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THE TRACE OF FROBENIUS OF ELLIPTIC CURVES
AND THE p-ADIC GAMMA FUNCTION

DERMOT MCCARTHY

We define a function in terms of quotients of the p-adic gamma function
which generalizes earlier work of the author on extending hypergeometric
functions over finite fields to the p-adic setting. We prove, for primes p > 3,
that the trace of Frobenius of any elliptic curve over Fp, whose j -invariant
does not equal 0 or 1728, is just a special value of this function. This gener-
alizes results of Fuselier and Lennon which evaluate the trace of Frobenius
in terms of hypergeometric functions over Fp when p � 1 .mod 12/.

1. Introduction and statement of results

Let Fp denote the finite field with p, a prime, elements. Consider E=Q an elliptic
curve with an integral model of discriminant �.E/. We denote Ep the reduction of
E modulo p. We note that Ep is nonsingular, and hence an elliptic curve over Fp ,
if and only if p − �.E/, in which case we say p is a prime of good reduction.
Regardless, we define

(1-1) ap.E/ WD pC 1� #Ep.Fp/:

If p is not a prime of good reduction we know ap.E/D 0;˙1 depending on the
nature of the singularity. If p is a prime of good reduction, we refer to ap.E/

as the trace of Frobenius as it can be interpreted as the trace of the Frobenius
endomorphism of E=Fp. For a given elliptic curve E=Q, these ap are important
quantities. Recall the Hasse–Weil L-function of E (viewed as function of a complex
variable s) is defined by

L.E; s/ WD
Y
pj�

1

1�ap.E/p�s

Y
p−�

1

1�ap.E/p�sCp1�2s
:

This Euler product converges for Re.s/ > 3
2

and has analytic continuation to the
whole complex plane. The Birch and Swinnerton-Dyer conjecture concerns the
behavior of L.E; s/ at s D 1.
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The main result of this paper relates the trace of Frobenius to a special value of a
function which we define in terms of quotients of the p-adic gamma function. Let
�p. � / denote Morita’s p-adic gamma function and let ! denote the Teichmüller
character of Fp with ! denoting its character inverse. For x 2Q we let bxc denote
the greatest integer less than or equal to x and hxi the fractional part of x, i.e.,
x�bxc.

Definition 1.1. Let p be an odd prime and let t 2 Fp. For n 2 ZC and 1 � i � n,
let ai ; bi 2Q\Zp. Then we define

nGn

�
a1; a2; : : : ; an

b1; b2; : : : ; bn

ˇ̌̌
t

�
p

WD
�1

p�1

p�2X
jD0

.�1/jn !j .t/

�

nY
iD1

�p

�
hai�

j
p�1
i
�

�p

�
haii

� �p

�
h�biC

j
p�1
i
�

�p

�
h�bii

� .�p/�
�
hai i�

j
p�1

˘
�

�
h�bi iC

j
p�1

˘
:

Throughout the paper we will refer to this function as nGnŒ � � � �. The value of
nGnŒ � � � � depends only on the fractional part of the a and b parameters. Therefore,
we can assume 0� ai ; bi < 1.

This function has some very nice properties. It generalizes the function defined by
the author in [McCarthy 2012a], which exhibits relationships to Fourier coefficients
of modular forms. This earlier function has only one line of parameters and
corresponds to nGnŒ � � � � when all the bottom line parameters are integral and t D 1.
The earlier function also extended, to the p-adic setting, hypergeometric functions
over finite fields with trivial bottom line parameters. In Section 3 we will see that
nGnŒ � � � � extends hypergeometric functions over finite fields in their full generality,
to the p-adic setting. By definition, results involving hypergeometric functions over
finite fields will often be restricted to primes in certain congruence classes; see for
example [Evans 2010; Fuselier 2010; Lennon 2011; Mortenson 2005; Vega 2011].
The motivation for developing nGnŒ � � � � is that it can often allow these results to be
extended to a wider class of primes [McCarthy 2012a; 2012b], as we exhibit in our
main result below. We will discuss these properties in more detail in Section 3.

We now state our main result, which relates the trace of Frobenius of an elliptic
curve over Fp to a special value of nGnŒ � � � �. We first note that if p > 3 then any
elliptic curve over Fp is isomorphic to an elliptic curve of the form

E W y2
D x3

C axC b;

that is, short Weierstrass form, and that the trace of Frobenius of isomorphic curves
are equal. Let j .E/ denote the j -invariant of the elliptic curve E. Let �p.�/ be the
Legendre symbol modulo p. We will often omit the subscript p when it is clear
from the context.
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Theorem 1.2. Let p > 3 be prime. Consider an elliptic curve E=Fp of the form
E W y2 D x3C axC b with j .E/¤ 0; 1728. Then

(1-2) ap.E/D �.b/ �p � 2G2

"
1
4
; 3

4
1
3
; 2

3

ˇ̌̌
�

27b2

4a3

#
p

:

Independent of Theorem 1.2, we will see later from Proposition 3.1 that the
right-hand side of (1-2) is p-integral.

Theorem 1.2 generalizes Theorem 1.2 of [Fuselier 2010] and Theorem 2.1 of
[Lennon 2011], which evaluate the trace of Frobenius in terms of hypergeometric
functions over Fp when p � 1 .mod 12/. The results in the latter paper are in fact
over Fq , for q� 1 .mod 12/ a prime power, and hence allow calculation of ap up to
sign when p 6� 1 .mod 12/ via the relation a2

p D ap2 C 2p. Theorem 1.2 however
gives a direct evaluation of ap for all primes p > 3 and resolves this sign issue.

One of the nice features of the main result in [Lennon 2011] is that it is indepen-
dent of the Weierstrass model of the elliptic curve. Recall an elliptic curve over a
field K in Weierstrass form is given by

(1-3) E W y2
C a1xyC a3y D x3

C a2x2
C a4xC a6;

with a1; a2; : : : ; a6 2 K. We can define the quantities

b2 WD a1
2
C 4a2; b4 WD 2a4C a1a3; b6 WD a3

2
C 4a6;

b8 WD a1
2a6C 4a2a6� a1a3a4C a2a3

2
� a4

2; c4 WD b2
2 � 24b4;

c6 WD �b3
2 C 36b2b4� 216b6;

in the standard way. These can then be used to calculate �.E/D .c3
4
� c2

6
/=1728

and j .E/ D c3
4
=�.E/. An admissible change of variables, x D u2x0 C r and

y D u3y0 C su2x0 C t with u; r; s; t;2 K and u ¤ 0 in (1-3) will result in an
isomorphic curve also given in Weierstrass form, and any two isomorphic curves
over K are related by such an admissible change of variables. Two curves related
by an admissible change of variables will have the same j -invariant but their
discriminants will differ by a factor of a twelfth-power, namely u12, and their
respective ci quantities will differ by a factor of ui . This allows the main result
[ibid.], which is stated in terms of j .E/ and �.E/, to be expressed independently
of the Weierstrass model of the elliptic curve. We can do something similar with
Theorem 1.2.

Corollary 1.3. Let p > 3 be prime. Consider an elliptic curve E=Fp in Weierstrass
form with j .E/¤ 0; 1728. Then

ap.E/D �.�6 � c6/ �p � 2G2

"
1
4
; 3

4
1
3
; 2

3

ˇ̌̌
1�

1728

j .E/

#
p

:
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Please refer to [Knapp 1992; Silverman 2009] for a detailed account of any of
the properties of elliptic curves mentioned in the above discussion. The rest of
this paper is organized as follows. In Section 2 we recall some basic properties
of multiplicative characters, Gauss sums and the p-adic gamma function. We
discuss some properties of nGnŒ � � � � in Section 3, including its relationship to
hypergeometric functions over finite fields. The proofs of our main results are
contained in Section 4. Finally, we make some closing remarks in Section 5.

2. Preliminaries

Let Zp denote the ring of p-adic integers, Qp the field of p-adic numbers, Qp the
algebraic closure of Qp, and Cp the completion of Qp.

2A. Multiplicative characters and Gauss sums. Let yF�p denote the group of mul-
tiplicative characters of F�p. We extend the domain of � 2 yF�p to Fp, by defining
�.0/ WD 0 (including the trivial character ") and denote by � the inverse of �. We
recall the following orthogonal relations. For � 2 yF�p we have

(2-1)
X
x2Fp

�.x/D

�
p� 1 if �D ";
0 if �¤ ";

and, for x 2 Fp we have

(2-2)
X
�2yF�

p

�.x/D

�
p� 1 if x D 1;

0 if x ¤ 1:

We now introduce some properties of Gauss sums. For further details see [Berndt
et al. 1998], noting that we have adjusted results to take into account ".0/D 0.

Let �p be a fixed primitive p-th root of unity in Qp. We define the additive
character � W Fp!Qp.�p/ by �.x/ WD �x

p . It is easy to see that

�.aC b/D �.a/�.b/;(2-3) X
x2Fp

�.x/D 0:(2-4)

We note that Qp contains all .p� 1/-th roots of unity and in fact they are all in Z�p .
Thus we can consider multiplicative characters of F�p to be maps � WF�p!Z�p . Recall
then that for � 2 yF�p , the Gauss sum g.�/ is defined by g.�/ WD

P
x2Fp

�.x/�.x/.
It easily follows from (2-2) that we can express the additive character as a sum of
Gauss sums. Specifically, for x 2 F�p we have

(2-5) �.x/D
1

p�1

X
�2yF�

p

g.�/ �.x/:
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The following important result gives a simple expression for the product of two
Gauss sums. For � 2 yF�p we have

(2-6) g.�/g.�/D

�
�.�1/p if �¤ ";
1 if �D ":

Another important product formula for Gauss sums is the Hasse–Davenport
formula.

Theorem 2.1 (Hasse, Davenport [Berndt et al. 1998, Theorem 11.3.5]). Let � be a
character of order m of F�p for some positive integer m. For a character  of F�p we
have

m�1Y
iD0

g.�i /D g. m/ �m.m/

m�1Y
iD1

g.�i/:

We now recall a formula for counting zeros of polynomials in affine space using
the additive character. If f .x1;x2; : : : ;xn/ 2 Fp Œx1;x2; : : : ;xn�, then the number
of points, Np, in An.Fp/ satisfying f .x1;x2; : : : ;xn/D 0 is given by

(2-7) pNp D pn
C

X
y2F�

p

X
x1;x2;:::;xn2Fp

�.y f .x1;x2; : : : ;xn// :

2B. p-adic preliminaries. We define the Teichmüller character to be the primitive
character ! W Fp! Z�p satisfying !.x/� x .mod p/ for all x 2 f0; 1; : : : ;p� 1g.
We now recall the p-adic gamma function. For further details, see [Koblitz 1980].
Let p be an odd prime. For n 2 ZC we define the p-adic gamma function as

�p.n/ WD .�1/n
Y

0<j<n
p−j

j ;

and extend to all x 2 Zp by setting �p.0/ WD 1 and

�p.x/ WD lim
n!x

�p.n/

for x ¤ 0, where n runs through any sequence of positive integers p-adically
approaching x. This limit exists, is independent of how n approaches x, and
determines a continuous function on Zp with values in Z�p . We now state a product
formula for the p-adic gamma function. If m 2 ZC, p −m and x D r=.p�1/ with
0� r � p� 1 then

(2-8)
m�1Y
hD0

�p

�
xCh

m

�
D !

�
m.1�x/.1�p/

�
�p.x/

m�1Y
hD1

�p

�
h

m

�
:

We note also that

(2-9) �p.x/�p.1�x/D .�1/x0 ;
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where x0 2 f1; 2; : : : ;pg satisfies x0 � x .mod p/. The Gross–Koblitz formula
[1979] allows us to relate Gauss sums and the p-adic gamma function. Let � 2 Cp

be the fixed root of xp�1 C p D 0 which satisfies � � �p � 1 .mod .�p � 1/2/.
Then we have the following result.

Theorem 2.2 [Gross and Koblitz 1979]. For j 2 Z,

g.!j /D��.p�1/h j
p�1
i�p

�D
j

p�1

E�
:

3. Properties of nGnŒ � � � �.

As both �p. � / and !.�/ are in Z�p, we see immediately from its definition that

nGnŒ � � � �p 2 pıZp for some ı 2 Z. We describe ı explicitly in the following
proposition. We first define

hbii
�
WD 1� h�bii D

�
hbii if bi … Z;

1 if bi 2 Z:

Proposition 3.1. Let p be an odd prime and let t 2 Fp . Let n 2 ZC; 1� i � n and
ai ; bi 2Q\Zp. For j 2 Z we define

f .j / WD #
˚

ai

ˇ̌
haii<

j
p�1

; 1� i � n
	
� #

˚
bi

ˇ̌
hbii
�
�

j
p�1

; 1� i � n
	
:

Then

nGn

�
a1; a2; : : : ; an

b1; b2; : : : ; bn

ˇ̌̌
t

�
p

2 pıZp;

where ı DMinff .j / j 0� j � p� 2g.

Proof. As �p. � /; !.�/ and 1
p�1

are all in Z�p, the result follows from noting that

�
haii �

j
p�1

˘
D

�
�1 if haii< j=.p� 1/;

0 if haii � j=.p� 1/;

and �
h�biiC

j
p�1

˘
D

�
1 if hbii

� � j=.p� 1/;

0 if hbii
� > j=.p� 1/:

�

We note that nGnŒ � � � � generalizes the function defined in [McCarthy 2012a]. This
earlier function has only one line of parameters and corresponds to nGnŒ � � � � when
all the bottom line parameters are integral and t D 1. Therefore the results from
[McCarthy 2012a; 2012b] can be restated using nGnŒ � � � �. The motivation for devel-
oping nGnŒ � � � � and its predecessor was to allow results involving hypergeometric
functions over finite fields, which are often restricted to primes in certain congruence
classes, to be extended to a wider class of primes. While the function defined in
[McCarthy 2012a] extended to the p-adic setting, hypergeometric functions over
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finite fields with trivial bottom line parameters, we now show, in Lemma 3.3, that
nGnŒ � � � � extends hypergeometric functions over finite fields in their full generality.

Hypergeometric functions over finite fields were originally defined by Greene
[1987], who first established these functions as analogues of classical hyperge-
ometric functions. Functions of this type were also introduced by Katz [1990]
about the same time. In the present article we use a normalized version of these
functions defined in [McCarthy 2012c], which is more suitable for our purposes.
The reader is directed to [ibid., §2] for the precise connections among these three
classes of functions.

Definition 3.2 [McCarthy 2012c, Definition 1.4]. For A0;A1; : : : ;An;B1; : : : ;Bn

in yF�p and x in Fp, define

(3-1) nC1Fn

�
A0; A1; : : : ; An

B1; : : : ; Bn

ˇ̌̌
x

�
p

WD
1

p�1

X
�2yF�

p

nY
iD0

g.Ai�/

g.Ai/

nY
jD1

g.Bj�/

g.Bj /
g.�/�.�1/nC1�.x/:

Many of the results concerning hypergeometric functions over finite fields that
we quote from other articles were originally stated using Greene’s function. If
this is the case, note then that we have reformulated them in terms nC1Fn. � � � / as
defined above.

We have the following relationship between nGnŒ � � � � and nC1Fn. � � � /.

Lemma 3.3. For a fixed odd prime p, let Ai ;Bk 2
yF�p be given by ! ai .p�1/ and

! bk.p�1/ respectively, where ! is the Teichmüller character. Then

nC1Fn

�
A0; A1; : : : ; An

B1; : : : ; Bn

ˇ̌̌
t

�
p

D nC1GnC1

�
a0; a1; : : : ; an

0; b1; : : : ; bn

ˇ̌̌
t�1

�
p

:

Proof. Starting from the definition of nC1Fn. � � � /, we convert the right-hand side
of (3-1) to an expression involving the p-adic gamma function and Teichmüller
character. We note yF�p can be given by f!j j 0� j � p�2g. Then, straightforward
applications of the Gross–Koblitz formula (Theorem 2.2) with �D !j yield

g.�/D��j�p

� j
p�1

�
;

g.Ai�/

g.Ai/
D ��j�.p�1/

��
ai�

j
p�1

˘
�baic

��p

�
hai�

j
p�1
i
�

�p

�
haii

� ;

g.Bk�/

g.Bk/
D �j�.p�1/

��
�bkC

j
p�1

˘
�b�bkc

��p

�
h�bkC

j
p�1
i
�

�p

�
h�bki

� ;



226 DERMOT MCCARTHY

where � is as defined in Section 2B. Substituting these expressions into (3-1) and
tidying up yields the result. �

We note that if � 2 yF�p is a character of order d and is given by !x.p�1/ then
x D m=d 2 Q and p � 1 .mod d/. Therefore, given a hypergeometric function
over Fp whose arguments are characters of prescribed order, the function will only
be defined for primes p in certain congruence classes. By Lemma 3.3, for primes
in these congruence classes, the finite field hypergeometric function will be related
to an appropriate nGnŒ � � � � function. However this corresponding nGnŒ � � � � will be
defined at all primes not dividing the orders of the particular characters appearing
in the finite field hypergeometric function. This opens the possibility of extending
results involving hypergeometric functions over finite fields to all but finitely many
primes.

For example, we have the following result from [McCarthy 2012b], which relates
a special value of the hypergeometric function over finite fields to a p-th Fourier
coefficient of a certain modular form. Let

(3-2) f .z/ WD f1.z/C 5f2.z/C 20f3.z/C 25f4.z/C 25f5.z/D

1X
nD1

c.n/qn;

where fi.z/ WD �
5�i.z/�4.5z/�i�1.25z/, �.z/ WD q1=24

Q1
nD1.1�qn/ is the Dede-

kind eta function and q WD e2�iz . Then f is a cusp form of weight four on the
congruence subgroup �0.25/.

Theorem 3.4 [McCarthy 2012b, Corollary 1.6]. If p� 1 .mod 5/ is prime, �5 2
yF�p

is a character of order 5 and c.p/ is as defined in (3-2), then

4F3

�
�5; �

2
5
; �3

5
; �4

5

"; "; "

ˇ̌̌
1

�
p

�p D c.p/:

This result can be extended to almost all primes using nGnŒ � � � �, as follows.

Theorem 3.5 [McCarthy 2012b, Theorem 1.4]. If p ¤ 5 is an odd prime and c.p/

is as defined in (3-2), then

4G4

"
1
5
; 2

5
; 3

5
; 4

5

0; 0; 0; 0

ˇ̌̌
1

#
p

�
�

5
p

�
p D c.p/;

where
�
�
p

�
is the Legendre symbol modulo p.

Results in [Mortenson 2005] establish congruences modulo p2 between the clas-
sical hypergeometric series and the hypergeometric function over Fp , for primes p

in certain congruence classes. In [McCarthy 2012a] we extend these results to
primes in additional congruence classes and, in some cases to modulo p3, using
the predecessor to nGnŒ � � � �.
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The main purpose of this paper is to extend to almost all primes the results
in [Lennon 2011], which relate the trace of Frobenius ap to a special value of a
hypergeometric function over Fp when p� 1 .mod 12/. In addition to their formal
statement, the results in [ibid.] appear in various forms throughout that paper, all of
which are related by known transformations for hypergeometric function over finite
fields. We recall one such version of [ibid., Theorem 2.1].

Theorem 3.6 [Lennon 2011, §2.2]. Let p � 1 .mod 12/ be prime and let  2 yF�p
be a character of order 12. Consider an elliptic curve E=Fp of the form

E W y2
D x3

C axC b

with j .E/¤ 0; 1728. Then

ap.E/D  
3
�
�

a3

27

�
� 2F1

�
 ;  5

"

ˇ̌̌
4a3C27b2

4a3

�
p

:

Theorem 3.6 generalizes [Fuselier 2010, Theorem 1.2] and other results from
Fuselier’s thesis [2007] that provide similar results for various families of elliptic
curves. In attempting to extend Theorem 3.6 beyond p � 1 .mod 12/, one might
consider using

2G2

"
1

12
; 5

12

0; 0

ˇ̌̌
4a3

4a3C27b2

#
p

;

as suggested by Lemma 3.3. However this leads to poor results when p 6� 1

.mod 12/. Results where nGnŒ � � � � extend those involving nC1Fn. � � � / seem
to work best when the arguments of nGnŒ � � � � appear in sets such that for each
denominator all possible relatively prime numerators are represented. This is
reflected in Theorem 1.2.

Hypergeometric functions over finite fields have been applied to many areas but
most interestingly perhaps has been their relationships to modular forms [Ahlgren
and Ono 2000; Evans 2010; Fuselier 2010; Frechette et al. 2004; McCarthy 2012b;
Mortenson 2005; Ono 1998; Papanikolas 2006] and their use in evaluating the
number of points over Fp on certain algebraic varieties [Ahlgren and Ono 2000;
Fuselier 2010; McCarthy 2012b; Vega 2011]. Lemma 3.3 allows these results to
be expressed in terms of nGnŒ � � � � also. Many of these cited results are based
on nC1Fn. � � � / with arguments which are characters of order at most 2 and hold
for all odd primes. However there is much scope for developing results where
the characters involved have higher orders, in which case these functions will be
defined for primes in certain congruence classes and nGnŒ � � � � allows the possibility
to extend these results to a wider class of primes.
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4. Proofs of Theorem 1.2 and Corollary 1.3

We first prove a preliminary result which we will require later for the proof of our
main result.

Lemma 4.1. Let p be prime. For 0� j � p� 2 and t 2 ZC with p − t , we have

(4-1) �p

�˝ tj
p�1

˛�
!.t tj /

t�1Y
hD1

�p

�
h
t

�
D

t�1Y
hD0

�p

�˝
h
t
C

j
p�1

˛�
and

(4-2) �p

�˝
�tj
p�1

˛�
!.t�tj /

t�1Y
hD1

�p

�
h
t

�
D

t�1Y
hD0

�p

�˝
1Ch

t
�

j
p�1

˛�
:

Proof. Fix 0� j � p� 2 and let k 2 Z�0 be defined such that

(4-3) k
�p�1

t

�
� j < .kC 1/

�p�1
t

�
:

Letting mD t and x D .tj=.p� 1//� k in (2-8) yields

(4-4)
t�1Y
hD0

�p

� j
p�1
C

h�k
t

�
D !

�
t

�
1� tj

p�1
Ck
�
.1�p/

�
�p

� tj
p�1
� k

� t�1Y
hD1

�p

�
h
t

�
:

We note that 0� k < t . Using (4-3) we see that if 0� h< t then

0� h�k
t
C

j
p�1

< 1:

Therefore, if 1� k < t then

(4-5)
t�1Y
hD0

�p

�
h�k

t
C

j
p�1

�
D

t�1Y
hD0

�p

�˝
h�k

t
C

j
p�1

˛�
D

k�1Y
hD0

�p

�˝
tCh�k

t
C

j
p�1

˛� t�1Y
hDk

�p

�˝
h�k

t
C

j
p�1

˛�
D

t�1Y
hDt�k

�p

�˝
h
t
C

j
p�1

˛� t�k�1Y
hD0

�p

�˝
h
t
C

j
p�1

˛�
D

t�1Y
hD0

�p

�˝
h
t
C

j
p�1

˛�
:

The result in (4-5) also holds when k D 0. Substituting (4-5) into (4-4) and noting
that

�p

�˝ tj
p�1

˛�
D �p

� tj
p�1
� k

�
;
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by (4-3), yields (4-1).
We use a similar argument to prove (4-2). The result is trivial for j D 0. Fix

0< j � p� 2 and let k 2 ZC be defined such that

(4-6) .k � 1/
�p�1

t

�
< j � k

�p�1
t

�
:

Letting mD t and x D k � tj=.p� 1/ in (2-8) yields

(4-7)
t�1Y
hD0

�p

�
kCh

t
�

tj
p�1

�
D !

�
t

�
1�kC tj

p�1

�
.1�p/��p

�
k � tj

p�1

� t�1Y
hD1

�p

�
h
t

�
:

We note that 1� k � t . Using (4-6) we see that if 0� h< t then

0� kCh
t
�

j
p�1

< 1:

Therefore, if 1< k � t then

(4-8)
t�1Y
hD0

�p

�
kCh

t
�

j
p�1

�
D

t�1Y
hD0

�p

�˝
kCh

t
�

j
p�1

˛�

D

t�kY
hD0

�p

�˝
kCh

t
�

j
p�1

˛� t�1Y
hDt�kC1

�p

�˝
kCh�t

t
�

j
p�1

˛�

D

t�1Y
hDk�1

�p

�˝
1Ch

t
�

j
p�1

˛� k�2Y
hD0

�p

�˝
1Ch

t
�

j
p�1

˛�

D

t�1Y
hD0

�p

�˝
1Ch

t
�

j
p�1

˛�
:

The result in (4-8) also holds when k D 1. Now (4-2) follows by substituting (4-8)
into (4-7) and noting that, by (4-6),

�p

�˝
�tj
p�1

˛�
D �p

�
�tj
p�1
C k

�
: �

Proof of Theorem 1.2. We note that a ¤ 0; b ¤ 0 and �27b2=.4a3/ ¤ 1 as
j .E/¤ 0; 1728. Initially the proof proceeds along similar lines to the proofs of
[Fuselier 2010, Theorem 1.2; Lennon 2011, Theorem 2.1] by using (2-7) to evaluate
#E.Fp/. However we then transfer to the p-adic setting using the Gross–Koblitz
formula (Theorem 2.2) and use properties of the p-adic gamma function, including
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Lemma 4.1, to prove the desired result. By (2-7) we have

(4-9) p.#E.Fp/� 1/

D p2
C

X
y2F�

p

X
x1;x22Fp

�.y.x3
1 C ax1C b�x2

2//

D p2
C

X
y2F�

p

�.yb/C
X

y;x22F�
p

�.yb�yx2
2/C

X
y;x12F�

p

�.yx3
1 C ayx1Cyb/

C

X
y;x1;x22F�

p

�.yx3
1 C ayx1C by �yx2

2//:

We now examine each sum of (4-9) in turn and will refer to them as S1 to S4,
respectively. Using (2-4) we see that

S1 D

X
y2F�

p

�.yb/D�1:

We use (2-3) and (2-5) to expand the remaining terms as expressions in Gauss sums.
This exercise has also been carried out in the proof of [Lennon 2011, Theorem 2.1]
so we only give a brief account here. Let T be a fixed generator for the group of
characters of F�p. Then

S2 D

X
y;x22F�

p

�.yb�yx2
2/

D
1

.p�1/2

p�2X
r;sD0

g.T �r /g.T �s/T r .b/ T s.�1/
X

x22F�
p

T 2s.x2/
X

y2F�
p

T rCs.y/:

We now apply (2-1) to the last summation on the right, which yields .p � 1/ if
r D�s and zero otherwise. So

S2 D
1

.p�1/

p�2X
sD0

g.T s/g.T �s/T �s.b/T s.�1/
X

x22F�
p

T 2s.x2/:

Again we apply (2-1) to the last summation on the right, which yields .p� 1/ if
s D 0 or s D .p� 1/=2, and zero otherwise. Thus, and using (2-6), we get that

S2 D g."/ g."/C g.�/ g.�/ �.�b/D 1Cp �.b/:
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Similarly,

S3 D

X
y;x12F�

p

�.yx3
1 C ayx1Cyb/

D
1

.p� 1/3

p�2X
r;s;tD0

g.T �r /g.T �s/g.T �t /T s.a/T t .b/

�

X
x12F�

p

T 3rCs.x1/
X

y2F�
p

T rCsCt .y/;

S4 D

X
y;x1;x22F�

p

�.yx3
1 C ayx1C by �yx2

2//

D
1

.p�1/4

p�2X
j ;r;s;tD0

g.T �j /g.T �r /g.T �s/g.T �t /T r .a/T s.b/T t .�1/

�

X
x12F�

p

T 3jCr .x1/
X

y2F�
p

T jCrCsCt .y/
X

x22F�
p

T 2t .x2/:

We now apply (2-1) to the last summation on the right of S4, which yields p� 1 if
t D 0 or t D .p� 1/=2 and zero otherwise. In the case t D 0 we find that

S4;tD0 D�S3:

When t D .p� 1/=2 we get, after applying (2-1) twice more,

S
4;tDp�1

2

D
�.�b/

.p�1/

p�2X
jD0

g.T �j /g.T
p�1

2
�2j /g.T 3j /g.T

p�1
2 /T �3j .a/T 2j .b/:

Combining (1-1), (4-9) and the evaluations of S1;S2;S3 and S4 we find that

(4-10) ap.E/D�
�.b/p

.p�1/

�
�.�b/

p.p�1/

p�2X
jD1

g.T �j /g.T
p�1

2
�2j /g.T 3j /g.T

p�1
2 /T j

�
b2

a3

�
:

We know from Theorem 2.1 with �D � D T
p�1

2 and  D T �2j that

(4-11) g.T
p�1

2
�2j /D

g.T �4j /g.T
p�1

2 /T 4j .2/

g.T �2j /
:
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Accounting for (4-11) in (4-10) and applying (2-6) with �D � D T
p�1

2 gives us

(4-12) ap.E/D
��.b/p

.p�1/

�
1C

1

p

p�2X
jD1

g.T �j /g.T 3j /g.T �4j /

g.T �2j /
T j
�

16b2

a3

��
:

We now take T to be the inverse of the Teichmüller character, that is, T D !, and
use the Gross–Koblitz formula (Theorem 2.2) to convert (4-12) to an expression
involving the p-adic gamma function. This yields

(4-13) ap.E/D
��.b/p

.p�1/

"
1�

p�2X
jD1

.�p/

��
�2j
p�1

˘
�

�
�j

p�1

˘
�

�
3j

p�1

˘
�

�
�4j
p�1

˘
�1
�

�
�p

�˝
�j

p�1

˛�
�p

�˝ 3j
p�1

˛�
�p

�˝
�4j
p�1

˛�
�p

�˝
�2j
p�1

˛� !j
�

16b2

a3

�#
:

Next we use Lemma 4.1 to transform the components of (4-13) which involve the
p-adic gamma function. After some tidying up we then get

ap.E/D
��.b/p

.p�1/

"
1�

p�2X
jD1

.�p/

��
�2j
p�1

˘
�

�
�j

p�1

˘
�

�
3j

p�1

˘
�

�
�4j
p�1

˘
�1
�
�p

�
1� j

p�1

�
��p

� j
p�1

��p

�˝
1
4
�

j
p�1

˛�
�p

�˝
3
4
�

j
p�1

˛�
�p

�˝
1
3
C

j
p�1

˛�
�p

�˝
2
3
C

j
p�1

˛�
�p

�
1
4

�
�p

�
3
4

�
�p

�
1
3

�
�p

�
2
3

� !j
�

27b2

4a3

�#
:

We note for 0� j � p� 2,

�
�4j
p�1

˘
�
�
�2j
p�1

˘
D
�

1
4
�

j
p�1

˘
C
�

3
4
�

j
p�1

˘
;

and when 1� j � p� 2,

�
�j

p�1

˘
C
� 3j

p�1

˘
C 1D

�
1
3
C

j
p�1

˘
C
�

2
3
C

j
p�1

˘
:

Also, by (2-9) we have, for 0� j � p� 1,

�p

�
1� j

p�1

�
�p

� j
p�1

�
D .�1/p�j

D .�1/p !j .�1/:
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Therefore

ap.E/D
��.b/p

.p�1/

�p�2X
jD0

.�p/

�
�

�
1
4
�

j
p�1

˘
�

�
3
4
�

j
p�1

˘
�

�
1
3
C

j
p�1

˘
�

�
2
3
C

j
p�1

˘�

�
�p

�˝
1
4
�

j
p�1

˛�
�p

�˝
3
4
�

j
p�1

˛�
�p

�
1
4

�
�p

�
3
4

�
�
�p

�˝
�

2
3
C

j
p�1

˛�
�p

�˝
�

1
3
C

j
p�1

˛�
�p

�˝
�

2
3

˛�
�p

�˝
�

1
3

˛� !j
�
�

27b2

4a3

��

D �.b/ �p � 2G2

"
1
4
; 3

4

1
3
; 2

3

ˇ̌̌
�

27b2

4a3

#
p

: �

Remark 4.2. Using (2-7) to evaluate the number of points on certain algebraic
varieties over finite fields is by no means new. However, the author first observed
the technique in the work of Fuselier [2007; 2010] where it was used to relate these
evaluations to hypergeometric functions over finite fields. These methods were
subsequently used by Lennon [2011] in generalizing Fuselier’s work and, as we’ve
seen, also form part of our proof of Theorem 1.2.

Proof of Corollary 1.3. As noted in the introduction, when p > 3, any elliptic
curve E=Fp is isomorphic to an elliptic curve of the form E0 W y2 D x3C axC b.
Therefore ap.E/D ap.E

0/ and Theorem 1.2 can be used to evaluate ap.E/. We
also note that

j .E/D j .E0/D
1728�4a3

4a3C27b2
;

and so

1�
1728

j .E/
D�

27b2

4a3
:

As E and E0 are related by an admissible change of variables, this implies c6.E/D

c6.E
0/ �u6 for some u 2 F�p. Now c6.E

0/D�27 � 32 � b so �.b/D �.�6 � c6.E//

as required. �

5. Concluding remarks

5A. The p D 3 case. Theorem 1.2 considers elliptic curves over Fp for primes
p > 3. While nGnŒ � � � �p is not defined for p D 2, it is defined for p D 3 once the
parameters are 3-adic integers. As the parameters of the 2G2Œ � � � �p in Theorem 1.2
are not all 3-adic integers it is clear that the result cannot be extended to p D 3

using the same function. However we can say something about the p D 3 case.
Any elliptic curve over F3, whose j -invariant is nonzero, is isomorphic to a curve
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of the form E W y2 D x3C ax2C b with both a and b nonzero [Silverman 2009,
Apppendix A]. It is an easy exercise to evaluate a3.E/ and to show

a3.E/D �.a/ � 2G2

"
0; 0

0; 1
2

ˇ̌̌
�

a

b

#
3

:

This relationship is somewhat contrived however and direct calculation of a3.E/ is
much more straightforward.

5B. Transformation properties of nGnŒ � � � �p. As mentioned in Section 3, hyper-
geometric functions over finite fields were originally defined by Greene [1987] as
analogues of classical hypergeometric functions. His motivation was to develop
the area of character sums and their evaluations through parallels with the classical
functions, and, in particular, with their transformation properties. His endeavor
was largely successful and analogues of various classical transformations were
found [ibid.]. Some others were recently provided by the author in [McCarthy
2012c]. These transformations for hypergeometric functions over finite fields can
obviously be rewritten in terms of nGnŒ � � � �p via Lemma 3.3 and these results will
hold for all p where the original characters existed over Fp. It is an interesting
question to consider if these transformations can then be extended to almost all p

and become transformations for nGnŒ � � � �p in full generality. This is something yet
to be considered and may be the subject of forthcoming work.

5C. q-version of nGnŒ � � � �p. As discussed in Section 3, nGnŒ � � � �p extends hy-
pergeometric functions over finite fields, as defined in Definition 3.2, to the p-adic
setting. Definition 3.2 can easily be extended to Fq where q is a prime power and
indeed, this is how it was originally defined in [McCarthy 2012c, Definition 1.4].
In a similar manner to the proof of Lemma 3.3, we can then use the Gross–Koblitz
formula (not as quoted in Theorem 2.2 but its Fq-version) to transform the hyperge-
ometric function over Fq to an expression involving products of the p-adic gamma
function. Generalizing the resulting expression yields the following q-version of
nGnŒ � � � �p. We now let ! denote the Teichmüller character of Fq .

Definition 5.1. Let q D pr , for p an odd prime and r 2 ZC, and let t 2 Fq . For
n 2 ZC and 1� i � n, let ai ; bi 2Q\Zp. Then we define

nGn

�
a1; a2; : : : ; an

b1; b2; : : : ; bn

ˇ̌̌
t

�
q

WD
�1

q�1

q�2X
jD0

.�1/jn !j .t/

�

nY
iD1

r�1Y
kD0

�p

�˝�
ai�

j
q�1

�
pk
˛�

�p

�
haipki

� �p

�˝�
�biC

j
q�1

�
pk
˛�

�p

�
h�bipki

�
.�p/�

�
hai pki�

jpk

q�1

˘
�

�
h�bi pkiC

jpk

q�1

˘
:
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When q D p in Definition 5.1 we recover nGnŒ � � � �p as per Definition 1.1. We
believe nGnŒ � � � �q could be used to generalize results involving hypergeometric
functions over Fq which are restricted to q in certain congruence classes (e.g., those
in [Lennon 2011]). However we do not examine this here for the following reason.
The main purpose of this paper is to demonstrate that nGnŒ � � � �p can be used to
extend results involving hypergeometric functions over Fp, which are limited to
primes in certain congruence classes, and thus avoid the need to work over Fq .
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