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To the memory of Jonathan Rogawski

In this article we pursue the problem of equality of Artin factors with those
defined on the representation theoretic (analytic) side by the local Lang-
lands correspondence. We propose a set of axioms for the factors on the
analytic side which allows us to prove the equality of the factors. In the case
of L-functions the equality can be proved in a number of cases appearing
in the Langlands–Shahidi method since one of the axioms, stability under
highly ramified twists, is already available for the L-functions coming from
this method.

Introduction

The local Langlands correspondence (LLC) for GL(n) is formulated through the
equality of the Artin factors attached to tensor products on the Galois side with
the factors defined on the representation theoretic side, namely those of Rankin–
Selberg product L-functions for GL(n) × GL(m) [Jacquet et al. 1983; Shahidi
1984]. The LLC, which was proved for GL(n) in [Harris and Taylor 2001; Henniart
2000], also suggests that other Artin (or arithmetic) factors should be equal to
their representation theoretic (or analytic) counterparts, if they exist. In fact, one
important fact about analytic objects is that they always correspond to a global
theory and thus are of automorphic significance. On the other hand so long as
the problem of global parametrization or the global Langlands correspondence, a
problem whose formulation is still unavailable [Langlands 2012], is not settled,
one cannot expect to produce a global theory of L-functions from those defined by
local Artin factors. The problem is thus to show the equality of Artin factors with
the corresponding analytic ones whenever LLC is available.

The purpose of this article is to formulate a set of axioms to be satisfied by the
objects on the analytic side attached to every representation r of the L-group so
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as to imply the equality of arithmetic (Artin) factors with analytic (representation
theoretic or automorphic) factors through LLC (Theorem 2.1). This formalizes and
generalizes some ideas of Harris [1998] as pursued later by Henniart [2010].

While the equality of γ -functions requires the validity of stability (Axiom 2), our
Theorem 3.1 proves the equality of L-functions in certain special cases coming from
Langlands–Shahidi method [Shahidi 1990; 2010] through LLC with no assumptions.
They include the cases of twisted exterior square L-functions for GL(n) as well as
twisted exterior cube for GL(6). This equality can be used to prove special cases of
the generic Arthur packet conjecture [Arthur 1984; Shahidi 2011] as we explain in
Section 3. Finally in Section 4 we address the issue of stability of γ -factors within
our method and discuss the progress made on it and some of its consequences.

1. Axiomatic r-theory

Let G be a connected reductive algebraic group over a local field F of characteristic
zero. Denote by L G its L-group. Let W ′F be the Weil–Deligne group of F . Let
ρ :W ′F →

L G be an admissible homomorphism (see [Arthur 1984; Shahidi 2011]).
Let r be an irreducible complex representation of L G on a finite dimensional
complex vector space V , i.e., r : LG → GL(V ) is an analytic homomorphism.
Then r · ρ :W ′F → GL(V ) defines a representation of W ′F , which we assume to be
Frobenius-semisimple.

Let us now assume we have a theory of L-functions attached to r . More precisely,
assume that for each irreducible admissible representation π of G(F), there are
defined an L-function L(s, π, r) and an ε-factor ε(s, π, r, ψF ), where s ∈ C and
ψF is a nontrivial additive character of F , satisfying (1) multiplicativity (additivity),
(2) stability under highly ramified character twists, (3) a global functional equation
whenever π becomes a local component of a global cusp form, and (4) archimedean
matching, each of which we shall now explain. It is best to formulate them in terms
of γ -functions

γ (s, π, r, ψF )= ε(s, π, r, ψF )L(1− s, π, r̃)/L(s, π, r).

1) Multiplicativity. This basically expresses γ -functions of a particular constituent
of an induced representation as a product of γ -functions for the inducing data.
One special and important case of it is that of Langlands quotients [Langlands
1989; Silberger 1978]. If π is an irreducible admissible representation of G(F),
then Langlands classification determines a standard parabolic subgroup P with a
Levi decomposition P = M N and a quasitempered representation σ of M(F), in
the “positive Weyl chamber”, such that π = J (P, σ ). Here J (P, σ ) is the unique
irreducible quotient of I (P, σ ), which is the representation of G(k) induced by
σ . Note that fixing the minimal parabolic subgroup P0 ⊂ P , making P standard,
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automatically determines the unique positive Weyl chamber. Now, let

ι : LM ↪→ LG

be the natural embedding. Let ρM :W ′F →
LM be the parameter defining σ (or its

L-packet), if known. Then ρ = ι · ρM will be the parameter for π . Let r be a finite
dimensional irreducible complex representation of L G as before. Decompose

(1-1) r · ι=
⊕

j

r M
j

into its irreducible constituents. Multiplicativity in this case simply requires

γ (s, π, r, ψF )=
∏

j

γ (s, σ, r M
j , ψF ),(1-2)

L(s, π, r)=
∏

j

L(s, σ, r M
j ),(1-3)

ε(s, π, r, ψF )=
∏

j

ε(s, σ, r M
j , ψF ).(1-4)

In fact, this is how these factors are defined: One first defines the factors for
quasitempered but unitary data and then extends the unitary complex parameters
to all of the complex dual of the complex Lie algebra of the split component of
the center of M [Langlands 1989; Shahidi 1990]. When F is an archimedean field,
LLC was established by Langlands [1989] and the L-functions were defined to be
those of Artin attached to the parameter. They satisfy Equations (1-2)–(1-4).

When one restricts oneself to those representations r that appear in constant
terms of Eisenstein series (Langlands–Shahidi method [Langlands 1971a; 1976;
Shahidi 2010]), in which case G will be assumed to be quasisplit, then these
formulas play a central role. In fact, what is defined with no reservations is the γ -
function γ (s, π, r ′i , ψF ), where r ′i is any irreducible constituent of the adjoint action
of LM ′ on Ln′, the Lie algebra of the complex Lie group LN ′ [Langlands 1971a;
Shahidi 1990; 2010]. The representation π is any irreducible admissible ψF -generic
representation of M ′(F), where P ′ = M ′N ′ is the defining parabolic subgroup for
the Eisenstein series which we may assume to be maximal. Here F is a completion
of the number field defining the Eisenstein series. As explained in [Shahidi 1990;
2010], the knowledge of γ -factors immediately defines the L-functions and ε-factors
if π is also tempered. The extension to any irreducible admissible representation
(not necessarily generic) π of M ′(F) is given by Langlands classification and
Equations (1-3) and (1-4) [Shahidi 1990]. In this case multiplicativity is valid
when π is the unique ψF -generic constituent of IndM ′(F)

M(F)N (F) σ ⊗ 1, where P is
any standard parabolic subgroup of M ′ defined over F and σ is any irreducible
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admissible ψF -generic representation of M(F), P = M N . One then has the
appropriate version of (1-2) for each γ -function γ (s, π, r ′i , ψF ), where r ′i is an
irreducible constituent of the adjoint action of LM ′ on Ln′ [Shahidi 1990; 2010].

Example. Assume G = GL(n1+ n2) and M = GL(n1)×GL(n2). Let rN be 32,
the exterior square representation of GL(N ,C) for any positive integer N . Then
one has

LM = GL(n1,C)×GL(n2,C)

and

(1-5) rn1+n2 |
LM = rn1 ⊕ rn2 ⊕ (ρn1 ⊗ ρn2),

where ρN is the standard representation of GL(N ,C). If π is the Langlands quotient
or the unique irreducible generic constituent of IndG(F)

M(F)N (F) σ1⊗ σ2⊗ 1, where σi ,
i = 1, 2, is an irreducible generic representation of GLni (F), which we will assume
to be quasitempered in the positive Weyl chamber if π is the Langlands quotient,
then

γ (s, π,32, ψF )= γ (s, σ1,3
2, ψF )γ (s, σ2,3

2, ψF )γ (s, σ1× σ2, ψF ).

Here γ (s, σ1×σ2, ψF ) is the Rankin–Selberg product γ -function defined in [Jacquet
et al. 1983]. It is also obtained from the Langlands–Shahidi method if we consider
M ′ = GL(n1)×GL(n2) inside G = GL(n1+ n2); see [Shahidi 1984].

One simple way of seeing the branching rule (1-5) is to consider M ′ = GLn1+n2

as the Siegel Levi subgroup of G = SO(2n1 + 2n2). Here one gets only one
irreducible representation r ′1 of LM ′ = GL(n1 + n2,C) in Ln′, r ′1 = 3

2
n1+n2

. One
can then immediately see the restriction decomposition (branching rule) (1-5) if
one considers the adjoint action of LM = GLn1(C)× GLn2(C) on Ln′ which is
isomorphic to (the second diagonal) skew-symmetric elements of complex matrices
of size n1+ n2.

Finally we remark that if one knows LLC and lets ρ be the parameter of π , and
further assume the equality

(1-6) γ (s, π, r, ψF )= γ (s, r · ρ,ψF ),

where the factor on the right is that of Artin attached to the representation r · ρ,
then one immediately has

γ (s, π, r, ψF )= γ (s, r · ρ,ψF )

= γ (s, r · ι · ρM , ψF )

= γ (s,⊕r M
j · ρM , ψF )

=

∏
j

γ (s, r M
j · ρM , ψF )=

∏
j

γ (s, σ, r M
j , ψF ),
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where σ is a member of the L-packet attached to ρM . This immediately implies
(1-2). The point is that even if one knows LLC, one would know the equality (1-6)
only for certain r [Langlands 1971a; Shahidi 1990; 2010] and not necessarily for
the family of L-functions attached to a given r . In practice one would need to know
multiplicativity for γ -functions γ (s, π, r, ψF ) on the representation theoretic side
in order to prove (1-6) for a given r .

2) Stability. This is again a local statement. Moreover, F will need to be assumed
to be nonarchimedean. We also need to assume X (G)F 6= {1}, i.e., that G has a
nontrivial F-rational character. This clearly rules out G being semisimple. Choose
and fix 1 6= ν ∈ X (G)F . Note that ν(G(F))⊂ F∗ is of finite index and thus open.
Let χ be a highly ramified character of F∗. Then χ · ν is what we call a highly
ramified character of G(F).

Let π1 and π2 be two irreducible admissible representations of G(F). Let ωπi

denote the central character of πi , i = 1, 2. Stability requires:

Assume ωπ1 = ωπ2 = ω. Then for every sufficiently highly ramified character χ
of G(F) with the level of ramification depending on π1 and π2, one has

γ (s, π1⊗χ, r, ψF )= γ (s, π2⊗χ, r, ψF ),(1-7)

L(s, π1⊗χ, r)= L(s, π2⊗χ, r)≡ 1,(1-8)

and thus

(1-9) ε(s, π1⊗χ, r, ψF )= ε(s, π2⊗χ, r, ψF ).

By virtue of [Deligne 1973], stability is valid for all the Artin factors, and as in
multiplicativity, stability will also be true for our factors (see [Cogdell, Shahidi and
Tsai ≥ 2012]) if LLC is valid and moreover our factors are equal to those of Artin.
But again stability is a tool which is needed to prove this equality which is known
in only a few cases.

At present this is the only result that needs to be established even in the context of
L-functions that come from the Langlands–Shahidi method [Shahidi 2002; 2010],
although special cases of it are available from either methods of L-functions. More
precisely, stability is known for the Rankin product factors γ (s, π1×π2, ψF ), where
π1 and π2 are irreducible admissible representations of GL(n1, F) and GL(n2, F),
respectively [Jacquet and Shalika 1985], or of GL1(F)= F∗ and G(F), whenever
G is a group for which the derived group of L G0 is a classical group [Cogdell et al.
2001; 2004; 2005; 2008; Kim and Krishnamurthy 2005; Asgari and Shahidi 2006;
2011].

On the other hand, in the context of L-functions in [Langlands 1989; Shahidi
1990; 2010], a stability statement for L-functions to the effect that
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L(s, π ⊗χ, ri )≡ 1

for every L-function obtained from our method, and suitably highly ramified char-
acters χ , was proved in [Shahidi 2000]. Thus it is the stability of γ -functions
γ (s, π, ri , ψF ) which needs to be proved in a given case. We will discuss this
problem shortly.

We conclude by pointing out that in the case of G ×GL(1) discussed above
stability has been an important tool to prove functorial transfers from the generic
spectrum of G(Ak) to appropriate GL(N ,Ak) [Cogdell et al. 2001; 2004; Kim and
Krishnamurthy 2005; Asgari and Shahidi 2006; 2011]. Here Ak is the ring of adeles
of a number field k.

3) Functional equations. The main reason for introducing local Artin root num-
bers (ε-factors) in [Dwork 1956; Langlands 1970; 1971b; Deligne 1973] was to
decompose Artin’s global root numbers and ε-factors into products of local objects.
Under the validity of LLC, these local Artin factors can be used to define local
factors attached to irreducible admissible representations (L-packets) of groups
over local fields. On the other hand if one considers cuspidal automorphic forms
over a global number field, then for each r one expects global functional equations
whose root numbers will have to be a product of local ones. One thus needs to
define a collection of local ε-factors and L-functions within the same machinery
that establishes the global functional equations [Jacquet et al. 1983; Cogdell and
Piatetski-Shapiro 2004; Shahidi 1990; 2010]. It is thus by no means clear that these
factors are equal to those defined by Artin factors through LLC, and the challenge
is to show that they are in fact equal. This is done by using these global functional
equations, but for a very special class of cusp forms, those attached to certain
irreducible continuous representations of global Galois (or Weil) group. We now
formulate this as follows.

Let k be a global field whose ring of adeles is Ak and let π =
⊗

v πv be an
automorphic cuspidal representation of G(Ak), where G is a connected reductive
group over k. Let r be an irreducible complex analytic representation (thus finite
dimensional and conversely) of L G. Let ηv : LGv→

L G be the natural map, where
L Gv is the L-group of G as a group over kv. Write rv = r · ηv. Let S be a finite set
of places of k such that for all v 6∈ S both the group G, as a group over kv, and πv
are unramified. Fix a complex number s. Let L(s, πv, rv) and ε(s, πv, rv, ψv) be
the local L-function and root number attached to this data from our theory, where
ψ =

⊗
v ψv is a nontrivial additive character of A/k with ψv unramified outside S.

Set

(1-10) L(s, π, r)=
∏
v

L(s, πv, rv),
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and

(1-11) ε(s, π, r)=
∏
v

ε(s, πv, rv, ψv),

where (1-10) converges absolutely for Re s� 0 while (1-11) is just a finite product.
Then

(1-12) L(s, π, r)= ε(s, π, r)L(1− s, π, r̃).

Here r̃ denotes the contragredient of r . In terms of γ -functions this can be written
as

(1-13) L S(s, π, r)=
∏
v∈S

γ (s, πv, rv, ψv)L S(1− s, π, r̃),

where

(1-14) L S(s, π, r)=
∏
v 6∈S

L(s, πv, rv).

Here by an unramified group we mean a quasisplit group to split over an unramified
extension. It will then have a hyperspecial maximal compact subgroup with respect
to which πv has an invariant (one dimensional) subspace if πv is unramified.

There are a good number of cases where these functional equations are proved.
The most general results here are those in the Langlands–Shahidi method, using
Eisenstein series [Langlands 1989; Shahidi 1990; 2010]. On the other hand, they
are also proved using the method of integral representations in a number of cases,
most notably and completely by Jacquet, Piatetski–Shapiro and Shalika for Rankin
product L-functions for GL(n1)×GL(n2) as discussed earlier [Jacquet et al. 1983;
Cogdell and Piatetski-Shapiro 2004]. We refer to [Soudry 2006] for a survey of the
results obtained from the integral representations method for other groups.

4) Archimedean matching. When k is a number field one has the benefit of using
the Langlands classification [Langlands 1989; Silberger 1978] and thus LLC for real
groups to define local factors at archimedean primes to be those of Artin through
LLC. The theory must then require:

Let F be either R or C and, for each irreducible admissible representation π
of G(F), let ρ : WF →

L G be the corresponding parameter. Then for each finite
dimensional irreducible complex representation r of L G we have

γ (s, r · ρ,ψF )= γ (s, π, r, ψF ).

We also have similar identities for root numbers and L-functions.
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Again, the most general case of this is proved within the context of the Langlands–
Shahidi method [Shahidi 1990; 2010]. The work is carried on in [Shahidi 1985]
when “local coefficients” are expressed as Artin factors. We recall that the γ -factors
within this method are defined inductively by these local coefficients.

We refer to [Jacquet and Shalika 1990; Cogdell and Piatetski-Shapiro 2004] for
the archimedean work within Rankin–Selberg theory for GL(n).

In the case of function fields, where no distinguished archimedean place stands
out, other techniques are needed to develop the theory. We refer to L. Lomelí’s
work in [Lomelí 2009; Henniart and Lomelí 2011], where the method is developed
at least for classical groups.

Definition 1.1. Let F be a local field together with a nontrivial additive character
ψ and let G be a connected reductive group over F . Fix a (finite dimensional)
complex analytic representation r of L G. We will say we have a theory of L-
functions attached to r , or in short an r-theory, if there exist complex functions
L(s, π, r) and ε(s, π, r, ψF ) satisfying axioms 1–4.

2. Equality of Artin (arithmetic) and automorphic (analytic) factors

With notation as in the previous section, let

θ : L G ↪→ GL(N ,C)×W ′F

be a minimal embedding. Let r be a finite dimensional complex representation

r : GL(N ,C)×W ′F → Aut V .

Let ρ :W ′F→
L G be an admissible homomorphism and let π(ρ) be a fixed element

in the L-packet attached to ρ. Then

γ (s, r · θ · ρ,ψ)= γ (s, π(ρ), r · θ, ψ)

= γ (s, π(θ · ρ), r, ψ)

if the middle factor γ (s, π(ρ), r ·θ, ψ) is defined. Here π(θ ·ρ) is the representation
of GL(N , F) attached to θ · ρ as in [Harris and Taylor 2001; Henniart 2000]. In
particular, r -factors for GL(N , F) define r · θ -factors for G(F). We may therefore,
at least for r · θ -factors of the group G, appeal to r -factors of GL(N ).

Let us therefore concentrate on GL(N ), where LLC is already established [Harris
and Taylor 2001; Henniart 2000]. Assume our theory of γ -factor axioms (1)–(4)
of the previous section. We thus consider a parameter ρ : W ′F → GL(N ,C) and
let π(ρ) be the corresponding irreducible admissible representation of GLN (F)
through LLC.
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If ρ1 and ρ2 are two homomorphisms (representations) of W ′F ,

ρi :W ′F → GL(ni ,C),

we let r be a representation of GL(n1+ n2,C) and assume a branching rule of the
form

(2-1) r · (ρ1⊕ ρ2)= r · ρ1⊕ r · ρ2⊕ R(ρ1, ρ2),

where R(ρ1, ρ2) is a representation of GL(n1,C)×GL(n2,C), ni = dim ρi , i = 1, 2,
in which r · ρ1 and r · ρ2 do not appear; or said in other terms, they appear in
r · (ρ1⊕ρ2) with multiplicity one. We can in fact write R(ρ1, ρ2) as the composite
of

R : GL(n1,C)×GL(n2,C)→ GL(N ,C),

N = dim R, and

(ρ1, ρ2) :W ′F → GL(n1,C)×GL(n2,C)

w 7→ (ρ1(w), ρ2(w)).

We note that

ρ1⊕ ρ2 :W ′F → GL(n1,C)×GL(n2,C) ↪→ GL(n1+ n2,C),

to which r can be applied. Here are some examples. Let r = 32, in which case
R(ρ1, ρ2) = ρ1⊗ ρ2, or r = 33, for which R(ρ1, ρ2) = 3

2ρ1⊗ ρ2⊕ ρ1⊗3
2ρ2.

Similar examples can be given for Sym3 or higher powers of both3 and Sym [Fulton
and Harris 1991]. We recall that exterior powers are irreducible representations of
highest weight δi , fundamental weights of SL(N ,C). We will then assume that we
also have

(2-2) γ (s, R · (ρ1, ρ2), ψF )= γ (s, (π(ρ1), π(ρ2)), R, ψF ),

which of course requires the validity of an R-theory for GL(n1)×GL(n2).
Tracing through the tables in [Langlands 1971a; Shahidi 1988; 2010], it can be

seen that the existence of corresponding R-theories for 33 may be available within
the same machinery, at least for n ≤ 6 as we explain in the next section.

Now, fix a representation r with an r-theory and assume one has an R-theory
for the representation R appearing in (2-1). We will briefly sketch how to show:

Theorem 2.1. Fix r satisfying branching rule (2-1). Assume the existence of an
r-theory and the corresponding R-theory for R satisfying (2-2). Then

γ (s, r · ρ,ψF )= γ (s, π(ρ), r, ψF )
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for every n-dimensional continuous complex Frobenius-semisimple representation ρ
of W ′F , where π(ρ) is the irreducible admissible representation of GLn(F) attached
to ρ by LLC.

Proof. We pursue the ideas presented in [Harris 1998; Henniart 2010]. By Brauer’s
theorem ρ is a Z-linear combination of monomial representations. Thus monomial
representations, i.e., those induced from characters of subgroups of finite index in
W ′F , form a basis for the Grothendieck ring of W ′F . Starting with a local monomial
representation ρ, one chooses a global monomial representation ρ̃ which has ρ as
ρ̃|W ′F , where F = kv at one place of the global field k as in [Harris 1998; Henniart
2010; Cogdell, Shahidi and Tsai ≥ 2012]. For each place w of k, let ρ̃w = ρ̃|W ′kw ,
and consider π(ρ̃) :=

⊗
w π(ρ̃w), where π(ρ̃w) is the representation of GL(n, kw)

attached to ρ̃w by LLC. (We remind the reader that there are serious restrictions
present in the choices of k and ρ as explained in [Harris 1998; Henniart 2010].)

Then π(ρ̃) is an automorphic representation of GLn(Ak), given by an automor-
phic induction from a grössencharacter. We then twist π(ρ̃) by a grössencharacter
χ̃ =

⊗
w χ̃w that is highly ramified at all finite places where π(ρ̃w) is ramified

except at v. By stability we get

γ (s, rw · (ρ̃w⊗ χ̃w), ψ̃w)= γ (s, π(ρ̃w)⊗ χ̃w, rw, ψ̃w),

which can be seen by computing each side, using a principal series with the same
central character as π(ρ̃w) on the representation theoretic side and [Deligne 1973]
on the Artin side.

We will assume χ̃v≡ 1. By archimedean matching the factors are equal whenever
w =∞. Comparing functional equations for ρ̃ and π(ρ̃), we get

γ (s, r · ρ,ψF )= γ (s, π(ρ), r, ψF )

for every member of a basis for the Grothendieck ring of W ′F . Here ψF = ψv for a
global nontrivial character ψ =

⊗
w ψw of k\Ak .

Next we appeal to our R-theory satisfying (2-2), and multiplicativity, to extend
the equality to the full Grothendieck ring. This completes our sketch of the proof. �

3. Equality of L-functions through LLC

While the equality of γ -factors in Theorem 2.1 requires availability of stability for
them, stability for L-functions, expressed as Equation (1-8), is a lot less subtle. In
what follows, we will show the equality of L-functions defined by the Langlands–
Shahidi method with those of Artin in a number of cases previously not available.

A result like this has an interesting application in proving the generic A-packet
conjecture discussed in [Shahidi 2011]. This is a kind of converse to the tempered
L-packet conjecture, which asserts that every tempered L-packet of a quasisplit
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group has a generic member [Shahidi 1990; Vogan 1978]. On the other hand,
the generic A-packet conjecture states that if the L-packet attached to φψ , the
Langlands parameter attached to an Arthur parameter ψ , has a generic member,
then φψ is tempered. We note that the elements of φψ are supposed to provide the
main nontempered members of ψ (see [Arthur 1984]), i.e., those which have not
already appeared in other A-packets. The proof given in [Shahidi 2011] is based on
the matching of only L-functions for certain Levi factors through LLC.

The work of Y. Kim [2012], where he uses the matching for the twisted exterior
and symmetric square L-functions for GL(n) [Henniart 2010] and those of certain
Rankin product ones [Asgari and Shahidi 2006; 2011], has now established this
for split GSpin groups, generalizing the work of Ban [2006] and Liu [2011] for
classical groups. Moreover, the examples of 33 discussed below should handle
some cases of exceptional groups. More precisely, using [Shahidi 2011] the work
in [Kim 2012] proves that if ψ is an Arthur packet for GSpin(F), where F is a
p-adic field, then the Langlands packet φψ attached to ψ has a generic member
only if φψ is tempered. This clearly gives a converse to the tempered (or generic)
L-packet conjecture [Shahidi 1990; Vogan 1978]. For an archimedean field F this
is proved in [Shahidi 2011] and follows from the equality of Artin factors with
those defined by the Langlands–Shahidi method [Langlands 1989; Shahidi 1985].
Here is now the matching theorem for L-functions:

Theorem 3.1. Let (G,M) be a pair of a quasisplit connected reductive group and
one of its maximal Levi subgroups defined over a local field F. Assume there
exists a homomorphism ϕ : M → GL(n) × GL(1) that is an isomorphism on
derived groups, i.e., MD ' SL(n). Let π = π0 ⊗ η be an irreducible admissible
representation of GL(n, F)×F∗ and consider it as one of M(F). Assume π =π(ρ),
ρ :W ′F → GL(n,C)×GL(1,C). Let ri be an irreducible constituent of the adjoint
action of L M on Ln, the Lie algebra of L N. Using the dual map

(3.1.1) Lϕ : GL(n,C)×C∗→ LM,

we then have

(3.1.2) L(s, π ·ϕ, ri )= L(s, π, ri ·
Lϕ).

Assume ri ·
Lϕ satisfies the branching rule (2-1). Moreover, assume the equality

(2-2), but only for L-functions, that is, the validity of

(3.1.3) L(s, R · (ρ1, ρ2))= L(s, (π(ρ1), π(ρ2)), R).

Then

(3.1.4) L(s, ri ·
Lϕ · ρ)= L(s, π(ρ), ri ·

Lϕ).
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Remark. The extension from generic representations to any irreducible admissible
one is rather routine as explained on page 322 of [Shahidi 1990].

Proof. We may assume F is p-adic. We again use Brauer’s theorem and prove
(3.1.4) for monomial representations as in Theorem 2.1. We choose k and ρ̃ such
that kv = F , ρ̃|W ′F = ρ and consider π(ρ̃) :=

⊗
v π(ρ̃w), where ρ̃w = ρ̃|W ′kw . We

again twist π(ρ̃) by a grössencharacter χ̃ =
⊗

w χ̃w that is highly ramified at all
finite places where π(ρ̃w) is ramified except v, where we will assume χ̃v ≡ 1. Then
for each finite ramified w, w 6= v, stability for L-functions, i.e., (1-8), implies

(3.1.5) γ
(
s, π(ρ̃w)⊗ χ̃w, ri,w ·

Lϕ,ψF
)
= cwq−nw s

w ,

where cw ∈C∗, nw ∈Z and qw is the cardinality of the residue field of k at w. Using
the equality at archimedean primes for γ -functions we thus have

(3.1.6)
∏
w∈S
w 6=v

cwq−nw s
w γ

(
s, π(ρ), ri ·

Lϕ,ψF
)
=

∏
w∈S
w 6=v

c′wq−n′w s
w γ

(
s, ri ·

Lϕ ·ρ,ψF
)
,

where c′w and n′w are the corresponding objects on the Artin side and S is the set of
ramified finite primes, whenever ρ is monomial.

On the other hand, by equality (3.1.3) of L-functions for constituents of our
branching rule, we get an equality like (3.1.6) for every pair γ (s, R · (ρ1, ρ2), ψF )

and γ (s, (π(ρ1), π(ρ2)), R, ψF ). We can then extend (3.1.6) from monomial rep-
resentations, that is, a Z-basis for the Grothendieck ring of W ′F , to the full ring.

We now assume ρ is bounded so that π(ρ) is tempered. We then have that
L(s, π(ρ), ri ·

Lϕ) gives the zeros of γ (s, π(ρ), ri ·
Lϕ) [Shahidi 1990; 2010]. The

same is true of L(s, ri ·
Lϕ · ρ) and γ (s, ri ·

Lϕ · ρ). By standard properties of
L-functions, we then get the equality (3.1.4) for a bounded ρ. The case of arbitrary
ρ and π(ρ) now follows from Langlands classification upon which factors for π(ρ)
are defined [Langlands 1989; Shahidi 1990; 2010] as well as those of Artin. This
completes the proof of Theorem 3.1. �

Remark 3.2. One may replace Equation (3.1.3) with the equality of γ -factors only
up to a monomial in q−s , which is a much weaker statement than (2-2).

Example 3.3 (twisted exterior and symmetric square L-functions for GL(n)). The
pair in this case is G = GSpin and M is generated by all simple roots but the last
one, i.e., the Siegel parabolic of G. In the case of exterior squares the equality is

(3.3.1) L(s,32ρ0⊗ η)= L(s, π(ρ0)⊗ η,3
2
⊗ St)

= L(s, π0,3
2
⊗ η),
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where the L-functions on the right are from [Shahidi 1990; 2010]. This was first
proved in [Henniart 2010]. The case of twisted symmetric square is similar. Here
St denotes the standard representation of GL1(C).

Example 3.4 (twisted exterior cube for GL(6)). Here the pair is (E sc
6 ,Mα4), where

Mα4 is the Levi subgroup generated by 1−{α4}, 1 being the set of simple roots.
This is case (x) in [Langlands 1971a] or equally (E6,i i ) in [Shahidi 2010]. The
map ϕ is defined in 2.5.3 of [Kim 2005]. With notation as in Theorem 3.1 here

(3.4.1) ri ·
Lϕ = r1 ·

Lϕ =33
⊗ St,

and thus Theorem 3.1 should imply

(3.4.2) L(s,33ρ0⊗ η)= L(s, r1 ·
Lϕ · (ρ0⊗ η))

= L(s, π(ρ), r1 ·
Lϕ)

= L(s, π(ρ0)⊗ η,3
3
⊗ St)

= L(s, π0,3
3
⊗ η),

where π(ρ0) = π0, π = π0⊗ η and ρ = ρ0⊗ η, if we can show (2-2) and (3.1.3)
hold. We remark that in this case dim r2 = 1 and there are no other constituents.

As discussed in Section 2, the branching rule (2-1) in this case reads

(3.4.3) R(ρ1, ρ2)=3
2ρ1⊗ ρ2⊕ ρ1⊗3

2ρ2.

Dimensions ni = dim ρi , i = 1, 2, are a partition of 6, i.e., n1+n2= 6. By symmetry
we need to know the validity of

(3.4.4) L(s,32ρ1⊗ ρ2)= L(s, (π(ρ1), π(ρ2)),3
2
⊗ St),

1≤ n1 ≤ 5, n1+n2= 6, where St denotes the standard representation of GL(n2,C).
When 1≤ n1 ≤ 3, (3.4.3) is valid by [Harris and Taylor 2001; Henniart 2000].

For n1 = 5 and thus n2 = 1, (3.4.4) is Example 3.3. It remains to address the
case n1 = 4 and n2 = 2. Equality (3.4.4) in this case follows from Kim’s work on
functoriality for 32

: GL4(C)→ GL6(C). In fact, (3.4.4) is equivalent to

(3.4.5) L(s,32ρ1⊗ ρ2)= L(s, π(32ρ1)×π(ρ2)),

by [Harris and Taylor 2001; Henniart 2000] in which 32ρ1 is a six dimensional
continuous representation of W ′F . What we need to verify is the equality

(3.4.6) L(s,32ρ1⊗ ρ2)= L(s,32(π(ρ1))×π(ρ2))

= L(s, (π(ρ1), π(ρ2)),3
2
⊗ St).

This is proved by Kim [2003]. We collect this as:
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Proposition 3.5. Let (ρ, π(ρ)) be a pair with ρ = ρ0⊗ η a representation of W ′F
into GL(6,C)×GL(1,C). Let π0 = π(ρ0). Then

(3.5.1) L(s,33ρ0⊗ η)= L(s, π0,3
3
⊗ η)

= L(s, π(ρ0)⊗ η,3
3
⊗ St).

Remark 3.6. The pairs (E sc
7 ,Mα4) and (E8,Mα4) give L(s, π0 ⊗ η, 33

⊗ St),
where η ∈ F̂∗ and π0 is an irreducible admissible representation of either GL(7, F)
or GL(8, F), respectively [Langlands 1971a; Shahidi 2010]. To get equality (3.5.1)
in these cases requires equality (3.4.6) for n1 = 5 and 6, respectively, which
unfortunately are not yet available.

4. Comments on stability of γ -functions

As explained in Section 1, it is the stability of γ -functions, condition (2) of our r -
theory, which is not available in any generality, even within the Langlands–Shahidi
method. On the other hand γ -functions within this method are defined inductively
by means of “local coefficients” [Shahidi 1990; 2010]. These are complex functions
defined by means of standard intertwining operators and Whittaker functionals
for induced representations [Shahidi 2010]. Their definition clearly requires the
representation π of M(F) be generic. But γ -functions defined through the method
can be extended even to cases where π is not generic. This is done by means of
Langlands classification (page 322 of [Shahidi 1990]).

It is thus enough to show that each local coefficient is stable under twists by
highly ramified characters. We shall now briefly explain how one expects to prove
stability.

As before, we assume (G,M) is a pair of a quasisplit connected reductive group
G and a Levi subgroup M of one of its maximal parabolics, P = M N , both defined
over F which we will assume to be a p-adic field of characteristic zero. We let α
denote the unique simple root in N . The method is now being developed for fields
of positive characteristic mainly by Luis Lomelí with some collaboration by Guy
Henniart (see [Lomelí 2009; Henniart and Lomelí 2011]).

With notation as in the previous section, we let L M act on Ln and let ri , 1≤ i ≤m,
be its irreducible subrepresentations ordered as in [Shahidi 1990; 2010]. The γ -
factors γ (s, π, ri , ψF ), when π is an irreducible admissible generic representation
of M(F), satisfy

(4.1) C(s, π)= CψF (s, π)= λG(ψF , w0)
−1

m∏
i=1

γ (is, π, r̃i , ψ F ),

where C(s, π) is the corresponding local coefficient. Here π is assumed to be
generic with respect to the generic character of UM(F) defined by ψF and a fixed
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F-splitting of G (and thus M). For simplicity we call π ψF -generic, not men-
tioning the splitting. The factor λ(ψF , w0) is a product of Langlands λ-functions,
Hilbert symbols, and w0 is the representative of the element w̃`w̃−1

`,M of Weyl group
W (G, T ). Here B = T U is a fixed Borel subgroup over F , giving our splitting,
M ⊃ T , U ⊃ N , UM =U ∩M . We recall that fixing the splitting leads to a choice
of a representative for any Weyl group element, w0 representing that of w̃`w̃−1

ρ,M .
We refer to Chapter 8 of [Shahidi 2010], specifically Remarks 8.2.1 and 8.2.2, for a
complete discussion of these factors and their choices.

With notation as in Section 1, item 2 (stability), one can formulate stability for
C(s, π) as follows:

Conjecture 4.1. Given a pair of irreducible admissible ψF -generic representations
π1 and π2 of M(F) with same central characters,

C(s, π1⊗χ)= C(s, π2⊗χ),

where χ is a suitably highly ramified character of M(F).

As experience has shown, at least in a number of important cases [Asgari and
Shahidi 2006; 2011; Cogdell et al. 2004; 2005; 2008; ≥ 2012; Kim and Krishna-
murthy 2005], this can be proved by expressing C(s, π) as a Mellin transform of a
Bessel function on M(F). This was attained by establishing an integral representa-
tion for C(s, π)−1 in [Shahidi 2002]. The formula is under the assumption that P
is self-associate. This means that N = w0 Nw−1

0 = N−, where N− is the unipotent
subgroup opposed to N .

We first recall the partial Bessel function involved. Let ωπ be the central character
of π and define w0(ωπ )(z)= ωπ (w−1

0 zw0). Given s ∈ C, set πs = π ⊗ q〈sα̃,HM (·)〉

and define

(4.2) ωπs (z)= ωπ (z)q
〈sα̃,HM (z)〉.

We refer to [Shahidi 1988] for the definition of α̃. Fix a sufficiently large open
compact subgroup N 0 ⊂ N . Let ϕ denote its characteristic function.

For almost all n ∈ N (F),

(4.3) w−1
0 n = mn′n,

m ∈ M(F), n′ ∈ N (F), n ∈ N (F). This sets up a densely defined map

n 7→ (m, n)

from N (F) into M(F)× N (F). While n 7→ n is a bijection, n 7→ m may not be
one; see [Shahidi 2002].
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Let Wv be a Whittaker function in the space W (πs) of πs such that Wv(e)= 1.
Given z ∈ Z M(F), we define the partial Bessel function

(4.4) jv,ϕ(m, n, z) :=
∫

UM,n(F)\UM (F)
Wv(mu−1)ϕ(zunu−1z−1)ψF (u) du.

Let α be the unique simple root of T in U generating N .
We may assume H 1(F, ZG)= 1, which we can attain by enlarging G without

changing its derived group. It will not affect our results. Lemma 5.2 of [Shahidi
2002] then implies existence of a map α∨ from F∗ into Z0

M = ZG(F)\Z M(F) such
that α′(α∨(t))= t , t ∈ F∗, for any root α′ of T that restricts to α.

We need to define a scalar xα defined by n. It is simply the α-coordinate of
w−1

0 nw0 ∈ N by means of our fixed splitting.
Given y ∈ F∗, set

(4.5) jv,ϕ(m, n, y) := jv,ϕ(m, n, α∨(y−1
· xα)),

whenever xα 6= 0.
We also let Z0

MUM(F) act on N (F) by conjugation and write Z0
MUM(F)\N (F)

for the corresponding quotient space.

Theorem 4.2 [Shahidi 2002, Theorem 6.2, second part]. Suppose ωπ (w0ω
−1
π ) is

ramified. Fix y0 ∈ F such that ordF (y0)=−d − f , where d and f are conductors
of ψF and ω−1

π · (w0ωπ ), respectively. Then up to an abelian Tate γ -factor attached
to ωπ · (w0ω

−1
π ) and ψF ,

(4.6) C(s, π)−1

∼

∫
Z0

M UM (F)\N (F)
jṽ,ϕ(m, n, y0)ω

−1
πs
(xα)(w0ωπs )(xα)q

〈sα̃+ρ,HM (m)〉dṅ.

Here xα is embedded in Z M(F) through α∨ and v= ṽ⊗q〈sα̃,HM ( )〉. More precisely,
ṽ is the vector in the space of π that goes to v in the space of πs .

We refer to [Shahidi 2009] for some of the geometric issues in analyzing the
integral in (4.6).

It is Equation (4.6) which has been the main tool in proving stability in a number
of important cases, all of significance in establishing functoriality [Cogdell and
Piatetski-Shapiro 1998; Cogdell et al. 2004; 2005; 2008; Kim and Krishnamurthy
2005; Asgari and Shahidi 2006; 2011].

What one has to do is to prove an asymptotic expansion for the partial Bessel
function jṽ,ϕ . In fact, in the cases of classical or GSpin groups, one basically needs
to deal with M =GL(1)×G1, where G1 is one of these groups, as a maximal Levi
subgroup inside a larger group G of the same type.
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The philosophy of expressing γ -functions as a Mellin transform of a partial
Bessel function goes back to Cogdell and Piatetski-Shapiro [1998] who proved such
a formula as well as the asymptotic expansion for the corresponding partial Bessel
functions when G1 = SO(2n+ 1). Using Equation (4.6), which was established in
[Shahidi 2002], the corresponding stability for other cases were proved in [Cogdell
et al. 2004; 2005; 2008; Kim and Krishnamurthy 2005; Asgari and Shahidi 2006].

In [Cogdell, Shahidi and Tsai ≥ 2012], the authors study the case (G,M) =
(GSp(2n), GL(n)×GL(1)), where the γ -factor γ (s, π,32, ψF ) appears. Using a
robust deformation argument which should apply more generally whenever LLC is
available, the equality

(4.7) γ (s,32
· ρ,ψF )= γ (s, π(ρ),32, ψF )

is reduced to a proof of stability for only when ρ is irreducible and thus only when
π = π(ρ) is supercuspidal in [Cogdell, Shahidi and Tsai ≥ 2012]. A proof of
stability in the supercuspidal case also seems to be within reach, using (4.6) and the
asymptotics of the full Bessel functions for GL(n) proved by Jacquet and Ye [1996].
In particular, it is shown that the asymptotics of the partial Bessel function jṽ,ϕ can
still be deduced from those of full Bessel functions and thus germ expansions in
[Jacquet and Ye 1996]. The case of symmetric squares

(4.8) γ (s,Sym2
·ρ,ψF )= γ (s, π(ρ),Sym2, ψF )

follows immediately from

γ (s, π ×π,ψF )= γ (s, π,32, ψF )γ (s, π,Sym2, ψF ),(4.9)

γ (s, ρ⊗ ρ,ψF )= γ (s,32
· ρ,ψF )γ (s,Sym2

·ρ,ψF ),(4.10)

and

(4.11) γ (s, ρ⊗ ρ,ψF )= γ (s, π(ρ)×π(ρ), ψF ),

the last being part of LLC in [Harris and Taylor 2001; Henniart 2000]. The γ -factors
γ (s, π,32, ψF ) and γ (s, π,Sym2, ψF ) are those defined by the Langlands–Shahidi
method as special cases of the general definition given in [Shahidi 1990].

The case of Rankin product L-functions for GL(n)×GL(n) using this approach
has been addressed in [Tsai 2011]. The cases of non-self-associate maximal parabol-
ics are also being addressed, and an analogue of (4.6) for GL(n)×GL(m), n 6= m,
seems to be in hand. This seems to be the most complicated among the cases to be
considered.

For the record, we also refer to [Ramakrishnan 2000] and [Kim and Shahidi
2002], where the equality of certain triple product factors is proved, but using other
techniques such as base change, combined with functoriality.
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We should finally mention the possible application of (4.6), or rather its more
general form (6.38) or its initial form (6.55), both of [Shahidi 2002], in establishing
the local Langlands correspondence for GSp(4) over function fields through Deligne–
Kazhdan philosophy of close fields. If successful the problem is then reduced to
that of LLC for GSp(4) over number fields, already established in [Gan and Takeda
2011]. We refer to [Ganapathy 2012] for a discussion of this philosophy and the
treatment of LLC for GL(n) through this approach.
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