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A GENERALIZED KELVIN–VOIGT MODEL

MIROSLAV BULÍČEK, PETR KAPLICKÝ AND MARK STEINHAUER

We consider a two-dimensional generalized Kelvin–Voigt model describing
a motion of a compressible viscoelastic body. We establish the existence of
a unique classical solution to such a model in the spatially periodic setting.
The proof is based on Meyers’ higher integrability estimates that guarantee
the Hölder continuity of the gradient of velocity and displacement.

1. Introduction

In this paper we focus on qualitative properties of a solution to a generalized
Kelvin–Voigt model that describes the motion of a two-dimensional compressible
viscoelastic body. Hence, assuming that the body occupies a domain � := (0, 1)2

and that T > 0 is the length of time interest, such a model is described by the
system of equations

(1-1)

ρ0ut t − div T= ρ0 f in Q,

u(0, · )= u0( · ) in �,

ut(0, · )= v0( · ) in �,

where Q := (0, T )×�. Here, ρ0 :�→R+ is a given density of the body, assumed
to be time-independent, f : Q→ R2 is a given density of external body forces,
u : Q→ R2 denotes an unknown displacement field and T : Q→ R2×2 stands for
the Cauchy stress tensor. The initial displacement is denoted by u0 :�→ R2 and
the initial velocity of the body is v0 :�→ R2.

We assume that

(1-2) T= TT in Q
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and that T is given as a sum of a viscous and an elastic part,

T= Tv +Te,(1-3)

Te = H(D(u)),(1-4)

Tv = G(D(ut)),(1-5)

where H,G : R2×2
sym → R2×2

sym are continuous mappings and D= (∇ +∇T )/2 is the
symmetric part of the gradient.

In the context of continuum mechanics, (1-1)1 represents the balance of linear
momentum written in Lagrangian coordinates. The decomposition (1-3) of the
Cauchy stress tensor corresponds to the fact that the material under consideration is
compressible. The initial density of the body is the given function ρ0, while the
density at time t>0 can be reconstructed from a formula ρ(t, · )(1+div u(t, · ))=ρ0;
see [Bulíček et al. 2012, (26)]. Note that using the balance of angular momentum,
the natural requirement for nonpolar materials is (1-2).

In general, most materials can be understood as viscoelastic and one can try to
investigate their properties in full generality. Unfortunately, the resulting system is
highly nonlinear and may be even hyperbolic and up to our best knowledge there
is no satisfactory existence theory for such problems. Therefore it seems to be
reasonable (and also necessary) to simplify the model in such a way that it still
captures all essential phenomena but it is easier to handle from the mathematical
(and even computational) point of view. One such possible procedure, which is
also used here, is the assumption that the strains are small. Then, following the
fundamental works of Kelvin [Thomson 1865] and Voigt [1892] and taking G
and H to be linear operators, one obtains the standard Kelvin–Voigt model for a
viscoelastic body. However, doing such simplification, and recalling that at the
beginning we assumed that the strains were small, we directly obtained a model,
where also stresses must be small. On the other hand, it is not true in the original
model that even under the assumption that strains are small the Cauchy stress cannot
be large, which is the main drawback of the linear Kelvin–Voigt model. Therefore,
recently Rajagopal [2009] has reconsidered generalizations of the classical Kelvin–
Voigt model wherein he allowed for both the elastic solid and viscous fluid to be
described through implicit constitutive relations. These models were also obtained
by considering small strains, but the essential assumption was that the strain is a
function of the stress. Then using a linearization procedure, one can still end up
with small deformations but keeps the essential nonlinearity in stresses. For a more
sophisticated discussion, we refer the interested reader to [Rajagopal 2009] and
[Bulíček et al. 2012], where the elastic and viscous part of the Cauchy stress are
given by the general formula (1-4)–(1-5). This is also the model we are interested
in here and one can think of the bodies described by these models as of mixtures
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of a material that can store energy and a viscous fluid that can dissipate energy.
Moreover, such models are used in practice and for this we refer to [Fung 1993],
where the author proposed such models to describe the response of biological matter
which exhibits viscoelastic response, and to [Ramberg and Osgood 1943], where
the authors deal with the inelastic response of bodies wherein a linearized measure
of strain is related nonlinearly to stress.

Let us now formulate precise assumptions on G and H. We assume that H,G :
R2×2

sym → R2×2
sym , H,G ∈ C0,1(R2×2

sym )
2×2, G(0) = 0, H(0) = 0, and that there exists

a function F : [0,+∞)→ [0,+∞) such that the potential 8(D) := F(|D|) for
D ∈ R2×2

sym satisfies G= ∂8/∂D. Moreover we assume the existence of r ∈ [2,∞)
and positive constants ν0, ν1 and ν2 such that

ν0(1+ |D|2)(r−2)/2
|B|2 ≤ ∂G(D)

∂D
: B⊗B≤ ν1(1+ |D|2)(r−2)/2

|B|2,(1-6) ∣∣∣∂H(D)
∂D

∣∣∣≤ ν2(1-7)

for all B ∈ R2×2
sym and almost all D ∈ R2×2

sym . The prototypical example of the model
we are interested in is given by

(1-8) G(D)= (1+ |D|2)(r−2)/2D, H(D)= (1+ |D|2)(q−2)/2D

with some r ≥ 2, q ∈ (1, 2]. For (1-8) it is easy to verify (1-6) and (1-7). Note that
(1-7) allows one to consider more general examples than that introduced in (1-8). It
is worth noticing that (1-7) says only that H is uniformly Lipschitz continuous but
does not require any additional structure assumption as potentiality or monotonicity.

Concerning the boundary condition, we restrict ourselves to periodic (with respect
to �) boundary conditions that require some normalization condition (in order to
guarantee uniqueness of a solution). For simplicity we choose the simplest one:

(1-9)
∫
�

ρ0(x)u(t, x) dx =
∫
�

ρ0(x)ut(t, x) dx = 0 for all t ∈ (0, T ).

A direct consequence of (1-9) is that we need to assume a compatibility condition
on the data, namely, for all t ∈ (0, T ) we need that

(1-10)
∫
�

ρ0(x) f (t, x) dx =
∫
�

ρ0(x)v0(x) dx =
∫
�

ρ0(x)u0(x) dx = 0.

Although we use the simplest possible boundary condition we believe that our
result can be adopted to a more general setting with more reasonable physical
boundary data.

Next, we introduce the assumption put on the data of (1-1). For the density ρ0,
we assume that there are 0< ρ∗ ≤ ρ∗ <∞ such that

(1-11) ρ0 ∈ L∞, ρ∗ ≤ ρ0(x)≤ ρ∗ for almost all x ∈�.
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Concerning the density of the external body forces we prescribe

(1-12) ρ0 f ∈
(
Lr(0, T ; (W 1,r

per )
2))∗.

Finally, for the initial displacement and the initial velocity we assume that in addition
to (1-10) they also satisfy

u0 ∈ (W 1,2
per )

2, v0 ∈ (L2)2.(1-13)

The existence of a weak solution for the problem (1-1) with nonlinear Tv satis-
fying (1-6) with r = 2 can be found in [Friedman and Nečas 1988], [Demoulini
2000] and [Tvedt 2008] under certain structural assumptions on T that are more
general than (1-3), (1-4) and (1-5). Next, the existence theory was extended for
r ≥ 2 in [Bulíček et al. 2012], where the authors assumed that the Cauchy stress
satisfies (1-3)–(1-7). In addition they showed the uniqueness of a solution

(1-14) u ∈W 1,∞(0, T ; (L2)2)∩W 1,r (0, T ; (W 1,r )2)

to (1-1). Although all results in [Bulíček et al. 2012] treat the case of mixed
boundary conditions, the method presented there works also in the easier periodic
case in which we are interested in here. Moreover, assuming that the data are
smooth, one can prove by the method introduced there that the unique solution u to
(1-1) is more regular. We state the result in the next theorem.

Theorem 1.1 [Bulíček et al. 2012]. Let r ≥ 2, T > 0 be arbitrary. Assume that T
satisfies (1-3)–(1-7) and the data (ρ0, f , u0, v0) satisfy (1-10), (1-11)–(1-13). Then
there exists a unique weak solution u ∈W 1,∞(0, T ; (L2)2)∩W 1,r (0, T ; (W 1,r

per )
2)

of (1-1).
In addition, assume that there is p > 2 such that the data fulfill

(ρ0, u0, v0) ∈W 1,p
per × (W

2,p
per )

2
× (W 2,p

per )
2,

f ∈W 1,2(0, T ; (L p)2).
(1-15)

Then the weak solution satisfies

(1-16)

(1+ |D(ut)|)
(r−2)/2D(∇ut) ∈ L2(0, T ; (L2)2×2×2),

(1+ |D(ut)|)
(r−2)/2D(ut t) ∈ L2(0, T ; (L2)2×2),

ut t ∈ Lr ′(0, T ; (Lr ′)2).

The main result of our paper is that we improve (1-16) and get the Hölder
continuity of the velocity gradient. Consequently, we use such information to obtain
that the unique weak solution is in fact a classical one provided that the data are
sufficiently smooth. The first improvement is this:
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Theorem 1.2. Let r ≥ 2, T > 0 be arbitrary. Assume that T satisfies (1-3)–(1-7)
and the data (ρ0, f , u0, v0) satisfy (1-10), (1-11)–(1-13). In addition, assume that
there is p > 2 such that (1-15) holds. Then there exists some s ∈ (2, p) such that
the unique solution of (1-1) satisfies

(1-17) ut ∈W 1,∞(0, T ; (Ls)2)∩ L∞(0, T ; (W 2,s
per )

2).

Consequently, for all α ∈ (0, (1− 2/s)/3),

(1-18) ∇ut ∈ (C
0,α(Q))2×2.

As a consequence of Theorem 1.2 we obtain:

Theorem 1.3. Let all assumptions of Theorem 1.2 hold. Then the unique solution
from Theorem 1.2 satisfies

(1-19) ut ∈W 1,p(0, T ; (L p)2)∩ L p(0, T ; (W 2,p
per )

2).

If we in addition assume that

(1-20)
(ρ0, u0, v0) ∈W 1,∞

× (W 3,p
per )

2
× (W 3,p

per )
2,

f ∈ L p(0, T ; (W 1,p
per )

2), G,H ∈ C1,1
loc (R

2×2
sym )

2×2,

then the unique solution from Theorem 1.2 satisfies

(1-21) ∇ut ∈W 1,p(0, T ; (L p)2×2)∩ L p(0, T ; (W 2,p
per )

2×2).

As an immediate consequence of Theorem 1.3 and an interpolation Lemma A.1
we get:

Corollary 1.1. Let all assumptions of Theorem 1.3 hold with some p > 4 and
f ∈ C(Q). Then the unique weak solution u is a classical one.

For general systems of partial differential equations Hölder continuity of weak
solutions is a rare phenomenon, that can be obtained only under special circum-
stances. One of them is that if �⊂ R2 is as in Theorem 1.2. As far as we know the
only former result in this direction for the problem (1-1) is the one from [Friedman
and Nečas 1988] where Theorem 1.2 is proved in the case r = 2. Another special
condition when regularity (1-18) can be obtained is a special structure of the elliptic
term Tv. If it is assumed that the system (1-1) is a linear system of equations, i.e.,
classical Kelvin–Voigt model, one can establish the existence of a unique smooth
solution (provided that data are smooth) by standard results for linear systems. In
[DiBenedetto and Friedman 1984; 1985] a nonlinear function G is treated with the
structure very similar to the one suggested in (1-8) but the symmetric gradient is
replaced with the full gradient, i.e., Tv = G(∇ut). It is a remarkable fact that the
method from [DiBenedetto and Friedman 1984; 1985] cannot be applied in the
situation of (1-5), i.e., if the elliptic term depends only on D(ut). According to
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our best knowledge no results about the Hölder continuity of gradients of weak
solutions are known if �⊂ Rd , d > 2 and the elliptic part of the equation depends
only on the symmetric part of ∇ut .

The method of the proof of Theorem 1.2 is based on the fact that a small
improvement of regularity in (1-16) gives Hölder continuity of ∇ut . This was first
observed in [Boyarskiı̆ 1957] and [Meyers 1963] in the stationary case and extended
to parabolic systems in [Nečas and Šverák 1991] and [Frehse and Seregin 1999].
This method was used in [Friedman and Nečas 1988] to prove Theorem 1.2 for
r = 2. First the integrability of ut t was improved and then the system was treated as
an elliptic one on time levels. This method must be modified if r > 2 as in this case
we do not know how to get separately only information about ut t . Regularity of ut t

and ∇2ut must be dealt with simultaneously as it was suggested for generalized
Navier–Stokes system in [Kaplický et al. 2002]. This is also the approach that we
adopt here to prove Theorem 1.2.

The paper has the following structure. In the next section we introduce some
auxiliary lemmas about linear stationary and parabolic systems with bounded
measurable coefficients. The proofs can be found in the Appendix. In Section 3 we
provide the proof of Theorem 1.2 if r = 2. This result is not new, but it is a basis
for the analysis in Section 4 where Theorem 1.2 is proved for r > 2. Finally, we
present a sketch of the proof of Theorem 1.3 in Section 5.

In the paper we use standard notation for Lebesgue and Sobolev spaces and their
norms. If the domain on which the functions are considered is � = (0, 1)2, we
shorten the notation and write only W 1,q , Lq or ‖·‖q , ‖·‖1,q . The subscript per

denotes periodicity with respect to �. Particularly, W 1,q
per are spaces of functions

from W 1,q
loc (R

2) for which there is a representative that is periodic with respect
to �. Moreover, scalar-, vector- and tensor-valued functions are denoted by small
letters, small bold letters and bold capital letters in what follows. Also in order
to distinguish between scalars, vectors and tensors we use the abbreviations Xd

and Xd×d for vector- and tensor-valued function in a Banach space X . The symbol
R2×2

sym denotes the space of all symmetric 2× 2 matrices and for ξ ∈ R2×2, ξ sym

is its symmetric part. For a function G : R2×2
sym → R2×2 we denote its gradient by

∂DG. Then for any B, D ∈ R2×2
sym we denote by ∂DG(D) : B⊗B a scalar product of

the matrices ∂DG(D) and B⊗B. Symbols ut and ∂t u denote derivative of u with
respect to t ∈ (0, T ).

2. Auxiliary results

In this section we recall some results for a linear system similar to (1-1), the proof
of these results can be found in the Appendix. This linear system will play a crucial
role in the proof of Theorem 1.2, where it will be used as the comparison problem.
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Lemma 2.1. Let T > 0 be given and assume that A : (0, T )×�→ R2×2×2×2 is a
measurable tensor-valued function satisfying for some 0 < λ1 ≤ λ2 <∞ and for
almost all (t, x) ∈ (0, T )×� the following symmetry and ellipticity conditions:

Akl
i j (t, x)= Ai j

kl(t, x)= A j i
kl (t, x) for all i, j, k, l = 1, . . . , 2,(2-1)

λ1|D|2 ≤
2∑

i, j,k,l=1

Ai j
kl(t, x)Di j Dkl ≤ λ2|D|2 for all D ∈ R2×2

sym .(2-2)

Then for any F ∈ L2(0, T ; (L2)2×2) and any �-periodic w0 ∈ (L2)2 having zero
mean value, a unique �-periodic weak solution

w ∈ C(0, T ; (L2)2)∩ L2(0, T ; (W 1,2)2),

∫
�

w(t, x) dx = 0

exists to the problem

(2-3)
wt − div(AD(w))=− div F in (0, T )×�,

w(0, · )= w0( · ) in �.

Moreover, there exist positive constants K , L > 0 that are independent of T , A and
F such that, for all s satisfying

(2-4) 2≤ s ≤ 2+ Lλ1
λ2

,

the following estimate holds:

(2-5) sup
t∈(0,T )

‖w(t)‖2s ≤ K
(

1
λ1
‖F‖2L2(0,T ;Ls)

+‖w0‖
2
s

)
.

In case one replaces D(w) by ∇w in Lemma 2.1, the statement was proved in
[Nečas and Šverák 1991]. However, following the procedure in that paper almost
step by step one can prove Lemma 2.1 in full generality; see the Appendix for a
detailed proof.

Note that in the previous lemma we did not improve the estimate for the gradient
of the solution. As it is usual in parabolic equations the information on the spatial
gradient of the solution will be deduced by comparing the equation with its steady
form. Therefore, we recall the following lemma; see for example [Nečas 1967].

Lemma 2.2. Let A :�→ R2×2×2×2 be a measurable tensor-valued function satis-
fying, for some 0< λ1 ≤ λ2 <∞ and almost all x ∈�,

Akl
i j (x)= Ai j

kl(x)= A j i
kl (x) for all i, j, k, l = 1, . . . , 2,(2-6)

λ1|D|2 ≤
2∑

i, j,k,l=1

Ai j
kl(x)Di j Dkl ≤ λ2|D|2 for all D ∈ R2×2

sym .(2-7)
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Then, for any F ∈ (L2)2×2, there exists a unique �-periodic weak solution w ∈
(W 1,2)2 such that

∫
�
w dx = 0 solving the problem

(2-8) − div(AD(w))=− div F in �.

Moreover, there exist K , L > 0 independent of T , A and F such that, for all

2≤ s ≤ 2+ Lλ1
λ2

,

we have

(2-9) ‖D(w)‖s ≤
K
λ1
‖F‖s .

In general the constants K , L from Lemma 2.1 and Lemma 2.2 may be different
but without loss of generality we assume in what follows that they are the same.

3. Proof of Theorem 1.2 in the case r = 2

This section is devoted to the proof of Theorem 1.2 for r = 2. First, we introduce
an ε-approximation to the problem (1-1), but we still write u instead of uε for its
solution:

(3-1) ρ0ut t − div(G(D(ut)))= ρ0 f + div(H(D(u ?ωε)) in (0, T )×�,

with periodic boundary condition and initial data (u0, v0). Here ω : R2
→ R

is a standard regularizing kernel, i.e., ω ∈ C∞0 (U (0, 1)) is nonnegative, radially
symmetric,

∫
R2 ω dx = 1, and we define

ωε(x)= ε−2ω
( x
ε

)
.

Note that the convolution in the last term of (3-1) is taken only in space direction.
Next, we formulate the existence result for (3-1), that is the starting point of our
analysis.

Lemma 3.1. Let H and G satisfy (1-6)–(1-7) with r = 2. Assume that ρ0, f , u0 and
v0 satisfy (1-10) and (1-11)–(1-13). In addition, assume that f ∈W 1,2(0, T ; (L2)2),
ρ0 ∈ W 1,2+δ

per for a certain δ > 0 and u0, v0 ∈ (W 2,2
per )

2. Then for any ε > 0 there
exists a unique �-periodic weak solution u to (3-1), (1-1)2–(1-1)3 that obeys the
a priori estimate

(3-2)
‖∇

2u‖L∞(0,T ;L2)+‖∇ut‖L∞(I,L2)+‖∇ut‖L2(I,W 1,2)+‖ut t‖L∞(I,L2)+‖ut t‖L2(I,W 1,2)

≤ C1(1+‖G(D(v0))‖1,2+‖H(D(u0))‖1,2),

where C1 > 0 is independent of ν1 and ε. Moreover, this solution converges to the
unique solution of (1-1) as ε→ 0+.
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Proof. The proof is presented in [Bulíček et al. 2012] for the system (1-1) with
mixed (Dirichlet and Neumann) boundary conditions. In our situation, smoothing
of the term with H in (3-1) simplifies the situation and also the periodic boundary
conditions are simpler to deal with. Since the proof of Lemma 3.1 follows [Bulíček
et al. 2012, Theorem 4.1, p. 9] line by line we do not present it here. �

Lemma 3.2. Let all the assumptions of Lemma 3.1 hold. Let ε > 0 be arbitrary and
u the unique weak solution to (3-1). Assume that for some δ > 0 and s satisfying

(3-3) 2≤ s ≤ 2+min
(Lν0ρ∗
ν1ρ∗

,
δ

2

)
,

the data fulfill

(u0, v0, ρ0) ∈ (W 2,s
per )

2
× (W 2,s

per )
2
×W 1,2+δ

per (�),

f ∈W 1,2(0, T ; (Ls)2).
(3-4)

Then the following estimate holds:

sup
t∈(0,T )

‖ut t‖s ≤ (1+ ν1)C(u0, v0, δ, f , ν0, ν2).(3-5)

Proof. First, we construct an �-periodic F having zero mean value over � such that

div F= ρ0 f in (0, T )×�.

Such a construction is possible due to the compatibility condition (1-10). Moreover,
using the theory for the divergence equation (see for example [Feireisl and Novotný
2009; Novotný and Straškraba 2004]) and (1-11) we have

(3-6) ‖F‖W 1,2(0,T ;W 1,s) ≤ C‖ρ0 f ‖W 1,2(0,T ;Ls) ≤ C,

where the last inequality follows from (3-4). Next, we set w := ρ0ut t and applying
∂t to (3-1) (in view of (3-2), this procedure is rigorous) we see that w is a weak
solution of the system

(3-7) wt − div(AD(w))= div F̃ in (0, T )×�,

where

A :=
1
ρ0

∂G(D(ut))

∂D
,

F̃ := Ft +
∂H(D(u ?ωε))

∂D
D(ut ?ω

ε)−

[
∂G(D(ut))

∂D

](
∇ρ0

ρ0
⊗ ut t

)
.

Since G is assumed to satisfy (1-6) with r = 2, and ρ0 satisfies (1-11), we see that
the matrix A fulfills (2-1)–(2-2) with

(3-8) λ1 :=
ν0

ρ∗
and λ2 :=

ν1

ρ∗
.
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Hence, assuming that s satisfies (3-3), it also satisfies s ∈ [2, 2+ Lλ1/λ2] and we
can use Lemma 2.1 to deduce that

(3-9) sup
t∈(0,T )

‖w(t)‖2s ≤ K
(
‖w(0)‖2s +

1
λ1

∫ T

0
‖F̃‖2s

)
.

We check that the right side is finite. To see this, we first evaluate the initial value
w(0). Using (3-1) we see that

w(0) := ρ0ut t(0)= div
(
G(D(v0))+H(D(u0 ?ω

ε))
)
+ ρ0 f (0)

and by using (1-6)–(1-7) and (3-4) we obtain that (for estimating f we use the
embedding W 1,2(0, T ) ↪→ C0,1/2([0, T ]) ↪→ C([0, T ]) in dimension one)

(3-10) ‖w(0)‖s ≤ ‖ div G(D(v0))‖s +‖ div H(D(u0 ?ω
ε))‖s +‖ρ0 f (0)‖s

≤ ν1‖v0‖2,s + ν2‖u0‖2,s + ρ
∗
‖ f (0)‖s ≤ C(1+ ν1).

It remains to estimate the norm of F̃ appearing on the right side of (3-9). Using
(3-6) and (1-6)–(1-7) we obtain that

(3-11)
∫ T

0
‖F̃‖2s ≤

∫ T

0

(
‖Ft‖

2
s+ν2‖D(ut)‖

2
s+
∥∥ρ−1

0 ∂DG(D(ut))∇ρ0⊗ut t
∥∥2

s

)
≤

∫ T

0

(
‖Ft‖

2
1,s+ν2‖D(ut)‖

2
s+

ν2
1

ρ2
∗

‖∇ρ0‖
2
2+δ‖ut t‖

2
s(2+δ)/(2+δ−s)

)
≤ C(v0, u0, f , ρ0, ν2)+C(ρ0, δ)ν

2
1

∫ T

0
‖ut t‖

2
1,2.

Consequently, using the uniform estimate (3-2) we can bound the last term on the
right side of (3-11) and inserting this and (3-10) into (3-9) we deduce (3-5). �

Since, we already know that ut t belongs to a better space than L2 uniformly in
time, we can improve the spatial regularity of u with help of Lemma 2.2.

Lemma 3.3. Let all assumptions of Lemma 3.1 hold. Then for any ε > 0, δ > 0
and s > 0 fulfilling (3-3) and any data satisfying (3-4), the unique solution u to the
problem (3-1) satisfies for almost all t ∈ (0, T ) the estimate:1

(3-12) ‖∇
2ut(t)‖s ≤ C(1+‖ut t‖L∞(0,T ;Ls)+‖∇

2(u(t) ? ωε)‖s),

with C depending only on (ρ0, f , v0, u0, ν0, ν2, T ).

Proof. Since we know from Lemma 3.1 that (3-1) holds pointwise at almost all
time levels t ∈ (0, T ). We fix such an arbitrary t ∈ (0, T ) and rewrite the problem

1The right side of (3-12) is finite, since for the time derivative we have an estimate due to
Lemma 3.2 and the last term in (3-12) is finite due to regularization.
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(3-1) as

(3-13) − div(G(D(ut)))= div
(
F+H(D(u ?ωε))−F0

)
in �,

where F0 is found such that (note that t is fixed in what follows)

(3-14) div F0 = ρ0ut t in �, ‖F0(t)‖1,s ≤ Cρ∗‖ut t(t)‖s

and F satisfies

(3-15) div F= ρ0 f in �, ‖F(t)‖1,s ≤ Cρ∗‖ f (t)‖s .

Next, we fix k ∈ {1, 2}, denote w := ∂k ut and

A := ∂G(D(ut))

∂D

and differentiate (3-13) in the weak sense with respect to xk . We obtain the system
of equations

(3-16) − div(AD(w))= div
(
∂kF+ ∂kH(D(u ?ωε))− ∂kF0

)
in �,

equipped with periodic boundary conditions and requiring zero mean value for w.
Similarly as in the proof of Lemma 3.2, A satisfies the assumption of Lemma 2.2
with λ1 := ν0 and λ2 := ν1. Hence for any s∗ ∈ [2, 2+Lν0/ν1] we have the estimate

(3-17) ‖D(w)‖s∗ ≤
K
ν0

(
‖F‖1,s∗ +‖F0‖1,s∗ +‖H(D(u ?ωε))‖1,s∗

)
.

Since, we know that s ≤ 2+ L(ν0ρ∗)/(ν1ρ
∗)≤ 2+ Lν0/ν1, we see that (3-17) also

holds for s∗ := s. Moreover, since it holds for any k = 1, 2 we can deduce from
(3-17) by using the definition of F and F0 that

(3-18) ‖∇
2ut(t)‖s ≤

C(ρ0)

ν0

(
‖ f (t)‖s +‖ut t(t)‖s + ν2‖D(u ?ωε(t))‖1,s

)
.

Consequently, using (3-4), (3-3) and the a priori uniform estimates (3-2), we deduce
(3-12). �

Having all previous estimates, we are ready to prove Theorem 1.2 for r = 2.
Since, the case r = 2 will be used in the proof of Theorem 1.2 for r > 2 we formulate
it as a special theorem where we trace the important constant ν1.

Theorem 3.1. Let T >0 be arbitrary. Assume that T satisfies (1-3)–(1-7) with r =2
and that data (ρ0, f , u0, v0) satisfy (1-10), (1-11)–(1-13). In addition, assume that
there is p > 2 such that the data fulfill

(u0, v0, ρ0) ∈ (W 2,p
per )

2
× (W 2,p

per )
2
×W 1,p

per (�),

f ∈W 1,2(0, T ; (L p)2).
(3-19)
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Then there exists a constant C depending only on (ρ0, v0, u0, f , T, ν0, ν2, p) such
that for any s fulfilling

(3-20) 2≤ s ≤ 2+min
(

Lν0ρ∗

ν1ρ∗
,

p− 2
2

)
,

the unique weak solution (1-1) satisfies the estimate

(3-21) ‖ut t‖L∞(0,T ;Ls)+‖∇
2ut‖L∞(0,T ;Ls) ≤ C(1+ ν1).

Proof. To prove the theorem it is enough to show estimate (3-21) for the unique solu-
tions of the approximating problem (3-1). Indeed, having uniform (ε-independent)
estimate (3-21) for the solution of the approximate problem it is easy to let ε→ 0+
and to obtain a solution of the original problem (1-1). The estimate (3-21) is valid
for this solution due to the weak∗-lower semicontinuity of the norm in L∞(0, T ; Ls).
Uniqueness of the solution follows by the method of [Bulíček et al. 2012]; compare
Lemma 3.1. Due to our assumption on the data and s we see that also all assumptions
of Lemmas 3.1–3.3 are satisfied. We can use (3-12) to prove (3-21). To do so, we
need to estimate the last two terms on the right side of (3-12). Note that both of
them are finite, so we directly have an estimate of the form (3-21) but with right
side depending on ε. To avoid this dependence we estimate both terms as follows.
We start with the time derivative for which we obtain by direct use of Lemma 3.2
that

(3-22) ‖ut t‖L∞(0,T ;Ls) ≤ C(1+ ν1).

Next, for the second term, we get, by (3-19),

(3-23) ‖∇
2(u(t) ? ωε)‖s ≤ C‖∇2u(t)‖s = C

∥∥∥∥∫ t

0
∇

2ut(τ ) dτ +∇2u0

∥∥∥∥
s

≤ C
(

1+
∫ t

0
‖∇

2ut(τ )‖s dτ
)
.

Using (3-22) and (3-23), we see that (3-12) reduces to

‖∇
2ut(t)‖s ≤ C

(
1+ ν1+

∫ t

0
‖∇

2ut(τ )‖s dτ
)
.

Applying Gronwall’s lemma in its integral form, we deduce (3-21). �

4. Proof of Theorem 1.2 in the case r > 2

This section is devoted to the proof of Theorem 1.2 for r > 2. It is based on a direct
application of the result from the previous section onto a suitable approximating
problem.
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First, we introduce a quadratic approximation of the problem (1-1). For any
λ > 1 we define Lipschitz continuous functions ηλ and µλ as follows:

ηλ(s) :=


1 for s ∈ [0, 2λ2

],

−
s−3λ2

λ2 for s ∈ (2λ2, 3λ2),

0 for s ≥ 3λ2,

(4-1)

µλ(s) :=


0 for s ∈ [0, λ2

],

γλ
s−λ2

λ2 for s ∈ (λ2, 2λ2),

γλ for s ≥ 2λ2,

(4-2)

with some constant γλ ∈ R+ to be specified later. We approximate G by Gλ as

(4-3) Gλ(D) := ηλ(|D|2)G(D)+µλ(|D|2)D.

Note that for Gλ a potential can be constructed. The most important properties of
this approximation are introduced in the following lemma.

Lemma 4.1. Let G satisfy the assumption (1-6) with r > 2 and ν0, ν1 > 0. Let λ> 1
be arbitrary. We set in (4-1) and (4-2)

(4-4) γλ := 7ν1(1+ 3λ2)(r−2)/2.

Then for all B ∈ R2×2
sym and almost all D ∈ R2×2

sym it holds

(4-5) ν0|B|2 ≤ ∂DGλ(D) : B⊗B≤ ν1|B|2

with ν0 and ν1 given as

ν0: = ν0,(4-6)

ν1: = ν1(λ) := 36ν1(1+ 3λ2)(r−2)/2.(4-7)

Moreover, setting λ̄(D) :=min(λ, |D|), we get

(4-8) ν0(1+λ̄(D)2)(r−2)/2
|B|2≤ ∂DGλ(D) :B⊗B≤36ν1(1+3λ̄(D)2)(r−2)/2

|B|2.

Proof. To shorten the notation we write ∂DGλ(D) : B⊗B only as ∂DG(D) : B⊗B.
Using the definition of Gλ we get

I = ηλ(|D|2)∂DG(D) : B⊗B+ 2η′λ(|D|
2)(D ·B)(G(D) ·B)

+µλ(|D|2)|B|2+ 2µ′λ(|D|
2)(D ·B)2.
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From this identity and the definition of ηλ and µλ we finally conclude that

I =



∂DG(D) : B⊗B if |D|2 < λ2,

∂DG(D) : B⊗B+ γλ
|D|2−λ2

λ2 |B|2+ 2γλ
λ2 (D ·B)

2 if |D|2 ∈ (λ2, 2λ2),

−
|D|2−3λ2

λ2 ∂DG(D) : B⊗B− 2
λ2 (D ·B)(G(D) ·B)+ γλ|B|

2

if |D|2 ∈ (2λ2, 3λ2),

γλ|B|2 if |D|2 > 3λ2.

Now we remark that by the assumption (1-6) on G we get

(G(D) ·B)≤ ν1(1+ |D|2)(r−2)/2
|B||D|.

Defining Y := I/|B|2 and noting that λ > 1, it follows that

ν0(1+ |D|2)(r−2)/2
≤ Y ≤ ν1(1+ |D|2)(r−2)/2 if |D|2 < λ2,

ν0(1+ |D|2)(r−2)/2
≤ Y ≤ ν1(1+ |D|2)(r−2)/2

+ 5γλ if |D|2 ∈ (λ2, 2λ2),

γλ− 6ν1(1+ |D|2)(r−2)/2
≤ Y ≤ γλ+ 7ν1(1+ |D|2)(r−2)/2 if |D|2 ∈ (2λ2, 3λ2),

γλ = Y if |D|2 > 3λ2,

and we see that (4-5)–(4-8) follows. �

Next, we find λ0> 1 such that2 min(Lν0ρ∗/(ν1ρ
∗), (p−2)/2)= Lν0ρ∗/(ν1ρ

∗)

and ν1 ≥ 1 for all λ > λ0.
Finally, for arbitrary fixed λ > λ0, we consider an approximation of (1-1) of the

form

(4-9)

ρ0ut t − div Gλ(D(ut)− div H(D(u))= ρ0 f in Q,

u(0, · )= u0( · ) in �,

ut(0, · )= v0( · ) in �,∫
�

ρ0(x)u(t, x) dx =
∫
�

ρ0(x)ut(t, x) dx = 0 for all t ∈ (0, T ),

equipped with periodic boundary conditions for u.
According to Lemma 4.1, Gλ satisfies all assumptions of Theorem 3.1 and we

get that for all s satisfying

(4-10) 2≤ s ≤ 2+
Lν0ρ∗

ν1ρ∗
,

2The constant p > 2 appears in Theorem 1.2 and it is assumed to be the same as in Theorem 3.1.
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the unique weak solution (4-9) satisfies the estimate

(4-11) ‖∇
2ut‖L∞(0,T ;Ls) ≤ C(ρ0, f , T, ν0, ν2, v0, u0, p)(ν1+ 1)

≤ C(ρ0, f , T, ν0, ν2, v0, u0, p)ν1.

Using the definition of ν0 and ν1 we can set

(4-12) 2≤ s = 2+ Rλ2−r

for a fixed R ∈
(

0,
Lρ∗ν0

36ρ∗ν1

(1
2

)r−2
)

and rewrite the estimate (4-11) as

(4-13) ‖∇
2ut‖L∞(0,T ;Ls) ≤ C(ρ0, f , T, ν0, ν2, v0, u0, p, r)λr−2.

Our main goal, based on the estimate (4-13), is to find a sufficiently large λ > λ0

such that

(4-14) M :=
∥∥1+ λ̄(D(ut))

2∥∥
L∞(0,T ;L∞) ≤ λ

2.

For such λ the equality Gλ(D(ut)) = G(D(ut)) holds a.e. in (0, T )×�; hence,
u solves the original problem (1-1).

We start with estimates uniform with respect to λ. In the following the positive
constant C is always independent of λ but it can depend on the data
( f , ρ0, u0, v0, p, r, ν0, ν1, ν2). From Lemma 3.1 we know that

(4-15) ‖∇
2u‖L∞(0,T ;L2)+‖ut t‖L∞(0,T ;L2) ≤ C(1+‖Gλ(D(v0))‖1,2).

This estimate is still λ-dependent. However, using the definition of Gλ and the
assumptions on the data (1-15), we see that

‖Gλ(D(v0))‖1,2≤C
(
1+
∥∥|D(v0)|

r−1∥∥
2+
∥∥|D(v0)|

r−2
|∇

2v0|
∥∥

2

)
≤C(1+‖v0‖

r−1
2,p ),

where for the last inequality we used the Hölder inequality and the embedding
W 2,p ↪→W 1,∞ (valid for p> 2). Consequently, we see that (4-15) can be rewritten
as

(4-16) ‖∇
2u‖L∞(0,T ;L2)+‖ut t‖L∞(0,T ;L2) ≤ C.

Uniform estimates on ∇2ut are obtained by the same method as in the proof of
Lemma 3.3. We rewrite (4-9) for a.e. t ∈ (0, T ) as

− div Gλ(D(ut(t)))= ρ0 f (t)+ div H(D(u(t)))− ρ0ut t(t).

This equation holds pointwise in � due to (4-11) and it is allowed to test it with
ut(t) and −1ut(t). Doing so, one gets with help of (4-16) and (4-8) that∫

�

(1+ λ̄(D(ut(t)))2)(r−2)/2
|∇

2ut(t)|2 ≤ C for any t ∈ (0, T ),
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and by a simple algebraic manipulation we deduce that

(4-17)
∥∥(1+ λ̄(D(ut))

2)r/4
∥∥

L∞(0,T ;W 1,2)
≤ C.

Finally, we combine the nonuniform estimate (4-13) with the uniform ones (4-16)
and (4-17) to deduce (4-14). First, we consider s̄ ∈ (2, s) and α ∈ (0, 2) such that
1= α/2+ (s̄−α)/s, i.e.,

(4-18) s̄− 2= (2−α)(s− 2)/2.

We use the Hölder inequality to get∥∥(1+ λ̄(D(ut))
2)r/4

∥∥s̄
L∞(0,T ;W 1,s̄)

≤ C
∥∥(1+ λ̄(D(ut))

2)r/4
∥∥α

L∞(0,T ;W 1,2)

∥∥(1+ λ̄(D(ut))
2)r/4

∥∥s̄−α
L∞(0,T ;W 1,s)

.

To estimate the term on the right, we use the definition of λ̄, the uniform estimate
(4-17) and the nonuniform estimate (4-13) to conclude that

(4-19)
∥∥(1+ λ̄(D(ut))

2)r/4
∥∥s̄

L∞(0,T ;W 1,s̄)

≤ C
(
1+

∥∥∇(1+ λ̄(D(ut))
2)r/4

∥∥s̄−α
L∞(0,T ;Ls)

)
≤ C

(
1+

∥∥∇2ut
∥∥s̄−α

L∞(0,T ;Ls)
λ(r−2)(s̄−α)/2)

≤ Cλ(r−2)(s̄−α)(3/2).

Finally, we focus on finding such λ> λ0 so that (4-14) holds. Using the embedding
theorem W 1,s̄ ↪→ L∞ with the precise embedding constant (see [Ziemer 1989, proof
of Theorem 2.4.1]), the definition (4-14) of M and the estimate (4-19), we get

(4-20) Mr/4
≤

( C
s̄−2

)1−1/s̄∥∥(1+ λ̄(D(ut))
2)r/4

∥∥
L∞(0,T ;W 1,s̄)

≤

( C
s̄−2

)1−1/s̄
λ

3(r−2)(s̄−α)
2s̄ .

Hence, to show (4-14) and consequently to finish the proof, it is enough to find
λ > λ0, s̄ ∈ (2, s) and α ∈ (0, 2) fulfilling (4-18) such that

(4-21)
( C

s̄−2

)1−1/s̄
λ

3(r−2)(s̄−α)
2s̄ ≤ λr/2.

Next, using (4-12) and (4-18) it is not difficult to deduce the identities(
C

s̄− 2

)1−1/s̄

λ
(r−2)(3/2) s̄−α

s̄ =

(
2C

(2−α)(s− 2)

)1−1/s̄

λ
(r−2)(3/2) s̄−α

s̄

=

(
2C

(2−α)R

)1−1/s̄

λ
(r−2)(1−1

s̄ +(3/2)
s̄−α

s̄ )
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and we see that (4-21) is equivalent to

(4-22)
(

2C
(2−α)R

)1−1/s̄

λ
(r−2)(1− 1

s̄ +
s̄−α

s̄
3
2) ≤ λr/2.

Since limα→2− s̄ = 2 we have

lim
α→2−

(r − 2)
(

1−
1
s̄
+

s̄−α
s̄

3
2

)
=

r − 2
2

<
r
2

and therefore it is always possible to find α ∈ (0, 2) (and consequently s̄) and ε > 0
such that

r
2
− (r − 2)

(
1−

1
s̄
+

s̄−α
s̄

3
2

)
> ε.

Thus, we fix such α and s̄ and we see that to fulfill (4-22) it is enough to find λ>λ0

such that (
2C

(2−α)R

)1−1/s̄

≤ λε,

which is clearly possible and therefore the proof of (1-17) for the case r > 2 is
complete. The regularity statement in (1-18) follows from Lemma A.1, part 2.
Theorem 1.2 is proved.

5. Proof of Theorem 1.3

We start this section by formulating a result on L p regularity for certain parabolic
systems with Hölder continuous coefficients.

Theorem 5.1. Let d ∈ N, α ∈ (0, 1], p > 1, � = (0, 1)d and Q = (0, T )×�.
Assume that Akl

i j : (0, T )× Rd
→ R satisfy the symmetry condition (2-1) and in

addition for all i, j, k, l ∈ {1, . . . , d} there hold

Akl
i j ∈ C0,α([0, T ]×Rd), Akl

i j is periodic with respect to �,(5-1)

∃γ > 0,∀ξ ∈ Rd×d , t > 0, x ∈ Rd
: (A(t, x) : ξ ⊗ ξ)≥ γ |ξ sym|

2.(5-2)

Let 1 < q < p and w ∈ Lq(0, T,W 2,q(Rd)) with ∂tw ∈ Lq(0, T, Lq(Rd)) be a
strong solution of the problem

(5-3) ∂tw j −Akl
i j∂i∂kwl = F j in (0, T )×Rd

such that w is periodic with respect to � and w(0, · )= w0, where w0 ∈W 2,p
per (�)

and F ∈ L p(Q)d . Then this solution satisfies ∇2w ∈ L p(Q)d×d×d , ∂tw ∈ L p(Q)d

with the following uniform estimate:

∃C > 0,∀t ∈ (0, T ) : ‖∇2w‖p,Qt +‖∂tw‖p,Qt ≤ C(‖F‖p,Qt +‖w0‖2,p),

where Qt = (0, t)×� and C > 0 may depend on T but is independent of t .
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Proof. First one finds a smooth approximation of the solution w by convolutions.
Then it is possible to apply slightly modified L p theory from [Schlag 1996] provided
q > 2. If q < 2 first one needs to develop by a duality argument an L p theory for
p < 2 based on the results from the same paper. (The result also follows from
[Ladyzhenskaja et al. 1968, Theorem VII.10.4].) �

In the rest of this section we provide only formal a priori estimates. However,
they can be made rigorous by the method of Section 3, see the approximation (3-1)
and the proof of Theorem 3.1.

Let u be the unique solution constructed in Theorem 1.2 and assume that it is
sufficiently smooth. We suppose that all assumptions of Theorem 1.2 hold and show
an estimate leading to (1-19). We denote w = ut . It follows from Theorem 1.2 that
w is a strong solution of the problem (5-3) with w0 = v0 and

Akl
i j =

1
ρ0

∂Gi j (D(ut))

∂Dkl
, F j = f j +

1
ρ0

2∑
i=1

∂DHi j (Du) : D∂i u.

Here, the symmetry of A was used. Since we already have (1-18) we know that A
satisfies (5-1) and (5-2), ∂DH(Du) is bounded and we can apply Theorem 5.1 to
get

(5-4) ‖∇
2ut‖

p
p,Qt
+‖ut t‖

p
p,Qt
≤ C

(
‖ f ‖p

p,Qt
+‖∇

2u‖p
p,Qt
+‖v0‖

p
2,p

)
.

Using the inequality ‖∇2u(t)‖p
p ≤ C(‖∇2u0‖

p
p + ‖∇

2ut‖
p
p,Qt
+ ‖∇

2u‖p
p,Qt

) we
conclude that

‖∇
2u(t)‖p

p ≤ C
(
‖u0‖

p
2,p +‖v0‖

p
2,p +‖ f ‖p

p,QT
+‖∇

2u‖p
p,Qt

)
.

Gronwall’s lemma with (5-4) then gives (1-19).
To get estimates for (1-21) we proceed similarly as in the first step. We a priori

assume sufficient smoothness of u and define w = ∂k ut for fixed k ∈ {1, 2}. We
differentiate (1-1) with respect to xk and find that w solves the problem (5-3) with
w0 = ∂kv0 and

Akl
i j =

1
ρ0

Gi j (D(ut))

∂Dkl
,

F j =
1
ρ0

( 2∑
i=1

[
∂2

DGi j (D(ut)) : (D(∂i ut)⊗ D(∂k ut))+ ∂DHi j (D(u)) : D(∂i∂k u)

+ ∂2
DHi j (D(u)) : (D(∂i u)⊗ D(∂k u))

]
− ∂kρ0∂

2
t u j + ∂k(ρ0 f j )

)
.

For an arbitrary σ ∈ (1, p], t ∈ (0, T ) we obtain from the properties of G, H and
(1-18) that
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‖F‖σ,Qt ≤ C
(
1+‖∇2ut‖

2
2σ,Qt
+‖∇

3u‖σ,Qt +‖∇u‖22σ,Qt
+‖ut t‖σ,Qt

)
.

The constant C > 0 may depend on H, G, T , u0, ρ0.
Using Theorem 5.1 we obtain, since k = 1, 2 was arbitrary,

‖∇ut t‖σ,Qt +‖∇
3ut‖σ,Qt

≤ C
(
1+‖∇2ut‖

2
2σ,Qt
+‖∇

3u‖σ,Qt +‖∇u‖22σ,Qt
+‖ut t‖σ,Qt +‖v0‖3,σ

)
.

Now we use the inequality ‖∇3u(t)‖σσ ≤ C(‖∇3u‖σσ,Qt
+‖∇

3ut‖
σ
σ,Qt
+‖∇

3u0‖
σ
σ )

to get

‖∇
3u(t)‖σσ,�+‖∇ut t‖

σ
σ,Qt
+‖∇

3ut‖
σ
σ,Qt

≤ C
(
1+‖∇2ut‖

2σ
2σ,Qt
+‖∇

3u‖σσ,Qt
+‖∇u‖2σ2σ,Qt

+‖ut t‖
σ
σ,Qt
+‖u0‖

σ
3,σ+‖v0‖

σ
3,σ
)
.

Due to the assumption on u0 and v0 we know that ‖u0‖
σ
3,σ +‖v0‖

σ
3,σ <+∞ for

all σ ≤ p. If ‖∇2ut‖
2σ
2σ,Qt
+‖∇u‖2σ2σ,Qt

+‖ut t‖
σ
σ,Qt

is bounded we get by Gronwall’s
inequality

(5-5) ‖∇ut t‖
σ
σ,Qt
+‖∇

3ut‖
σ
σ,Qt

<+∞.

This is always true for σ ∈ (1, s/2], where s > 2 is taken from Theorem 1.2. By
the following multiplicative inequality [Ladyzhenskaja et al. 1968, Theorem II.2.2]
we get that, for any measurable function z,

‖z‖σ(s+2)/2
σ(s+2)/2,Q ≤ C‖z‖σ s/2

L∞(0,T ;Ls)‖∇z‖σσ,Q .

If we take into account (5-5) and (1-17) we find that, for σ ∈ (1, s/2],

‖∇
2u‖σ(s+2)/2+‖∇

2ut‖σ(s+2)/2+‖ut t‖σ(s+2)/2,Q <+∞.

Since σ s+2
2 > 2σ for all σ > 1 we get the statement (1-21) of Theorem 1.3 after

finite number of iterations.

Appendix: Proof of Lemma 2.1

First, we sketch the proof of Lemma 2.1. We focus on main differences compared
to [Nečas and Šverák 1991], where the full gradient case is treated.

Proof of Lemma 2.1. The existence and uniqueness of a weak solution to (2-3) is
standard. Therefore, we focus here only on the proof of (2-5). We provide only
the formal proof but everything can be done rigorously by mollifying A and w0,
applying standard results for the heat equation, deriving uniform bounds of the type
(2-5) and then passing to the limit.

The main idea of the proof is to use w|w|s−2 as a test function in the weak
formulation of (2-3). Due to the presence of a nonlinearity in the test function we
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obtain a pollution term coming from the elliptic term. To handle it, we use a simple
inequality that can be deduced by an integration by parts formula. Hence, for any
s ≥ 2 and any smooth periodic u we have∫
�

|u|s−2
|∇u|2

=−

∫
�

|u|s−2
4u·u−(s−2)

∫
�

|u|s−2
|∇|u||2

=−(s−2)
∫
�

|u|s−2∣∣∇|u|∣∣2−2
∫
�

|u|s−2 div(D(u))·u+
∫
�

|u|s−2
∇(div u)·u

=−(s−2)
∫
�

|u|s−2∣∣∇|u|∣∣2+2
∫
�

|u|s−2
|D(u)|2+2(s−2)

∫
�

|u|s−3D(u)u·∇|u|

−

∫
�

|u|s−2
| div u|2−(s−2)

∫
�

|u|s−3 div u∇|u|·u.

Consequently, moving the term with the good sign to the left side we obtain the
inequality∫
�

(
|u|s−2

| div u|2+ (s− 2)|u|s−2
|∇|u||2+ |u|s−2

|∇u|2
)

≤ 2
∫
�

|u|s−2
|D(u)|2+ 2(s− 2)

∫
�

|u|s−2
|D(u)|

∣∣∇|u|∣∣
+ (s− 2)

∫
�

|u|s−2
| div u|

∣∣∇|u|∣∣.
Finally, using the pointwise estimate | div u| ≤ C |D(u)| and applying Young’s
inequality we deduce that for any s > 2 there exists Cs > 0 such that

(A-1)
∫
�

|u|s−2
|∇u|2 ≤ Cs

∫
�

|u|s−2
|D(u)|2.

If we restrict to s ∈ [2, 10] we can find C∗ > 0 such that for all s ∈ [2, 10], Cs <C∗.
With estimate (A-1) we can easily continue by using the standard procedure; see

[Nečas and Šverák 1991; Frehse and Seregin 1999]. We test (2-3) by |w|s−2w with
arbitrary s ∈ [2, 4] to get

(A-2) 1
s

d
dt
‖w‖ss +

∫
�

|w|s−2AD(w) · D(w)

=−

∫
�

F · ∇(|w|s−2w)−

∫
�

AD(w) · (∇|w|s−2
⊗w).

Consequently, using (2-2) and (A-1) we observe that (we use Young’s inequality to
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get the second estimate)

(A-3)
1
s

d
dt
‖w‖ss + λ1

∫
�

|w|s−2
|D(w)|2

≤ C
(∫

�

|F||w|s−2
|∇w| + λ2(s− 2)

∫
�

|w|s−2
|∇w|2

)
≤

(
Cλ2(s− 2)+

λ1

2C∗

)∫
�

|w|s−2
|∇w|2+

C2C∗

2λ1

∫
�

|F|2|w|s−2

≤ λ1

∫
�

|w|s−2
|D(w)|2+

C2C∗

2λ1

∫
�

|F|2|w|s−2,

provided that

(A-4) CC∗λ2(s− 2)+ λ1/2< λ1.

Thus, defining L := 1/(2CC∗), we see that for all 2≤ s ≤ 2+Lλ1/λ2 the condition
(A-4) is automatically met and the inequality (A-3) implies that

d
dt
‖w‖ss ≤

C
λ1

∫
�

|F|2|w|s−2
≤

C
λ1
‖F‖2s‖w‖

s−2
s

and we finally obtain
d
dt
‖w‖2s ≤

C
λ1
‖F‖2s ,

which leads to (2-5) after integration with respect to t ∈ (0, T ). �

Lemma A.1 (See also [Ladyzhenskaja et al. 1968]). Let T > 0 and�⊂R2. Assume
that p > 4; then the embedding

(A-5) W 1,p(0, T ; L p)∩ L p(0, T ;W 2,p
per ) ↪→ C([0, T ],C1

per(�)).

holds. In addition for any s > 2 and α ∈ (0, (1− 2/s)/3) we have

(A-6) W 1,∞(0, T ; Ls)∩ L∞(0, T ;W 2,s) ↪→ C0,α([0, T ],C1,α
per (�)).

Proof. By using an interpolation theorem (see [Amann 2000, proof of Corol-
lary 4.5(ii)]) we find that, for any α ∈ [0, 1], p1, p2 ∈ (1,∞),

(A-7) W 1,p1(0, T ; L p2)∩ L p1(0, T ;W 2,p2
per ) ↪→W α,p1(0, T ;W 2(1−α),p2

per ).

Consequently, setting α := 1
4 , p1 = p2 := p and using the standard Sobolev

embedding we get (A-5), provided that p > 4.
To prove the second part of the lemma, we first note that for any p ∈ [1,∞]

we have W 1,∞(0, T ; Ls)∩ L∞(0, T ;W 2,s) ↪→ W 1,p(0, T ; Ls)∩ L p(0, T ;W 2,s).
Consequently, setting p2 := s, p1 := p in (A-7), we deduce that

(A-8) W 1,∞(0, T ; Ls)∩ L∞(0, T ;W 2,s
per ) ↪→W α,p(0, T ;W 2(1−α),s

per )
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for any p ∈ (1,∞) and any α ∈ [0, 1]. Finally, assuming that p > 2s
s−2

and setting

α :=
ps−2p+s

3ps

in (A-8), we get after using the standard embedding theorem that

W 1,∞(0, T ; Ls)∩ L∞(0, T ;W 2,s
per ) ↪→ C0,β(0, T ;C1,β

per (�))

with β := 1
3
−

2
3s
−

2
3p
. Since p is arbitrarily large the embedding (A-6) follows.
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MATHEMATICAL INSTITUTE, FACULTY OF MATHEMATICS AND PHYSICS

CHARLES UNIVERSITY IN PRAGUE

186 75 PRAHA 8
CZECH REPUBLIC

mbul8060@karlin.mff.cuni.cz

PETR KAPLICKÝ

DEPARTMENT OF MATHEMATICAL ANALYSIS, FACULTY OF MATHEMATICS AND PHYSICS

CHARLES UNIVERSITY IN PRAGUE

186 75 PRAHA 8
CZECH REPUBLIC

kaplicky@karlin.mff.cuni.cz

MARK STEINHAUER

MATHEMATICAL INSTITUTE

UNIVERSITY OF KOBLENZ-LANDAU

CAMPUS KOBLENZ

56070 KOBLENZ

GERMANY

steinhauerm@uni-koblenz.de

http://msp.org/idx/mr/37:2057
http://msp.org/idx/zbl/0171.09401
http://msp.org/idx/mr/92d:35058
http://msp.org/idx/zbl/0735.35035
http://msp.org/idx/mr/2005i:35220
http://msp.org/idx/zbl/1088.35051
http://dx.doi.org/10.1016/j.mechrescom.2008.09.005
http://dx.doi.org/10.1016/j.mechrescom.2008.09.005
http://msp.org/idx/mr/7,229h
http://dx.doi.org/10.1080/03605309608821221
http://msp.org/idx/mr/97k:35108
http://msp.org/idx/zbl/0864.35023
http://dx.doi.org/10.1098/rspl.1865.0052
http://dx.doi.org/10.1007/s00205-007-0109-x
http://msp.org/idx/mr/2009m:74028
http://msp.org/idx/zbl/1147.74008
http://dx.doi.org/10.1002/andp.18922831210
http://msp.org/idx/jfm/24.0932.01
http://dx.doi.org/10.1007/978-1-4612-1015-3
http://dx.doi.org/10.1007/978-1-4612-1015-3
http://msp.org/idx/mr/91e:46046
http://msp.org/idx/zbl/0692.46022
mailto:mbul8060@karlin.mff.cuni.cz
mailto:kaplicky@karlin.mff.cuni.cz
mailto:steinhauerm@uni-koblenz.de


PACIFIC JOURNAL OF MATHEMATICS
msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

V. S. Varadarajan (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pacific@math.ucla.edu

Don Blasius
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2013 is US $400/year for the electronic version, and $485/year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704,
and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA
94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2013 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:balmer@math.ucla.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:pacific@math.ucla.edu
mailto:blasius@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:yang@math.princeton.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.inist.fr/PRODUITS/pascal.php
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 262 No. 1 March 2013

1On the second K -group of a rational function field
KARIM JOHANNES BECHER and MÉLANIE RACZEK

11On existence of a classical solution to a generalized Kelvin–Voigt
model
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