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We interpret the “occult” period maps of Allcock, Carlson, and Toledo
(2002; 2011), of Looijenga and Swierstra (2007; 2008), and of Kondō (2000;
2002) in moduli theoretic terms, as a construction of certain families of po-
larized abelian varieties of Picard type. We show that these period maps are
morphisms defined over their natural field of definition.

1. Introduction

In papers of Allcock, Carlson, and Toledo [Allcock et al. 2002; 2011], of Looijenga
and Swierstra [2007; 2008], and of Kondō [2000; 2002], “hidden” period maps are
constructed in certain cases. The target spaces of these maps are certain arithmetic
quotients of complex unit balls. The basic observation which is the starting point
of this paper is that these arithmetic quotients can be interpreted as the complex
points of certain moduli spaces of abelian varieties of Picard type, of the kind
considered in [Kudla and Rapoport 2009]. Consequently, the purpose in this paper
is to interpret these hidden period maps in moduli-theoretic terms. The payoff of
this exercise is that we can raise and partially answer some descent problems which
seem natural from our viewpoint, and which are related to a similar descent problem
addressed by Deligne [1972] in his theory of complete intersections of Hodge level
one.

Why do we speak of “hidden” or “occult” period maps in this context? This is
done in order to make the distinction with the usual period maps which associate
to a family of smooth projective complex varieties (over some base scheme S) the
(polarized) Hodge structures of its fibers, which then induces a map from S to a
quotient by a discrete group of a period domain. Let us recall three examples of
classical period maps:

(1) Case of quartic surfaces. In this case, the period map is a holomorphic map
of orbifolds

ϕ : Quartics◦2,C→
[
0\V (2, 19)

]
.
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Here Quartics◦2,C denotes the stack parametrizing smooth quartic surfaces up to
projective equivalence,

Quartics◦2,C =
[
PGL4\PSym4(C4)◦

]
(stack quotient in the orbifold sense). The target space is the orbifold quotient of
the space of oriented positive 2-planes in a quadratic space V of signature (2, 19)
by the automorphism group 0 of a lattice in V .

(2) Case of cubic threefolds. In this case, the period map is a holomorphic map of
orbifolds

ϕ : Cubics◦3,C→
[
0\H5

]
.

Here Cubics◦3,C denotes the stack parametrizing smooth cubic threefolds up to
projective equivalence. The target space is the orbifold quotient of the Siegel upper
half-space of genus 5 by the Siegel group 0 = Sp5(Z).

(3) Case of cubic fourfolds. In this case, the period map is a holomorphic map of
orbifolds

ϕ : Cubics◦4,C→
[
0\V (2, 20)

]
.

Here Cubics◦4,C denotes the stack parametrizing smooth cubic fourfolds up to
projective equivalence. The target space is the orbifold quotient of the space
of oriented positive 2-planes in a quadratic space V of signature (2, 20) by the
automorphism group 0 of a lattice in V .

In the first case, by the Torelli theorem of Piatetski-Shapiro and Shafarevich, the
induced map |ϕ| on coarse moduli spaces is an open embedding. In the second case,
by the Torelli theorem of Clemens and Griffiths, the map |ϕ| is a locally closed
embedding (it is not an open embedding since the source of ϕ has dimension 10,
and the target has dimension 15). In the third case, by the Torelli theorem of Voisin,
the map |ϕ| is an open embedding.

The construction of the occult period maps is quite different, although it does
use the classical period maps indirectly. For instance, the construction of Allcock,
Carlson, and Toledo attaches a certain Hodge structure to any smooth cubic surface
which allows one to distinguish between nonisomorphic ones, even though the
natural Hodge structures on the cohomology in the middle dimension of all cubic
surfaces are isomorphic. Also, in one dimension higher, their construction allows
them to define an open embedding of the space of cubic threefolds into an arithmetic
quotient of the complex unit ball of dimension 10.

Our second aim in this paper is to identify the complements of the images of
occult period maps with special divisors considered in [Kudla and Rapoport 2009].

The layout of the paper is as follows. In Sections 2, 3 and 4, we recall some of
the theory and notation of [Kudla and Rapoport 2009]. In Sections 5, 6, 7 and 8,
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respectively, we explain in turn the cases of cubic surfaces, cubic threefolds, curves
of genus 3, and curves of genus 4. In Section 9, we explain the descent problem and
solve it in zero characteristic. In the final section, we make a few supplementary
remarks.

We stress that the proofs of our statements are all contained in the papers men-
tioned above, and that our work only consists in interpreting these results.

2. Moduli spaces of Picard type

Let k = Q(
√
1) be an imaginary-quadratic field with discriminant 1, ring of

integers Ok, and a fixed complex embedding. We write a 7→ aσ for the nontrivial
automorphism of Ok.

For integers n ≥ 1 and r , 0≤ r ≤ n, we consider the groupoid M=M(n−r, r)=
M(k; n − r, r) fibered over (Sch/Ok) which associates to an Ok-scheme S the
groupoid of triples (A, ι, λ). Here A is an abelian scheme over S, λ is a principal
polarization, and ι : Ok→ End(A) is a homomorphism such that

ι(a)∗ = ι(aσ ),

for the Rosati involution ∗ corresponding to λ. In addition, the following signature
condition is imposed:

(2-1) char
(
T, ι(a) | Lie A

)
= (T − i(a))n−r

· (T − i(aσ ))r , for all a ∈ Ok,

where i : Ok→ OS is the structure map.
We will mostly consider the complex fiber MC = M×Spec Ok Spec C of M. In

any case, M is a Deligne–Mumford stack and MC is smooth. We denote by |MC|

the coarse moduli scheme.
We will also have to consider the following variant, defined by modifying the

requirement above that the polarization λ be principal. Let d > 1 be a square-
free divisor of |1|. Then M(k, d; n− r, r)∗ =M(k; n− r, r)∗ parametrizes triples
(A, ι, λ) as in the case of M(k; n − r, r), except that we impose the following
condition on λ. We require first of all that ker λ ⊂ A[d], so that Ok/(d) acts on
ker λ. In addition, we require that this action factor through the quotient ring∏

p|d Fp of Ok/(d), and that λ be of degree dn−1 if n is odd and of degree dn−2 if
n is even. In the notation introduced in Section 13 of [Kudla and Rapoport 2009],
we have M(k, d; n−r, r)∗ =M(k, t; n−r, r)∗,naive, where the function t on the set
of primes p with p |1 assigns to p the integer 2[(n−1)/2] if p |d, and 0 if p -d.
Note that if k is the Gaussian field k=Q(

√
−1), then necessarily d = 2; if k is the

Eisenstein field k =Q(
√
−3), then d = 3. We denote by |M∗

C
| the corresponding

coarse moduli scheme.
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3. Complex uniformization

Let us recall from [Kudla and Rapoport 2009] the complex uniformization of
M(k; n−1, 1)(C) in the special case that k has class number one. For n > 2, let
(V, ( , )) be a hermitian vector space over k of signature (n−1, 1) which contains
a self-dual Ok-lattice L . By the class number hypothesis, V is unique up to
isomorphism. When n is odd, or when n is even and 1 is odd, the lattice L is also
unique up to isomorphism. We assume that one of these conditions is satisfied. Let
D be the space of negative lines in the C-vector space (VR, I0), where the complex
structure I0 is defined in terms of the discriminant of k, as I0 =

√
1/|
√
1|. Let 0

be the isometry group of L . Then the complex uniformization is the isomorphism
of orbifolds,

M(k; n−1, 1)(C)' [0\D].

There is an obvious ∗-variant of this uniformization, which gives

M(k; n−1, 1)∗(C)' [0∗\D],

where 0∗ is the automorphism group of the (parahoric) lattice L∗ corresponding to
the ∗-moduli problem. The lattice L∗ is uniquely determined up to isomorphism
by the condition that there is a chain of inclusions of Ok-lattices L∗ ⊂ (L∗)∨ ⊂
(
√

d)−1L∗, with quotient (L∗)∨/L∗ of dimension n−1 if n is odd and n− 2 if n is
even, when localized at any prime ideal p dividing d . Here, for an Ok-lattice M in
V , we write

M∨ = {x ∈ V | h(x, L)⊂ Ok}

for the dual lattice.

4. Special cycles (KM-cycles)

We continue to assume that the class number of k is one, and recall from [Kudla and
Rapoport 2009] the definition of special cycles over C. Let (E, ι0) be an elliptic
curve with CM by Ok over C, which we fix in what follows. Note that, due to
our class number hypothesis, (E, ι0) is unique up to isomorphism. We denote its
canonical principal polarization by λ0. For any connected C-scheme S and any
(A, ι, λ) ∈M(k; n−1, 1)(S), let

V ′(A, E)= HomOk(ES, A),

where ES = E ×C S is the constant elliptic scheme over S defined by E . Then
V ′(A, E) is a projective Ok-module of finite rank with a positive definite Ok-valued
hermitian form given by

h′(x, y)= λ−1
0 ◦ y∨ ◦ λ ◦ x ∈ EndOk(ES)= Ok.
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For a positive integer t , we define the DM-stack1 Z(t) by

Z(t)(S)=
{
(A, ι, λ; x) | (A, ι, λ)∈M(k; n−1, 1)(S), x ∈V ′(A, E), h′(x, x)= t

}
.

Then Z(t) maps by a finite unramified morphism to M(k; n−1, 1)C, and its image
is a divisor in the sense that, locally for the étale topology, it is defined by a nonzero
equation.

The cycles Z(t) also admit a complex uniformization. More precisely, under the
assumption of the triviality of the class group of k, we have

Z(t)(C)'
[
0
∖( ∐

x∈L
h(x,x)=t

Dx

)]
,

where Dx is the set of lines in D which are perpendicular to x .
Again, there is a ∗-variant of these definitions and a corresponding DM-stack

Z(t)∗ above M(k; n−1, 1)∗.

5. Cubic surfaces

In this paper we consider four occult period mappings. We start with the case of
cubic surfaces, following [Allcock et al. 2002]; compare [Beauville 2009]. As
explained in the introduction, in these sources, the results are formulated in terms of
arithmetic ball quotients; here we use the complex uniformization of the previous
two sections to express these results in terms of moduli spaces of Picard type.

Let S ⊂ P3 be a smooth cubic surface. Let V be a cyclic covering of degree 3 of
P3, ramified along S. Explicitly, if S is defined by the homogeneous equation of
degree 3 in 4 variables

F(X0, . . . , X3)= 0,

then V is defined by the homogeneous equation of degree 3 in 5 variables,

X3
4 − F(X0, . . . , X3)= 0.

Let k = Q(ω), ω = e2π i/3. Then the obvious µ3-action on V determines an
action of Ok = Z[ω] on H 3(V,Z). For the (alternating) cup product pairing 〈 , 〉,

〈ωx, ωy〉 = 〈x, y〉,

which implies that

〈ax, y〉 = 〈x, aσ y〉, for all a ∈ Ok.

1This notation differs from that in [Kudla and Rapoport 2009], in that here the special cycles are
defined over C, and are considered as lying over M(k; n−1, 1)C.
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Hence there is a unique Ok-valued hermitian form h on H 3(V,Z) such that

(5-1) 〈x, y〉 = tr
( 1
√
1

h(x, y)
)
,

where the discriminant 1 of k is equal to −3 in the case at hand. Explicitly,

(5-2) h(x, y)= 1
2

(
〈
√
1x, y〉+ 〈x, y〉

√
1
)
.

Furthermore, an Ok-lattice is self-dual with respect to 〈 , 〉 if and only if it is
self-dual with respect to h( , ).

Fact. H 3(V,Z) is a self-dual hermitian Ok-module of signature (4, 1).

As noted above, such a lattice is unique up to isomorphism.
Let

A = A(V )= H 3(V,Z)\H 3(V,C)/H 2,1(V )

be the intermediate Jacobian of V . Then A is an abelian variety of dimension
5 which is principally polarized by the intersection form. Since the association
V 7→ (A(V ), λ) is functorial, we obtain an action ι of Ok on A(V ).

Theorem 5.1. (i) The object (A, ι, λ) lies in M(k; 4, 1)(C).

(ii) This construction is functorial and compatible with families, and defines a
morphism of DM-stacks,

ϕ : Cubics◦2,C→M(k; 4, 1)C.

Here Cubics◦2,C denotes the stack parametrizing smooth cubic surfaces up to
projective equivalence,

Cubics◦2,C = [PGL4\PSym3(C4)◦]

(stack quotient in the orbifold sense).

(iii) The induced morphism on coarse moduli spaces

|ϕ| : |Cubics◦2,C| → |M(k; 4, 1)C|

is an open embedding. Its image is the complement of the image of the KM-
cycle Z(1) in |M(k; 4, 1)C|.

Proof. We only comment on the assertions in (ii) and (iii). In (ii), the compatibility
with families is always true of Griffiths’ intermediate jacobians (which however are
abelian varieties only when the Hodge structure is of type (m+1,m)+ (m,m+1)).
This constructs ϕ as a complex-analytic morphism. The algebraicity of ϕ then
follows from Borel’s theorem [1972] that any analytic family of abelian varieties over
a C-scheme is automatically algebraic. The fact that the image is contained in the
complement of Z(1) is true because, by the Clemens–Griffiths theory, intermediate
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Jacobians of cubic threefolds are simple as polarized abelian varieties, whereas over
Z(1), the polarized abelian varieties split off an elliptic curve. However, the fact
that Z(1) makes up the whole complement is surprising and results from the fact
that the morphism ϕ extends to an isomorphism from a partial compactification
|Cubicss

2,C| of |Cubics◦2,C| (obtained by adding stable cubics) to |M(k; 4, 1)C|, such
that the complement of |Cubics◦2,C| in |Cubicss

2,C| is an irreducible divisor; see
[Beauville 2009, Propositions 6.7 and 8.2]. �

Remark 5.2. Let us comment on the stacks aspect of Theorem 5.1. Any automor-
phism of S is induced by an automorphism of P3, which in turn induces an automor-
phism of V . We therefore obtain a homomorphism Aut(S)→Aut(A(V ), ι, λ). The
statement of [Allcock et al. 2002, Theorem 2.20] implies that this homomorphism
induces an isomorphism

(5-3) Aut(S)
∼
−→ Aut(A(V ), ι, λ)/O×k ,

where the units O×k ' µ6 act via ι on A(V ). Indeed, in [Allcock et al. 2002] it
is asserted that ϕ is an open immersion of orbifolds Cubics◦2,C→ [P0\D], where
P0 = 0/O×k ; however, we were not able to follow the argument. Note that the
orbifold [P0\D] is different from [0\D], which occurs in Section 3.

6. Cubic threefolds

Our next example concerns cubic threefolds, following Allcock et al. [2011] and
Looijenga and Swierstra [2007].

Let T ⊂ P4 be a cubic threefold. Let V be the cyclic covering of degree 3 of P4,
ramified in T . Then V is a cubic hypersurface in P5 and we define the primitive
cohomology as

(6-1) L = H 4
0 (V,Z)= {x ∈ H 4(V,Z) | (x, ρ)= 0},

where ρ is the square of the hyperplane section class. Note that rkZL=22. Again, let
k=Q(ω), with ω= e2π i/3, so that L becomes an Ok-module. Now the cup product
( , ) on H 4(V,Z) is a perfect symmetric pairing satisfying (ax, y)= (x, aσ y) for
a ∈ Ok. It induces on L a symmetric bilinear form ( , ) of discriminant 3. We wish
to define an alternating pairing 〈 , 〉 on L satisfying 〈ax, y〉 = 〈x, aσ y〉 for a ∈ Ok.
We do this by giving the associated Ok-valued hermitian pairing h( , ), in the sense
of (5-1), defined by

(6-2) h(x, y)= 3
2

(
(x, y)+ (x,

√
1y) 1
√
1

)
.

Here the factor 3
2 is used instead of 1

2 to have better integrality properties. Set
π =
√
1.
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Fact. For the pairing (6-2), L∨ contains π−1L with L∨/π−1L ' Z/3Z.

For this result, see [Allcock et al. 2011, Theorem 2.6 and its proof], as well as
[Looijenga and Swierstra 2007, the passage below (2.1)].

Now consider the eigenspace decomposition of H 4
0 (V,C) under k⊗C= C⊕C.

Fact. The Hodge structure of H 4
0 (V,R) is of type

H 4
0 (V,C)= H 3,1

⊕ H 2,2
0 ⊕ H 1,3,

with dim H 3,1
= dim H 1,3

= 1. Furthermore, the only nontrivial eigenspaces of the
generator ω of µ3 are

H 4
0 (V,C)ω = H 3,1

⊕ (H 2,2
0 )ω, with dim(H 2,2

0 )ω = 10,

H 4
0 (V,C)ω = (H

2,2
0 )ω⊕ H 1,3, with dim(H 2,2

0 )ω = 10.

(See [Allcock et al. 2011, §2] and [Looijenga and Swierstra 2007, §4], respectively.)

Now set 3= πL∨. Then we have the chain of inclusions of Ok-lattices

3⊂3∨ ⊂ π−13,

where the quotient 3∨/3 is isomorphic to (Z/3Z)10, and where π−13/3∨ is
isomorphic to Z/3Z. Let

A =3\H 4
0 (V,C)/H−,

where
H− = H 3,1

⊕ (H 2,2
0 )ω.

Note that the map 3→ H 4
0 (V,C)/H− is an Ok-linear injection; hence A is a

complex torus. In fact, the hermitian form h and its associated alternating form
〈 , 〉 define a polarization λ on A. Hence A is an abelian variety of dimension 11,
with an action of Ok and a polarization of degree 310. In fact, we obtain in this
way an object (A, ι, λ) of M(k; 10, 1)∗(C) (see Section 2 for the definition of the
∗-variants of our moduli stacks).

Theorem 6.1. (i) The construction which associates to a smooth cubic T in P4 the
object (A, ι, λ) of M(k; 10, 1)∗(C) is functorial and compatible with families,
and defines a morphism of DM-stacks

ϕ : Cubics◦3,C→M(k; 10, 1)∗C.

(ii) The induced morphism on coarse moduli spaces

|ϕ| : |Cubics◦3,C | → |M(k; 10, 1)∗C|

is an open embedding. Its image is the complement of the image of the KM-
cycle Z(3)∗ in |M(k; 10, 1)∗

C
|.
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Proof. The compatibility with families is due to the fact that the eigenspaces for
the µ3-action and the Hodge filtration both vary in a holomorphic way. Point (ii)
follows from [Allcock et al. 2011, Theorem 1.1] or [Looijenga and Swierstra 2007,
Theorem 3.1]. �

Remark 6.2. The stack aspect is not treated in these sources. However, it seems
reasonable to conjecture that the analogue of (5-3) is also true in this case, that is,
that there is an isomorphism

(6-3) Aut(T )
∼
−→ Aut(A, ι, λ)/O×k ,

where (A, ι, λ) is the object of M(k; 10, 1)∗
C

attached to T .

Remark 6.3. The construction of the rational Hodge structure H 1(A,Q) from
H 4

0 (V,Q) is a very special case of a general construction due to van Geemen [2001].
More precisely, it arises (up to Tate twist) as the inverse half-twist in the sense of
[van Geemen 2001] of the Hodge structure H 4

0 (V,Q) with complex multiplication
by k. The half-twist construction attaches to a rational Hodge structure V of weight
w with complex multiplication by a CM-field k a rational Hodge structure of weight
w+ 1. More precisely, if 6 is a fixed half-system of complex embeddings of k,
then van Geemen defines a new Hodge structure on V by setting

V r,s
new = V r−1,s

6 ⊕ V r,s−1
6

,

where V6 (resp. V6) denotes the sum of the eigenspaces for the k-action corre-
sponding to the complex embeddings in 6 (resp. in 6).

7. Curves of genus 3

Our third example concerns the moduli space of curves of genus 3 following Kondō
[2000].

Let C be a non-hyperelliptic smooth projective curve of genus 3. The canonical
system embeds C as a quartic curve in P2. Let X (C) be the µ4-covering of P2

ramified in C . Then the quartic X (C)⊂ P3 is a K3-surface with an automorphism
τ of order 4 and hence an action of µ4. Let

L = {x ∈ H 2(X (C),Z) | τ 2(x)=−x}.

Let k =Q(i) be the Gaussian field.

Fact. L is a free Z-module of rank 14. The restriction ( , ) of the symmetric cup
product pairing to L has discriminant 28; more precisely, for the dual lattice L∗ for
the symmetric pairing,

L∗/L ∼= (Z/2)8.

(See [Kondō 2000, top of p. 222].)
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Now consider the eigenspace decomposition of LC= L⊗C under k⊗C=C⊕C,
where i ⊗ 1 acts via τ .

Fact. The induced Hodge structure on LC is of type

LC = L2,0
⊕ L1,1

⊕ L0,2,

with dim L2,0
= dim L0,2

= 1. Furthermore, the only nontrivial eigenspaces of τ
are

(LC)i = L2,0
⊕ (L1,1)i , with dim(L1,1)i = 6,

(LC)−i = (L1,1)−i ⊕ L0,2, with dim(L1,1)−i = 6.

We define an Ok-valued hermitian pairing h on LQ by setting

(7-1) h(x, y)= (x, y)+ (x, τ y)i.

Then it is easy to see that the dual lattice L∨ of L for the hermitian form h is the
same as the dual lattice L∗ for the symmetric form.

Now set 3= πL∨, where π = 1+ i . Then we obtain a chain of inclusions of
Ok-lattices

3⊂3∨ ⊂ π−13,

where the quotient 3∨/3 is isomorphic to (Z/2Z)6, and where π−13/3∨ is
isomorphic to Z/2Z.

Let
A =3\LC/L−,

where
L− = L2,0

⊕ (L1,1)−i .

Note that the map 3→ LC/L− is an Ok-linear injection; hence A is a complex
torus. In fact, the hermitian form h and its associated alternating form 〈 , 〉 define a
polarization λ on A. Hence A is an abelian variety of dimension 7, with an action
of Ok and a polarization of degree 26. In fact, we obtain in this way an object
(A, ι, λ) of M(k; 6, 1)∗(C). Now [Kondō 2000, Theorem 2.5] implies the following
theorem.

Theorem 7.1. (i) The construction which associates to a non-hyperelliptic curve
of genus 3 the object (A, ι, λ) of M(k; 6, 1)∗(C) is functorial and compatible with
families, and defines a morphism of DM-stacks

ϕ : N◦3,C→M(k; 6, 1)∗C.

Here N◦3,C denotes the stack of smooth non-hyperelliptic curves of genus 3, that is,
of smooth non-hyperelliptic quartics in P2 up to projective equivalence.
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(ii) The induced morphism on coarse moduli schemes |ϕ| : |N◦3,C| → |M(k; 6, 1)∗
C
|

is an open embedding. Its image is the complement of the image of the KM-cycle
Z(2)∗ in |M(k; 6, 1)∗

C
|. �

Remark 7.2. Again, the stack aspect is not treated in [Kondō 2000]. It seems
reasonable to conjecture that the analogue of (5-3) is also true in this case, that is,
that there is an isomorphism

(7-2) Aut(C)
∼
−→ Aut(A, ι, λ)/O×k ,

where (A, ι, λ) is the object of M(k; 6, 1)∗
C

attached to C , and where O×k = µ4.

8. Curves of genus 4

Our final example concerns the moduli space of curves of genus 4 and is also due
to Kondō [2002].

Let C be a non-hyperelliptic curve of genus 4. The canonical system embeds C
into P3. More precisely, C is the intersection of a smooth cubic surface S and a
quartic Q which is either smooth or a quadratic cone. Furthermore, Q is uniquely
determined by C . Let X be a cyclic cover of degree 3 over Q branched along C
(if Q is singular, we take the minimal resolution of the singularities; see [Kondō
2002]). Then X is a K3-surface with an action of µ3. Let

L = (H 2(X,Z)µ3)⊥

be the orthogonal complement of the invariants of this action in H 2(X,Z), equipped
with the symmetric form ( , ) obtained by restriction.

Fact. L is a free Z-module of rank 20, with dual L∗ for the symmetric form satisfy-
ing

L∗/L ' (Z/3Z)2.

(See [Kondō 2002, top of p. 386].)

For k =Q(ω), ω = e2π i/3, we again define an alternating form 〈 , 〉 through its
associated Ok-valued hermitian form h. Using the action of Ok on L , we set

(8-1) h(x, y)= 3
2

(
(x, y)+ (x,

√
1y) 1
√
1

)
.

Set π =
√
1.

Fact. For the hermitian pairing (8-1), L∨ is an over-lattice of π−1L with

L∨/π−1L ' (Z/3Z)2.

Now consider the eigenspace decomposition of L ⊗C under k⊗C= C⊕C.
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Fact. The induced Hodge structure on LC is of type

LC = L2,0
⊕ L1,1

⊕ L0,2,

with dim L2,0
= dim L0,2

= 1. Furthermore, the only nontrivial eigenspaces of µ3

are
(LC)ω = L2,0

⊕ (L1,1)ω, with dim(L1,1)ω = 9,

(LC)ω = (L1,1)ω⊕ L0,2, with dim(L1,1)ω = 9.

Now set 3= πL∨. Then we have the chain of inclusions of Ok-lattices

3⊂3∨ ⊂ π−13,

where the quotient 3∨/3 is isomorphic to (Z/3Z)8, and where π−13/3∨ is
isomorphic to (Z/3Z)2.

Let
A =3\LC/L−,

where
L− = L2,0

⊕ (L1,1)ω.

Then the map 3→ LC/L− is an Ok-linear injection; hence A is a complex
torus. In fact, the hermitian form h and its associated alternating form 〈 , 〉 define a
polarization λ on A. Hence A is an abelian variety of dimension 10, with an action
of Ok and a polarization of degree 38. In fact, we obtain in this way an object
(A, ι, λ) of M(k; 9, 1)∗(C).

Theorem 8.1. (i) The construction which associates to a non-hyperelliptic curve
of genus 4 the object (A, ι, λ) of M(k; 9, 1)∗(C) is functorial and compatible with
families, and defines a morphism of DM-stacks

ϕ : N◦4,C→M(k; 9, 1)∗C.

Here N◦4,C denotes the stack of smooth non-hyperelliptic curves of genus 4.

(ii) The induced morphism on coarse moduli schemes |ϕ| : |N◦4,C| → |M(k; 9, 1)∗
C
|

is an open embedding. Its image is the complement of the image of the KM-cycle
Z(2)∗ in |M(k; 9, 1)∗

C
|. �

Remark 8.2. Again, the stack aspect is not treated in [Kondō 2002]. It seems
reasonable to conjecture that the analogue of (5-3) is also true in this case, that is,
that there is an isomorphism

(8-2) Aut(C)
∼
−→ Aut(A, ι, λ)/O×k ,

where (A, ι, λ) is the object of M(k; 9, 1)∗
C

attached to C , and where O×k = µ6.



ON OCCULT PERIOD MAPS 577

9. Descent

In all four cases discussed above, we obtain morphisms over C between DM-stacks
defined over k. These morphisms are constructed using transcendental methods.
In this section we will show that these morphisms are in fact defined over k. The
argument is modeled on Deligne’s solution [1972] of the analogous problem for
complete intersections of Hodge level one, where he shows that the corresponding
family of intermediate jacobians is an abelian scheme over the moduli scheme over
Q of complete intersections of given multidegree.

In our discussion below, to simplify notations, we will deal with the case of cubic
threefolds, as explained in Section 6; the other cases are completely analogous.
Below we will shorten the notation Cubics◦3 to C, and consider this as a DM-
stack over Spec k. Let v : V → C be the universal family of cubic threefolds,
and let a : A→ CC be the polarized family of abelian varieties constructed from
V in Section 6. Hence A is the pullback of the universal abelian scheme over
M(k; 10, 1)∗

C
under the morphism ϕ : CC→M(k; 10, 1)∗

C
.

Lemma 9.1. Let b : B→ CC be a polarized abelian scheme with Ok-action, which
is the pullback under a morphism ψ : CC→M(k; 10, 1)∗

C
of the universal abelian

scheme, and such that there exists ` and an Ok-linear isomorphism of lisse `-adic
sheaves on CC,

α` : R1a∗Z` ' R1b∗Z`,

compatible with the Riemann forms on source and target. Then there exists a unique
isomorphism α : A→ B that induces α`. This isomorphism is compatible with
polarizations.

To prove this, we are going to use the following lemma. In it, we denote by 3
the hermitian Ok-module H 1(As,Z), for s ∈ CC a fixed base point. Recall from
Section 6 that there is a chain of inclusions 3⊂3∨ ⊂ π−13, where π =

√
−3 is

a generator of the unique prime ideal of Ok dividing 3.

Lemma 9.2. Let s ∈ CC be the chosen base point.

(i) The monodromy representation ρA : π1(CC, s)→GLk(3⊗Ok k) is absolutely
irreducible.

(ii) For every prime ideal p prime to 3, the monodromy representation

π1(CC, s)→ GLκ(p)(3/p3)

is absolutely irreducible.

(iii) For the unique prime ideal p= (π) lying over 3, the monodromy representation
π1(CC, s)→GLκ(p)(3/p3) is not absolutely irreducible, but there is a unique
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nontrivial stable subspace, namely, the 10-dimensional image of π3∨ in
3/π3.

Proof. The monodromy representations in question are induced by the composition
of homomorphisms

(9-1) π1(CC, s)−→ π1
(
M(k; 10, 1)∗C, ϕ(s)

)
−→ GLOk(H

1(As,Z)).

Here by Theorem 6.1, and using complex uniformization (see Section 3), the first
homomorphism is induced by the inclusion of connected spaces

ι : D
∖( ⋃

x∈L
h(x,x)=3

Dx

)
↪→ D,

followed by quotienting out by the free action of 0∗. Since D is simply connected, it
follows that π1

(
M(k; 10, 1)∗

C
, ϕ(s)

)
= 0∗ and that the first homomorphism in (9-1)

is surjective. Now, 0∗ can be identified with the group of unitary automorphisms
of the parahoric lattice 3, and it is elementary that the representations of 0∗ on
3⊗Ok k and on 3/p3 for p prime to 3 are absolutely irreducible (the latter since
3∨⊗Z` =3⊗Z` for ` 6= 3). The statement (iii) is proved in the same way. �

Proof of Lemma 9.1. Let us compare the monodromy representations

(9-2)
ρA :π1(CC, s)→ GLOk(H

1(As,Z)),

ρB :π1(CC, s)→ GLOk(H
1(Bs,Z)).

By hypothesis, these representations are isomorphic after tensoring with Z`. Hence,
they are also isomorphic after tensoring with k. Hence there exists a π1(CC, s)-
equivariant k-linear isomorphism

β : H 1(As,Q)' H 1(Bs,Q).

By the irreducibility of the representation of π1(CC, s) in H 1(As,Q), β is unique up
to a scalar in k×. Let us compare the Ok-lattices β−1(H 1(Bs,Z)) and H 1(As,Z).
Since we are assuming that Ok is a PID, after replacing β by a multiple βO = cβ,
we may assume that L B = β

−1
O (H 1(Bs,Z)) is a primitive Ok-sublattice in 3 =

H 1(As,Z). Let p be a prime ideal in Ok, and let us consider the image of L B in
3/p3. Since L B is primitive in 3, this image is nonzero. If p is prime to 3, the
irreducibility statement in (ii) of Lemma 9.2 implies that this image is everything,
and hence L B ⊗ Ok,p =3⊗ Ok,p in this case.

To handle the prime ideal p = (π) over 3, we use the polarizations. By the
irreducibility statement in (i) of Lemma 9.2, the polarization forms on H 1(As,Q)

and on H 1(Bs,Q) differ by a scalar in Q× under the isomorphism βO. Now, by
hypothesis on B, with respect to the polarization form on H 1(Bs,Q), we have a
chain of inclusions L B ⊂ L∨B ⊂ π

−1L B with respective quotients of dimension 10
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and 1 over Fp, just as for 3. Since the two polarization forms differ by a scalar,
this excludes the possibility that the image of L B in 3/π3 be nontrivial. It follows
that L B =3.

Furthermore, the isomorphism βO is unique up to a unit in O×k , and it is an
isometry with respect to both polarization forms. Now, by [Deligne 1971, 4.4.11
and 4.4.12], βO is induced by an isomorphism of polarized abelian schemes. Finally,
βO⊗Z Z` = α` up to a unit, since these homomorphisms differ by a scalar and both
preserve the Riemann forms.

The uniqueness of α follows from Serre’s Lemma. �

Now Lemma 9.1 implies that over any field extension k ′ of k inside C, there
exists at most one polarized abelian variety b : B → Ck′ obtained by pull-back
from the universal abelian variety over M(k; 10, 1)∗, equipped with an Ok-linear
isomorphism of lisse `-adic sheaves over CC

R1a∗Z` ' R1bC∗Z`,

preserving the Riemann forms. By the argument in [Deligne 1972, 2.2], this implies
that, in fact, B exists (since it does for k ′ = C). Hence the morphism ϕ is defined
over k. Put otherwise, for any k-automorphism τ of C, the conjugate embedding
ϕτ , which corresponds to the conjugate (A, ι, λ)τ , is equal to ϕ; hence ϕ is defined
over k.

Conjecture 9.3. In all four cases above, the morphisms ϕ can be extended over
Ok[1

−1
].

Since we circulated a first version of our paper, this has been proved by J. Achter
[2012] in the case of cubic surfaces.

10. Concluding remarks

Remark 10.1. In all four cases, the complement of Im(|ϕ|) is identified with a
certain KM-divisor. In fact, for other KM-divisors, the intersection with Im(|ϕ|)
sometimes has a geometric interpretation. For example, in the case of cubic surfaces,
the intersection of Im(|ϕ|) with the image of the KM-divisor Z(2) in |M(k; 4, 1)C|
can be identified with the locus of cubic surfaces admitting Eckardt points; see
[Dolgachev et al. 2005, Theorem 8.10]. Similarly, in the case of curves of genus 3,
the intersection of Im(|ϕ|) with the image of Z(t)∗ in |M(k; 6, 1)∗

C
| can be identified

with the locus of curves C where the K3-surface X (C) admits a “splitting curve”
of a certain degree depending on t ; see [Artebani 2008, Theorem 4.6].

Remark 10.2. In [Dolgachev and Kondō 2007; Dolgachev et al. 2005; Matsumoto
et al. 1992], occult period morphisms are often set in comparison with the Deligne–
Mostow theory, which establishes a relation between configuration spaces (for
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example, of points in the projective line) and quotients of the complex unit ball by
complex reflection groups, via monodromy groups of hypergeometric equations.
This aspect of these examples has been suppressed entirely here. Also, it should
be mentioned that there are other ways of constructing the period map for cubic
surfaces; see, e.g., [Dolgachev and Kondō 2007; Dolgachev et al. 2005].

Remark 10.3. Let us return to Section 3. There we had fixed a hermitian vector
space (V, ( , )) over k of signature (n−1, 1). Let V0 be the underlying Q-vector
space, with the symmetric pairing defined by

s(x, y)= tr(h(x, y)).

Then s has signature (2(n−1), 2), and we obtain an embedding of U(V ) into O(V0).
This also induces an embedding of symmetric spaces,

(10-1) D ↪→ DO,

where, as before, D is the space of negative (complex) lines in (VR, I0), and where
DO is the space of oriented negative 2-planes in VR. The image of (10-1) is precisely
the set of negative 2-planes that are stable by I0. In the cases of the Gauss field and
the Eisenstein field, this invariance is equivalent to being stable under the action of
µ4 or µ6, respectively. Hence in these two cases, the image of (10-1) can also be
identified with the fixed point locus of µ4 or µ6, respectively, in DO.

Remark 10.4. By going through the tables in [Rapoport 1972, §2], one sees that
there is no further example of an occult period map of the type above which embeds
the moduli stack of hypersurfaces of suitable degree and dimension into a Picard
type moduli stack of abelian varieties. Note, however, that, in the case of curves of
genus 4, the source of the hidden period morphism is a moduli stack of complete
intersections of a certain multidegree of dimension one, and there may be more
examples of this type.
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