CALOGERO–MOSER VERSUS KAZHDAN–LUSZTIG CELLS

CÉDRIC BONNAFÉ AND RAPHAËL ROUQUIER
CALOGERO–MOSER VERSUS KAZHDAN–LUSZTIG CELLS

CÉDRIC BONNAFÉ AND RAPHAËL ROQUIER

In 1979, Kazhdan and Lusztig developed a combinatorial theory associated with Coxeter groups, defining in particular partitions of the group in left and two-sided cells. In 1983, Lusztig generalized this theory to Hecke algebras of Coxeter groups with unequal parameters. We propose a definition of left cells and two-sided cells for complex reflection groups, based on ramification theory for Calogero-Moser spaces. These spaces have been defined via rational Cherednik algebras by Etingof and Ginzburg. We conjecture that these coincide with Kazhdan-Lusztig cells, for real reflection groups. Counterparts of families of irreducible characters have been studied by Gordon and Martino, and we provide here a version of left cell representations. The Calogero-Moser cells will be studied in details in a forthcoming paper, providing thus several results supporting our conjecture.

1. Introduction

Kazhdan and Lusztig [1979] developed a combinatorial theory associated with Coxeter groups. They defined in particular partitions of the group in left and two-sided cells. For Weyl groups, these have a representation-theoretic interpretation in terms of primitive ideals, and they play a key role in Lusztig’s description [1984] of unipotent characters for finite groups of Lie type. Lusztig [1983; 2003] generalized this theory to Hecke algebras of Coxeter groups with unequal parameters.

We propose a definition of left cells and two-sided cells for complex reflection groups, based on ramification theory for Calogero–Moser spaces. These spaces have been defined via rational Cherednik algebras by Etingof and Ginzburg [2002]. We conjecture that these coincide with Kazhdan–Lusztig cells, for real reflection groups. Counterparts of families of irreducible characters have been studied by Gordon and Martino [2009], and we provide here a version of left cell representations. The Calogero–Moser cells are studied in detail in [Bonnafé and Rouquier ≥ 2013].

MSC2010: 20C08.

Keywords: Hecke algebra, reflection group, Cherednik algebra, Kazhdan–Lusztig theory.
2. Calogero–Moser spaces and cells

Rational Cherednik algebras at $t = 0$. Let us recall some constructions and results from [Etingof and Ginzburg 2002]. Let V be a finite-dimensional complex vector space and W a finite subgroup of $GL(V)$. Let \mathcal{S} be the set of reflections of W, that is, elements g such that $\ker(g - 1)$ is a hyperplane. We assume that W is a reflection group, that is, it is generated by \mathcal{S}.

We denote by \mathcal{S}/\sim the quotient of \mathcal{S} by the conjugation action of W and we let $\{c_s\}_{s \in \mathcal{S}/\sim}$ be a set of indeterminates. We put $A = \mathbb{C}[\mathcal{S}/\sim] = \mathbb{C}[\{c_s\}_{s \in \mathcal{S}/\sim}]$. Given $s \in \mathcal{S}$, let $v_s \in V$ and $\alpha_s \in V^*$ be eigenvectors for s associated to the nontrivial eigenvalue.

The 0-rational Cherednik algebra H is the quotient of $A \otimes T(V \oplus V^*) \rtimes W$ by the relations

$$[x, x'] = [\xi, \xi'] = 0,$$

$$[\xi, x] = \sum_{s \in \mathcal{S}} c_s \frac{(v_s, x) \cdot (\xi, \alpha_s)}{(v_s, \alpha_s)} s \text{ for } x, x' \in V^* \text{ and } \xi, \xi' \in V.$$

We put $Q = Z(H)$ and $P = A \otimes S(V^*)^W \otimes S(V)^W \subset Q$. The ring Q is normal. It is a free P-module of rank $|W|$.

Galois closure. Let $K = \text{Frac}(P)$ and $L = \text{Frac}(Q)$. Let M be a Galois closure of the extension L/K and R the integral closure of Q in M. Let $G = \text{Gal}(M/K)$ and $H = \text{Gal}(M/L)$. Let $\mathcal{P} = \text{Spec } P = \mathbb{A}_\mathbb{C}^{\mathcal{S}/\sim} \times V/W \times V^*/W$, $\mathcal{Q} = \text{Spec } Q$ the Calogero–Moser space, and $\mathcal{R} = \text{Spec } R$.

We denote by $\pi : \mathcal{R} \to \mathcal{Q}$ the quotient by H, and by $\gamma : \mathcal{Q} \to \mathcal{P}$ and $\phi : \mathcal{P} \to \mathbb{A}_\mathbb{C}^{\mathcal{S}/\sim}$ the canonical maps. We put $p = \gamma \pi : \mathcal{R} \to \mathcal{P}$ the quotient by G.

Ramification. Let $\mathfrak{r} \in \mathcal{R}$ be a prime ideal of R. We denote by $D(\mathfrak{r}) \subset G$ its decomposition group and by $I(\mathfrak{r}) \subset D(\mathfrak{r})$ its inertia group.

We have a decomposition into irreducible components

$$\mathcal{R} \times_{\mathcal{P}} \mathcal{Q} = \bigcup_{g \in G/H} \mathcal{O}_g, \text{ where } \mathcal{O}_g = \{(x, \pi(g^{-1}(x))) \mid x \in \mathcal{R}\},$$

inducing a decomposition into irreducible components

$$V(\mathfrak{r}) \times_{\mathcal{P}} \mathcal{Q} = \bigsqcup_{g \in I(\mathfrak{r}) \setminus G/H} \mathcal{O}_g(\mathfrak{r}), \text{ where } \mathcal{O}_g(\mathfrak{r}) = \{(x, \pi(g^{-1}g'(x))) \mid x \in V(\mathfrak{r}), g' \in I(\mathfrak{r})\}.$$

Undeformed case. Let $\mathfrak{p}_0 = \phi^{-1}(0) = \sum_{s \in \mathcal{S}/\sim} P c_s$. We have

$$P/\mathfrak{p}_0 = \mathbb{C}[V \oplus V^*]^W \times W, \quad Q/\mathfrak{p}_0 Q = \mathbb{C}[V \oplus V^*]^{\Delta W},$$

where $\Delta(W) = \{(w, w) \mid w \in W\} \subset W \times W$. A Galois closure of the extension of $\mathbb{C}(\mathfrak{p}_0 Q) = \mathbb{C}(V \oplus V^*)^{\Delta W}$ over $\mathbb{C}(\mathfrak{p}_0) = \mathbb{C}(V \oplus V^*)^{W \times W}$ is $\mathbb{C}(V \oplus V^*)^{\Delta Z(W)}$.

Let \(r_0 \in \mathcal{R} \) above \(p_0 \). Since \(p_0Q \) is prime, we have \(G = D(r_0)H = HD(r_0), I(r_0) = 1 \), and \(\mathbb{C}(r_0) \) is a Galois closure of the extension \(\mathbb{C}(p_0Q)/\mathbb{C}(p_0) \). Fix an isomorphism \(\iota : \mathbb{C}(r_0) \cong \mathbb{C}(V \oplus V^*)^{\Delta Z(W)} \) extending the canonical isomorphism of \(\mathbb{C}(p_0Q) \) with \(\mathbb{C}(V \oplus V^*)^{\Delta W} \).

The application \(\iota \) induces an isomorphism \(D(r_0) \cong (W \times W)/\Delta Z(W) \), that restricts to an isomorphism \(D(r_0) \cap H \cong \Delta W/\Delta Z(W) \). This provides a bijection \(G/H \cong (W \times W)/\Delta W \). Composing with the inverse of the bijection

\[
W \cong (W \times W)/\Delta W, \quad w \mapsto (1, w),
\]

we obtain a bijection \(G/H \cong W \).

From now on, we identify the sets \(G/H \) and \(W \) through this bijection. Note that this bijection depends on the choices of \(r_0 \) and of \(\iota \). Since \(M \) is the Galois closure of \(L/K \), we have \(\bigcap_{g \in G} H^g = 1 \), hence the left action of \(G \) on \(W \) induces an injection \(G \subset \mathcal{S}(W) \).

Calogero–Moser cells.

Definition 2.1. Let \(r \in \mathcal{R} \). The \(r \)-cells of \(W \) are the orbits of \(I(r) \) in its action on \(W \).

Let \(c \in \mathbb{A}_C^{\mathcal{R}/\sim} \). Choose \(r_c \in \mathcal{R} \) with \(p(r_c) = \bar{c} \times 0 \times 0 \). The \(r_c \)-cells are called the two-sided Calogero–Moser c-cells of \(W \). Choose now \(r_c^{\text{left}} \in \mathcal{R} \) contained in \(r_c \) with \(p(r_c^{\text{left}}) = \bar{c} \times V/W \times 0 \in \mathcal{P} \). The \(r_c^{\text{left}} \)-cells are called the left Calogero–Moser c-cells of \(W \). We have \(I(r_c^{\text{left}}) \subset I(r_c) \). Consequently, every left cell is contained in a unique two-sided cell.

The map sending \(w \in W \) to \(\pi(w^{-1}(r_c)) \) induces a bijection from the set of two-sided cells to \(\Upsilon^{-1}(c \times 0 \times 0) \).

Families and cell multiplicities. Let \(E \) be an irreducible representation of \(\mathbb{C}[W] \). We extend it to a representation of \(S(V) \rtimes W \) by letting \(V \) act by 0. Let

\[
\Delta(E) = e \cdot \Ind_{S(V) \rtimes W}^{H} (A \otimes_C E), \quad \text{where} \quad e = \frac{1}{|W|} \sum_{w \in W} w,
\]

be the spherical Verma module associated with \(E \). It is a \(Q \)-module.

Let \(c \in \mathbb{A}_C^{\mathcal{R}/\sim} \) and let \(\Delta^{\text{left}}(E) = (R/r_c^{\text{left}}) \otimes_P \Delta(E) \).

Definition 2.2. Given a left cell \(\Gamma \), we define the cell multiplicity \(m_\Gamma(E) \) of \(E \) as the length of \(\Delta^{\text{left}}(E) \) at the component \(C_\Gamma(r_c^{\text{left}}) \).

Note that \(\sum_\Gamma m_\Gamma(E) \cdot [C_\Gamma(r_c^{\text{left}})] \) is the support cycle of \(\Delta^{\text{left}}(E) \).

There is a unique two-sided cell \(\Lambda \) containing all left cells \(\Gamma \) such that \(m_\Gamma(E) \neq 0 \). Its image in \(\mathbb{Y} \) is the unique \(q \in \Upsilon^{-1}(c \times 0 \times 0) \) such that \((Q/q) \otimes_Q \Delta(E) \neq 0 \). The corresponding map \(\text{Irr}(W) \to \Upsilon^{-1}(c \times 0 \times 0) \) is surjective, and its fibers are the Calogero–Moser families of \(\text{Irr}(W) \), as defined by Gordon [2003].

Dimension 1. Let V be a one-dimensional complex vector space, let $d \geq 2$ and let W be the group of d-th roots of unity acting on V. Let $\zeta = \exp(2i\pi/d)$, let $s = \zeta \in W$ and $c_i = \zeta s_i$ for $1 \leq i \leq d - 1$. We have $A = \mathbb{C}[c_1, \ldots, c_{d-1}]$ and

$$
H = A \left\{ x, \xi, s \mid sx^{-1} = \xi^{-1}x, \ s\xi^{-1} = \xi \xi \text{ and } [\xi, x] = \sum_{i=1}^{d-1} c_i s^i \right\}.
$$

Let $eu = \xi x - \sum_{i=1}^{d-1} (1 - \zeta^{-i})^{-1} \zeta s^i$. We have $P = A[x^d, \xi^d]$ and $Q = A[x^d, \xi^d, eu]$. Define $\kappa_1, \ldots, \kappa_d = \kappa_0$ by $\kappa_1 + \cdots + \kappa_d = 0$ and $\sum_{i=1}^{d-1} c_i s^i = \sum_{i=0}^{d-1} (\kappa_i - \kappa_{i+1}) \varepsilon_i$, where $\varepsilon_i = \frac{1}{d} \sum_{j=0}^{d-1} \zeta^{ij} s^j$. We have $A = \mathbb{C}[\kappa_1, \ldots, \kappa_d]/(\kappa_1 + \cdots + \kappa_d)$.

The normalization of the Galois closure is described as follows. There is an isomorphism of A-algebras

$$
A[X, Y, Z]/\left(XY - \prod_{i=1}^{d} (Z - \kappa_i) \right) \xrightarrow{\sim} Q, \quad X \mapsto x^d, \quad Y \mapsto \xi^d \quad \text{and} \quad Z \mapsto eu.
$$

We have an isomorphism of A-algebras

$$
A[X, Y, \lambda_1, \ldots, \lambda_d]/\left(e_i(\lambda) = e_i(\kappa), \ i = 1, \ldots, d-1, \ e_d(\lambda) = e_d(\kappa) + (-1)^{d+1} XY \right) \xrightarrow{\sim} R,
$$

where $Z = \lambda_d$ and where e_i denotes the i-th elementary symmetric function. We have $G = \mathfrak{S}_d$, acting by permuting the λ_i, and $H = \mathfrak{S}_{d-1}$.

Let $p_0 = (\kappa_1, \ldots, \kappa_d) \in \text{Spec} \, P$ and

$$
t_0 = (\kappa_1, \ldots, \kappa_d, \lambda_1 - \zeta \lambda_d, \ldots, \lambda_{d-1} - \zeta^{d-1} \lambda_d) \in \text{Spec} \, R.
$$

We have $D(t_0) = \langle (1, 2, \ldots, d) \rangle \subset \mathfrak{S}_d$ and

$$
\mathbb{C}(t_0) = \mathbb{C}(X, Y, \lambda_d = \frac{\sqrt{d}}{d} XY) = \mathbb{C}(X, Y, Z = \frac{\sqrt{d}}{d} XY).
$$

The composite bijection $D(t_0) \xrightarrow{\sim} G/H \xrightarrow{\sim} W$ is an isomorphism of groups given by $(1, \ldots, d) \mapsto s$.

Fix $c \in \mathbb{C}^{d-1}$ and let $\kappa_1, \ldots, \kappa_d \in \mathbb{C}$ corresponding to c. Consider $r = r_c$ or τ^left_c as in Section 2 (see right after Definition 2.1). Then $I(t)$ is the subgroup of \mathfrak{S}_d stabilizing $(\kappa_1, \ldots, \kappa_d)$. The left c-cells coincide with the two-sided c-cells and two elements s^i and s^j are in the same cell if and only if $\kappa_i = \kappa_j$. Finally, the multiplicity $m_{\Gamma}(\det^j)$ is 1 if $s^j \in \Gamma$ and 0 otherwise.

3. Coxeter groups

Kazhdan–Lusztig cells. Following [Kazhdan and Lusztig 1979; Lusztig 1983; 2003], let us recall the construction of cells.

We assume here V is the complexification of a real vector space $V_{\mathbb{R}}$ acted on by W. We choose a connected component C of $V_{\mathbb{R}} - \bigcup_{s \in \mathbb{G}} \ker(s - 1)$ and we
We denote by S the set of $s \in S$ such that $\ker(s - 1) \cap \tilde{C}$ has codimension 1 in \tilde{C}. This makes (W, S) into a Coxeter group, and we denote by l the length function.

Let Γ be a totally ordered free abelian group and let $L : W \to \Gamma$ be a weight function, that is, a function such that

$$L(ww') = L(w) + L(w') \quad \text{if } l(ww') = l(w) + l(w').$$

We denote by v^γ the element of the group algebra $\mathbb{Z}[\Gamma]$ corresponding to $\gamma \in \Gamma$.

We denote by H the Hecke algebra of W: this is the $\mathbb{Z}[\Gamma]$-algebra generated by elements T_s with $s \in S$ subject to the relations

$$(T_s - v^{L(s)})(T_s + v^{-L(s)}) = 0 \quad \text{and} \quad \underbrace{T_s T_s \cdots}_{m_{st} \text{ terms}} = \underbrace{T_t T_s T_t \cdots}_{m_{st} \text{ terms}},$$

for $s, t \in S$ with $m_{st} \neq \infty$, where m_{st} is the order of st. Given $w \in W$, we put $T_w = T_{s_1} \cdots T_{s_n}$, where $w = s_1 \cdots s_n$ is a reduced decomposition.

Let i be the ring involution of H given by $i(v^\gamma) = v^{-\gamma}$ for $\gamma \in \Gamma$ and $i(T_s) = T_s^{-1}$. We denote by $\{C_w\}_{w \in W}$ the Kazhdan–Lusztig basis of H. It is uniquely defined by the properties that $i(C_w) = C_w$ and $C_w - T_w \in \bigoplus_{w' \in W} \mathbb{Z}[\Gamma_{<0}]T_{w'}$.

We introduce the partial order \prec_L on W. It is the transitive closure of the relation given by $w' \prec_L w$ if there is $s \in S$ such that the coefficient of C_w' in the decomposition of $C_s C_w$ in the Kazhdan–Lusztig basis is nonzero. We define $w \sim_L w'$ to be the corresponding equivalence relation: $w \sim_L w'$ if and only if $w \prec_L w$ and $w' \prec_L w$. The equivalence classes are the left cells. We define \prec_{LR} as the partial order generated by $w \prec_{LR} w'$ if $w \prec_L w'$ or $w^{-1} \prec_L w'^{-1}$. As above, we define an associated equivalence relation \sim_{LR}. Its equivalence classes are the two-sided cells.

When $\Gamma = \mathbb{Z}$, $L = l$, and W is a Weyl group, a definition of left cells based on primitive ideals in enveloping algebras was proposed by Joseph [1980]: let \mathfrak{g} be a complex semisimple Lie algebra with Weyl group W. Let ρ be the half-sum of the positive roots. Given $w \in W$, let I_w be the annihilator in $U(\mathfrak{g})$ of the simple module with highest weight $-w(\rho) - \rho$. Then, w and w' are in the same left cell if and only if $I_w = I_{w'}$.

Representations and families. Let Γ be a left cell. Let $W_{\leq \Gamma}$ and $W_{< \Gamma}$ be the sets of $w \in W$ such that there is $w' \in \Gamma$ with $w \prec_L w'$ and, respectively, $w \prec_L w'$ and $w \not\in \Gamma$. The left cell representation of W over \mathbb{C} associated with Γ [Kazhdan and Lusztig 1979; Lusztig 2003] is the unique representation, up to isomorphism, that deforms into the left H-module

$$\left(\bigoplus_{w \in W_{\leq \Gamma}} \mathbb{Z}[\Gamma]C_w \right) / \left(\bigoplus_{w \in W_{< \Gamma}} \mathbb{Z}[\Gamma]C_w \right).$$
Lusztig [1982; 2003] has defined the set of constructible characters of W inductively as the smallest set of characters with the following properties: it contains the trivial character, it is stable under tensoring by the sign representation and it is stable under J-induction from a parabolic subgroup. Lusztig’s families are the equivalences classes of irreducible characters of W for the relation generated by $\chi \sim \chi'$ if χ and χ' occur in the same constructible character. Lusztig has determined constructible characters and families for all W and all parameters.

Lusztig has shown for equal parameters, and conjectured in general, that the set of left cell characters coincides with the set of constructible characters.

A conjecture. Let $c \in \mathbb{R}^\mathcal{G}/\sim$. Let Γ be the subgroup of \mathbb{R} generated by \mathbb{Z} and $\{c_s\}_{s \in \mathcal{G}}$. We endow it with the natural order on \mathbb{R}. Let $L : W \to \Gamma$ be the weight function determined by $L(s) = c_s$ if $s \in S$.

The following conjecture is due to Gordon and Martino [2009]. A similar conjecture has been proposed independently by the second author.\(^\text{1}\) It is known to hold for types A_n, B_n, D_n and $I_2(n)$ [Gordon 2008; Gordon and Martino 2009; Bellamy 2011; Martino 2010a; 2010b].

Conjecture 3.1. The Calogero–Moser families of irreducible characters of W coincide with the Lusztig families.

We propose now a conjecture involving partitions of elements of W, via ramification. The part dealing with left cell characters could be stated in a weaker way, using Q and not R, and thus not needing the choice of prime ideals, by involving constructible characters.

Conjecture 3.2. There is a choice of $r_c^\text{left} \subset r_c$ such that

- the Calogero–Moser two-sided cells and left cells coincide with the Kazhdan–Lusztig two-sided cells and left cells, respectively, and
- the representation $\sum_{E \in \text{Irr}(W)} m\Gamma(E)E$, where Γ is a Calogero–Moser left cell, coincide with the left cell representation of the corresponding Kazhdan–Lusztig cell.

Various particular cases and general results supporting **Conjecture 3.2** are provided in [Bonnafé and Rouquier \(\geq 2013\)]. In particular, the conjecture holds for $W = B_2$, for all choices of parameters.

References

\(^\text{1}\)Talk at the Enveloping algebra seminar, Paris, December 2004.
Hierarchies and compatibility on Courant algebroids
PAULO ANTUNES, CAMILLE LAURENT-GENGOUX and JOANA M. NUNES DA COSTA

A new characterization of complete linear Weingarten hypersurfaces in real space forms
CÍCERO P. AQUINO, HENRIQUE F. DE LIMA and MARCO A. L. VELÁSQUEZ

Calogero–Moser versus Kazhdan–Lusztig cells
CÉDRIC BONNAFÉ and RAPHAËL ROUQUIER

Coarse median spaces and groups
BRIAN H. BOWDITCH

Geometrization of continuous characters of \mathbb{Z}_p^\times
CLIFTON CUNNINGHAM and MASoud KAMGarpour

A note on Lagrangian cobordisms between Legendrian submanifolds of \mathbb{R}^{2n+1}
ROMAN GOLOVKO

On slope genera of knotted tori in 4-space
YI LIU, YI NI, HONGBIN SUN and SHIChENG WANG

Formal groups of elliptic curves with potential good supersingular reduction
ÁLVARO LOZANO-ROBLEDO

Codimension-one foliations calibrated by nondegenerate closed 2-forms
DAVID MARTÍNEZ TORRES

The trace of Frobenius of elliptic curves and the p-adic gamma function
DERMOT McCARTHY

(DN)-(Ω)-type conditions for Fréchet operator spaces
KRZYSZTOF PISZCZEK