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We investigate genera of slopes of a knotted torus in the 4-sphere analogous
to the genus of a classical knot. We compare various formulations of this
notion, and use this notion to study the extendable subgroup of the mapping
class group of a knotted torus.
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1. Introduction

In classical knot theory, the genus of a knot in the 3-sphere is a basic numerical
invariant which has been well-studied. In this note, we investigate some analogous
notions for the slopes of a knotted torus in the 4-sphere S4. These reflect certain
essential differences between knotted tori and knotted spheres. Similar phenomena
arise in the case of knotted surfaces in S4, but the discussion would require more
general treatments. We focus on the torus case in this note for the sake of simplicity.

A knotted torus in S4 is a locally flat subsurface homeomorphic to the torus.
Without loss of generality, we may fix a choice of marking (see Section 2B).
Throughout this note, a knotted torus in S4 means a locally flat embedding

K : T 2 ↪→ S4
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from the torus to the 4-sphere. By slightly abusing the notation, we often write
the image of K still as K . For any slope (that is, an essential simple closed curve)
c ⊂ K , it makes sense to define the genus

gK (c)

of c as the smallest possible genus of all the locally flat, orientable, compact
subsurfaces F ↪→ S4 whose image bounds c and meets K exactly in c. The genus
of a slope is clearly an isotopy invariant of the knotted torus, and indeed, it is
invariant under extendable automorphisms. More precisely, if τ is an automorphism
(that is, an orientation-preserving self-homeomorphism up to isotopy) of T 2 that
can be extended over S4 as an orientation-preserving self-homeomorphism, then c
and τ(c) must have the same genus for any slope c ⊂ K . It is clear that all such
automorphisms form a subgroup

EK ≤Mod(T 2)

of the mapping class group Mod(T 2), called the extendable subgroup with respect
to K . See Section 3 for more details. A primary motivation of our study is to
understand EK with the aid of the slope genera.

Natural as it is, the genus of a slope of a knotted torus is usually hard to capture.
In contrast, two weaker notions yield much more interesting applications. One
of them is called the singular genus of a slope c, denoted g?K (c). It is defined
by loosening the locally flat embedding condition on the bounding surface F
above, only requiring F → S4 to be continuous. Another is called the induced
seminorm on H1(T 2), denoted ‖·‖K . This is an analogue to the (singular) Thurston
norm in the classical context. In Section 4, we prove an inequality relating the
seminorms associated with the satellite construction, which is analogous to the
classical Schubert inequality for knots in S3.

A simple observation at this point is that both the singular genus and the seminorm
of a slope are group-theoretic notions, which can be rephrased in terms of the
commutator length and the stable commutator length in the fundamental group of
the exterior of the knotted torus, respectively (Remarks 3.3, 4.5).

As an application of these results, we study braid satellites in Section 5. In
particular, this allows us to obtain examples of knotted tori with finite extendable
subgroups. In Section 6, we exhibit examples where the singular genus is positive
for a slope with vanishing seminorm. This implies the singular genus is strictly
stronger than the seminorm as an invariant associated to slopes. We also relate the
vanishing of the singular genus for a slope c ⊂ K to the extendability of the Dehn
twist τc ∈Mod(T 2) along c in a stable sense (Lemma 6.2).

Section 2 surveys results relevant to our discussion. A few questions for further
study related to slope genera and the extendable subgroups are raised in Section 7.
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2. Background

This section briefly surveys the history relevant to our topic in several aspects. We
hope that it will supply the reader some context for our discussion. However, the
reader may safely skip this part for the moment, and perhaps come back later for
further references. We thank the referee for suggesting us to include some of these
materials.

2A. Genera of knots. For a classical knot k in S3, one of the most important
numerical invariants is its genus g(k), introduced by Herbert Seifert [1935]. It is
naturally defined as the smallest genus among that of all possible Seifert surfaces
of k; recall that a Seifert surface of k is an embedded compact connected surfaces
in S3 whose boundary is k. In other words, if k is not the unknot, the smallest
possible complexity of a Seifert surface is 2g(k)− 1> 0.

In 3-dimensional topology, a suitable generalization of this notion for any ori-
entable compact 3-manifold M is the Thurston norm. It was introduced by William
Thurston [1986]. Thurston discovered that the smallest possible complexity of
properly embedded surface representatives for elements of H2(M, ∂M;Z) can be
linearly continuously extended over H2(M, ∂M;R) to be a seminorm. It is actually
a norm in certain cases, for example, if M is hyperbolic of finite volume. Thurston
then asked if this notion coincides with the one defined similarly using properly
immersed surfaces, which was later known as the singular Thurston norm. The
question was answered affirmatively by David Gabai [1983] using his sutured
manifold hierarchy. As an immediate consequence, it was made clear that there is
only one notion of genus (or complexity) for classical knots, whether we consider
connected or disconnected, properly immersed or embedded Seifert surfaces.

Generally speaking, the genus of a knot is quite accessible. For a (p, q)-torus
knot, where p, q are coprime positive integers, the genus is well known to be
(p− 1)(q− 1)/2. For a satellite knot, the Schubert inequality yields a lower bound
(ĝp + |w| · gc) of the genus in terms of the genus gc of the companion knot, the
genus ĝp of the desatellite knot, and the winding number w of the pattern [Schubert
1953]. Furthermore, the genus of a knot is known to be algorithmically decidable
[Schubert 1961]. In fact, certifying an upper bound is NP-complete [Agol et al.
2006]. The genus can also be bounded and detected in terms of other more powerful
algebraic invariants, such as the knot Floer homology [Ozsváth and Szabó 2004]
and twisted Alexander polynomials [Friedl and Vidussi 2012].

2B. Knotting and marking. One of the classical problems in topology is the knot-
ting problem, namely, “Are two embeddings of a given space into n-space isotopic?”
Usually, the given space is a connected closed m-manifold M where m < n, the
embedding is locally flat, and the question can be made precise most naturally in
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the piecewise-linear or the smooth category. When the codimension is high enough,
for example, if n = 2m+ 1 and m > 1, all embeddings are isotopic to one another
so they “unknot” in this sense [Wu 1958]. However, below the stable range, the
knotting problem becomes very interesting, as we have already seen in the classical
knot case.

Regarding an embedding of Mm into Rn as a marking of its image, the knotting
problem may be phrased to identify or distinguish knotting types (that is, isotopy
classes) of marked submanifolds. Somewhat more naturally, one can ask if two
unmarked knotted submanifolds are isotopic to each other, or precisely, if two
embeddings are isotopic up to precomposing with an automorphism of M in the
given category. Suppose we have already solved the knotting problem. Then, the
latter question amounts to asking whether two markings differ only by an extendable
automorphism; see [Ding et al. 2012, Lemma 2.5]. Therefore, marking does not
make a difference if M has a trivial mapping class group in the category, for example,
in the cases of classical knots and 2-knots, but it does in general if the extendable
subgroup is a proper subgroup of the mapping class group; see [Ding et al. 2012;
Hirose 1993; 2002; Montesinos 1983].

We refer the reader to the survey [Skopenkov 2008] for the embedding problem
and the knotting problem in general dimensions.

2C. Knotted surfaces. The study of knotted surfaces can considered to be the mid-
dimensional knot theory. In this transitional zone between the low-dimensional case
and the high-dimensional (2-codimensional) case, we find geometric-topological
and algebraic-topological methods to have an interesting interaction. For extensive
references on this topic, see the books [Kawauchi 1996; Hillman 1989; Carter and
Saito 1998; Carter et al. 2004; Kamada 2002].

With an auxiliary choice of marking, let us write a knotted surface as a locally flat
embedding K : F ↪→R4, where F is a closed surface. We can visualize a knotted sur-
face by drawing a diagram obtained via a generic projection of K onto a 3-subspace,
or by displaying a motion picture of links in R3, obtained via a generic line projection
that is Morse when restricted to K ; see [Carter and Saito 1998; Kawauchi et al.
1982]. The fundamental group of the exterior is called the knot group of K , denoted
as πK . Similar to the classical case, πK has a Wirtinger-type presentation in terms of
its diagram [Yajima 1962], and πK can be isomorphically characterized by having an
Artin-type presentation, described in terms of 2-dimensional braids [Kamada 2002].

Exteriors of knotted surfaces form an interesting family of 4-manifolds. The
fundamental group of any such manifold is nontrivial, and it contains much informa-
tion about the topology. For instance, it has been suspected for orientable knotted
surfaces that having an infinite cyclic knot group implies unknotting, namely, that
K bounds an embedded handlebody [Hosokawa and Kawauchi 1979]. By deep
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methods of 4-manifold topology, this has been confirmed for knotted spheres in the
topological category [Freedman and Quinn 1990, Theorem 11.7A]. In earlier studies
of knotted surfaces, researchers frequently looked for examples with prescribed
properties of the knot group, such as required deficiency [Fox 1962; Levine 1978;
Kanenobu 1983], or required second homology [Brunner et al. 1982; Gordon 1981;
Litherland 1981; Maeda 1977]. In some other constructions of particular topological
significance, combinatorial group theory again plays an important role in verification
[Gordon 1976; Kamada 1990; Livingston 1985; 1988].

Many of these constructions implement satellite knotting on various stages. The
idea of such an operation is to replace a so-called companion knotted surface with
another one that is embedded in the regular neighborhood of the former, often
in a more complicated pattern. Basic examples of satellite knotting include the
knot connected sum of knotted surfaces, and Artin’s spinning construction [1925],
as well as its twisted generalizations [Zeeman 1965; Litherland 1979]. Generally
speaking, satellite knotting would lead to an increase of genus under certain natural
assumptions such as nonzero winding number. However, this can be avoided if
we are just concerned with knotted spheres or tori (see Section 4B). Like in the
classical case, satellite knotting only changes the knot group by a van Kampen-type
amalgamation. Therefore, it is usually an approach worth considering if one wishes
to maintain some control on the group level during the construction. As far as we
are concerned, the first explicit formulation of the satellite construction of n-knots
in literature was due to Yaichi Shinohara [1971] in his paper about generalized
Alexander polynomials and signatures; the satellite construction of knotted tori in
R4 first appeared in Richard Litherland’s paper [1981], where he studied the second
homology of the knot group.

3. Genera of slopes

In this section, we introduce the genus and the singular genus for any slope of
a knotted torus K in S4. We provide criteria about finiteness associated to the
extendable subgroup EK and the stable extendable subgroup Es

K of Mod(T 2) in
terms of these notions.

3A. Genus and singular genus. Let K : T 2 ↪→ S4 be a knotted torus in S4, that
is, a locally flat embedding of the torus into the 4-sphere. Let XK = S4

− K be the
exterior of K obtained by removing an open regular neighborhood of K .

Lemma 3.1. Let F2
g be the closed orientable surface of genus g, and Y be a

simply connected closed 4-manifold. Suppose K : F2
g ↪→ Y is a null-homologous,

locally flat embedding. Write X = Y − K for the exterior of K in Y . Then ∂X is
canonically homeomorphic to F2

g × S1, up to isotopy, such that the homomorphism
H1(F2

g )→ H1(X) induced by including F2
g as the first factor F2

g × pt is trivial. In
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particular, every essential simple closed curve c⊂ F2
g bounds a locally flat, properly

embedded, orientable compact surface S ↪→ XK with ∂S embedded as c× pt.

Proof. This is well-known, following from an easy homological argument. In fact,
since K is null-homologous, the normal bundle of K in Y is trivial, so ∂X has a
natural circle bundle structure p : ∂X → F2

g over F2
g , which splits. The splitting

is given by framings of the normal bundle, which are in natural bijection with all
the homomorphisms ι : H1(F2

g )→ H1(∂X) such that p∗ ◦ ι : H1(F2
g )→ H1(F2

g ) is
the identity. Using Poincaré duality and excision, it is easy to see H 1(X)∼= Z and
H 1(X, ∂X)= 0. Thus the homomorphism H 1(X)→ H 1(∂X) is injective, and the
generator of H1(X) induces a homomorphism α : H1(∂X)→Z. It is straightforward
to check that α sends the circle-fiber of ∂X to±1, so the kernel of α projects isomor-
phically onto H1(F2

g ) via p∗. This gives rise to the canonical splitting ∂X = F2
g ×S1.

It follows clearly from the construction that H1(F2
g )→ H1(X) is trivial. Moreover,

if c× pt is an essential simple closed curve on K × pt, it is homologically trivial
in X , so it represents an element [a1, b1] · · · [ak, bk] in the commutator subgroup
of π1(X). We take a compact orientable surface S′ of genus k with exactly one
boundary component, and there is a map j : S′→ X sending ∂S′ homeomorphically
onto c× pt. By a general position argument we may assume j to be a locally flat
proper immersion, and doing surgeries at double points yields a locally flat, properly
embedded, orientable compact surface S ↪→ X bounded by c× pt. �

This allows us to make the following definition:

Definition 3.2. Let K : T 2 ↪→ S4 be a knotted torus. For any slope, that is, an essen-
tial simple closed curve, c⊂ K , the genus gK (c) of c is defined to be the minimum
of the genus of F , as F runs over all the locally flat, properly embedded, orientable,
compact subsurfaces of XK bounded by c×pt⊂ ∂XK ; see Lemma 3.1. The singular
genus g?K (c) of c is defined to be the minimum of the genus of F , as F runs over
all the compact orientable surfaces with connected nonempty boundary such that
there is a continuous map F→ XK sending ∂F homeomorphically onto c× pt.

Remark 3.3. Recall that for a group G and any element u in the commutator
subgroup [G,G], the commutator length cl(u) of u is the smallest possible integer
k ≥ 0 such that u can be written as a product of commutators [a1, b1] · · · [ak, bk],
where ai , bi ∈ G, and i = 1, . . . , k. Note that elements of [G,G] that are conjugate
in G have the same commutator length. As indicated in the proof of Lemma 3.1, it
is clear that the singular genus g?K (c) is the commutator length cl(c), regarding c
as an element of the commutator subgroup of π1(XK ).

3B. Extendable subgroup and stable extendable subgroup. Let Mod(T 2) be the
mapping class group of the torus, which consists of the isotopy classes of orientation-
preserving self-homeomorphisms of T 2. Fixing a basis of H1(T 2), one can naturally
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identify Mod(T 2) as SL(2,Z). We often refer to the elements of Mod(T 2) as
automorphisms of T 2, and do not distinguish elements of Mod(T 2) and their
representatives.

For any knotted torus K : T 2 ↪→ S4, an automorphism τ ∈Mod(T 2) is said to
be extendable with respect to K if τ can be extended as an orientation-preserving
self-homeomorphism of S4 via K . Note that this notion does not depend on the
choice of the representative of τ ; see [Ding et al. 2012, Lemma 2.4]. It is also clear
that all the extendable automorphisms form a subgroup of Mod(T 2).

Definition 3.4. For a knotted torus K : T 2 ↪→ S4, the extendable subgroup with
respect to K is the subgroup of Mod(T 2) consisting of all the extendable automor-
phisms, denoted as EK ≤Mod(T 2).

The extendable subgroup EK reflects some essential differences between knotted
tori and knotted spheres (that is, 2-knots) in S4. For instance, it is known that EK is
always a proper subgroup of Mod(T 2), of index at least three [Ding et al. 2012]; see
[Montesinos 1983] for the diffeomorphism extension case. Moreover, index three
is realized by any unknotted embedding, namely, one which bounds an embedded
solid torus S1

× D2 in S4 [Montesinos 1983]; see [Hirose 2002] for the general
case of trivially embedded surfaces. In [Hirose 1993], EK has been computed for
the so-called spun T 2-knots and twisted spun T 2-knots. It is also clear that taking
the connected sum with a knotted sphere in S4 does not change the extendable
subgroup. However, for a general knotted torus in S4, the extendable subgroup EK

is poorly understood. In the following, we introduce a weaker notion called the
stable extendable subgroup. From our point of view, the stable extendable subgroup
is more closely related to the singular genera than the extendable subgroup is; see
Section 6B.

Suppose K : T 2 ↪→ S4 is a knotted torus in S4, and Y is a closed simply connected
4-manifold. There is a naturally induced embedding K [Y ] : T 2 ↪→ Y obtained by
regarding Y as the connected sum S4 # Y and embedding T 2 into the first summand
via K . This is well defined up to isotopy, and we call K [Y ] the Y -stabilization
of K . An automorphism τ ∈ Mod(T 2) is said to be Y -stably extendable if τ
extends over Y as an orientation-preserving self-homeomorphism via K [Y ]. All
such automorphisms clearly form a subgroup of Mod(T 2). An automorphism
τ ∈Mod(T 2) is said to be stably extendable if τ is Y -stably extendable for some
closed simply connected 4-manifold Y . Note that if τ1 is Y1-stably extendable and
τ2 is Y2-stably extendable, they are both (Y1 # Y2)-stably extendable. This means
stably extendable automorphisms also form a subgroup of Mod(T 2).

Definition 3.5. For a knotted torus K : T 2 ↪→ S4, the stable extendable subgroup
with respect to K is the subgroup of Mod(T 2) consisting of all the stably extendable
automorphisms, denoted as Es

K ≤Mod(T 2).
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Proposition 3.6. Let K : T 2 ↪→ S4 be a knotted torus.

(1) If the singular genus g?K (c) takes infinitely many distinct values as c runs over
all the slopes of K , then the stable extendable subgroup Es

K is of infinite index
in Mod(T 2).

(2) If there are at most finitely many distinct slopes c ⊂ K with the singular genus
g?K (c) at most C for every C > 0, then the stable extendable subgroup Es

K
is finite.

Remark 3.7. Hence the same holds for the extendable subgroup EK . Using a
similar argument, one can also show that the statements remain true when replacing
g?K with gK , and Es

K with EK .

Proof. First observe that the singular genus of a slope is invariant under the action
of a stably extendable automorphism, namely, if τ ∈ Es

K , then g?K (c)= g?K (τ (c))
for every slope c ⊂ K . This is clear because by the definition, τ extends over
X ′K = XK # Y as a homeomorphism τ̃ : X ′K → X ′K for some simply connected
closed 4-manifold Y . This induces an automorphism of π1(X ′K )∼= π1(XK ), which
preserves the commutator length of c, or equivalently, the singular genus g?K (c)
(Remark 3.3).

To see (1), note that Mod(T 2) acts transitively on the space C of all the slopes
on T 2. It follows immediately from the invariance of singular genera above that
the cardinality of value set of g?K is at most the index [Mod(T 2) : Es

K ]. Thus if the
range of g?K is infinite, the index of Es

K in Mod(T 2) is also infinite.
To see (2), suppose τ ∈Es

K . By the assumption and the invariance of the singular
genus under τ , for any slope c⊂ K there are at most finitely many distinct slopes in
the sequence c, τ (c), τ 2(c), . . . . Thus for some integers k > l ≥ 0, τ k(c) is isotopic
to τ l(c), or in other words, τ d(c) is isotopic to c, where d = k− l. As c is arbitrary,
τ is a torsion element in Mod(T 2), so Es

K is a subgroup of Mod(T 2) consisting
purely of torsion elements. It follows immediately that Es

K is a finite subgroup from
the well-known fact that Mod(T 2)∼= SL(2,Z) is virtually torsion-free. Indeed, the
index of any finite-index torsion-free normal subgroup of Mod(T 2) yields an upper
bound of the size of Es

K . �

4. Induced seminorms on H1(T 2; R)

In this section, we introduce the seminorm ‖·‖K on H1(T 2
;R) induced from any

knotted torus K : T 2 ↪→ S4. This may be regarded as a generalization of the
(singular) Thurston norm in 3-dimensional topology. We prove a Schubert-type
inequality in terms of seminorms associated with satellite constructions.

4A. The induced seminorm. There are various ways to formulate the induced
seminorm, among which we shall take a more topological one. Suppose K :T 2 ↪→ S4
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is a knotted torus in S4. We shall first define the value of ‖·‖K on H1(T 2
;Z) then

extend linearly and continuously over H1(K ;R).
Recall that for a connected orientable compact surface F , the complexity of F is

defined as χ−(F)=max {−χ(F), 0}. In general, for an orientable compact surface
F = F1 t · · · t Fs , the complexity of F is defined as

x(F)=
s∑

i=1

χ−(Fi ).

For any γ ∈ H1(T 2), identified as an element of H1(∂XK ), there exists a smooth
immersion of pairs (F, ∂F)# (XK , ∂XK ) such that F is a (possibly disconnected)
oriented compact surface, and that ∂F represents γ . We define the complexity
of γ as

x(γ )=min
F

x(F),

where F runs through all the possible immersed surfaces as described above.
The fact below follows immediately from the definition.

Lemma 4.1. With the notation above,

(1) x(nγ )≤ nx(γ ) for any γ ∈ H1(T 2) and any integer n ≥ 0.

(2) x(γ ′+ γ ′′)≤ x(γ ′)+ x(γ ′′) for any γ ′, γ ′′ ∈ H1(T 2).

Definition 4.2. Let K : T 2 ↪→ S2 be a knotted torus. For any γ ∈ H1(T 2), we
define

‖γ ‖K = inf
m∈Z+

x(mγ )
m

.

Lemma 4.3. (1) ‖nγ ‖K = n‖γ ‖K for any γ ∈ H1(T 2) and any integer n ≥ 0.

(2) ‖γ ′+ γ ′′‖K ≤ ‖γ
′
‖K +‖γ

′′
‖K for any γ ′, γ ′′ ∈ H1(T 2).

Proof. This follows from Lemma 4.1 and some elementary arguments. For any
ε > 0, there is some m > 0 such that ‖γ ‖K > (x(mγ )/m)− ε, and by Lemma 4.1,

x(mγ )
m
− ε ≥

x(nmγ )
nm

− ε ≥
‖nγ ‖K

n
− ε.

Letting ε→ 0, we see ‖γ ‖K ≥ ‖nγ ‖K /n. Moreover, for any ε > 0, there exists
m > 0 such that ‖nγ ‖K > (x(mnγ )/m)− ε ≥ n‖γ ‖K − ε. Letting ε→ 0, we see
‖nγ ‖K ≥ n‖γ ‖K . This proves the first statement. To prove the second statement,
for any ε > 0, there are m′,m′′ > 0 such that ‖γ ′‖K > (x(m′γ ′)/m′) − ε and
‖γ ′′‖K > (x(m

′′γ ′′)/m′′)− ε, so using Lemma 4.1,

‖γ ′‖K +‖γ
′′
‖K >

x(m′γ ′)
m′

+
x(m′′γ ′′)

m′′
− 2ε ≥ x(m′m′′γ ′)

m′m′′
+

x(m′m′′γ ′′)
m′m′′

− 2ε

≥
x(m′m′′(γ ′+γ ′′))

m′m′′
− 2ε ≥ ‖γ ′+ γ ′′‖K − 2ε.
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Letting ε→ 0, we see the second statement. �

By Lemma 4.3, we can extend ‖·‖K radially over H1(T 2
;Q), then extend con-

tinuously over H1(T 2
;R). This uniquely defines a seminorm

‖·‖K : H1(T 2
;R)→ [0,+∞).

Recall a seminorm on a real vector space V is a function ‖·‖ : V → [0,+∞) such
that ‖rv‖ = |r | ‖v‖ for any r ∈ R, v ∈ V , and that ‖v′+ v′′‖ ≤ ‖v′‖+‖v′′‖ for any
v′, v′′ ∈ V . It is a norm if it is in addition positive-definite, namely ‖v‖ = 0 if and
only if v ∈ V is zero.

Definition 4.4. Let K : T 2 ↪→ S4 be a knotted torus, and c ⊂ T 2 be a slope. Then
the seminorm ‖c‖K is defined as ‖[c]‖K , where [c] ∈ H1(T 2).

Remark 4.5. Recall that for a group G and any element u in the commutator
subgroup [G,G], the stable commutator length is

scl(u)= lim
n→+∞

cl(un)

n
,

where cl(·) denotes the commutator length (Remark 3.3). It is not hard to see that
for any slope c ⊂ K , the seminorm ‖c‖K equals scl(c), regarding c as an element
of the commutator subgroup of π1(XK ); see [Calegari 2009, Proposition 2.10].

The lemma below follows immediately from the definition and Proposition 3.6:

Lemma 4.6. If c⊂ K is a slope with ‖c‖K > 0, then g?K (c)≥ (‖c‖K +1)/2. Hence
the stable extendable subgroup Es

K is finite if ‖·‖K is nondegenerate. The same
holds if we replace g?K with gK and Es

K with EK .

4B. The satellite construction. The satellite construction for knotted tori is analo-
gous to that of classical knots in S3; see Section 2C for historical remarks.

Fix a product structure of T 2 ∼= S1
× S1. We shall denote the thickened torus

with the standard parametrization as

24
= S1
× S1
× D2.

The standard unknotted torus Tstd : T 2
⊂ S4 is a smoothly embedded torus such

that Tstd bounds two smoothly embedded solid tori D2
× S1 and S1

× D2 in S4,
respective to factors. It is unique up to diffeotopy of S4. Let Kc : T 2 ↪→ S4 be
a knotted torus. There is a natural trivial product structure on a compact tubular
neighborhood N(Kc) ∼= T 2

× D2 of Kc, so that c×∗ is homologically trivial in
the complement XKc for any slope c ⊂ T 2. Thus there is a natural isomorphism
N(Kc)∼=2

4, up to isotopy, as we fixed the product structure on T 2.
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Definition 4.7. A pattern knotted torus is a smooth embedding Kp : T 2 ↪→24. The
winding number w(Kp) of Kp is the algebraic intersection number of [Kp]∈H2(2

4)

and the fiber disk [pt× pt× D2
] ∈ H2(2

4, ∂24).

Definition 4.8. Let Kc : T 2 ↪→ S4 be a knotted torus and Kp : T 2 ↪→24 be a pattern
knotted torus. After fixing a product structure on T 2, the satellite knotted torus,
denoted as K = Kc · Kp, is the composition

T 2 Kp
−−→24 ∼=

−→ N(Kc)
⊂
−→ S4.

We call Kc the companion knotted torus. The desatellite K̂p : T 2 ↪→ S4 of K is the
knotted torus K̂p = Tstd · Kp.

For any element γ ∈ H1(T 2) and a pattern Kp : T 2 ↪→24, there is a push-forward
element γc ∈ H1(T 2) under the composition:

T 2 Kp
−→24 ∼=

−→ T 2
× D2

→ T 2,

where the isomorphism respects the choice of the product structure on T 2, and the
last map is the projection onto the T 2 factor. If K = Kc · Kp is a satellite with
pattern Kp, one should regard γ as an element of H1(K ), and γc as an element
of H1(Kc).

4C. A Schubert-type inequality. The theorem below is analogous to the Schubert
inequality in classical knot theory [Schubert 1953, Kapitel II, §12].

Theorem 4.9. Suppose K = Kc · Kp is a satellite knotted torus in S4. Then for
any γ ∈ H1(T 2

;R), ‖γ ‖K ≥ ‖γ ‖K̂p
. Moreover, if the winding number w(Kp) is

nonzero, then ‖γ ‖K ≥ ‖γ ‖K̂p
+‖γc‖Kc

.

We prove Theorem 4.9 in the rest of this subsection.
Let XK be the complement of the satellite knot K = Kc · Kp in S4. The satellite

construction gives a decomposition XK = Y ∪ XKc , glued along the image of ∂24.
Y is diffeomorphic to the complement of Kp in 24, so it has two boundary com-
ponents, namely the satellite boundary ∂sY , which is ∂XK , and the companion
boundary ∂cY which is the image of ∂24.

Similarly, the complement XK̂p
can be decomposed as Y ∪ XTstd .

The first inequality is proved in the following lemma:

Lemma 4.10. ‖γ ‖K ≥ ‖γ ‖K̂p
.

Proof. We equip XKc with a finite CW complex structure such that there is only one
0-cell and the 0-cell is contained in ∂XKc , which is a subcomplex of XKc . Let X (q)

Kc

be the union of ∂XKc and the q-skeleton of XKc . We may extend the identity map on
Y to a continuous map f : Y ∪ X (2)

Kc
→ XK̂p

. To see this, note that the inclusion map
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∂XK → XK induces a surjective map on H1 for any K : T 2
→ S4, so the identity

map on ∂XKc induces a natural isomorphism H1(XKc)
∼= H1(XTstd). Since every

1-cell in XKc represents a 1-cycle, we can extend id∂cY to a map f | : X (1)
Kc
→ XTstd ,

so that the induced map H1(X
(1)
Kc
)→ H1(XTstd) agrees with the map on the first

homology induced by X (1)
Kc
↪→ XKc . It is easy to see XTstd ' S1

∨ S2
∨ S2, so

π1(XTstd)
∼= Z. Hence the previous f | can be further extended as f | : X (2)

Kc
→ XTstd

since the boundary of any 2-cell is mapped to a null-homotopic loop in XTstd by the
construction.

Thus we obtain a map f :Y ∪X (2)
Kc
→ XK̂p

by the map above and the identity on Y .
Let j : F# XK be an immersed compact orientable surface such that j (∂F)⊂ ∂XK .
We may assume F meets ∂cY transversely. We homotope j to j ′ : F→ Y ∪ X (2)

Kc
.

Then we obtain a map f ◦ j ′ : F→ XK̂p
which may be homotoped to an immersion.

As F is arbitrary, this implies ‖γ ‖K ≥ ‖γ ‖K̂p
by the definition of the seminorm. �

Now we consider the case when w(Kp) 6= 0. The image of pt× pt× ∂D2
⊂ Y

under the natural inclusion Y ⊂ XK will be denoted µc. We call µc the companion
meridian. The following lemma follows immediately from the construction:

Lemma 4.11. Identify H1(XKc)
∼= Z and H1(XK )∼= Z. Then H1(XKc)→ H1(XK )

is multiplication by w(Kp).

Proof. Note µc represents a generator of H1(XKc). By definition of w(Kp), µc is
homologous to w(Kp) times the meridian of K . The lemma follows as the meridian
of K generates H1(XK )∼= Z by Alexander duality. �

Lemma 4.12. If w(Kp) 6= 0, then the inclusion map ∂cY ⊂ Y induces an injective
homomorphism H1(∂cY )→ H1(Y ). In particular, the inclusion map ∂cY ⊂ Y is
π1-injective.

Proof. By the long exact sequence

· · · → H2(Y, ∂cY )→ H1(∂cY )→ H1(Y )→ · · · ,

it suffices to show H2(Y, ∂cY ) is finite, since H1(∂cY )∼= H1(∂2
4) is torsion-free.

By the Poincaré–Lefschetz duality and excision,

H2(Y, ∂cY )∼= H 2(Y, ∂sY )∼= H 2(24, Kp).

The long exact sequence

· · · → H 1(24)→ H 1(Kp)→ H 2(24, Kp)→ H 2(24)→ H 2(K p)→ · · ·

is induced by the inclusion Kp ⊂2
4, (or equivalently by Kp : T 2 ↪→24). Since

24
' T 2, Kp induces a map h : T 2

→ T 2. It is also clear that w(Kp) is the degree
of h. Since w(Kp) 6= 0, it is clear that the map h∗ : H∗(T 2)→ H∗(T 2) is injective
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on all dimensions, so must be H∗(24)→ H∗(Kp). Thus H 2(24, Kp) is finite from
the long exact sequence. We conclude H2(Y, ∂cY ) is finite as desired. �

Note it suffices to prove Theorem 4.9 for γ ∈ H1(T 2
;Z). Remember that we

regard γ as in H1(K ), identified as the kernel of H1(∂XK )→ H1(XK ). For any
ε > 0, let j : F # XK be a properly immersed orientable compact (possibly
disconnected) surface, that is, j−1(∂XK )= ∂F , such that j∗[∂F] = m γ for some
integer m > 0, and that

‖γ ‖K ≤
x(F)

m
< ‖γ ‖K + ε.

We may assume F has no disk or closed component, so x(F)=−χ(F). We may
also assume F intersects ∂cY transversely, so j−1(∂cY ) is a disjoint union of simple
closed curves on F . Write Fp, Fc for j−1(Y ), j−1(XKc), respectively.

Lemma 4.13. Suppose w(Kp) 6= 0. If V is a component of Fp where j (∂V )⊂ ∂cY ,
then there is a map j ′| : V → ∂cY , such that j ′|∂V = j .

Proof. We may take a collection of embedded arcs u1, . . . , un whose endpoints
lie on ∂V , cutting V into a disk D. This gives a cellular decomposition of V . We
may first extend the map j |∂V : ∂V → ∂cY to a map j ′|V (1) over the 1-skeleton
of V . Let φ : ∂D→ V (1) be the attaching map. We have j ′

∗
φ∗[∂D] = j∗[∂V ] in

H1(∂cY ) by the construction. As w(Kp) 6= 0, by Lemma 4.12, H1(∂cY )→ H1(Y )
is an injective homomorphism, so j∗[∂V ] = 0 in H1(∂cY ) since it is bounded by
j∗[V ]. Thus j ′

∗
φ∗[∂D] = 0 in H1(∂cY ), and hence ∂D is null-homotopic in ∂cY

under j ′ ◦φ as π1(∂cY )∼= H1(∂cY ), (remember ∂cY ∼= ∂24 is a 3-torus). Therefore,
we may extend j ′|V (1) further over D to obtain j ′ : V → ∂cY as desired. �

Lemma 4.14. We may modify j : F # XK within the interior of F so that ev-
ery component of j−1(∂cY ) that is inessential on F bounds a disk component
of j−1(XKc).

Proof. Let a ⊂ j−1(∂cY ) be a component inessential on F , and D ⊂ F be an
embedded disk whose boundary is a. If D is not contained in Fc, then D∩ Fp 6=∅.
Any component of D∩Fp must have all its boundary components lying on j−1(∂cY ).
By Lemma 4.13, we may redefine j on these components relative to boundary so that
they are all mapped into Xc. After this modification and a small perturbation, either
a disappears from j−1(∂cY ) (if ∂D⊂D∩Fp), or at least one component of j−1(∂cY )
in the interior of D disappears (if ∂D ⊂ D ∩ Fc). Thus the number of inessential
components of j−1(∂cY ) decreases strictly under this modification. Therefore, after
at most finitely many such modifications, every inessential component of j−1(∂cY )
bounds a disk component of Fc. �

Without loss of generality, we assume that j : F # XK satisfies the conclusion
of Lemma 4.14.
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Lemma 4.15. There is a finite cyclic covering κ : F̃→ F such that for every essen-
tial component a ∈ j−1(∂cY ) with [ j (a)] 6= 0 in H1(XK ), and every component ã of
κ−1(a), the image j (κ(ã)) represents the same element in H1(XK )∼= Z up to sign.

Proof. Let a1, . . . , as be all the essential components j−1(∂cY ) such that [ j (ai )] 6=0
in H1(XK )∼=Z. Let d > 0 be the least common multiple of all the [ j (ai )]. Consider
the covering κ : F̃→ F corresponding to the preimage of the subgroup d · H1(XK )

under π1(F)→ π1(XK )→ H1(XK ). It is straightforward to check that κ satisfies
the conclusion. �

Let κ : F̃→ F be a covering as obtained in Lemma 4.15. Let d > 0 be the degree
of κ , so x(F̃)= d x(F). Clearly j∗κ∗[∂ F̃] = md γ , and also

‖γ ‖K ≤
x(F̃)
md

< ‖γ ‖K + ε.

Moreover, as any inessential component of j−1(∂cY ) bounds a disk component
of Fc, it is clear that any inessential component of ( j ◦ κ)−1(∂cY ) bounds a disk
component of F̃c = κ

−1(Fc).
Therefore, instead of using j : F # XK , we may use j ◦ κ : F̃ # XK as well.

From now on, we rewrite j ◦ κ as j , F̃ as F , and md as m, so j : F # XK satisfies
the conclusions of Lemmas 4.14, 4.15.

Let Q ⊂ Fc be the union of the disk components of Fc. Let F ′c be Fc − Q,
and F ′p be Fp ∪ Q (glued up along adjacent boundary components). We have the
decompositions

F = Fp ∪ Fc = F ′p ∪ F ′c.

Moreover, there is no inessential component of ∂F ′c by our assumption on F , so
F ′c and F ′p are essential subsurfaces of F (that is, whose boundary components are
essential).

Lemma 4.16. Suppose F is a compact orientable surface with no disk or sphere
component, and E1, E2 are essential compact subsurfaces of F with disjoint interi-
ors such that F = E1 ∪ E2. Then x(F)= x(E1)+ x(E2).

Proof. Note χ(F) = χ(E1)+ χ(E2). As each Ei is essential, there is no disk
component of Ei , and by the assumption there is no sphere component, either. Thus,
for each component C of Ei , x(C)=−χ(C). We have x(F)= x(E1)+ x(E2). �

The desatellite term in Theorem 4.9 comes from the following construction.

Lemma 4.17. Under the assumptions above, there is a properly immersed compact
orientable surface ĵ : F̂ ′p# XK̂p

such that x(F̂ ′p)≤ x(F ′p), and that ĵ∗[∂ F̂ ′p] = mγ
in H1(T 2).
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Proof. As F has been assumed to satisfy the conclusion of Lemma 4.15, there is an
ω ∈ H1(XK ) such that every component of ∂c F ′p (that is, F ′p∩ j−1(∂cY )) represents
either ±ω or 0, and the algebraic sum over all the components is zero since they
bound j (F ′c)⊂ XK . Thus we may assume there are s components representing 0,
t components representing ω, and t components representing −ω, where s, t ≥ 0.
We construct F̂ ′p by attaching s disks and t annuli to ∂c F ′p, such that each disk is
attached to a component representing 0, and each annulus is attached to a pair of
components representing opposite±ω-classes. Let D be the union of attached disks,
and A be the union of attached annuli. The result is a compact orientable surface
F̂ ′p = F ′p ∪D∪A such that ∂ F̂ ′p ∼= ∂F . It is clear that x(F̂ ′p)≤ x(F ′p ∪A)= x(F ′p),
(see Lemma 4.16).

To construct ĵ , we extend the map

j | : Fp→ Y ⊂ XK̂p
= Y ∪ XTstd

over F̂p= Fp∪Q∪D∪A, using the fact that π1(XTstd)
∼= H1(XTstd)

∼=Z. Specifically,
to extend the map over Q, let s be a component of ∂c Fp bounding a disk component
of Q. Then j∗[s] = 0 in H1(XK ). Hence it lies in the subgroup H1(T 2

× pt)
of H1(∂2

4) ∼= H1(∂cY ), and by the desatellite construction, ĵ(s) should also be
null-homologous in XTstd . We can extend ĵ over the disk D ⊂ Q bounded by s.
After extending for every component of Q, we obtain

ĵ | : Fp ∪ Q→ XK̂p
.

Similarly, we may extend ĵ | over D. To extend over A, let A ⊂A be an attached
annulus component as in the construction. Let ∂A= s+t s− such that j∗[s±] =±ω
in H1(XK ). By the desatellite construction, ĵ∗[s±] = ±ω in H1(XTstd). Since
π1(XTstd)

∼= H1(XTstd), ĵ(s+) is free-homotopic to the orientation-reversal of ĵ(s−).
In other words, we can extend ĵ | over A. After extending for every attached annulus,
we obtain ĵ : F̂ ′p→ XK̂p

.

Since ĵ |
∂ F̂ ′p

is the same as j |∂F under the natural identification ĵ∗[∂ F̂ ′p] = mγ
in H1(T 2) (where H1(T 2) may be regarded as either H1(K ) or H1(K̂p) under the
natural identification), after homotoping ĵ : F̂ ′p→ XK̂p

to a smooth immersion, we
obtain the map as desired. �

The contribution of the companion term in Theorem 4.9 basically comes from
F ′c. However, j∗[F ′c] does not necessarily represent mγc, but may differ by a term
of zero ‖·‖Kc

-seminorm.
To be precise, note the image of any component of ∂Q ⊂ ∂cY under j lies in

the kernel of H1(∂cY )→ H1(XKc), which we may identify with H1(Kc). Thus
α= j∗[∂Q] ∈ H1(∂cY ) lies in H1(Kc). Also, j∗[∂Fc] =m γc ∈ H1(Kc) < H1(∂cY ).
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Thus β = m γc−α in H1(Kc) < H1(∂cY ) is represented by j∗[F ′c]. We have

mγc = α+β.

Lemma 4.18. With the notation above, ‖α‖Kc
= 0, and hence m‖γc‖Kc

= ‖β‖Kc
.

Proof. For any component s ⊂ ∂Q, s bounds an embedded disk component
D of Q ⊂ Fc by the definition of Q. It follows that j (s) is null-homotopic in
XKc , and hence ‖ j∗[s]‖Kc

= 0. As this works for any component of ∂Q, we see
‖α‖Kc

= ‖ j∗[∂Q]‖Kc
= 0. The “hence” part follows from that ‖·‖Kc

is a seminorm
on H1(Kc;R). �

Proof of Theorem 4.9. The first inequality follows from Lemma 4.10. In the rest,
we assume w(Kp) 6= 0. Let j : F # XK be a surface that ε-approximates ‖γ ‖K as
before. We may assume j satisfies the conclusion of Lemma 4.14 possibly after a
modification. Possibly after passing to a finite cyclic covering of F , we may further
assume j satisfies the conclusion of Lemma 4.15 as we have explained. We have
the decomposition F = F ′p∪ F ′c of F into essential subsurfaces, so by Lemma 4.16,
x(F)= x(F ′p)+x(F ′c). By Lemma 4.17, there is an immersed surface ĵ : F̂ ′p# XK̂p

representing mγ in H1(K̂p), with x(F̂ ′p)≤ x(F ′p), so

x(F ′p)≥ x(F̂ ′p)≥ m‖γ ‖K̂p
.

By Lemma 4.18, since j | : F ′c # Xc is an immersed surface representing β in
H1(Kc),

x(F ′c)≥ ‖β‖Kc
= m‖γc‖Kc

.

Combining the estimates above, x(F)≥ m
(
‖γ ‖K̂p

+‖γc‖Kc

)
, thus,

‖γ ‖K̂p
+‖γc‖Kc

≤
x(F)

m
< ‖γ ‖K + ε.

We conclude that ‖γ ‖K̂p
+‖γc‖Kc

≤ ‖γ ‖K , as ε > 0 is arbitrary. �

5. Braid satellites

In this section, we introduce and study braid satellites.

5A. Braid patterns. We shall fix a product structure on T 2 ∼= S1
× S1 throughout

this section. By a braid we shall mean an embedding b : S1 ↪→ S1
× D2, whose

image is a simple closed loop transverse to the fiber disks. We usually write kb for
the classical knot in S3 associated to b, namely, the “satellite” knot with the trivial
companion and the pattern b.

There is a family of patterns arising from braids:
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Definition 5.1. Let b : S1 ↪→ S1
×D2 be a braid. Define the standard braid pattern

Pb associated to b as Pb = idS1 × b : S1
× S1 ↪→24, where 24

= S1
× S1
× D2 is

the thickened torus. The standard braid torus Kb associated to b is defined as the
desatellite Tstd · Pb.

Remark 5.2. The standard braid torus Kb is sometimes called the spun T 2-knot
obtained from the associated knot kb. In [Hirose 1993], the extendable subgroup
EKb has been explicitly computed.

Lemma 5.3. If b : S1 ↪→ S1
× D2 is a braid with winding number w(b), then

w(Pb)= w(b). In particular, w(Pb) 6= 0.

Proof. This follows immediately from the construction and the definition of winding
numbers. �

Proposition 5.4. Suppose b is a braid whose associated knot kb is nontrivial. Then

‖pt× S1
‖Kb
= 2g(kb)− 1 and ‖S1

× pt‖Kb
= 0,

where g(kb) denotes the genus of kb.

Proof. For simplicity, we write Kb and kb as K and k, respectively.
To see ‖pt× S1

‖K ≥ 2g(k) − 1, the idea is to construct a map between the
complements f : XK → Mk , where XK = S4

−K and Mk = S3
−k. Let Y ⊂ XK be

the image of the complement24
−Pb, and N ⊂Mk be the image of the complement

S1
× D2

−b. There is a natural projection map f | : Y ∼= S1
× N→ N . As Mk − N

is homeomorphic to the solid torus, which is an Eilenberg–MacLane space K (Z, 1),
it is not hard to see that f | extends as a map f : XK → Mk .

Provided this, for any properly immersed compact orientable surface j : F# XK

whose boundary represents m[c], the norm of [ f ◦ j (F)] is bounded below by the
singular Thurston norm of k. As the singular Thurston norm equals the Thurston
norm (see [Gabai 1983]), which further equals 2g(k)− 1 for nontrivial knots, we
obtain ‖pt× S1

‖K ≥ 2g(k)− 1.
To see ‖pt× S1

‖K = 2g(k)− 1, it suffices to find a surface realizing the norm.
In fact, one may first take an inclusion ι :24

→ S1
× D3, where ι= idS1 × ι′ and

where ι′ : S1
× D2

→ D3 is a standard unknotted embedding, that is, whose core
is unknotted in D3 and S1

× pt ⊂ S1
× ∂D2 is the longitude. Then Kb factorizes

through a smooth embedding S1
×D3 ↪→ S4 (unique up to isotopy) via ι◦ Pb. This

allows us to put a minimal genus Seifert surface of k into XK so that it is bounded
by the slope pt× S1. Thus ‖pt× S1

‖K = 2g(k)− 1.
From the factorization above, we may also free-homotope (ι ◦ Pb)(S1

× pt) to
S1
×{pt′}, where pt′ is a point on ∂D3, via an annulus S1

×[pt, pt′] where [pt, pt′]
is an arc whose interior lies in D3

− k. As S1
× {pt′} bounds a disk outside the

image of S1
× D3 in S4, we see that ‖S1

× pt‖K = 0. �
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5B. Braid satellites. As an application of the Schubert inequality for seminorms,
we estimate ‖·‖K for braid satellites of braid tori. We need the following notation.

Definition 5.5. Let K : T 2 ↪→ S4 be a knotted torus in S4, and τ : T 2
→ T 2

be an automorphism of T 2. We define the τ -twist K τ of K to be the knotted
torus K ◦ τ : T 2 ↪→ S4.

It follows immediately that the seminorm changes under a twist according to the
formula ‖γ ‖K τ = ‖τ(γ )‖K .

Fix a product structure T 2 ∼= S1
× S1 as before. We denote the basis vectors

[S1
×pt] and [pt×S1

] on H1(T 2
;R) as ξ , η, respectively. A braid satellite is known

as some knotted torus of the form K τ
b · Pb′ , where b, b′ are braids with nontrivial

associated knots, and τ ∈Mod(T 2). It is said to be a plumbing braid satellite if
τ(ξ)= η and τ(η)=−ξ .

Proposition 5.6. Suppose b, b′ are braids with nontrivial associated knots, and τ
is an automorphism of T 2. Let K be the satellite knotted torus K τ

b · Pb′ . Then for
any γ = x ξ + y η in H1(T 2

;R),

‖γ ‖K ≥ (2g′− 1) · |y| + (2g− 1) · |r x + sw′y|.

Here g, g′ > 0 are the genera of the associated knots of b, b′, respectively, and w′

is the winding number of b′, and r , s are the intersection numbers ξ · τ(ξ), ξ · τ(η),
respectively. Moreover, the equality is achieved if K τ

b · Pb′ is a plumbing braid
satellite.

We remark that one should not expect the seminorm lower bound be realized in
general. For instance, in the extremal case when τ is the identity, π1(K ) is exactly
the knot group of the satellite of classical knots kb · b′, and the lower bound for the
longitude slope is given by the classical Schubert inequality, which is not realized
in general. However, the plumbing case is a little special. It provides examples
of slopes on which the seminorm is not realized by the singular genus. In fact,
when c ⊂ K is a slope representing x ξ + y η ∈ H1(T 2), where x, y are coprime
odd integers, the formula yields that ‖c‖K is an even number, so the integer g?K (c)
can never be (‖c‖K + 1)/2. We shall give some estimate of the singular genus and
the genus for plumbing braid satellites in Section 5C.

The corollary below follows immediately from Proposition 5.6 and Lemma 4.6:

Corollary 5.7. With the notation of Proposition 5.6, if τ is an automorphism of T 2

not fixing ξ up to sign, then the stable extendable subgroup Es
K of Mod(T 2) with

respect to K , and hence the extendable subgroup EK , is finite.

In the rest of this subsection, we prove Proposition 5.6.
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Lemma 5.8. With the notation of Proposition 5.6,

‖γ ‖K ≥ (2g′− 1) · |y| + (2g− 1) · |r x + sw′y|.

Proof. By Lemma 5.3 and Theorem 4.9, ‖γ ‖K ≥‖γ ‖Kb′
+‖τ(γc)‖Kb

. Note that we
are writing γc with respect to Kb · Pb′ , so the second term equals the corresponding
term in Theorem 4.9 with respect to the twisted satellite K τ

b · Pb′ via an obvious
transformation. By Proposition 5.4, ‖γ ‖Kb′

= (2g′ − 1) · |y|. As b′ is a braid,
Pb′ : T 2

→24
' T 2 implies γc = xξ +w′yη. Write τ as(

p q
r s

)
in SL(2,Z) under the given basis ξ, η. Note it agrees with the notation r, s in
the statement. Then it is easy to compute τ(γc)= (px + qw′y)ξ + (r x + sw′y)η.
By Proposition 5.4 again, ‖τ(γc)‖Kb

= (2g− 1) · |r x + sw′y|. Combining these
calculations, we obtain the estimate as desired. �

Lemma 5.9. With the notation of Proposition 5.6, if K is a plumbing braid satellite,

‖γ ‖K ≤ (2g′− 1) · |y| + (2g− 1) · |x |.

Proof. Because ‖·‖K is a seminorm (Lemma 4.3), it suffices to prove ‖ξ‖K ≤ 2g−1
and ‖η‖K ≤ 2g′ − 1. The complement XK is the union of the companion piece
XKb = S4

− Kb and the pattern piece Y =24
− Pb′ . Note that π1(XKb)= π1(Mkb)

where Mkb = S3
− kb is the knot complement, and π1(Y ) = Z× π1(Rb′) where

Rb′ = S1
× D2

− b′ is the braid complement. From the construction it is clear
that π1(Y )→ π1(XK ) factors through the desatellite on the first factor, namely,
Z× π1(Mkb′

), so the commutator length of η in π1(XK ) is at most that of η in
π1(Mkb′

), which is 2g′. Moreover, the slope ξ ∈ ∂XK can be free-homotoped to
a slope ξc on ∂XKb since it is a fiber of Y = S1

× Rb′ , and by the construction, it
is clear that ξc represents the longitude slope of π1(∂Mkb) in π1(Mkb)

∼= π1(XKb),
so the commutator length of ξ in π1(XK ) is at most that of ξc in π1(Mkb), which
is 2g. This proves the lemma because the commutator length equals the singular
genus g?K , which gives upper bounds for the seminorm ‖·‖K on slopes (Remark 3.3
and Lemma 4.6). �

Now Proposition 5.6 follows from Lemmas 5.8, 5.9.

Remark 5.10. For plumbing braid satellites, since the norm is given by

‖γ ‖K = (2g′− 1)|y| + (2g− 1)|x |,

the unit ball of the norm of plumbing satellite is the rhombus on the plane with the
vertices (±1/(2g− 1), 0) and (0,±1/(2g′− 1)).
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5C. On genera of plumbing braid satellites. In this subsection, we estimate the
singular genera and the genera of slopes for plumbing braid satellites. While we
obtain a pretty nice estimate for the singular genera, with the error at most one, we
are not sure how close our genera upper bound is to being the best possible.

Proposition 5.11. Suppose b, b′ are braids with nontrivial associated knots, and
K is the plumbing braid satellite K τ

b · Pb′ . Then for every slope c ⊂ K , we have:

(1) The singular genus satisfies

‖c‖K+1
2

≤ g?K (c)≤
‖c‖K+3

2
.

In particular, if c represents xξ + yη with both x and y odd, then

g?K (c)=
‖c‖K

2
+ 1.

(2) If c represents xξ + yη in H1(T 2), where x, y are coprime integers, then the
genus satisfies

gK (c)≤ g · |x | + g′ · |y| + (|x |−1)(|y|−1)
2

,

where g, g′ > 0 denote the genera of the associated knots kb, kb′ in S3, respec-
tively.

We prove Proposition 5.11 in the rest of this subsection. We shall rewrite the
slopes S1

× pt, pt× S1
⊂ T 2 as cξ , cη, respectively.

We need the notion of Euler number to state the next lemma. Let Y be a simply
connected, closed oriented 4-manifold, and let K : T 2 ↪→ Y be a null-homologous
knotted torus embedded in Y . Let X = Y − K be the compact exterior of the
knotted torus. For any locally flat, properly embedded compact oriented surface
with connected boundary, F ↪→ X , such that ∂F is mapped homeomorphically onto
a slope c× pt of K × pt (which exists by Lemma 3.1), we may take a parallel copy
c× pt′ ⊂ K × pt′ of the slope, and perturb F to be another locally flat, properly
embedded copy F ′ ↪→ X bounded by c× pt′, so that F , F ′ are in general position.
The algebraic sum of the intersections between F and F ′ gives rise to an integer

e(F; K ) ∈ Z,

which is known as the Euler number of the normal framing of F induced from K .
In fact, one can check that e(F; K ) only depends on the class [F] ∈ H2(X, K ×pt).
If Y is orientable but has no preferable choice of orientation, we ambiguously speak
of the Euler number up to sign.

Lemma 5.12. There exist two disjoint, properly embedded, orientable compact
surfaces E, E ′ ↪→ XK , bounded by the slopes cξ × p, cη× p′ in two parallel copies
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of the knotted torus K × p, K × p′ ⊂ ∂X , respectively. Moreover, the genera
of E, E ′ are g, g′, respectively, and the Euler number of the normal framing is
e(E; K )= e(E ′; K )= 0.

Proof. Regarding K as Tstd · Pτb · Pb′ , there is a natural decomposition

XK = X0 ∪ Y ∪ Y ′,

where X0 is the compact complement of the unknotted torus Tstd in S4, and Y, Y ′

are the exteriors of Pb, Pb′ in the thickened torus 24, respectively. Moreover, Y
and Y ′ have natural product structures cη× Rb and cξ × Rb′ , respectively, where Rb

and Rb′ denote the exteriors of the braids b and b′, respectively, in the solid torus
S1
× D2. As before, ∂Y and ∂Y ′ each have two components: ∂Y has ∂cY and ∂sY ,

∂Y ′ has ∂cY ′ and ∂sY ′. Thus ∂X0 is glued to ∂cY , and ∂sY is glued to ∂cY ′, and
∂sY ′ is exactly ∂XK .

The knot complement Mkb = S3
− kb is the union of Rb with a solid torus

S1
× D2. From classical knot theory, there is a genus g Seifert surface S of kb

properly embedded in Mkb = S3
− kb, and one can arrange S so that it intersects

S1
×D2 in a finite collection of n≥w disjoint parallel fiber disks. Thus Sb= S∩Rb

is a connected properly embedded orientable compact surface, so that ∂Sb has one
component on ∂s Rb parallel to the longitude s, and n components c1, . . . , cn on
∂c Rb parallel to pt× ∂D2. Similarly, take a connected subsurface Sb′ ⊂ Rb′ with n′

boundary components c′1, . . . , c′n′ on the companion boundary, and one boundary
component s ′ on the satellite boundary.

Construct a properly embedded compact annulus EY ′ in Y ′ = cξ × Rb′ by taking
the product of cξ with some arc α⊂ Rb′− Sb′ , so that the two endpoints lie on ∂c Rb′

and ∂s Rb′ , respectively. Construct a properly embedded compact surface E ′Y ′ ⊂ Y ′

by taking the product of Sb′ with some point in cξ . Similarly, construct a properly
embedded compact surface EY in Y = cη× Rb by taking a product of Sb with some
point in cη, and construct a union of n′ annuli E ′Y by taking the product of cη with n′

disjoint arcs α′1, . . . , α
′

n′ in Rb− Sb, each of whose endpoints lie on ∂c Rb and ∂s Rb,
respectively. Under the gluing, we obtain two disjoint properly embedded surfaces
EY ∪ EY ′ and E ′Y ∪ E ′Y ′ in Y ∪ Y ′, whose boundaries on ∂sY ′ = ∂XK ∼= K × S1

are cξ × pt and cη × pt, respectively. Moreover, it is clear that ∂(EY ∪ EY ′) has
n other boundary components on ∂cY = ∂X0 ∼= Tstd× S1 parallel to cη × pt, and
∂(E ′Y ∪ E ′Y ′) has n′ other boundary components on ∂cY parallel to cξ × pt.

It is not hard to see that one can cap off these other boundary components with
disjoint properly embedded disks in X0. In fact, we may regard Tstd : T 2 ↪→ S4 as
the composition

T 2 ∼= cξ × cη ↪→ cξ × D3 ↪→ S4,
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where cη is a trivial knot in D3. Thus the components of ∂(E ′Y ∪ E ′Y ′) that lie
on ∂X0 can be capped off in cξ × D3 disjointly. Moreover, the components of
∂(EY ∪ EY ′) lying on ∂X0 can be isotoped to the boundary of cξ × D3, so that
they are all cξ -fibers. Because S4

− cξ × D3 is homeomorphic to D2
× S2, we may

further cap off these fibers in the complement of cξ × D3 in S4.
It is straightforward to check that capping off EY ∪ EY ′ and E ′Y ∪ E ′Y ′ yields the

surfaces E and E ′, as desired. Note that e(E; K ) vanishes because we can perturb
the construction above to obtain a surface disjoint from E bounding a slope parallel
to cξ × pt in K × pt. For the same reason, e(E ′; K )= 0 as well. �

Proof of Proposition 5.11. (1) It suffices to show the upper bound. By Lemma 5.12,
there are properly embedded surfaces E, E ′ in XK bounded by cξ × pt, cη × pt,
respectively, and the complexity of E and E ′ realizes ‖cξ‖K and ‖cη‖K , respectively
(Proposition 5.6). Suppose c ⊂ K is a slope representing xξ + yη. By the main
theorem of [Massey 1974], there exists an |x |-sheet connected covering space Ẽ
of E , which has exactly one boundary component if x is odd, or two boundary
components if x is even. By the same method, there is also Ẽ ′, which is connected
|y|-sheet covering E ′ with one or two boundary components. Since x and y are
coprime, at most one of them is even, so Ẽ ∪ Ẽ ′ have at most three components.
Then there are immersions of these surfaces into XK , and by homotoping the image
of their boundaries to K ×pt and taking the band sum to make them connected, we
obtain an immersed subsurface F # XK bounding the slope c. Since we need to
add up to two bands to make the boundary of F connected, this yields

2 g?K (c)− 1≤−χ(F)≤ (−χ(E)) · |x | + (−χ(E ′)) · |y| + 2= ‖c‖K + 2.

Note that the last equality follows from Proposition 5.6 as we assumed K is the
plumbing braid satellite. This proves the first statement. The “in particular” part is
also clear because when x, y are both odd, ‖c‖K is an even number by the formula,
so (‖c‖K /2)+ 1 is the only integer satisfying our estimation.

(2) In this case, we take |x | copies of the embedded surface E , and |y| copies of
the embedded surface E ′, in XK . Because the Euler numbers of the normal framing
are zero for E and E ′, we may assume these copies to be disjoint. Isotope their
boundaries to K ×pt in ∂XK ; we see |x | slopes parallel to cξ , and |y| slopes parallel
to cη. As there are |xy| intersection points, we take |xy| band sums to obtain a
properly embedded surface F ↪→ XK bounding the slope c. There are |x | + |y| − 1
bands that contribute to making the boundary of F connected, and each of the other
|xy| − |x | − |y| + 1 bands contributes one half to the genus of F . This implies

gK (c)≤ g(F)= g · |x | + g′ · |y| + (|x |−1)(|y|−1)
2

,

as desired. �
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6. Miscellaneous examples

In this section, we exhibit examples to show difference between concepts introduced
in this note.

6A. Slopes with vanishing seminorm but positive singular genus. Note that we
have already seen slopes whose singular genus do not realize nonvanishing seminorm
in plumbing braid satellites; see Proposition 5.6. There are also examples where
the seminorm vanishes on some slope with positive singular genus, as follows. Our
construction is based on the existence of incompressible knotted Klein bottles.

Denote the Klein bottle as 82. A knotted Klein bottle in S4 is a locally flat
embedding K : 82 ↪→ S4. We usually denote its image also as K , and the
exterior XK = S4

− K is obtained by removing an open regular neighborhood
of K from S4 as before in the knotted torus case. We say a knotted Klein bottle K
is incompressible if the inclusion ∂XK ⊂ XK induces an injective homomorphism
between the fundamental groups. There exist incompressible Klein bottles in S4;
see [Kamada 1990, Lemma 4].

Incompressible knotted Klein bottles give rise to examples of slopes on knotted
tori which have vanishing seminorm but positive singular genus.

Specifically, let K :82 ↪→ S4 be an incompressible knotted Klein bottle. Suppose
κ :T 2

→82 is a two-fold covering of the Klein bottle82. Perturbing K◦κ : T 2
→ S4

in the normal direction of K gives rise to a knotted torus K̃ : T 2 ↪→ S4.

Lemma 6.1. With the notation above, K̃ has a slope c such that ‖c‖K̃ = 0,
but g?

K̃
(c) > 0.

Proof. Let α ⊂ 82 be an essential simple closed curve on K so that κ−1(α) has
two components c, c′ ⊂ T 2. Then c, c′ are parallel on T 2. We choose orientations
on c, c′ so that they are parallel as oriented curves. Let N(K ) be a compact regular
neighborhood of K so that Y = N(K )− K̃ is a pair-of-pants bundle over K . Then
c is freely homotopic to the orientation-reversal of c′ within Y . This implies that
2 [c × pt] ∈ H1(X K̃ ) is represented by a properly immersed annulus A # X K̃
whose boundary with the induced orientation equals c∪ c′. Therefore, ‖c‖K equals
zero. However, note that X K̃ = X K ∪ Y , glued along ∂XK = ∂N(K ). Since K is
incompressible, ∂XK is π1-injective in XK . It is also clear that both components
of ∂Y are π1-injective in Y . It follows that π1(Y ) injects into π1(X K̃ ), and also
that π1(∂X K̃ ) injects into π1(X K̃ ). Therefore, the slope c× pt in ∂X K̃

∼= K̃ × S1 is
homotopically nontrivial in π1(X K̃ ), so g?

K̃
(c) cannot be zero. �

6B. Stably extendable but not extendable automorphisms. It is clear that the sta-
ble extendable subgroup Es

K contains the extendable subgroup EK for any knotted
torus K : T 2 ↪→ S4. They are in general not equal. In fact, we show that the Dehn
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twist along a slope with vanishing singular genus is stably extendable (Lemma 6.2).
In particular, it follows that for any unknotted embedded torus K , the stable ex-
tendable subgroup Es

K equals Mod(T 2). However, in this case, the extendable
subgroup EK is a proper subgroup of Mod(T 2) of index three [Ding et al. 2012;
Montesinos 1983]. Thus there are many automorphisms that are stably extendable
but not extendable for the unknotted embedding.

Fix an orientation of the torus T 2. For any slope c ⊂ T 2 on the torus, we denote
the (right-hand) Dehn twist along c as τc : T 2

→ T 2. More precisely, the induced
automorphism on H1(T 2) is given by τc∗(α)= α+ I ([c], α)[c] for all α ∈ H1(T 2),
where I : H1(T 2)× H1(T 2)→ Z denotes the intersection form. Note that the
expression is independent from the choice of the direction of c.

The criterion below is inspired from techniques of Susumu Hirose and Akira
Yasuhara. However, the reader should beware that our notion of stabilization in this
paper does not change the fundamental group of the complement, so it is slightly
different from the definition in [Hirose and Yasuhara 2008].

Lemma 6.2. Let K : T 2 ↪→ S4 be a knotted torus. Suppose c ⊂ T 2 is a slope with
the singular genus g?K (c)= 0. Then the Dehn twist τc ∈Mod(T 2) along c belongs
to the stable extendable subgroup Es

K .

Proof. The idea of this criterion is that, for a closed simply connected oriented
4-manifold Y , to have the Dehn twist τc extendable over Y via the Y -stabilization
K [Y ] : T 2 ↪→ Y , we need c to bound a locally flat, properly embedded disk of Euler
number ±1 in the complement of K [Y ] in Y . Such a Y can always be chosen to be
the connected sum of copies of CP2 or CP2.

Recall that we introduced the Euler number of a surface bounding a slope in
Section 5C before the statement of Lemma 5.12. Suppose D is a locally flat, properly
embedded disk in X = Y − K [Y ] bounded by a slope c× pt on K [Y ] × pt ⊂ ∂X
with e(D; K [Y ])=±1. We claim in this case the Dehn twist τc ∈Mod(T 2) along
c can be extended as an orientation-preserving self-homeomorphism of Y . In fact,
following the arguments in the proof of [Hirose and Yasuhara 2008, Theorem 4.1],
we may take the compact normal disk bundle νD of D, identified as embedded
in X such that νD ∩ (K [Y ] × pt) is an interval subbundle of νD over ∂D. Then
e(D; K [Y ]) = ±1 implies that νD ∩ (K [Y ] × pt) is a (positive or negative) Hopf
band in the 3-sphere ∂νD, whose core is c × pt. Thus τc extends over Y as a
self-homeomorphism by [Hirose and Yasuhara 2008, Proposition 2.1].

Now it suffices to find a Y fulfilling the assumption of the claim above. Suppose
c⊂K is a slope with the singular genus g?K (c)=0. Then there is a map j :D2

→ XK

so that ∂D2 is mapped homeomorphically onto c× pt in ∂XK ∼= K × S1. We may
also assume j to be an immersion by the general position argument. Blowing up
all the double points of j (D2), we obtain an embedding



ON SLOPE GENERA OF KNOTTED TORI IN 4-SPACE 141

j ′ : D2 ↪→ XK # (CP2)#r

for some integer r ≥ 0. Suppose e( j ′(D); K [(CP2)#r
]) equals s ∈ Z. If s > 1, we

may further blow up s− 1 points in j ′(D)⊂ XK # (CP2)#r . This gives rise to

j ′′ : D2 ↪→ XK # (CP2)#(r+s−1)

satisfying the assumption of the claim, so the Dehn twist τc is extendable over
X = XK # (CP2)#(r+s−1), or in other words, it is Y -stably extendable, where Y =
(CP2)#(r+s−1). If s < 1, a similar argument using negative blow-ups shows that τc

is Y -stably extendable, where Y = (CP2)#(1−s) # (CP2)#r . �

7. Further questions

In conclusion, for a knotted torus K : T 2 ↪→ S4, the seminorm and the singular
genus of a slope are meaningful numerical invariants which are sometimes possible
to control using group theoretic methods. However, the genera of slopes seem to be
much harder to compute. It certainly deserves further exploration how to combine
the group-theoretic methods with the classical 4-manifold techniques when the
fundamental group comes into play.

We propose several further questions about genera, seminorm and extendable
subgroups. Suppose K : T 2 ↪→ S4 is a knotted torus.

Question 7.1. When is the unit disk of the seminorm ‖·‖K a finite rational polygon,
that is, bounded by finitely many segments of rational lines? (See Remark 5.10.)

Question 7.2. If the index of the extendable subgroup EK in Mod(T 2) equals
three, is K necessarily the knot connected sum of the unknotted torus with a
knotted sphere?

Question 7.3. If the stable extendable subgroup Es
K equals Mod(T 2), does the

singular genus g?K vanish for every slope?

Question 7.4. If K is incompressible, that is, ∂XK is π1-injective in the complement
XK , is the stable extendable subgroup Es

K finite?

Question 7.5. For plumbing knotted satellites, does the upper bound in Proposition
5.11(2) realize the genus of the slope?
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