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ON THE ISENTROPIC COMPRESSIBLE EULER EQUATION
WITH ADIABATIC INDEX γ = 1

DONG LI, CHANGXING MIAO AND XIAOYI ZHANG

We consider the isentropic compressible Euler equations with polytropic
gamma law P(ρ)= ργ in dimensions d ≤ 3. We address the borderline case
when adiabatic index γ = 1 and establish local theory in the Sobolev space
C0

t L p
x ∩C0

t Ḣ k
x for d < p≤ 4. This covers a class of physical solutions which

can decay to vacuum at spatial infinity and are not compact perturbations
of steady states. We construct a blowup scenario where initially the fluid is
quiet in a neighborhood of the origin but is supersonic near the spatial infin-
ity. For this special class of noncompact initial data, we prove the formation
of singularities in finite time.

1. Introduction and main results

We consider the Cauchy problem for the d-dimensional, d ≤ 3, isentropic com-
pressible Euler equation

(1-1)


∂tρ+∇ · (ρv)= 0,

ρ(∂tv+ (v · ∇)v)+∇P = 0,

(ρ, v)(0, x)= (ρ0, v0)(x).

(t, x) ∈ R+×Rd .

Here, ρ = ρ(t, x) is a scalar function representing density, v = v(t, x) is a vector-
valued function representing velocity. P is the pressure, satisfying the polytropic
gamma law

P(ρ)= Aργ , γ ≥ 1,

where A > 0 is a constant and γ is so-called adiabatic index. In this paper, we will
mainly consider the borderline case γ = 1. For simplicity we shall set A = 1.

There is an extensive one-dimensional theory on the singularity formation of
solutions to the compressible Euler equation and related equations (see [John
1974; Klainerman and Majda 1980; Lax 1964; Liu 1979]). The proofs are usually
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based on method of characteristics which is not robust enough to treat dimensions
d ≥ 2 (see, however, [Chae and Ha 2009] for a blowup result in 3D using method
of characteristics). Sideris [1985] considered the following three-dimensional
compressible Euler system:

(1-2)


∂tρ+∇ · (ρv)= 0,

ρ(∂tv+ (v · ∇)v)+∇P = 0,

∂t S+ v · ∇S = 0,

(ρ, v, S)(0, x)= (ρ0, v0, S0)(x).

Here S = S(t, x) denotes the specific entropy and the pressure law is given by

(1-3) P(ρ, S)= Aργ eS, A > 0, γ > 1.

If we set S(t, x) ≡ S̄ = const, the system (3-1) reduces to (1-1) (hence the name
“isentropic”). The following set of initial data was considered in [Sideris 1985],
where R > 0 is fixed:

(1-4)
ρ0(x) > 0 for all x,

ρ0(x)= ρ̄, v0(x)= 0, S0(x)= S̄ if |x | ≥ R.

Such initial data can be viewed as compact perturbations of the steady state
(ρ, v, S)≡ (ρ̄, 0, S̄). By a change of variable c = const · ρ(γ−1)/2, one can rewrite
(3-1) as a symmetric positive hyperbolic system in terms of (c, v, S). For initial
data of the form (1-4), local wellposedness of (c, v, S) in C0

t H (5/2)+
x then follows

easily; see [Kato 1975]. The speed of sound σ is defined by

(1-5) σ =

(
∂P(ρ, S)
∂ρ

)1/2∣∣∣∣
(ρ,S)=(ρ̄,S̄)

= (Aγ ρ̄γ−1e S̄ )1/2.

A result of [Sideris 1985], roughly speaking, is that for a set of initial data (1-4)
which is supersonic in a neighborhood of the origin, the corresponding C1 solution
to (1-2)–(1-3) must have finite lifespan. This was extended to the two-dimensional
case by Rammaha [1989]. There are also more precise results on the estimate
of lifespan of blowup solutions which are small perturbations of steady states.
For the 3D compressible Euler equation (1-1) with irrotational (i.e., ∇ × v = 0)
initial data (ρ0, v0) = (ερ̃0 + ρ̄, εṽ0), where ρ̃0 ∈ S(R3), ṽ0 ∈ S(R3)3 (S(R3) is
the usual Schwartz space), Sideris [1991] proved that the lifespan of the classical
solution Tε > exp(C/ε). For the upper bound it follows from [Sideris 1985] that
Tε < exp(C/ε2) under some mild conditions on the initial data. For initial data
which is spherically symmetric and is smooth compact ε-perturbation of the constant
state, Godin [2005] obtained by using a suitable approximation solution the precise
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asymptotic of the lifespan Tε as

lim
ε→0

ε log Tε = T ∗,

where T ∗ is a constant. These results rely crucially on the observation that after some
simple manipulations, the compressible Euler equation in rescaled variables is given
by a vectorial nonlinear wave equation with pure quadratic nonlinearities. This fact
together with the positivity of fundamental solutions of the wave operator were also
exploited in [Sideris 1985; Rammaha 1989] to establish a different set of blowup
results which are analogs of corresponding results on nonlinear wave equations.

In this paper we will be concerned with the d-dimensional isentropic compressible
Euler system (1-1) with adiabatic index γ = 1. This is the borderline case, since
previous results in the literature are mainly for the case γ > 1. We discuss first the
local theory. In the case γ > 1, all the results mentioned before essentially deal
with initial data which contain no vacuum states and are compact perturbations of
steady states, cf. (1-4). Local wellposedness to (1-1) in C0

t H s
x for some regularity

index s > d/2 + 1 then follow easily from [Kato 1975] after some change of
variables transforming to a symmetric positive hyperbolic system. In principle
one can essentially repeat this kind of analysis in the case γ = 1 and obtain local
wellposedness for initial data which are compact perturbations of steady states.
However we shall not discuss this simple case and will focus instead on the more
interesting case where the initial data can be essentially noncompact. A useful
example is where the initial density ρ0(x) decays as (1+ |x |2)−β for some large
exponent β as |x |→∞; in other words, we allow the density to decay to vacuum at
spatial infinity. As it turns out, even the local theory for such initial data requires a
bit of work, since the standard H k

x spaces which fit so well with the usual symmetric
hyperbolic systems are not suitable for closing the estimates due to problems at low
frequencies. Instead, we will establish the local existence in L p(Rd)∩ Ḣ k(Rd):

Theorem 1.1 (local existence). Let the dimension be d ≤ 3. Let k ≥ 10d be a large
integer and take p such that d < p ≤ 4. Assume the initial data satisfy

(1-6)
ρ0 > 0, ρ0

−1
∇ρ0 ∈ L p(Rd)∩ Ḣ k−1(Rd),

ρ0 ∈ L p(Rd)∩ Ḣ k−1(Rd), v0 ∈ L p(Rd)∩ Ḣ k(Rd).

Then there exists T > 0 such that the Cauchy problem (1-1) admits a unique solution

ρ ∈ C([0, T ]; L p(Rd)∩ Ḣ k−1(Rd)), v ∈ C([0, T ]; L p(Rd)∩ Ḣ k(Rd)),

with ρ > 0. Moreover, ρ−1
∇ρ ∈ C([0, T ], L p(Rd) ∩ Ḣ k−1(Rd)). If in addition

ρ0 ∈ L1(Rd), we have mass conservation:∫
ρ(t, x) dx =

∫
ρ0(x) dx .
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Remark 1.2. In Theorem 1.1, the restriction p > d comes from the physical
assumptions we put on the initial data ρ0. Since we allow ρ0 to be essentially
noncompact, in particular we can take ρ0 ∼ (1+ |x |2)−β for |x | � 1. It is not
difficult to check that in this case ρ−1

0 ∇ρ0 ∈ L p(Rd) only for p > d. On the other
hand the upper bound p ≤ 4 comes from bounding certain L2-norm of products in
the nonlinear estimates. For example (see also (2-2)), if we have two functions f , g
with frequencies supported on the ball |ξ | ≤ 1, that is, f ∼ P≤1 f , g ∼ P≤1g (here
P≤1 is the usual Littlewood–Paley projector, see Section 2), and we only know that
f and g are bounded in L p, then

‖ f g‖L2
x (R

d ) . ‖ f ‖L2p/(p−2)
x

‖g‖p . ‖ f ‖p‖g‖p,

where in the last inequality we have to use the Bernstein inequality for which the
constraint 2p/(p− 2) ≥ p or p ≤ 4 is deduced. By the constraint d < p ≤ 4 we
deduce d ≤ 3 and this is the main reason for the restriction of the dimension.

The next result is on the formation of singularities in finite time. We will show
that the local solutions constructed in Theorem 1.1 have finite life spans. As
was mentioned before, the class of data that leads to blowups is a not a compact
perturbation of the constant state. More precisely we have the following

Theorem 1.3 (blowup from spatial infinity). Let ρ0, v0 satisfy the conditions in
(1-6) and ρ0 ∈ L1(Rd). For d = 2, 3, we also assume v0 is irrotational: curl(v0)= 0.
Let ρ0(x) = 1, v0(x) = 0, for all |x | ≤ 10. Let φ(x) be a Schwartz function such
that ∇2φ(x) is positive definite on |x |> 1. Set

(1-7) N :=
∫
ρ0v0 · ∇φ(x) dx .

Then there exist a constant C = C(‖ρ0‖1) > 0 such that whenever N > C , the
corresponding solution constructed in Theorem 1.1 blows up at some time T ∗ < 1.

Remark 1.4. The blowup constructed in Theorem 1.3 is different from the usual
case where the initial data is concentrated near the origin. In our scenario, the bulk
of the initial data is concentrated near spatial infinity and the quantity N defined
in (1-7) measures this concentration. The intuitive picture is that initially the fluid
is quiet in an O(1)-neighborhood of the origin but is supersonic near the spatial
infinity. After an O(1)-finite time the fluid develops singularities in the transient
region away from the origin.

2. Preliminaries

We will often use the notation X . Y whenever there exists some constant C such
that X ≤CY . For any two operators A, B, we use the notation [A, B] := AB− B A
to denote the commutator.
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We will also need to use the Littlewood–Paley theory. Let ϕ(ξ) be a smooth
bump function supported in the ball |ξ | ≤ 2 and equal to one on the ball |ξ | ≤ 1.
For each dyadic number N ∈ 2Z we define the Littlewood–Paley operators

P̂≤N f (ξ) := ϕ(ξ/N ) f̂ (ξ), P̂>N f (ξ) := [1−ϕ(ξ/N )] f̂ (ξ),

P̂N f (ξ) := [ϕ(ξ/N )−ϕ(2ξ/N )] f̂ (ξ).

Similarly we can define P<N , P≥N , and PM<·≤N := P≤N − P≤M , whenever M and
N are dyadic numbers. We will frequently write f≤N for P≤N f and similarly for
the other operators. We recall the following standard Bernstein- and Sobolev-type
inequalities:

Lemma 2.1. For any 1≤ p ≤ q ≤∞ and s > 0, we have

‖P≥N f ‖L p
x
. N−s

‖|∇|
s P≥N f ‖L p

x
,

‖|∇|
s P≤N f ‖L p

x
. N s

‖P≤N f ‖L p
x
,

‖|∇|
±s PN f ‖L p

x
∼ N±s

‖PN f ‖L p
x
,

‖P≤N f ‖Lq
x
. N d/p−d/q

‖P≤N f ‖L p
x
,

‖PN f ‖Lq
x
. N d/p−d/q

‖PN f ‖L p
x
.

We will use the following simple estimate frequently:

(2-1) ‖ f ‖∞ . ‖P≤1 f ‖p +
∑
N>1
N∈2Z

N d/2
‖PN f ‖2 . ‖P≤1 f ‖p +‖P>1 f ‖Ḣd/2+1 .

We prove below some commutator estimates which will be useful in controlling
the nonlinear terms. To simple notations we shall assume that the functions are
scalar-valued. The extension to vector-valued functions is rather trivial. In order not
to be burdened with notations, we will sometimes use the same notations for vector-
valued functions as in the scalar-valued case. For example if v = (v1, · · · , vd) and
v j ∈ L2

x(R
d), we shall simply write v ∈ L2

x(R
d) in place of v ∈ L2

x(R
d)d .

Lemma 2.2. Let f, g ∈ S(Rd). Let ∂ denote any partial derivative. Let 2≤ p ≤ 4
and k > d + 2. Then

‖[∂k, f ∂]g‖2 . ‖ f ‖Ḣ k∩L p‖g‖Ḣ k∩L p , ‖[∂k, f ]g‖2 . ‖ f ‖Ḣ k∩L p‖g‖Ḣ k−1∩L p ,

‖[∂k−1, f ]∂g‖2 . ‖ f ‖Ḣ k∩L p‖g‖Ḣ k−1∩L p .

Proof. We only prove the first one. By the chain rule and the triangle inequality, we
have the bound

‖[∂k, f ∂]g‖2 .
∑

1≤ j≤k

‖∂ j f ∂k+1− j g‖2.
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In the case 1 ≤ j ≤ k/2, we split g into low and high frequencies. For the low-
frequency piece, we use the fact p ≤ 4 and Bernstein to get

‖∂ j f ∂k+1− j P≤1g‖2 ≤ ‖∂ j f ‖2p/(p−2)‖∂
k+1− j P≤1g‖p

. (‖∂ j P≤1 f ‖2p/(p−2)+‖∂
j P>1 f ‖2p/(p−2))‖g‖p

. ‖ f ‖Ḣ k∩L p‖g‖p.

In the last estimate, we used a similar estimate as in (2-1). For the high-frequency
piece, we use Sobolev embedding and Bernstein to get

‖∂ j f ∂k+1− j P>1g‖2 ≤ ‖∂ j f ‖∞‖∂k+1− j P>1g‖2(2-2)

. ‖ f ‖Ḣ k∩L p‖g‖Ḣ k .

Again we invoke (2-1) in the last step. In the case k/2< j ≤ k, we can instead split
f into low and high frequencies. Then the estimate just follows by symmetry. �

We need to use the following space which will be useful for proving some
contraction estimates in Section 3. For any positive integer k, define

(2-3) Xk = { f, ‖ f ‖Xk := ‖ f ‖p +‖P>1 f ‖Ḣ k <∞}.

It is not difficult to check that for k > d/2 the space Xk forms an algebra. This fact
together with some useful commutator estimates and product estimates are stated
in the next

Lemma 2.3. Under the same conditions as in Lemma 2.2, we have:

‖[∂k−1, f ∂]P>1g‖2 . ‖ f ‖Xk−1‖P>1g‖Ḣ k−1,

‖∂k−1( f P.1g)‖2 . ‖ f ‖Xk−1‖g‖p,

‖[∂k−1, f ]P>1g‖2 . ‖ f ‖Xk−1‖g‖Xk−2,

‖∂k−1( f ∂g)‖2 . ‖ f ‖Xk−1‖g‖Xk ,

‖∂k−1( f g)‖2 . ‖ f ‖Xk−1‖g‖Xk−1 .

Proof. The proof proceeds in a similar way as in Lemma 2.2. One has to split both
f and g into high- and low-frequency pieces and discuss several cases. We omit
the details. �

3. Proof of Theorem 1.1

To construct the local solution, we will use the usual Picard iteration but in a slightly
nonstandard space and exploiting in an essential way the structure of the system.
Due to the singular nature of the problem, we need both the hyperbolic formulation
of the equation and the original formulation. The tricky part of the analysis is to
define a good iteration scheme.
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To this end, we define
f = log ρ,

and rewrite the Cauchy problem (1-1) in terms of ( f , v) as

(3-1)


∂t f + v · ∇ f +∇ · v = 0,

∂tv+ (v · ∇)v+∇ f = 0,

f (0, x)= log ρ0(x), v(0, x)= v0(x).

By bringing in the f -function, we have obtained the hyperbolic formulation (3-1)
for the original system.

Remark 3.1. It is tempting to invoke the usual wellposedness theory in H k , k>d/2
spaces and conclude that the system (3-1) admits local solutions in C0

t H k
x . However

there is a serious problem with this due to the physical assumptions we put on the
initial data. Namely f = log ρ does not lie in L2

x in general. To see it one can
consider the sample case ρ(x)= 〈x〉−C which immediately yields f ∼ log〈x〉 /∈ L2

x .
In fact it is not difficult to check f /∈ Ḣ k

x (R
d) for any k ≤ d/2.

By Remark 3.1, we shall proceed differently from the usual fashion and work
with an enlarged (and redundant) system of equations which includes both the
hyperbolic formulation and the original system. The advantage is that with a little
bit of work we can obtain regularity of all functions at one stroke.

We start with the zeroth iterate, defined as

ρ(0)(t, x)= ρ0(x), v(0)(t, x)= v0(x), f (0)(t, x)= log ρ0(x).

For any integer n ≥ 0, we inductively define (ρ(n+1), v(n+1), f (n+1)) as solutions
to the linear system

(3-2)


∂tρ

(n+1)
+∇ · (ρ(n+1)v(n))= 0,

∂t f (n+1)
+ v(n) · ∇ f (n+1)

+∇ · v(n+1)
= 0,

∂tv
(n+1)
+ (v(n) · ∇)v(n+1)

+∇ f (n+1)
= 0,

ρ(n+1)(0, x)= ρ0(x), f (n+1)(0, x)= logρ0(x), v(n+1)(0, x)= v0(x).

Remark 3.2. Strictly speaking, instead of f (n+1), we should be working with
g(n+1)

=∇ f (n+1) and write the second equation in (3-2) as

∂t g(n+1)
+∇(v(n) · g(n+1))+∇(∇ · v(n+1))= 0,

with initial data g(n+1)
=∇ρ0/ρ0. Correspondingly in the third equation of (3-2)

we should replace ∇ f (n+1) by g(n+1). In this way we do not need to prove any
regularity or solvability estimates of f (n+1) themselves in the iteration system.
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We first show that the sequence of functions v(n) are uniformly bounded in
the space L∞t ([0, T ]; Ḣ k

∩ L p), (ρ(n), ∇ f (n)) are uniformly bounded in the space
L∞t ([0, T ]; Ḣ k−1

∩ L p) for some suitably small T .

Step 1: The L p boundedness of the iterates (ρ(n+1), v(n+1),∇ f (n+1)). Multiplying
the first equation in (3-2) by |ρ(n+1)

|
p−2ρ(n+1) and integrating by parts, we get

1
p

d
dt
‖ρ(n+1)(t)‖p

p +
p− 1

p

∫
(ρ(n+1))p

∇ · v(n) dx = 0.

Therefore
d
dt
‖ρ(n+1)(t)‖p ≤ ‖∇ · v

(n)(t)‖∞‖ρ(n+1)(t)‖p(3-3)

. ‖v(n)(t)‖Ḣ k∩L p‖ρ
(n+1)(t)‖p.

Next we take the inner product with |v(n+1)
|

p−2v(n+1) on both sides of the third
equation in (3-2). After integrating on Rd , we get

1
p

d
dt
‖v(n+1)(t)‖p

p −
1
p

∫
∇ · v(n)|v(n+1)

|
p dx

+

∫
|v(n+1)

|
p−2
∇ f (n+1)

· v(n+1) dx = 0.

Hölder’s inequality yields

(3-4)
d
dt
‖v(n+1)(t)‖p . ‖∇ · v

(n)(t)‖∞‖v(n+1)(t)‖p +‖∇ f (n+1)(t)‖p

. ‖v(n)(t)‖Ḣ k∩L p‖v
(n+1)(t)‖p +‖∇ f (n+1)(t)‖p.

To close the estimate, we need to estimate ‖∇ f (n+1)
‖p. Differentiating the

second equation in (3-2) once, we have the equation for ∂i f (n+1):

∂t∂i f (n+1)
+ ∂i (v

(n)
· ∇ f (n+1))+∇ · ∂iv

(n+1)
= 0.

Multiplying both sides by |∂i f (n+1)
|

p−2∂i f (n+1) and integrating by parts, we get

1
p

d
dt
‖∂i f (n+1)(t)‖p

p +

∫
∂iv

(n)
· ∇ f (n+1)

|∂i f (n+1)
|

p−2∂i f (n+1) dx

−
1
p

∫
∇ · v(n)|∂i f (n+1)

|
p dx +

∫
∇ · ∂iv

(n+1)
|∂i f (n+1)

|
p−2∂i f (n+1) dx = 0.

By Hölder’s inequality,

1
p

d
dt
‖∂i f (n+1)(t)‖p

p ≤ ‖∂iv
(n)(t)‖∞‖∇ f (n+1)(t)‖p‖∂i f (n+1)(t)‖p−1

p

+
1
p
‖∇ · v(n)(t)‖∞‖∂i f (n+1)(t)‖p

p +‖∂i∇ · v
(n+1)(t)‖p‖∂i f (n+1)(t)‖p−1

p .
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Summing in i = 1, . . . , d gives

(3-5)
d
dt
‖∇ f (n+1)(t)‖p

.
d∑

i=1

‖∂iv
(n)(t)‖∞‖∇ f (n+1)(t)‖p +

d∑
j,i=1

‖∂ j∂iv
(n+1)(t)‖p

. ‖v(n)(t)‖Ḣ k∩L p‖∇ f (n+1)(t)‖p +‖v
(n+1)(t)‖Ḣ k∩L p .

This ends the L p-estimate. Next we turn to high-order energy estimates.

Step 2: Ḣ k-estimates. Let ∂k denote a differential operator of order k, we compute

(3-6)
d
dt

∫
|∂kv(n+1)

|
2 dx

= 2
∫
∂kv(n+1)

· ∂k∂tv
(n+1) dx

=−2
∫
∂kv(n+1)

· ∂k
[(v(n) · ∇)v(n+1)

]dx − 2
∫
∂kv(n+1)

· ∂k
∇ f (n+1) dx

=−2
∫
∂kv(n+1)

·[(v(n)·∇)∂kv(n+1)
]−2

∫
∂kv(n+1)

·[∂k, (v(n)·∇)]v(n+1) dx

− 2
∫
∂kv(n+1)

· ∂k
∇ f (n+1) dx

=

∫
∇ · v(n)|∂kv(n+1)

|
2dx − 2

∫
∂kv(n+1)

· [∂k, (v(n) · ∇)]v(n+1) dx

− 2
∫
∂kv(n+1)

· ∇∂k f (n+1) dx .

Similarly for f (n+1) we have

(3-7)
d
dt

∫
|∂k f (n+1)

|
2 dx =

∫
∇ · v(n)|∂k f (n+1)

|
2

− 2
∫
∂k f (n+1)

[∂k, v(n)] · ∇ f (n+1)
− 2

∫
∂k f (n+1)∂k

∇ · v(n+1) dx .

Adding (3-6), (3-7) together, we have

d
dt

(
‖∂kv(n+1)(t)‖22+‖∂

k f (n+1)(t)‖22
)

=

∫
∇ · v(n)|∂kv(n+1)

|
2dx − 2

∫
∂kv(n+1)

· [∂k, (v(n) · ∇)]v(n+1) dx

+

∫
∇ · v(n)|∂k f (n+1)

|
2dx − 2

∫
∂k f (n+1)

[∂k, v(n)] · ∇ f (n+1) dx .
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By Hölder’s inequality and Lemma 2.2, we have
d
dt

(
‖∂kv(n+1)(t)‖22+‖∂

k f (n+1)(t)‖22
)

. ‖∇ · v(n)‖∞
(
‖∂kv(n+1)

‖
2
2+‖∂

k f (n+1)
‖

2
2
)

+‖v(n)‖Ḣ k∩L p

(
‖∂kv(n+1)

‖2‖v
(n+1)
‖Ḣ k∩L p+‖∂

k f (n+1)
‖2‖∇ f (n+1)

‖Ḣ k−1∩L p

)
.

Since ‖∇ · v(n)‖∞ . ‖v(n)‖Ḣ k∩L p , we then obtain

(3-8)
d
dt

(
‖v(n+1)(t)‖2Ḣ k +‖ f (n+1)(t)‖2Ḣ k

)
. ‖v(n)(t)‖Ḣ k∩L p

(
‖v(n+1)(t)‖2Ḣ k∩L p +‖∇ f (n+1)(t)‖2Ḣ k−1∩L p

)
.

The estimates are now complete. However, to prove the contraction estimates,
we still need the high-order energy estimate of ρ(n+1): the Ḣ k−1-norm. By using
integration by parts, we compute

d
dt

∫
|∂k−1ρ(n+1)

|
2 dx =−

∫
∂k−1ρ(n+1)

∇∂k−1ρ(n+1)
· v(n) dx

−

∫
∂k−1ρ(n+1)

[∂k−1, v(n)] · ∇ρ(n+1) dx

−

∫
∂k−1ρ(n+1)∂k−1(ρ(n+1)

∇ · v(n)) dx .

By Hölder and using again Lemma 2.2, we obtain

(3-9)
d
dt
‖ρ(n+1)(t)‖Ḣ k−1 . ‖v(n)(t)‖Ḣ k∩L p‖ρ

(n+1)(t)‖Ḣ k−1∩L p .

Set

M (n+1)(t) := ‖ρ(n+1)(t)‖2Ḣ k−1∩L p +‖v
(n+1)
‖

2
Ḣ k∩L p +‖∇ f (n+1)

‖
2
Ḣ k−1∩L p .

Collecting the estimates (3-3), (3-4), (3-5), (3-8) and (3-9), we have{ d
dt

M (n+1)(t)≤ C M (n+1)(t)(1+M (n)(t)),

M (n+1)(0)= ‖ρ0‖
2
Ḣ k−1∩L p +‖v0‖

2
Ḣ k∩L p +‖∇ f0‖

2
Ḣ k−1∩L p := M0.

Here the constant depends only on p, d . Applying Gronwall’s inequality, we obtain

(3-10) M (n+1)(t)≤ M0 exp
{

C
∫ t

0
(1+M (n)(s)) ds

}
.

It suffices to take T small enough such that

(3-11) 8CT (1+M0)≤
1

100 .



BLOWUP FOR ISENTROPIC COMPRESSIBLE EULER EQUATION 119

Then the sequence M (n)(t) are uniformly bounded as

(3-12) ‖M (n)
‖L∞t ([0,T ]) ≤ 2M0.

Therefore, for the chosen T , the sequence {ρ(n),∇ f (n)} are bounded in

L∞t
(
[0, T ]; (Ḣ k−1

∩ L p)
)
,

and {v(n)} are bounded in L∞t
(
[0, T ]; (Ḣ k

∩ L p)
)
. In the next step, we shall show

that they are Cauchy in an intermediate topology.

Step 3: Contraction estimates. It is easy to check that the differences ρ(n+1)
− ρ(n),

v(n+1)
− v(n), and f (n+1)

− f (n) satisfy the system of equations

∂t(ρ
(n+1)
− ρ(n))+∇ · ((ρ(n+1)

− ρ(n))v(n))+∇ · (ρ(n)(v(n)− v(n−1)))= 0,

∂t(v
(n+1)
− v(n))+ (v(n) · ∇)(v(n+1)

− v(n))

+ [(v(n)− v(n−1)) · ∇]v(n)+∇( f (n+1)
− f (n))= 0,

∂t( f (n+1)
− f (n))+ v(n) · (∇ f (n+1)

−∇ f (n))

+ (v(n)− v(n−1)) · ∇ f (n)+∇ · (v(n+1)
− v(n))= 0.

We shall prove that the sequence v(n) is Cauchy in Xk−1 and (ρ(n), f (n)) is
Cauchy in Xk−2. Here the space X j is defined in (2-3). We first estimate the L p

norm as

d
dt
‖ρ(n+1)

− ρ(n)(t)‖p
p . ‖∇ · v

(n)
‖∞‖ρ

(n+1)
− ρ(n)‖p

p

+‖∇ρ(n)‖∞‖v
(n)
− v(n−1)

‖p‖ρ
(n+1)
− ρ(n)‖p−1

p

+‖ρ(n)‖∞‖∇ · (v
(n)
− v(n−1))‖p‖ρ

(n+1)
− ρ(n)‖p−1

p .

Note that
‖ρ(n)‖∞+‖∇ρ

(n)
‖∞ . ‖ρ

(n)
‖Xk−1,

‖∇ · v(n−1)
‖∞ . ‖v

(n−1)
‖Xk ,

‖v(n)− v(n−1)
‖p . ‖v

(n)
− v(n−1)

‖Xk−1,

‖∇ · (v(n)− v(n+1))‖p . ‖v
(n)
− v(n−1)

‖Xk−1 .

Therefore

(3-13)
d
dt
‖ρ(n+1)

− ρ(n)‖p

. ‖v(n)‖Xk‖ρ
(n+1)
− ρ(n)‖p +‖ρ

(n)
‖Xk−1‖v

(n)
− v(n−1)

‖Xk−1 .

Similarly we also have
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d
dt
‖v(n+1)(t)− v(n)(t)‖p

p

. ‖∇ · v(n)(t)‖∞‖(v(n+1)
− v(n))(t)‖p

p

+‖∇v(n)(t)‖∞‖(v(n)− v(n−1))(t)‖p‖(v
(n+1)
− v(n))(t)‖p−1

p

+‖(∇ f (n+1)
−∇ f (n))(t)‖p‖(v

(n+1)
− v(n))(t)‖p−1

p .

Using the fact ‖∇ f (n+1)
−∇ f (n)‖p . ‖∇ f (n+1)

−∇ f (n)‖Xk−2 , we arrive at

(3-14)
d
dt
‖(v(n+1)

− v(n))(t)‖p . ‖v
(n)(t)‖Xk‖(v

(n)
− v(n−1))(t)‖Xk−1

+‖(∇ f (n+1)
−∇ f (n))(t)‖Xk−2 .

For the L p estimate of ∇ f (n+1)
−∇ f (n), we have

d
dt
‖∂ f (n+1)(t)− ∂ f (n)(t)‖p

p

. ‖∇v(n)‖∞‖∇( f (n+1)
− f (n))‖p‖∂ f (n+1)

− ∂ f (n)‖p−1
p

+‖∇ · v(n)‖∞‖∂ f (n+1)
− ∂ f (n)‖p

p

+‖∇ f (n)‖∞‖∂(v(n)− v(n−1))‖p‖∂ f (n+1)
− ∂ f (n)‖p−1

p

+‖∂∇ f (n)‖∞‖v(n)− v(n−1)
‖p‖∂ f (n+1)

− ∂ f (n)‖p−1
p

+‖∂∇ · (v(n+1)
− v(n))‖p‖∂ f (n+1)

− ∂ f (n)‖p−1
p .

Or, simplifying a bit,

(3-15)
d
dt
‖(∇ f (n+1)

−∇ f (n))(t)‖p

. ‖v(n)(t)‖Xk‖(∇ f (n+1)
−∇ f (n))(t)‖Xk−2

+‖∇ f (n)(t)‖Xk−1‖(v
(n)
− v(n−1))(t)‖Xk−1 +‖(v

(n+1)
− v(n))(t)‖Xk−1 .

We now turn to the Ḣ k−1 estimates of the high-frequency part of the iterate
differences. From direct computation, we have

(3-16)
d
dt

∫
|P>1∂

k−1(v(n+1)
− v(n))|2 dx = I1+ I2+ I3,

where we have set

I1 =−2
∫

P>1∂
k−1(v(n+1)

− v(n)) · P>1∂
k−1
[(v(n) · ∇)(v(n+1)

− v(n))] dx,

I2 =−2
∫

P>1∂
k−1(v(n+1)

− v(n)) · P>1∂
k−1
[(v(n)− v(n−1)) · ∇v(n)] dx,

I3 =−2
∫

P>1∂
k−1(v(n+1)

− v(n)) · P>1∂
k−1
∇( f (n+1)

− f (n)) dx .
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We can write

I1 =−2
∫

P>1∂
k−1(v(n+1)

−v(n)) · P>1∂
k−1
[(v(n) ·∇)P2

>1(v
(n+1)
−v(n))] dx

−2
∫

P>1∂
k−1(v(n+1)

−v(n)) · P>1∂
k−1
[(v(n) ·∇)(I−P2

>1)(v
(n+1)
−v(n))] dx

=−2
∫

P2
>1∂

k−1(v(n+1)
−v(n)) ·(v(n) ·∇)∂k−1 P2

>1(v
(n+1)
−v(n)) dx

−2
∫

P2
>1∂

k−1(v(n+1)
−v(n)) · [∂k−1, (v(n) ·∇)]P2

>1(v
(n+1)
−v(n)) dx

−2
∫

P2
>1∂

k−1(v(n+1)
−v(n)) ·∂k−1

[(v(n) ·∇)(I − P2
>1)(v

(n+1)
−v(n))] dx .

Integrating by parts and using Hölder’s inequality together with Lemma 2.3 (the
first two), we obtain the estimate

I1 . ‖∇·v
(n)
‖∞‖∂

k−1 P2
>1(v

(n+1)
−v(n))‖22

+‖P>1∂
k−1(v(n+1)

−v(n))‖2‖[∂
k−1, (v(n) ·∇)]P2

>1(v
(n+1)
−v(n))‖2

+‖P>1∂
k−1(v(n+1)

−v(n))‖2‖∂
k−1((v(n) ·∇)(I−P2

>1)(v
(n+1)
−v(n)))‖2

. ‖v(n)‖Xk‖P>1∂
k−1(v(n+1)

−v(n))‖22

+‖P>1∂
k−1(v(n+1)

−v(n))‖2‖v
(n)
‖Xk‖v

(n+1)
−v(n)‖Xk−1

. ‖v(n)‖Xk‖P>1∂
k−1(v(n+1)

−v(n))‖2‖v
(n+1)
−v(n)‖Xk−1 .

For the next term, we use Lemma 2.3 to write

(3-17) I2 . ‖∂
k−1 P>1(v

(n+1)
− v(n))‖2‖P>1∂

k−1([(v(n)− v(n−1)) · ∇]v(n))‖2

. ‖v(n)‖Xk‖P>1∂
k−1(v(n+1)

− v(n))‖2‖v
(n)
− v(n−1)

‖Xk−1 .

Collecting the estimates above, we have

(3-18)
d
dt
‖P>1∂

k−1(v(n+1)
− v(n))‖22

≤ C‖v(n)‖Xk‖P>1∂
k−1(v(n+1)

− v(n))‖2

×
[
‖v(n+1)

− v(n)‖Xk−1 +‖v
(n)
− v(n−1)

‖Xk−1

]
− 2

∫
P>1∂

k−1(v(n+1)
− v(n)) · P>1∂

k−1
∇( f (n+1)

− f (n)) dx .

The estimate for f (n+1)
− f (n) follows similarly. We compute
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d
dt

∫
|P>1∂

k−1( f (n+1)
− f (n))|2dx

=−2
∫

P>1∂
k−1( f (n+1)

− f (n))P>1∂
k−1
[v(n) · (∇ f (n+1)

−∇ f (n))] dx

− 2
∫

P>1∂
k−1( f (n+1)

− f (n))P>1∂
k−1
[(v(n)− v(n−1)) · ∇ f (n)] dx

− 2
∫

P>1∂
k−1( f (n+1)

− f (n))∇ · P>1∂
k−1(v(n+1)

− v(n)) dx

=−2
∫

P2
>1∂

k−1( f (n+1)
− f (n))v(n) · ∂k−1 P2

>1(∇ f (n+1)
−∇ f (n)) dx

− 2
∫

P2
>1∂

k−1( f (n+1)
− f (n))[∂k−1, v(n)] · P2

>1(∇ f (n+1)
−∇ f (n)) dx

− 2
∫

P2
>1∂

k−1( f (n+1)
− f (n))∂k−1(v(n) · (I − P2

>1)(∇ f (n+1)
−∇ f (n))) dx

− 2
∫

P>1∂
k−1( f (n+1)

− f (n))P>1∂
k−1
[(v(n)− v(n−1)) · ∇ f (n)] dx

− 2
∫

P>1∂
k−1( f (n+1)

− f (n))∇ · P>1∂
k−1(v(n+1)

− v(n)) dx .

Applying Lemma 2.3 (the last two estimates), we get

(3-19) d
dt
‖P>1∂

k−1( f (n+1)
− f (n))‖22

≤ C‖v(n)‖Xk‖∇ f (n+1)
−∇ f (n)‖Xk−2‖P>1∂

k−1( f (n+1)
− f (n))‖2

+C‖∇ f (n)‖Xk−1‖v
(n)
− v(n−1)

‖Xk−1‖P>1∂
k−1( f (n+1)

− f (n))‖2

− 2
∫

P>1∂
k−1( f (n+1)

− f (n))∇ · P>1∂
k−1(v(n+1)

− v(n)) dx .

Adding together (3-18) and (3-19), we have

d
dt
‖P>1∂

k−1(v(n+1)
− v(n))‖22+

d
dt
‖P>1∂

k−1( f (n+1)
− f (n))‖22

≤ C‖v(n)‖Xk‖P>1(v
(n+1)
− v(n))‖Ḣ k−1‖v

(n)
− v(n−1)

‖Xk−1

+C‖v(n)‖Xk‖∇ f (n+1)
−∇ f (n)‖Xk−2‖P>1∂

k−1( f (n+1)
− f (n))‖2

+C‖∇ f (n)‖Xk−1‖v
(n)
− v(n−1)

‖Xk−1‖P>1∂
k−1( f (n+1)

− f (n))‖2.
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Summing over all the partial derivatives and using Cauchy–Schwartz, we have

(3-20) d
dt
(
‖P>1(v

(n+1)
− v(n))‖2Ḣ k−1 +‖P>1∇( f (n+1)

− f (n))‖2Ḣ k−2

)
. ‖v(n)‖Xk ·

(
‖v(n)− v(n−1)

‖
2
Xk−1
+‖v(n+1)

− v(n)‖2Xk−1

)
+‖v(n)‖Xk · ‖∇( f (n+1)

− f (n))‖2Xk−2

+‖∇ f (n)‖Xk−1 ·
(
‖v(n)− v(n−1)

‖
2
Xk−1
+‖∇( f (n+1)

− f (n))‖2Xk−2

)
.

Similarly, we get the estimate for ρ as follows:

(3-21) d
dt
‖P>1(ρ

(n+1)
− ρ(n))‖Ḣ k−2 . ‖ρ(n)‖Xk−1‖v

(n)
− v(n−1)

‖Xk−1

+‖v(n)‖Xk‖ρ
(n+1)
− ρ(n)‖Xk−2 .

Let

N n(t)= ‖v(n+1)
− v(n)‖2Xk−1

+‖∇ f (n+1)
−∇ f (n)‖2Xk−2

+‖ρ(n+1)
− ρ(n)‖2Xk−2

.

Collecting estimates (3-13)–(3-15), (3-20), (3-21), and integrating in t , we have

N (n+1)(t)≤ C
∫ t

0
(1+M (n)(τ ))N (n)(τ ) dτ +C

∫ t

0
(1+M (n)(τ ))N (n+1)(τ ) dτ.

Using Gronwall’s inequality we get

‖N (n+1)
‖L∞t ([0,T ]) ≤ CT ‖M (n)N (n)

‖L∞t ([0,T ]) exp
{
CT (1+‖M (n)

‖L∞t ([0,T ]))
}
.

From (3-12) and the choice of T (3-11), we have

(3-22) ‖N (n+1)
‖L∞t ([0,T ]) ≤ 2C M0T ‖N (n)

‖L∞t ([0,T ]) exp{2CT (1+M0)}

≤
1
2‖N

(n)
‖L∞t ([0,T ]).

Step 4: Limiting system and regularity of solutions. The estimate (3-22) easily
implies that

{ρ(n)}∞n=1 is Cauchy in L∞t ([0, T ], Xk−2),

{v(n)}∞n=1 is Cauchy in L∞t ([0, T ], Xk−1),

{∇ f (n)}∞n=1 is Cauchy in L∞t ([0, T ], Xk−2).

From the condition k ≥ 10d, and using the embedding Xk−2 ⊂ W [k/2],p, we
know that all sequences {ρ(n), v(n),∇ f (n)}∞n=1 are Cauchy in L∞t ([0, T ];W [k/2],p).
Using the iteration system (3-2) and noting W [k/5],p is an algebra, we can up-
grade the regularity in time and obtain that {ρ(n), v(n),∇ f (n)}∞n=1 are Cauchy in
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W [k/5],∞t ([0, T ];W [k/5],p). Therefore there exist

ρ ∈ L∞t ([0, T ], Ḣ k−1
∩ L p)∩W [k/5],∞t ([0, T ];W [k/5],p),

g ∈ L∞t ([0, T ], Ḣ k−1
∩ L p)∩W [k/5],∞t ([0, T ];W [k/5],p),

v ∈ L∞t ([0, T ], Ḣ k
∩ L p)∩W [k/5],∞t ([0, T ];W [k/5],p).

such that the following equations hold true in the classical sense:

(3-23)


∂tρ+∇ · (ρv)= 0,

∂tv+ (v · ∇)v+ g = 0,

∂t g+∇(v · g)+∇(∇ · v)= 0.

Step 5: Continuity in highest norm. Since (ρ, v, g) ∈ C([0, T ], L p
x ), we only need

to show (ρ, g) ∈ C([0, T ], Ḣ k−1
x ), v ∈ C([0, T ], Ḣ k). We shall only prove it for ρ

as the others are similar. Fix any t0 ∈ [0, T ], we compute

(3-24) ‖∂k−1(ρ(t)− ρ(t0))‖22
= ‖∂k−1ρ(t)‖22−‖∂

k−1ρ(t0)‖22+ 2〈∂k−1ρ(t0)− ∂k−1ρ(t), ∂k−1ρ(t0)〉,

where 〈 , 〉 is the usual L2-pairing. By a simple density argument and the fact that
ρ ∈ C([0, T ], L p

x ), we have1

lim
t→t0
|(3-24)| = 0.

Therefore we only need to check the norm continuity, that is:

lim
t→t0
‖∂k−1ρ(t)‖22 = ‖∂

k−1ρ(t0)‖22.

But this follows from a simple Gronwall estimate, which was essentially done in
Step 1. We omit the details.

Finally to recover the equation in (1-1) we still need to show ρ >0 and g=∇ρ/ρ.
Since the initial data ρ0 is positive, the positivity of ρ follows easily from the method
of characteristics and the fact that v ∈ C2. We leave the proof that g = ∇ρ/ρ to
the next step.

Step 6: Identification of g with ∇ρ/ρ. We first show that

(3-25)
∇ρ

ρ
∈ C([0, T ], L p

x ).

1If t0 = 0, then the left continuity can be obtained by the simple fact that our solution actually
belongs to C([−T1, T ], L p

x ) for some small T1 since our system is inviscid.



BLOWUP FOR ISENTROPIC COMPRESSIBLE EULER EQUATION 125

From Step 4 and using the positivity of ρ(n) and ρ, it is not difficult to check that
up to a subsequence,

∇ρ(n)

ρ(n)
(t, x)→

∇ρ

ρ
(t, x), a.e. (t, x) ∈ [0, T ]×Rd .

Thus (3-25) can be proved if the sequence ∇ρ(n)/ρ(n) is Cauchy in C0
t L p

x . To this
end, we set g(n+1)

1 =∇ρ(n+1)/ρ(n+1). By the ρ-equation in (3-2) we have

∂t g(n+1)
1 +∇(∇ · v(n))+∇(v(n) · g(n+1)

1 )= 0.

Using integration by parts (note that g(n+1)
1 is gradient-like), we obtain

d
dt
‖g(n+1)

1 (t)‖p . ‖v
(n)(t)‖Xk (1+‖g

(n+1)
1 (t)‖p).

From Gronwall’s inequality and the choice of T (shrinking T if necessary), we
obtain

‖g(n+1)
1 ‖L∞t ([0,T ];L

p
x )
≤ 2M0.

Similarly, we have
‖∂ g(n+1)

1 ‖L∞t ([0,T ];L
p
x )
≤ 2M0.

Summing over all partial derivatives we see ∇ g(n+1)
1 is bounded in L p.

For the L p norm of the difference, we have

d
dt
‖g(n+1)

1 − g(n)1 ‖p . ‖v
(n)
‖Xk‖g

(n+1)
1 − g(n)1 ‖p +‖v

(n)
− v(n−1)

‖Xk−1‖g
(n)
1 ‖W 1,p .

Using the boundedness of g(n)1 in W 1,p and Gronwall, we have

‖g(n+1)
1 − g(n)1 ‖L∞t ([0,T ];L p) ≤ C‖v(n)− v(n−1)

‖L∞t ([0,T ];Xk−1).

Therefore g(n)1 is Cauchy in C0
t ([0, T ]; L p

x ). This completes the proof of (3-25).
We are now ready to show g =∇ρ/ρ. Indeed, from the first equation in (3-23),

we see ∇ρ/ρ satisfies in the classical sense

∂t

(
∇ρ

ρ

)
+∇

(
v ·
∇ρ

ρ

)
+∇(∇ · v)= 0.

This equation has exactly the same form as the g-equation in (3-23). The identifica-
tion of g with ∇ρ/ρ then follows from the uniqueness of the solutions in the L p

class, to the following vector equation

∂t h+∇(v · h)= 0, h(0) ∈ L p.

The uniqueness in L p follows from a simple energy estimate which is omitted
here. We note that if ρ0 ∈ L1, then the mass conservation follows from a standard
truncation argument. We omit the details.
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4. Proof of Theorem 1.3

By Theorem 1.1, for any chosen ρ0, v0, there exists a time T > 0 such that (1-1)
admits a unique solution (ρ(t, x), v(t, x)) on [0, T ]. In particular, the local solution
is at least C2 and satisfies the equation in the classical sense. Since curl(v0)= 0, it
is easy to check that curl(v(t))= 0 for any t . We first observe the property of finite
propagation speed. Indeed, set

f = log ρ.

Then the Euler equation (1-1) can be written as{
∂t f +∇ · v+ v · ∇ f = 0,

∂tv+ (v · ∇)v+∇ f = 0.

Taking one more derivative in t for both equations and using the irrotational condition
curlv = 0, we have{
∂t t f −1 f = 1

21(|v|
2)+ 1

2∇ f · ∇(|v|2)+ |∇ f |2+ v · ∇(∇ · v)+ v · ∇(v · ∇ f ),

∂t tv−1v =∇(v · (v · ∇)v)+ 2∇(v · ∇ f ).

This is a standard quasilinear wave equation. The standard arguments (compare
[Sogge 1995]), yields the finite propagation speed. In particular, we have ρ(t, x)=1,
v(t, x)= 0 for all t, x such that |x | ≤ 10− t and t ≤ T .

We claim that the corresponding local solution ρ(t, x), v(t, x) must blow up
before t = 1. We argue by contradiction. Suppose ρ, v exist on [0, 1], then we have

d
dt

∫
ρφ dx =

∫
ρv · ∇φ dx .

Taking one more derivative in t , we get

d2

dt2

∫
ρφ dx =

d
dt

∫
ρv · ∇φ dx

=

∫
ρ∂tv · ∇φ+

∫
∂tρv · ∇φ dx

=−

∫
(ρ(v · ∇)v) · ∇φ dx −

∫
∇ · (ρv)v · ∇φ dx −

∫
∇ρ · ∇φ dx

=

∫
ρv jvk∂ jkφ(x) dx +

∫
ρ1φ dx .

Note v(t, x) vanishes on |x | ≤ 1 for all t ∈ [0, 1]. For |x |> 1, we use the fact that
∇

2φ is positive definite and the boundedness of 1φ to get

d2

dt2

∫
ρφ dx >−C,
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for some C depending on ‖ρ0‖1. Therefore from the condition (1-7), we have

d
dt

∫
ρφ dx ≥ N −C for t ∈ [0, 1].

This implies ∫
ρ(1, x)φ(x) dx ≥

∫
ρ0(x)φ(x)+ N −C,

which, for N large enough, contradicts the fact that∫
ρ(1, x)φ(x) dx ≤ ‖ρ(1)‖1‖φ‖∞.

This completes the proof of Theorem 1.3.
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MIROSLAV BULÍČEK, PETR KAPLICKÝ and MARK
STEINHAUER

35A lower bound for eigenvalues of the poly-Laplacian with arbitrary
order

QING-MING CHENG, XUERONG QI and GUOXIN WEI

49Quiver algebras, path coalgebras and coreflexivity
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