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In his paper “Beyond endoscopy,” Langlands tries to understand functorial-
ity via poles of L-functions. This paper further investigates the analytic con-
tinuation of an L-function associated to a GL2 automorphic form through
the trace formula. Though the usual way to obtain the analytic continua-
tion of an L-function is through its functional equation, this paper shows
that by simply assuming the trace formula, the functional equation of the
L-function may be recovered. This paper is a step towards understanding
the analytic continuation of the L-function at the same time as capturing
information about functoriality.

From the perspective of analytic number theory, obtaining the functional
equation from the trace formula implies that Voronoi summation should in
general be also a consequence of the trace formula.

1. Beyond endoscopy

Let AQ be the ring of adeles of Q, and π be an automorphic cuspidal representation
of GL2(AQ). We define m(π, ρ) to be the order of the pole at s = 1 of L(s, π, ρ),
where ρ is a representation of the dual group GL2(C).

Langlands proposes the study of

(1-1) lim
X→∞

∑
π

1
X

tr(π)( f )
∑
p≤X

log(p)a(p, π, ρ).

Here f is a nice test function on GL2(AQ), tr(π)( f ) is the trace of the operator
defined by f on π , and a(p, π, ρ) is the p-th Dirichlet coefficient of L(s, π, ρ).
The quantity

lim
X→∞

1
X

∑
p≤X

log(p)a(p, π, ρ)

is equal to m(π, ρ).
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Therefore, summing over the range of representations π will project only on to
the ones which have nontrivial multiplicity. The tool used to study this sum over the
spectrum of forms π is the trace formula. Ultimately, one gets from use of the trace
formula a sum over primes and conjugacy classes, and hopes by analytic number
theory techniques to take the limit. One hopes that after getting the limit, one can
decipher and construct the L-functions having nontrivial multiplicity of the pole at
s = 1. Sarnak [2001] addresses (1-1) for ρ = std, the standard representation. He
points out that such a computation can be done, but the tools used for the study
of sums of primes is limited, and this problem is perhaps more tractable if rather
studied over the sum of integers.

Sarnak’s idea then is to evaluate

(1-2) lim
X→∞

∑
π

1
X

tr(π)( f )
∑
n≤X

a(n, π, ρ).

This should “detect,” rather than the multiplicities of the poles, the residue of the
poles of the associated L-functions. As well, instead of using the Arthur–Selberg
trace formula, he uses the Petersson–Kuznetsov trace formula, which is a special
case of the relative trace formula [Knightly and Li 2006a]. One advantage of the
relative trace formula is that the spectrum contains only generic representations, so
we avoid the task of excising the trivial representation as in [Frenkel et al. 2010].
As well, the geometric side of the relative trace formula has a nice “streamlined”
appearance as a sum of Kloosterman sums. This is in comparison to the Arthur–
Selberg trace formula, which has orbital integrals associated to different conjugacy
classes for which the analysis of each class could be different.

The disadvantage to the relative trace formula is that each automorphic rep-
resentation π on the spectral side of the trace formula is weighted by a factor
L(1, π, ad)−1, which is the adjoint representation of π evaluated at s = 1. This
can perhaps make matching two different trace formulas more difficult. Another
disadvantage of using the relative trace formula is that the Arthur–Selberg trace
formula is in much better shape to generalize to other groups. Namely, one now
has full use of the stable trace formula due to the proof of the “fundamental lemma”
by Ngô [2010]. With the stable trace formula, one can compare stable conjugacy
classes for different groups (specifically endoscopic groups), from which one can
then compare automorphic representations for the respective groups.

However in our case of studying GL2, the disadvantages seem minimal, and
in fact the crucial exponential sums one encounters in either trace formula are
the same. Sarnak [2001] made some points on the essential differences of the
geometric sides of the two trace formulas. Also, in the case of GL2, the stable
trace formula is the same as the Arthur–Selberg trace formula, so one should not
expect an advantage of one trace formula over another.
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1.1. Sarnak’s analysis for ρ = std. The obvious first example to test Langlands’s
beyond endoscopy idea on is for the standard representation. In this case we do
not expect the L-functions to have any poles except for the continuous spectrum,
but in this case there are not any poles as the spectrum is not spectrally isolated.
So we expect in the case of ρ = std that

(1-3) lim
X→∞

∑
π

1
X

tr(π)( f )
∑
n≤X

a(n, π, std)= 0.

Sarnak uses the classic Petersson–Kuznetsov trace formula instead of using the
adelic language. To go from (1-3) to a classic approach, one can follow the great
expository article of Rogawski [1994] or the book of Knightly and Li [2006b].
Then for an automorphic form f with normalized Fourier coefficients an( f ) as-
sociated to a representation π , Sarnak [2001] showed, up to some weight factors
needed in the trace formula, that

(1-4)
∑
n≤X

∑
f

an( f )g(n/X)= O(X−A)

for any A > 0. Here X is a large fixed parameter and g ∈ C∞0 (R
+) is used for

“smoothing” the n-sum. Why is this smoothing needed? It is certainly not essential,
but when one goes to the geometric side of the trace formula to get the bound
(1-4), one requires freedom to apply analytic manipulations (interchanging sums,
Fourier transforms, and so on). With the smoothing function g, these problems
are removed and one can focus on the central issue of the arithmetic, which is
the true difficulty in these problems. One can recover the left hand side of (1-3)
by applying techniques in [Iwaniec 1984]. For completeness, we will reproduce
Sarnak’s argument in the appendix.

1.2. Results of the paper. Clearly (1-4) is a stronger result than (1-3), and up to
using Hecke operators, is equivalent to L(s, f )=

∑
∞

n=1 an( f )/ns having analytic
continuation to the complex plane. We see the analytic continuation of the left
hand side of (1-4) by Mellin inversion. By applying Mellin inversion to (1-4) we
get

(1-5) 1
X

∑
f

∑
n≤X

g(n/X)an( f )= 1
2π i

∫ σ+i∞

σ−i∞
G(s)

[∑
f

L(s, f )
]

X sds,

where G(s) =
∫
∞

0 g(x)x s−1dx is the Mellin transform with σ > 2 to ensure the
convergence of the integral. Using the right hand side of (1-4) we know that the
contour in (1-5) can be shifted (using decay properties of G(s)) to σ =−A, A> 0.
So in Sarnak’s application of the trace formula to get (1-4) we indirectly applied a
functional equation of the L-function for each automorphic form f in our spectral
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sum. Can we actually see directly the functional equation via manipulations on the
geometric side of the trace formula? In other words, can we show directly via the
trace formula that

1
2π i

∫ σ+i∞

σ−i∞
G(s)

[∑
f

L(s, f )
]

X sds

=
1

2π i

∫ σ+i∞

σ−i∞
G(s)

[∑
f

ikγ ( f, 1− s)L( f, 1− s)
γ ( f, s)

]
X sds?

We will prove this equality and get the functional equation for a fixed automorphic
form f in this note.

There are two other methods we mention that also get the analytic continuation
of an automorphic form on GLn; both use integral representations. The first method
is associated to Jacquet and Langlands [1970] (who followed Hecke [1918; 1920]),
and expresses the standard L-function as an adelic integral of an explicitly cho-
sen vector in the space of the associated automorphic representation. The second
method is of a certain integral representation constructed by Godement and Jacquet
[1972], which is inspired by Tate’s construction [1967] for GL1.

One can consider these two methods as easier ways to get the functional equa-
tion for a GL2 automorphic form, but in consideration of Langlands’s beyond
endoscopy idea, a trace formula approach seems the most systematic way to get
analytic continuation for all L-functions L(s, π, ρ) associated to a dual group rep-
resentation ρ of an automorphic representation π of a group G. For example,
currently there is no general procedure of using integral representations to get
the analytic continuation for the symmetric power L-functions. From the beyond
endoscopy perspective, asking for the analytic continuation is certainly a more
difficult question than investigating whether the L-function has a pole at s = 1 or
not. The question requires a deeper understanding of the geometric side of the
trace formula, and this paper is just the first step in that direction.

Voronoi summation. If one can always recover the functional equation from the
trace formula, then from the perspective of analytic number theory, the Voronoi
summation should be implied also from the trace formula. For example in [Kowal-
ski et al. 2000; 2002], an application of a trace formula and a Voronoi summation
are used to get results on subconvexity. Could one avoid Voronoi summation and
just apply the trace formula? In [Herman ≥ 2012a], we do just that to get subcon-
vexity for the Rankin–Selberg L-function in both levels by applying a double trace
formula instead of a Voronoi summation and a single trace formula.

1.3. Key steps in proof. As for the proof of the main theorem, one sees the role
of the sum over the Kloosterman sums on the geometric side of the trace formula
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interacting with the averaging coming from the Dirichlet series for the standard
L-function.

To see the functional equation of a GL2 L-function, the Dirichlet series sum
exchanges roles with the sum of Kloosterman sums. There are two important steps
in this switching of roles of parametrization. One is elementary reciprocity,

A
B
+

B
A
≡

1
AB

(1),

which allows one to invert the modulus of exponential sums. This simple reci-
procity seems to come up several times in these beyond endoscopy calculations (see
[Herman 2012; ≥ 2012b]). The second important tool is the integral representation∫

∞

0
exp(−αx)Jν(2β

√
x)Jν(2γ

√
x) dx = 1

α
Iν

(
2βγ
α

)
exp

(
−(β2

+ γ 2)

α

)
dx .

Given that Bessel functions are the archimedean version of Kloosterman sums, this
representation implies that a Fourier transform of a product of Kloosterman sums
is another Kloosterman sum times an exponential sum. It would be nice to see how
these two steps are generalized for higher rank or for a relative trace formula for
other groups.

2. Preliminaries

We recall the functional equation for a cusp form. Let D be a squarefree integer, χ
be a primitive Dirichlet character modulo D, and k ≥ 2, k ∈ 2Z. Let f ∈ Sk(D, χ),
where Sk(D, χ) is the space of holomorphic modular forms of weight k and level
D with nebentypus χ ; see [Iwaniec and Kowalski 2004]. In this case the space
Sk(D, χ) can be spanned by an orthonormal basis of primitive newforms which
we label Bk(D, χ). We note the Fourier coefficients cn( f )n(k−1)/2 of a form f in
Bk(D, χ) satisfy

cn( f )cl( f )=
∑

r |(n,l)

χ(r)c(nl)/r2( f )

for (nl, D)= 1, and also that |cD( f )| = 1.
Let L( f, s)=

∑
∞

n=1 cn( f )/ns , and define 3( f, s)= γ ( f, s)L( f, s), where

γ ( f, s)=
(√

D
2π

)s

0

(
s+ k−1

2

2

)
0

(
s+ k+1

2

2

)
.

The functional equation then says 3( f, s)= ik3( f, 1− s).
The trace formula we use is Petersson’s formula, which is a variant of the relative

trace formula [Knightly and Li 2006a]. This formula requires a normalization of
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the Fourier coefficients. For cn( f ) above, define

an( f ) :=

√
π−k0(k)
2k−1 cn( f ).

Petersson’s formula states

(2-1)
∑

f ∈Bk(D,χ)

an( f )al( f )= δn,l + 2π i−k
∞∑

c≡0(D)

Sχ (n, l, c)
c

Jk−1

(4π
√

nl
c

)
.

Here
Sχ (a, b, c)=

∑
x(c)∗

χ(x)
(ax+bx

c

)
,

where xx ≡ 1(c), e(x) := exp(2π i x) and Jt(x) is the J -Bessel function with
index t .

To relate the functional equation to the geometric side of the trace formula, we
need an equivalent version of the functional equation for a form f ∈ Bk(D, χ),
which is called Voronoi summation. The Voronoi summation needed is proved in
the appendix of [Kowalski et al. 2002], and states this:

Theorem 2.1. Let g ∈C∞0 (R
+) and f ∈ Bk(D, χ), then for integers a, c such that

(aD, c)= 1,

(2-2)
∑
n≥1

an( f )e
(an

c

)
g(n)

=
2π ikη( f )χ(−c)

c
√

D

∑
n≥1

an( fD)e
(
−naD

c

) ∫ ∞
0

g(x)Jk−1

(
4π
√

nx
√

Dc

)
dx,

where aa ≡ 1(c). Here η( f ) = τ(χ)/(aD( f )
√

D), with τ(χ) denoting the Gauss
sum associated to χ , and

an( fD)=

{
χ(n) an( f ) if (n, D)= 1,
an( f ) if n | D∞.

In our case, we only take a = c = 1. If so, the functional equation of the L-
function L( f, s) is equivalent to the Voronoi summation by using Mellin inversion
on the left hand side of (2-2), then applying the functional equation to L( f, s) and
using the integral representation

Jk−1(x)=
1

4π i

∫
(σ )

( x
2

)−s 0
(1

2

(
s+ k−1

2

))
0
(1

2

(
1− s

2
+

k−1
2

))ds

for 0< σ < 1, along with the duplication formula for the gamma function.
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3. Main theorem

The main theorem of the paper is:

Theorem 3.1. Let g ∈ C∞0 (R
+) satisfy |x j g( j)(x)| � (1+ | log x |). Then, for any

l ∈ N with (l, D)= 1, and assuming Petersson’s formula above, one gets

(3-1)
∑

f ∈Bk(D,χ)

al( f )
∑
n≥1

an( f )g(n)

=

∑
f ∈Bk(D,χ)

al( f )
[

2π ikη( f )
√

D

∑
n

an( fD)

∫
∞

0
g(x)Jk−1

(
4π
√

nx
√

D

)
dx
]
.

Using Hecke theory one gets:

Corollary 3.2. For a modular form f ∈ Bk(D, χ),

L( f, s)=
ikγ ( f, 1− s)L( f, 1− s)

γ ( f, s)
,

or,

3( f, s)=3( f, 1− s).

Proof of Theorem 3.1. Using Petersson’s trace formula on the left hand side of
(3-1) one gets

(3-2)
∑

n

g(n)
[
δn,l + 2π i−k

∞∑
c=1

Sχ (n, l, Dc)
Dc

Jk−1

(4π
√

nl
Dc

)]

= g(l)+ 2π i−k
∞∑

c=1

∑
n

g(n)
Sχ (n, l, Dc)

Dc
Jk−1

(4π
√

nl
Dc

)
.

We can interchange the c-sum and n-sum as the latter is compactly supported.
For now we will ignore the term g(l), and come back to it later. Opening up the

Kloosterman sum and gathering the n-sum together, we apply Poisson summation
on it in arithmetic progressions modulo c, getting

2π i−k
∞∑

c=1

1
(Dc)2

∑
x(Dc)∗

χ(x)e
( xl

Dc

)∑
m∈Z

∑
k(Dc)

e
( xk+mk

Dc

)
×

∫
∞

−∞

g(t)Jk−1

(4π
√

tl
Dc

)
e
(
−mt
Dc

)
dt.

Using

(3-3)
∑
a(c)

e
(ax

c

)
=

{
c if x ≡ 0(c),
0 else,
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one gets

(3-4) 2π i−k
∞∑

c=1

1
Dc

∑
m 6=0∈Z
(m,Dc)=1

χ(m) e
(
−lm
Dc

) ∫ ∞
−∞

g(t)Jk−1

(4π
√

tl
Dc

)
e
(
−mt
Dc

)
dt.

Note the m = 0 disappears.
Now the interesting part of the argument is that the c-sum and n-sum swap roles,

in that the c-sum will become part of the averaging coming from the L-function.
We use the elementary reciprocity

A
B
+

B
A
≡

1
AB

(1),

to get

(3-5) 2π i−k
∞∑

c=1

1
Dc

∑
m 6=0∈Z
(m,Dc)=1

χ(m)e
( lc

Dm

)
e
(
−l

m Dc

)
×

∫
∞

−∞

g(t)Jk−1

(4π
√

tl
Dc

)
e
(
−mt
Dc

)
dt.

Also, the terms m < 0 we write as −m,m ∈N, and exchange sign to the c-sum.
This can be clearly done everywhere except for in the J -Bessel function and the 1

c
term. Using the fact that Jk−1(−x)=−Jk−1(x), we can rewrite (3-5) as

(3-6) 2π i−k
∞∑

c 6=0,c∈Z

1
Dc

∑
m=1

(m,c)=1

χ(m)e
( lc

Dm

)
e
(
−l

m Dc

)
×

∫
∞

−∞

g(t)Jk−1

(4π
√

tl
Dc

)
e
(
−mt
Dc

)
dt.

The rearrangement of the m-sum is accomplished by using a standard integration
by parts argument in the t-integral and the estimate in the appendix of [Kowalski
et al. 2002],

|zk Jν(z)| �k,ν
1

(1+z)1/2

for <ν ≥ 0.
We also interchange the c-sum and m-sum. To justify the rearrangement, note

for c large, and by using the power series expansion, we have the estimate

Jk−1

(4π
√

tl
Dc

)
�

1
ck−1 .
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Therefore, for N sufficiently large, by estimating the exponentials and integral
trivially and noting that k ≥ 2, we get

(3-7)
∑
c>N

1
Dc

∑
m=1

(m,c)=1

χ(m)e
( lc

Dm

)
e
(
−l

m Dc

) ∫ ∞
−∞

g(t)Jk−1

(4π
√

tl
Dc

)
e
(
−mt
Dc

)
dt

� L(0, χ)
∑
c>N

1
ck <∞.

Clearly, the c-sum up to N is finite and is not a problem, and the sums can be
interchanged.

Now we need a integral representation from [Gradshteyn and Ryzhik 2000,
6.615],

(3-8)
∫
∞

0
exp(−αx)Jν(2β

√
x)Jν(2γ

√
x) dx = 1

α
Iν
(2βγ
α

)
exp

(
−(β2

+ γ 2)

α

)
for <ν >−1.

We rewrite (3-6) as

(2π i)(2π i−k)
∑

m

1
m

∑
c 6=0,c∈Z
(c,m)=1

χ(m)e
( lc

Dm

)

×

∫
∞

−∞

g(t)
[

m
2π i Dc

Jk−1

(4π
√

tl
Dc

)
e
(
−l

m Dc

)
e
(
−mt
Dc

)]
dt.

Note the term in brackets is equal to the right hand side of (3-8) times ik−1 for
α = 2π i Dc/m, β = 2π

√
l/m, and γ = 2π

√
t by using the fact that for k−1 odd,

Jk−1(z)= ik−1 Ik−1(−iy).
Using this integral representation, one has

(3-9) 4π2
∑

m

1
m

∑
c 6=0,c∈Z
(c,m)=1

χ(m)e
( lc

Dm

)

×

∫
∞

−∞

g(t)
[∫
∞

0
Jk−1

(4π
√

ly
m

)
Jk−1(4π

√
t y)e

(
−Dcy

m

)
dy
]

dt.

We make a change of variables y→ y/D to get

(3-10) 4π2
∑

m

1
Dm

∑
c 6=0,c∈Z
(c,m)=1

χ(m)e
( lc

Dm

)

×

∫
∞

−∞

g(t)
[∫
∞

0
Jk−1

(4π
√

l Dy
Dm

)
Jk−1

(
4π
√

t y
√

D

)
e
(
−cy
m

)
dy
]

dt.
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Using τ(χ)τ(χ)/D = 1, we get

(3-11) 4π2τ(χ)

D

∑
m=1

1
Dm

∑
c∈Z

χ(m)τ (χ)e
( lc

Dm

)
×

∫
∞

−∞

Jk−1

(4π
√

l Dy
Dm

)[∫ ∞
0

g(t)Jk−1

(
4π
√

t y
√

D

)
dt
]

e
(
−cy
m

)
dy.

Anticipating the use of the Chinese remainder theorem, we let c′ = Dc. So
(3-11) equals

(3-12)
4π2τ(χ)

D

∑
m=1

1
Dm

∑
c′∈Z,c′≡0(D)
c′ 6=0,(c′,m)=1

χ(m)τ (χ)e
( lc′/D

Dm

)

×

∫
∞

−∞

Jk−1

(4π
√

l Dy
Dm

)[∫ ∞
0

g(t)Jk−1

(
4π
√

t y
√

D

)
dt
]

e
(
−c′y
Dm

)
dy.

We focus on the arithmetic inside the c′-sum. We note, using (m, D) = 1 and
the Chinese remainder theorem, that

(3-13) χ(m)τ (χ)e
( lc′/D

Dm

)
=

[∑
a(D)

χ(a)e
(ma

D

)][ ∑
b(m)∗, bl≡ c′

D (m)

e
( b

m

)]

=

∑
x(Dm)

Dxl≡c′(Dm)

χ(x)e
( x

Dm

)
.

Using (3-3) again the above equals

∑
x(Dm)

Dxl≡c′(Dm)

χ(x)e
( x

Dm

)
=

1
Dm

∑
x(Dm)

χ(x)e
( x

Dm

) ∑
k(Dm)

e
(k(Dlx−c′)

Dm

)
.

Incorporating the above line and a rearrangement of the exponential sums, we
have

(3-14) 4π2τ(χ)

D

∑
m=1

1
(Dm)2

∑
c′∈Z

∑
x(Dm)

χ(x)e
( x

Dm

) ∑
k(Dm)

e
(k Dlx

Dm

)
×

∫
∞

0
Jk−1

(4π
√

l Dy
Dm

)[∫ ∞
0

g(t)Jk−1

(
4π
√

t y
√

D

)
dt
]

e
(
−c′(y+k)

Dm

)
dy.
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We note the c′-sum has the restriction c′ ≡ 0(D) removed by the k-sum. With a
change of variables y→ y− k, followed by y→ Dmy, we get

(3-15) 4π2τ(χ)

D

∑
m=1

1
Dm

∑
x(Dm)∗

χ(x)e
( x

Dm

) ∑
k(Dm)

e
(k Dlx

Dm

)
+

∑
c′∈Z

∫
∞

0
Jk−1

(4π
√

l D(Dmy−k)
Dm

)
×

[∫
∞

0
g(t)Jk−1

(
4π
√

t (Dmy− k)
√

D

)
dt
]

e(−c′y) dy.

The c′-sum now clearly came from a Poisson summation, namely,

(3-16)
∑
c′∈Z

∫
∞

0
Jk−1

(4π
√

l D(Dmy−k)
Dm

)
×

[∫
∞

0
g(t)Jk−1

(
4π
√

t (Dmy− k)
√

D

)
dt
]

e(−c′y) dy

=

∑
c∈Z

Jk−1

(4π
√

l D(Dmc′−k)
Dm

)
×

∫
∞

0
g(t)Jk−1

(
4π
√

t (Dmc− k)
√

D

)
dt.

In order to check that

F(w)= Jk−1

(
4π
√

l D(Dmw− k)
Dm

)∫
∞

0
g(t)Jk−1

(
4π
√

t (Dmw− k)
D

)
dt

satisfies the conditions for Poisson summation, we use the following lemma of
[Kowalski et al. 2002]:

Lemma 3.3. Let h(x) be a smooth function supported on [M, 2M] that satisfies
|x j h( j)(x)| � (1+ | log x |) for all i ≥ 0, x > 0. For ν complex and j ≥ 0 we have∫

∞

0
Jν(x)h(x) dx �ν, j

(1+| log M |)
M j−1

M<ν+ j+1

(1+M)<ν+ j+1/2 .

We apply this to the integral in F(w) with

h(t)= D2

16π2(Dmw−k)2
tg
( D2t2

16π2(Dmw−k)2
)
.

It is easy, but tedious, to check that the assumptions of the lemma are fulfilled by
using the assumption on g that |x j g( j)(x)|� (1+| log x |) (from the hypothesis of
Theorem 3.1). The lemma then gives F(w)�min(wk−1, 1/w j ) for any j > 0 for
w ∈ [0,∞). So certainly Poisson summation holds in this case.
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Defining Dmc− k =− j , (3-15) again by regrouping equals

4π2τ(χ)

D

∑
m=1

1
Dm

∑
j∈Z

∑
x(Dm)∗

χ(x)e
( x

Dm

)
e
( j Dlx

Dm

)
Jk−1

(4π
√

l j D
Dm

)
×

∫
∞

0
g(t)Jk−1

(
4π
√

t j
√

D

)
dt

=
4π2τ(χ)

D

∑
m=1

1
Dm

∑
j∈Z

χ( j)Sχ (Dl, j, Dm)Jk−1

(4π
√

l Dj
Dm

)
×

∫
∞

0
g(t)Jk−1

(
4π
√

t j
√

D

)
dt

=
4π2τ(χ)

D

∑
j∈Z

χ( j)
[ ∑

m≡0(D)

Sχ (Dl, j,m)
m

Jk−1

(
4π
√

Dl j
m

)]
×

∫
∞

0
g(t)Jk−1

(
4π
√

t j
√

D

)
dt.

Now recall we ignored g(l) from (3-2), so (3-1) equals

(3-17) g(l)+ 2π ikτ(χ)

D

∑
j

χ( j)
[

2π i−k
∑

m≡0(D)

Sχ (Dl, j,m)
m

Jk−1

(4π
√

Dl j
m

)]

×

∫
∞

0
g(t)Jk−1

(
4π
√

t j
√

D

)
dt.

The g(l) term is again the diagonal term for the geometric side of the trace
formula that comes from the term

(3-18)
∑

fD

al D( fD)al D( fD).

This is again using the fact that |aD( fD)| = 1.
Now as D is squarefree and χ is primitive, the space Bk(N , χ) is spanned by

newforms, which implies the Fourier coefficients are multiplicative in all the primes
(including the bad primes) and |cD( f )| = 1. So using Petersson’s formula again
we get

(3-19)
∑
f ∈Bk

al( f )
[

2π ikτ(χ)

DaD( f )

∑
j

χ( j)a j ( f )
∫
∞

0
g(x)Jk−1

(
4π
√

j x
√

D

)
dx
]

=

∑
f ∈Bk

al( f )
[

2π ikη( f )
√

D

∑
j

χ( j)a j ( f )
∫
∞

0
g(x)Jk−1

(
4π
√

j x
√

D

)
dx
]

=

∑
fD∈Bk

al( fD)

[
2π ikη( f )
√

D

∑
( j,D)=1

a j ( fD)

∫
∞

0
g(x)Jk−1

(
4π
√

j x
√

D

)
dx
]
.
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Note that to show the connection to Voronoi summation from Theorem 2.1, we
need also the coefficients a j ( fD) with ( j, D) > 1. We state a lemma:

Lemma 3.4. For (l, D)= 1,

(3-20)
∑

fD∈Bk

al( fD)

[
2π ikη( f )
√

D

∑
( j,D)>1

a j ( fD)

∫
∞

0
g(x)Jk−1

(
4π
√

j x
√

D

)
dx
]
= 0.

Assuming the lemma for now, we get that (3-19) equals

∑
fD∈Bk

al( fD)

[
2π ikη( f )
√

D

∞∑
j=1

a j ( fD)

∫
∞

0
g(x)Jk−1

(
4π
√

j x
√

D

)
dx
]
,

which proves Theorem 3.1. �

Proof of Lemma 3.4. First we write j = Dk j ′, ( j ′, D)= 1. Using the definition of
the coefficients fD(n) in Theorem 2.1, the left hand side of (3-20) equals

2π ik
√

D

∞∑
k=1

∑
( j,D)=1

χ( j)
∑
f ∈Bk

al Dk+1( f ) a j ( f )
∫
∞

0
g(x)Jk−1

(
4π
√

j Dk x
√

D

)
dx .

Fix a k, and following the same argument as we made previously, we apply Peters-
son’s formula to get

2π i−k
∑

j

χ( j)
∞∑

c=1

Sχ ( j, l Dk+1, Dc)
Dc

Jk−1

(4π
√

nl Dk+1

Dc

)
×

∫
∞

0
g(x)Jk−1

(
4π
√

j Dk x
√

D

)
dx .

That we can apply Petersson’s formula in this case follows from using the estimates
of Lemma 3.3. With a change of variable in the Kloosterman sum this equals

2π i−k
∑

j

∞∑
c=1

Sχ (1, jl Dk+1, Dc)
Dc

Jk−1

(4π
√

nl Dk+1

Dc

)
×

∫
∞

0
g(x)Jk−1

(
4π
√

j Dk x
√

D

)
dx .

Interchanging the j- and c-sums, justified by a similar Bessel function analysis
as above, we apply Poisson summation to the j-sum modulo Dc. The crucial
arithmetic sums, analogous to the ones in obtaining (3-4), are

(3-21)
∑

x(Dc)∗
χ(x)e

( x
Dc

) ∑
a(Dc)

e
( xaDk+1l

Dc

)
e
(
−am
Dc

)
,
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where m is the variable for Poisson summation. The inner sum is nonzero only
when Dk+1l ≡ mx(Dc). If (m, c) = 1, then it is easy to check (3-21) is zero.
As well if Dh

|m then Dh−1
|c as (xl, D) = 1 for h ≤ k + 1. So for a nonzero

contribution we must have Dk+1
|m and Dk

|c. Writing c= Dkc′ and m = Dk+1m′,
x must satisfy l ≡ m′x(c′). We can write these solutions as x ≡ m′l + c′b(Dc),
where b(Dk+1). So (3-21) equals

Dc
∑

b(Dk+1)

χ(m′l + c′b)e
(m′l+c′b

Dc

)
= e

(m′l
Dc

)
Dc

∑
b(Dk+1)

χ(m′l + c′b)e
( b

Dk+1

)
.

With a change of variables b→ cb, b→ b−m′l, the inner Gauss sum is∑
b(Dk+1)

χ(b)e
( c′b

Dk+1

)
= χ(c′)

∑
b(Dk+1)

χ(b)e
( b

Dk+1

)
.

This last Gauss sum is zero as χ is a primitive character modulo D and k+1≥ 2.
�

Remark. There is nothing special about the test function we used in the lemma,
and by a similar argument it is easy to show that for a “nice” test function V (x)
and k ≥ 2,

∞∑
j=1

χ( j)V ( j)
∑
f ∈Bk

aDk ( f )a j ( f )= 0.

4. Application of Hecke theory

Now to prove Corollary 3.2. One can rewrite Theorem 3.1 as

(4-1) 1
2π i

∫
(σ )

G(s)

[∑
f ∈Bk

al( f )
(

L( f, s)−
ikγ ( f, 1− s)L( f, 1− s)

γ ( f, s)

)]
ds = 0,

using that the Voronoi summation we take into consideration is equivalent to the
functional equation. Since (4-1) holds for any g in C∞0 (R

+), and in fact holds with
slightly more care for the transform of any Schwarz function, by completeness, it
must hold that∑

f ∈Bk

al( f )
(

L( f, s)−
ikγ ( f, 1− s)L( f, 1− s)

γ ( f, s)

)
= 0.

Fix a form f ◦ ∈ Bk . Now as l was arbitrary and the space of forms f ∈ Bk is
finite dimensional, using the relation

an( f )al( f )=
∑

r |(n,l)

χ(r)anl/r2( f )
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for (nl, D) = 1, one can build a polynomial in the Hecke coefficients, call it
F(aq1( f ), aq2( f ), . . . , aqN ( f )), such that

∑
f ∈Bk

F(aq1( f ), aq2( f ), . . . , aqN ( f ))
(

L( f, s)−
ikγ ( f, 1− s)L( f, 1− s)

γ ( f, s)

)
= 0,

where F equals 1 for f = f ◦, and equals 0 for f 6= f ◦, following [Herman 2010].
So we get a pointwise equality

L( f, s)−
ikγ ( f, 1− s)L( f, 1− s)

γ ( f, s)
= 0,

which proves the corollary. �

Appendix

We replicate Sarnak’s argument [2001] from his letter to Langlands. In order to do
so, we use the Kuznetsov trace formula for the entire GL2 spectrum. We refer to
[Herman 2011] for the details. Let H(D, χ) denote the GL2 spectrum with level
D and nebentypus χ .

Theorem A.1. Let g, V ∈ C∞0 (R
+) with |x j g( j)(x)| � (1+ | log x |), X a large

fixed real number, and D and χ as above. Then for any integer A > 0,

(A-1)
∑
n≤X

∑
f ∈H(D,χ)

h(t f , V )al( f )an( f )g(n/X)= O(X−A).

Proof. We apply the Kuznetsov trace formula and Poisson summation, similarly
as we did in obtaining (3-4) for just the holomorphic forms, to get

(A-2)
∞∑

c=1

1
Dc

∑
m 6=0∈Z
(m,Dc)=1

χ(m)e
(
−lm
Dc

)∫
∞

−∞

g
(

t
X

)
V
(

4π
√

tl
Dc

)
e
(
−mt
Dc

)
dt.

Essentially, the argument only depends on showing the integral is bounded by
O(X−A). Note that as V and g are compactly supported, the c-sum is restricted to
size a

√
X ≤ c ≤ b

√
X , for some absolute constants a, b ∈ R+, notated c ∼

√
X .

Note that g(k)(Dct/X)� 1/X k/2 and V (h)(4π
√

tl/
√

Dc)� 1/Xh/2 for h, k ≥ 0.
Also the size of the integral is X/c ∼

√
X . Using these estimates and integrating

by parts j-times, after a change of variables t→ Dct , it easy to check that

(A-3) Dc
∫
∞

−∞

g
(

Dct
X

)
V
(

4π
√

tl
√

Dc

)
e(−mt) dt�

Dc

(
√

X) j−1m j
�

1

(
√

X) j−2m j
.
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So including the c- and m-sums we have

�
1

(
√

X) j−2

∑
c∼
√

X

∑
m

1
m j �

1

(
√

X) j−3
.

Obviously, this implies the theorem by taking ( j − 3/2) > A. �
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