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THE SUBREPRESENTATION THEOREM
FOR AUTOMORPHIC REPRESENTATIONS

MARCELA HANZER

We prove that every irreducible subrepresentation in the space of automor-
phic forms on G(A), where G is a connected reductive group defined over a
number field k, and A is the related ring of adeles, is a subrepresentation of
the representation induced from a cuspidal automorphic representation of
a Levi subgroup.

1. Introduction

In this note we prove the global (automorphic) version (over a number field k) of
Casselman’s subrepresentation theorem. We explain it in more detail: in the local
theory (i.e., considering admissible representations of reductive groups over local
fields) there is Harish-Chandra’s subquotient theorem [1954], and then there is also
Casselman’s subrepresentation theorem [1980; 1995]; both of them state that every
irreducible representation (in the appropriate category) of this given reductive group
is a subquotient or (in the case of Casselman’s theorem) a subrepresentation of a
representation induced from a “simpler” one (of an appropriate subgroup). The
global analog of the Harish-Chandra subquotient theorem would be Langlands’
theorem which describes a general automorphic representation as a subquotient of
a representation induced from a cuspidal representation of a Levi subgroup.

We prove the following global version of Casselman’s subrepresentation theorem.

Theorem. Let G be a connected reductive group defined over k. Let (5, V ) be an
((g∞, K∞)×G(A f ))-irreducible subspace of automorphic forms in A(G(k)\G(A)).
Then, there exists a parabolic subgroup P = MU of G, an irreducible automor-
phic cuspidal representation π0 of M (thus appearing in the space of cuspidal
automorphic forms on M) such that, as abstract global representations, we have

5 ↪→ indG(A)
P(A)π0,

where we consider the normalized parabolic induction (so we extend π0 trivially on
U (A)) and we take K-finite vectors.
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We explain all the notation in the Preliminaries section.
We are sure that the experts in the field are aware of the above claim, but we were

not able to find the reference for this statement, which is somewhat more precise
than the aforementioned Langlands’ result in his Corvallis lecture [Borel and Jacquet
1979]. The proof is a pretty straightforward application of the Langlands proof in
his Corvallis lecture, with the decomposition results (on the spaces of automorphic
forms) obtained (along with much stronger results) in [Mœglin and Waldspurger
1995]. We hope that this result will be very helpful for explicit calculations with
automorphic forms, since it is explicitly applicable to the discrete (and K-finite)
part of automorphic L2 situation.

2. Preliminaries

Let k be a number field, and A its ring of adeles. Let G be a connected reductive
group defined over k, and G∞ =

∏
v G(kv), where the product is over archimedean

places of k. We further denote G(A f ) =
∏
′

v<∞ G(kv). Let U be the enveloping
algebra of the complexified Lie algebra g of G∞ (and g∞ is the Lie algebra of G∞).
We follow the notation of the first chapter of [Mœglin and Waldspurger 1995]. We
denote by z the center of U and by Kv a maximal compact subgroup of G(kv),
where Kv = G(Okv ) for almost all v <∞. Here Okv is the ring of integers in kv.
We set K∞ =

∏
v|∞ Kv and K =

∏
v Kv. We fix a minimal parabolic subgroup

P0 of G defined over k, and consequently, standard parabolic subgroups (defined
over k) with respect to P0. We denote by S a maximal k-split torus of G, chosen
inside P0 and by 1 the set of simple k-roots of G with respect to S (and P0). We
know that each standard k-parabolic subgroup corresponds to a subset θ of 1. We
denote this by putting P = Pθ . We denote the modular function on P by δP . For a
standard Levi k-subgroup M of G, we denote by zM the analogue of z for group M .
We denote by Z M the center of M .

We use the following definition of an automorphic form: Let P = MU be a
standard k-parabolic subgroup of G and φ : U (A)M(k) \ G(A)→ C a function.
We say that φ is automorphic if it satisfies the following conditions:

(1) φ has moderate growth (see [Mœglin and Waldspurger 1995, I.2.3]).

(2) φ is smooth (see [Mœglin and Waldspurger 1995, I.2.5]).

(3) φ is K-finite.

(4) φ is z-finite.

Note that the space A(U (A)M(k)\G(A)) of all automorphic forms as above can
be related to the usual situation with the automorphic forms on M(k) \M(A) by
attaching to each k ∈K and φ as above a function φk :M(k)\M(A)→C defined by
φk(m)= δ

−1/2
P (m)φ(mk) by noting that φ is automorphic if and only if it is smooth,
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K-finite, and for all k ∈K, φk is an automorphic form on M(k)\M(A). We denote
by A0(U (A)M(k)\G(A)) the cuspidal part of the space A(U (A)M(k)\G(A)); i.e.,
the space of all automorphic forms φ from A(U (A)M(k)\G(A)) with the property
that for every standard k-parabolic subgroup P ′ = M ′U ′ such that P0 ⊂ P ′ $ P we
have φP ′ = 0 (the constant term along P ′, defined by φP ′(g)=

∫
U ′(k)\U ′(A) φ(ug)du).

The space A(U (A)M(k)\G(A)) is a module for the action of (g∞, K∞)×G(A f ),
i.e., for the global idempotent Hecke algebra H=H∞⊗H f , where H∞ is related to
U and finite measures on K∞, and H f =⊗

′
v<∞Hv , where Hv, v <∞ is the Hecke

algebra of compactly supported, locally constant functions on G(kv) (see [Borel
and Jacquet 1979, Section 4]). Note that A0(U (A)M(k) \G(A)) is a submodule of
A(U (A)M(k)\G(A)) with this action. Note that the constant term (with respect to
some standard k-parabolic subgroup P = MU ) is an intertwining operator between
A(G(k)\G(A)) and A(U (A)M(k)\G(A)) [Mœglin and Waldspurger 1995, I.2.6].

Let ξ be a character of Z M(k) \ Z M(A), and let π be an irreducible submodule
of A(M(k) \ M(A)), for a standard k-Levi subgroup M of G. We denote by
A(M(k) \M(A))π the isotypic submodule attached to π (in the theorem below we
deal with cuspidal π , so the relevant subquotients are indeed subspaces). We set

A(U (A)M(k) \G(A))ξ =
{
φ ∈ A(U (A)M(k) \G(A)) :

φ(zg)= δ1/2
P (z)ξ(z)φ(g) for all z ∈ Z M(A), g ∈ G(A)

}
,

A(U (A)M(k) \G(A))π =
{
φ ∈ A(U (A)M(k) \G(A)) :

φk ∈ A(M(k) \M(A))π for all k ∈K
}
.

Analogously, we define by A0(U (A)M(k) \G(A))ξ and A0(U (A)M(k) \G(A))π
the cuspidal parts of the above spaces (i.e., the parts realized in the space of cuspidal
automorphic forms).

Proposition 2.1. Let ξ be a character of Z M(k) \ Z M(A) and let 50(M)ξ denote
the set of isomorphism classes of irreducible representations of M(A) occurring as
submodules in A0(M(k) \M(A))ξ . We have the decomposition

A0(U (A)M(k) \G(A))ξ =
⊕

π∈50(M)ξ

A0(U (A)M(k) \G(A))π .

Proof. This is explained in [Mœglin and Waldspurger 1995, p. 44]. �

Remark. By the proof of Lemma I.3.2 of [Mœglin and Waldspurger 1995], zM

acts on A(U (A)M(k) \G(A)) by left translations; every automorphic form there
is zM -finite; analogously every element of that space is Z M(A)-finite, again here
Z M(A) acts by left translations (because we examine K-finite automorphic forms).
Also, it is easy to see that A0(U (A)M(k) \ G(A)) is Z M(A)-invariant subspace
with this Z M(A)-action.
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3. The theorem

In this section we prove the main theorem stated in Section 1. The proof follows
directly from the next theorem, so our embedding from the main theorem is realized
through the calculation of the constant term.

Theorem 3.1. Let (5, V ) be an ((g∞, K∞)× G(A f )-) irreducible subspace of
automorphic forms inside A(G(k) \ G(A)) such that some constant term of a
function from V does not vanish along a k-parabolic subgroup Pθ of G; assume that
θ is minimal (set of simple roots) with this property. Then, there exists an irreducible
automorphic representation π0 of Mθ (A) (appearing in A0(Mθ (k) \Mθ (A)) such
that the space of constant terms of V along Pθ , denoted by V0, belongs (up to a left
translation by an element from Z Mθ

(A)) to the space A0(Uθ (A)Mθ (k)\G(A))π0 of
cuspidal automorphic forms.

Proof. Let f ∈ V . By definition, the constant term fPθ (g)=
∫

Uθ (k)\Uθ (A)
f (ug)du

belongs to A(Uθ (A)Mθ (k)\G(A)), more precisely, to the cuspidal part of this space
(because of the minimality of θ ; see [Mœglin and Waldspurger 1995, I.2.6, I.2.18]).
By the remark above the Theorem, Z Mθ

(A) acts on A0(Uθ (A)Mθ (k) \G(A)) by
left translations, and every function from this space is Z Mθ

(A)-finite. For every
z ∈ Z Mθ

(A), let V z
0 = l(z)V0 (the action by left translations). We know that

taking the constant term is intertwining operator, so V0 (and V z
0 ) is (as an abstract

(g∞, K∞)×G(A f )- representation) irreducible and isomorphic to V . Let W =∑
z∈Z Mθ (A)

V z
0 .

We prove that there exists F ∈ W, F 6= 0 such that dimC spanC{l(z)F : z ∈
Z Mθ

(A)} = 1. Firstly, let F 6= 0 be an element from W such that the dimension of
the space Y := spanC{l(z)F : z ∈ Z Mθ

(A)} is minimal. We claim that this dimension
is one. Indeed, let us assume that this dimension (of Y ) is greater than one. If,
for every a ∈ Z Mθ

(A) acting on Y , the whole space Y is an eigenspace for certain
eigenvalue, it would mean that l(a), for every a, acts as a scalar operator on Y ,
and then every one-dimensional subspace, (also the one spanned by F) would be
Z Mθ

(A)-invariant; a contradiction (this would mean that Y is one-dimensional). So,
there exists a ∈ Z Mθ

(A) with a nonzero eigenspace strictly smaller than Y , attached
to an eigenvalue α 6= 0. This means that Y1 := (l(a)−α)Y is a proper subspace of
Y . Let F1 := (l(a)−α)F ∈ Y1. F1 is obviously nonzero; otherwise l(b)F would
be an eigenvector of l(a) for eigenvalue α for every b ∈ Z Mθ

(A), so that the whole
Y is an eigenspace for α; a contradiction. Now, we easily see that the span of the
set {l(b)F1 : b ∈ Z Mθ

(A)} is inside Y1, which leads to contradiction with our choice
of F .

So, we conclude that there exists a character ξ of Z M(k) \ Z M(A) such that

(1) l(z)F(g)= δ1/2
Pθ (z)ξ(z)F(g) for all g ∈ G(A), z ∈ Z Mθ

(A).
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Now, let W0 denote the (g∞, K∞)×G(A f )-subspace of W generated by F . For
every vector from this space, (1) holds. Now, since W =

∑
a∈Z Mθ (A)

V a
0 , where

V a
0 are irreducible subspaces, W is also a direct sum of irreducible subspaces (for

example, [Lang 2002, Chapter XVII]), and every (g∞, K∞)×G(A f )-submodule
of W is a direct summand. From this directly follows that W0 has an irreducible
submodule; indeed if W =

⊕
z∈I V z

0 , for some I ⊂ Z Mθ
(A), then some projection

attached to this decomposition pz :W → V z
0 is nonzero on W0. Now Ker pz ∩W0

has a direct (invariant) complement W1 in W , and it is easy to see that W1 ∩W0

is an irreducible submodule of W0. This means that we have found an irreducible
subspace of W (so necessarily isomorphic to V i.e., to V0) where the relation (1)
holds. This realization of V inside A0(Uθ (A)Mθ (k) \ G(A))ξ is thus obtained
through taking of (maybe translated) constant term along Pθ . From Proposition 2.1
we have

A0(Uθ (A)Mθ (k) \G(A))ξ =
⊕

π∈50(Mθ )ξ

A0(Uθ (A)Mθ (k) \G(A))π ,

and, combining our embedding with an appropriate projection, we have obtained
an embedding

5 ↪→ A0(Uθ (A)Mθ (k) \G(A))π0,

for some automorphic (cuspidal) representation π0 of Mθ (A). �

Note that the space A0(Mθ (k) \Mθ (A))π0 is semisimple (Gelfand and Piatetski–
Shapiro; see [Borel and Jacquet 1979, Section 4]); so there exists an irreducible
subspace V ′0 of automorphic forms in A0(Mθ (k) \Mθ (A))π0 (thus isomorphic to
π0) such that there is an embedding

5 ↪→ A0(Uθ (A)Mθ (k) \G(A))V ′0
(the space on the right-hand side has an obvious meaning). We note that, as a
(g∞, K∞)×G(A f )-module, the latter space is isomorphic to the global representa-
tion indG(A)

Pθ (A) π0 (where we use normalized induction and K-finite vectors in this
space) [Kim 2004, Section 4.5]. This isomorphism can also be given explicitly by
φ 7→ φ′, where φ′(g)= φg and φg(m)= δPθ (m)

−1/2φ(mg). This is easily checked
to be G(A)-isomorphism on the space of the smooth (not necessarily K-finite
automorphic forms), but then taking K-finite vectors from both spaces, we get the
claim (see the second and third lectures in [Cogdell 2004]). This, in turn, proves
our main theorem from Section 1.

Acknowledgements

We want to thank Neven Grbac for the helpful discussions about automorphic
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