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A POSITIVE DENSITY OF FUNDAMENTAL DISCRIMINANTS
WITH LARGE REGULATOR

ÉTIENNE FOUVRY AND FLORENT JOUVE

We prove that there is a positive density of positive fundamental discrimi-
nants D such that the fundamental unit ε(D) of the ring of integers of the
field Q(

√
D) is essentially greater than D3.

1. Introduction

Let D > 1 be a fundamental discriminant which means that D is the discriminant
of the quadratic field K := Q(

√
D). Let ZK be its ring of integers and let ω =

(D+
√

D)/2. Then ZK is a Z-module of rank 2

(1) ZK = Z⊕Zω.

Furthermore there exists a unique element ε(D) > 1 such that the group UK of
invertible elements of ZK has the shape

UK = {± ε(D)n ; n ∈ Z}.

The element ε(D) is called the fundamental unit of ZK and its logarithm R(D) :=
log ε(D) is called the regulator. The regulator R(D) is a central object of algebraic
number theory. For instance R(D) plays a role in the computation of the class
number (see (34)). The study of the properties of the unruly function D 7→ R(D)
is a fascinating problem in both theoretical and computational aspects (see [Cohen
1993], for instance).

A rather similar but not completely equivalent problem — see the discussion
in Section 5 — is the study of the fundamental solution εd to the so-called Pell
equation

PE(d) T 2
− dU 2

= 1,

where the parameter d is a nonsquare positive integer and the unknown is the pair
(T,U ) of integers. It is convenient to write any given solution of PE(d) under the
form T +U

√
d . Let εd be the least of these solutions greater than 1. Then the set

of solutions of PE(d) is infinite and also has the shape {± εn
d ; n ∈ Z}.
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It is known that there exists an absolute constant C such that the following
inequalities hold

(2)
√

D < ε(D)≤ exp(C
√

D log D) and 2
√

d < εd ≤ exp(C
√

d log d).

It is widely believed that most of the time ε(D) and εd are huge compared to the
size of D or d , and this fact is confirmed by numerical evidence. One can find more
precise conjectures ([Hooley 1984; Sarnak 1985], for instance) which would imply
in particular that for all ε > 0 the inequality

(3) εd ≥ exp d(1/2)−ε,

holds for almost all nonsquare d (and for almost all fundamental discriminants
D, since these D form a subset of positive density). Recall that a subset A of
positive integers is said to have a positive density if its counting function satisfies
the inequality

lim inf
# {a ∈A ; 1≤ a ≤ x}

x
> 0 (x→∞).

The set A is said to be negligible (or with zero density) if one has

lim sup
# {a ∈A ; 1≤ a ≤ x}

x
= 0 (x→∞).

Since a proof of (3) still seems to be out of reach, it is a challenging problem to
construct infinite sequences of fundamental discriminants D (resp. of nonsquare d)
with a huge ε(D) (resp. with a huge εd ). In the case of fundamental discriminants D,
it is now proved that there exists c> 1 such that the inequality ε(D) > exp(logc D)
is true for infinitely many D’s; see, for example, [Yamamoto 1971; Reiter 1985;
Halter-Koch 1989].

In the case of a nonsquare d the situation is better understood. Indeed we know
that for some positive c there exists infinitely many d’s such that εd > exp(dc). We
refer the reader to the pioneering work of Dirichlet [1856] leading to the optimality
of (2), and to more recent work on the subject, for instance [Zagier 1981, pp. 74, 85;
Fouvry and Jouve 2012, Theorem 2]. See also [Golubeva 1987] for the study of the
case d = 5p2. However none of these works manages to produce an infinite family
of squarefree d’s.

Besides, it is not known whether there exists a constant c > 1 such that the
inequality εd ≥ exp(logc d) holds for a positive density of d’s. So we may ask for
the frequency of weaker inequalities, such as εd > dθ or ε(D) > Dθ , where θ > 1

2 is
a fixed constant. In that direction, Hooley [1984, Corollary] proved that for almost
every d one has εd > d(3/2)−ε. This was improved to εd > d(7/4)−ε by Fouvry and
Jouve [2013, Corollary 1] (ε > 0 arbitrary).
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The same work of Hooley implies that there exists a positive density of d
satisfying εd > d3/2/ log d . By a complete different technique based on the theory
of continued fractions, Golubeva [2002, Theorem] constructed a set of d’s of positive
density such that εd ≥ d2−ε (ε > 0 arbitrary). It does not seem to be an easy task
to extend these two results to the case of a fundamental D because the condition
for an integer to be squarefree seems hard to insert in the corresponding proofs of
Hooley and Golubeva.

Our main result asserts that there is a positive density of positive fundamental
discriminants D with fundamental unit of size essentially larger than D3. In fact
we can say more: first we show it is enough to consider the contribution of positive
fundamental discriminants with fundamental unit of positive norm to get our density
estimate. Moreover we can further restrict our study to positive fundamental
discriminants D that satisfy a very specific divisibility property. This property
is of an algebraic nature. To explain precisely what it is, we state the following
proposition the first version of which goes back (at least) to Dirichlet (see the
beginning of Section 3 for historical background and references).

If D > 1 is a fundamental discriminant set

D′ =


D if D is odd,
D/2 if D = 4d, d ≡ 3 mod 4,
D/4 if 8 |D.

In other words D′ is the kernel of D. Finally let Fund+ denote the set of fundamental
discriminants D > 1 such that ε(D) has norm 1.

Proposition 1. For every D ∈ Fund+ there exists exactly two distinct positive
divisors of D′, both different from 1 and D/(4, D), among the set of norms of
principal ideals of ZQ(

√
D).

Let 8 be the function on Fund+ sending D to the minimum of the two distinct
divisors of D′ the existence of which is guaranteed by Proposition 1. With notation
as above our main result can be stated as follows.

Theorem 2. For every δ > 0 there exists x0(δ) > 0 and c0(δ) > 0 such that

(4) #
{

D ∈ Fund+ ; X < D ≤ 2X, 22
‖D,8(D) < Dδ, ε(D)≥ D3−δ}

≥ c0(δ)X,

for every X > x0(δ).
Similar statements are true when the condition 22

‖D in the set on the left-hand
side is replaced by 8 |D, or D ≡ 1 mod 4.

We shall mainly concentrate on the case 22
‖D since the situation is simplified a lot

thanks to an easy link between units of Q(
√

D) and the equation PE(d/4) via the
equality

(5) ε(D)= εD/4.
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Proposition 1 can naturally be seen as a feature of the algebraic interpretation
of the transformation of Legendre and Dirichlet we describe in Section 2.1. We
devote Section 3 to the proof of this statement. The proof of (4) in Theorem 2 is
given in Section 4. The cases 8 |D and D odd will be treated in Section 5.

The last part of the paper explains another application of the ideas leading to
Theorem 2. It is well known that any information on the size of ε(D) can be
interpreted in terms of the ordinary class number h(D) of the field Q(

√
D). Among

the various possible illustrations, we have selected the following one.

Theorem 3. Let C0 denote the converging Euler product:

C0 :=
∏
p≥3

(
1+

p
(p+ 1)2(p− 1)

)
.

There exists a constant δ > 0 such that for every sufficiently large x one has the
inequality

(6)
∑
D≤x
22
‖D

h(D)≤
( 8

21π2 C0− δ
) x3/2

log x
.

The proof of this theorem is essentially based on [Fouvry and Jouve 2013] and
Proposition 7. It will be given in Section 6 where we will explain why the inequality
(6) is better than the trivial upper bound by some constant factor strictly larger than
3.5. We shall also use in a crucial way the fact that the set of D’s with a large ε(D)
exhibited in Theorem 2 has some regularity. More precisely this set consists, up to a
few exceptions, in integers of the form pm with p large (see (29) for the definition
of D

γ
m(x)). However the inequality (6) is certainly far from giving a crucial step

towards the proof of the following expected asymptotic formula∑
D≤x
22
‖D

h(D)∼ c0x log2 x,

where x tends to infinity and c0 is some absolute positive constant.

2. Preliminaries

2.1. Legendre and Dirichlet’s transformation. In this subsection d denotes any
positive integer, not necessarily a fundamental discriminant. We describe and use
an easy transformation of the Pell equation PE(d) which was initiated by Legendre
[Legendre 1830, Chapter VII, pp. 61–74] and then extended by Dirichlet [Dirichlet
1834, Section 1]. For the sake of completeness we give the detail of Legendre’s
argument. For a more detailed presentation together with historical background
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and interpretations of this technique we refer to [Lemmermeyer 2003]. See also
[Hooley 1984, p. 109; Cremona and Odoni 1989, pp. 18–19].

Let us write PE(d) under the form

(7)
T 2
− 1
d
=U 2.

Since d |T 2
− 1, we have d = (T 2

− 1, d)= ((T + 1)(T − 1), d). Because the gcd
of T + 1 and T − 1 can only take the values 1 or 2, we are led to consider the two
corresponding cases:

• If T + 1 and T − 1 are coprime (i.e., T is even), we factorize

d = (T + 1, d)(T − 1, d)=: d1d2,

in a unique way. Combining this splitting of d with (7) yields the four equations

T + 1= d1U 2
1 , T − 1= d2U 2

2 , d = d1d2, U =U1U2,

which are equivalent to

(8) d1U 2
1 − d2U 2

2 = 2, T =−1+ d1U 2
1 , d = d1d2, U =U1U2, 2-d1U1.

• If 2= (T + 1, T − 1), two subcases are to be considered:

– either 4-d , in which case U is even and the Equation (7) can be written

((T + 1)/2) · ((T − 1)/2)
d

= (U/2)2.

Arguing as in the previous case we are reduced to considering the following set of
equations:

(9) d1U 2
1 − d2U 2

2 = 1, T =−1+ 2d1U 2
1 , d = d1d2, U = 2U1U2, 4-d,

– or 4 |d , in which case we can write (7) as follows:

((T + 1)/2) · ((T − 1)/2)
(d/4)

=U 2.

We factorize d/4 = ((T + 1)/2, d/4)((T − 1)/2, d/4) =: d1d2 and get the set of
equations

(10) d1U 2
1 − d2U 2

2 = 1, T =−1+ 2d1U 2
1 , d = 4d1d2, U =U1U2.

The following statement summarizes the above decomposition in a more concise
and applicable way.

Lemma 4 (Legendre and Dirichlet). Let d , U ∈ N≥1 be fixed integers. Set

A(d,U ) := {T ≥ 1 ; T 2
− dU 2

= 1}
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and

• if 2 -dU :

B(d,U ) :=
{
(d1, d2,U1,U2) ∈ N4

≥1 ; U1U2 =U, d1d2 = d, d1U 2
1 − d2U 2

2 = 2
}
,

• if 2 |dU and 4 -d:

B(d,U ) :=
{
(d1, d2,U1,U2) ∈ N4

≥1 ; 2U1U2 =U, d1d2 = d, d1U 2
1 − d2U 2

2 = 1
}
,

• if 4 |d:

B(d,U ) :=
{
(d1, d2,U1,U2) ∈N4

≥1 ; U1U2 =U, 4d1d2 = d, d1U 2
1 − d2U 2

2 = 1
}
.

Then in each case, we have

#A(d,U )= #B(d,U ) ∈ {0, 1}.

Proof. We start with the obvious observation that #A(d,U ) ∈ {0, 1}. We give the
rest of the argument in detail only in the first case, the other two cases being exactly
similar.

Next, #B(d,U ) ∈ {0, 1}. To see this we fix (d1, d2,U1,U2) a quadruple in
B(d,U ) and we show that the values of d1, U1 are prescribed by those of d , U . We
compute the square of d1U 2

1 −1= d2U 2
2 +1: it is (d1U 2

1 −1)(d2U 2
2 +1)= dU 2

+1.
Thus d1U 2

1−1 is determined by d , U and so is the gcd (d1U 2
1 , d). We claim this gcd

is d1. Indeed (d1, d2)= 1 since these integers satisfy d1U 2
1 − d2U 2

2 = 2 and 2-dU .
Thus if (d1U 2

1 , d) 6= d1, there is a nontrivial common factor q to U1 and d2. Again
using the equation satisfied by (d1, d2,U1,U2) we deduce q = 2, contradicting the
condition 2-dU .

To conclude the proof we observe that both the implications

(#A(d,U )= 1)⇒ (#B(d,U )≥ 1) and (#B(d,U )= 1)⇒ (#A(d,U )≥ 1)

hold. The first implication is just a way of rephrasing the reduction step explained
before the statement of the lemma. To prove the second implication we notice that
a quadruple (d1, d2,U1,U2) gives rise to an element T := d2U 2

2 + 1 = d1U 2
1 − 1

belonging to A(d,U ). �

2.2. Remarks on Lemma 4. The first remark concerns the implicit decomposition
(d, T,U ) 7→ (d1, d2,U1,U2) of Lemma 4, which should really be seen as a square
rooting process. This explains the efficiency of the method as a tool to study the size
of the solutions to the Pell equation PE(d). More precisely, a solution T +U

√
d

to PE(d) produces via Lemma 4 the algebraic integer U1
√

d1+U2
√

d2 which has
degree at most 4 (and at least 2 when d is not a square) over Q and which satisfies(

U1
√

d1+U2
√

d2
)2
= d1U 2

1 + d2U 2
2 + 2U1U2

√
d1d2.
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If T is odd this is precisely T +U
√

d. If T is even this number is 2(T +U
√

d).
Therefore Lemma 4 enables us to significantly reduce the order of magnitude of
the algebraic integers we work with.

The second remark concerns the special case where d = p ≡±1 mod 4. In that
case the integer d can only be factored in two ways under the form d = d1d2: either
(d1, d2)= (1, p) or (d1, d2)= (p, 1). Hence the study of the equation T 2

− pU 2
= 1

is reduced to the four equations

U 2
1 − pU 2

2 =

{
±2 if 2-U,
±1 if 2 |U.

Since U2 ≥ 1 we deduce that U1 ≥
√

p− 2, and also that in every case one has the
inequality U ≥

√
p− 2. Hence any nontrivial solution 4= T +U

√
p of the Pell

equation T 2
− pU 2

= 1 satisfies the inequality

4=
√

pU 2
+ 1+U

√
p ≥

√
p(p− 2)+ 1+

√
p(p− 2)≥ p.

This shows that the fundamental solution εp of PE(p) satisfies the inequality

(11) εp > p.

For p ≡ 3 mod 4 we deduce the lower bound

(12) ε(4p) > p,

for the fundamental unit of Q(
√

4p). In the general case of the equation T 2
−dU 2

=

1, the corresponding fundamental solution is greater than 2
√

d and this bound is
essentially best possible, as the choice d = n2

− 1 shows.
As E. P. Golubeva pointed out to us, the lower bound (11), which is certainly

already in the literature, can be deduced from properties of the continued fraction
expansion of

√
p. For instance, by Perron [1913, Satz 14, p. 94] we know that if

the nonsquare integer d is such that the period k of the expansion of
√

d is even
then it has the shape

√
d =

[
b0; b1, . . . , bν−1, bν, bν−1, . . . , b1, 2b0

]
,

where b0 is the integral part of
√

d, the central coefficient bν of index ν := k/2
either equals b0 or b0−1 or is less than (2/3)b0, and where any b`, 1≤ `< ν, is less
than (2/3)b0. If d is divisible by some prime congruent to 3 mod 4 it is well known
that the associated integer k is even. In the particular case where d = p ≡ 3 mod 4
we even know that bν = b0 or b0 − 1 (see [Golubeva 1993, p. 1277]). Note that
this last property is false if d ≡ 3 mod 4 is not a prime. Consider for instance
√

15= [3; 1, 6].
Classical properties of continued fraction expansions of quadratic integers imply

that if
√

d has even period k = 2ν, the fundamental solution T0+U0
√

d of PE(d)
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satisfies
T0

U0
= [b0; b1, . . . , bν−1, bν, bν−1, . . . , b1].

We deduce from the above discussion that in the case d = p ≡ 3 mod 4 one has

U0 ≥ bν ≥ b0− 1≥
√

p− 2.

This gives (11).

3. Proof of Proposition 1

This result has been known for a long time. Dirichlet [1834, Section 5]) was the first
to solve the question of the uniqueness of the decomposition d=d1d2 (or d= 4d1d2)
appearing in (8), (9) and (10) but without, of course, using the language of modern
algebraic number theory. We reprove this uniqueness result for squarefree d in
passing in Section 3.1. For a statement using the language of binary quadratic forms
see [Pall 1969], where the author notes that the result at issue essentially follows
from a theorem due to Gauss (see the references in [Pall 1969]). For more on this
subject we refer the reader to [Lemmermeyer 2003], in particular Theorem 3.3 there
and the subsequent discussion. (The statement of that theorem contains a minor
typo. One should allow the right-hand side of the equation to be negative since,
e.g., the set of integral solutions (r, s) to each of the two equations pr2

− s2
= 1

and pr2
− s2
= 2 is empty if p ≡ 7 mod 8.)

3.1. Applying Gauss’s theorem on the 2-rank of CD. Let D ∈ Fund+. We denote
by ClD (resp. CD) the group of ideal classes of ZQ(

√
D) in the ordinary (resp.

narrow) sense. Let pi , 1≤ i ≤ t , be the pairwise distinct prime divisors of D. These
primes are precisely the ones ramifying in ZQ(

√
D). For each 1≤ i ≤ t , let pi be the

prime ideal of ZQ(
√

D) above pi . Let us define:

(13) M = {pδ1
1 · · · p

δt
t ; δi ∈ {0, 1} for all i}.

It is exactly the set of integral ideals of norm dividing D′.
Let S be the subgroup of the group of fractional ideals of ZQ(

√
D) generated by

the prime ideals pi , 1≤ i ≤ t . Of course M is a subset of S. Moreover a well known
result of Gauss (see, e.g., [Fröhlich and Taylor 1993, Chapter V, Theorem 39])
asserts that the narrow class map

ν : S→ CD

induces a surjection

S/S2
→ CD,2 := {g ∈ CD : g2

= 1},
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whose kernel has order 2 and where S2 denotes the subgroup of squares of the
abelian group S.

One deduces that each class in CD,2 has exactly two representatives in M . In
particular, the image under the narrow class map of

P+
Q(
√

D)
:=

{fractional principal ideals of ZQ(
√

D) generated by a totally positive element},

which is the trivial class of CD,2, has two representatives in M . These representatives
are (1) and a nontrivial ideal I ∈ M . By definition of M the norm of I divides
D′. Besides it is easily seen that the norm of I is not D/(4, D). Indeed if by
contradiction the norm of I were D/(4, D) then the ideal I would be principal
and equal to (

√
D/(4, D)), since I ∈ M . However D ∈ Fund+ and (

√
D/(4, D))

is generated by an element of negative norm. Thus (
√

D/(4, D)) cannot be a
representative of the trivial class of CD,2.

It turns out the ideal I can be described explicitly thanks to the Legendre–Dirichlet
transformation. To see this let us analyze each case separately.

(i) Assume first that D = 4d, d ≡ 3 mod 4. The fundamental unit of Q(
√

D) may
be written ε(D)= T +U

√
d . Applying the transformation described in Section 2.1

to the norm equation T 2
−dU 2

= 1 leads either to (8) or (9) depending on whether
T is even or odd.

• In case we are led to (8) (i.e., T is even) the integer 2d1 > 1 is a divisor of D′

thus the ideal I is (d1U1+U2
√

d). Indeed the norm of the algebraic integer
d1U1+U2

√
d is 2d1 > 0 (note that U1

√
d +U2d2 has norm −2d2 < 0).

• Otherwise T is odd, hence U is even. Therefore, as explained in Section 2.2,
ε(D)= T +U

√
d is the square of the algebraic integer U1

√
d1+U2

√
d2. We

deduce d1 > 1 since otherwise this algebraic integer would be a unit (it would
have norm 1) of ZQ(

√
D) contradicting the minimality of ε(D). Thus one also

has I = (d1U1+U2
√

d), the element d1U1+U2
√

d having norm d1 > 0.

(ii) The second case we consider is D ≡ 1 mod 4. For convenience and to unify the
notation we set in that case d := D. We may write ε(D)= T/2+ (U/2)

√
d , where

T ≡ U mod 2. If T and U are both even we argue as in the previous case (note
that by reducing modulo 4 we see that T/2 has to be odd). Otherwise T and U are
both odd and satisfy T 2

− dU 2
= 4. Mimicking the transformation of Legendre

and Dirichlet described in Section 2.1 (see also Lemma 9) one easily gets a set of
equalities analogous to (8) and (9):

(14) d1U 2
1 − d2U 2

2 = 4, T =−2+ d1U 2
1 , d = d1d2, U =U1U2.

Therefore the integral principal ideal (d1U1/2+ (U2/2)
√

d) (note that both d1U1
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and U2 are odd) is generated by an element of norm d1 > 0. To see that this ideal
is I it is enough to prove that d1 > 1. Indeed if by contradiction d1 = 1 then
(U1/2)

√
d1+ (U2/2)

√
d2 would be a unit of ZQ(

√
D) the square of which equals

ε(D) contradicting the minimality of the fundamental unit.

(iii) Finally let us consider the case where D= 4d, d ≡ 2 mod 4. As in the first case
the fundamental unit may be written ε(D)= T +U

√
d. From the norm equation

T 2
− dU 2

= 1 we deduce that T is odd and U is even; i.e., the transformation
of Legendre and Dirichlet leads to (9). As in the first case one easily shows that
I = (d1U1+U2

√
d).

However what we want to understand is how (the narrow classes of) the elements
of PQ(

√
D) := { fractional principal ideals of ZQ(

√
D)} ⊃ P+

Q(
√

D)
are represented in

M . It turns out (see [Fouvry and Klüners 2010a, (6)], for instance) that one has a
short exact sequence

1→ F∞→ CD→ ClD→ 1,

where F∞ has order at most 2. It is straightforward from the definitions that |F∞| =
[PQ(

√
D) : P

+
Q(
√

D)]. Moreover one knows that |F∞|= 2 if and only if ε(D) has norm
1 (see the discussion following [Fouvry and Klüners 2010a, (6)] and the references
therein). Since we have assumed D ∈ Fund+ we have [PQ(

√
D) : P

+
Q(
√

D)] = 2 and
the above discussion then implies that PQ(

√
D) has four representatives in M . We

can even argue in a completely explicit way: PQ(
√

D) is the disjoint union of two left
cosets with respect to the subgroup P+Q(

√
D). We have exhibited two elements ((1)

and I =: (a)) in the coset P+Q(
√

D). In the other coset obviously lies the ideal (
√

d):
the algebraic integer

√
d has norm −d dividing D′. Using (a) and (

√
d) we easily

deduce the construction of the fourth suitable ideal. Indeed in the decomposition
of (a
√

d) as a product of prime ideals, the pi ’s are the only prime ideals that may
appear. Reducing the exponent of each pi appearing modulo 2 we get a principal
ideal (recall that p2

j = (p j ) for each j) the norm of which divides D′. Clearly this
ideal is different from (1), (a) and (

√
d). (We can deduce more: since both I and

(
√

d) are elements of M and since d differs from D′ by at most a factor 2 then
either the norm d̃ of I = (a) divides d and therefore the norm of the “fourth” ideal
is d/d̃ or d̃ is even and the norm of the fourth ideal is 4d/d̃.)

In terms of the Legendre–Dirichlet transformation and besides (1) and I = (a)
the ideals (

√
d) and (U1

√
d + d2U2) (or ((U1/2)

√
d + d2U2/2) in the case d =

D ≡ 1 mod 4) are representatives of PQ(
√

D) in M . Of these four integral principal
ideals one has norm 1 and one has norm d . The norms of the other two are d1 and
d2 (or 2d1 and 2d2 in the case where D = 4d, d ≡ 3 mod 4, and the coordinate T
of the fundamental unit ε(D) = T +U

√
d is even) respectively. This concludes

the proof of Proposition 1.
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3.2. Remarks on Proposition 1 and its proof. Among the constraints defining the
sets on the left-hand side of (4) one may object that there is some redundancy in
imposing both the conditions D ∈ Fund+ and 22

‖D. However the norm of the
fundamental unit is of course no longer automatically positive in the cases D odd
or 8 |D.

In view of the above proof of Proposition 1, we see that the integer 8(D) can
be given explicitly via the Legendre–Dirichlet transformation. Indeed we deduce
from the proof the following explicit version of Proposition 1.

Proposition 5. Let D ∈ Fund+ and d := D/(4, D). Let d = d1d2 be the coprime
factorization of d obtained by applying (8), (9) or (14) to the norm equation satisfied
by the fundamental unit ε(D). Then

8(D)=
{

min(2d1, 2d2) if D = 4d, d ≡ 3 mod 4, T ≡ 0 mod 2,
min(d1, d2) otherwise,

where in the first case ε(D)= T +U
√

d.

As a consequence one deduces 8(D) <
√

d unless D = 4d, d ≡ 3 mod 4 and
the coordinate T of the fundamental unit ε(D)= T +U

√
d is even. In the latter

case one can only infer 8(D) <
√

D.

Example 6. Assuming D ∈ Fund+ one might get the intuitive idea that among the
four integral principal ideals of norm dividing D′, the ideal (

√
d) is the one with

norm of maximal absolute value. Of course this is true if the norms of the four
ideals in question divide d which is always the case unless D = 4d , d ≡ 3( mod 4),
and ε(D)= T +U

√
d with T even. However this intuitive idea is not necessarily

true in the latter situation. Consider the case D = 12. Thus D′ = 6 and d = 3. If N

denotes the norm map relative to the extension Q(
√

3)/Q, one easily checks that

N(
√

3)=−3, N(1+
√

3)=−2, N(3+
√

3)= 6.

In the notation of the Legendre–Dirichlet transformation the maximum of the
absolute values of the three norms above is 2d1 = 6. Moreover 8(12)= 2 and one
notices as expected the identity among ideals:

(
√

3) · (3+
√

3)= (3) · (1+
√

3),

which is congruent to (1+
√

3) modulo squares (i.e., modulo S2 in the notation of
the proof of Proposition 1).

This example contains even more information. Not only does it show that d is
not in general the maximum of the four divisors of D′ among the norms of integral
principal ideals, but also that at most one of the other three divisors is larger than d .
Otherwise we would have 2d1 ≥ d and 2d2 ≥ d, by virtue of Proposition 5. Since



92 ÉTIENNE FOUVRY AND FLORENT JOUVE

d = d1d2 ≡ 3 mod 4 this implies d = 3. This corresponds to D = 12, in which case
d2 = 1, as shown above.

4. Proof of Theorem 2 when 22‖D

4.1. Notation. The letter p is reserved for prime numbers. The Möbius function
is denoted by µ, the number of distinct prime divisors of the integer n is ω(n), the
cardinality of the set of primes p ≤ x which are congruent to a mod q is denoted
by π(x; q, a). The condition n ∼ N means that the variable n has to satisfy the
inequalities N < n ≤ 2N . As it shall not lead to confusion the symbol ∼ will also
be used in the usual sense: if f, g are two functions of the real variable x defined
on a neighborhood of a on which g does not vanish, f (x)∼ g(x) as x→ a means
that f/g approaches 1 as x→ a.

4.2. The basic splitting. Let D be a fundamental discriminant such that 22
‖D.

Hence d := D/4 is squarefree and congruent to 3 mod 4. In that particular case (1)
simplifies into ZK =Z⊕Z

√
d . As already mentioned both the facts that D ∈ Fund+

and that D is divisible by some p ≡ 3 mod 4 imply that there is no unit with norm
− 1. Hence T +U

√
d belongs to UK if and only if T 2

− dU 2
= 1, i.e., (5) holds.

We construct a sequence of fundamental discriminants D = 4d with a large
ε(D)= εd by starting from

d = pm,

where p ≡ 3 mod 4 and m ≡ 1 mod 4 is squarefree. We keep in mind that m is
small compared to p, hence m is coprime with p.

For any squarefree integer m and any x ≥ 2 let

(15) Dm(x) := {pm ; pm ∼ x, p ≥ 7, p ≡ 3 mod 4}.

Dirichlet’s Theorem on primes in arithmetic progressions directly implies

(16) # Dm(x)∼
x

2m log(x/m)
,

as x→∞ uniformly for m ≤
√

x . We now introduce the following subset of Dm(x)
consisting of elements pm with a small εpm : for δ = δ(x) > 0, we consider

Dm(x, δ) := {pm ; pm ∈ Dm(x), εpm ≤ (4pm)3−δ}.

By counting solutions that may not be fundamental, we have the inequality

(17) # Dm(x, δ)≤ #
{
(p, T,U ) ; T, U ≥ 1, pm ∈ Dm(x), T 2

− pmU 2
= 1,

T +U
√

pm ≤ (4pm)3−δ
}
.
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We now want to apply Lemma 4 with the choice d = pm, where m satisfies

(18) 2-m and µ2(m)= 1.

Let m1m2 = m be a decomposition of m. For

(19) η ∈ {±1, ±2}.

we consider the equation

E(m1,m2, η) m1U 2
1 − pm2U 2

2 = η.

By (17) and using the values of T appearing in (8) & (9) we get the inequality

(20) # Dm(x, δ)
≤

∑
m1m2=m

∑
η=±1

#
{
(p,U1,U2) ; pm ∈ Dm(x), m1U 2

1 − pm2U 2
2 = η,

−1+ 2m1U 2
1 + 2U1U2

√
pm ≤ (4pm)3−δ

}
+

∑
m1m2=m

∑
η=±2

#
{
(p,U1,U2) ; pm ∈ Dm(x), m1U 2

1 − pm2U 2
2 = η,

−1+m1U 2
1 +U1U2

√
pm ≤ (4pm)3−δ

}
.

We now want to simplify the above inequality by studying the orders of magnitude
of the variables U1 and U2. The equation E(m1,m2, η) and the assumption p ≥ 7
in (15) imply that we have

1
2 m1U 2

1 ≤ pm2U 2
2 ≤ 2m1U 2

1 .

Multiplying these inequalities by m1 and using the assumption pm ∼ x we obtain:

(21) 1
2 m1U1x−1/2

≤U2 ≤ 2m1U1x−1/2.

From the inequalities defining the sets in the right-hand side of (20) we deduce

U1U2
√

pm ≤ 64 (pm)3−δ,

which implies in turn

(22) U1U2 ≤ 400 x (5/2)−δ.

Also note that (21) and (22) imply the inequalities

(23) U2 ≤ 30 m1/2
1 x1−(δ/2) and U1 ≤ 2m−1

1 x1/2U2.

Now we drop the condition that p is prime in (20). We deduce the inequality

(24) # Dm(x, δ)≤
∑

m1m2=m

∑
η=±1,±2

F(m1,m2, η).

Here F(m1,m2, η) is the number of solutions to the congruence

(25) m1U 2
1 ≡ η mod m2U 2

2 ,
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where (U1,U2) is subject to (23). Let ρη,m1(t) be the number of solutions to the
congruence

m1u2
− η ≡ 0 mod t,

where η satisfies (19) and m1 is odd. The study of the function ρη,m1(t) is classically
reduced to the study of ρη,m1(p

k). Since we always have (m1, η)= 1 in every case
one has ρη,m1(2

k) ≤ 4 and ρη,m1(p
k) ≤ 2 (k ≥ 1 and p ≥ 3). This leads to the

inequality

(26) ρη,m1(t)≤ 2 · 2ω(t) for any t ≥ 1.

Looking back at (24) we split the interval of variation of U1 into intervals of length
m2U 2

2 together with perhaps an incomplete one. Inserting (26) and noting that η
can take four distinct values we obtain the inequality

# Dm(x, δ)≤ 8
∑

m1m2=m

∑
U2≤30 m1/2

1 x1−δ/2

2ω(m2U2)

(
2

x1/2

m1m2U2
+ 1

)
(27)

≤ 16
x1/2

m
61+ 862,

with

61 :=
∑

m1m2=m

2ω(m2)
∑

U2≤30 m1/2
1 x1−δ/2

2ω(U2)

U2
,

and
62 :=

∑
m1m2=m

2ω(m2)
∑

U2≤30 m1/2
1 x1−δ/2

2ω(U2).

It remains to apply techniques for summing multiplicative functions (recall that m
is squarefree). We obtain

61�
∑

m1m2=m

2ω(m2) log2 x � 3ω(m) log2 x,

and

62� x1−δ/2 log x
∑

m1m2=m

2ω(m2)m1/2
1 = (x

1−δ/2 log x)m1/2
∑

m2 |m

2ω(m2)

√
m2

,

�κ κ
ω(m)m1/2x1−δ/2 log x,

for any fixed κ > 1. Putting everything together via (27) we have finally proved:

Proposition 7. For every κ > 1 there exists c(κ) > 0 such that the inequality

(28) # Dm(x, δ)≤ c(κ)(3ω(m)m−1x1/2 log2 x + κω(m)m1/2x1−δ/2 log x ),
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holds for every x ≥ 2, for every odd squarefree m ≤
√

x and for every δ = δ(x)≥ 0.

Applying this proposition with m = 1 one instantly deduces:

Corollary 8. Let t 7→ ψ(t) be any increasing function of the variable t ≥ 1, ap-
proaching infinity as t→∞. Then as x tends to infinity one has

#
{

p ≤ x ; p ≡ 3 mod 4, ε(4p)≤ p3/(ψ(p) log4 p)
}
= o(x/(log x)).

In other words, this corollary tells us that for almost every p≡3 mod 4, the regulator
R(4p) of the field Q(

√
4p) is greater than (3− ε) log p (where ε > 0 is arbitrary).

However Corollary 8 is not new: it is slightly weaker by a power of log p than
[Golubeva 1993, Corollary 5] which was obtained by Golubeva via the theory of
continued fractions. In the statement of Corollary 8 it is possible to make the power
of log p decrease. It requires a better control of the function ρη,1(p) which can be
achieved by appealing to oscillations of some Legendre symbol. One essentially
deduces the fact that this ρ-function has mean value 1 as long as η 6= 1. Actually,
requiring that T +U

√
p be a fundamental solution to PE(p) is enough to reduce to

this case.

4.3. End of the proof of the lower bound in Theorem 2. Let γ be a constant
satisfying 0≤ γ ≤ 1

2 . Let

(29) Dγ (x) :=
⋃
m

Dm(x),

where the union is taken over the integers m satisfying

(30) 1≤ m ≤ xγ , µ2(m)= 1 and m ≡ 1 mod 4.

Since the sets Dm(x) are pairwise disjoint (when m runs over the set of integers
satisfying (30)) we have the equality

# Dγ (x)=
∑

m satisfies (30)

# Dm(x).

Inserting (16), summing over m, and using the formula∑
m≤y

m≡1 mod 4

µ2(m)∼
2
π2 y (y→∞),

we deduce that for every γ0 > 0 and for x→∞, one has

(31) # Dγ (x)∼−
log(1− γ )

π2 x,

uniformly for γ0 ≤ γ ≤
1
2 .
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Now we apply Proposition 7 and (31) with the choice γ = δ/4. Consider

E(x, δ) :=
⋃
m
(Dm(x) \Dm(x, δ)),

where the union is taken over the indices m satisfying (30). Every element pm ∈
E(x, δ) is squarefree and congruent to 3 mod 4. Hence D := 4pm is a fundamental
discriminant and it satisfies the inequality εd = ε(D) ≥ D3−δ and the inequality
D≤ 8x . Furthermore, because the sets Dm(x) appearing in the definition of E(x, δ)
are pairwise disjoint, one trivially has:

E(x, δ)= Dγ (x) \
(⋃

m
Dm(x, δ)

)
,

where the union appearing on the right-hand side is a disjoint union. Therefore,

# E(x, δ)≥−
(1− o(1)) log(1− δ/4)

π2 · x − O
(

x1−δ/2 log x
∑

m≤xδ/4
(3/2)ω(m)m1/2

)
≥−

(1− o(1)) log(1− δ/4)
π2 · x .

This gives the first case of Theorem 2. Indeed the argument so far has only
involved splittings of positive fundamental discriminants D of type D/4=d1d2 with
d1 =m1 and d2 = pm2 (see (20)). Since m =m1m2 is a divisor of D of very small
size (see (30)) the condition on 8(D) on the left-hand side of (4) is automatically
fulfilled for the particular D’s under consideration in view of Proposition 1 or rather
its explicit version Proposition 5.

4.4. Comments on the proof of Proposition 7. To obtain the inequality (24) we
have dropped the condition p prime. By sieve techniques it is possible to handle
this constraint. The upshot of this would consist in saving a power of log x in the
first term of the right-hand side of (28). This improvement does not seem to affect
the exponent 3− δ in the statement of (4).

A more promising way to improve this exponent is to apply a better treatment
of the congruence (25) in small intervals. After a classical expansion via Fourier
techniques we would be led to bound the general exponential sum∑∑

m1m2=m

∑
U2≤30 m1/2x1−δ/2

∑
U1 mod m2U 2

2
m1U 2

1≡η mod m2U 2
2

∑
1≤|h|≤

m1m2x−1/2U 1+ε
2

exp
(

2π ıh
U1

m2U 2
2

)
.

5. Proof of the remaining cases

5.1. The case D divisible by 8. In that case set d := D/4. We still have

K :=Q(
√

D)=Q(
√

d) and ZK = Z⊕Z
√

d.
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However, contrary to the case 22
‖D, the fact that D∈Fund+ is no longer guaranteed

which means that the negative Pell equation T 2
− dU 2

=−1 may be solvable.
Since we are only dealing with discriminants in Fund+ we are led to modify

(15):
Dm(x) := {2pm ; 2pm ∼ x, p ≡ 3 mod 4},

hence d ∈Dm(x) implies D ∈ Fund+. We shall consider these sets for m squarefree
and congruent to 1 mod 4. The proof of Theorem 2 is essentially the same in this
case.

5.2. The case D odd. In that case D is squarefree and congruent to 1 mod 4, write
d := D. Then K = Q(

√
D) and ZK = {(a + b

√
d)/2 ; a, b ∈ Z, a ≡ b mod 2}.

Hence the study of the fundamental unit of K is reduced to the question of finding
the smallest nontrivial solution to the equation

T 2
− dU 2

=±4.

As above we can ensure the equation T 2
−dU 2

=−4 has no integral solution (thus
D ∈ Fund+) by imposing d to be divisible by some p ≡ 3 mod 4. To deal with the
equation T 2

− dU 2
= 4 we appeal to a variant of Lemma 4 that we state without

proof.

Lemma 9. Let d and U be positive integers such that 2 -d. Define A(d,U ) as in
Lemma 4. Set

Ã(d,U ): = {T ≥ 1 ; T 2
− dU 2

= 4},

B̃(d,U ): =
{
(d1, d2,U1,U2) ∈ N4

≥1 ; U1U2 =U, d1d2 = d, d1U 2
1 − d2U 2

2 = 4
}
.

Then we have

Ã(d,U )= 2 ·A(d,U/2) if 2 |U,(32)

# Ã(d,U )= # B̃(d,U ) ∈ {0, 1} if 2 -U.(33)

We are led to modify (15) in the following way:

Dm(x) := {pm ; pm ∼ x, p ≡ 3 mod 4}.

We shall consider these sets for m squarefree and congruent to 3 mod 4. Thanks to
Lemma 9 the proof of Theorem 2 in this last case is once more essentially the same.

The proof of Theorem 2 is now complete.

Remark 10. The “algebraic interpretation” provided by Proposition 1 and translated
by the condition on the function8 in (4) relies heavily on the assumption that for the
D’s under consideration the fundamental unit ε(D) has norm 1 (see Section 3). If
ε(D) has norm −1 then d = D/(4, D) is the norm of the algebraic integer ε(D)

√
d .

Gauss’s theorem on the 2-rank of CD still applies and shows that the only two
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divisors of D′ among norms of integral principal ideals generated by totally positive
elements are 1 and d . Recall that if ε(D) has norm −1 then the groups PQ(

√
D) and

P+Q(
√

D) coincide.

Remark 11. One may wonder why neglecting the contribution of positive fun-
damental discriminants with fundamental unit of negative norm has such little
influence on the difficulty of showing the lower bound (4). This comes from the
fact that the set of fundamental discriminants with fundamental unit of norm −1
is negligible. More precisely the number of special discriminants (i.e., positive
fundamental discriminants only divisible by 2 or primes congruent to 1 modulo
4) up to X is asymptotic to c · X (log X)−1/2, where c is an absolute constant (see
[Fouvry and Klüners 2010a, Section 1] and the references therein).

6. Proof of Theorem 3

Our starting point is the following well known class number formula (see [Cohen
1993, Proposition 5.6.9, p. 262], for instance)

(34) h(D)=
L(1, χD)

2 R(D)

√
D,

where D is a positive fundamental discriminant and L(s, χD) is the Dirichlet L-
function associated to the Kronecker symbol χD = (D/·)

L(s, χD) :=

∞∑
n=1

χD(n) n−s (<s > 1).

Recall the classical upper bound

(35) L(1, χ)� log(q + 1),

which holds for any nonprincipal Dirichlet character χ modulo q > 1. To prove
Theorem 3 we have to study the sum

6(x) :=
∑
D≤x
22
‖D

h(D),

and prove the inequality

(36) 6(x)≤
( 8

21π2 C0− δ
) x3/2

log x
,

for sufficiently large x . Define the two positive valued functions

κ(D) := R(D)/ log D, ξ(D) := L(1, χD)
√

D
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and

(37) 6̃(x) :=
∑
D≤x
22
‖D

ξ(D)
κ(D)

.

By (34) and by partial summation, we see that (36) can be deduced from the
inequality

(38) 6̃(x)≤ 2
( 8

21π2 C0− 2δ
)

x3/2,

for sufficiently large x .
Let γ , η and η′ be small positive numbers and let E(x) be the set of indices over

which the summation (37) is performed. We write any D ∈ E(x) under the form
D = 4d . Hence D ∈ E(x) if and only if d ∈ F(x) where

(39) F(x) :=
{
d ; µ2(d)= 1, d ≡ 3 mod 4 and d ≤ x/4

}
.

We now consider two disjoint subsets of F(x) defined as follows:

F1(x) :=
{
d ∈ F(x) ; κ(4d)≤ 7

4 − η
′
}
,

F2(x) :=
{
d ∈ F(x) ; κ(4d) > 7

4 − η
′,

d = pm, pm ∼ x/8, p ≡ 3 mod 4,m ≡ 1 mod 4, m ≤ xγ
}
.

We denote by G(x) the complement of F1(x)∪F2(x) in F(x). Let us then use the
condition κ(4d)≤ (7/4)+η to split further F2(x) into the partition F+2 (x)∪F−2 (x)
where:

F−2 (x) :=
{
d ∈ F2(x) ; κ(4d)≤ 7

4 + η
}
,

F+2 (x) :=
{
d ∈ F2(x) ; κ(4d) > 7

4 + η
}
.

Using this decomposition we split the sum 6̃(x) accordingly:

(40) 6̃(x)= σF1(x)+ σF−2
(x)+ σF+2

(x)+ σG(x),

where each term on the right-hand side is a sum over the corresponding obvious
subset of F(x) we have just defined. To upper bound σF1(x) we use [Fouvry and
Jouve 2013, Theorem 1] which asserts that for any ε > 0 one has

#
{
(D, εD); D nonsquare , 2≤ D ≤ x, εD ≤ D(1/2)+α }

= Oε(x (α/3)+(7/12)+ε),

uniformly for α ≥ 0 and x ≥ 2. Together with (5) the above formula (with the
choices ε = η′/12 and α = 5/4− η′) implies:

# F1(x)�γ x1−η′/4.
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Hence by the inequality κ(4d)≥ 1/2 (see (2)) and by (35), we deduce the inequality

(41) σF1(x)� x (3/2)−(η
′/4) log x .

By (28), we also know that

# F−2 (x)� x1−η/10,

with the choice γ = η/10. As for the proof of (41) we deduce that

(42) σF−2
(x)� x (3/2)−(η/10) log x .

Next note the following easy inequality, consequence of the definitions of the sets
F+2 (x), F−2 (x) and G(x):

σF+2
(x)+ σG(x)≤

1
7/4+η

∑
d∈F+2 (x)

ξ(4d)+ 1
7/4−η′

∑
d∈G(x)

ξ(4d).

Set

(43) F̃2(x) :=
{
d ; d = pm, µ2(d)= 1, pm ∼ x/8, m ≤ xγ ,

p ≡ 3 mod 4,m ≡ 1 mod 4
}
.

From the inclusion F1(x)∪F2(x)⊃ F̃2(x) one deduces∑
d∈F1(x)∪F2(x)

ξ(4d)≥
∑

d∈F̃2(x)

ξ(4d).

Combining the last two inequalities with the following obvious facts:∑
d∈G(x)

ξ(4d)=
∑

d∈F(x)

ξ(4d)−
∑

d∈F1(x)∪F2(x)

ξ(4d),
∑

d∈F+2 (x)

ξ(4d)6
∑

d∈F̃2(x)

ξ(4d)

we deduce the inequality
(44)

σF+2
(x)+ σG(x)≤

1
7/4− η′

∑
d∈F(x)

ξ(4d)−
η+ η′

(7/4+ η)(7/4− η′)

∑
d∈F̃2(x)

ξ(4d).

It remains to evaluate each of the two sums in (44). To that end we state and prove
two lemmas, the most classical of which is the following:

Lemma 12. As y→∞, one has∑
d≤y

d≡3 mod 4

µ2(d)L(1, χ4d)
√

d ∼
4C0

3π2 y3/2.
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Proof. Let A1(y) be the sum we want to evaluate. By the properties of the Kronecker
symbol we have the equality

A1(y)=
∑
d≤y

d≡3 mod 4

µ2(d)
√

d
∑

n≥1, 2-n

(d/n)
n

,

that now involves a Jacobi symbol. By the fact that the sum over n varying in
any interval of length 4d of the symbols (4d/n) equals zero, we can express using
partial summation the above infinite series as a finite sum with a small enough error
term: ∑

n≥1
2-n

(d/n)
n
=

∑
1≤n≤y2

2-n

(d/n)
n
+ O(y−1),

uniformly for d ≤ y. Inserting this equality in the definition of A1(y) and splitting
the sum according to whether n is a square or not, we get the equality

(45) A1(y)=MT1(y)+Err1(y)+ O(y1/2).

In the above equality the sum MT1(y) which will appear as the main term is the
following

(46) MT1(y) :=
∑
d≤y

d≡3 mod 4

∑
1≤t≤y
(t,2d)=1

µ2(d)
√

d
t2 ,

whereas Err1(y) is defined by

(47) Err1(y) :=
∑
d≤y

d≡3 mod 4

∑
1≤n≤y2

2-n, n 6=�

µ2(d)
√

d
n

(d
n

)
.

We first consider Err1(y). We want to prove that it behaves as an error term.
More precisely we want to show:

(48) Err1(y)= o(y3/2) (y→∞).

To do so we split the double sum in (47) in O(log2 y) subsums Err1(D, N ) where
the sizes of d and n are controlled:

(49) Err1(D, N ) :=
∑
d∼D

d≡3 mod 4

∑
n∼N

2-n, n 6=�

µ2(d)
√

d
n

(d
n

)
,
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with D ≤ y/2 and N ≤ y2/2. Our purpose is to prove that in all these cases we
have

(50) Err1(D, N )= O(y3/2 log−3 y).

Of course the trivial bound is Err1(D, N )� D3/2. Hence (50) is proved for any
(D, N ) such that D ≤ y log−2 y. Thus for the rest of the proof we suppose that

(51) D > y log−2 y.

The sum Err1(y) is a particular case of a double sum of Jacobi or Kronecker
symbols, which is nowadays quite common in analytic number theory. For instance
we have (see [Fouvry and Klüners 2010b, Proposition 10]):

Lemma 13. For every A > 0, there exists c(A) > 0, such that for every bounded
complex sequences (αm) and (βn) and for every M and N satisfying the inequalities
M , N ≥max(2, logA(M N )), one has the inequality∣∣∣∣ ∑

m∼M

∑
n∼N

αmβnµ
2(2m) µ2(2n)

(m
n

)∣∣∣∣≤ c(A) ‖(α)‖∞ ‖(β)‖∞ M N log−A/2(M N ).

However in the definition (49) of Err1(D, N ) the variable n is not squarefree. To
circumvent this difficulty we decompose n= `2n′ where now n′ is squarefree and we
consider two cases. Either `≤ N 1/4 and we apply Lemma 13 where the parameters
M and N respectively have the values D and N`−2. Or ` > N 1/4 and we apply
the trivial bound. Summing over `, choosing a big enough A in Lemma 13 and
appealing to (51), we finally deduce the inequality

Err1(D, N )� D3/2 log−10(DN )� y3/2 log−3 y,

which holds uniformly for N ≥ log100 y. Hence we have also proved (50) in that
case. Combining with (51) it remains to prove (50) in the case where D is large
and N is small:

(52) D ≥ y log−2 y and N ≤ log100 y.

We shall now benefit from the oscillations of the character d 7→ (d/n) when d runs
over squarefree integers d ≡ 3 mod 4 as follows. Our argument uses the following
rather standard lemma which can be found in [Prachar 1958, formula (1)].

Lemma 14. The following equality∑
n≤x

n≡` mod k

µ2(n)=
6
π2

∏
p |k

(
1−

1
p2

)−1 x
k
+ O(x1/2),

holds uniformly for x ≥ 2, k ≥ 1 and ` coprime with k.
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Applying Lemma 14 to each of the reduced classes ` modulo 4n such that
`≡ 3 mod 4 and summing over these `, we obtain the equality

(53)
∑
d≤t

d≡3 mod 4

µ2(d)
(d

n

)
= O(nt1/2),

uniformly for t ≥ 1 and for n ≥ 1 odd and nonsquare.
Integrating by part and summing over n ∼ N , we easily see that (50) also holds

under the condition (52). As a conclusion the proof of (48) is now complete.
We now deal with MT1(y). From Lemma 14 we deduce that for any given A> 0

the formula ∑
d≤z

(d,t)=1
d≡3 mod 4

µ2(d)∼
2
π2

∏
p | t

(
1+ 1

p

)−1
z,

holds as z→∞ uniformly for t odd satisfying t ≤ z A. By a partial summation and
by comparison with an integral we have∑

d≤z
(d,t)=1

d≡3 mod 4

µ2(d)
√

d ∼
4

3π2 ·
∏
p | t

(
1+ 1

p

)−1
z3/2.

Inserting this formula in the definition (46) and summing over every odd t ≤ y
yields:

MT1(y)∼y→∞
4

3π2 y3/2
∑
2-t

t−2
∏
p | t

(
1+ 1

p

)−1
.

The infinite series above admits an expansion as an Euler product

(54) MT1(y)∼y→∞
4

3π2

∏
p≥3

(
1+

p
(p+ 1)2(p− 1)

)
y3/2
=

4C0

3π2 y3/2.

Putting together (45), (48) and (54) we complete the proof of Lemma 12. �

The second lemma we need in order to evaluate the sums in (44) is the following.

Lemma 15. Let 0<γ < 1
2 and, for any x > 0, let F̃2(x) be defined as in (43). Then

there exists c(γ ) > 0, such that as x→∞ one has∑
d∈F̃2(x)

L(1, χ4d)
√

d ∼ c(γ )x3/2.

The asymptotics is uniform for γ0 ≤ γ ≤
1
2 − γ0, whenever 0< γ0 <

1
4 .



104 ÉTIENNE FOUVRY AND FLORENT JOUVE

Proof. The proof is very similar to the proof of Lemma 12. The main difference
being that (53) is replaced by the following consequence of the classical Siegel–
Walfisz theorem

(55)
∑

m≡1 mod 4
m≤xγ

µ2(d)
∑

p≡3 mod 4
p∼D/m

( pm
n

)
= OA(

√
nD log−A D),

which holds for any constant A > 0. Note that the upper bound contained in (55)
is only interesting if n ≤ log2A D. This exactly fits the constraint we have on the
summation over n (see (52)).

The corresponding main term will have the shape (see (46))∑
m≤xγ

m≡1 mod 4

µ2(m)
√

m
∑

p∼x/(8m)
p≡3 mod 4

√
p

∑
t,(t,2pm)=1

1
t2 .

Inverting summations we first sum over p (where we use a variant of (16)), then
over m and finally over t , as in the proof of (54). We note in passing that c(γ )
could be given an explicit value. �

6.1. End of the proof of Theorem 3 and remarks. Putting together the definition
(40), Lemma 12, Lemma 15 (with the choice γ = η/10), and the equalities (41),
(42) and (44), we get the inequality

6̃(x)

≤

{ 4C0

3π2(7/4− η′)
(1+o(1))−

(η+ η′)c(η/10)
(7/4+ η)(7/4− η′)

(1−oη(1))
}

x3/2
+oη,η′(x3/2).

Now fix η = 1
10 . Then by fixing a very small η′ > 0 the above upper bound can be

written
6̃(x)≤ K0x3/2,

for sufficiently large x and for some fixed K0 satisfying the inequality

K0 <
16 C0

21π2 .

This proves (38) hence (36) and completes the proof of Theorem 3.
We now discuss the influence of the different results about the size of ε(D) we

have used on the sum we have studied. If our only input is the trivial lower bound
ε(D)≥ 2

√
D (see (2)), we cannot get anything better than

(56)
∑
D≤x
22
‖D

h(D)≤
(

4 C0

3π2 + δ

)
x3/2

log x
,

for every positive δ and every sufficiently large x .
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Using [Fouvry and Jouve 2013, Theorem 1] has enabled us to improve the
multiplicative coefficient in the above upper bound by the factor 3.5. Finally the
purpose of our Proposition 7 has been to improve the inequality (56) by some factor
slightly larger than 3.5.

6.2. A consequence of Corollary 8. A natural question is to ask for some upper
bound on average for the class number h(D) when D is essentially prime. So we
consider the sum

S(x) :=
∑
p≤x

p≡3 mod 4

h(4p).

By techniques very similar to those presented in the beginning of Section 6 and
the trivial bound ε(4p)≥ 2

√
p, we can prove that we have the trivial asymptotic

inequality

S(x)≤
(1

2
+ o(1)

) x3/2

log2 x
.

When appealing instead to (12), we improve this upper bound by a factor 2. Finally,
Corollary 8 improves by a factor 6 the trivial asymptotic inequality. More precisely
we get the following result the proof of which easily follows from Corollary 8 and
is left to the reader.

Corollary 16. As x→∞, one has the inequality

S(x)≤
( 1

12
+ o(1)

) x3/2

log2 x
.
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MIROSLAV BULÍČEK, PETR KAPLICKÝ and MARK
STEINHAUER

35A lower bound for eigenvalues of the poly-Laplacian with arbitrary
order

QING-MING CHENG, XUERONG QI and GUOXIN WEI

49Quiver algebras, path coalgebras and coreflexivity
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