation of M(F).
Our first result concerns the TM -localization of the right H(G(F), K , V )-module

HomG(F)
(
c-IndG(F)

K V, IndG(F)
P(F) σ

)
.

Proposition 7.4. (i) V ⊂
(
IndG(F)

P(F) σ
)
|K if and only if VN (k) ⊂ σ |M0 .

(ii) In this case, the action of S′−1(TM) on HomG(F)
(
c-IndG(F)

K V, IndG(F)
P(F) σ

)
is

invertible.

Proof. (See [Herzig 2011, p. 416].) (i) This follows from the isomorphism (2).

(ii) By (4), we have isomorphisms of H(G(F), K , V )-modules

HomG(F)
(
c-IndG(F)

K V, IndG(F)
P(F) σ

)
' HomK

(
V, IndG(F)

P(F) σ
)
' HomM0(VN (k), σ ),

where H(G(F), K , V ) acts on the final term by S′; the last isomorphism follows
from Frobenius reciprocity and K ∩ P(F)= (K ∩M(F))(K ∩ N (F)). The claim
follows since S′ is a localization map at TM , by Proposition 4.5. �

Our results on the comparison between non-K -supersingular and nonsupercuspi-
dal irreducible smooth C-representations of G(F) are:

Proposition 7.5. Let τ be an irreducible smooth C-representation of M(F).

(i) An irreducible subrepresentation of IndG(F)
P(F) τ is not K -supersingular.

(ii) An admissible irreducible quotient of IndG(F)
P(F) τ is not K -supersingular.
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This proposition claims that certain nonsupercuspidal irreducible representations
of G(F) are non-K -supersingular. The next proposition claims that certain non-K -
supersingular admissible irreducible representations of G(F) are nonsupercuspidal.

Proposition 7.6. Let π be an admissible irreducible smooth C-representation of
G(F), let P = MN ⊂ Q = L N ′ be two standard parabolic F-subgroups different
from G, and let V be a Q-regular irreducible smooth C-representation of K such
that the localization of the right H(G(F), K , V )-module

HomG(F)
(
c-IndG(F)

K V, π
)

at TM is not 0. Then π is a quotient of IndG(F)
Q(F) τ for an admissible irreducible

smooth C-representation τ of L(F).

Proof of Proposition 7.5. (i) Proposition 7.4 implies that an irreducible subrepresen-
tation of IndG(F)

P(F) τ is not K -supersingular.

(ii) Let π be an irreducible quotient of IndG(F)
P(F) τ . We choose an irreducible smooth

C-representation W of M0 such that the irreducible representation τ is a quotient
of c-IndM(F)

M0
W . Then π is a quotient of IndG(F)

P(F)

(
c-IndM(F)

M0
W
)
. We consider

the unique irreducible P-regular representation V of G(k) such that VN (k) ' W
(Proposition 3.10). By our main theorem (Theorem 4.6),

IndG(F)
P(F)

(
c-IndM(F)

M(F)∩K W
)
'H

(
M(F),M0, VN (k)

)
⊗H(G(F),K ,V ),S′ c-IndG(F)

K V .

We deduce:

HomG(F)
(
H
(
M(F),M0, VN (k)

)
⊗H(G(F),K ,V ),S′ c-IndG(F)

K V, π
)
6= 0.

If π is admissible, we will show

(22) H
(
M(F),M0, VN (k)

)
⊗H(G(F),K ,V ),S′ HomG(F)

(
c-IndG(F)

K V, π
)
6= 0.

This implies that π is not K -supersingular.
To prove (22), we write X := c-IndG(F)

K V , T := TM ∈ A := H(G(F), K , V ),
B = A[T−1

]. Our assumption is

HomG(B⊗A X, π) 6= 0,

and we want to prove that B⊗A HomG(X, π) 6= 0, provided that HomG(X, π) is
finite-dimensional (which is the case if π is admissible).

We consider the natural linear map

r : HomG(B⊗A X, π)→ HomG(X, π), ϕ 7→
(
x 7→ ϕ(1⊗ x)

)
.
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The space HomG(B ⊗A X, π) is naturally a right B-module, and hence a right
A-module by restriction. The map r is A-linear:

r(ϕa)(x)= (ϕa)(1⊗ x)= ϕ(a⊗ x)= ϕ(1⊗ ax)= r(ϕ)(ax)= (r(ϕ)a)(x),

for a ∈ A, x ∈ X , ϕ ∈ HomG(B ⊗A X, π). Consequently, the image Im(r) is an
A-submodule of HomG(X, π). We remark that Im(r)T = Im(r) because r(ϕ) =
r(ϕT−1)T for ϕ ∈ HomG(B⊗A X, π).

We show now that our hypothesis implies that Im(r) is not 0. Indeed, let ϕ 6= 0 in
HomG(B⊗A X, π). There exist b ∈ B and x ∈ X such that ϕ(b⊗ x) 6= 0. Writing
b= T−na with n ∈N and a ∈ A, we get ϕ(T−na⊗ x)= ϕT−n(1⊗ax) 6= 0 so that
r(ϕT−n) 6= 0.

Assume now that HomG(X, π) is finite-dimensional. Then Im(r) is also finite-
dimensional and as Im(r)T = Im(r), T induces an automorphism of Im(r) so that
B⊗A Im(r) 6= 0. The localization being an exact functor, we have

B⊗A HomG(X, π) 6= 0. �

We state a useful general lemma before proving Proposition 7.6.
Let R be a commutative ring, let H be an R-algebra, let W be a left H-module with

a smooth H-linear action of M(F), and let N be a right H-module. Then N⊗H W
is a smooth R-representation of M(F) and we can form IndG(F)

P(F)(N⊗H W ). We can
also form N⊗H IndG(F)

P(F)(W ), where the structure of left H-module on IndG(F)
P(F)(W )

is given by (h, f )→ h f : g→ h( f (g)). The canonical map

ιN : N⊗H IndG(F)
P(F)(W )→ IndG(F)

P(F)(N⊗H W )

is clearly G(F)-equivariant.

Lemma 7.7. The map ιN is an isomorphism.

Proof. It is well known that the quotient map G(F) → P(F)\G(F) admits a
continuous section and that the module C∞

(
P(F)\G(F), R

)
is free. This implies

that the parabolic induction functor IndG(F)
P(F)− for smooth R-representations is

exact and commutes with infinite direct sums, and that IndG(F)
P(F)(W ) identifies with

C∞
(
G(F)/P(F), R

)
⊗W as R-modules, for any smooth R-representation W of

M(F).
We choose a resolution of N by free right H-modules

F1→ F0→ N→ 0.

We have a commutative diagram
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F1⊗H IndG(F)
P(F)(W ) //

ιF1
��

F0⊗H IndG(F)
P(F)(W ) //

ιF0
��

N⊗H IndG(F)
P(F)(W ) //

ιN

��

0

IndG(F)
P(F)(F1⊗H W ) // IndG(F)

P(F)(F0⊗H W ) // IndG(F)
P(F)(N⊗H W ) // 0,

where the lines are exact, the second one because IndG(F)
P(F) is an exact functor.

The functor IndG(F)
P(F) being compatible with direct sums, the maps ιF1 and ιF0 are

isomorphisms. It follows that ιN is an isomorphism. �

Remark 7.8. When π is an admissible smooth C-representation of G, then

HomG(F)
(
c-IndG(F)

K V, π
)

is finite-dimensional, and hence it is 0 or contains a simple H(G(F), K , V )-module.
An irreducible smooth C-representation π of G(F) such that

HomG(F)
(
c-IndG(F)

K V, π
)

contains a simple H(G(F), K , V )-module N has a central character. This follows
from:

1. The center of H(G(F), K , V ) acts on N by a character [Vigneras 2007].

2. π is a quotient of N⊗H(G(F),K ,V ) c-IndG(F)
K V .

Proof of Proposition 7.6. Put

HL ,V,π :=H
(
L(F), L0, VN ′(k)

)
⊗H(G(F),K ,V ),S′L ,G HomG(F)

(
c-IndG(F)

K V, π
)
,

and similarly define HM,V,π . From the transitivity S′M,G =S′M,L ◦S′L ,G , we deduce

HM,V,π =H
(
M(F),M0, VN (k)

)
⊗H(L(F),L0,VN ′(k)),S

′

M,L
HL ,V,π .

Hence HL ,V,π is not 0, because HM,V,π 6= 0. The space

HomG(F)
(
c-IndG(F)

K V, π
)

is finite-dimensional because π is admissible, and we have just seen that its lo-
calization at TL is not 0. Therefore TL has a nonzero eigenvalue α. The cor-
responding eigenspace is a nonzero H

(
G(F), K , V

)
-submodule, and hence con-

tains a simple right H
(
G(F), K , V

)
-submodule N, which we consider as a simple

H
(
L(F), L0, VN ′(k)

)
-module with TL acting by α. The irreducible representation

π is a quotient of

(23) N⊗H(G(F),K ,V ) c-IndG(F)
K V .
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As V is Q-regular, the representation (23) is isomorphic to

(24) N⊗H(L(F),L0,VN ′(k))
IndG(F)

Q(F)

(
c-IndL(F)

L0
VN ′(k)

)
by Theorem 4.6. By Lemma 7.7, this last representation is isomorphic to IndG(F)

Q(F) σ ,
where

(25) σ := N⊗H(L(F),L0,VN ′(k))
c-IndL(F)

L0
VN ′(k)

is a smooth representation of L(F). The center of L(F) embeds naturally in the
center of the Hecke algebra H

(
L(F), L0, VN ′(k)

)
and acts by a character on the

simple H
(
L(F), L0, VN ′(k)

)
-module N. Hence σ has a central character.

The admissible irreducible representation π is a quotient of IndG(F)
Q(F) σ , where σ

has a central character. By Proposition 7.9 below, π is a quotient of IndG(F)
Q(F) τ for

an admissible irreducible smooth C-representation τ of L(F). �

Proposition 7.9. Let π be an admissible irreducible smooth C-representation of
G(F) which is a quotient of IndG(F)

P(F) σ for a smooth C-representation σ of M(F)
with a central character. Then there exists an admissible irreducible smooth C-
representation τ of M(F) such that π is a quotient of IndG(F)

P(F) τ .

When the characteristic of F is 0, Herzig [2011, Lemma 9.9] proved this propo-
sition using the P-ordinary functor OrdP introduced by Emerton [2010]. His proof
contains four steps:

1. As σ is locally Z M -finite, we have

Hom
(
IndG(F)

P(F) σ, π
)
' HomM(F)(σ,OrdPπ).

2. As π is admissible, OrdPπ is admissible.

3. As OrdPπ is admissible and nonzero, it contains an admissible irreducible
subrepresentation τ .

4. As OrdP is the right adjoint of IndG(F)
P(F) in the category of admissible represen-

tations, π is a quotient of IndG(F)
P(F) τ .

The proof is valid without hypothesis on the characteristic of F : we checked
carefully that Emerton’s proof of steps 1, 2, 4 never uses the characteristic of F .
Only the proof of step 3 given by Herzig has to be replaced by a characteristic-free
proof.

Lemma 7.10. A nonzero admissible smooth C-representation of G(F) contains an
admissible irreducible subrepresentation.

Proof. Let π be a nonzero admissible smooth C-representation of G(F), and H an
open pro-p-subgroup of G(F). The dimension of πH is a positive integer. Choose
a subrepresentation π1 of π such that πH

1 has minimal positive dimension; then the
subrepresentation generated by πH

1 is irreducible. �
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This ends the proof Proposition 7.9, and hence of Proposition 7.6.
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