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We apply the Hopf’s strong maximum principle in order to obtain a suit-
able characterization of the complete linear Weingarten hypersurfaces im-
mersed in a real space form Qn+1

c of constant sectional curvature c. Under
the assumption that the mean curvature attains its maximum and supposing
an appropriated restriction on the norm of the traceless part of the second
fundamental form, we prove that such a hypersurface must be either totally
umbilical or isometric to a Clifford torus, if c = 1, a circular cylinder, if
c= 0, or a hyperbolic cylinder, if c=−1.

1. Introduction and statement of the main result

Many authors have approached the problem of characterizing hypersurfaces im-
mersed with constant mean curvature or with constant scalar curvature in a real space
form Qn+1

c of constant sectional curvature c. In this setting, Cheng and Yau [1977]
introduced a new self-adjoint differential operator � acting on smooth functions
defined on Riemannian manifolds. As a byproduct of this approach they were able
to classify closed hypersurfaces Mn with constant normalized scalar curvature R
satisfying R ≥ c and nonnegative sectional curvature immersed in Qn+1

c . Later on,
Li [1996] extended the results of Cheng and Yau in terms of the squared norm
of the second fundamental form of the hypersurface Mn . Shu [2007] applied the
generalized Omori–Yau maximum principle [Omori 1967; Yau 1975] to prove that
a complete hypersurface Mn in the hyperbolic space Hn+1 with constant normalized
scalar curvature and nonnegative sectional curvature must be either totally umbilical
or isometric to a hyperbolic cylinder H1(−

√
1+ r2)×Sn−1(r).

Li [1997] studied the rigidity of compact hypersurfaces with nonnegative sec-
tional curvature immersed in a unit sphere with scalar curvature proportional to
mean curvature. Next, Li et al. [2009] extended the result of [Cheng and Yau
1977; Li 1997] by considering linear Weingarten hypersurfaces immersed in the

MSC2010: primary 53C42; secondary 53A10, 53C20, 53C50.
Keywords: space forms, linear Weingarten hypersurfaces, totally umbilical hypersurfaces, Clifford

torus, circular cylinder, hyperbolic cylinder.

33

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2013.261-1
http://dx.doi.org/10.2140/pjm.2013.261.33


34 CÍCERO P. AQUINO, HENRIQUE F. DE LIMA AND MARCO A. L. VELÁSQUEZ

unit sphere Sn+1, that is, hypersurfaces of Sn+1 whose mean curvature H and
normalized scalar curvature R satisfy R = aH + b, for some a, b ∈ R. In this
setting, they showed that if Mn is a compact linear Weingarten hypersurface with
nonnegative sectional curvature immersed in Sn+1, such that R = aH + b with
(n − 1)a2

+ 4n(b− 1) ≥ 0, then Mn is either totally umbilical or isometric to a
Clifford torus Sk(

√
1− r2)×Sn−k(r), where 1≤ k ≤ n−1. Thereafter, Shu [2010]

obtained some rigidity theorems concerning to linear Weingarten hypersurfaces
with two distinct principal curvatures immersed in Qn+1

c .
In [Brasil et al. 2010], Brasil Jr., Colares and Palmas used the generalized

maximum principle of Omori–Yau to characterize complete hypersurfaces with
constant scalar curvature in Sn+1. By applying a weak Omori–Yau maximum
principle due to Pigola, Rigoli and Setti [Pigola et al. 2005], Alías and García-
Martínez [2010] studied the behavior of the scalar curvature R of a complete
hypersurface immersed with constant mean curvature into a real space form Qn+1

c ,
deriving a sharp estimate for the infimum of R. More recently, Alías, García-
Martínez and Rigoli [Alías et al. 2012] obtained another suitable weak maximum
principle for complete hypersurfaces with constant scalar curvature in Qn+1

c , and
gave some applications of it in order to estimate the norm of the traceless part of its
second fundamental form. In particular, they extended the main theorem of [Brasil
et al. 2010] for the context of Qn+1

c .
Here, our purpose is to establish a new characterization theorem concerning the

complete linear Weingarten hypersurfaces immersed in a real space form Qn+1
c .

Under the assumption that the mean curvature H attains its maximum along the hy-
persurface Mn and supposing an appropriated restriction on the norm of the traceless
part 8 of the second fundamental form of Mn , we get the following theorem.

Theorem 1.1. Let Mn be a complete linear Weingarten hypersurface immersed in
a real space form Qn+1

c , n ≥ 3, such that R = aH + b with b > c. Suppose that
R > 0, when c= 0 or c=−1, and that R > (n− 2)/n, when c= 1. If H attains its
maximum on Mn and

(1-1) sup
M
|8|2 ≤

n(n− 1)R2

(n− 2)(n R− (n− 2)c)
,

then either

i. |8| ≡ 0 and Mn is totally umbilical, or

ii. |8|2 ≡
n(n− 1)R2

(n− 2)(n R− (n− 2)c)
and Mn is isometric to

(a) a Clifford torus S1(
√

1− r2)×Sn−1(r), when c = 1,
(b) a circular cylinder R×Sn−1(r), when c = 0, or
(c) a hyperbolic cylinder H1(−

√
1+ r2)×Sn−1(r), when c =−1,
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where in each case r =
√

n−2
n R

.

The proof of Theorem 1.1 is given in Section 3, jointly with a corollary related
to the compact case.

2. Preliminaries

In this section we will introduce some basic facts and notation that will appear on
the paper. In what follows, we will suppose that all hypersurfaces are orientable
and connect.

Let Mn be an n-dimensional hypersurface in a real space form Qn+1
c . We choose

a local field of orthonormal frame {eA} in Qn+1
c , with dual coframe {ωA}, such that,

at each point of Mn , e1, . . . , en are tangent to Mn and en+1 is normal to Mn . We
will use the following convention for the indices:

1≤ A, B,C, . . .≤ n+ 1, 1≤ i, j, k, . . .≤ n.

In this setting, denoting by {ωAB} the connection forms of Qn+1
c , we have that

the structure equations of Qn+1
c are given by

dωA =
∑

i

ωAi ∧ωi +ωAn+1 ∧ωn+1, ωAB +ωB A = 0,(2-1)

dωAB =
∑

C

ωAC ∧ωC B −
1
2

∑
C,D

K ABC DωC ∧ωD,(2-2)

K ABC D = c(δACδB D − δADδBC).(2-3)

Next, we restrict all the tensors to Mn . First of all, ωn+1 = 0 on Mn , so∑
i ωn+1i ∧ωi = dωn+1 = 0 and by Cartan’s Lemma [1938] we can write

(2-4) ωn+1i =
∑

j

hi jω j , hi j = h j i .

This gives the second fundamental form of Mn , B =
∑

i j hi jωiω j en+1. The
mean curvature H of Mn is defined by H = 1

n

∑
i hi i .

The structure equations of Mn are

dωi =
∑

j

ωi j ∧ω j , ωi j +ω j i = 0,(2-5)

dωi j =
∑

k

ωik ∧ωk j −
1
2

∑
k,l

Ri jklωk ∧ωl .(2-6)

Using the structure equations we obtain the Gauss equation
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(2-7) Ri jkl = c(δikδ jl − δilδ jk)+ (hikh jl − hilh jk),

where Ri jkl are the components of the curvature tensor of Mn .
The Ricci curvature and the normalized scalar curvature of Mn are given, respec-

tively, by

Ri j = (n− 1)cδi j + nHhi j −
∑

k

hikhk j ,(2-8)

R = 1
n(n−1)

∑
i

Ri i .(2-9)

From (2-8) and (2-9) we obtain

(2-10) |B|2 = n2 H 2
− n(n− 1)(R− c),

where |B|2 =
∑

i, j h2
i j is the square of the length of the second fundamental form

B of Mn .
Set 8i j = hi j − Hδi j . We will also consider the following symmetric tensor

8=
∑
i, j

8i jωiω j .

Let |8|2 =
∑

i, j 8
2
i j be the square of the length of 8. It is easy to check that 8 is

traceless and, from (2-10), we get

(2-11) |8|2 = |B|2− nH 2
= n(n− 1)H 2

− n(n− 1)(R− c).

The components hi jk of the covariant derivative ∇B satisfy

(2-12)
∑

k

hi jkωk = dhi j +
∑

k

hikωk j +
∑

k

h jkωki .

The Codazzi equation and the Ricci identity are, respectively, given by

hi jk = hik j ,(2-13)

hi jkl − hi jlk =
∑

m

hmj Rmikl +
∑

m

him Rmjkl,(2-14)

where hi jk and hi jkl denote the first and the second covariant derivatives of hi j .
The Laplacian 1hi j of hi j is defined by 1hi j =

∑
k hi jkk . From (2-13) and

(2-14), we obtain

(2-15) 1hi j =
∑

k

hkki j +
∑
k,l

hkl Rli jk +
∑
k,l

hli Rlk jk .

Since 1|B|2 = 2
(∑

i, j hi j1hi j +
∑

i, j,k h2
i jk

)
, from (2-15) we get

(2-16) 1
21|B|

2
= |∇B|2+

∑
i,i,k

hi j hkki j +
∑

i, j,k,l

hi j hlk Rli jk +
∑

i, j,k,l

hi j hil Rlk jk .
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Consequently, taking a (local) orthonormal frame {e1, . . . , en} on Mn such that
hi j = λiδi j , from (2-16) we obtain the following Simons-type formula

(2-17) 1
21|B|

2
= |∇B|2+

∑
i

λi (nH),i i + 1
2

∑
i, j

Ri j i j (λi − λ j )
2.

Let φ=
∑

i, j φi jωiω j be a symmetric tensor on Mn defined by φi j = nHδi j−hi j .
Following [Cheng and Yau 1977], we introduce a operator � associated to φ acting
on any smooth function f by

(2-18) � f =
∑
i, j

φi j fi j =
∑
i, j

(nHδi j − hi j ) fi j .

Since φi j is divergence-free, it follows from the same reference that the operator �
is self-adjoint relative to the L2 inner product of Mn , that is,∫

M
f �g =

∫
M

g � f,

for any smooth functions f and g on Mn .
Now, setting f = nH in (2-18) and taking a local frame field {e1, . . . , en} on

Mn such that hi j = λiδi j , from (2-10) we obtain the following:

�(nH)= nH1(nH)−
∑

i

λi (nH),i i

=
1
21(nH)2−

∑
i

(nH)2,i −
∑

i

λi (nH),i i

=
n(n−1)

2
1R+ 1

21|B|
2
− n2
|∇H |2−

∑
i

λi (nH),i i .

Hence, taking into account (2-17), we get

(2-19) �(nH)= n(n−1)
2

1R+ |∇B|2− n2
|∇H |2+ 1

2

∑
i, j

Ri j i j (λi − λ j )
2.

3. Proof of Theorem 1.1 and a corollary

In order to prove our result, to use some auxiliary lemmas are necessary. The first
is a classic algebraic lemma due to M. Okumura [1974], and completed with the
equality case proved by H. Alencar and M. do Carmo [1994].

Lemma 3.1. Let µ1, . . . , µn be real numbers such that
∑

iµi = 0 and
∑

iµ
2
i = β

2,
where β ≥ 0. Then

(3-1) −
n− 2
√

n(n− 1)
β3
≤

∑
i

µ3
i ≤

n− 2
√

n(n− 1)
β3,

and equality holds if and only if at least n−1 of the numbers µi are equal.
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To obtain the second lemma, we will reason as in the proof of Lemma 2.1 of [Li
et al. 2009].

Lemma 3.2. Let Mn be a linear Weingarten hypersurface in a space form Qn+1
c ,

such that R = aH + b for some a, b ∈ R. Suppose that

(3-2) (n− 1)a2
+ 4n(b− c)≥ 0.

Then

(3-3) |∇B|2 ≥ n2
|∇H |2.

Moreover, if the inequality (3-2) is strict and equality holds in (3-3) on Mn , then H
is constant on Mn .

Proof. Since we are supposing that R = aH + b, from (2-10) we get

2
∑
i, j

hi j hi jk = (2n2 H − n(n− 1)a)H,k .

Thus,

4
∑

k

(∑
i, j

hi j hi jk

)2

= (2n2 H − n(n− 1)a)2|∇H |2.

Consequently, using the Cauchy–Schwartz inequality, we obtain

(3-4) 4|B|2|∇B|2 = 4
(∑

i, j

h2
i j

)(∑
i, j,k

h2
i jk

)

≥ 4
∑

k

(∑
i, j

hi j hi jk

)2

= (2n2 H − n(n− 1)a)2|∇H |2.

On the other hand, since R = aH + b, from (2-10) we easily see that

(2n2 H − n(n− 1)a)2 = n2(n− 1)((n− 1)a2
+ 4n(b− c))+ 4n2

|B|2.

Hence, from (3-4) we have

|B|2|∇B|2 ≥ n2
|B|2|∇H |2.

Therefore, we obtain either |B| = 0 and |∇B|2 = n2
|∇H |2, or |∇B|2 ≥ n2

|∇H |2.
Moreover, if (n − 1)a2

+ 4n(b− c) > 0, from the previous identity we get that
(2n2 H − n(n− 1)a)2 > 4n2

|B|2. Now, let us assume in addition that the equality
holds in (3-3) on Mn . In this case, we wish to show that H is constant on Mn .
Suppose, by way of contradiction, that it does not occur. Consequently, there exists
a point p ∈ Mn such that |∇H(p)|> 0. So, one deduces from (3-4) that

4 |B(p)|2 |∇B(p)|2 > 4n2
|B(p)|2 |∇H(p)|2
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and, since |∇B(p)|2 = n2
|∇H(p)|2 > 0, we arrive at a contradiction. Hence, in

this case, we conclude that H must be constant on Mn . �

In what follows, we will consider the Cheng–Yau modified operator

(3-5) L =�− n−1
2

a1.

Related to operator, we have the following sufficient criterion for ellipticity.

Lemma 3.3. Let Mn be a linear Weingarten hypersurface immersed in a space
form Qn+1

c , such that R = aH + b with b > c. Then, L is elliptic.

Proof. From (2-10), since R = aH + b with b > c, we easily see that H can not
vanish on Mn and, by choosing the appropriate Gauss mapping, we may assume
that H > 0 on Mn .

Let us consider the case that a = 0. Since R = b > c, from (2-10) if we choose
a (local) orthonormal frame {e1, . . . , en} on Mn such that hi j = λiδi j , we have∑

i< j λiλ j > 0. Consequently,

n2 H 2
=

∑
i

λ2
i + 2

∑
i< j

λiλ j > λ
2
i

for every i = 1, . . . , n and, hence, we have that nH −λi > 0 for every i . Therefore,
in this case, we conclude that L is elliptic.

Now, suppose a 6= 0. From (2-10) we get that

a =− 1
n(n−1)H

(|B|2− n2 H 2
+ n(n− 1)(b− c)).

Hence, for every i = 1, . . . , n, a straightforward algebraic computation yields

nH − λi −
n−1

2
a = nH − λi +

1
2nH

(|B|2− n2 H 2
+ n(n− 1)(b− c))

=
1

2nH

(∑
j 6=i

λ2
j +

(∑
j 6=i

λ j

)2

+ n(n− 1)(b− c)
)
.

Therefore, since b > c, we also conclude in this case that L is elliptic. �

Proof of Theorem 1.1. Choose a (local) orthonormal frame {e1, . . . , en} on Mn

such that hi j = λiδi j . Since R = aH + b, from (2-19) and (3-5) we have

(3-6) L(nH)= |∇B|2− n2
|∇H |2+ 1

2

∑
i, j

Ri j i j (λi − λ j )
2.

Thus, since from (2-7) we have Ri j i j = λiλ j + c, we get from (3-6)

(3-7) L(nH)= |∇B|2− n2
|∇H |2+ nc(|B|2− nH 2)− |B|4+ nH

∑
i

λ3
i .
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Moreover, we have 8i j = µiδi j and, with a straightforward computation, we
verify that

(3-8)
∑

i

µi = 0,
∑

i

µ2
i = |8|

2 and
∑

i

µ3
i =

∑
i

λ3
i − 3H |8|2− nH 3.

Thus, using Gauss (2-7) jointly with (3-8) into (3-7), we get

(3-9) L(nH)= |∇B|2− n2
|∇H |2+ nH

∑
i

µ3
i + |8|

2(−|8|2+ nH 2
+ nc).

By applying Lemmas 3.1 and 3.2, from (3-9) we have

(3-10) L(nH)≥ |8|2
(
−|8|2−

n(n−2)
√

n(n−1)
H |8| + nH 2

+ nc
)
.

On the other hand, from (2-11), we obtain

(3-11) H 2
=

1
n(n−1)

|8|2+ (R− c)

Thus, from (3-10) and (3-11) we get

(3-12) L(H)≥ 1
n(n−1)

|8|2 PR(|8|),

where

PR(x)=−(n− 2)x2
− (n− 2)x

√
x2+ n(n− 1)(R− c)+ n(n− 1)R.

Since we are supposing that R > 0, PR(0) = n(n− 1)R > 0 and the function
PR(x) is strictly decreasing for x ≥ 0, with PR(x∗)= 0 at

x∗ = R
√

n(n−1)
(n−2)(n R−(n−2)c)

> 0.

Thus, the hypothesis (1-1) guarantees that

(3-13) L(H)≥
1

n(n− 1)
|8|2 PR(|8|)≥ 0.

Consequently, since Lemma 3.3 guarantees that L is elliptic and as we are
supposing that H attains its maximum on Mn , from (3-13) we conclude that H is
constant on Mn . Thus, taking into account (3-6), we get

|∇B|2 = n2
|∇H |2 = 0,

and it follows that λi is constant for every i = 1, . . . , n.
If |8| < x∗, then from (3-13) we have that |8| = 0 and, hence, Mn is totally

umbilical. If |8| = x∗, since the equality holds in (3-1) of Lemma 3.1, we conclude
that Mn is either totally umbilical or an isoparametric hypersurface with two distinct
principal curvatures one of which is simple.
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Hence, by the classical results on isoparametric hypersurfaces of real space forms
[Cartan 1938; Levi-Civita 1937; Segre 1938] and since we are supposing R > 0,
we conclude that either |8| = 0 and Mn is totally umbilical, or

|8|2 =
n(n− 1)R2

(n− 2)(n R− (n− 2)c)

and Mn is isometric to

(a) a Clifford torus S1(
√

1− r2)×Sn−1(r), with 0< r < 1, if c = 1,

(b) a circular cylinder R×Sn−1(r), with r > 0, if c = 0, or

(c) a hyperbolic cylinder H1(−
√

1+ r2)×Sn−1(r), with r > 0, if c =−1.

When c = 1, for a given radius 0 < r < 1, is a standard fact that the product
embedding S1(

√
1− r2) × Sn−1(r) ↪→ Sn+1 has constant principal curvatures

given by

λ1 =
r

√
1− r2

, λ2 = · · · = λn =−

√
1− r2

r
.

Thus, in this case,

H =
nr2
− (n− 1)

nr
√

1− r2
and |8|2 =

n− 1
nr2(1− r2)

.

When c= 0, for a given radius r > 0, R×Sn−1(r) ↪→Rn+1 has constant principal
curvatures given by

λ1 = 0, λ2 = · · · = λn =
1
r
.

In this case,

H =
n− 1

nr
and |8|2 =

n− 1
nr2 .

Finally, when c=−1, for a given radius r>0, H1(−
√

1+ r2)×Sn−1(r) ↪→Hn+1

has constant principal curvatures given by

λ1 =
r

√
1+ r2

, λ2 = · · · = λn =

√
1+ r2

r
.

Thus, in this case,

H =
nr2
+ (n− 1)

nr
√

1+ r2
and |8|2 =

n− 1
nr2(1+ r2)

.

To finish our proof, we use (2-11) and verify with algebraic computations that in
all these situations we must have r =

√
(n− 2)/(n R). �
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Using the inequality (3-13) and taking into account that the operator L is self-
adjoint relative to the L2 inner product of the hypersurface Mn , we also get the
following result:

Corollary 3.4. Let Mn be a compact linear Weingarten hypersurface immersed in
a real space form Qn+1

c , n ≥ 3, such R = aH + b with (n− 1)a2
+ 4n(b− c)≥ 0.

Suppose that R > 0 when c = 0 or c =−1, and that R > (n− 2)/n when c = 1. If

sup
M
|8|2 <

n(n− 1)R2

(n− 2)(n R− (n− 2)c)
,

then |8| ≡ 0 and Mn is isometric to Sn , up to scaling.
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