Vol. 261, No. 1, 2013

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Coarse median spaces and groups

Brian H. Bowditch

Vol. 261 (2013), No. 1, 53–93
Abstract

We introduce the notion of a coarse median on a metric space. This satisfies the axioms of a median algebra up to bounded distance. The existence of such a median on a geodesic space is quasi-isometry invariant, and so it applies to finitely generated groups via their Cayley graphs. We show that asymptotic cones of such spaces are topological median algebras. We define a notion of rank for a coarse median and show that this bounds the dimension of a quasi-isometrically embedded euclidean plane in the space. Using the centroid construction of Behrstock and Minsky, we show that the mapping class group has this property, and recover the rank theorem of Behrstock and Minsky and of Hamenstädt. We explore various other properties of such spaces, and develop some of the background material regarding median algebras.

Keywords
median algebra, cube complex, rank, mapping class group
Mathematical Subject Classification 2010
Primary: 20F65
Milestones
Received: 16 November 2011
Revised: 24 July 2012
Accepted: 31 July 2012
Published: 28 February 2013
Authors
Brian H. Bowditch
Mathematics Institute
University of Warwick
Coventry, CV4 7AL
United Kingdom
http://www.warwick.ac.uk/~masgak