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SYMMETRIC REGULARIZATION,
REDUCTION AND BLOW-UP OF

THE PLANAR THREE-BODY PROBLEM

RICHARD MOECKEL AND RICHARD MONTGOMERY

We carry out a sequence of coordinate changes for the planar three-body
problem, which successively eliminate the translation and rotation symme-
tries, regularize all three double collision singularities and blow-up the triple
collision. Parametrizing the configurations by the three relative position
vectors maintains the symmetry among the masses and simplifies the regu-
larization of binary collisions. Using size and shape coordinates facilitates
the reduction by rotations and the blow-up of triple collision while empha-
sizing the role of the shape sphere. By using homogeneous coordinates to
describe Hamiltonian systems whose configurations spaces are spheres or
projective spaces, we are able to take a modern, global approach to these
familiar problems. We also show how to obtain the reduced and regularized
differential equations in several convenient local coordinates systems.

1. Introduction and history

The three-body problem of Newton has symmetries and singularities. The reduction
process eliminates symmetries thereby reducing the number of degrees of freedom.
The Levi-Civita regularization eliminates binary collision singularities by a nonin-
vertible coordinate change together with a time reparametrization. The McGehee
blow-up eliminates the triple collision singularity by an ingenious polar coordi-
nate change and another time reparametrization. Each process has been applied
individually and in various combinations to the three-body problem, many times.

In this paper we apply all three processes globally and systematically, with no
one body singled out in the various transformations. The end result is a complete
flow on a five-dimensional manifold with boundary. We focus attention on the
geometry of the various spaces and maps appearing along the way. At the heart
of this paper is a beautiful degree-4 octahedral covering map of the shape sphere,
branched over the binary collision points (see Figure 4 on page 179). This map
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first appears in the work of Lemaître [1954; 1964]. One of our goals is to give a
modern, geometrical approach to this regularizing map.

The reduction procedure for the three body problem dates back to Lagrange
[1772] who found elegant differential equations for 10 translation and rotation
invariant variables, including the squares of the lengths of the three sides of the
triangle formed by the bodies. These equations are valid for the three-body problem
in any dimension. The variables of Lagrange also have the advantage of maintaining
the symmetry among the masses. On the other hand, for the planar problem they are
subject to 3 nonlinear constraints in addition to the energy and angular momentum
integrals. Moreover, we do not know a way to regularize the binary collision
singularities in Lagrange’s equations. For a modern introduction to Lagrange’s
equations; see [Albouy and Chenciner 1998; Albouy 2004; Chenciner 2011].

Jacobi eliminates the translation symmetry by the familiar device of fixing the
center of mass at the origin and introducing Jacobi coordinates [1843]. The elimi-
nation of rotations is achieved by introducing some angular variable (or variables
in the spatial case) to describe the overall rotation of the triangle together with
some complementary, rotation-invariant variables. This method, which is the basis
for much of the later work on the three-body problem, has some disadvantages.
First, the Jacobi coordinates break the symmetry among the masses, making it
much more difficult to regularize all three binary collisions at once. Second, for
topological reasons, there is no way to choose an angular variable suitable for a
global reduction that includes the binary collision configurations, namely, the map
from the normalized configuration space to the shape sphere is a Hopf fibration, a
nontrivial circle bundle. If we delete the binary collision points, the bundle becomes
trivial but this deletion is not conducive to subsequent regularization.

Murnaghan [1936] derived a symmetrical Hamiltonian for the planar three-body
problem in terms of the lengths of the sides and an angular variable representing the
overall rotation of the triangle with respect to an inertial coordinate system. Then
he obtains a reduced system by ignoring the angular variable. Van Kampen and
Wintner [1937] carry out a similar reduction for the spatial three-body problem.
While these reductions avoid breaking the symmetry, they are still subject to the
problem about the use of angular variables in a nontrivial bundle. In addition, using
the side lengths as variables leads to differential equations that are not smooth at
the collinear configurations (a problem seemingly avoided somehow by Lagrange).

Lemaître [1954] introduced a symmetrical approach to reduction and regular-
ization of binary collisions leading to the octahedral branched covering map of
the sphere mentioned above. After using Euler angles to reduce by rotations, he
introduces a size variable and two shape variables, which can be viewed as spherical
coordinates on the shape sphere which we use below. The regularization of binary
collisions is done in the shape variables by means of the octahedral covering map.
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The use of Euler angles limits the validity of the reduction step of Lemaître’s work
and the derivations are based on rather heavy trigonometric computations. But much
of this paper can be viewed as a modern, global way to arrive at his covering map.

In this endeavor we have the advantage of the modern theory of reduction of
Hamiltonian systems with symmetry. Smale [1970] describes the reduction process
for the three-body problem as the formation of a quotient manifold with a reduced
Hamiltonian flow. Meyer [1973] and Marsden and Weinstein [1974] formalized the
reduction procedure into what is now called “symplectic reduction theory”. Fixing
the integrals of motion determines invariant manifolds in phase space. The quotient
spaces of these invariant manifolds are the reduced phase spaces and the flows
induced on them are again Hamiltonian with respect to an appropriate symplectic
structure and a reduced Hamiltonian function.

The regularization procedure goes back to Levi-Civita [1920], who showed how
to regularize binary collisions in perturbed planar Kepler problems by using the
complex squaring map (a branched double covering of the complex plane). It is
easy to adapt his method to regularize one of the binary collisions in the three-body
problem, but regularizing all three requires more ingenuity. Lemaître’s regularizing
map behaves like the complex squaring map at each of the binary collision points
on the shape sphere. Another approach to simultaneous regularization (without
reduction) was introduced by Waldvogel [1972], who used a quadratic mapping
of the translation-reduced configuration space C2. We use a similar quadratic
mapping applied to certain homogeneous shape variables below. Heggie [1974]
found an elegant, symmetrical way to regularize all of the binary collisions for the
N -body problem. In the planar case, his method is to apply separate Levi-Civita
transformations to each of the difference vectors qi − q j . We apply this same
idea below, but to the homogeneous shape variables, where it is found to induce
Lemaître’s octahedral covering.

Triple collision acts like an essential singularity in the three-body problem.
McGehee [1974] showed how an extension of spherical coordinates, together with
a time reparametrization, yields a flow with no singularities at triple collision.
This “McGehee blow-up” has the effect of replacing the triple collision point by a
manifold called the collision manifold. Relative to the new parametrization, it takes
forever to reach triple collision, whereas the Newtonian time to triple collision is
finite. The flow on the triple collision manifold governs the behavior of near-triple
collision solutions. One aspect of the blow-up procedure is the use of separate size
and shape coordinates to describe the configuration of the bodies. As shown below,
such a splitting also facilitates the global reduction by rotations.

Several authors have combined blow-up of triple collision with reduction and/or
regularization of binary collision. Waldvogel [1982] reduced and regularized the
flow on the zero-angular-momentum triple collision manifold. The first part of his
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paper combines Murnaghan’s reduction procedure with some formulas of Lemaître
to obtain a reduced and regularized Hamiltonian for the zero-angular momentum
three-body problem. Binary collisions are not regularized on the nonzero angular
momentum levels. However, it is known that triple collisions can only occur when
the angular momentum is zero. After restricting to the zero angular momentum
manifold, Waldvogel blows up the triple collision to get reduced, regularized and
blown-up differential equations. Simó and Susín [1991] used these coordinates in
their study of the dynamics on the collision manifold. These coordinates are very
much in the spirit of this paper but do not achieve a full reduction, regularization
and blow-up due to the restriction to zero angular momentum.

The present paper draws on all these sources. We begin with some symplectic
reduction theory. Turning to the three-body problem, we eliminate translation
symmetry by introducing the three difference vectors Qi j = qi − q j as coordinates.
Since these are linearly dependent, some effort is needed to justify the change of
coordinates. Next we introduce a size variable and associated spherical coordinates
X i j . One novelty of our approach is that we use homogeneous coordinates to
describe points on spheres. Instead of constraining the spherical coordinates to have
a fixed norm, we only ask them to avoid the origin and then we find differential
equations for them that are invariant under scaling.

Once this point of view is adopted, it is relatively easy to carry out a global
reduction by rotations. Using complex coordinates, the combined action of scaling
and rotation is just scaling by a complex number. Quotienting by complex scaling,
we end up with a complex projective space, in fact with CP1. Of course, as real
manifolds, CP1

' S2, and this is our version of the shape sphere. We finally obtain
a global reduction of the planar three-body problem with a six-dimensional reduced
phase space, the cotangent bundle of R+× S2.

Turning to regularization, we use simultaneous Levi-Civita transformations
of the homogeneous variables X i j to regularize all three binary collisions. This
regularizing map is applied to both the rotation-reduced and unreduced problems. In
the reduced case we get a reduced and regularized system on the cotangent bundle
of R+× S2, which is related to the unregularized version by Lemaître’s map.

Finally we show how McGehee’s blow-up procedure can be applied to the various
Hamiltonians we have found.

2. Symplectic reduction

In this section we recall some results about the reduction of a Hamiltonian system
with symmetry. In addition we show how to tell when two symmetric Hamiltonian
systems lead to equivalent reduced systems.
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First we describe the basic symplectic reduction theory of Meyer [1973] and
Marsden and Weinstein [1974] in the case of a system with symmetry. Suppose
(M, ω) is a symplectic manifold and G is a Lie group which acts on M as a group
of symplectic diffeomorphisms. Let J : M→ g∗ be the momentum map, where g∗

is the dual of the Lie algebra of G. If we fix a momentum value µ∈ g∗ and suppose
that the action of G maps the level set J−1(µ) into itself, the quotient space

Pµ = J−1(µ)/G

is called the reduced phase space.
If the group action is free and proper, then this space is a smooth manifold. There

is an induced symplectic form ωµ on Pµ, which is obtained as follows. First, for
x ∈ M , restrict ω(x) to the tangent spaces Tx J−1(µ). The resulting two-form has
a kernel, which is precisely the tangent space to the group orbit through x . This
implies that there is an induced two-form on the quotient vector space that is the
tangent space to the quotient manifold.

Now if H : M→ R is a G-invariant Hamiltonian then the corresponding Hamil-
tonian flow has J−1(µ) as an invariant set and G-orbits map to G-orbits under
the flow. Hence there is a well-defined quotient flow on J−1(µ)/G. There is also
a reduced Hamiltonian Hµ : Pµ → R and the reduction theorem states that the
quotient flow on (Pµ, ωµ) is the Hamiltonian flow of the reduced Hamiltonian.

Now suppose we have two such Hamiltonian systems with symmetry. For
i = 1, 2, there will be symplectic manifolds (Mi , ωi ), symmetry groups Gi and
momentum maps Ji . If we fix momentum values µi , we get reduced phase spaces
Pi = J−1

i (µi )/Gi with symplectic formsωµi . Suppose Hi :Mi→R are Gi -invariant
Hamiltonians and let Hµi : Pi → R be the corresponding reduced Hamiltonians.
We want to give a concrete way to check that the two reduced Hamiltonian flows
are equivalent.

Suppose we have a smooth map F : J−1
1 (µ1)→ J−1

2 (µ2) that maps G1-orbits
into G2-orbits; that is, F is equivariant. Then F induces a smooth map of quotient
manifolds F̂ : P1 → P2. We will call F partially symplectic if it preserves the
restrictions of the symplectic forms, that is,

F∗(ω2|J−1
2 (µ2)

)= ω1|J−1
1 (µ1)

.

It follows that F̂ : (P1, ωµ1)→ (P2, ωµ2) is symplectic. Hence F̂ is a local diffeo-
morphism, even if F itself is locally neither injective nor surjective. Then the usual
theory of symplectic maps applied to F̂ gives:

Theorem 1. Suppose F : J−1
1 (µ1)→ J−1

2 (µ2) is a partially symplectic, equivariant
map and that the restrictions of the Hamiltonians are related by H1 = H2 ◦ F. Then
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F̂ : P1→ P2 is a symplectic, local diffeomorphism of the reduced phase spaces,
which takes orbits of the reduced Hamiltonian flow of Hµ1 to those of Hµ2 .

Definition 2. A partially symplectic, equivariant map G : J−1
2 (µ2)→ J−1

1 (µ1)

such that F ◦G = id (mod G2) and G ◦ F = id (mod G1) (so that these maps take
group orbits into group orbits) will be called a pseudoinverse for F .

A partial inverse G for F induces a bona fide inverse Ĝ for F̂ , which exhibits
an equivalence between the two reduced Hamiltonian flows.

As a special case, suppose the two Hamiltonians are both defined on the same
space and have the same symmetry group. If their restrictions to J−1(µ) agree
then they will lead to the same reduced system. The identity map will provide the
required partially symplectic map. We will call two such Hamiltonians equivalent.
Equivalent Hamiltonians may produce different flows on J−1(µ) but the quotient
flows will agree.

The following theorems about the symplectic reduction of a cotangent bundle
M = T ∗X will be used later. (See [Abraham and Marsden 1978, Theorem 4.3.3]
for a version of these theorems.) Suppose G acts freely on the configuration space
X and that the G-action on M is the canonical lift of this base action. Suppose that
the orbit space B for the G action on X is a manifold and the projection π : X→ B
a submersion.

Theorem 3. Under the above assumptions, the reduced space P0 of T ∗X at µ= 0
is isomorphic to T ∗B with its canonical symplectic structure ωB .

The theorem can be proved as a special case of Theorem 1. Because π is onto,
dπx : Tx X→ Tπ(x)B is an onto linear map for each x ∈ X . Consequently the dual
map dπ∗x : T

∗

π(x)B→ T ∗x X is injective. In the next paragraph we will show that the
image of this dual is J−1(0)x :

(1) im(dπ∗x )= J−1(0)x := J−1(0)∩ T ∗x X.

It follows that we can invert dπ∗x on the fiber J−1(0)x ⊂ T ∗x X . Define

F : J−1(0)→ T ∗B ; F(x, p)= (π(x), dπ∗−1
x (p)).

One verifies that F is a partially symplectic map relative to G acting on J−1(0), and
the trivial group acting on T ∗B. A particularly easy way to see the partially symplec-
tic nature of F is to introduce local bundle coordinates X ⊃ π−1(U )∼=U ×G. (X
is covered by sets of this nature.) In bundle coordinates π(x, g)= x , and so T ∗U X ∼=
T ∗U×G×g∗. We write elements of T ∗X over U as (b, P; g, µ), b ∈U , P ∈ T ∗b U ,
g ∈ G, µ ∈ g∗. In these coordinates J (b, P; g, µ)= µ, so that the general element
of J−1(0)U can be written (b, Pb, g, 0) and F(b, Pb, g, 0) = (b, Pb). We have
ωX = dx∧d P+dg∧dµ and, ωB = dx∧d P , where we hope the meaning of these
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symbolic expressions is obvious. It follows immediately that F∗ωB = ωX |J−1(0),
which is the claimed partially symplectic nature of F . Theorem 3 follows.

We explain why (1) holds, and in the process gain some understanding of the
momentum map. The group action is a map G×X→ X which, when differentiated
with respect to g∈G at the identity, yields the “infinitesimal action” σ :g×X→ TX .
For each frozen x , the map σx : g→ Tx X is linear and, because G acts freely,
injective. As we vary x , σ forms a vector bundle map, part of an exact sequence of
vector bundle maps over X :

0→ g× X
σ
−→ TX

dπ
−→ π∗TB

where π∗TB = {(x, V ); x ∈ X, V ∈ Tπ(x)B} is the pull-back of TB over B by the
map π : X→ B. (Exactness of the sequence follows by differentiating the statement
that the fibers of π are the G-orbits.) Dualizing, we get

0← g∗× X←
σ ∗

T ∗X←−
dπ∗

π∗T ∗B.

The momentum map for the G-action on T ∗X is π1 ◦ σ
∗, where π1 : g

∗
× X→ g∗

is the projection onto the first factor. In other words,

J (x, p)= σ ∗x p.

It follows from the exactness of the dual sequence that im(dπ∗x )= ker(σ ∗x ), which
is precisely (1).

In order to identify the reduction of M = T ∗X at a nonzero value, µ 6= 0, we
introduce a connection 0 for the bundle G → X → B. The curvature of the
connection 0 is a g-valued two-form � on B, which we may pull-back to T ∗B via
the canonical projection τB : T ∗B→ B. Then µ ·� is a scalar-valued two-form
on B.

Theorem 4. Under the same assumptions as above on G, the reduced space Pµ of
T ∗X at µ is isomorphic to T ∗B with the twisted symplectic structure ωB − τ

∗

Bµ ·�.

We only present the proof in the case G = S1, whose Lie algebra we identify
with R in the usual way. Then a connection is a G-invariant one-form on T ∗X that
satisfies the normalization property J (x, 0(x))= 1. Its curvature � is defined by
d0 = π∗�. We define the momentum shift map

8µ : J−1(0)→ J−1(µ), 8µ(x, p)= (x, p+µ0(x)),

which adds µ0 pointwise to each covector. The fiber-linearity of J shows that 8µ
does indeed map J−1(0) onto J−1(µ). (The inverse of 8µ subtracts µ0.) The
map is G-equivariant since 0 is G-invariant. Thus 8µ induces a G-equivariant
diffeomorphism J−1(0)/G→ J−1(µ)/G. We have already identified J−1(0)/G
with T ∗B. However, 8µ is not partially symplectic, so we cannot directly apply
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Theorem 1. To understand and quantify this failure, let2= P dQ denote the canon-
ical one-form on T ∗X . Compute 8∗µ2=2+µτ

∗

X0. Taking the exterior derivative,
using ωX =−d2, we find that 8∗µωX =ωX −µτ

∗

Xπ
∗�. This equation implies that

if we shift the canonical two-form on J−1(0) by subtracting µτ ∗Xπ
∗� then 8µ is a

partially symplectic map between J−1(0) and J−1(µ). Theorem 4 follows.

3. Reduction by translations

To formulate the Newtonian planar three-body problem, it is convenient to use the
complex plane, where we identify (x, y) ∈ R2 with x + iy ∈ C.

Let q1, q2, q3 ∈C be the positions of the three bodies and let q= (q1, q2, q3)∈C3.
We will adopt the Hamiltonian point of view, where the conjugate momentum
variables pi are covectors rather than vectors. If we identify a covector (a, b) ∈R2∗

with a+ ib ∈ C, then we have momentum variables

pi ∈ C∗ ' C and p = (p1, p2, p3) ∈ C3∗.

The planar three-body problem is the Hamiltonian system on the phase space
(C3
\1)×C3∗ with Hamiltonian

(2)

H(q, p)= K0(p)−U (q),

K0(p)=
|p1|

2

2m1
+
|p2|

2

2m2
+
|p3|

2

2m3
,

U (q)=
m1m2

|q1− q2|
+

m3m1

|q3− q1|
+

m2m3

|q2− q3|
,

where 1 = {q : qi = q j for some i 6= j}, the singular set. From now on, we will
not explicitly mention that the singular set must be deleted from the domains of the
various Hamiltonians we construct.

The Newtonian potential is invariant under the group G =C acting by translation
on the position vectors and leaving the momenta fixed. The momentum map is
given by

ptot = p1+ p2+ p3 ∈ C∗.

By fixing a value of this integral and passing to the quotient space, one obtains
a reduced Hamiltonian system. A simple and familiar way to accomplish this
reduction is to assume ptot = 0 and then fix the center of mass at the origin:
m1q1+m2q2+m3q3 = 0.

However, we will now describe an alternative method for eliminating the transla-
tion symmetry, which will make it easier to regularize double collisions later on.
This approach is a variation on the one used in [Heggie 1974]. We will view it as
an application of Theorem 1.
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3.1. Relative coordinates. Introduce relative position variables Q12, Q31, Q23 ∈C

and corresponding momentum variables P12, P31, P23∈C∗. The relative coordinates
are related to the positions variables qi by a linear map Q = Lq

(3) L : C3
→ C3, Q12 = q1− q2, Q31 = q3− q1, Q23 = q2− q3.

The dual map, which describes the pull-back of the relative momenta Pi j to p space,
is given by

(4) L∗ : C3∗
→ C3∗, p1 = P12− P31, p2 = P23− P12, p3 = P31− P23.

We naturally have Q j i = −Qi j and consequently Pj i = −Pi j so that (4) can be
written pi =6 j Pi j , a form which extends to the N -body problem.

The linear map L is neither one-to-one nor onto. Its kernel,

ker L = {q : q = (c, c, c) for some c ∈ R2
= C},

is the subspace of translation symmetries in q-space. So its image

W= im L = {Q : Q12+ Q31+ Q23 = 0}

is isomorphic to the quotient space of C3 by translations. W is a complex subspace
of C3 with complex dimension two, or real dimension 4. We can define a map in
the other direction, q = L†(Q):

(5) L†
: q1=

m2 Q12−m3 Q31

m
, q2=

m3 Q23−m1 Q12

m
, q3=

m1 Q31−m2 Q23

m
,

where m = m1+m2+m3. L† maps C3 onto

W′ = im L†
= {q : m1q1+m2q2+m3q3 = 0},

the zero-center of mass subspace, and it is easy to check that the restrictions L|W′
and L†

|W are inverses.
For the dual map, we find that the kernel is generated by translations in P-

momentum space

ker L∗ = {P : P = (c, c, c) for some c ∈ C∗}

while the image is the zero-momentum subspace

V= im L∗ = {p : p1+ p2+ pn = 0}.

The map L†∗
: C3∗
→ C3∗

(6) L†∗
: P12=

m2 p1−m1 p2

m
, P31=

m1 p3−m3 p1

m
, P23=

m3 p2−m2 p3

m



138 RICHARD MOECKEL AND RICHARD MONTGOMERY

maps C3∗ onto

V′ = im L†∗
= {P : m3 P12+m2 P31+m1 P23 = 0},

and the restrictions L∗|V′ and L†∗
|V are inverses.

Define a relative coordinate Hamiltonian on the (Q, P) phase space C3
×C3∗ by

(7)

Hrel(Q, P)= K (P)−U (Q),

K (P)= K0(L∗P)= |P12−P31|
2

2m1
+
|P23−P12|

2

2m2
+
|P31−P23|

2

2m3
,

U (Q)= m1m2
|Q12|

+
m3m1
|Q31|

+
m2m3
|Q23|

,

so that

(8) H(q, L∗P)= Hrel(Lq, P).

The kinetic energy can be written

(9) K (P)= 1
2 PTB P, with B =



( 1
m1
+

1
m2

)
I −

1
m1

I −
1

m2
I

−
1

m1
I

( 1
m3
+

1
m1

)
I −

1
m3

I

−
1

m2
I −

1
m3

I
( 1

m2
+

1
m3

)
I

,
where I denotes the 2× 2 identity matrix.

3.2. Equivalence to the translation-reduced three-body problem. We will now
show that the reduction of the Hamiltonian system with Hamiltonian Hrel(Q, P)
by translations in momentum space is equivalent to the reduction of the three-body
Hamiltonian H by translations in configuration space.

Theorem 5. W×C3∗ is invariant under the Hamiltonian flow of Hrel(Q, P). The
restricted flow is invariant under translations in momentum space and it induces a
quotient flow, which is conjugate to the zero total momentum flow of the three-body
problem reduced by translations.

The proof will be an application of Theorem 1. First we describe how the relevant
symplectic structures look in complex coordinates. If Q ∈ C3 and P ∈ C3∗ it is
convenient to define a Hermitian variant of the natural evaluation pairing:

(10) 〈P, Q〉 = P̄12 Q12+ P̄31 Q31+ P̄23 Q23.

As a result, if Q jk = x jk + i y jk and Pjk = a jk + i b jk , we get

(11)
re〈P, Q〉 = a12x12+ b12 y12+ · · · ,

im〈P, Q〉 = a12 y12− b12x12+ · · · .
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Thus the real part of the complex pairing agrees with the usual real pairing and,
as a bonus, the imaginary part is −µ, where µ is the angular momentum. With
this convention, the canonical one-forms on (q, p)-space and (Q, P)-space can be
written

(12)
θ = re〈p, dq〉 = re( p̄1 dq1+ p̄2 dq2+ p̄3 dq3)

2= re〈P, d Q〉 = re(P̄12 d Q12+ P̄31 d Q31+ P̄23 d Q23).

Proof of Theorem 5. For the three-body problem we have the phase space

M1 = C6
×C6∗

= {(q, p)},

with the standard symplectic structure. The Hamiltonian H(q, p) is invariant under
the action of the group G1 = C acting by

c · (q, p)= (q1+ c, q2+ c, q3+ c, p1, p2, p3), c ∈ C.

We fix the momentum level ptot = 0 and obtain a quotient Hamiltonian flow.
For the Hamiltonian Hrel, the phase space is M2 = C3

×C3∗
= {(Q, P)} with

the standard symplectic structure. Hrel(Q, P) is invariant under the action of the
group G2=C∗ acting on by c ·(Q, P)= (Q12, Q31, Q23, P12+c, P31+c, P23+c),
c ∈C∗. The momentum map is Qtot = Q12+Q31+Q23 and we fix the momentum
level Qtot = 0 giving a second quotient Hamiltonian flow.

To see that these two quotient flows are equivalent we apply Theorem 1. Define

F(q, p)= (Lq, L†∗ p), G(Q, P)= (L† Q, L∗P).

Then, F : {ptot = 0} → {Qtot = 0} and G : {Qtot = 0} → {ptot = 0}. Moreover,
G ◦ F(q, p)= c · (q, p), where −c= 1

m (m1q1+m2q2+m3q3) ∈C is the center of
mass. Similarly, F ◦G(q, p)= c · (Q, P), where

−c = 1
m
(m3 P12+m2 P31+m1 P23) ∈ C∗.

In other words G ◦ F = id (mod G1) and F ◦G = id (mod G2).
It remains to verify that F and G are partially symplectic. Consider the canonical

one-forms (12). From (3) and (6). We find, for example F∗ P̄12= (m2 p̄1−m1 p̄2)/m
and F∗d Q12 = dq1− dq2. After a bit of algebra we get

F∗2= θ − re
(

p̄tot(m1dq1+m2dq2+m3dq3)

m

)
.

Restricting to {ptot = 0} shows that F is partially symplectic. Similarly,

G∗θ =2−
re((m3 P̄12+m2 P̄31+m1 P̄23)(d Q12+ d Q31+ d Q23))

m
,
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which we restrict to {Qtot = 0} to see that G is also partially symplectic. We have
shown that F and G are pseudoinverses in the sense of Definition 2. According
to (8) these pseudoinverses intertwine H and Hrel. The hypotheses of Theorem 1
have been verified, completing the proof. �

Hamilton’s equations for the Hamiltonian Hrel(Q, P) are simply

(13)
Q̇ = B P,

Ṗ =UQ =−

(
m1m2 Q12

r3
12

,
m3m1 Q31

r3
31

,
m2m3 Q23

r3
23

)
,

where ri j = |Qi j |. (Note that here and in all of the differential equations below,
partial derivatives like UQ are calculated by simply calculating the corresponding
real partial derivatives and converting the resulting real vector or covector to complex
notation; no complex differentiations are involved.) Differential equations for the
three-body problem reduced by translations are obtained by restricting Q to W.
Then Q remains in W under the flow. Moreover, covectors P , P ′, which are initially
equivalent under translation remain so.

Since the symmetry group C∗ acts only on the momenta Pi j , the reduced phase
space is the eight-dimensional space W× (C3∗/C∗)'W× im L∗ =W×V. This
can be identified with the cotangent bundle T ∗W=W×W∗ as follows. Let P ∈C3∗.
Then P|W ∈W∗ and two covectors P, P ′ ∈ C3∗ have the same restriction to W if
they differ by an element of ker L∗; that is, if they are equivalent under the symmetry
group.

So far we have not really accomplished any “reduction” since there are still
twelve (Q, P) variables. Essentially, we have traded the constraint

ptot = p1+ p2+ p3 = 0

and the translation symmetry in q for the constraint Qtot= Q12+Q31+Q23= 0 and
translation symmetry in P . We will see below that the use of the Qi j is advantageous
for regularizing double collisions. A genuine reduction of dimension can be easily
achieved by introducing a basis for W. Moreover, this can be accomplished in
several ways as we will see in Section 3.4 below. But one virtue of (7) is that it
avoids making a choice of parametrization and thereby preserves the symmetry of
the problem under permutations of the masses.

3.3. Mass metrics and the kinetic energy. The potential energy U (Q) of (7) is
particularly simple, but the kinetic energy K (P) seems less natural. In this section
we will see that it is related by duality to a Hermitian metric which will play an
important role later on.
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Define a Hermitian mass metric on C3 by

(14) 〈V,W 〉 = 1
m
(
m1m2V̄ T

12W12+m3m1V̄ T
31W31+m2m3V̄ T

23W23
)
.

The corresponding norm is given by

(15) |Q|2 = 1
m
(
m1m2|Q12|

2
+m3m1|Q31|

2
+m2m3|Q23|

2).
The mass norm

r = |Q| =
√
〈Q, Q〉

provides a natural measure of the size of a configuration Q= (Q12, Q31, Q23)∈C3.
In particular, r = 0 represent triple collision. There is a dual mass metric on C3∗

given by

(16) 〈P, R〉 = m
(

P̄T
12 R12

m1m2
+

P̄T
31 R31

m3m1
+

P̄T
23 R23

m2m3

)
,

with squared norm

(17) |P|2 = m
(
|P12|

2

m1m2
+
|P31|

2

m3m1
+
|P23|

2

m2m3

)
.

Note: Altogether we have three interpretations of 〈 · , · 〉 depending on whether the
arguments are two vectors (14), two covectors (16), or a vector and a covector, (10).
All three pairings are Hermitian, being complex-linear in the second argument and
antilinear in the first.

Introduce the notation W0 =W \ 0 (and a similar notation for any vector space).
If Q ∈ W0 then it is easy to check that the vectors Q, N , T form a Hermitian-
orthogonal complex basis for TQC3 with respect to the Hermitian mass metric,
where

(18)

Q = (Q12, Q31, Q23), N = (m3,m2,m1),

T =
(

Q̄31

m2
−

Q̄23

m1
,

Q̄23

m1
−

Q̄12

m3
,

Q̄12

m3
−

Q̄31

m2

)
.

Q is a radial vector and N , T are, respectively, normal and tangent to W. Clearly
{Q, T } is a basis for W.

The next lemma shows the relationship between the kinetic energy and the dual
of the mass metric.

Remark on terminology. A nondegenerate quadratic form on a vector space, or
on the fibers of a vector bundle, determines uniquely a quadratic form on the dual
vector space, or on the fibers of the dual vector bundle. We refer to this dual
quadratic form as either the “cometric” or the “dual norm”.
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Lemma 6. The kinetic energy satisfies

(19) K (P)= 1
2
|〈P, Q〉|2

|Q|2
+

1
2
|〈P, T 〉|2

|T |2
=

1
2 |P|

2
−

1
2
|〈P, N 〉|2

|N |2
=

1
2 |π
∗

W P|2,

where |P| is the dual mass norm and where πW : C
3
→ C3 is orthogonal projection

onto W with respect to the mass metric.
Moreover, K (P) can be characterized as one-half of the unique translation-

invariant quadratic form on T ∗QC3 representing the dual of the restriction of the
mass norm to TQW.

Proof. A direct computation shows that

|P|2−
|〈P, N 〉|2

|N |2
=
|P12− P31|

2

2m1
+
|P23− P12|

2

2m2
+
|P31− P23|

2

2m3
= 2K (P).

On the other hand, dual norms, or cometrics, can be characterized by the property
that for any orthogonal basis {Q, N , T },

|P|2 =
|〈P, Q〉|2

|Q|2
+
|〈P, N 〉|2

|N |2
+
|〈P, T 〉|2

|T |2
.

Hence

2K (P)= |P|2−
|〈P, N 〉|2

|N |2
=
|〈P, Q〉|2

|Q|2
+
|〈P, T 〉|2

|T |2
,

and this is also the formula for |P ◦πW|
2.

If we view T ∗QW as the quotient space of T ∗QC3 under momentum translations,
then any norm on T ∗QW is represented by a unique translation-invariant quadratic
form on T ∗QC3. In particular, this applies to the dual norm of the restriction of the
mass norm to TQW. Since {Q, T } is an orthogonal basis for TQW with respect to
the mass metric, this “lift” of the dual norm will be given by

|〈P, Q〉|2

|Q|2
+
|〈P, T 〉|2

|T |2
= 2K (P). �

3.4. Parametrizing W. Let e1 = (a12, a31, a23), e2 = (b12, b31, b23) ∈ W be any
complex basis for W. The corresponding coordinate map is

f : C2
→W⊂ C3, f (ξ1, ξ2)= ξ1 e1+ ξ2 e2 or Qi j = ξ1 ai j + ξ2 bi j ,

where ξ = (ξ1, ξ2) ∈ C2 are the new coordinates.
Extend f to a map F : T ∗C2

→W×C3∗ by letting P ∈ C3∗ be any solution
to the equations 〈P, e1〉 = η̄1, 〈P, e2〉 = η̄2, where η = (η1, η2) ∈ C2∗ is the dual
momentum to ξ and N is the normal vector to W from (18). Any two solutions will
differ by a momentum translation, which will not affect the computations below.
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This definition makes F partially symplectic, where the symplectic structure on
T ∗C2 derives from the canonical one-form

θ = re〈η, ξ〉 = re(η̄1 ξ1+ η̄2 ξ2).

To find the new Hamiltonian, note that the pull-back of the Hermitian mass
metric is

〈ξ, ξ ′〉 = ξ̄ TGξ ′, with G =
[

g11 g12

g21 g22

]
, gi j = 〈ei , e j 〉.

Clearly this can be viewed as the pull-back of the restriction of the mass metric to
W. The dual of this metric is

〈η, η′〉 = ξ̄ TGξ ′, with G−1
=

1
g

[
g22 −g21

−g12 g11

]
, g = det G.

It follows from Lemma 6 and the fact that the momenta also transform as pull-backs
that the kinetic energy will be one-half of the dual norm.

The Hamiltonian becomes

(20) H(ξ, η)= 1
2 η̄

T G−1η−U (ξ),

where

U (ξ)=
m1m2

ρ12
+

m1m3

ρ31
+

m2m3

ρ23
, ρi j = |Qi j | = |ai jξ1+ bi jξ2|.

Example 7 (heliocentric coordinates). One can form such a parametrization of W

by choosing one of the masses, say m1, to play the role of the origin. Set Q12=−ξ1,
Q31 = ξ2, Q23 = ξ1− ξ2 so that ξ1, ξ2 ∈ C are the coordinates of m2,m3 relative
to m1. The corresponding basis for W e1 = (−1, 0, 1), e2 = (0, 1,−1), and the
momenta η̄i = 〈P, ei 〉 satisfy η1 = P23 − P12, η2 = P31 − P23. For example, we
can choose P12 =−η1, P31 = η2, P23 = 0. Substituting into Hred gives the familiar
Hamiltonian

H(ξ, η)=
|η1+ η2|

2

2m1
+
|η1|

2

2m2
+
|η2|

2

2m3
−

m1m2

|ξ1|
−

m1m3

|ξ2|
−

m2m3

|ξ1− ξ2|
.

Example 8 (Jacobi coordinates). Alternatively one can introduce Jacobi coordinates
ξ1, ξ2 by setting

Q12 =−ξ1, Q31 = ξ2+ ν2ξ1, Q23 =−ξ2+ ν1ξ1, νi =
mi

m1+m2
.

This corresponds to the orthogonal basis e1 = (−1, ν2, ν1), e2 = (0, 1,−1), and we
have mass metric

G =
[
µ1 0
0 µ2

]
, with µ1 =

m1m2

m1+m2
, µ2 =

(m1+m2)m3

m
.
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The momenta satisfy η1=−P12+ν2 P31+ν1 P23, η2= P31−P23, and for an inverse
we could choose P12 = 0, P31 = η1+ ν1η2, P23 = η1− ν2η2. From (20) we get the
equally familiar Hamiltonian

H(ξ, η)=
|η1|

2

2µ1
+
|η2|

2

2µ2
−

m1m2

|ξ1|
−

m1m3

|ξ2+ ν2ξ1|
−

m2m3

|ξ2− ν1ξ1|
.

4. Spherical-homogeneous coordinates

The Hamiltonian Hrel(Q, P) of (7), representing the translation-reduced planar
three-body problem, has further symmetries. The potential function U (Q) is
symmetric under simultaneous rotation of the Qi j in C and is also homogeneous of
degree −1 with respect to scaling. In this section we exploit the scaling symmetry
by converting the system to spherical coordinates. This will be useful later when
we blow-up the triple collision singularity.

We use the mass norm r = |Q| as a measure of the size of a configuration
Q = (Q12, Q31, Q23) ∈ C3. In particular, r = 0 represent triple collision. For
Q ∈ C3

0 we want to define a spherical variable X ∈ S5 to describe the normalized
configuration. However, instead of using the unit sphere S5

= {X ∈ C3
: |X | = 1}

we will view the sphere as the quotient space of C3
0 under scaling by positive real

numbers. This gives a convenient way to work globally on S5. We will take a similar
approach when working with the complex projective space CP2 in the next section.

Let M = T ∗C3
0 ' C3

0×C3∗ with the standard symplectic structure. Let G = R+

be the group of positive real numbers and let G act on M by k ·(X, Y )= (k X, Y/k),
where X ∈ C3

0, Y ∈ C3∗, k > 0. We will use the notation [X ], [X, Y ] to denote
equivalence classes under scaling. In other words, two vectors X, X ′ ∈ C3

0 are
equivalent, denoted X ′∼ X , if X ′= k X for some k> 0. Similarly (X ′, Y ′)∼ (X, Y )
if X ′ = k X , Y ′ = Y/k for some k > 0.

The momentum map for this group action is given by S(X, Y )= re〈Y, X〉, where
the angle bracket denotes the Hermitian evaluation pairing (10). Fixing this scaling-
momentum to be re〈Y, X〉 = 0 and passing to the quotient space we get a reduced
symplectic manifold, which can be identified with the cotangent bundle T ∗S5. This
is a special case of cotangent bundle reduction at zero momentum, as described in
Theorem 3. Introduce the notation

T ∗sphC3
= S−1(0)= {(X, Y ) ∈ T ∗C3

0 : re〈Y, X〉 = 0}.

Then we have TsphC3/R+ ' T ∗S5.
We are going to pass from the relative configuration variable Q ∈ C3

0 to a size
variable r and a homogeneous variable X ∈ C3

0.

Definition 9. If r = |Q| and [X ] = [Q], we say that (r, X)∈R+×C3
0 are spherical-

homogeneous coordinates for the configuration Q ∈ C3
0
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X will be defined only up to a positive real factor and will be viewed as rep-
resenting a point of S5. We can use Q itself as a homogeneous representative
of the corresponding point in S5. Hence we define a spherical-homogeneous
coordinate map

f : C3
0→ R+×C3

0 r = |Q|, X = Q.

Extend f (Q) to a map F(Q, P), F : T ∗C3
0→ T ∗R+× T ∗sphC3 by setting

F : pr =
re〈P, Q〉
|Q|

, Y = P −
re〈P, Q〉
|Q|2

Q∗.

Here pr ∈R∗, Y ∈C3∗ are the conjugate momentum variables to r, X and Q∗ is the
dual covector to Q with respect to the mass metric. By definition, this means the
unique covector in C3∗ such that 〈Q∗, V 〉 = 〈Q, V 〉, where the first angle bracket
is the evaluation pairing and the second is the mass metric. We find

(21) Q∗ = 1
m
(m1m2 Q12,m1m3 Q31,m2m3 Q23) ∈ C3∗.

A pseudoinverse G(r, pr , X, Y ), G : T ∗R+× T ∗sphC3
→ T ∗C3

0 to F is given by

(22) G : Q = r X
|X |

, P =
pr

|X |
X∗+

|X |
r

Y.

We have G ◦ F = id and

F ◦G(r, pr , X, Y )= (r, pr , k X, Y/k), where k = r
|X |

.

Hence f ◦G = id mod R+.
To check that F,G are partially symplectic, compute the pull-backs of the

canonical one-forms

(23) θ = pr dr + re(Ȳ12 d X12+ Ȳ31 d X31+ Ȳ23 d X23)

and 2 from (12). We find G∗θ =2 while F∗2= θ+· · · , where the omitted terms
are divisible by re〈Y, X〉. Hence the maps preserve the restricted symplectic forms
as required.

The spherical-homogeneous Hamiltonian is Hsph = Hrel ◦G. Using the formula
for Q in (22), the potential U (Q) becomes Usph(r, X)= (1/r)V (X), where

(24) V (X)= |X |U (X)= |X |
(

m1m2

|X12|
+

m3m1

|X31|
+

m2m3

|X23|

)
.

Note that V is invariant with respect to scaling of X so it determines a well-defined
function, V : S5

→ R, which we will sometimes write as V ([X ]).
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The kinetic energy is Ksph = K (P), where P is given by (22). It follows from
Lemma 6 that the two terms in (22) are orthogonal with respect to the quadratic
form K . To see this, note that they are orthogonal with respect to the dual mass
metric since 〈Y, X∗〉 = 〈Y, X〉 = 0. Since X ∈W we have

〈Y ◦πW, X∗◦πW〉 = 〈Y ◦πW, πW X〉 = 〈Y, X〉 = 0,

so X∗◦ πW and Y ◦ πW are still orthogonal. Evaluating K separately on the two
terms of (22), we find

(25) Ksph =
1
2 p2

r +
|X |2

r2 K (Y ),

and so the spherical-homogeneous Hamiltonian is

(26) Hsph(r, pr , X, Y )= 1
2 p2

r +
|X |2

r2 K (Y )− 1
r

V ([X ]).

Theorem 10. The Hamiltonian flow of Hsph on T ∗R+× T ∗C3
0 has invariant sub-

manifold {re〈Y, X〉 = 0} and the quotient of the restricted flow by the scaling
symmetry is equivalent to the Hamiltonian flow of Hrel on T ∗C3

0. This submanifold
contains a codimension 2 invariant submanifold {re〈Y, X〉=0, X12+X31+X23=0}
for which the quotient of the restricted flow by the symmetry of scaling and trans-
lations of the Yi j is conjugate to the flow of the zero total momentum three-body
problem reduced by translations.

Proof. For the first part we apply Theorem 1 with M1= T ∗C3
0, M2= T ∗R+×T ∗C3

0
and symmetry groups G1 = {id} and G2 = R+. The momentum level is

S(X, Y )= re〈Y, X〉 = 0.

It was shown above that the maps F,G between T ∗C3
0 and S−1(0) are partially

symplectic pseudoinverses.
For the second part we change the groups to be G1 = C∗ and G2 is a semidirect

product of the scaling group R+ and the momentum translation group C∗ with group
multiplication (k2, c2) ·(k1, c1)= (k2k1, c1/k2+c2), where (ki , ci )∈R+×C∗. The
momentum levels are {Qtot = 0} and {X tot = 0, re〈Y, X〉 = 0}, respectively, and
these are fixed by the actions of the groups. The maps F,G restrict to maps between
these level sets and the restrictions are partially symplectic pseudoinverses. �

If we use the formula K (Y )= 1
2 Ȳ TBY , with B from (9), we find that Hamilton’s

equations for Hsph are

(27)
ṙ = pr , ṗr =

2|X |2 K (Y )
r3 −

1
r2 V (X),

Ẋ =
|X |2

r2 BY, Ẏ = 1
r

DV (X)− 2K (Y )
r2 X.
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The quotient space of T ∗R+×T ∗sphC3
0 mentioned in Theorem 10 is diffeomorphic

to T ∗R+ × T ∗S5 (by simply thinking of X, Y as homogeneous coordinates for
[X, Y ] ∈ T ∗S5). The quotient space of T ∗R+ × T ∗sph,WC3

0 is diffeomorphic to
T ∗R+×T ∗S(W), where S(W)=W∩S5 is diffeomorphic to S3. Hence the reduced
space is eight-dimensional as before. The reduced flow is just the translation-reduced
three-body problem in spherical coordinates.

At this point, instead of reducing the number of dimensions, we have actually
increased it from twelve to fourteen. The value of the present formulation lies in the
fact that it has been put in a form where double collisions can be easily regularized
and the triple collision easily blown-up without destroying the symmetry among
the masses. As in the previous section, one could explicitly realize the reduction
to eight dimensions by parametrizing the subspace W. However we will not do
this here.

5. Reduction by rotations: the shape sphere

Next we form the quotient by rotations. Since we are using complex coordinates,
the combined action of scaling Q by a real factor r > 0 and rotating Q by an angle
θ is represented by Q 7→ k Q, where k = reiθ

∈ C0 = C \ 0, the space of nonzero
complex numbers. A point in the resulting quotient space represents the size and
shape of a configuration.

5.1. Projective-homogeneous coordinates. As before we will measure the size by
r = |Q|. To represent the shape, we project Q ∈ C3

0 to the quotient of C3
0 by the

action of C0. This quotient space is the complex projective plane P(C3) = CP2.
Homogeneous coordinates will provide a way to work globally on the projective
plane, just as they did for the sphere S5 in the last section. For X ∈C3

0 let [X ] ∈CP2

denote the corresponding element of the projective plane, that is, the equivalence
class of X under the relation that X ∼ Q if X = k Q for some k ∈ C, k 6= 0. (Thus
the square bracket will now mean a projective point rather than a spherical one.)

Definition 11. (r, X) are a pair of projective-homogeneous coordinates for Q ∈C3
0

if r = |Q| and [X ] = [Q] ∈ CP2.

X is defined only up to a nonzero complex factor. We can take X = Q itself to
define the projective-homogeneous coordinate map

f : C3
0→ R+×C3

0, r = |Q|, X = Q.

Remark. Despite the fact that spherical-homogeneous coordinates and projective-
homogeneous coordinates are both denoted (r, X), there are differences between
the two coordinate systems. Spherical-homogeneous coordinates represent points
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in C3
0 ' R+× S5, whereas projective-homogeneous coordinates represent points in

the quotient space (C3
0)/S1

' R+×CP2.
If we include the origin and form the quotient space under rotations we have

C3/S1
=Cone(CP2), the cone over CP2, where the cone point corresponds to total

collision 0 ∈ C3. For any topological space X , we can form the space Cone(X)
which has a distinguished cone point ∗ and Cone(X) \ ∗ = R+× X . In this case,
the cone is not a smooth manifold.

The equivalence class [X ] = [Q] ∈ CP2 represents the shape of a three-body
configuration only if Q ∈W. Restricting to such Q we get [Q] ∈ P(W), where
P(W) is the projective space of the subspace W⊂C3. Since W is a two-dimensional
complex subspace, P(W) is a projective line, that is, P(W) ' CP1

' S2. P(W)

will be called the shape sphere.
Any function on our original configuration space that is invariant under translation,

rotation, and scaling induces a function on the shape sphere, the most important
example being our homogenized potential

V (X)= |X |U (X) : PW→ R.

We will also use homogeneous momentum variables. A pair

(X, Y ) ∈ T ∗C3
0 ' C3

0×C3∗

will represent a point of T ∗CP2. Let G =C0 be the group of nonzero complex num-
bers and let G act on T ∗C3

0 by k·(X, Y )= (k X, Y/k̄). We will use the notation [X, Y ]
to denote equivalence classes under scaling. In other words, (X ′, Y ′)∼ (X, Y ) if
X ′ = k X , Y ′ = Y/k̄ for some nonzero k ∈ C. The momentum map for this group
action is given by the Hermitian evaluation pairing σ(X, Y )= 〈Y, X〉 ∈C. The real
part of the complex number σ(X, Y ) is the real scaling-momentum S(X, Y ) (which
we want to be zero as in the last section). On the other hand, from (11) we see that
im σ(X, Y )=−iµ, where µ is the angular momentum.

If we fix the complex scaling-momentum to be 〈Y, X〉 = 0 and pass to the
quotient space, then as in Theorem 3 we get a reduced symplectic manifold, which
is naturally identified with the cotangent bundle T ∗CP2 with its natural symplectic
structure. Introduce the notation

T ∗prC
3
= σ−1(0)= {(X, Y ) ∈ T ∗C3

0 : 〈Y, X〉 = 0}.

Then we have
T ∗prC

3/C0 ' T ∗CP2.

If, on the other hand, we fix the complex scaling-momentum to be 〈Y, X〉 = −iµ
and pass to the quotient space we still get a reduced symplectic manifold, which
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can be identified with the cotangent bundle T ∗CP2 but with a twisted symplectic
structure, as described in Theorem 4. More about this below.

To get a system equivalent to the reduced three-body problem we will also need to
include the radial variables. Restrict X to W and quotient by the action of the group
C of translations in Y -momentum space. Let M = T ∗R+× T ∗C3

0 with coordinates
(r, pr , X, Y ) and let G = C0×C act by

(k, c)·(r, pr , X, Y )= (r, pr , k X, c·(Y/k̄)), with c·Y = (Y12+c, Y31+c, Y23+c).

Fixing the momentum level J (X, Y )= (σ (X, Y ), X tot)= (−iµ, 0)∈C2 and passing
to the quotient space gives the reduced phase space

P = {(r, pr , X, Y ) : 〈Y, X〉 = −iµ, X12+ X31+ X23 = 0}/G

of real dimension dim P = 14− 4− 4= 6 as expected. In fact we have

P ' T ∗R+× T ∗P(W)' T ∗R+× T ∗S2.

We still need to find the reduced Hamiltonian and show that the reduced Hamil-
tonian system is equivalent to the reduced three-body problem. This is easy to do
starting from the spherical Hamiltonian in the last section. Indeed, the passage
from the spherical-homogeneous variables (r, pr , X, Y ) ∈ T ∗R+ × T ∗C3

0 to the
corresponding projective-homogeneous ones is just given by the identity map. The
new feature here is that the symmetry group is enlarged from R+×C∗ ' R+×C

to C0×C. Then we have the following extension of Theorem 10:

Theorem 12. The Hamiltonian flow of Hsph on T ∗R+× T ∗C3
0 has an invariant set

where 〈Y, X〉 = −iµ. The quotient of the restricted flow by the complex scaling
symmetry is equivalent to the Hamiltonian flow of Hrel on T ∗C3

0/S1. There is
another invariant set where 〈Y, X〉=−iµ and X12+X31+X23= 0 and the quotient
of the restricted flow by the complex scaling symmetry and by translations of the Yi j

is conjugate to the flow of the three-body problem with zero total momentum and
angular momentum µ, reduced by translations and rotations.

Proof. The maps F and G as in the proof of Theorem 10 restrict to maps of the µ
angular momentum levels. They are still partially symplectic pseudoinverses. �

The next step is to use a momentum shift map to pull-back the problem to the
zero-angular-momentum level. This expresses all of the reduced problems on the
same phase space and makes the role of the angular momentum constant explicit. Let

(28) 8µ(r, pr , X, Z)= (r, pr , X, Y ), Y = Z +µ0(X), 0(X)=
i X∗

|X |2
,

where
X∗ = 1

m
(m1m2 X12,m3m1 X31,m2m3 X23) ∈ C3∗.
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Note that 8µ : J−1(0, 0)→ J−1(−iµ, 0), since if 〈Z , X〉 = 0 we have

im〈Y, X〉 = im
〈
iµ

X∗

|X |2
, X
〉
=−µ re

〈
X∗

|X |2
, X
〉
=−µ.

Composing Hsph with 8µ we get a Hamiltonian

(29) Hµ(r, pr , X, Z)= 1
2

(
p2

r +
µ2

r2

)
+
|X |2

r2 K (Z)−
1
r

V ([X ]).

To verify this we need to show that the kinetic energy can be written

(30) Kµ =
1
2

(
p2

r +
µ2

r2

)
+
|X |2

r2 K (Z).

This decomposition follows from an orthogonality argument based on Lemma 6.
Namely, the vectors i X and Z are orthogonal with respect to the mass metric and
the first one lies in W. Then, as in the last section, Lemma 6 shows that they are
orthogonal with respect to the quadratic form K and so K (Y )= K (µ0(X))+K (Z).
K (µ0(X)) gives µ2-term in Kµ.

Equation (30) gives a decomposition of the kinetic energy into radial and angular
parts and a third term which can be viewed as the kinetic energy due to changes in the
shape of the configuration. Some authors call this decomposition of kinetic energy,
or the consequent orthogonal decomposition of velocities the “Saari decomposition”.
(See [Saari 1984].) In the next subsection we show how this last shape term can be
understood in terms of the Fubini–Study metric on the shape sphere.

5.2. Fubini–Study metrics and the shape kinetic energy. Using a complex orthog-
onal basis, we give a simple decomposition of the dual mass metric, which leads to
deeper insights into the kinetic energy decomposition (30). Since the shape sphere
has complex dimension one, there are some very simple formulas for the shape
term of this decomposition.

To describe the Fubini–Study metric (also called the Kähler metric), let V

denote any complex vector space and let 〈V,W 〉 be any Hermitian metric on V. If
X ∈ V0 = V \ 0 then the corresponding Fubini–Study metric on TX V is

(31) 〈V,W 〉FS =
〈V,W 〉〈X, X〉− 〈V, X〉〈X,W 〉

〈X, X〉2
.

As a bilinear form on TX V, the Fubini–Study “metric” is degenerate with kernel
the complex line spanned by the vector X . But it induces a bona fide Hermitian
metric on the projective space P(V).

To see this, let π : V0→ P(V) denote the projection map: π(X) = [X ]. The
tangent map Tπ : T V0→ T P(V), Tπ(X, V )= ([X ], Dπ(X)V ) has the property
that Tπ(X, V )= Tπ(X ′, V ′) if and only if X ′ = k X and V ′ = kV + l X for some
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complex numbers k 6= 0, l. So it is natural to view the tangent bundle T P(V) as the
set of equivalence classes [X, V ] of pairs (X, V ) ∈ V0×V under this equivalence
relation. It is easy to check that the formula for 〈 · , · 〉FS is invariant under this
equivalence relation and so it gives a well-defined Hermitian metric on P(V). The
real part re〈V,W 〉FS gives a Riemannian metric on P(V) and the imaginary part
gives a two-form called the Fubini–Study form, which will be important later

�FS(V,W )= im〈V,W 〉FS.

Starting with the mass metric on V = C3, we get a Fubini–Study metric on
CP2. However, because of Lemma 6, we will be interested in its restriction to the
two-dimensional complex subspace W⊂C3, which we denote by 〈 · , · 〉FS,W, which
induces a Hermitian metric on the shape sphere P(W).

Our goal is to show that the shape kinetic energy is the cometric dual to this Fubini–
Study metric on P(W). (By a “cometric” on a manifold X we mean the fiberwise
quadratic form on T ∗X that is dual to a Riemannian metric on X .) To this end we
will need to describe cometrics on projective space in homogeneous coordinates. We
continue to identify T ∗CP2 with the quotient space of T ∗prC

3
= {(X, Z)∈C3

0×C3∗
:

〈Z , X〉 = 0} under the complex scaling symmetry. In the same spirit, the cotangent
bundle T ∗P(W) is the quotient space (a symplectic reduced space)

T ∗P(W)' (T ∗pr,WC3
0)/C0×C,

where

T ∗pr,WC3
0 = {(X, Z) ∈W×C3∗

: 〈Z , X〉 = 0, X 6= 0}

and where the group C0×C represents the scaling symmetry and the momentum
translation in Z -space. We refer to (X, Z) as homogeneous coordinates on P(W).
The restriction of Z ∈C3∗ to W representing a covector in T ∗

[X ]P(W). Expressed in
homogeneous coordinates a cometric on P(W) is a function of the form Q(X, Z)
which is quadratic in Z and invariant under the C0×C action.

Theorem 13. The Fubini–Study cometric |Z |2FS,W at [X ] ∈ PW is related to the
kinetic energy (formula (19)) by

1
2 |Z |

2
FS,W = |X |

2K (Z).

Proof. Substitute (X, Z) for (Q, P) in formula (19). Use 〈Z , X〉 = 0 to get
K (Z)= (1/2|T |2)〈Z , T 〉. The vector field T (X) appearing in that formula is tangent
to W and orthogonal to X , hence fits the hypothesis of Lemma 14 immediately
below. The lemma asserts that we have

|Z |2FS,W = |〈Z , e(X)〉|2, with e(X)=
|X |
|T (X)|

T (X). �



152 RICHARD MOECKEL AND RICHARD MONTGOMERY

Lemma 14. Let T (X), X ∈W0 be a nonzero complex vector field tangent to W0

and normal to X with respect to the Hermitian metric mass metric. Then

e(X)= |X |
|T (X)|

T (X)

is a unit tangent vector field on W0 with respect to the pulled back Fubini–Study
metric 〈 · , · 〉FS,W. Moreover

(32) 〈V,W 〉FS,W=
〈V, e(X)〉〈e(X),W 〉

|X |4
, with V,W ∈W/(CX)∼= T[X ]P(W),

and the pulled-back cometric is given by the quadratic form

(33) |Z |2FS,W = |〈Z , e(X)〉|2, with Z ∈ T ∗X,prC
3.

Proof. Since T (X) is orthogonal to X , (31) gives |T |2FS = |T |
2/|X |2 and so e(X) is

a Fubini–Study unit vector at X .
The tangent space TX W has complex dimension two and {X, e(X)} is a basis. If

we expand V ∈ TX W as

V =
〈V, X〉
|X |2

X +
〈V, T (X)〉
|T (X)|2

T (X)

and similarly for W , then since X is in the kernel of 〈 · , · 〉FS we get

〈V,W 〉FS,W = 〈V,W 〉FS =
〈V, T (X)〉〈T (X),W 〉
|X |2|T (X)|2

=
〈V, e(X)〉〈e(X),W 〉

|X |4
,

as claimed.
Observe that if E, 〈 · , · 〉 is a one-dimensional complex Hermitian vector space

with unit vector e then the cometric on E∗ is given by the quadratic form

Z ∈ E∗ 7→ |〈Z , e〉|2.

From this observation the last formula of the lemma follows. �

Remark. The manifold P(W), being a two-sphere, admits no nonvanishing vector
field. So how did we just construct a unit vector field e(X) to this two-sphere?
We did not! The gadget e(X) is a unit section of the pull-back f ∗T P(W) of this
tangent bundle by the homogenization map f :W0→ P(W) that sends X→ [X ].
This pull-back bundle can be viewed as a subbundle of T W0, and hence e(X) is a
vector field on W0.

Using the vector field T (X) of formula (19) (with X substituted for Q), we
obtain the Fubini–Study unit tangent vector

e(X)=
√

m1m2m3

m

(
X̄31

m2
−

X̄23

m1
,

X̄23

m1
−

X̄12

m3
,

X̄12

m3
−

X̄31

m2

)
.
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From this expression we get simple formulas for the Fubini–Study metric and
two-form on W:

(34) 〈 · , · 〉FS,W =
m1m2m3

m|X |4
σ̄ ⊗ σ, �FS,W =

m1m2m3

m|X |4
im σ̄ ⊗ σ,

where the complex-valued one-form σ is given by any of the following formulas

(35) σ = 〈e, d X〉 = X31 d X12− X12 d X31

= X12 d X23− X23 d X12 = X23 d X31− X31 d X23.

For example, the second formula for σ is obtained by eliminating X23, d X23 from
〈e, d X〉 using the equations X23 =−X12− X31 and d X23 =−d X12− d X31. Note
that the formulas for σ are independent of the masses. This implies that the Fubini–
Study metrics for different masses are all conformal to one another.

Similarly we get a formula for the dual norm and the shape kinetic energy:

(36) |X |2K (Z)= 1
2 |Z |

2
FS,W =

m|α(Z)|2

2m1m2m3
,

where α(Z) is given by any of the following formulas:

(37) α=
1
m
(m1m2 X12(Z23−Z31)+m3m1 X31(Z12−Z23)+m2m3 X23(Z31−Z12))

=
|X |2(Z31− Z12)

X̄23
=
|X |2(Z12− Z23)

X̄31
=
|X |2(Z23− Z31)

X̄12
.

Our identification of the shape kinetic energy with the Fubini–Study cometric
gives an alternative formula for the reduced Hamiltonian on T ∗prC

3

(38) Hµ(r, pr , X, Z)= 1
2

(
p2

r +
µ2

r2

)
+

1
2r2 |Z |

2
FS,W−

1
r

V (X),

where |Z |2FS,W is the Fubini–Study cometric on W.

5.3. Induced symplectic structure and the reduced differential equations. Using
the momentum shift map, we have pulled back the Hamiltonian to the reduced
Hamiltonian Hµ defined on the zero-angular momentum level T ∗R+×T ∗prC

3, where

T ∗prC
3
= {(X, Z) ∈ T ∗C3

: 〈Z , X〉 = 0}.

However, as described in Theorem 4, there is also an induced symplectic structure
on this set which different from the restriction of the standard one. The pull-back
of the canonical one-form θ under the momentum shift map (28) is

8∗µθ = pr dr + re〈Z , d X〉+
µ

|X |2
im〈X∗, d X〉 =2+µ21
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with

21 = im
〈X∗, d X〉
|X |2

= im
〈X, d X〉
|X |2

,

where we changed the evaluation pairing to the mass metric in the second equation.
The modified symplectic form will be �µ =�−µ d21, where we find

(39) d21 = 2 im
〈d X, d X〉|X |2−〈d X, X〉〈X, d X〉

|X |4
= 2�′FS,

where �′FS is the Fubini–Study two-form determined by the mass metric on C3 (as
opposed to its restriction to W as in Section 5.2). Geometrically, �′FS represents
the curvature of the circle bundle S5

→ CP2.
Once we have �µ we calculate Hamilton’s differential equations using the

defining equation for Hamiltonian vector fields:

(40) (ṙ , ṗr , Ẋ , Ż) �µ = d Hµ.

The interior product with the standard form gives the usual result:

(ṙ , ṗr , Ẋ , Ż) �=− ṗr dr + ṙ dpr − re〈Ż , d X〉+ re〈Ẋ , d Z〉.

Since �′FS involves only d X , it can be viewed as a two-form on C3 instead of on
phase space. Moreover, it only affects the differential equations for Ż . Hamilton’s
equations read:

(41) ṙ = Hµ,pr , ṗr =−Hµ,r , Ẋ = Hµ,Z , Ż =−Hµ,X − 2µHµ,Z �′FS,

where Hµ is given by (29). The term involving the Fubini–Study metric will be
called the curvature term, T ′curv =−2µHµ,Z �′FS.

Lemma 15. If X ∈W and 〈Z , X〉=0, then the vector Hµ,Z is in W and 〈X, Hµ,Z 〉=
0. In fact

(42) Hµ,Z =
〈Z , e〉

r2 e ∈W,

where e(X) is as in Lemma 14.
The curvature term T ′curv is equivalent under the translation symmetry in C3∗ to

(43) Tcurv =−
2µ
r2 i Z .

Proof. From (29) we have Hµ,Z = (|X |2/r2)DK (Z). Note that since Z ∈ C3∗, we
have DK (Z) : C3∗

→ R. By duality we can view DK (Z) as a vector in C3. Let
X ∈W. Since Ẋ = Hµ,Z and W is invariant, we must have Hµ,Z ∈W. If 〈Z , X〉= 0
then an orthogonality argument as above shows K (Z + X∗) = K (Z)+ K (X∗),
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which implies, since K is a quadratic form, that DK (Z)(X∗)= 〈DK (Z), X〉 = 0,
as required.

In Section 5.2 we showed that in the subspace {Z : 〈Z , X〉 = 0} we have
|X |2K (Z) = 1

2 |〈Z , e〉|2. In fact, we will see that the Z -derivatives of these two
functions also agree:

(44) |X |2 DK (Z)= 〈Z , e〉 e.

To see that (44) indeed holds, note that differentiation along the subspace shows
that they must agree when evaluated on any δZ with 〈δZ , X〉 = 0. On the other
hand, both sides vanish on the complementary covector Z ′= X∗. Note that the right
hand side was calculated, as always, by converting to real variables, finding the real
derivative and then converting back to a complex vector. Equivalently, we expand

1
2 |〈Z + δZ , e〉|2 = 1

2 |〈Z , e〉|2+ re〈δZ , 〈Z , e〉 e〉+ · · ·

for all δZ , showing that the vector in question is the complex representative of the
real vector derivative.

To show the equivalence of T ′curv and Tcurv we will show that they agree when
restricted to W. The argument can be based on a kind of Fubini–Study duality.
Namely, if V ∈W we will show that

(45) 〈Hµ,Z , V 〉FS =
1
r2 〈Z , V 〉,

which means that r2 Hµ,Z is a dual vector to Z with respect to the Fubini–Study
metric on W. To see this note that (44) gives

〈Hµ,Z , V 〉FS =
1
r2

〈〈Z , e〉 e, V 〉
|X |2

=
〈Z , e〉〈e, V 〉

r2|X |2
.

On the other hand any V ∈W is a linear combination

V =
〈X, V 〉
|X |2

X +
〈e, V 〉
|e|2

e.

Since e is a Fubini–Study unit vector, we have |e| = |X | and so

1
r2 〈Z , V 〉 =

〈Z , e〉〈e, V 〉
r2|e|2

=
〈Z , e〉〈e, V 〉

r2|X |2

and (45) holds. From this we can calculate that for any V ∈W

T ′curv(V )=−2µ im〈Hµ,Z , V 〉FS =−
2µ
r2 im〈Z , V 〉 = −

2µ
r2 re〈i Z , V 〉.

Thus T ′curv and Tcurv agree as real-valued one-forms on W as claimed. Replacing
T ′curv by Tcurv introduces only an irrelevant translation of the momentum Z . �
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Taking this lemma into account we finally get Hamilton’s equations for the
reduced Hamiltonian in the form

(46)
ṙ = pr , ṗr =

µ2
+ |X |2 2K (Z)

r3 −
1
r2 V (X),

Ẋ =
|X |2

r2 DK (Z), Ż = 1
r

DV (X)−
2K (Z)

r2 X − 2µ
r2 i Z .

Applying Theorem 1 to the momentum shift map and remembering Theorem 12,
we have:

Theorem 16. The Hamiltonian flow of Hµ on T ∗R+× T ∗C3
0 has an invariant set

T ∗R+×T ∗prC
3, where 〈Z , X〉=0 with symplectic structure given by the restriction of

the standard form minus 2µ�FS. The quotient of the restricted flow by the complex
scaling symmetry is equivalent to the Hamiltonian flow of H on T ∗C3

0/S1. There is
another invariant set T ∗R+×T ∗pr,WC3, where 〈Z , X〉 = 0 and X12+ X31+ X23 = 0
and the quotient of the restricted flow by the complex scaling symmetry and by
translations of the Zi j is conjugate to the flow of the three-body problem with zero
total momentum and angular momentum µ, reduced by translations and rotations.

This Hamiltonian system represents the reduced three-body problem in a way
which is convenient for regularization of binary collisions and blow-up of triple
collision. However, the phase space is still fourteen-dimensional. Next we describe
how to find lower-dimensional representations of the reduced three-body problem
by parametrizing the shape sphere in various ways.

5.4. Parametrizing the shape sphere. The shape sphere is the projective space
P(W). As in Section 3.4, choosing a complex basis {e1, e2} for W gives a map
f :C2

→W, X = f (ξ). By viewing X ∈W and ξ ∈C2 as homogeneous coordinates
we get an induced parametrization of the shape sphere fpr : CP1

→ P(W).
The formulas of Section 3.4 (with (Q, P) replaced by (X, Z)) allow us to find

the reduced Hamiltonian for any such basis. If

e1 = (a12, a31, a23), e2 = (b12, b31, b23) ∈W,

then we have, as before, X i j = ξ1 ai j + ξ2 bi j and η̄1 = 〈Y, e1〉, η̄2 = 〈Y, e2〉. We
define a Hermitian mass metric and dual mass metric for ξ, η to be the pull-backs
of the metrics for X, Y . The squared norms are

|ξ |2 = ξ̄ T G ξ, |η|2 = η̄T G−1η,

where G is the matrix with entries Gi j =〈ei , e j 〉, and these squared norms represent
the mass metric and cometric on W.
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The relation between the cometric and kinetic energy yields the Hamiltonian
(see (29), (30) and Theorem 13):

(47) Hµ(r, pr , ξ, η)=
1
2

(
p2

r +
µ2

r2 +
|ξ |2|η|2

r2

)
−

1
r

V (ξ),

where the shape potential is

V (ξ)= |ξ |
(

m1m2

ρ12
+

m1m3

ρ31
+

m2m3

ρ23

)
, ρi j = |X i j | = |ai jξ1+ bi jξ2|.

To make the map F of Section 3.4 be partially symplectic we need to alter the
standard symplectic form in (ξ, η)-space by subtracting 2µ F∗�′FS. Pulling back
the Fubini–Study metric 〈 · , · 〉FS by f gives the Fubini–Study metric in ξ space

〈 · , · 〉FS =
〈dξ, dξ〉〈ξ, ξ〉− 〈dξ, ξ〉〈ξ, dξ〉

〈ξ, ξ〉2
.

With the help of (34) one can show

〈 · , · 〉FS =
g
|ξ |4

σ̄0⊗ σ0, where σ0 = ξ1dξ2− ξ2dξ1, g = det G.

The Fubini–Study two-form is the imaginary part.
Since σ0 is independent of the choice of basis, the Fubini–Study metrics for vari-

ous choices of basis are all conformal to one another. If we choose an orthonormal
basis the metrics are Euclidean. The Fubini–Study metric for a general basis is
related to the Euclidean one by

〈 · , · 〉FS = κ(ξ) 〈 · , · 〉FS,euc,

where the conformal factor is

(48) κ(ξ)=
g|ξ |4euc

|ξ |4
,

where |ξ |2euc = |ξ1|
2
+ |ξ2|

2.
The curvature term can be calculated directly from the definition Hµ,η �FS and

we find

Tcurv =−
2µ
r2 iη.

Hamilton’s equations in T ∗R+× T ∗prC
2 are

(49)
ṙ = pr , ṗr =

µ2
+ |ξ |2|η|2

r3 −
1
r2 V (ξ),

ξ̇ =
|ξ |2

r2 G−1η, η̇ =
1
r

DV (ξ)−
|η|2

r2 G ξ −
2µ
r2 iη.
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There are still 10 variables but the invariant set T ∗R+× T ∗prC
2 with 〈η, ξ〉 = 0 is

eight-dimensional and we have a complex scaling symmetry. The introduction of
an affine coordinate on the projective line yields a full local reduction to 6 variables.
For example, consider those points [ξ ] = [ξ1, ξ2] ∈ CP1 with ξ1 6= 0. If ρ is any
nonzero constant complex number then every such point has a unique representative
of the form [ξ1, ξ2] = [ρ, z], z = x + iy ∈ C, thus parametrizing almost all of the
shape sphere by a single complex variable z, the affine coordinate. Of course the
roles of ξ1, ξ2 could be reversed to parametrize the subset with ξ2 6= 0.

If ζ = α + iβ ∈ C∗ denotes the momentum vector dual to z then the unique
extension of f (z)= (ρ, z) to a partially symplectic map T ∗C→T ∗prC

2
={〈η, ξ〉=0}

is defined by ξ1= ρ, ξ2= z, η1=−zζ/ρ, η2= ζ . One computes the mass metric is

|ξ(z)|2 = g11|ρ|
2
+ g22|z|2+ 2 re(ρ̄g12z)

and the cometric is

|ζ |2 =
|ξ(z)|2|ζ |2

g|ρ|2
, with g = det (Gi j ).

This gives a Hamiltonian system with 3 degrees of freedom:

(50) Hµ(r, pr , x, y, α, β)= 1
2

(
p2

r +
µ2

r2 +
|ξ(z)|4|ζ |2

g|ρ|2r2

)
−

1
r

V (x, y),

where

V (z)= |ξ(z)|
(

m1m2

ρ12
+

m1m3

ρ31
+

m2m3

ρ23

)
, with ρi j = |ai j + bi j z|.

The Fubini–Study form is

�FS =
g

|ρ|2|ξ(z)|2
im dz̄⊗ dz =

g dx ∧ dy
|ρ|2|ξ(z)|2

.

The curvature term is just Tcurv =−
2µ
r2 iζ , as usual.

Example 17 (projective Jacobi coordinates). As a first example, consider using
Jacobi coordinates as in Section 3.4, only this time applied to the homogeneous
variables X, Z . As before, the basis which defines the Jacobi coordinates is the
orthogonal basis e1 = (−1, ν2, ν1), e2 = (0, 1,−1). We have

X = (−ξ1, ξ2+ ν2ξ1,−ξ2+ ν1ξ1), ξ = (−X12, ν1 X31− ν2 X23),

Z = (0, η1+ ν1η2, η1− ν2η2), η = (−Z12+ ν2 Z31+ ν1 Z23, Z31− Z23),

where, as usual, Z is nonunique.
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The Hamiltonian is (47), where the shape potential is

V (ξ)= |ξ |
(

m1m2

|ξ1|
+

m1m3

|ξ2+ ν2ξ1|
+

m2m3

|ξ2− ν1ξ1|

)
.

The mass matrix G = diag(µ1, µ2) has determinant g = µ1µ2 = m1m2m3/m and
associated norm and conorm

|ξ |2 = µ1|ξ1|
2
+µ2|ξ2|

2 and |η|2 =
|η1|

2

µ1
+
|η2|

2

µ2
.

Hamilton’s equations with the curvature term are given by (49).
If we introduce affine variables by setting ξ1 = ρ, ξ2 = z as above and if we

choose ρ =
√
µ2/µ1 the mass norm reduces to |ξ |2 = µ2(1+ x2

+ y2) and we get
the affine Jacobi Hamiltonian

Hµ(r, pr , x, y, α, β)= 1
2

(
p2

r +
µ2

r2 +
(1+ x2

+ y2)2|ζ |2

r2

)
−

1
r

V (x, y).

Hamilton’s equations with the curvature term are

(51)

ṙ = pr , ṗr =
1
r3 [µ

2
+ (1+ x2

+ y2)2(α2
+β2)] −

1
r2 V (ξ),

ẋ =
(1+ x2

+ y2)2

r2 α, ẏ =
(1+ x2

+ y2)2

r2 β,

α̇ =
1
r

Vx(x, y)−
2
r2 (1+ x2

+ y2)(α2
+β2)x +

2µ
r2 β,

β̇ =
1
r

Vy(x, y)−
2
r2 (1+ x2

+ y2)(α2
+β2)y−

2µ
r2 α.

Example 18 (equilateral coordinates). In projective Jacobi coordinates (ξ1, ξ2), the
binary collision points b12, b13, b23 are located at the projective points

[1, 0], [1,−ν2], [1, ν1] ∈ CP1

while the equilateral triangle configurations (the Lagrange points) are at

[1, `±] ∈ CP1, where `± =
m1−m2

2(m1+m2)
±

√
3

2
i =

ν1− ν2

2
±

√
3

2
i.

Using a Möbius transformation, we can put three points anywhere we like on
the shape sphere, CP1. Remarkably, it turns out that if we put the binary collisions
at the third roots of unity

(52) [ξ1, ξ2] = [1, 1], [1, ω], [1, ω̄] ∈ CP1 with ω = 1
2(−1+ i

√
3 ),

then the equilateral points are automatically moved to the north and south poles
[1, 0], [0, 1]. These coordinates were introduced in [Moeckel et al. 2012].
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These coordinates are obtained by choosing the basis

e1 = (1, ω, ω̄), e2 =−ē1 = (−1,−ω̄,−ω)

for W. The coordinate change map is X = ξ1 e1+ ξ2 e2 or

X12 = ξ1− ξ2, X31 = ωξ1− ω̄ξ2, X23 = ω̄ξ1−ωξ2,

and indeed takes the roots of unity (52) to the binary collisions. Setting ξ2 = 0, we
see that |X12| = |X32| = |X23| corresponding to an equilateral triangle, with the
same result if ξ1 = 0. Thus the coordinate change map sends the poles ξ = [1, 0],
[0, 1] to the equilateral triangles.

The mutual distances (of the homogeneous variables) ρi j = |X i j | that appear in
the shape potential are very simple:

ρ12 = |ξ1− ξ2|, ρ31 = |ξ1−ωξ2|, ρ23 = |ξ1− ω̄ξ2|.

The mass metric can also be written in terms of these

|ξ |2 =
1
m
(m1m2ρ

2
12+m3m1ρ

2
31+m2m3ρ

2
23).

It is represented by the matrix G with entries gi j = 〈e1, e2〉:

g11= g22=
m1m2+m3m1+m2m3

m
, g12= ḡ21=−

m1m2+m3m1 ω+m2m3 ω̄

m
,

and determinant g = det G = 3m1m2m3/m.
The inverse transformation is given by

ξ1 =
1
3(X12+ ω̄X31+ωX23), ξ2 =−

1
3(X12+ωX31+ ω̄X23),

and the momenta satisfy η1 = Z12+ ω̄Z31+ωZ23, η2 =−Z12−ωZ31− ω̄Z23.
Choosing affine variables by setting ξ1 = z, ξ2 = 1, we get the Hamiltonian

(50) with

|ξ(z)|2 =
1
m

(
m1m2|z− 1|2+m3m1|z−ω|2+m2m3|z− ω̄|2

)
.

The complexity of mass norm is perhaps outweighed by the fact that the potential
is given by the wonderful expression

V (z)= |ξ(z)|
(

m1m2

|z− 1|
+

m1m3

|z− ω|
+

m2m3

|z− ω̄|

)
.

The advantage of these coordinates is that they provide the homogenized potential
V with “radial monotonicity”’. Let E = x(∂/∂x)+ y(∂/∂y) be the radial vector
field in the z plane, where z = x+ iy. Then E[V ]> 0 for 0< |z|< 1, E[V ]< 0 for
|z|> 0, and E[V ] = 0 if and only if |z| = 1 or z= 0. (See Proposition 4 of [Moeckel
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et al. 2012].) This monotonicity was the key ingredient to the main theorem of
[Montgomery 2002].

5.5. Making the shape sphere round. Instead of using projective or local affine
coordinates, one can map the shape sphere to the unit sphere in R3. First we do
this homogeneously, then restrict to the unit sphere to get another version with 6
degrees of freedom. Let ξ = (ξ1, ξ2) ∈ C2 be coordinates associated with some
choice of basis e1, e2 for W.

Consider the Hopf map h : C2
→ R3 given by w1 = 2 re ξ̄1ξ2, w2 = 2 im ξ̄1ξ2,

w3 = |ξ1|
2
− |ξ2|

2. Using the Euclidean metric for w we get

|w|2 = w2
1 +w

2
2 +w

2
3 = |ξ |

4
euc = (|ξ1|

2
+ |ξ2|

2)2.

It follows that 2|ξ1|
2
= |w| +w3, 2|ξ2|

2
= |w| −w3, 2ξ̄1ξ2 = w1+ iw2.

We will need formulas for ρi j = |X i j | = |ai jξ1 + bi jξ2| in the variables wi .
We have

(53) ρ2
i j = |ai j |

2
|ξ1|

2
+|bi j |

2
|ξ2|

2
+2 re(ξ̄1ξ2āi j bi j )

=
1
2

(
|ai j |

2
+|bi j |

2)
|w|+ 1

2

(
|ai j |

2
−|bi j |

2)w3+re(āi j bi j )w1−im(āi j bi j )w2.

Then the mass metric will be given by

(54) |ξ |2 =
1
m
(m1m2ρ

2
12+m3m1ρ

2
31+m2m3ρ

2
23).

If we let α1, α2, α3 be dual momentum variables, we can extend the Hopf map h
to a partially symplectic map F : T ∗prC

2
→ T ∗sphR3 by defining its (pseudo) inverse:

η = α ◦ Dh := Dhtα.

To find the reduced Hamiltonian in w coordinates we will exploit the fact that the
Euclidean metric transforms nicely. Recall that the shape kinetic energy is the dual
of the Fubini–Study metric and that the latter is related conformally to the Euclidean
metric with conformal factor κ−1, where κ is given by (48). In other words, since
we are restricting to 〈η, ξ〉 = 0 we have

|ξ |2|η|2 = κ−1
|ξ |2euc |η|

2
euc.

One can verify that the Euclidean norms transform under the Hopf map in such a
way that

|ξ |2euc |η|
2
euc = 4|w|2|α|2,

where we are using the Euclidean norm on R3,R3∗. Hence the reduced Hamiltonian
on the sphere is given by

Hµ(r, pr , w, α)=
1
2

(
p2

r +
µ2

r2 +
4|w|2|α|2

κ(w)r2

)
−

1
r

V (w),
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where |w|2 =w2
1+w

2
2+w

2
3 and |α|2 = α2

1+α
2
2+α

2
3 and where the shape potential

is given by

V (w)= |ξ(w)|
(

m1m2

ρ12
+

m3m1

ρ31
+

m2m3

ρ23

)
with the ρi j and |ξ | as in (53) and (54).

The Fubini–Study form becomes a multiple κ/4 of the Euclidean solid angle
form

�FS =
κ

4|w|3
(w1 dw2 ∧ dw3+w2 dw3 ∧ dw1+w3 dw1 ∧ dw2).

This leads to the curvature term

Tcurv =
2µ
|w|r2 α×w,

where w×α denotes the cross product in R3.
The differential equations are

(55)
ṙ = pr , ṗr =

1
r3

(
µ2
+

4|w|2|α|2

κ

)
−

1
r2 V (ξ), ẇ =

4|w|2

κr2 α,

α̇ =
1
r

DV (w)−
4|α|2

κr2 w+
4|w|2|α|2

κ2r2 κw +
2µ
|w|r2α×w.

From Theorem 1, if we restrict to T ∗R+×T ∗sphR3
= {〈α,w〉euc= 0} and quotient

by the scaling action of R+, we get a reduced system equivalent to the reduced
three-body problem. But 〈α,w〉euc = 0 implies that |w| is constant under the
flow. Hence we have a six-dimensional invariant submanifold given by |w| =
1, 〈α,w〉euc = 0 representing the reduced three-body problem. The reduced phase
space is T ∗R+ × T ∗S2 and the shape sphere is represented by the standard unit
sphere.

To get to six dimensions with no constraints one could parametrize the sphere
with two variables. If this is done with stereographic projection, the result is similar
to the affine coordinate reduction of Section 5.4. On the other hand one could also
use spherical coordinates θ, φ. However, both of these are just local coordinates
while the system above is global, albeit constrained.

Example 19 (Jacobi coordinates on S2). If we choose an orthonormal basis for W

then we get the conformal factor κ = 1 and the resulting Hamiltonian will have a
simpler shape kinetic energy. For example, we could normalize the Jacobi basis of
Example 17 to

e′1 =
1
√
µ1
(−1, ν2, ν1), e′2 =

1
√
µ2
(0, 1,−1).
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The coordinates ξi are replaced by
√
µi ξi in all of the formulas. We get rather

complicated homogeneous mutual distances

2µ1µ2ρ
2
12 = µ2(|w| +w3),

2µ1µ2ρ
2
31 = (µ2ν

2
2 +µ1)|w| + (µ2ν

2
2 −µ1)w3+ 2ν2

√
µ1µ2w1,

2µ1µ2ρ
2
23 = (µ2ν

2
1 +µ1)|w| + (µ2ν

2
1 −µ1)w3− 2ν1

√
µ1µ2w1.

In the equal mass case with mi = 1 and |w| = 1, however, we get

ρ2
12 = |w| +w3, ρ2

31 = |w| +

√
3

2
w1−

1
2w3, ρ2

23 = |w| −

√
3

2
w1−

1
2w3.

On the other hand the Hamiltonian is

Hµ(r, pr , w, α)=
1
2

(
p2

r +
µ2

r2 +
4|w|2|α|2

r2

)
−

1
r

V (w),

where the norms are Euclidean.

Example 20 (equilateral coordinates on S2). If we use the basis of Example 18
e1 = (1, ω, ω̄), e2 =−ē1 = (−1,−ω̄,−ω), we get simple mutual distances

ρ2
12 = |w| −w1 ρ2

31 = |w| +
1
2w1−

√
3

2
w2 ρ2

23 = |w| +
1
2w1+

√
3

2
w2.

Collinear shapes form the equator w3 = 0 with the binary collisions placed at the
roots of unity.

On the other hand we have a formidable conformal factor

κ =
3m1m2m3m(w2

1 +w
2
2 +w

2
3)

(m1m2ρ
2
12+m3m1ρ

2
31+m2m3ρ

2
23)

2
.

In the equal mass case (mi = 1) we see κ = 1.

5.6. Visualizing the shape sphere. Having reduced the planar three-body problem
by using size and shape coordinates, we will pause to have a closer look at the
shape sphere and the shape potential.

Using the spherical variablesw= (w1, w2, w3) we can visualize the shape sphere
as the round unit sphere in R3. The equilateral basis of Example 20 puts the binary
collisions at the third roots of unity on the equator and the Lagrange equilateral
configurations at the poles. Figure 1 shows some of the level curves of V for two
choices of the masses. In addition to the binary collisions shapes where V →∞,
there are three saddle points at the Eulerian central configurations. The Lagrange
points are always minima of V .

If we use stereographic projection to map the sphere to the complex plane, we get
the affine coordinate representation of Example 18. Figure 2 shows affine contour
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Figure 1. Contour plot of the shape potential on the unit sphere
w2

1 +w
2
2 +w

2
3 = 1 in the equal mass case (left) and for masses

m1 = 1, m2 = 2, m3 = 10 (right).

Figure 2. Contour plot of the shape potential on the complex plane
in the equal mass case (left) and for masses m1=1, m2=2, m3=10
(right). These plots can be viewed as stereographic projections of
those in Figure 1.

plots for the same two choices of the masses. Now the collinear shapes are on the
real axis.

6. Levi-Civita regularization

In this section, we describe a way to simultaneously regularize all 3 binary collision
using 3 separate Levi-Civita transformations. This approach to simultaneous regu-
larization was introduced by Heggie [1974]. There are two versions depending on
whether the variables Qi j or the homogeneous variables X i j are used. The former
approach was used by Heggie; we will take the latter. We begin with a review of
Levi-Civita regularization for the Kepler problem.
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Levi-Civita showed how to regularize the two-body problem, which is to say, the
Kepler problem. Let q ∈C denote the position of a planet going around an infinitely
massive sun placed at the origin. After a normalization, the Kepler Hamiltonian is
1
2 |p|

2
−α/|q|. Levi-Civita’s transformation is the map

z 7→ z2
= q

together with the induced map on momenta

η 7→
1
2z̄
η = p

and the time rescaling
d

dτ
= r

d
dt
.

To understand the map on momenta, make the substitution q = z2 in the expression
〈p, dz〉 for the canonical one-form. We have 〈p, dq〉 = 〈p, 2zdz〉 = 〈2z̄ p, dz〉,
which shows that if η = 2z̄ p then 〈η, dz〉 = 〈p, dq〉. This computation shows that
the map (η, z)→ (p, q)with p= (1/(2z̄))η, q= z2 is a 2:1 canonical transformation
away from the origin. Observe that r = |z|2. Thus in terms of the new variables

H =
1
2r

(
|η|2−

α

|z|2

)
.

Time rescaling is equivalent to rescaling the Hamiltonian vector field. This
rescaling can be implemented using the following “Poincaré trick”. If X H is
the Hamiltonian vector field for H , and if h is a value of H , then f X H is the
Hamiltonian vector field for the Hamiltonian H̃ = f (H − h) provided we restrict
ourselves to the level set {H = h}. We take f = r = |z|2 and compute that

H̃ = 1
2(|η|

2
− h|z|2−α),

which is the Hamiltonian for a harmonic oscillator when h < 0.

6.1. Simultaneous regularization. Let (r, X) denote either the spherical-homo-
geneous or projective-homogeneous coordinates. To simultaneously regularize
all three double collisions we perform a Levi-Civita transformation on each of
the homogeneous complex variables X i j . Thus, we introduce three new complex
variables zi j =−z j i and set X i j = z2

i j . Define a regularizing map f : C3
0→ C3

0 by

X = f (z12, z31, z23)= (z2
12, z2

31, z2
23).

The preimage of the subspace W is the quadratic cone

C : z2
12+ z2

31+ z2
23 = 0.
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We have f :C0→W0. Every X ∈W0 has 8 preimages under f , except for the three
binary collision points (X i j = 0 some i j), which each have 4 preimages. (Since
X 6= 0, at most one of the X i j or zi j can vanish at a time on W0 or C0.)

Since f is homogeneous, it induces maps fsph : S5
→ S5 and fpr : CP2

→ CP2.
In this case we also view zi j as homogenous spherical or projective coordinates.
These restrict to regularizing maps fsph : S(C)→ S(W) and fpr : P(C)→ P(W),
where, as above, S(·) and P(·) denote quotient spaces under real and complex
scaling, respectively.

The mutual distances become

(56) ρi j = |X i j | = |zi j |
2

and the mass norm is

(57) |X (z)|2 = | f (z)|2 =
m1m2ρ

2
12+m1m3ρ

2
31+m2m3ρ

2
23

m1+m2+m3
.

We will use the standard Hermitian inner product, denoted 〈〈 · , · 〉〉, on z-space so

(58) ‖z‖2 = |z12|
2
+ |z31|

2
+ |z23|

2
= ρ12+ ρ31+ ρ23.

Let ηi j be the conjugate momenta to zi j and let Yi j the homogenous momenta
conjugate to X i j . We extend f to a map (r, pr , X, Y )= F(r, pr , z, η) by setting

Yi j =
1

2z̄i j
ηi j .

Then F restricts to maps

T ∗R+× T ∗sphC3
→ T ∗R+× T ∗sphC3 and T ∗R+× T ∗prC

3
→ T ∗R+× T ∗prC

3,

where in (z, η)-variables we have the constraints re〈η, z〉 = 0 for the sphere and
〈η, z〉 = 0 for the projective plane. We continue to denote these restricted maps by
the letter F .

The action of c ∈C by translation of the momenta Yi j to Yi j+c pulls-back under
F to translation of ηi j by 2cz̄i j , that is, to the action

c · (r, pr , z, η)= (r, pr , z, η+ 2cz̄).

The momentum map for this pulled back action is γ = z2
12+z2

31+z2
23. Of course we

will be interested in the level set γ = 0. We will call this the z-translation symmetry
of η.

6.1.1. Geometry of C and the regularized shape sphere. It is interesting to investi-
gate the algebraic surface C in more detail. If we write the complex vector z ∈ C3

as z = a+ i b, where a = re z and b = im z ∈ R3, then

z2
12+ z2

31+ z2
23 = 0 if and only if |a|2 = |b|2, a · b = 0.
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This means a, b are real, orthogonal vectors of equal length

s2
= |a|2 = |b|2 = |z|

2

2
.

If we define a third vector c= a×b we get an orthogonal frame in R3 and the matrix

(59) A(z)= 1
s

a12 b12 c12/s
a31 b31 c31/s
a23 b23 c23/s

 ∈ SO(3).

The mapping A(z) induces a diffeomorphism between the quotient space S(C)
of C0 by positive real scalings to SO(3) and hence, as is well-known, to the real
projective space RP(3) (and to the unit tangent bundle to S2).

The projective curve P(C) turns out to be diffeomorphic to the two-sphere S2

and, accordingly, we will call it the regularized shape sphere. One way to see this
is to note that P(C)' S(C)/S1 is the quotient of S(C) under rotations. It is easy
to see that action the rotation group on z rotates the vectors a, b ∈R3 above in their
own plane and leaves c= a×b invariant. It follows that the map z 7→ c/|c| induces
a diffeomorphism P(C)' S2.

In the sections below, we will apply the regularizing map to obtain several
regularized Hamiltonians for the three-body problem. Starting with spherical-
homogenous variables leads to a regularized system not reduced by rotations while
the projective-homogenous variables lead to a Hamiltonian system which is both
regularized and reduced. In addition we will consider several ways to parametrize
the cone C to obtain lower-dimensional systems. Theorem 1 can be applied to show
the equivalence of the Hamiltonian systems below, but we will omit most of the
details.

6.2. Spherical regularization. First we will find the regularized Hamiltonian in
spherical-homogeneous coordinates. This gives a regularization of binary colli-
sions without reducing by the rotational symmetry. Let (r, X) be the spherical-
homogeneous coordinates of Section 4. The spherical Hamiltonian is

Hsph(r, pr , X, Y )= 1
2 p2

r +
|X |2

r2 K (Y )− 1
r

V (X).

Using the formula analogous to the one in (7) for K (Y ) and applying the regularizing
map gives

(60) Hsph(r, pr , z, η)= 1
2 p2

r +
|X (z)|2

r2

(
|π1|

2

8m1ρ12ρ31
+
|π2|

2

8m2ρ12ρ23
+
|π3|

2

8m3ρ31ρ23

)
−

1
r

(
m1m2

ρ12
+

m3m1

ρ31
+

m2m3

ρ23

)
,
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where

(61) π1 = η12 ¯z31− η31 ¯z12, π2 = η23 ¯z12− η12 ¯z23, π3 = η31 ¯z23− η23 ¯z31.

Next we rescale time using the Poincaré trick. One choice of time-rescaling
factor is |z12z31z23|

2
= ρ12ρ31ρ23. But since X, z are homogeneous coordinates, a

degree-zero homogeneous function such as

(62) τ =
ρ12ρ31ρ23

(ρ12+ ρ31+ ρ23)3
=
ρ12ρ31ρ23

‖z‖6

seems more appropriate. Note that by the arithmetic-geometric mean inequality we
have 0≤ τ ≤ 1

27 . In Section 6.3 we will choose a different time rescaling function λ.
The rescaled solution with energy Hsph = h become the zero-energy solutions

for the Hamiltonian H̃sph(r, pr , z, η)= τ(Hsph− h):

(63) H̃sph =
τ p2

r

2
+
|X (z)|2

r2‖z‖6

(
|π1|

2ρ23

8m1
+
|π2|

2ρ31

8m2
+
|π3|

2ρ12

8m3

)
−

1
r

W (z)− hτ,

where the regularized shape potential W is

(64) W (z)=
|X (z)|
‖z‖6

(m1m2ρ31ρ23+m1m3ρ12ρ23+m2m3ρ12ρ31).

Note that since z is a homogeneous variable representing [z] ∈ S5, we have z 6= 0.
For a homogeneous coordinate representing a binary collision we will have exactly
one of the variables zi j = 0 and ‖z‖> 0. Thus H̃ is nonsingular at these points and
the binary collisions are regularized.

Theorem 21. The Hamiltonian flow of H̃sph on T ∗R+ × T ∗C3
0 has an invariant

submanifold T ∗R+× T ∗sph,CC3
0 defined by re〈η, z〉 = 0 and z2

12+ z2
31+ z2

23 = 0. The
quotient of the restricted flow by scaling and by translation of η by z̄ represents
the zero total momentum three-body problem with regularized binary collisions,
reduced by translations (but not by rotations).

The quotient space of T ∗sph,CC3
0 by these symmetries can be identified with

T ∗S(C)' T ∗RP(3). The regularizing map induces an 8-to-1 branched covering
map fsph : S(C)→ S(W), that is, an 8-to-1 branched covering RP3

7→ S3. The
map is a diffeomorphism except where (exactly) one of the zi j = 0 and X i j = 0. To
describe the branching behavior, note that in the two-dimensional complex subspace
W, the set where X12 = 0 is a complex line which corresponds to a circle S1 in the
sphere S(W). The preimage of this circle will be 2 circles in the projective space
S(C). Altogether, the map is branched over 3 circles, each circle having preimage
2 circles in the projective space RP3.
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6.2.1. Quadratic parametrization of C. Instead of writing Hamilton’s equations
for H̃sph, we will describe a parametrization of the cone C that leads to a lower-
dimensional system of equations. There is a nice 2-to-1 parametrization by quadratic
polynomials which is related to the double covers of RP3 by S3, of SO(3) by the
unit quaternions, and of SO(3) by SU(2).

Define a 2-to-1 mapping g : C2
→ C⊂ C3 by

(65) g : z12 = 2i x1x2, z31 = x2
1 + x2

2 , z23 = i(x2
1 − x2

2),

where x1, x2 ∈ C. This can be seen as a variant of a map used by Waldvogel [1972]
in his regularization of the planar problem. But here we are applying the idea to
the homogeneous variables X , which makes it easier to blow-up triple collision
later on.

By homogeneity, there is an induced map gsph : S3
→ S(C). The induced map is

given by the same formula except that x, z now denote homogenous coordinates for
the points of S3, S5. (This double covering map gives another way to see that S(C)
is diffeomorphic to the real projective space RP3.) The map gsph can be motivated
in several ways. First, after omitting the factors of i , it resembles the formulas for
parametrizing Pythagorean triples. Next, write x1 = u1− iu2, x2 = u3+ iu4 and
define the unit quaternion u= u1+ i u2+ j u3+k u4. Then the familiar conjugation
map v 7→ uvū, where v is an imaginary quaternion, defines a rotation R(x) on the
three-dimensional space of v’s. Up to a permutation of the columns, R(x)= A(z),
the matrix of (59), and hence the conjugation map defines a map x 7→ z. As a
variation on this construction, define the unitary x-dependent matrix

U =
[

x̄1 x2

−x̄2 x1

]
∈ SU(2).

Then the adjoint representation v 7→ U (x)vU (x)−1 on su(2) ' R3 produces the
same rotation R(x).

The composition f ◦ gsph of the regularizing map and the quadratic parametriza-
tion gives a 16-to-1 branched cover S3

7→ S3, which becomes 8-to-1 over the
binary collisions. Each binary collision is represented by a circle in the range which
has 2 preimage circles for a total of 6 branching circles in the domain. Using
stereographic projection, it is possible to get some idea of the behavior of this
remarkable, regularizing map. Figure 3 shows the projection of the three-sphere.
The three transparent surfaces are tori representing the collinear configurations
with a given ordering of the bodies along the line. These intersect in 6 circles
representing the binary collisions. The figure shows thin tubes around each of
these circles.
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Figure 3. Stereographic projection of S3 showing the preimage
under the regularizing map of the collinear configurations and small
tubes around the binary collision circles.

To extend g to a partially symplectic map G : T ∗R+×T ∗C2
→ T ∗R+×C×C3∗

we transform the momenta η, y so that y = ηD f (z) or

[
y1 y2

]
=
[
η12 η31 η23

]−2i x̄2 −2i x̄1

2x̄1 2x̄2

−2i x̄1 2i x̄2

 .
The value of η is not uniquely determined but any two solutions will yield equivalent
covectors and the same transformed Hamiltonian. For example, we could take

η12 = 0, η31 =
1
4

(
y1

x̄1
+

y2

x̄2

)
, η23 =

i
4

(
y1

x̄1
−

y2

x̄2

)
.

G restricts to G : T ∗R+× T ∗sphC2
→ T ∗R+× T ∗sph,CC3∗, where

T ∗sphC2
= {(x, y) : re〈y, x〉 = 0} and T ∗sph,CC3∗

= {(z, η) : z ∈ C, re〈η, z〉 = 0}.
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The regularized spherical Hamiltonian becomes

(66) H̃sph =
τp2

r

2
+
|X (x)|2

r2‖x‖12

(
|π ′1|

2ρ23

256m1
+
|π ′2|

2ρ31

256m2
+
|π ′3|

2ρ12

256m3

)
−

1
r

W (x)− hτ,

π ′1 = y1 x̄2+ y2 x̄1, π ′2 = y1 x̄2− y2 x̄1, π ′3 = y1 x̄1− y2 x̄2,

ρ12 = |2x1x2|
2, ρ31 = |x2

1 + x2
2 |

2, ρ23 = |x2
1 − x2

2 |
2,

‖z‖2 = 2‖x‖4 = ρ12+ ρ31+ ρ23,

|X (x)|2 =
m1m2ρ

2
12+m1m3ρ

2
31+m2m3ρ

2
23

m1+m2+m3
.

Note that H̃ is invariant under the scaling symmetry (x, y)→ (kx, k−1 y), k > 0.
The corresponding Hamiltonian system on the ten-dimensional space T ∗(R+×C2)

can be reduced to the expected eight dimensions by restricting to the invariant set
T ∗R+× T ∗sphC2 and then passing to the quotient space under scaling.

6.3. Projective regularization. Next we will get a regularized version of the re-
duced three-body problem. Let (r, X) be the projective-homogeneous coordinates
of Section 5. For a fixed angular momentum, we have the reduced Hamiltonian
on T ∗R+× T ∗prC

3

Hµ(r, pr , X, Z)= 1
2

(
p2

r +
µ2

r2

)
+
|X |2

r2 K (Z)−
1
r

V ([X ]).

After making the Levi-Civita transformations, fixing an energy and changing time-
scale by the factor τ from (62) we obtain a regularized reduced Hamiltonian

(67) H̃µ=
τp2

r

2
+
τµ2

2r2 +
|X (z)|2

r2‖z‖6

(
|π1|

2ρ23

8m1
+
|π2|

2ρ31

8m2
+
|π3|

2ρ12

8m3

)
−

1
r

W (ξ)−hτ,

where the various quantities appearing in the formula are given by (56), (57), (58),
(61) and (64). The only difference between the spherical and projective Hamiltonians
is the term involving µ2. We also impose the extra constraint im〈η, z〉 = 0 and there
will be extra curvature terms in the differential equations.

To find the curvature terms we need to pull-back the Fubini–Study form under
the regularizing map X = f (z), X i j = z2

i j . The Fubini–Study metric on z-space is
derived from the standard Hermitian metric on C3 by a formula analogous to (31).
We can express its restriction to C in terms of a tangent vector field as we did in
Lemma 14. The analogous formula to (32) is

(68) 〈〈V,W 〉〉FS,C =
〈〈V, e〉〉〈〈e,W 〉〉
‖z‖4

, V,W ∈ TX S,
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where e(z) is a Fubini–Study unit vector field tangent to C and normal to z. For
example, observe that if z ∈ C0 = C \ 0 then the vectors z, z̄, T form a Hermitian-
orthogonal complex basis for TzC3, where

(69) T = z× z̄ = (z31 z̄23− z23 z̄31, z23 z̄12− z12 z̄23, z12 z̄31− z31 z̄12).

Hence we can take
e =
‖z‖
‖T ‖

T = (z× z̄)/‖z‖.

This gives

(70) 〈〈 · , · 〉〉FS,C =
6⊗6

‖z‖4
,

where 6 is given by any of the formulas

(71) 6 =
〈〈z× z̄, dz〉〉
‖z‖

=
‖z‖(z12 dz31− z31 dz12)

z23

=
‖z‖(z23 dz12− z12 dz23)

z31
=
‖z‖(z31dz23− z23dz31)

z12
.

For example, the first version is just 6 = 〈〈e, dz〉〉 and the second is obtained by
eliminating z23, dz23 using the equations

z2
23 =−z2

12− z2
31 and z23 dz23 =−z12 dz12− z31 dz31.

Using these formulas, we find that the pull-back of the Fubini–Study metric on
W is a conformal multiple of the Fubini–Study metric on C.

Lemma 22. The pull-back of the Fubini–Study metric on W is given by

f ∗〈 · , · 〉FS,W = λ(z)〈〈 · , · 〉〉FS,C,

where the conformal factor is

(72) λ=
4m1m2m3 ρ12ρ31ρ23‖z‖2

m|X (z)|4
=

4m m1m2m3(ρ12+ ρ31+ ρ23) ρ12ρ31ρ23

(m1m2ρ
2
12+m1m3ρ

2
31+m2m3ρ

2
23)

2

and where ρi j = |zi j |
2.

Proof. Equation (34) shows that we need to compute the pullback f ∗σ , where σ is
given by (35). Using the first formula for σ gives

f ∗σ = 2z2
12z31 dz31− 2z2

31z12 dz31 = 2z12z31z236.

Hence

f ∗〈〈 · , · 〉〉FS,W =
m1m2m3

m|X (z)|4
f ∗σ ⊗ f ∗σ =

4m1m2m3

m|X (z)|4
|z12|

2
|z31|

2
|z23|

26⊗6.

Now use (57), (58) and (70) to get the formula in the proposition. �
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Similarly we can pull-back the Fubini–Study cometric on W and compare it with
the Fubini–Study cometric on C. The formula analogous to (33) is

(73) ‖η‖2FS,C = |〈η, e〉|2 =
|〈η, z× z̄〉|2

‖z‖2
, η ∈ T ∗z,prC

3.

This is a degenerate quadratic form, invariant under z-translation of η, which
represents the Fubini–Study cometric on C.

The next lemma relates this to the pull-back of the Fubini–Study cometric on W

and hence, to the shape kinetic energy.

Lemma 23. The pull-back of the Fubini–Study cometric on W is

F∗‖ · ‖2FS,W = λ
−1
‖ · ‖

2
FS,C,

where λ is given by (72). Hence the shape kinetic energy in regularized coordi-
nates is

1
2λ
−1
‖η‖2FS,C =

1
2
|〈η, z× z̄〉|2

λ ‖z‖2
.

Proof. Equation (36) shows that we need to compute the pullback F∗α, where α is
given by (37). Using the second formula for α gives

|z23|
2

|X |2
F∗α =

(η31 z̄12− η12 z̄31)z23

2z̄12 z̄31 z̄23

and there are two similar equations from the third and fourth formulas. Adding
these gives

F∗α =
|X (z)|2

‖z‖2
〈η̄, z× z̄〉.

Therefore,

F∗‖η‖2FS,W =
m|X (z)|4|〈η, z× z̄〉|2

4m1m2m3ρ12ρ31ρ23‖z‖4
=

m|X (z)|4

4m1m2m3ρ12ρ31ρ23‖z‖2
‖η‖2FS,C.

Comparing with the formula for λ completes the proof. �

It follows from the lemma that we have an equivalent reduced, regularized
Hamiltonian

H̃µ =
τp2

r

2
+
τµ2

2r2 +
τ‖η‖2FS,C

2λ(z)r2 −
1
r

W (ξ)− hτ.

Some simplification is obtained by choosing the degree-zero homogeneous function
λ as our time rescaling function instead of the function τ of (62), that is, by setting
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τ = λ. This gives the reduced, regularized Hamiltonian

(74) H̃µ =
λ p2

r

2
+
λµ2

2r2 +
‖η‖2FS,C

2r2 −
1
r

W (ξ)− hλ

=
λ p2

r

2
+
λµ2

2r2 +
|〈η, z× z̄〉|2

2r2‖z‖2
−

1
r

W (ξ)− hλ,

where the new regularized shape potential is

(75) W =
4
√

m m1m2m3(ρ12+ρ31+ρ23)(m1m2ρ31ρ23+m1m3ρ12ρ23+m2m3ρ12ρ31)

(m1m2ρ
2
12+m1m3ρ

2
31+m2m3ρ

2
23)

3/2
.

The factor of λ in the Fubini–Study two-form and the factor of λ−1 in the
shape kinetic energy cancel out in the interior product defining the curvature term.
Remembering the timescale factor λ we find that the curvature term is

(76) Tcurv =−
2µλ
r2 iη,

which is added to the right hand side (that is to−∂H/∂z) of the Hamilton’s equation
for η̇.

Theorem 24. The Hamiltonian flow of H̃µ on T ∗R+× T ∗C3
0 has an invariant set

T ∗R+×T ∗pr,CC3, where 〈η, z〉 = 0 and z2
12+ z2

31+ z2
23 = 0 with symplectic structure

given by the restriction of the standard form minus 2µλ�FS. The quotient of the
restricted flow by the complex scaling symmetry and by z̄-translations of η represents
the three-body problem with zero total momentum and angular momentum µ, with
regularized binary collisions, reduced by translations and rotations.

The regularized, reduced Hamiltonian H̃µ, together with the curvature term gives
a system of differential equations on the fourteen-dimensional space T ∗(R+×C3)

with variables (r, pr , z, η). The six-dimensional quotient space of T ∗R+× T ∗pr,CC3

is diffeomorphic to T ∗R+×T ∗P(C). Instead of writing these fourteen-dimensional
differential equations, we will describe several ways to parametrize the regularized
shape sphere P(C) to arrive at lower-dimensional systems of equations.

6.3.1. Quadratic parametrization of the regularized shape sphere. We can parame-
trize C using the same quadratic map g : C2

→ C⊂ C3 as in Section 6.2.1:

z12 = 2i x1x2, z31 = x2
1 + x2

2 , z23 = i(x2
1 − x2

2).

Since g is homogeneous with respect to complex scaling, it induces a map gpr :

CP1
→ P(C) from the projective line onto P(C). Although g and the induced

map gsph of S3 in Section 6.2.1 are both 2-to-1, the extra quotienting makes gpr a
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diffeomorphism. This shows again that P(C) is diffeomorphic to the two-sphere.
The same partially symplectic extension

G : T ∗R+× T ∗C2
→ T ∗R+×C×C3∗

restricts to a map G : T ∗R+× T ∗prC
2
→ T ∗R+× T ∗pr,CC3, where

T ∗prC
2
= {(x, y) : 〈y, x〉 = 0} and T ∗pr,CC3

= {(z, η) : z ∈ C, 〈η, z〉 = 0}.

If we use (74) together with the formula (73) for the dual Fubini–Study metric,
we obtain, after some simplification, the reduced, regularized Hamiltonian

(77)
H̃µ =

λ p2
r

2
+
λµ2

2r2 +
|y1x2− x1 y2|

2

4r2 −
1
r

W (x)− hλ,

ρ12 = |2x1x2|
2, ρ31 = |x2

1 + x2
2 |

2, ρ23 = |x2
1 − x2

2 |
2,

where W (x) is still given by (75) and λ(x) by (72) but with the ρi j replaced by the
given expressions in terms of x .

We have the complex constraint 〈y, x〉 = 0 and the system is invariant under
complex scaling symmetry (x, y)→ (kx, y/k̄), k ∈ C0. Applying the constraint
and passing to the quotient space reduces the dimension from 10 to 6. As usual,
Hamilton’s differential equations will have a curvature term

Tcurv =−
2µλ
r2 iy

added to the ẏ equation.

6.3.2. Dynamics in regularized affine coordinates. As in Section 5.4 we can use
affine local coordinates on CP1. Every projective point [x1, x2] ∈ CP1 with x1 6= 0
has a representative of the form [x1, x2] = [1, z] = [1, x+ iy], where x, y ∈R. The
appropriate momentum substitution is y1 =−z̄ζ , y2 = ζ , where ζ = α+ iβ ∈ C∗ is
a momentum vector dual to z.

We get a Hamiltonian system with 6 degrees of freedom:

(78) H̃µ =
λ p2

r

2
+
λµ2

2r2 +
(1+x2

+y2)2(α2
+β2)

4r2 −
1
r

W (x, y)−hλ,

ρ12 = 4(x2
+y2), ρ31 = (1+x2

−y2)2+4x2 y2, ρ23 = (1−x2
+y2)2+4x2 y2.

The Fubini–Study form becomes

�FS =
dx ∧ dy

(1+ x2+ y2)2
.
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Hamilton’s equations with the curvature term are

(79)

ṙ = λpr , ṗr =
1
r3

[
(1+ x2

+ y2)2(α2
+β2)+ λµ2]

−
1
r2 W (x, y),

ẋ =
(1+ x2

+ y2)2

2r2 α, ẏ =
(1+ x2

+ y2)2

2r2 β,

α̇ =
1
r

Wx − λx

[
p2

r

2
+
µ2

2r2 − h
]
−
(1+ x2

+ y2)(α2
+β2)x

r2 +
2λµβ

r2 ,

β̇ =
1
r

Wy − λy

[
p2

r

2
+
µ2

2r2 − h
]
−
(1+ x2

+ y2)(α2
+β2)y

r2 −
2λµα

r2 .

6.3.3. Dynamics in regularized spherical coordinates. Instead of using projective
or local affine coordinates, one can map the regularized shape sphere to the unit
sphere in R3. A particularly elegant way to do this is to use the diffeomorphism
between C and SO(3) described in Section 6.1.1.

Given z ∈ C we write z = a+ ib, where a, b ∈ R3, and define c = a× b ∈ R3.
We saw that the matrix

A(z)=
1
s

a12 b12 c12/s
a31 b31 c31/s
a23 b23 c23/s


is in SO(3), where s2

= |z|2/2= |a|2 = |b|2 = |c|.
We will work homogeneously and define a map g : C→ R3,

g(z)= c = re(z)× im(z).

By homogeneity, there is an induced map gpr : P(C)→ S(R3) ' S2, where we
view z and c as homogeneous coordinates with respect to complex and positive real
scaling respectively.

The orthogonality of the matrix A(z) can be used to derive some useful formulas.
Since the rows as well as the columns are unit vectors, we find

ρi j = |zi j |
2
= a2

i j + b2
i j =
|c|2− c2

i j

|c|
,

which gives the beautiful formulas

(80) ρ12 =
c2

31+ c2
23

|c|
, ρ31 =

c2
12+ c2

23

|c|
, ρ23 =

c2
12+ c2

31

|c|
,

for the homogeneous mutual distances. Similar formulas were given in [Lemaître
1964].
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Next, consider the quantity

z̄12z31 = a12a31+ b12b31+ i(a12b31− a31b12)= (a12, b12) · (a31, b31)+ ic23.

Using the orthogonality of the rows we can express this entirely in terms of c.
We find

z̄12z31 =−
c12c31

|c|
+ ic23, z̄23z12 =−

c23c12

|c|
+ ic31, z̄31z23 =−

c31c23

|c|
+ ic12.

These last formulas allow us to write down local inverses for gpr. Namely, consider
the map h12 : R

3
→ C3,

h12(c)= |c|z̄12(z12, z31, z23)= |c|(z̄12z12, z̄12z31, z̄12z23)

= (c2
31+ c2

23,−c12c31+ i |c|c23,−c12c23− i |c|c31).

If z12 6= 0, then h12(c) represents the same projective point in P(C) as z does so
h12(c) give a local inverse for the projective map gpr. There are similar partial
inverses h31, h23.

To find the regularized, reduced Hamiltonian system, we need to convert the
Fubini–Study metric and its dual norm (that is, cometric) to c-coordinates. The
spherical analogue of the Fubini–Study metric is the spherical metric

〈 · , · 〉sph =
|c|2〈dc, dc〉− 〈dc, c〉〈c, dc〉

|c|4
=
|c× dc|2

|c|4
,

where we are using the Euclidean inner product on R3. We will see that

g∗〈 · , · 〉sph = 2〈〈 · , · 〉〉FS,C =
2|〈〈z× z̄, dz〉〉|2

‖z‖6
.

To see this, note that z× z̄ =−2ia× b =−2ic. Hence

dc =
i
2
(dz× z̄+ z× dz̄).

This, together with the fact that 〈〈z, z̄〉〉 = 0 on C leads, after some algebra, to the
pull-back formula. Correspondingly, the Euclidean solid angle form pulls back to
twice the Fubini–Study form, hence

λ�FS,C = g∗
λ

2|c|3
(c1 dc2 ∧ dc3+ c2 dc3 ∧ dc1+ c3 dc1 ∧ dc2).

Let γ ∈ R3∗ be a dual momentum vector to c ∈ R3. From the spherical scaling,
we will have γ · c = 0. If we split the momentum vector η into real and imaginary
parts, η = u+ iv, then the momenta transform via

u = b× γ, v =−a× γ, with γ =−
u · c
|c|2

a−
v · c
|c|2

b.
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From this we find that the dual spherical norm

|γ |2sph = |γ × c|2 = |c|2|γ |2

corresponds to 1
2‖ · ‖

2
FS,C. So we get the reduced, regularized Hamiltonian

(81)
H̃µ =

λ p2
r

2
+
λµ2

2r2 +
|c|2|γ |2

r2 −
1
r

W (c)− hλ,

ρ12 = c2
31+ c2

23, ρ31 = c2
12+ c2

23, ρ23 = c2
12+ c2

31.

Here we have used the homogeneity of the formulas to redefine ρi j to eliminate the
factors of |c|. The curvature term is

(82) Tcurv =
2µλ
|c|r2 γ × c.

6.4. Visualizing the regularized shape sphere — Lemaître’s conformal map. The
map of projective curves fpr : P(C)→ P(W), induced by the squaring map, can be
visualized as a map of the two-sphere into itself. Indeed this is the point of view
taken by Lemaître [1964], but he arrived at it in a rather different way.

The map is a four-to-one branched covering map with octahedral symmetry (see
Figure 4). The map is generically four-to-one except at the binary collision points,
where it is two-to-one. In the figure, each octant of the regularized sphere maps
to one or the other hemisphere of the unregularized sphere. Thus, for example,
the north pole of the unregularized sphere (representing a Lagrangian, equilateral
central configuration) has four preimages, which lie in alternate octants. Each
binary collision point on the equator of the unregularized shape sphere has two
preimages, which lie on a coordinate axes of the regularized sphere.

Using affine coordinates, it is possible to express the regularizing map as a
map of the complex plane. For example, let u = x2/x1, where (x1, x2) are the
parameters of Section 6.3.1. Choose a basis for W so that the coordinates (ξ1, ξ2)

satisfy ξ1 = X12, ξ2 = X23− X31 and let v = ξ2/ξ1. Then it is easy to check that
the regularizing map X i j = z2

i j is given by the degree-four rational map

v = 1
2(u

2
+ u−2).

The three-dimensional sphere of Figure 3 is just the preimage of the regularized
two-sphere sphere in Figure 4 under a Hopf-map. Each point of the two-sphere
determines a circle in the three-sphere. The three large tori in Figure 3 are the
preimages of the collinear circles in the two-sphere (where the coordinate planes
cut the sphere). The six tubes in Figure 3 are the preimages of small circles around
the binary collision points (where the coordinate axes cut the sphere).
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Figure 4. The regularizing map is a four-to-one branched cover
of the two-sphere with octahedral symmetry. Each octant of the
regularized shape sphere (left) maps onto a hemisphere of the
unregularized shape sphere (right). The planes represent collinear
configurations. The figure also shows level curves of the unregu-
larized shape potential and their preimages in the equal mass case.

7. Blowing up triple collision

Our systematic use of the radial coordinate r together with the homogeneous
coordinates used to describe the shape make it easy to implement McGehee’s
method for blowing-up total collision. We need only rescale momenta and change
the timescale. The changes can be made before or after reduction. The changes
are noncanonical, so destroy the Hamiltonian character of the equations. We will
describe the general method for the rotation-reduced and unreduced cases and then
make some comments on the results of applying it to some of the Hamiltonians
described above.

7.1. Before reduction. Consider a Hamiltonian of the general form

(83) H(r, pr , X, Y )=
1

2r2 B(X)(Y, Y )−
1
r

V (X)+ [12 A(X)p2
r −C(X)]

when expanded in powers of r . This covers the rotation-unreduced Hamiltonian
Hsph of Section 4 and the corresponding regularized Hamiltonians H̃sph(r, pr , z, η)
and H̃sph(r, pr , x, y) of Section 6.2 (after changing the names of the variables).
For the unregularized Hamiltonian Hsph we have A(X)= 1, C(X)= 0, while for
the regularized Hamiltonians H̃sph we have A(X) = τ(X), C(X) = h τ(X). The
quantity B(X)(Y, Y ) represents the nonradial part of the kinetic energy. It is a
quadratic form in Y , which we represent by a symmetric matrix B(X) depending on
X . The dependence of B on X must also be quadratic since H must be homogeneous
of degree 0 with respect to the scaling (X, Y ) 7→ (k X, (1/k)Y ).
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Let f (r) be a positive, real-valued function. We will introduce a new timescale
such that ′ = f (r)˙. The usual choice is McGehee’s scaling factor f1(r)= r3/2 but
we will also consider f2(r)= (r/(r + 1))3/2, which has better behavior for large r .
(With the first choice, solutions can reach r =∞ in finite time.) For any such f (r),
we replace (pr , Y ) by rescaled momentum variables

(84) v =
f (r)pr

r
, α =

f (r)Y
r2 .

The shape variable X remains the same. When we make these substitutions of inde-
pendent and dependent variables in the Hamilton’s differential equations resulting
from (83), we get

(85)

r ′ = A(X)vr,

v′ = 1
2(1+r(ln ν)r )A(X)v2

+B(X)(α, α)−ν(r)V (X)

X ′ = B(X)α,

α′ =− 1
2

(
(1−r(ln ν)r )A(X)vα+AX v

2
+BX (α, α)

)
+ν(r)VX+rν(r)CX ,

where ν(r)= f (r)2/r3 and the subscripts denote differentiation. For McGehee’s
scaling f (r)= f1(r)= r3/2 we have ν(r)= 1, (ln ν)r = 0 and the equations simplify
considerably. For f2(r) we have ν(r)= (1+ r)−3 and both ν and (ln ν)r are still
smooth all the way down to r = 0.

Writing the energy equations Hsph = h or H̃sph = 0 in terms of the rescaled
momenta gives

(86) 1
2 A(X)v2

+
1
2 B(X)(α, α)− ν(r)V (X)= rν(r)C(X).

For example if we use the r3/2 rescaling with Hsph, we have

A = 1, B(X)= |X |2 B0, C = 0, V (X)= |X |
∑
i< j

mi ,m j

|X i j |
,

where B0 is the constant symmetric matrix (9). We get the blown-up differential
equations

r ′ = vr, v′ = 1
2v

2
− |X |2 B0(α, α)+ V (X),

X ′ = |X |2 B0α, α′ =− 1
2vα− B0(α, α)X + VX ,

with the energy relation 1
2v

2
+

1
2 B0(X)(α, α)− V (X)= rh.

The regularized equations arising from H̃sph are considerably more complicated
due to the B(X) terms (or rather the B(z) or B(x) terms). Instead of writing them
explicitly, we will just make some observations about them. Consider, for example,
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H̃sph(r, pr , x, y) from (66). B(x) will be a complicated, 4× 4 real matrix arising
from the second term in (66). The phase space before blow-up is

T ∗R+× T ∗C2
' (0,∞)×R×C2

×C2.

In addition to the energy relation H̃sph = 0, we have re〈y, x〉 = 0 and the scaling
symmetry by positive real numbers so there is an induced flow on an quotient
manifold of real dimension 7. After blow-up we have variables

(r, v, x, α) ∈ [0,∞)×R×C2
×C2,

where we have extended the flow to the collision manifold where r = 0, which
is an invariant set for the differential equations. We have a real-analytic vector
field on this manifold-with-boundary. Imposing the constraints and passing to the
quotient under scaling gives a real-analytic vector field on a seven-dimensional
manifold-with-boundary representing the planar three-body problem on a fixed
energy manifold, with all binary collisions regularized and with triple collision
blown-up. Note in particular that the regularization of binary collisions passes
smoothly to the boundary.

We claim that if the timescale factor f (r)= f2(r)= (r/(r + 1))3/2 is used, then
the differential equations define a complete flow on [0,∞)×R×C2

×C2 and hence
the induced seven-dimensional flow is complete. Since the differential equations
are smooth, the only obstruction to completeness would be orbits that become
unbounded in finite time. It is well-known that, with the usual timescale, such orbits
do not exist for the three-body problem. It follows that if we use only bounded
time-rescaling factors, the same will hold for the modified differential equations.
McGehee’s factor r3/2 is unbounded and it is possible for orbits to escape in finite
time. Indeed, there are solutions of the three body problem for which r(t)= O(t)
as t→∞ with respect to the usual time-scale and these will reach infinity in finite
rescaled time. The factor f2, while producing less elegant differential equations,
eliminates this problem.

7.2. After reduction. The rotation-reduced Hamiltonians Hµ and their many regu-
larized forms H̃µ have the general form
(87)

Hµ(r, pr , X, Z)=
1

2r2 [B(X)(Z , Z)+ A(X)µ2
] −

1
r

V (X)+ [12 A(X)p2
r −C(X)]

(after changing the names of the variables). The only new term here, when compared
to the Hamiltonian of Section 7.1, is the quadratic term in the angular momentum µ.
We have a momentum constraint 〈Z , X〉=0 and there will be a curvature term, Tcurv,
added to the Ż equation. As in Section 7.1, for the unregularized Hamiltonians Hµ,
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we have

A(X)= 1, C(X)= 0, Tcurv =−
2µ
r2 i Z ,

while for the regularized Hamiltonians H̃µ, we have

A(X)= λ(X), C(X)= h λ(X), Tcurv =−
2µλ
r2 i Z .

As in the last section, the variables X, Z can denote either homogeneous coordinates
on the cotangent bundle of projective space, before or after Levi-Civita transfor-
mation, or they can be local holomorphic coordinates on the cotangent bundle of
the shape sphere or of the regularized shape sphere P(C) (see the examples below).
Our computations immediately below hold for all these cases.

We rescale time and the momenta as in (84) with Z replacing Y . We must also
rescale angular momentum according to

(88) µ̃=
f (r)µ

r2 .

Then energy equations Hµ = h or H̃µ = 0 become

(89) 1
2 A(X)(v2

+ µ̃2)+ 1
2 B(X)(α, α)− ν(r)V (X)= rν(r)C(X),

where

(90) ν =
f 2

r3 ,

so that ν = 1 for f = r3/2 and ν = (1+ r)−3 for f = f2.
In order to express the differential equations succinctly, let

K̃ = 1
2 A(X)(v2

+ µ̃2)+ 1
2 B(X)(α, α)

denote the blown-up kinetic energy and let

(91) φ(r)=− 1
2(1− r(ln ν)r ).

Then the equations of motion are

(92)

r ′ = A(X)vr, v′ = φ(r)A(X)v2
+ 2K̃ − ν(r)V,

µ̃′ = φ(r)A(X)vµ̃, X ′ = B(X)α,

α′ = φ(r)A(X)vα− K̃ X + ν(r)VX + rν(r)CX + Tcurv,

where
Tcurv =−2iµ̃α or − 2iµ̃τ (X)α
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for the unregularized and regularized cases, respectively. We remark that the v′

equation can also be written

v′ = (φ+ 1)A(X)v2
+ B(X)(α, α)+ A(X)µ̃2

− ν(r)V (X).

In these equations, we are regarding µ̃ as a new variable subject, by definition, to
the constraint

(93)
√

r µ̃=
√
ν(r) µ,

where µ is the old angular momentum constant. This point of view is necessary to
make the curvature term smooth at r = 0.

As in Section 7.1, all functions of r extend smoothly to r = 0. If we start with
one of the regularized Hamiltonians H̃µ, then for the resulting differential equations,
all binary collisions have been regularized and the triple collision blown-up. We
obtain a flow on a manifold-with-boundary of dimension 5 after fixing µ, setting
H̃µ = 0, imposing the constraint on µ̃, the constraints that X ∈ C and 〈Z , X〉 = 0
and passing to the quotient under complex scaling. Binary collisions are regularized
for all values of µ and if the time rescaling is done using f2(r), the flows on these
manifolds will be complete.

It is well-known that triple collisions are possible in the three-body problem only
when µ = 0. In this case, (93) shows that either µ̃ = 0 or r = 0. Both of these
submanifolds are invariant sets for the dynamical system. The five-dimensional
manifold-with-boundary with the above constraints and with µ̃= 0 represents the
closure of zero-angular-momentum three-body problem. The four-dimensional
manifold where µ̃ = r = 0 forms the boundary. Even though orbit with µ 6= 0
cannot have r → 0, the part of the collision manifold {r = 0} where µ̃ 6= 0 is
relevant for studying low-angular-momentum orbits passing close to triple collision
[Moeckel 1984; 1989].

We will now present a couple of versions of the regularized, reduced and blown-
up differential equations for the three-body problem.

Example 25 (the blown-up regularized affine equations). In Section 6.3.2, we used
affine local coordinates on the regularized shape sphere to obtain a regularized
Hamiltonian H̃(z, ζ ) with 6 degrees of freedom. (We wrote z = x+ iy, ζ = α+ iβ
in Section 6.3.2.) Comparing with the general form (87) we have

A(X)= λ(z), B(X)(Z , Z)= 1
2(1+ |z|

2)2 |ζ |2,

C(X)= hλ(z), V (X)=W (z).

Recall that λ and W are given by the formulas (72) and (75) with ρ12 = 4|z|2,
ρ31 = |1+ z2

|
2, ρ23 = |1− z2

|
2. As per the preceding subsection, we continue

to write the rescaled momentum variable as α (thus α = ( f/r2)ζ ), trusting that
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there will be no confusing with the previous use of α. The rescaled kinetic energy
satisfies

2K̃ = λv2
+ λµ̃2

+
1
2(1+ |z|

2)2 |ζ |2.

Then the regularized, blown-up equations read:

(94)

r ′ = λ(z)vr, v′ = φ(r)λ(z)v2
+ 2K̃ − ν(r)W (z),

µ̃′ = φ(r)λ(z)vµ̃, z′ = 1
2(1+ |z|

2)2α,

α′ = φ(r)λ(z)vα− K̃z + ν(r)Wz + rν(r)hτz(z)− 2iµ̃λ(z)α.

The possibilities for ν(r), φ(r) are described in the previous subsection, in equations
(90), (91).

We have 7 variables, (r, v, µ̃, z, α)∈ [0,∞)×R×R×C×C. The constraints are

1
2λ(z)(v

2
+µ̃2)+ 1

4(1+|z|
2)2 |α|2−ν(r)W (z)=rν(r)λ(z)h and

√
r µ̃=

√
ν(r) µ.

Example 26 (the blown-up regularized spherical equations). In Section 6.3.3, we
used spherical-homogeneous variables c= (c1, c2, c3) to give a global representation
of the regularized shape sphere. We found a regularized Hamiltonian

H̃µ(r, c, pr , γ ).

Comparing with the general form (87), we have

A(X)= λ(c), B(X)(Z , Z)= 2|c|2|γ |2, C(X)= hλ(c), V (X)=W (c).

λ and W are given by the usual formulas with

ρ12 = c2
31+ c2

23, ρ31 = c2
12+ c2

23, ρ23 = c2
12+ c2

31.

With α= ( f/r2)γ , the rescaled kinetic energy satisfies 2K̃ =λv2
+λµ̃2

+2|c|2 |α|2.
Then the regularized, blown-up equations read:

(95)

r ′ = λ(c)vr, v′ = φ(r)λ(c)v2
+ 2K̃ − ν(r)W (c),

µ̃′ = φ(r)λ(c)vµ̃, c′ = 2|c|2α,

α′ = φ(r)λ(c)vα− K̃c+ νWc+ rν(r)hλc(c)+
2µ̃λ(c)
|c| α× c.

We have 9 variables, (r, v, µ̃, c, α)∈ [0,∞)×R×R×R3
0×R3. However, (c, α)

are homogeneous variables. They satisfy 〈α, c〉 = 0 and the equations are invariant
under the real scaling (c, α)→ (kc, (1/k)α). Taking this into account, we have an
induced system on the seven-dimensional quotient space [0,∞)×R×R× T ∗S2.
The energy and angular momentum constraints are

(96) 1
2λ(c)(v

2
+ µ̃2)+ |c|2 |α|2− ν(r)W (c)= rν(r)λ(c)h

and
√

r µ̃=
√
ν(r) µ, giving a subvariety of dimension 5.
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A nice alternative to the quotient construction is just to observe that 〈α, c〉 =
0 implies that |c| is invariant under the differential equations (95). Instead of
quotienting by the scaling symmetry, we can simply restrict c to the unit sphere.
Let

M(h, µ)= {(r, v, µ̃, c, α) : |c| = 1, 〈α, c〉 = 0,
√

rµ̃=
√
ν(r) µ, (96) holds}.

Then M(h, µ) is a five-dimensional submanifold (or subvariety when µ = 0) of
[0,∞)×R×R×R3

0 ×R3, which is invariant under (95). The flow on M(h, µ)
globally represents the planar three-body problem reduced by translations and
rotations, with all binary collisions regularized and with triple collision blown-up.

8. Summary

In Section 2 we recall the theory of symplectic reduction by an Abelian group G of
a cotangent bundle T ∗X of some configuration space X . The theory asserts that
the reduced space is the manifold T ∗(X/G)— the cotangent bundle of the quotient
space X/G. There is a twist: the symplectic structure of this cotangent bundle is
typically not the standard one. Reduction depends on selecting a value µ of the
“angular momentum” and the symplectic structure on T ∗(X/G) depends linearly
on µ, becoming the standard one only when µ = 0. In Sections 3, 4, and 5 we
apply this reduction theory to the non-Abelian group G of orientation-preserving
similarities acting on the phase space T ∗C3 of the configuration space C3 of the
planar three-body problem. In order to apply the theory we break the group up into
its three Abelian parts: translations, scalings, and rotations. Reduction by these
three subgroups make up the next three sections: Section 3 (translations), Section 4
(scalings), and Section 5 (rotations).

In Section 3 we use the linear map

L : C3
→ C3, L(q1, q2, q3)= (q1− q2, q2− q3, q3− q1)= (Q12, Q23, Q31)

to form the quotient of C3 by translations. The image of L realizes the quotient of
C3 by translations. This image is the two-dimensional complex subspace W⊂ C3

consisting of those Q’s that satisfy the “triangle closure” relation

Q12+ Q23+ Q31 = 0.

In Sections 4 and 5, we form the quotient of the W= im(L) from Section 3 by
the group of scalings (Section 4) and the group of rotations (Section 5). These two
groups combine to form the Abelian group C∗ of nonzero complex numbers acting
by scalar multiplication on the C3 of Qi j ’s, and hence on its subspace im(L). To
form the quotient we must subtract out the triple collision point 0∈W⊂C3 obtaining
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W0 :=W\{0}. We then implement the well-known fact that W0'C2
0/C
∗
=CP1

=

S2
= shape sphere.
Three-body dynamics does depend on overall size so we cannot possibly get a

reduced dynamics on T ∗CP1. Instead we use the reduction by scale in Section 4
as a tool for coherently separating the size variable r from the shape variables X i j .
Together the r, X i j form the “projective-homogeneous” coordinates of Section 5.

In Section 6.1 we introduce the Levi-Civita regularizing map f : C3
→ C3 to

regularize all three binary collisions. The map sends zi j to X i j = z2
i j . The map is C∗-

equivariant and so induces the following commutative diagram, which summarizes
the paper:

(97)

C3 Levi-Civita f (Section 6.1)
// C3

C \ {0}
f restricted

//

C∗

��

?�

OO

W \ {0}

C∗, Sections 4, 5
��

?�

Section 3

OO

P(C)
Lemaître // P(W)= CP1

regularized shape sphere shape sphere

The space C = {z2
12 + z2

23 + z2
31 = 0} is an affine cone and is the pullback of

W = {Q12+ Q23+ Q31 = 0} by the regularizing map f . The downward arrows
are the standard projections used in defining projective space.

To obtain the phase spaces of the paper, take the cotangent bundles T ∗X of each
space X in the diagram (97), and cross with the space T ∗(0,∞) = (0,∞)×R,
which encodes the radial variable r and its momentum pr . For angular momentum
µ nonzero, the twist referred to in the first paragraph of this summary arises as the
pull-back of the Fubini–Study form on CP1, or of its Levi-Civita pull-back.

The separation into radial and shape variables begun in Section 4 allows us to
make the final McGehee blow-up rescalings of time and momenta in Section 7. We
end with a dynamical system, which is regular through all binary collisions and
whose flow is complete.

We will close the paper with some pictures illustrating how the size and shape
variables can help to visualize the behavior of orbits of the planar three-body
problem. The figure-eight orbit of [Chenciner and Montgomery 2000] features
three equal masses moving on a single curve in the plane, as shown in the top image
of Figure 5. The other two images show how the size and shape of the triangle
formed by the bodies varies using unregularized and regularized shape variables.
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Figure 5. The famous figure-eight orbit of three equal masses. As
the three bodies chase one another on the figure-eight curve in the
plane, the size and shape vary as shown in the top right picture.
The behavior seems much simpler in the regularized covering space
(bottom).

The shape spheres are represented by the unit sphere in R3. The size and shape
are treated as spherical coordinates with the radial variable in R3 representing size
r + 1 (so the unit spheres represent triple collision). For the figure-eight orbit, the
size is nearly constant while the shape almost follows a level curve of the shape
potential. The behavior of the regularized shape is surprisingly simple with the
orbit close to a great circle on the sphere.

References

[Abraham and Marsden 1978] R. Abraham and J. E. Marsden, Foundations of mechanics, 2nd ed.,
Benjamin/Cummings Publishing Co. Advanced Book Program, Reading, MA, 1978. MR 81e:58025

[Albouy 2004] A. Albouy, “Mutual distances in celestial mechanics”, lecture notes, 2004, http://
www.imcce.fr/fr/presentation/equipes/ASD/preprints/prep.2004/Albouy_% Nankai09_2004.pdf.

[Albouy and Chenciner 1998] A. Albouy and A. Chenciner, “Le problème des n corps et les distances
mutuelles”, Invent. Math. 131:1 (1998), 151–184. MR 98m:70017 Zbl 0919.70005

[Chenciner 2011] A. Chenciner, “The Lagrange reduction of the N -body problem”, preprint, 2011.

[Chenciner and Montgomery 2000] A. Chenciner and R. Montgomery, “A remarkable periodic
solution of the three-body problem in the case of equal masses”, Ann. of Math. (2) 152:3 (2000),
881–901. MR 2001k:70010 Zbl 0987.70009

http://msp.org/idx/mr/81e:58025
http://www.imcce.fr/fr/presentation/equipes/ASD/preprints/prep.2004/Albouy_Nankai09_2004.pdf
http://dx.doi.org/10.1007/s002220050200
http://dx.doi.org/10.1007/s002220050200
http://msp.org/idx/mr/98m:70017
http://msp.org/idx/zbl/0919.70005
http://dx.doi.org/10.2307/2661357
http://dx.doi.org/10.2307/2661357
http://msp.org/idx/mr/2001k:70010
http://msp.org/idx/zbl/0987.70009


188 RICHARD MOECKEL AND RICHARD MONTGOMERY

[Heggie 1974] D. Heggie, “A global regularisation of the gravitational N -body problem”, Celest.
Mech. 10 (1974), 217–241. Zbl 0312.70015

[Jacobi 1843] C. Jacobi, “Sur l’elimination des noeuds dans le problème des trois corps”, J. Reine
Angew. Math. 26 (1843), 115–131.

[Kampen and Wintner 1937] E. R. V. Kampen and A. Wintner, “On a symmetrical canonical reduction
of the problem of three bodies”, Amer. J. Math. 59:1 (1937), 153–166. MR 1507227 Zbl 0015.42101

[Lagrange 1772] J.-L. Lagrange, “Essai sur le problème des trois corps”, in Prix de l’académie royale
des sciences de Paris, tome IX, 1772. Reprinted as pages 229–331 in his Œuvres complètes.

[Lemaître 1954] G. Lemaître, “Régularisation dans le problème des trois corps”, Acad. Roy. Belgique.
Bull. Cl. Sci. (5) 40. (1954), 759–767. MR 16,964l Zbl 0057.16103

[Lemaître 1964] G. Lemaître, “The three body problem”, technical report CR-110, NASA, 1964.

[Levi-Civita 1920] T. Levi-Civita, “Sur la régularisation du problème des trois corps”, Acta Math.
42:1 (1920), 99–144. MR 1555161 JFM 47.0837.01

[Marsden and Weinstein 1974] J. Marsden and A. Weinstein, “Reduction of symplectic manifolds
with symmetry”, Rep. Mathematical Phys. 5:1 (1974), 121–130. MR 53 #6633 Zbl 0327.58005

[McGehee 1974] R. McGehee, “Triple collision in the collinear three-body problem”, Invent. Math.
27 (1974), 191–227. MR 50 #11912 Zbl 0297.70011

[Meyer 1973] K. R. Meyer, “Symmetries and integrals in mechanics”, pp. 259–272 in Dynamical
systems (Salvador, Brazil, 1971), edited by M. M. Peixoto, Academic Press, New York, 1973. MR 48
#9760 Zbl 0293.58009

[Moeckel 1984] R. Moeckel, “Heteroclinic phenomena in the isosceles three-body problem”, SIAM J.
Math. Anal. 15:5 (1984), 857–876. MR 86j:58047 Zbl 0593.70009

[Moeckel 1989] R. Moeckel, “Chaotic dynamics near triple collision”, Arch. Rational Mech. Anal.
107:1 (1989), 37–69. MR 90i:58167 Zbl 0697.70021

[Moeckel et al. 2012] R. Moeckel, R. Montgomery, and A. Venturelli, “From brake to syzygy”, Arch.
Ration. Mech. Anal. 204:3 (2012), 1009–1060. MR 2917128 Zbl 06102023

[Montgomery 2002] R. Montgomery, “Infinitely many syzygies”, Arch. Ration. Mech. Anal. 164:4
(2002), 311–340. MR 2004c:70018 Zbl 1024.70005

[Murnaghan 1936] F. D. Murnaghan, “A symmetric reduction of the planar three-body problem”,
Amer. J. Math. 58:4 (1936), 829–832. MR 1507204 Zbl 0015.32406

[Saari 1984] D. G. Saari, “From rotations and inclinations to zero configurational velocity surfaces,
I: A natural rotating coordinate system”, Celestial Mech. 33:4 (1984), 299–318. MR 86g:70003
Zbl 0549.70003

[Simó and Susín 1991] C. Simó and A. Susín, “Connections between critical points in the collision
manifold of the planar 3-body problem”, pp. 497–518 in The geometry of Hamiltonian systems
(Berkeley, CA, 1989), edited by T. Ratiu, Math. Sci. Res. Inst. Publ. 22, Springer, New York, 1991.
MR 92f:70007 Zbl 0732.70006

[Smale 1970] S. Smale, “Topology and mechanics, I”, Invent. Math. 10 (1970), 305–331. MR 46
#8263 Zbl 0202.23201

[Waldvogel 1972] J. Waldvogel, “A new regularization of the planar problem of three bodies”, Celest.
Mech. 6 (1972), 221–231. Zbl 0242.70012

[Waldvogel 1982] J. Waldvogel, “Symmetric and regularized coordinates on the plane triple collision
manifold”, Celestial Mech. 28:1-2 (1982), 69–82. MR 83m:70021 Zbl 0551.70007

Received February 10, 2012. Revised October 11, 2012.

http://dx.doi.org/10.1007/BF01227621
http://msp.org/idx/zbl/0312.70015
http://dx.doi.org/10.1515/crll.1843.26.115
http://dx.doi.org/10.2307/2371569
http://dx.doi.org/10.2307/2371569
http://msp.org/idx/mr/1507227
http://msp.org/idx/zbl/0015.42101
http://www.ltas-vis.ulg.ac.be/cmsms/uploads/File/Lagrange_essai_3corps.pdf
http://msp.org/idx/mr/16,964l
http://msp.org/idx/zbl/0057.16103
http://dx.doi.org/10.1007/BF02404404
http://msp.org/idx/mr/1555161
http://msp.org/idx/jfm/47.0837.01
http://msp.org/idx/mr/53:6633
http://msp.org/idx/zbl/0327.58005
http://dx.doi.org/10.1007/BF01390175
http://msp.org/idx/mr/50:11912
http://msp.org/idx/zbl/0297.70011
http://msp.org/idx/mr/48:9760
http://msp.org/idx/mr/48:9760
http://msp.org/idx/zbl/0293.58009
http://dx.doi.org/10.1137/0515065
http://msp.org/idx/mr/86j:58047
http://msp.org/idx/zbl/0593.70009
http://dx.doi.org/10.1007/BF00251426
http://msp.org/idx/mr/90i:58167
http://msp.org/idx/zbl/0697.70021
http://dx.doi.org/10.1007/s00205-012-0502-y
http://msp.org/idx/mr/2917128
http://msp.org/idx/zbl/06102023
http://dx.doi.org/10.1007/s00205-002-0211-z
http://msp.org/idx/mr/2004c:70018
http://msp.org/idx/zbl/1024.70005
http://dx.doi.org/10.2307/2371252
http://msp.org/idx/mr/1507204
http://msp.org/idx/zbl/0015.32406
http://dx.doi.org/10.1007/BF01241046
http://dx.doi.org/10.1007/BF01241046
http://msp.org/idx/mr/86g:70003
http://msp.org/idx/zbl/0549.70003
http://dx.doi.org/10.1007/978-1-4613-9725-0_18
http://dx.doi.org/10.1007/978-1-4613-9725-0_18
http://msp.org/idx/mr/92f:70007
http://msp.org/idx/zbl/0732.70006
http://dx.doi.org/10.1007/BF01418778
http://msp.org/idx/mr/46:8263
http://msp.org/idx/mr/46:8263
http://msp.org/idx/zbl/0202.23201
http://dx.doi.org/10.1007/BF01227784
http://msp.org/idx/zbl/0242.70012
http://dx.doi.org/10.1007/BF01230661
http://dx.doi.org/10.1007/BF01230661
http://msp.org/idx/mr/83m:70021
http://msp.org/idx/zbl/0551.70007


PLANAR THREE-BODY PROBLEM 189

RICHARD MOECKEL

SCHOOL OF MATHEMATICS

UNIVERSITY OF MINNESOTA

MINNEAPOLIS, MN 55455
UNITED STATES

rick@math.umn.edu

RICHARD MONTGOMERY

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF SANTA CRUZ

SANTA CRUZ, CA 95064
UNITED STATES

rmont@ucsc.edu

mailto:rick@math.umn.edu
mailto:rmont@ucsc.edu


PACIFIC JOURNAL OF MATHEMATICS
msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989)

EDITORS

Paul Balmer
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

balmer@math.ucla.edu

Daryl Cooper
Department of Mathematics

University of California
Santa Barbara, CA 93106-3080

cooper@math.ucsb.edu

Jiang-Hua Lu
Department of Mathematics

The University of Hong Kong
Pokfulam Rd., Hong Kong

jhlu@maths.hku.hk

V. S. Varadarajan (Managing Editor)
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

pacific@math.ucla.edu

Don Blasius
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

blasius@math.ucla.edu

Robert Finn
Department of Mathematics

Stanford University
Stanford, CA 94305-2125
finn@math.stanford.edu

Sorin Popa
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

popa@math.ucla.edu

Paul Yang
Department of Mathematics

Princeton University
Princeton NJ 08544-1000
yang@math.princeton.edu

Vyjayanthi Chari
Department of Mathematics

University of California
Riverside, CA 92521-0135

chari@math.ucr.edu

Kefeng Liu
Department of Mathematics

University of California
Los Angeles, CA 90095-1555

liu@math.ucla.edu

Jie Qing
Department of Mathematics

University of California
Santa Cruz, CA 95064

qing@cats.ucsc.edu

PRODUCTION
Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI

CALIFORNIA INST. OF TECHNOLOGY

INST. DE MATEMÁTICA PURA E APLICADA

KEIO UNIVERSITY

MATH. SCIENCES RESEARCH INSTITUTE

NEW MEXICO STATE UNIV.
OREGON STATE UNIV.

STANFORD UNIVERSITY

UNIV. OF BRITISH COLUMBIA

UNIV. OF CALIFORNIA, BERKELEY

UNIV. OF CALIFORNIA, DAVIS

UNIV. OF CALIFORNIA, LOS ANGELES

UNIV. OF CALIFORNIA, RIVERSIDE

UNIV. OF CALIFORNIA, SAN DIEGO

UNIV. OF CALIF., SANTA BARBARA

UNIV. OF CALIF., SANTA CRUZ

UNIV. OF MONTANA

UNIV. OF OREGON

UNIV. OF SOUTHERN CALIFORNIA

UNIV. OF UTAH

UNIV. OF WASHINGTON

WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no
responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2013 is US $400/year for the electronic version, and $485/year for print and electronic.
Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box
4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH,
PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall
#3840, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704,
and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA
94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2013 Mathematical Sciences Publishers

http://msp.org/pjm/
mailto:balmer@math.ucla.edu
mailto:cooper@math.ucsb.edu
mailto:jhlu@maths.hku.hk
mailto:pacific@math.ucla.edu
mailto:blasius@math.ucla.edu
mailto:finn@math.stanford.edu
mailto:popa@math.ucla.edu
mailto:yang@math.princeton.edu
mailto:chari@math.ucr.edu
mailto:liu@math.ucla.edu
mailto:qing@cats.ucsc.edu
mailto:production@msp.org
http://msp.org/pjm/
http://www.ams.org/mathscinet
http://www.emis.de/ZMATH/
http://www.inist.fr/PRODUITS/pascal.php
http://www.viniti.ru/math_new.html
http://www.ams.org/bookstore-getitem/item=cmp
http://www.isinet.com/products/citation/wos/
http://msp.org/
http://msp.org/


PACIFIC JOURNAL OF MATHEMATICS

Volume 262 No. 1 March 2013

1On the second K -group of a rational function field
KARIM JOHANNES BECHER and MÉLANIE RACZEK

11On existence of a classical solution to a generalized Kelvin–Voigt
model
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