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In this note we discuss a purely algebraic proof of Weyl’s theorem that all
finite-dimensional representations of a complex semisimple Lie algebra are
completely reducible. We give a simple and direct proof which is elementary
in the sense that it does not use cohomology, and which is a synthesis of the
older proofs of Casimir – van der Waerden and of Brauer.

1. Introduction

In the theory of semisimple Lie algebras, one of the central results is the theorem of
Weyl that says that all finite-dimensional representations of a complex semisimple
Lie algebra g are completely reducible, that is, direct sums of the irreducible ones. In
this note we present a purely algebraic proof of this result. Our aim is pedagogical,
and so we have made an effort to explain in detail facts that are usually taken
for granted in expositions, so as to make this accessible to graduate students and
advanced undergraduates. The result is valid over any field of characteristic 0; but
this generalization can be deduced from the complex case by standard arguments.
Hence we restrict ourselves to working over C.

The complete reducibility theorem was first proved by Hermann Weyl [1968]
in his great series of papers on the theory of representations of semisimple Lie
groups. Although Elie Cartan had already obtained a complete description of the
irreducible representations, he did not go seriously into the issue of how an arbitrary
representation could be built out of irreducible representations.

Weyl’s proof remains one of the most beautiful in the entire theory of representa-
tions. The basis of his proof is the following: there is a real form u of g, the so-called
compact form, with the property that the simply connected group U corresponding
to u is compact; here we recall that to say that u is a real form of g is to require that
u is a real Lie subalgebra of g whose real dimension is the complex dimension of g.
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Once the existence of u is assumed, the proof is straightforward. The representations
of g correspond naturally to the representations of u; in one direction one restricts
from g to u and in the other direction one extends from u to g by complexification.
On the other hand, there is a natural correspondence between the representations
of u and the continuous representations of U . Now the compactness of U means
that any continuous representation of U is unitarizable, that is, is equivalent to a
unitary representation, namely a continuous homomorphism of U into the group
of unitary operators on a finite-dimensional complex Hilbert space. So, assuming
the representation is unitary, its complete reducibility is immediate, because for
any U -invariant subspace M , its orthogonal complement M⊥ is also U -invariant
and is moreover complementary to M ; the complete irreducibility is then clear
by induction on the dimension of the representation. The unitarizability of any
representation of U means that if we start with any representation, we can find a
U -invariant scalar product in the representation space. To do this, we start with an
arbitrary scalar product in the representation space and then introduce the scalar
product which is the group average of its transforms by elements of U ; this latter
scalar product is invariant under U so that U is unitary with respect to it (see
[Varadarajan 1984, Chapter 4, §4.11]; see also [Hawkins 2000, pp. 465–484]).

This proof is essentially transcendental: it uses invariant integration on the
compact group and also the topological fact that the universal covering group of
the adjoint group of the compact form is still compact. And neither of these is
elementary. The reduction to the compact form u and the compact group U was
named the unitarian trick by Weyl.

It must be mentioned that the idea of averaging on special compact groups (such
as the orthogonal group) goes back to Hurwitz and Schur. For Hurwitz, the goal
was to prove the finite generation of the invariants for actions of SL(n,C) and
SO(n,C). Although these groups are not compact, they contain the compact groups
SU(n) and SO(n,R), and invariance with respect to these will imply invariance
with respect to the complex groups they are contained in (this is the first instance of
the unitarian trick); this is because a holomorphic function on the complex groups
which vanishes on the relevant compact subgroup is identically 0. For Schur, the
goal was the representation theory of the compact groups SU(n) and SO(n,R), and
he used integration over the group to determine all the irreducible representations,
their characters, and their dimensions. The work of Hurwitz and Schur triggered
Weyl’s imagination, and after he got the results for all semisimple compact groups,
he described them in a letter to Schur (see [Borel 1986] for references to the work
of Hurwitz and Schur and to Weyl’s letter to Schur).

So in the years after Weyl’s proof appeared, the question of a purely algebraic
proof became a natural issue. The first such algebraic proof was given by Casimir
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and van der Waerden [1935].1 They give a beautiful purely algebraic argument
which is elementary in the sense that it relies only on the known structure of
irreducible modules as highest-weight modules, and the Casimir operator. A key
element of their proof is a delicate calculation in sl(2).

After the original proof, additional algebraic proofs appeared in [Brauer 1936]
and [Rashevski 1953]. There was also a proof that was cohomological: here it is a
question of first establishing that H 1(g,M)= 0 for any semisimple Lie algebra g

and any finite-dimensional g-module M , from which the complete reducibility will
follow via standard arguments (see [Varadarajan 1984, Chapter 3, §§3.12–3.13]).

In this note we shall present a proof which is in some sense a synthesis of the
earlier proofs of [Casimir and van der Waerden 1935; Brauer 1936]. It is very
short and very direct. It uses the Casimir operator in an essential manner (as do all
other proofs), the fact that any irreducible module is the one with highest weight
equal to some λ, and the fact that it is enough to lift invariant vectors from the
quotient of a module to the module itself. All modules considered from now on are
finite-dimensional.

For a detailed historical account of Weyl’s theorem and the various proofs of it,
see [Borel 1998].

2. The Casimir operator and the lifting of invariant vectors

Let g be a complex semisimple Lie algebra. If (X i ) is a basis for g and (X i ) is the
dual basis with respect to the Cartan–Killing form ( · , · ) (that is, (X i , X j )= δi j ),
then the Casimir operator is

ω =
∑

i

X i X i
;

it is independent of the choice of the basis and lies in the center of the enveloping
algebra of g. It commutes with the action of g and hence it goes into a scalar in any
irreducible module for g. We write gλ for the value of this scalar when the module
is Vλ, the irreducible module of highest weight λ. Here we have chosen a Cartan
subalgebra h, and a positive system of roots, so that λ ∈ h∗. The isomorphism
between h and h∗ carries the form on h to one on h∗ which is denoted by the same
symbol. It is known that ( · , · ) is real and positive definite on the real span of the
roots, which includes all the highest weights. If λ is a highest weight, (λ, α)≥ 0
for all roots α > 0.

The first lemma is the calculation of gλ. As usual, let

ρ = 1
2

∑
α>0

α.

1V. S. V. was fortunate to hear an exposition by Casimir himself of this proof in a conference in
Utrecht in 1985. See the Appendix.
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Lemma 1 [Casimir and van der Waerden 1935]. The scalar gλ is given by

gλ = (λ+ρ, λ+ρ)−(ρ, ρ).

Moreover,
gλ = 0 ⇐⇒ λ= 0.

In other words, an irreducible module where ω is 0 is necessarily the trivial module.

Proof. We select an ON basis (Ki ) for h and root vectors Xα with (Xα, X−α)= 1
for all roots α. Then

ω =
∑

i

K 2
i +

∑
α>0

(XαX−α + X−αXα)=
∑

i

K 2
i +

∑
α>0

Hα + 2
∑
α>0

X−αXα.

If mλ is a highest-weight vector for Mλ, then

ωmλ = gλmλ.

Since the Xα(α > 0) annihilate mλ and Hmλ = λ(H)mλ for H ∈ h, it follows that

gλ =
∑

i

λ(Ki )
2
+

∑
α>0

λ(Hα)= (λ, λ)+
∑
α>0

(λ, Hα)

= (λ, λ)+ 2(λ, ρ)= (λ+ ρ, λ+ ρ)− (ρ, ρ).

If λ= 0, then gλ= 0. Conversely, suppose that gλ= 0. Then (λ, λ)+2(λ, ρ)= 0.
As both (λ, λ) and (λ, ρ) are ≥ 0, we must have (λ, λ)= 0, so that λ= 0. �

The second lemma is that invariant vectors can be lifted. A vector v in a g-module
is invariant if gv = 0.

Lemma 2. Let
M→ P→ 0

be an exact sequence of g-modules and let p ∈ P be an invariant vector. Then we
can lift p to an invariant vector in M , namely, find an invariant u ∈ M such that u
maps to p.

Proof. Replacing M by the preimage of the line Cp, we may assume that P = Cp.
Now M is the direct sum of the generalized subspaces Mr of the Casimir operator,
Mr being the largest subspace where ω has the single eigenvalue r . The Mr are
stable under g, and as ωp = 0, it follows that all the Mr for r 6= 0 map to 0 in P .
Since M maps onto P , this means that M0 6= 0 and maps onto P . In other words,
we may assume that M = M0. But then, by Lemma 1, M has a Jordan composition
series consisting only of trivial modules. Let Hi , X i , Yi (1≤ i ≤ r = rank of g) be
the usual Chevalley generators for g. Then, for each i , Hi has the sole eigenvalue 0
in M . If M[Hi : a] is the generalized eigensubspace of Hi for the eigenvalue a, it is
standard that X i (resp. Yi ) maps M[Hi : a] into M[Hi : a+2] (resp. M[Hi : a−2]).
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But as 0 is the only eigenvalue for Hi in M , it follows that X i and Yi act as 0 on M .
But then Hi = [X i , Yi ] also acts as 0, so that g acts trivially on M . This means that
any vector u of M above p satisfies our requirements. �

3. Proof of Weyl’s theorem

Weyl’s theorem can now be obtained by a standard general argument.

Weyl’s theorem. All g-modules are completely reducible.

Proof. Suppose M is a g-module and N a proper submodule. It is a question of
finding a submodule Q such that M = N ⊕ Q. If P = M/N , we have an exact
sequence of g-modules

0→ N → M→ P→ 0.

So we get the exact sequence g-modules

0→ Hom(P, N )→ Hom(P,M)→ Hom(P, P)→ 0.

Now the identity I in Hom(P, P) is an invariant element, and so, by Lemma 2, can
be lifted to an invariant element t in Hom(P,M). Since t maps to I , we see that t
splits the map M→ P . Since t is invariant, the range Q of t is a submodule of M
complementary to N . �

Remark. The reduction to trivial modules goes back to [Brauer 1936]. It was
resurrected by Chevalley [1955] in his proof of Weyl’s theorem. Later on, when
Mumford [1965] needed a characteristic p version of Lemma 2, he formulated it as
follows: if G is a connected semisimple group over an algebraically closed field
K of characteristic p > 0, and V,W are G-modules with V →W → 0 exact, and
if w ∈W is an invariant vector, there are an integer d > 0 and an invariant vector
v ∈ Sd(V ) which maps to wd (here Sd refers to the component of degree d in the
symmetric algebra). It is known that the smallest value of d is a power pm of p.

Appendix: A historical note on Casimir and his operator

Hendrik Brugt Gerhard Casimir (1909–2000) was a physicist whose Leiden thesis
[1933] on the theory of diatomic molecules introduced the operator now known
as the Casimir operator, as an element of the enveloping algebra of the rotation Lie
algebra o. It commutes with all the elements of o and so is a scalar in any irreducible
representation of o. Shortly afterwards, he discovered the analogue of this for any
semisimple Lie algebra [1931]. The corresponding operator in any representation of
the Lie algebra eventually became known as the Casimir operator. It plays a central
role in harmonic analysis and representation theory, even though for groups of higher
dimension its value on an irreducible representation no longer determines the rep-
resentation, unlike what happens for sl(2). In [Casimir 1931], he himself pioneered
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the idea that the Casimir operator should be viewed as a second-order differential
operator on the group manifold, and that the matrix elements of irreducible repre-
sentations of the group are eigenfunctions for this operator. The connection between
representation theory and differential equations on the group manifold introduced
by Casimir found its full force and scope only with the work of Harish-Chandra.

Casimir was one of the great Dutch physicists of the twentieth century who made
significant contributions to both experimental and theoretical physics as well as to
pure mathematics. In addition, he had a big influence on industry as the head of the
research division of Philips. His mathematical contributions include the discovery
and use of the Casimir operator as described above. In experimental physics, he
predicted what is now known as the Casimir effect, which is a quantum mechanical
attraction between conducting plates. His theoretical contributions are quite well
known, such as his work on Lars Onsager’s microscopic reversibility. One of us
(V. S. V.) was present at a conference on semisimple Lie groups in Utrecht in 1985
when Casimir gave a talk on the history of the proof of Weyl’s complete reducibility
theorem and presented a brief sketch of the algebraic proof given in [Casimir and
van der Waerden 1935]. His autobiography [Casimir 1983] is a wonderful document
of great interest and humanity.

From the modern perspective, the Casimir operator is an element in the center of
the universal enveloping algebra of a semisimple Lie algebra. For simple Lie alge-
bras of dimension greater than 3, the Casimir element does not generate the center of
the enveloping algebra. Some of the additional elements of the center were written
down by Giulio Racah (1909–1965), an Israeli physicist and mathematician. Racah
[1965] determined in some implicit manner the full center of the enveloping algebra
of an arbitrary semisimple Lie algebra. The generators of the center discovered by
Racah are known to physicists as generalized Casimir operators. For many in the
1950’s and early 1960’s (including V. S. V.), the Racah notes [1965] were almost the
only sources of information on the structure and representations of semisimple Lie
algebras till the appearance of [Blanchard et al. 1955] and [Jacobson 1962]. From
the mathematical side, the center of the enveloping algebra was first investigated by
Harish-Chandra (1923–1983). Harish-Chandra constructed what is now known as
the Harish-Chandra isomorphism of the center of the universal enveloping algebra
of a general semisimple Lie algebra g with the algebra of Weyl group invariants of
the algebra of polynomials on a Cartan subalgebra of g. The center is very closely
related to the algebra of polynomial invariants on the Lie algebra, and this was
determined by Claude Chevalley (1909–1984), who proved that it is isomorphic,
via restriction to a Cartan subalgebra, to the Weyl group invariants of the algebra of
polynomials on the Cartan subalgebra. The Harish-Chandra isomorphism, and its
p-adic twin, the Satake isomorphism, play a fundamental role in harmonic analysis
on semisimple groups.
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