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SORIN DĂSCĂLESCU, MIODRAG C. IOVANOV

AND CONSTANTIN NĂSTĂSESCU
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We study the connection between two combinatorial notions associated to
a quiver: the quiver algebra and the path coalgebra. We show that the
quiver coalgebra can be recovered from the quiver algebra as a certain type
of finite dual, and we show precisely when the path coalgebra is the classical
finite dual of the quiver algebra, and when all finite-dimensional quiver rep-
resentations arise as comodules over the path coalgebra. We discuss when
the quiver algebra can be recovered as the rational part of the dual of the
path coalgebra. Similar results are obtained for incidence (co)algebras. We
also study connections to the notion of coreflexive (co)algebras, and give a
partial answer to an open problem concerning tensor products of coreflexive
coalgebras.

1. Introduction and preliminaries

Let 0 be a quiver, and let K be an arbitrary ground field, which will be fixed
throughout the paper. The associated quiver algebra K [0] is an important object
studied extensively in representation theory, and one theme in the field is to relate and
understand combinatorial properties of the quiver via the properties of the category
of representations of the quiver, and vice versa. Quiver algebras also play a role
in general representation theory of algebras; for example, every finite-dimensional
pointed algebra is a quiver algebra “with relations”. A closely related object is the
path coalgebra K0, introduced in [Chin and Montgomery 1997], together with
its comodules (quiver corepresentations). Comodules over path coalgebras turn
out to form a special kind of representations of the quiver, called locally nilpotent
representations in [Chin et al. 2002]. A natural question arises then: what is the
precise connection between the two objects K [0] and K0. We aim to provide such
connections, by finding out when one of these objects can be recovered from the
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other one. This is also important from the following viewpoint: one can ask when
the finite-dimensional locally nilpotent representations of the quiver (i.e., quiver
corepresentations), provide all the finite-dimensional quiver representations. This
situation will be exactly the one in which the path coalgebra is recovered from the
quiver algebra by a certain natural construction involving representative functions,
which we recall below.

Given a coalgebra C , its dual C∗ is always an algebra. Given an algebra A,
one can associate a certain subspace A0 of the dual A∗, which has a coalgebra
structure. This is called the finite dual of A, and it plays an important role in the
representation theory of A, since the category of locally finite left A-modules (i.e.,
modules which are sums of their finite-dimensional submodules) is isomorphic
to the category of right A0-comodules (see, for example, [Green 1976]). A0 is
sometimes also called the coalgebra of representative functions, and consists of
all f : A→ K whose kernel contains a cofinite (i.e., having finite codimension)
ideal. We show that the path coalgebra K0 can be reconstructed from the quiver
algebra K [0] as a certain type of “graded” finite dual, that is, K0 embeds in
the dual space K [0]∗ as the subspace of linear functions f : K [0] → K whose
kernel contains a cofinite monomial ideal. This is an “elementwise” answer to the
recovery problem; its categorical analogue states that the comodules over the quiver
coalgebra are precisely those quiver representations in which the annihilator of
every element contains a cofinite monomial ideal. In order to connect these to the
classical categorical duality, we first note that in general the quiver algebra does
not have identity, but it has enough idempotents. Therefore, we first extend the
construction of the finite dual to algebras with enough idempotents (Section 2). To
such an algebra A we associate a coalgebra A0 with counit, and we show that the
category of right A0-comodules is isomorphic to the category of locally finite unital
A-modules. In Section 3 we show that the path coalgebra K0 embeds in K [0]0,
and we prove that this embedding is an isomorphism, i.e., the path coalgebra can
be recovered as the finite dual of the quiver algebra, if and only if the quiver has no
oriented cycles and there are finitely many arrows between any two vertices. On the
other hand, K [0] embeds as an algebra without identity in the dual algebra (K0)∗

of the path coalgebra. We show that the image of this embedding is the rational
(left or right) part of (K0)∗, i.e., the quiver algebra can be recovered as the rational
part of the dual of the path coalgebra, if and only if for any vertex v of 0 there are
finitely many paths starting at v and finitely many paths ending at v. This is also
equivalent to the fact that K0 is a left and right semiperfect coalgebra.

In Section 4 we obtain similar results for another class of (co)algebras which
are also objects of great combinatorial interest, namely for incidence (co)algebras.
See [Joni and Rota 1979], for instance. We show that the incidence coalgebra of
a partially ordered set X is always the finite dual of a subalgebra FIA(X) of the
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incidence algebra which consists of functions of finite support. In this setting, this
algebra FIA(X) is the natural analogue of the quiver algebra.

It is also interesting to know when can K0 be recovered from (K0)∗, and how
this relates to the results of Section 3. This problem is related to an important
notion in coalgebra theory, that of coreflexive coalgebra. A coalgebra C over K is
coreflexive if the natural coalgebra embedding C→ (C∗)0 is an isomorphism. In
other words, C is coreflexive if it can be completely recovered from its dual. In
Section 5 we aim to study this condition for path coalgebras and their subcoalgebras,
and give the connection with the results of Section 3. We show that, in fact, a
path coalgebra of a quiver with no loops and finitely many arrows between any
two vertices is not necessarily coreflexive, and also, that the quivers of coreflexive
path coalgebras can contain loops. We then prove a general result stating that
under certain conditions a coalgebra C is coreflexive if and only if its coradical is
coreflexive. In particular, this result holds for subcoalgebras of a path coalgebra K0
with the property that there are finitely many paths between any two vertices of 0.
The result applies in particular to incidence coalgebras. For both a path coalgebra
and an incidence coalgebra the coradical is a grouplike coalgebra (over the set of
vertices of the quiver for the first one, or the underlying ordered set for the second
one). Thus the coreflexivity of such a coalgebra reduces to the coreflexivity of a
grouplike coalgebra K (X). By [Heyneman and Radford 1974, Theorem 3.7.3], if K
is an infinite field, then K (X) is coreflexive for most sets in X in set theory and any
set of practical use (see Section 5).

We use our results to give a partial answer to a question of E. J. Taft and
D. E. Radford asking whether the tensor product of two coreflexive coalgebras
is coreflexive. In particular, we show that the tensor product of two coreflexive
pointed coalgebras, which embed in path coalgebras of quivers with only finitely
many paths between any two vertices, is coreflexive.

Throughout the paper 0 = (00, 01) will be a quiver. 00 is the set of vertices,
and 01 is the set of arrows of 0. If a is an arrow from the vertex u to the vertex
v, we denote s(a) = u and t (a) = v. A path in 0 is a finite sequence of arrows
p = a1a2 . . . an , where n ≥ 1, such that t (ai )= s(ai+1) for any 1≤ i ≤ n− 1. We
will write s(p)= s(a1) and t (p)= t (an). Also the length of such a p is n. Vertices
v in 00 are also considered as paths of length zero, and we write s(v)= t (v)= v.
If p and q are two paths such that t (p)= s(q), we consider the path pq by taking
the arrows of p followed by the arrows of q . We denote by K0 the path coalgebra,
which is the vector space with a basis consisting of all paths in 0, comultiplication
1 defined by 1(p)=

∑
qr=p q⊗r for any path p, and counit ε defined by ε(v)= 1

for any vertex v, and ε(p)= 0 for any path of positive length. The underlying space
of K0 can be also endowed with a structure of an algebra, not necessarily with
identity, with the multiplication defined such that the product of two paths p and
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q is pq if t (p)= s(q), and 0 otherwise. We denote this algebra by K [0]; this is
known in literature as the quiver algebra or the path algebra of 0. It has identity if
and only if 00 is finite, and in this case the sum of all vertices is the identity.

Besides the above mentioned recovery connections between quiver algebras and
path coalgebras, one can also ask whether there is any compatibility between them.
More precisely, when do the two structures on the same vector space K0 give rise
to a bialgebra structure. This turns out to be only the case for very special quivers.
Specifically, consider K [0] to be the vector space with basis the oriented paths
of 0, and with the quiver algebra and path coalgebra structures. Then K [0] is a
bialgebra (with enough idempotents in general) if and only if in 0 there are no
(directed) paths of length ≥ 2 and no multiple edges between vertices (i.e., for any
two vertices a, b of 0 there is at most one edge from a to b). Indeed, straightforward
computations show that whenever multiple edges •

x,y
H⇒ • or paths •

x
−→ •

y
−→ •

of length at least 2 occur, then 1(xy) 6= 1(x)1(y). Conversely, a case by case
computation for 1(pq) with p, q paths of possible length 0 or 1 will show that
1(pq)=1(p)1(q).

This shows that the relation between the path coalgebra and quiver algebra
is more of a dual nature than an algebraic compatibility. For basic terminology
and notation about coalgebras and comodules we refer to [Dăscălescu et al. 2001;
Montgomery 1993; Sweedler 1969]. All (co)algebras and (co)modules considered
here will be vector spaces over K , and duality (−)∗ represents the dual K -vector
space.

2. The finite dual of an algebra with enough idempotents

In this section we extend the construction of the finite dual of an algebra with
identity to the case where A does not necessarily have a unit, but it has enough
idempotents. Throughout this section we consider a K -algebra A, not necessarily
having a unit, but having a system (eα)α∈R of pairwise orthogonal idempotents,
such that A =

⊕
α∈R Aeα =

⊕
α∈R eαA. Such an algebra is said to have “enough

idempotents”, and it is also called an algebra with a complete system of orthogonal
idempotents in the literature. Let us note that A has local units, i.e., if a1, . . . , an ∈ A,
then there exists an idempotent e ∈ A (which can be taken to be the sum of some
eα’s) such that eai = ai e = ai for any 1 ≤ i ≤ n. Our aim is to show that there
exists a natural structure of a coalgebra (with counit) on the space

A0
= { f ∈ A∗ | Ker( f ) contains an ideal of A of finite codimension}.

We will call A0 the finite dual of the algebra A.

Lemma 2.1. Let I be an ideal of A of finite codimension. Then the set R′={α ∈ R |
eα /∈ I } is finite.
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Proof. Denote by â the class of an element a ∈ A in the factor space A/I . We
have that (êα)α∈R′ is linearly independent in A/I . Indeed, if

∑
α∈R′ λα êα = 0, then∑

α∈R′ λαeα ∈ I . Multiplying by some eα with α ∈ R′, we find that λαeα ∈ I ,
so then necessarily λα = 0. Since A/I is finite-dimensional, the set R′ must be
finite. �

Assume now that B is another algebra with enough idempotents, say that ( fβ)β∈S

is a system of orthogonal idempotents in B such that B =
⊕

β∈S B fβ =
⊕

β∈S fβB.

Lemma 2.2. Let H be an ideal of A⊗ B of finite codimension. Let

I = {a ∈ A | a⊗ B ⊆ H} and J = {b ∈ B | A⊗ b ⊆ H}.

Then I is an ideal of A of finite codimension, J is an ideal of B of finite codimension
and I ⊗ B+ A⊗ J ⊆ H.

Proof. Let a ∈ I and a′ ∈ A. If b ∈ B and f is an idempotent in B such that f b= b,
we have that a′a⊗b=a′a⊗ f b= (a′⊗ f )(a⊗b)∈H . Thus a′a⊗B⊆H , so a′a∈ I .
Similarly aa′ ∈ I , showing that I is an ideal of A. Similarly J is an ideal of B.

It is clear that (eα⊗ fβ)α∈R,β∈S is a set of orthogonal idempotents in A⊗ B and

A⊗ B =
⊕
α∈R
β∈S

(A⊗ B)(eα ⊗ fβ)=
⊕
α∈R
β∈S

(eα ⊗ fβ)(A⊗ B).

By Lemma 2.1, there are finitely many idempotents eα1⊗ fβ1, . . . , eαn ⊗ fβn which
lie outside H . If α ∈ R \{α1, . . . , αn}, then for any β ∈ S we have that eα⊗ fβ ∈ H ,
so eα ⊗ B fβ = (eα ⊗ B fβ)(eα ⊗ fβ)⊆ H . Then eα ⊗ B ⊆ H , so eα ∈ I . Similarly
for any β ∈ S \ {β1, . . . , βn} we have that fβ ∈ J .

For any β ∈ S let φβ : A→ A⊗ B be the linear map defined by φβ(a)= a⊗ fβ .
If a ∈ A, then a ∈ I if and only if for any β ∈ S we have a⊗B fβ ⊆ H ; because there
is a local unit for a, this is further equivalent to a⊗ fβ ∈ H for β ∈ S. This condition
is obviously satisfied for β ∈ S \ {β1, . . . , βn} since fβ ∈ J , so we obtain that

I =
⋂

1≤i≤n

φ−1
βi
(H),

a finite intersection of finite codimensional subspaces of A, thus a finite codimen-
sional subspace itself. Similarly J has finite codimension in B. The fact that
I ⊗ B+ A⊗ J ⊆ H is obvious. �

Now we essentially proceed as in [Sweedler 1969, Chapter VI] or [Dăscălescu
et al. 2001, Section 1.5], with some arguments adapted to the case of enough
idempotents.

Lemma 2.3. Let A and B be algebras with enough idempotents. The following
assertions hold.
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(i) If f : A→ B is a morphism of algebras, then f ∗(B0)⊆ A0, where f ∗ is the
dual map of f .

(ii) If φ : A∗⊗ B∗→ (A⊗ B)∗ is the natural linear injection, then φ(A0
⊗ B0)=

(A⊗ B)0.

(iii) If M : A⊗ A→ A is the multiplication of A, and ψ : A∗⊗ A∗→ (A⊗ A)∗ is
the natural injection, then M∗(A0)⊆ ψ(A0

⊗ A0).

Proof. It goes as the proof of [Dăscălescu et al. 2001, Lemma 1.5.2], with part of the
argument in (ii) replaced by using the construction and the result of Lemma 2.2. �

Lemma 2.3 shows that by restriction and corestriction we can regard the natural
linear injection ψ as an isomorphism ψ : A0

⊗ A0
→ (A⊗ A)0. We consider the

map 1 : A0
→ A0

⊗ A0, 1 = ψ−1 M∗. Thus 1( f ) =
∑

i ui ⊗ vi is equivalent to
f (xy)=

∑
i ui (x)vi (y) for any x, y ∈ A. On the other hand, we define a linear map

ε : A0
→ K as follows. If f ∈ A0, then Ker( f ) contains a finite codimensional ideal

I . By Lemma 2.1, there are finitely many eα’s outside I . Therefore only finitely
many eα’s lie outside Ker( f ), so it makes sense to define ε( f )=

∑
α∈R f (eα) (only

finitely many terms are nonzero).

Proposition 2.4. Let A be an algebra with enough idempotents. Then (A0,1, ε)

is a coalgebra with counit.

Proof. The proof of the coassociativity works exactly as in the case where A has a
unit; see [Dăscălescu et al. 2001, Proposition 1.5.3]. To check the property of the
counit, let f ∈ A0 and 1( f ) =

∑
i ui ⊗ vi . Let a ∈ A and F a finite subset of R

such that a ∈
∑

α∈F eαA. Then clearly
(∑

α∈F eα
)
a = a. We have that(∑

i

ε(ui )vi

)
(a)=

∑
i,α

ui (eα)vi (a)=
∑
α

f (eαa)

=

∑
α∈F

f (eαa)= f
((∑

α∈F

eα

)
a
)
= f (a),

so
∑

i ε(ui )vi = f . Similarly
∑

i ε(vi )ui = f , and this ends the proof. �

Let us note that if f : A→ B is a morphism of algebras with enough idempotents,
then the map f 0

: B0
→ A0 induced by f ∗ is compatible with the comultiplications

of A0 and B0, but not necessarily with the counits (unless f is compatible in some
way to the systems of orthogonal idempotents in A and B).

We denote by ⇀ (respectively ↼) the usual left (respectively right) actions of
A on A∗. As in the unitary case, we have the following characterization of the
elements of A0.

Proposition 2.5. Let f ∈ A∗. With notation as above, the following assertions are
equivalent.
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(1) f ∈ A0.

(2) M∗( f ) ∈ ψ(A0
⊗ A0).

(3) M∗( f ) ∈ ψ(A∗⊗ A∗).

(4) A ⇀ f is finite-dimensional.

(5) f ↼ A is finite-dimensional.

(6) A ⇀ f ↼ A is finite-dimensional.

(7) Ker( f ) contains a left ideal of finite codimension.

(8) Ker( f ) contains a right ideal of finite codimension.

Proof. (1)⇒ (2)⇒ (3)⇒ (4) and (1)⇒ (6) work exactly as in the case where A
has identity; see [Dăscălescu et al. 2001, Proposition 1.5.6]. We adapt the proof of
(4)⇒ (1) to the case of enough idempotents. Since A ⇀ f is a left A-submodule
of A∗, there is a morphism of algebras (without unit) π : A→ End(A⇀ f ) defined
by π(a)(m) = a ⇀ m for any a ∈ A, m ∈ A ⇀ f . Since End(A ⇀ f ) has finite
dimension, we have that I = Ker(π) is an ideal of A of finite codimension. Let
a ∈ I . Then a ⇀ (b ⇀ f ) = (ab) ⇀ f = 0 for any b ∈ A, so f (xab) = 0 for
any x, b ∈ A. Let e ∈ A such that ea = ae = a. Then f (a) = f (eae) = 0, so
a ∈Ker( f ). Thus I ⊆Ker( f ), showing that f ∈ A0. The equivalence (1)⇔ (5) is
proved similarly.

(6)⇒(1) can be adapted from the unital case; see [Montgomery 1993, Lemma 9.1.1],
with a small change. Indeed, R = (A⇀ f ↼ A)⊥ = {x ∈ A | g(x)= 0 for any g ∈
A ⇀ f ↼ A} is an ideal of A of finite codimension, and R ⊆ Ker( f ), since for
any r ∈ R there exists e ∈ A such that r = er = re, so then f (r)= f (ere)= (e⇀
f ↼ e)(r)= 0.

(1)⇒ (7) is obvious, while (7)⇒ (1) follows from the fact that a left ideal I of
finite codimension contains the finite codimensional ideal J = {r ∈ A | r A ⊆ I }.
(1)⇔ (8) is similar. �

We end this section with an interpretation of the connection between an algebra A
with enough idempotents and its finite dual A0 from the representation theory point
of view. This extends the results presented in [Abe 1980, Chapter 3, Section 1.2] in
the case where A has identity. Let M be a left A-module. Then M is called unital
if AM = M . Also, M is called locally finite if the submodule generated by any
element is finite-dimensional. Denote by LocFinA M the full subcategory of the
category of left A-modules consisting of all locally finite unital modules. We will
also use the notations AM,MA for the categories of left, or right modules over A;
similarly, for a coalgebra C , CM andMC will be used to denote the categories of
left and respectively right comodules.



56 SORIN DĂSCĂLESCU, MIODRAG C. IOVANOV AND CONSTANTIN NĂSTĂSESCU

Proposition 2.6. Let A be an algebra with enough idempotents. Then the category
MA0

of right A0-comodules is isomorphic to the category LocFinA M.

Proof. Let M be a right A0-comodule with comodule structure m 7→
∑

m0⊗m1.
Then M is a left A-module with the action am =

∑
m1(a)m0 for any a ∈ A and

m ∈ M . The counit property m =
∑
ε(m1)m0, with all m1’s in A0, shows that

m =
∑

α∈F eαm for a finite set F , so M is unital. Since Am is contained in the
subspace spanned by all m0’s, we have that M is also locally finite.

Conversely, let M ∈ LocFinA M. Let m ∈ M , and let (mi )i=1,n be a (finite)
basis of Am. Define a∗1 , . . . , a∗n ∈ A∗ such that am =

∑
i=1,n a∗i (a)mi for any

a ∈ A. Since
⋂

i=1,n annA(mi )= annA(Am)⊆ annA(m)=
⋂

i=1,n Ker a∗i and each
annA(mi ) has finite codimension, we get that a∗i ∈ A0 for any i . Now we define
ρ : M→ M⊗ A0 by ρ(m)=

∑
i=1,n mi ⊗a∗i . It is easy to see that the definition of

ρ(m) does not depend on the choice of the basis (mi )i , and that (ρ⊗ I )ρ= (I⊗1)ρ.
To show that M is a right A0-comodule it remains to check the counit property, and
this follows from the fact that M is unital.

It is clear that the above correspondences define an isomorphism of categories. �

3. Quiver algebras and path coalgebras

We examine the connection between the quiver algebra K [0] and the path coalgebra
K0 associated to a quiver 0. The algebra K [0] has identity if and only if 0 has
finitely many vertices. However, K [0] always has enough idempotents (the set of
all vertices). Thus by Section 2 we can consider the finite dual K [0]0, which is
a coalgebra with counit. One has that K [0]0 ⊇ K0, i.e., the path coalgebra can
be embedded in the finite dual of the quiver algebra. The embedding is given as
follows: for each path p ∈ 0, denote by θ(p) ∈ K [0]∗ the function θ(p)(q)= δp,q .
We have that θ(p) ∈ K [0]0 since if we denote by S(p) the set of all subpaths of p,
and by P the set of all paths in 0, the span of P \ S(p) is a finite codimensional
ideal of K [0] contained in Ker θ(p). It is easy to see that θ : K0 ↪→ K [0]0 is an
embedding of coalgebras. In general, K [0] ↪→ (K0)∗ is surjective if and only if
the quiver 0 is finite. Also, in general, θ is not surjective. To see this, let A be the
quiver algebra of a loop 0, i.e., a quiver with one vertex and one arrow:

•
��

so A = K [X ], the polynomial algebra in one indeterminate. The finite dual of this
algebra is

lim
−→

f irreducible
n∈Z≥0

(K [X ]/( f n))∗ =
⊕

f irreducible

[ lim
−→

n∈Z≥0

(K [X ]/( f n))∗],
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while the path coalgebra is precisely the divided power coalgebra, which can be
written as lim

−→ n∈Z≥0
(K [X ]/(Xn))∗. These two coalgebras are not isomorphic, so

the map θ above is not a surjection. Indeed, K0 has just one grouplike element, the
vertex of 0, while the grouplike elements of A0, which are the algebra morphisms
from A = K [X ] to K , are in bijection to K .

The embedding of coalgebras θ : K0 ↪→ K [0]0 also gives rise to a functor
Fθ : K0M→ K [0]0M, associating to a left K0-comodule the left K [0]0-comodule
structure obtained by extension of coscalars via θ . We aim to provide a criterion
for when the above map θ is bijective, that is, when the path coalgebra is recovered
as the finite dual of the quiver algebra. Even though this is not always the case, we
show that it is possible to interpret the quiver algebra as a certain kind of “graded”
finite dual. We will think of K0 as embedded into K [0]0 through θ , and sometimes
write K0 instead of θ(K0).

Recall that in a quiver algebra K [0], there is an important class of ideals, those
which have a basis of paths; equivalently, the ideals generated by paths. Let us call
such an ideal a monomial ideal. When I is a cofinite monomial right ideal, the
quotient K [0]/I produces an interesting type of representation often considered
in the representation theory of quivers; we refer to [Villarreal 2001] for the theory
monomial algebras and representations. In fact, such a representation also becomes
a left K0-comodule, i.e., it is in the “image” of the functor Fθ . To see this, let
B be basis of paths for I and let E be the set of paths not belonging to I ; then E
is finite, and because I is a right ideal, one sees that if p ∈ E and p = qr , then
q ∈ E . This shows that K E , the span of E , is a right K0-subcomodule of K0,
so it is a rational left (K0)∗-module (for example, by [Dăscălescu et al. 2001,
Theorem 2.2.5]). By [Dăscălescu et al. 2001, Lemma 2.2.12], the right (K0)∗-
module (K E)∗ is rational, and so it has a compatible left K0-comodule structure.
Hence (K E)∗ is a right K [0]-module via the algebra map K [0] ↪→ (K0)∗. Now,
it is straightforward to see that K [0]/I ∼= (K E)∗ as right K [0]-modules, and this
proves the claim. Thus, Fθ ( K0((K E)∗)) = K [0]0(K [0]/I ), since every finite-
dimensional right K [0]-module is a left K [0]0-comodule.

We can now state a characterization of the path coalgebra in terms of the quiver
algebra, as a certain type of finite dual.

Proposition 3.1. The coalgebra θ(K0) consists of all f ∈ K [0]∗ such that ker( f )
contains a two-sided cofinite monomial ideal.

Proof. Let P be the set of paths in 0. If p is a path, and S(p) is the set of subpaths
of p, then the cofinite-dimensional vector space with basis P \ S(p) is an ideal, and
it is obviously contained in ker(θ(p)). Then clearly ker(θ(z)) contains a cofinite
monomial ideal for any z ∈ K0.
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Let now f ∈ K [0]∗ such that ker( f ) contains the cofinite monomial ideal I .
Let B be a basis of I consisting of paths, and let E = P \ B, which is finite, since
I is cofinite. Then if q ∈ B, we have f (q) = 0 =

∑
p∈E f (p)θ(p)(q), while if

q ∈ E , we have
(∑

p∈E f (p)θ(p)
)
(q) = f (q). Therefore f =

∑
p∈E f (p)θ(p)

lies in θ(K0). �

The core of our characterization is the following easy combinatorial condition:

Proposition 3.2. Let 0 be a quiver. The following conditions are equivalent:

(i) 0 has no oriented cycles and between any two vertices there are only finitely
many arrows.

(ii) For any finite set of vertices E ⊂ 0, there are only finitely many paths passing
only through vertices of E.

We recall that a representation of the quiver 0 is a pair R= ((Vu)u∈00, ( fa)a∈01)

consisting of a family of vector spaces and a family of linear maps, such that fa :

Vu→Vv , where u=s(a) and v= t (a) for any a∈01. A morphism of representations
is a family of linear maps (indexed by 00) between the corresponding Vu’s, which
are compatible with the corresponding linear morphisms in the two representations.
The category Rep 0 of representations of 0 is equivalent to the category u.MK [0]

of unital right K [0]-modules. The equivalence H : u.MK [0] → Rep 0 works
as follows. To a unital right K [0]-module V we associate the representation
H(V )= ((Vu)u∈00, ( fa)a∈01), where Vu = V u for any u ∈ 00, and for an arrow a
from u to v we define fa : Vu→ Vv, fa(x)= xa. An inverse equivalence functor
associates to representation R as above the space

⊕
u∈00

Vu endowed with a right
K [0]-action defined by xp= f p(x) for p= a1 . . . an and x ∈ Vu such that s(a1)= u.
Here we denote f p = fan . . . fa1 . If s(a1) 6= u, the action is xp = 0.

A representation R is locally finite if for any u ∈00 and any x ∈ Vu the subspace
〈 f p(x) | p is a path with s(p)= u〉 of

⊕
u∈00

Vu is finite-dimensional. Denote the
subcategory of locally finite representations by LocFinRep 0. The equivalence H
restricts to an equivalence H1 : LocFin MK [0]→ LocFinRep 0.

Recall from [Chin et al. 2002] that a representation R is locally nilpotent if for
any u ∈00 and any x ∈Vu , the set {p | p path with f p(x) 6=0} is finite. This is easily
seen to be equivalent to each x ∈

⊕
u∈00

Vu being annihilated by a monomial ideal
of finite codimension. Denote by LocNilpRep0 the category of locally nilpotent
representations, which is clearly a subcategory of LocFinRep 0.
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We have the following diagram:

K0M
Fθ //

∼H2

��

K [0]0M
G
∼
// LocFinMK [0]

I1 //

H1 ∼

��

u.MK [0]

H ∼

��
LocNilpRep 0

I2 // LocFinRep 0
I3 // Rep 0

Here G is the equivalence of categories as in Proposition 2.6 (the version for
right modules), and the I j ’s are inclusion functors. It is easy to see that the image
(on objects) of the functor H1G Fθ lies in LocNilpRep0, so we actually have a
functor H2 :

K0M→ LocNilpRep0, and this is just the equivalence noticed in
[Chin et al. 2002, Proposition 6.1]. In this way, at the level of representations, the
functor Fθ can be regarded as a functor (embedding) from the locally nilpotent
quiver representations to the locally finite quiver representations.

We can now characterize precisely when the path coalgebra can be recovered
from the quiver algebra, that is, when the above mentioned embedding θ is an
isomorphism.

Theorem 3.3. Let 0 be a quiver. The following assertions are equivalent:

(i) 0 has no oriented cycles and between every two vertices of 0 there are only
finitely many arrows.

(ii) θ(K0)= K [0]0.

(iii) Every cofinite ideal of K [0] contains a cofinite monomial ideal.

(iv) The functor Fθ : K0M→ K [0]0M is an equivalence.

(v) Every locally finite quiver representation of 0 is locally nilpotent.

Proof. The equivalence of (ii) and (iv) is a general coalgebra fact: if C ⊆ D is
an inclusion of coalgebras, then the corestriction of scalars F : CM→ DM is an
equivalence if and only if C = D. Indeed, if F is an equivalence, pick an arbitrary
x ∈ D and let N = x D∗ ∈ DM be the finite-dimensional D-subcomodule of D
generated by x . Then N ' F(M), M ∈ CM, and considering the coalgebras of
coefficients CN and CM of N and M , we see that CN = CM ⊆ C by the definition
of F . Since x ∈ CN , this ends the argument.

The equivalence of (ii) and (iii) follows immediately from Proposition 3.1.

(iv)⇔ (v) The previous remarks on Fθ (and the diagram drawn there) show that
Fθ is an equivalence functor if and only if so is I2. On the other hand, the inclusion
functor I2 is an equivalence if and only if every locally finite quiver representation
of 0 is locally nilpotent.

(i)⇒ (iii) Let I be an ideal of K [0] of finite codimension. By Lemma 2.1 applied
for the algebra K [0] and the complete set of orthogonal idempotents 00, we have
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that the set S′={a ∈00 |a 6∈ I }must be finite. Let S={a ∈00 |a ∈ I }. Note that any
path p starting or ending at a vertex in S belongs to I , since p= s(p)p= pt (p)∈ I
if either s(p) ∈ I or t (p) ∈ I . Furthermore, this shows that if p contains a vertex
in S, then p ∈ I , since in that case p = qr with x = t (q)= s(r) ∈ S. Denote the
set of paths containing some vertex in S by M . Let H be the vector space spanned
by M and let M ′ be the set of the rest of the paths in 0. Obviously, M ′ consists of
the paths whose all vertices belong to S′. Since S′ is finite, we see that M ′ is finite,
by the conditions of (i) and Proposition 3.2. Therefore H has finite codimension.
Also, since H is spanned by paths passing through some vertex in S, we see that
H is an ideal. We conclude that I contains the cofinite monomial ideal H .

(iii)⇒ (i) We show first that there are no oriented cycles in 0. Assume 0 has a
cycle

C : v0
x0
−→ v1

x1
−→ · · · −→ vs−1

xs−1
−→ vs = v0,

and consider such a cycle that does not self-intersect. We can consider the vertices
v0, . . . , vs−1 modulo s. Denote by qn,k the path starting at the vertex vn (0≤ n ≤
s− 1), winding around the cycle C and of length k. Denote again by P the set of
all paths in 0, and by X = {qn,k | 0≤ n ≤ s− 1, k ≥ 0}. Since the set X is closed
under subpaths, it is easy to see that the vector space H spanned by the set P \ X
is an ideal of K [0]. Let E be the subspace spanned by S = {qn,ks+i − qn,i | 0 ≤
n ≤ s− 1, i ≥ 0, k ≥ 1}, and let I = E + H . We have

(qn,ks+i − qn,i )qn+i, j = qn,ks+i+ j − qn,i+ j ∈ S,

(qn,ks+i − qn,i )qm, j = 0 for m 6= n+ i,

qm, j (qn,ks+i − qn,i )= qm,ks+i+ j − qm,i+ j ∈ S if m+ j = n,

qm, j (qn,ks+i − qn,i )= 0 if m+ j 6= n.

Here in the notation qn,i the first index is considered modulo s, while the second
index is a nonnegative integer. The above equations show that if we multiply an
element of S to the left (or right) by an element of X , we obtain either an element
of S or 0. Combined with the fact that H is an ideal, this shows that I is an ideal.

It is clear that I has finite codimension, since S∪{qn,i |0≤n≤ s−1, 0≤ i ≤ s−1}
spans K C = 〈X〉. Indeed, if 0 ≤ n ≤ s − 1 and j is a nonnegative integer, write
j = ks + i with k ≥ 0 and 0 ≤ i ≤ s − 1, and we have that qn, j = qn,ks+i =

(qn,ks+i − qn,i )+ qn,i .
On the other hand, I does not contain a cofinite monomial ideal. Indeed, it is

easy to see that an element of the form qm, j cannot be in 〈S∪ (P \ X)〉 = I , so any
monomial ideal contained in I must have infinite codimension.

Thus, we have found a cofinite ideal I which does not contain a cofinite monomial
ideal. This contradicts (iii), and we conclude that 0 cannot contain cycles.
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We now show that in 0 there are no pair of vertices with infinitely many arrows
between them. Assume such a situation exists between two vertices a, b: a

xn
−→ b,

n ∈ Z≥0. We let X = {xn | n ∈ Z≥0} ∪ {a, b}, H be the span of P \ X , which is an
ideal since X is closed under taking subpaths. Let S = {xn − x0 | n ≥ 1} and I be
the span of S ∪ (P \ X). As above, since xn − x0 multiplied by an element of X
gives either xn − x0 or 0, we have that I is an ideal. I has finite codimension since
{a, b, x0} ∪ S ∪ (P \ X) spans K0. Also, I does not contain a monomial ideal of
finite codimension since no xn lies in I . Thus we contradict (iii). In conclusion
there are finitely many arrows between any two vertices, and this ends the proof. �

It is clear that a finite quiver 0 (i.e., 00 and 01 are finite) without oriented cycles
satisfies condition (i) in Theorem 3.3. In this case K0 is finite-dimensional, and we
obviously have K [0] = (K0)∗ (i.e., the map θ is bijective) and also K0 = K [0]0.
This can also be thought as a trivial case of the above theorem.

We now present a few examples to further illustrate the above theorem.

Example 3.4. Let ∞A∞ be the infinite line quiver

· · · → •→ •→ · · · → •→ . . .

The quiver coalgebra C = K∞A∞ of this quiver is serial, that is, the injective
indecomposable left and right comodules are uniserial, i.e., they have a unique
composition series; see [Gómez-Torrecillas and Navarro 2008]. For such a coalgebra,
the finite dimensional comodules are easily classified: they are all serial [ibid.].
Moreover, the indecomposable finite-dimensional comodules, i.e., the uniserial ones,
correspond to finite paths in ∞A∞. Note that this quiver satisfies the conditions
of Theorem 3.3, and so the locally nilpotent representations of ∞A∞ (i.e., the
comodules over K∞A∞) coincide with the locally finite representations of the
quiver algebra A= K [∞A∞], and also, the finite-dimensional quiver representations
of ∞A∞ are the comodules over K∞A∞. Moreover, the coalgebra of representative
functions on K [∞A∞] is isomorphic to K∞A∞.

Note that in general, it is not easy to describe arbitrary comodules even for a serial
coalgebra. By results in [Iovanov 2011], if an infinite dimensional indecomposable
injective comodule exists, then there are comodules which do not decompose into
indecomposable comodules (and, in particular, are not indecomposable). Moreover,
for the left bounded infinite quiver A∞ : • → • → · · · → • → . . . , it is shown
in [Iovanov 2011] that all left comodules over K A∞ are serial direct sums of
indecomposable uniserial comodules corresponding to finite paths, while in the
category of right comodules over K A∞ there are objects which do not decompose
into direct sums of indecomposables.

Example 3.5. Let Cn be the following quiver of affine Dynkin type Ãn:
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◦
1 // ◦2 // ◦3

��
Cn ◦

n

??

◦
4

~~
. . .

``

. . . ◦oo

The path coalgebra K Cn is again serial, and the finite dimensional (left and
right) comodules are all direct sum of uniserial objects (corresponding to finite
paths). These correspond to finite-dimensional locally nilpotent representations.
This quiver does not satisfy the hypothesis of Theorem 3.3. We give an example
of a quiver representation which is locally finite (even finite-dimensional) but not
locally nilpotent. Let x1, . . . , xn denote the arrows of the quiver, with ai = s(xi ).
Let M = K [Cn]/I where I is the (two sided) ideal generated by elements p− 1,
where p is a path of length n and with 1= a1+· · ·+an (M is actually an algebra).
One can easily see that M is spanned as a vector space by paths of length less than
n. A not too difficult computation shows that I does not contain any monomial
ideal of finite codimension, and so M as a representation of K [Cn] is not locally
nilpotent, but it is finite-dimensional. We again note that the infinite dimensional
comodules over the coalgebra K Cn are hard to understand, as there are both left
and right comodules which are not direct sum of indecomposable comodules.

An easy particular example of this can be obtained for n = 1; in this case,
K [Cn] ∼= K [X ]— the polynomial algebra. As noted before, the finite dual of this
algebra is not the path coalgebra of C1. Also, the representation K [X ]/(X − 1) is
not locally nilpotent.

Let ψ : K [0] → (K0)∗ be the linear map defined by ψ(p)(q) = δp,q for any
paths p and q. In fact ψ is just θ as a linear map, but we denote it differently
since we regard it now as a morphism in the category of algebras not necessarily
with identity. Indeed, it is easy to check that ψ is multiplicative. Thus the quiver
algebra embeds in the dual of the path coalgebra. Our aim is to show that in certain
situations K [0] can be recovered from (K0)∗ as the rational part. Obviously, this is
the case when K [0] is finite-dimensional, which will also be seen as a consequence
of the next result, which characterizes completely these situations. We recall that
if C is a coalgebra, the rational part of the left C∗-module C∗, consisting of all
elements f ∈ C∗ such that there exist finite families (ci )i in C and ( fi )i in C∗

with c∗ f =
∑

i c∗(ci ) fi for any c∗ ∈ C∗, is denoted by C∗ rat
l . This is the largest

C∗-submodule which is rational, i.e., whose C∗-module structure comes from a
right C-comodule structure. Similarly, C∗ rat

r denotes the rational part of the right
C∗-module C∗. A coalgebra C is called right (respectively left) semiperfect if the
category of right (respectively left) C-comodules has enough projectives. This is
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equivalent to the fact that C∗ rat
l (respectively C∗ rat

r ) is dense in C∗ in the finite
topology, see [Dăscălescu et al. 2001, Section 3.2].

Theorem 3.6. The following are equivalent.

(i) Im(ψ)= (K0)∗ rat
l .

(ii) Im(ψ)= (K0)∗ rat
r .

(iii) For any vertex v of 0 there are finitely many paths starting at v and finitely
many paths ending at v.

(iv) The path coalgebra K0 is left and right semiperfect.

Proof. (iii)⇒ (i) Let p be a path. We show that p∗=ψ(p)∈ Im(ψ). If c∗ ∈ (K0)∗

and q is a path, we have that

(c∗ p∗)(q)=
∑
rs=q

c∗(r)p∗(s)=
{

c∗(r) if q = r p for some path r,
0 if q does not end with p.

Let q1 = r1 p, . . . , qn = rn p be all the paths ending with p. By the formula above,
(c∗ p∗)(qi )= c∗(ri ) for any 1≤ i ≤n, and (c∗ p∗)(q)=0 for any path q 6=q1, . . . , qn .
This shows that c∗ p∗ =

∑
1≤i≤n c∗(ri )q∗i , thus p∗ ∈ (K0)∗ rat

l , and we have that
Im(ψ)⊆ (K0)∗ rat

l .
Now let c∗ ∈ (K0)∗ rat

l , so there exist (ci )1≤i≤n in K0 and (c∗i )1≤i≤n in (K0)∗

such that d∗c∗ =
∑

1≤i≤n d∗(ci )c∗i for any d∗ ∈ (K0)∗. Let p1, . . . , pm be all the
paths that appear with nonzero coefficients in some of the ci ’s (represented as a
linear combination of paths). Then for any p 6= p1, . . . , pm we have that p∗(ci )= 0,
so then p∗c∗= 0. Let v be a vertex such that no one of p1, . . . , pm passes through v.
Then for any path p starting at v we have that 0= (v∗c∗)(p)= v∗(v)c∗(p)= c∗(p).
Therefore c∗ may be nonzero on a path p only if s(p)∈ {p1, . . . , pm}. By condition
(iii), there are only finitely many such paths p, denote them by q1, . . . , qe. Then
c∗ =

∑
1≤i≤e c∗(qi )q∗i ∈ Im(ψ), and we also have that (K0)∗ rat

l ⊆ Im(ψ).

(i)⇒ (iii) Let v be a vertex. Then v∗=ψ(v)∈ (K0)∗ rat
l , so there exist finite families

(ci ) ⊆ K0 and (c∗i )i ⊆ (K0)
∗ such that c∗v∗ =

∑
i c∗(ci )c∗i for any c∗ ∈ (K0)∗.

Then for any path q ,

(1)
∑

i

c∗(ci )c∗i (q)= (c
∗v∗)(q)=

{
c∗(q) if q ends at v,
0 otherwise.

If there exist infinitely many paths ending at v, we can find one such path q which
does not appear in the representation of any ci as a linear combination of paths. Then
there exists c∗ ∈ (K0)∗ with c∗(q) 6= 0 and c∗(ci )= 0 for any i , in contradiction
with (1). Thus only finitely many paths can end at v. In particular 0 does not have
cycles.
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On the other hand, if we assume that there are infinitely many paths p1, p2, . . .

starting at v, let c∗ ∈ (K0)∗ which is 1 on each pi and 0 on any other path. Clearly
c∗ /∈ Im(ψ). We show that c∗ ∈ (K0)∗ rat

l , and the obtained contradiction shows
that only finitely many paths start at v. Indeed, we have

(2) (d∗c∗)(q)=
{

d∗(r) if q = r pi for some i ≥ 1 and some path r,
0 otherwise.

Let r1, . . . , rm be all the paths ending at v (they are finitely many as we proved
above). For each 1 ≤ j ≤ m we consider the element c∗j ∈ (K0)

∗ which is 1 on
every path of the form r j pi , and 0 on any other path. Using (2) and the fact that
r j pi 6= r j ′ pi ′ for (i, j) 6= (i ′, j ′) (this follows because r j , r j ′ end at v and pi , pi ′ start
at v, and there are no cycles containing v), we see that d∗c∗ =

∑
1≤ j≤m d∗(r j )c∗j ,

and this will guarantee that c∗ is a rational element.

(ii)⇔ (iii) is similar to (i)⇔ (iii).

(iii)⇔ (iv) follows from [Chin et al. 2002, Corollary 6.3]. �

4. Incidence coalgebras and incidence algebras

In this section we parallel the results in Section 3 in the framework of incidence
(co)algebras. Let (X,≤) be a partially ordered set which is locally finite, i.e., the set
{z | x ≤ z ≤ y} is finite for any x ≤ y in X . The incidence coalgebra of X , denoted
by KX , is the vector space with basis {ex,y | x, y ∈ X, x ≤ y}, and comultiplication
and counit defined by1(ex,y)=

∑
x≤z≤y ex,z⊗ez,y , ε(ex,y)= δx,y for any x, y ∈ X

with x ≤ y. For such a X , we can consider the quiver 0 with vertices the elements
of X , and such that there is an arrow from x to y if and only if x < y and there is
no element z with x < z < y. It was proved in [Dăscălescu et al. ≥ 2013] that the
linear map φ : KX→ K0, defined by

φ(ex,y)=
∑
p path

from x to y

p

for any x, y ∈ X, x ≤ y, is an injective coalgebra morphism. We note that this
map is surjective if and only if in 0 there is at most one path between any to
vertices x, y ∈ X . To see this, let P(x, y) denote the set of paths from x to y.
Note that the incidence coalgebra KX is then KX =

⊕
x,y∈X 〈P(x, y)〉, and that

φ(〈ex,y〉)⊂ P(x, y) for x ≤ y. Thus, φ is surjective if and only if dim(P(x, y))= 1
for all x ≤ y, which is equivalent to the above stated condition. In fact, this is also
a consequence of the following more general fact.

Proposition 4.1. A coalgebra C is both an incidence coalgebra and a path co-
algebra if and only if it is the path coalgebra of a quiver 0 for which there is at
most one path between any two vertices.



QUIVER ALGEBRAS, PATH COALGEBRAS AND COREFLEXIVITY 65

Proof. If the condition is satisfied for a quiver 0, we can introduce an obvious order
on the set X of vertices of0 setting x≤ y if and only if there is a path from x to y. It is
easy to check that this is an ordering, and so the above map φ :KX→K0 is bijective.
Conversely, let C ∼= KX ∼= K0 for a locally finite partially ordered set X and a
quiver 0. We note that the simple subcoalgebras (and simple left subcomodules,
simple right subcomodules) of C are precisely the spaces K x for x ∈ X and Kv for v
vertex in 0, and X , respectively 0 correspond to the group-like elements of C . Thus,
X must be the set of vertices of 0. Furthermore, we note that in either an incidence
coalgebra or a path coalgebra, the injective hull of a simple left comodule K x is
uniquely determined as follows (note that in general, given an injective module M
and a submodule N of M , there is an injective hull of N contained in M but it is
not necessarily uniquely determined). For incidence/path coalgebras, the right (left)
injective hull Er (K x) of K x (respectively, El(K x)) of the right (respectively, left)
comodule K x is the span of all segments/paths starting (respectively, ending) at
x (see the proof of [Simson 2009, Proposition 2.5] for incidence coalgebras and
[Chin et al. 2002, Corollary 6.2(b)] for path coalgebras). Then, for x ≤ y, from the
incidence coalgebra results we get Er (K x)∩ El(K y)= 〈ex,y〉 and from the path
coalgebra we get Er (K x)∩ El(K y)= 〈P(x, y)〉. This shows that 〈P(x, y)〉 is one
dimensional, and the proof is finished. �

Apart from the incidence coalgebra KX , there is another associated algebraic
object with a combinatorial relevance. This is the incidence algebra IA(X), which
is the space of all functions f : {(x, y) | x, y ∈ X, x ≤ y} → K (functions on the
set of closed intervals of X ), with multiplication given by convolution:

( f g)(x, y)=
∑

x≤z≤y

f (x, z)g(z, y)

for any f, g ∈ IA(X) and any x, y ∈ X , x ≤ y. See [Spiegel and O’Donnell 1997]
for details on the combinatorial relevance of the incidence algebra. It is clear that
IA(X) is isomorphic to the dual algebra of KX , if we identify a map f ∈ IA(X)
with the element of (KX)∗ which takes ex,y to f (x, y) for any x ≤ y. For simplicity,
we will identify IA(X) with (KX)∗.

Comparing to path coalgebras and quiver algebras, the situation is different,
since the incidence algebra always has identity. However, we can consider the
subspace FIA(X) of IA(X) spanned by all the elements Ex,y with x ≤ y, where
Ex,y(eu,v)= δx,uδy,v for any u ≤ v. Equivalently, FIA(X) consists of all functions
on {(x, y) | x, y ∈ X, x ≤ y} that have finite support. Then FIA(X) is a subalgebra
of IA(X) which does not have an identity when X is infinite, but it has enough
idempotents, the set of all Ex,x . The algebra FIA(X) plays the role of the quiver
algebra in this new framework.
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The subspace FIA(X) is dense in IA(X) in the finite topology, since it is easy
to see that FIA(X)⊥ = 0 (see [Dăscălescu et al. 2001, Corollary 1.2.9]). We have
a coalgebra morphism θ : KX → FIA(X)0, defined by θ(c)(c∗) = c∗(c) for any
c ∈ KX and any c∗ ∈ FIA(X). We note that θ(c) indeed lies in FIA(X)0, since
Ker(θ(c))= 〈c〉⊥ ∩ FIA(X)⊇ D⊥ ∩ FIA(X), where D is the (finite dimensional)
subcoalgebra generated by c in KX . Then D⊥ is an ideal of IA(X) of finite
codimension, and then D⊥ ∩ FIA(X) is an ideal of FIA(X) of finite codimension.
Since FIA(X) is dense in IA(X), θ is injective. The next result shows that we can
recover the incidence coalgebra KX as the finite dual of the algebra with enough
idempotents FIA(X). The result parallels Theorem 3.3; note that the conditions
analogous to the ones in (i) in Theorem 3.3 are always satisfied in incidence algebras.

Theorem 4.2. For any locally finite partially ordered set X , the map

θ : KX→ FIA(X)0

is an isomorphism of coalgebras.

Proof. It is enough to show that θ is surjective. Let F ∈ FIA(X)0, so F maps
FIA(X) to K and Ker(F) contains an ideal I of FIA(X) of finite codimension.
Then the set X0 = {x ∈ X | Ex,x /∈ I } is finite by Lemma 2.1.

If x ∈ X \X0, then Ex,y = Ex,x Ex,y ∈ I for any x ≤ y. Similarly Ex,y ∈ I for any
y ∈ X \ X0 and x ≤ y. Thus in order to have Ex,y /∈ I , both x and y must lie in X0.
This shows that only finitely many Ex,y’s lie outside I . Let F be the set of all pairs
(x, y) such that Ex,y /∈ I . Then we have that F =

∑
(x,y)∈F F(Ex,y)θ(ex,y). Indeed,

when evaluated at Eu,v, both sides are 0 if (u, v) /∈ F, or F(Eu,v) if (u, v) ∈ F.
Thus F ∈ Im(θ). �

The next result and its proof parallel Theorem 3.6.

Theorem 4.3. Let C = KX. The following assertions are equivalent.

(i) FIA(X)= C∗ rat
l .

(ii) FIA(X)= C∗ rat
r .

(iii) For any x ∈ X there are finitely many elements u ∈ X such that u ≤ x , and
finitely many elements y ∈ X such that x ≤ y.

(iv) KX is a left and right semiperfect coalgebra.

Proof. (i)⇒ (iii) Since Ex,x ∈ C∗ rat
l , there exist finite families (ci )i in C and (c∗i )i

in C∗ such that c∗Ex,x =
∑

i c∗(ci )c∗i for any c∗ ∈ C∗. If there are infinitely many
elements u in X such that u ≤ x , then we can choose such an element u0 for which
eu0,x does not show up in the representation of any ci (as a linear combination of
the standard basis of C). Since Eu0,x(ep,q) = δu0,pδx,q , we get Eu0,x(ci ) = 0 for
any i , so

∑
i Eu0,x(ci )c∗i = 0, while (Eu0,x Ex,x)(eu0,x)= 1, a contradiction.
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Assume now that for some x ∈ X the set of all elements y with x ≤ y, say (yi )i ,
is infinite. Let c∗ ∈ C∗ which is 1 on each ex,yi and 0 on any other ep,q . Then it is
easy to see that

(d∗c∗)(eu,v)=

{
d∗(eu,x) if u ≤ x ≤ v, and v ∈ {yi | i},
0 otherwise.

Let (u j ) j be the family of all elements u with u ≤ x . As we proved above, this
family is finite. For each j , let c∗j ∈ C∗ equal 1 on every eu j ,yi , and 0 on any
other ep,q . We have that d∗c∗ =

∑
j d∗(eu j ,x)c

∗

j for any d∗ ∈ C∗. Indeed, using
the formula above we see that both sides equal d∗(eu j0 ,x) when evaluated at some
eu j0 ,yi , and 0 when evaluated at any other ep,q .

Therefore c∗ ∈C∗ rat
l , but obviously c∗ /∈ FIA(X), since it is nonzero on infinitely

many ep,q ’s.

(iii)⇒ (i) Choose some x, y with x ≤ y. Then for any c∗ ∈ C∗ we have that

(c∗Ex,y)(eu,v)=

{
c∗(eu,x) if u ≤ x ≤ y = v,
0 otherwise.

This shows that if (u j ) j is the finite family of all elements u with u ≤ x , then
c∗Ex,y =

∑
j c∗(eu j ,x)Eu j ,y , so Ex,y lies in C∗ rat

l .
Now let c∗ ∈ C∗ rat

l , so
d∗c∗ =

∑
i

d∗(ci )c∗i

for some finite families (ci )i in C and (c∗i )i in C∗. If x ∈ X such that ex,x does
not appear in any ci (with nonzero coefficient), then Ex,x c∗ = 0. In particular
0= (Ex,x c∗)(ex,y)= c∗(ex,y) for any x ≤ y. Since only finitely many eu,u appear
in the representations of the ci ’s, and for any such u there are finitely many v with
u ≤ v, we obtain that c∗(eu,v) is nonzero for only finitely many eu,v. So c∗ lies in
the span of all Ex,y’s, which is FIA(X).

(ii)⇔ (iii) is similar.

(iii)⇔ (iv) follows from [Simson 2009, Lemma 5.1]. �

5. Coreflexivity for path subcoalgebras and subcoalgebras
of incidence coalgebras

We recall from [Radford 1973; Taft 1972] that a coalgebra C is called coreflexive if
any finite-dimensional left (or equivalently, any finite-dimensional right) C∗-module
is rational. This is also equivalent to asking that the natural embedding of C into
the finite dual of C∗, C→ (C∗)0 is surjective (so an isomorphism), or that any left
(equivalently, any right) cofinite ideal is closed in the finite topology. See [Radford
1974; 1973; Taft 1972; 1977] for further equivalent characterizations.
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Given the definition of coreflexivity and the characterizations of the previous
section, it is natural to ask what is the connection between the situation when the
path coalgebra can be recovered as the finite dual of the quiver algebra, and the
coreflexivity of the path coalgebra. We note that these two are closely related. We
have an embedding ι : K0 ↪→ (K0)∗0; at the same time, we note that the embedding
of algebras (without identity) ψ : K [0] ↪→ (K0)∗ which is dense in the finite
topology of (K0)∗, produces a comultiplicative morphism ϕ : (K0)∗0→ K [0]0.
Note that ϕ is not necessarily a morphism of coalgebras, since it may not respect
the counits. It is easy to see that these canonical morphisms are compatible with θ ,
i.e., they satisfy θ = ϕ ◦ ι:

K0
↪→

ι //

θ ##

(K0)∗0

ϕ

��
K [0]0

It is then natural to ask what is the connection between the bijectivity of θ , and
coreflexivity of K0, i.e., bijectivity of ι. In fact, we notice that if C is coreflexive
(equivalently, ι is surjective), then ϕ is necessarily injective.

The following two examples will show that, in fact, C can be coreflexive and
θ not an isomorphism, and also that θ can be an isomorphism without C being
coreflexive.

Example 5.1. Consider the path coalgebra of the following quiver 0:

a

b177x11

c

''
y11

b2
//x21

c
//

y21

b2//
x22

c//
y22

. . .

bn

�� xn1
...

c

??
yn1

...

bn

��
xnn

...

c

??
ynn

...

...
...

...

Here there are n arrows from vertex a to vertex bn and n arrows from bn to c for
each positive integer n. We note that the one-dimensional vector space I spanned
by a − c is a coideal, since a − c is an (a, c)-skew-primitive element. It is not
difficult to observe that the quotient coalgebra C/I is isomorphic to the coalgebra
from [Radford 1974, Example 3.4], and so C/I is not coreflexive, as shown in
[Radford 1974]. By [Heyneman and Radford 1974, 3.1.4], we know that if I is
a finite-dimensional coideal of a coalgebra C then C is coreflexive if and only if
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C/I is coreflexive. Therefore, C is not coreflexive. However, it is obvious that C
satisfies the quiver conditions of Theorem 3.3, and therefore, K0 = K [0]0.

Hence, a path coalgebra of a quiver with no cycles and finitely many arrows
between any two vertices is not necessarily coreflexive. Conversely, we note that in
a coreflexive path coalgebra there are only finitely many arrows between any two
vertices. This is true since a coreflexive coalgebra is locally finite by [Heyneman and
Radford 1974, 3.2.4], which means that the wedge X ∧Y =1−1(X ⊗C +C ⊗Y )
of any two finite-dimensional vector subspaces X, Y of C is finite-dimensional
(one applies this for X = K a and Y = K b). However, if a path coalgebra K0
is coreflexive, 0 may contain cycles: consider the path coalgebra C of a loop (a
graph with one vertex and one arrow); C is then the divided power coalgebra,
C∗ = K [[X ]], the ring of formal power series, and its only ideals are (Xn), which
are closed in the finite topology of C∗. Thus, every finite dimensional C∗-module
is rational and C is coreflexive.

We will prove coreflexivity of an interesting class of path coalgebras, whose
quiver satisfy a slightly stronger condition than that required by Theorem 3.3 (so in
particular, they will satisfy K0 = K [0]0). We first prove a general coreflexivity
criterion.

Theorem 5.2. Let C be a coalgebra with the property that for any finite dimen-
sional subcoalgebra V there exists a finite-dimensional subcoalgebra W such that
V ⊆W and W⊥W⊥ =W⊥. Then C is coreflexive if and only if its coradical C0 is
coreflexive.

Proof. If C is coreflexive, then so is C0, since a subcoalgebra of a coreflexive
coalgebra is coreflexive (see [Heyneman and Radford 1974, Proposition 3.1.4]).
Conversely, let C0 be coreflexive. We prove that any finite-dimensional left C∗-
module M is rational, by induction on the length l(M) of M . If l(M)= 1, i.e., M
is simple, then M is also a left C∗/J (C∗)-module, where J (C∗) is the Jacobson
radical of C∗. Since C∗/J (C∗) ' C∗0 and C0 is coreflexive, we have that M is a
rational C∗0 -module, so then it is a rational C∗-module, too.

Assume now that the statement is true for length < n, where n > 1, and let M be
a left C∗-module of length n. Let M ′ be a simple submodule of M , and consider
the associated exact sequence

0→ M ′→ M→ M ′′→ 0.

By the induction hypothesis M ′ and M ′′ are rational. By [Dăscălescu et al. 2001,
Theorem 2.2.14] we have that annC∗(M ′) and annC∗(M ′′) are finite codimensional
closed two-sided ideals in C∗. Using [Dăscălescu et al. 2001, Corollary 1.2.8
and Proposition 1.5.23], annC∗(M ′)=U⊥1 and annC∗(M ′′)=U⊥2 for some finite-
dimensional subcoalgebras of C . Using the hypothesis for V = U1 +U2, there
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is a finite dimensional subcoalgebra W of C such that U1 ⊆ W , U2 ⊆ W and
W⊥W⊥ =W⊥. Then, by [Dăscălescu et al. 2001, Proposition 1.5.23],

W⊥ =W⊥W⊥ ⊆U⊥1 U⊥2 = annC∗(M ′) annC∗(M ′′)⊆ annC∗(M)

is a two-sided closed ideal of C∗, of finite codimension. Therefore, M is a rational
C∗-module by using again [Dăscălescu et al. 2001, Theorem 2.2.14]. �

Proposition 5.3. Let C be the path coalgebra K0, where 0 is a quiver such
that there are finitely many paths between any two vertices. Then for any finite-
dimensional subcoalgebra V of C there exists a finite-dimensional subcoalgebra
W such that V ⊆W and W⊥W⊥ =W⊥. As a consequence, C is coreflexive if and
only if the coradical C0 (which is the grouplike coalgebra over the set of vertices of
0) is coreflexive.

Proof. Let V be a finite-dimensional subcoalgebra of C = K0. An element c ∈ V
is of the form

c =
n∑

i=1

αi pi , αi 6= 0,

a linear combination of paths p1, . . . , pn . Consider the set of all vertices at least
one of these paths passes through, and let S0 be the union of all these sets of vertices
when c runs through the elements of V . Since V is finite-dimensional, we have that
S0 is finite (in fact, one can see that S0 consists of all vertices in 0 which belong
to V , so that K S0 is the socle of V ). Let P be the set of all paths p such that
s(p), t (p) ∈ S0. We consider the set S of all vertices at least one path of P passes
through. It is clear that P is finite, and then so is S. We note that if v1, v2 ∈ S and
p is a path from v1 to v2, then any vertex on p lies in S. Indeed, v1 is on a path
from u1 to u′1 (vertices in S0), and let p1 be its subpath from u1 to v1. Similarly, v2

is on a path from u2 to u′2 (in S0), and let p2 be the subpath from v2 to u′2. Then
p1 pp2 ∈ P , so any vertex of p is in S. Let W be the subspace spanned by all paths
starting and ending at vertices in S. It is clear that any subpath of a path in W is
also in W , so then W is a finite-dimensional subcoalgebra containing V (since S0

is contained in S).
We show that W⊥W⊥ = W⊥. For this, given η ∈ W⊥, we construct elements

f1, f2, g1, g2 ∈W⊥ such that η= f1g1+ f2g2. We define fi (p) and gi (p), i = 1, 2,
on all paths p by induction on the length of p. For paths p of length zero, i.e., if p
is a vertex v, we define fi (v)= gi (v)= 0, i = 1, 2, for any v ∈ S, while for v /∈ S,
we set f1(v)= g2(v)= 1, and f2(v) and g2(v) are such that g1(v)+ f2(v)= η(v).
Then clearly η = f1g1 + f2g2 on paths of length zero. For the induction step,
assume that we have defined fi and gi , i = 1, 2, on all paths of length < l, and
that η = f1g1+ f2g2 on any such path. Let now p be a path of length l, starting
at u and ending at v. If u, v ∈ S, then we define fi (p)= gi (p)= 0, i = 1, 2, and
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clearly η(p)=
∑

i=1,2
∑

qr=p fi (q)gi (r), since both sides are zero. If either u /∈ S
or v /∈ S, we need the following equality to hold:

(3) f1(u)g1(p)+ f1(p)g1(v)+ f2(u)g2(p)+ f2(p)g2(v)

= η(p)−
∑

i=1,2

∑
qr=p

q 6=p,r 6=p

fi (q)gi (r).

We note that the terms of the right-hand side of the equality (3) have already been
defined, because when p = qr and q 6= p, r 6= p, the length of the paths q and r is
strictly less than the length of p. We define f1(p) and g2(p) to be any elements of
K , and then since either f1(u)= 1 or g2(v)= 1 (since either u /∈ S or v /∈ S), we
can choose suitable g1(p) and f2(p) such that (3) holds true.

The fact that C is coreflexive if and only if so is C0 follows now follows directly
from Theorem 5.2. �

Moreover, we can extend the result in the previous proposition to subcoalgebras
of path coalgebras.

Proposition 5.4. Let C be a subcoalgebra of a path coalgebra K0, such that there
are only finitely many paths between any two vertices in 0. Then C is coreflexive if
and only if C0 is coreflexive.

Proof. Let 0′ be the subquiver of 0 whose vertices are all the vertices v of 0 such
that there is an element c=

∑
i αi pi ∈C , where the αi ’s are nonzero scalars and the

pi ’s are pairwise distinct paths, and at least one pi passes through v. The arrows of
0′ are all the arrows of 0 between vertices of 0′. Clearly, there are only finitely
many paths between any two vertices in 0′. Then we have that C is a subcoalgebra
of K0′ and C0= (K0′)0. Obviously, C0⊂ (K0′)0; for the converse, let us consider
a vertex u in 0′, so there is c ∈ C such that c =

∑
i αi pi , with αi 6= 0 and distinct

pi ’s, and some pk passes through u. Let us write then pk = qr such that q ends at
u and r begins at u. Since C is a subcoalgebra of K0′ it is also a sub-bicomodule,
so then r∗cq∗ ∈ C , where q∗, r∗ ∈ (K0′)∗ are equal to 1 on q, r respectively and 0
on all other paths of K0′. Now

r∗ pi q∗ =
∑

pi=stw

q∗(s)tr∗(w)

and the only nonzero terms can occur if pi = qtir , where ti is a path starting and
ending at u (loop at u). Let J be the set of these indices. In this situation r∗ pi q∗= ti .
Note that since the pi ’s are distinct, the t j ’s, j ∈ J are distinct too. Also, since
pk = qr , there is at least such a j . We have

r∗cq∗ =
∑

j

α j t j ,
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with all t j beginning and ending at u, and tk = u. Let l ∈ J be an index such that tl
has maximum length among the t j ’s, j ∈ J . We note then that t∗l t j = 0 if j 6= l,
since for any decomposition t j = st , we have t 6= tl because of the maximality of tl
and of the fact that t j 6= tl . However, t∗l tl = u. Therefore, t∗l c = αlu ∈ C , so u ∈ C
since αl 6= 0.

Thus if C0 is coreflexive, we have that (K0′)0 is coreflexive, and then by
Proposition 5.3, we have that K0′ is coreflexive. Then C is coreflexive, as a
subcoalgebra of K0′. Conversely, if C is coreflexive, clearly C0 is coreflexive. �

Corollary 5.5. Let C be a subcoalgebra of an incidence coalgebra KX. Then C is
coreflexive if and only if C0 is coreflexive.

Proof. As explained in Section 4, KX can be embedded in a path coalgebra K0,
where 0 is a quiver for which there are finitely many paths between any two vertices.
Then C is isomorphic to a subcoalgebra of K0 and we apply Proposition 5.4. �

Recall that for a path coalgebra or incidence coalgebra C , C0∼ K (X), where X is
the set of grouplike elements in C . At this point, we believe it is worth mentioning
that by [Heyneman and Radford 1974, Theorem 3.7.3], K (X) is coreflexive whenever
X is a nonmeasurable cardinal. More precisely, an ultrafilter F on a set X is
called an Ulam ultrafilter if F is closed under countable intersection. X is called
nonmeasurable (or reasonable in the language of [Heyneman and Radford 1974])
if every Ulam ultrafilter is principal (i.e., it equals the collection of all subsets of
X containing some fixed x ∈ X ). The class of nonmeasurable sets contains the
countable sets and is closed under usual set-theoretic constructions, such as the
power set, subsets, products, and unions. If a nonreasonable (i.e., measurable) set
exists, its cardinality has to be “very large” (inaccessible in the sense of set theory).

We now give an example to show that it is possible to have a coalgebra which
is both coreflexive, and satisfies the path coalgebra “recovery” conditions of
Theorem 3.3; however, in its quiver, some vertices are joined by infinitely many
paths. Thus, in general, the coreflexivity question for path coalgebras is more
complicated.
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Example 5.6. Consider the path coalgebra C of the following quiver 0:

a

b1

77x1

c

''y1

b2//
x2

c//
y2

. . .

bn

�� xn
...

c

??yn
...

...
...

...

Here there are infinitely many vertices bn , one for each positive integer n. Let Wn

be the finite-dimensional subcoalgebra of C with basis

B = {a, c, b1, . . . , bn, x1, . . . , xn, y1, . . . , yn, x1 y1, . . . , xn yn}.

We show that W⊥n =W⊥n ·W
⊥
n . Let f ∈W⊥n . We show that we can find elements

g1, g2, h1, h2 ∈ W⊥n such that f = g1h1 + g2h2. This condition is already true
on elements of B if we set g1, g2, h1, h2 to be zero on Wn . For k > n we define
g1, g2, h1, h2 on xk, yk and xk yk such that

f (xk yk)=
∑

i=1,2

(gi (a)hi (xk yk)+ gi (xk)hi (yk)+ gi (xk yk)hi (c)),

f (xk)=
∑

i=1,2

(gi (a)hi (xk)+ gi (xk)hi (bk)),

f (yk)=
∑

i=1,2

(gi (bk)hi (yk)+ gi (yk)hi (c)),

f (bk)=
∑

i=1,2

gi (bk)hi (bk).

and since gi (a)= hi (a)= gi (c)= hi (c)= 0 this is equivalent to the matrix equality(
f (bk) f (yk)

f (xk) f (xk yk)

)
=

(
g1(bk)

g1(xk)

)
·
(
h1(bk) h1(yk)

)
+

(
g2(bk)

g2(xk)

)
·
(
h2(bk) h2(yk)

)
.

But it is a standard linear algebra fact that any arbitrary 2 × 2 matrix can be
written this way as a sum of two matrices of rank 1, and thus the claim is proved.
Since every finite-dimensional subcoalgebra V of C is contained in some Wn with
W⊥n =W⊥n ·W

⊥
n and C0 ∼= K Z>0 is coreflexive, by Theorem 5.2 we obtain that C

is coreflexive.
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Reflexivity for quiver and incidence algebras. Recall from [Taft 1972] that an
algebra is called reflexive if the natural (evaluation) map from A to A0∗ is an
isomorphism. Using our construction in Section 2, we can extend this to algebras
with enough idempotents, and call such an algebra reflexive if the map 8 : a 7−→
( f 7→ f (a)) ∈ A0∗ is an isomorphism. We note that in general the coalgebra A0

is a coalgebra with counit, and therefore, A0∗ is an algebra with unit. Hence, a
reflexive algebra must be unital. Parallel to algebras with unit we call an algebra
proper if the map 8 is injective and we call A weakly reflexive if 8 is surjective. It
is not difficult to see that an algebra is proper if and only if the intersection of all
cofinite ideals is 0.

Theorem 5.7. Let 0 be a quiver.

(i) The quiver algebra K [0] is proper.

(ii) K [0] is reflexive (equivalently, weakly reflexive) if and only if it is finite-
dimensional, equivalently, 0 has finitely many vertices and arrows, and has no
oriented cycles.

Proof. (i) follows since K [0] embeds in (K0)∗ which is proper by Proposition 3.1
of [Taft 1972], and one can easily see that Proposition 3.4 of the same reference,
stating that a subalgebra of a proper algebra is proper can be extended to algebras
with enough idempotents. Alternatively, one can see that the intersection of cofinite
ideals of K [0] is always 0.

(ii) Assume K [0] is weakly reflexive, so K [0] → K [0]0∗ is surjective. The
inclusion K0 ⊆ K [0]0 yields a surjective morphism of algebras

K [0]0∗→ (K0)∗.

This shows that the natural map ψ : K [0] ↪→ (K0)∗ is surjective (and, in fact,
bijective). Consider the “gamma function” on K [0], i.e., the function γ ∈ K [0]
equal to 1 on all paths. Then γ is in the image of ψ , and since every function in
the image of ψ has finite support as a function on the set of paths of 0, it follows
that there are only finitely many paths in 0. Therefore, K [0] is finite-dimensional.
The converse is obvious (as noticed before). �

In the case of incidence algebras, using [Taft 1972, Proposition 6.1] which states
that a coalgebra C is coreflexive if and only if C∗ is reflexive, and using also
Corollary 5.5, we immediately get this:

Theorem 5.8. Let X be a locally finite partially ordered set. The following asser-
tions are equivalent:

(i) The incidence algebra IA(X) of X over K is reflexive.

(ii) The incidence coalgebra KX is coreflexive.
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(iii) The coalgebra (KX)0 = KX0 (the grouplike coalgebra on the elements of X )
is coreflexive.

(iv) The algebra K X of functions on X is reflexive.

These yield as a corollary the algebra analogue of Proposition 4.1.

Corollary 5.9. Let A be an algebra of a nonmeasurable cardinality. Then A is
isomorphic both to a quiver algebra and to an incidence algebra if and only if and
only if it is the quiver algebra of a finite quiver with no oriented cycles, equivalently,
it is elementary, finite dimensional and hereditary.

Proof. If A ∼= K [0] ∼= IA(X) for a quiver 0 and a locally finite partially ordered
set X , then K (X) is coreflexive by [Heyneman and Radford 1974] since X is also
nonmeasurable. Now A ∼= IA(X) is reflexive since K X ∼= (K (X))∗ is reflexive by
[Taft 1972, Proposition 6.1]. By Theorem 5.7, A∼= K [0] must be finite dimensional
since it is reflexive. The final statements follow from the well known characteriza-
tions of finite-dimensional quiver algebras. �

An application. We give now an application of our considerations on coreflexive
coalgebras. If 0,0′ are quivers, then we consider the quiver 0 × 0′ defined as
follows. The vertices are all pairs (a, a′) for a, a′ vertices in 0 and 0′ respectively.
The arrows are the pairs (a, x ′), which is an arrow from (a, a′1) to (a, a′2), where a
is a vertex in 0 and x ′ is an arrow from a′1 to a′2 in 0′, and the pairs (x, a′), which
is an arrow from (a1, a′) to (a2, a′), where x is an arrow from a1 to a2 in 0, and a′

is a vertex in 0′. Let p = x1x2 . . . xn be a path in 0 going (in order) through the
vertices a0, a1, . . . , an and q = y1 y2 . . . yk be a path in 0′ going through vertices
b0, b1, . . . , bk (some vertices may repeat). We consider the 2 dimensional lattice
L = {0, . . . , n}× {0, . . . , k}. A lattice walk is a sequence of elements of L starting
with (0, 0) and ending with (n, k), and always going either one step to the right or
one step upwards in L , i.e., (i, j) is followed either by (i + 1, j) or by (i, j + 1).
There are

(n+k
k

)
such walks.

To p, q and a lattice walk (0, 0)= (i0, j0), (i1, j1), . . . , (in+k, jn+k)= (n, k) in
L we associate a path of length n + k in 0 × 0′, starting at (a0, b0) and ending
at (an, bk) such that the r-th arrow of the path, from (air−1, b jr−1) to (air , b jr ) is
(xr−1, b jr−1) if ir = ir−1+ 1, and (air−1, yr−1) if jr = jr−1+ 1.

Conversely, if γ is a path in 0×0′, there are (uniquely determined) paths p in
0 and q in 0′, and a lattice walk such that γ is associated to p, q and that lattice
walk as above. Indeed, we take p to be the path in 0 formed by considering the
arrows x such that there are arrows of the form (x, a′) in γ , taken in the order they
appear in γ . Similarly, q is formed by considering the arrows of the form (a, y) in
γ . The lattice walk is defined according to the succession of arrows in γ .
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For two such paths p, q let us denote W (p, q) the set of all paths in 0 × 0′

associated to p and q via lattice walks.

Functoriality, (co)products of quivers and recovery problems. We note that if 0
and 0′ satisfy condition (i) in Theorem 3.3 (i.e., if their path coalgebras can be
recovered as finite duals of the corresponding quiver algebras), then 0×0′ satisfies
this condition, too. Indeed, the description of the arrows in 0×0′ shows that there
are finitely many arrows between any two vertices. Also, if an oriented cycle existed
in 0×0′, then it would produce an oriented cycle in each of 0 and 0′.

Also, if 0 and 0′ satisfy condition (iii) in Theorem 3.6 (i.e., if their quiver
algebras can be recovered as the rational part of the dual of the corresponding path
coalgebras), then 0 × 0′ satisfies this condition, too. Indeed, a path in 0 × 0′

starting at the vertex (a, a′) is determined by a path in 0 starting at a, a path in 0′

starting at a′ (and there are finitely many such paths in both cases), and a lattice
walk (chosen from a finite family). These can be extended to finite products of
quivers in the obvious way.

Given a family of quivers (0i )i , one can consider the coproduct quiver 0=
∐

i 0i .
The path coalgebra functor commutes with coproducts and one has

K0 =
⊕

i

K0i .

Also, the quiver algebra functor from the category of quivers to the category of
algebras with enough idempotents has the property that

K
[∐

i

0i

]
=

⊕
i

K [0i ].

It is clear that
∐

i 0i satisfies the conditions of Theorem 3.3 (i) if and only if each
0i satisfies the same condition, so each K0i can be recovered from K [0i ] if and
only if K0 is recoverable from K [0]. Also, each of the quivers (0i )i satisfies
condition (iii) in Theorem 3.6, if and only if so does their disjoint union

∐
i 0i . In

coalgebra terms, this is justified by the fact that a direct sum
⊕

i Ci of coalgebras
is semiperfect if and only if each Ci is semiperfect.

Returning to coreflexivity problems, we need the following.

Lemma 5.10. The linear map α : K0⊗K0′ ↪→ K (0×0′) defined by α(p⊗q)=∑
w∈W (p,q)w, where p ∈ 0 and q ∈ 0′ are paths, is an injective morphism of

K -coalgebras.
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Proof. We keep the notations above. Denote δ and 1 the comultiplications of
K0⊗ K0′ and K (0×0′). We have

δα(p⊗ q)=
∑

w∈W (p,q)

∑
w′w′′=w

w′⊗w′′,

(α⊗α)1(p⊗ q)=
∑

p′ p′′=p

∑
q ′q ′′=q

∑
u∈W (p′,q′)

v∈W (p′′,q ′′)

u⊗ v.

On the one hand, if p = p′ p′′, q = q ′q ′′, u ∈W (p′, q ′) and v ∈W (p′′, q ′′), we
have uv ∈W (p, q). On the other hand, if w ∈W (p, q) and w = w′w′′, then there
exist p′ p′′ in 0 and q ′, q ′′ in 0′ such that p = p′ p′′, q = q ′q ′′, w′ ∈ W (p′, q ′)
and w′′ ∈W (p′′, q ′′). These show that δα(p⊗ q)= (α⊗α)1(p⊗ q), i.e., α is a
morphism of coalgebras (the compatibility with counits is easily verified).

To prove injectivity, if p = x1x2 . . . xn is a path in 0 starting at a0 and ending
at an , and q = y1 y2 . . . yk is a path in 0′ starting at b0 and ending at bk , we
denote by (p∗, q∗) the linear map on K (0 × 0′) which equals 1 on the path
(x1, b0), . . . , (xn, b0), (an, y1), . . . , (an, yk) (for simplicity we also denote this path
by (p, b0); (an, q)) and 0 on the rest of the paths. Let

∑
i λi pi⊗qi ∈Ker(α). Then

we have

(4)
∑

i

∑
w∈W (pi ,qi )

λiw = 0.

Fix some j . Say that p j ends at an and q j starts at b0. We have that

(p∗j , q∗j )(w)=


0 if w ∈W (pi , qi ), i 6= j,
0 if w ∈W (p j , q j ) and w 6= (p j , b0), (an, q j ),

1 if w = (p j , b0), (an, q j ).

Note that we used the fact that W (p, q)∩W (p′, q ′)=∅ for (p, q) 6= (p′, q ′). Now
applying (p∗j , q∗j ) to (4) we see that λ j = 0. We conclude that α is injective. �

Combining the above, we derive a result about tensor products of certain core-
flexive coalgebras. It is known that a tensor product of a coreflexive and a strongly
coreflexive coalgebra is coreflexive (see [Radford 1973]; see also [Taft 1977]).
It is not known whether the tensor product of coreflexive coalgebras is necessarily
coreflexive. We have the following consequences.

Proposition 5.11. Let C, D be coreflexive subcoalgebras of path coalgebras K0
and K0′ respectively such that between any two vertices in 0 and 0′ respectively
there are only finitely many paths. Then C ⊗ D is coreflexive.

Proof. Without any loss of generality we may assume that C0= (K0)0= K (00) and
D0 = (K0′)0 = K (00) (otherwise we replace 0 and 0′ by appropriate subquivers),
where K (00) denotes the grouplike coalgebra with basis the set 00 of vertices of 0.
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Now C ⊗ D is a subcoalgebra of K0⊗ K0′, so by Lemma 5.10, it also embeds in
K (0×0′). Since the coradical of K (0×0′) is K (00×0

′

0), and

K (00×0
′

0) ' K (00)⊗ K (0′0) = C0⊗ D0 ⊆ C ⊗ D,

we must have that (C ⊗ D)0 = K (00×0
′

0). We claim that K (00×0
′

0) is coreflexive.
Indeed, this is obvious if 00 and 0′0 are both finite. Otherwise, card(00×0

′

0) =

max{card(00), card(0′0)}, hence K (00×0
′

0) is isomorphic either to K (00) or to K (0′0),
both of which are coreflexive by Proposition 5.4. Since it is clear that in 0×0′ there
are also finitely many paths between any two vertices, we can use Proposition 5.4
to show that C ⊗ D is coreflexive. �

Corollary 5.12. If C, D are coreflexive subcoalgebras of incidence coalgebras,
then C ⊗ D is coreflexive.

Proof. It follows immediately from the embedding of C and D in path coalgebras
verifying the hypothesis of Proposition 5.11. �
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