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The Stipsicz conjecture on the fiber-sum decomposability of Lefschetz fibra-
tions states that nonminimal Lefschetz fibrations over S2 are irreducible
with respect to fiber-sum decompositions. We can conclude that such Lef-
schetz fibrations are prime and fundamental. In this paper, we determine
the canonical classes of nonminimal Lefschetz fibrations admitting spheres
of square −1 whose total intersection number with generic fiber is big. As a
consequence, we consider the Kodaira dimension and the geography prob-
lem of such Lefschetz fibrations.

1. Introduction

If a 4-dimensional manifold M admits some fibration structure, then we can under-
stand its topology in detail. Elliptic surfaces, which are complex surfaces admitting
elliptic fibrations whose generic fibers are smooth elliptic curves, were deeply
studied by Kodaira, Kas, Moishezon and so on. Much is known about not only the
topology of elliptic surfaces but also the differentiable structures on elliptic surfaces
[Matsumoto 1986; Ue 1986; Donaldson 1987; Kametani and Sato 1994].

After that, symplectic structures are often studied as well as differentiable struc-
tures in 4-dimensional topology. In particular, Lefschetz fibrations have been studied
in 4-dimensional symplectic topology since the latter half in the 1990’s. A Lefschetz
fibration is a smooth fibration of a smooth 4-manifold over a surface with finitely
many critical points as complex analogues of Morse functions. Elliptic fibrations
can be regarded as genus-1 Lefschetz fibrations. The importance of Lefschetz
fibrations from the viewpoint of topology was reverified by Matsumoto [1996].
Lefschetz pencils and Lefschetz fibrations have played a major role in 4-dimensional
symplectic topology by the support of the remarkable works of Donaldson [1998]
and Gompf [1999], which imply that Lefschetz fibrations provide a topological
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Figure 1. Geography of simply connected, minimal complex surfaces.

characterization of symplectic 4-manifolds and that most of symplectic 4-manifolds
correspond to 4-manifolds with Lefschetz fibrations.

The geography problem in complex surfaces is the characterization of pairs of
integers that are realized as the pairs (c2

1, c2) of Chern numbers of complex surfaces,
and it is well studied in algebraic geometry. By the classification of complex
surfaces due to Kodaira, a simply connected complex surface is rational, elliptic or
of general type. We know completely the range that rational surfaces and elliptic
surfaces cover in the (c2

1, c2)-plane. Minimal surfaces of general type must satisfy
c2

1, c2 > 0 (Noether inequality) and (c2−36)/5≤ c2
1 ≤ 3c2 (Bogomolov–Miyaoka–

Yau inequality). In fact, the range of (c2
1, c2) of simply connected, minimal complex

surfaces is as shown in Figure 1.
A complex surface with even first Betti number b1 is Kähler and so sym-

plectic. Since any symplectic 4-manifold M with symplectic structure ω ad-
mits an ω-compatible almost-complex structure J , we can define Chern classes
c1(TM, J ), c2(TM, J ) for a symplectic 4-manifold M . Therefore, the geography
for symplectic 4-manifolds comes into our mind. These problems are raised by
McCarthy and Wolfson [1994]:

(1) Which pairs of integers are realized as (c2
1, c2) of a symplectic 4-manifold?

(2) If there is a symplectic 4-manifold corresponding to a given lattice point (m, n),
how many symplectic 4-manifolds realize (m, n) as the pair (c2

1, c2) of Chern
numbers?

Questions (1) and (2) are called the geography problem and the botany problem,
respectively. Since simply connected complex surfaces are symplectic, the range of
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(c2
1, c2) for symplectic 4-manifolds contains the range for simply connected complex

surfaces. The remarkable works of Donaldson and Gompf suggest that the geography
of symplectic 4-manifolds is nearly the same as one of Lefschetz fibrations. Every
lattice point (c2

1, c2), except finitely many lying in (c2 − 36)/5 ≤ c2
1 ≤ 2c2, is

realized as the total space of a Lefschetz fibration [Persson 1987]. On the other
hand, Fintushel and Stern [1998] showed that there exists a minimal Lefschetz
fibration that does not satisfy the Noether inequality. Stipsicz [1998] addressed
the Bogomolov–Miyaoka–Yau inequality for Lefschetz fibrations. Therefore, there
exists a difference between the range in the complex case and one in the symplectic
case. See also [Gompf 1995; Stipsicz 1996].

Instead of investigating all of the objects, we restrict them to prime (or irreducible)
things and examine these. Topologists often construct new manifolds by the cut-
and-paste method. As one can make a new manifold from given manifolds by
taking the connected sum, we can make a new Lefschetz fibration from given
Lefschetz fibrations by taking the fiber sum. In the category of Lefschetz fibrations,
Lefschetz fibrations that cannot be decomposed as any nontrivial fiber sum are
prime (or irreducible) with respect to fiber sum decompositions. Therefore, it is
natural and enough to investigate the geography of irreducible Lefschetz fibrations,
that is, Lefschetz fibrations that cannot be decomposed as any nontrivial fiber
sum. Lefschetz fibrations with smooth spheres of square −1 have the following
properties:

(1) Every projective complex surface admits the structure of a Lefschetz pencil
and the notion of a Lefschetz pencil is important in the 4-dimensional topology.
The blow-up of a Lefschetz pencil along the base locus yields a Lefschetz
fibration with sections of square −1. Conversely, by blowing down, we can
obtain a Lefschetz pencil from a Lefschetz fibration with sections of square−1.

(2) Any nonminimal Lefschetz fibration over S2 that has smooth spheres of square
−1 cannot be decomposed as a nontrivial fiber sum.

Fact (2) was conjectured by Stipsicz [2001]. The Stipsicz conjecture asserting
the minimality of Lefschetz fibrations with fiber sum decomposability was proved
by Usher [2006] affirmatively. In [Sato 2006] the author gave an independent and
easier proof of the Stipsicz conjecture in the case of fiber genus 2. Thus, nonminimal
Lefschetz fibrations S2 are irreducible with respect to the fiber sum decompositions
and we can conclude that such Lefschetz fibrations are fundamental.

The canonical class KM of a symplectic 4-manifold (M, ω, J ) is defined by
KM = −c1(TM, J ). Thus, if we determine the canonical class KM , then we can
calculate c2

1(TM, J )= K 2
M . In this paper, we determine the canonical classes for

nonminimal Lefschetz fibrations over S2. By using K 2
X of nonminimal Lefschetz

fibrations X→ S2, we can calculate the symplectic Kodaira dimension κs and solve
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the geography problem for nonminimal Lefschetz fibrations. By using the symplec-
tic Kodaira dimension κs , we can answer a question of Endo [2008, Problem 4.13]
on the diffeomorphism type of three symplectic 4-manifolds admitting nonminimal
Lefschetz fibrations.

Smith [2001b] showed the finiteness of the geography of genus-2 Lefschetz
pencils; that is, there are only finitely many possible Chern pairs (c2

1, c2) of genus-2
Lefschetz pencils. This implies that there an upper bound on the number of singular
fibers of a genus-2 Lefschetz pencil. In fact, the number of singular fibers of such a
pencil is less than or equal to 40. From this, the following question comes to our
mind:

Question 1-1 (Smith [Auroux 2006b]). Is there an upper bound (in terms of the
genus only) on the number of singular fibers of a Lefschetz fibration admitting a
section of square −1?

In [Sato 2008], the author generalized Smith’s result on genus-2 Lefschetz
pencils to the geography on nonminimal genus-2 Lefschetz fibrations over S2.
In this paper, we consider the geography problem of nonminimal genus-g (≥ 3)
Lefschetz fibrations over S2 and show the finiteness of the geography of certain
classes of nonminimal genus-g Lefschetz fibrations, which gives us a partial answer
for Question 1-1. For example, in the case where nonminimal Lefschetz fibrations
are hyperelliptic and have only (−1)-sections as smooth spheres of square −1, we
have:

Theorem 1-2. For g ≥ 3, there are only finitely many possible Chern pairs (c2
1, c2)

of hyperelliptic genus-g Lefschetz fibrations with 2g−2 or 2g−3 sections of square
−1 whose total spaces are neither the blow-up of a rational surface nor the blow-up
of a ruled surface. As a consequence, there is an upper bound on the number of
singular fibers of such a Lefschetz fibration. In fact, for any such hyperelliptic
genus-g Lefschetz fibration f : X → S2, the number µ( f ) of singular fibers of f
satisfies

µ( f )≤ (8g− 9)(2g+ 1)
g− 1

+
[g/2]∑
h=1

16g2− 11g− 8
12h(g− h)− (2g+ 1)

.

We can answer Question 1-1 in a generic situation; see Section 6. On the
other hand, considering the fiber sum construction, we see that minimal Lefschetz
fibrations can have arbitrarily many singular fibers.

The organization of this paper is as follows: In Sections 2–3, we recall the notion
of Lefschetz fibrations over S2 and give some examples of nonminimal Lefschetz
fibrations. In Section 4, we consider the geography of symplectic 4-manifolds
and Lefschetz fibrations. In Section 5, we determine the canonical classes of
nonminimal Lefschetz fibrations and answer Endo’s question. In Section 6, we show
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the finiteness of the geography of nonminimal hyperelliptic Lefschetz fibrations.
Furthermore, we consider the geography of nonminimal, nonhyperelliptic genus-3
Lefschetz fibrations.

2. Lefschetz fibrations over S2

The definition of Lefschetz fibrations. A smooth map f : X→6 from a closed,
connected, oriented smooth 4-manifold X onto a closed, connected, oriented smooth
2-manifold 6 is said to be a Lefschetz fibration if f admits finitely many critical
points C = {p1, p2, . . . , pk} on which f is injective and around which there are
orientation-preserving complex coordinate neighborhoods such that locally f can
be expressed as f (z1, z2) = z2

1 + z2
2. It is a consequence of this definition that

f |X\C : X \C → 6 \ f (C) is a smooth fiber bundle with fiber a closed oriented
2-manifold.

If a generic fiber that is the inverse image of a regular value has genus g, or
equivalently if f |X\C is a surface bundle with fiber a closed orientable surface of
genus g, we refer to f as a genus-g Lefschetz fibration. Moreover, we assume that
f is relatively minimal, that is, there is no fiber containing a sphere of square −1.

Two Lefschetz fibrations f : X→6 and f ′ : X ′→6′ are isomorphic if there are
diffeomorphisms 8 : X → X ′ and ϕ : 6→ 6′ such that f ′ ◦8 = ϕ ◦ f . In this
paper, we will assume that a base space 6 is a 2-sphere.

A fiber containing a critical point is called a singular fiber, which is obtained by
collapsing a simple closed curve, called a vanishing cycle, on a nearby generic fiber
to a point. A singular fiber is called reducible or irreducible according to whether
the corresponding vanishing cycle separates or dose not separate in the generic
fiber. In particular, if a vanishing cycle α separates the closed surface 6g of genus
g into two components with genera h and g−h (1≤ h ≤ [g/2]), then the reducible
singular fiber corresponding to α is said to be of type IIh .

Let 0g be the mapping class group of genus g, namely the group of all isotopy
classes of orientation-preserving self-diffeomorphisms of6g. The local monodromy
around a singular fiber of a Lefschetz fibration f : X→ S2 is a positive Dehn twist
τa along the corresponding vanishing cycle a. See Figure 2. Since the base space
of f is a 2-sphere, the product of all the local monodromies of f is trivial in 0g.
Such a relation in 0g

ta1 ta2 · · · taµ = 1

is called a positive relation, where a1, a2, . . . , aµ are vanishing cycles of f and
each tai is the isotopy class of τai in 0g.

Isomorphism classes of Lefschetz fibrations are determined by the monodromy
representations as follows:
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Figure 2. A positive Dehn twist.

Theorem 2-1 [Matsumoto 1996]. Suppose that g ≥ 2. Then, there is a one-to-one
correspondence{

isomorphism classes of Lefschetz
fibrations with n singular fibers

}
←→ {conjugacy classes of ρ},

where ρ : π1
(
S2 \ ⋃ f (pi ), b0

)→ 0g is the monodromy representation.

From this theorem, it is well-known that a genus-g Lefschetz fibration is charac-
terized by a positive relation ta1 ta2 · · · taµ = 1 in 0g up to Hurwitz equivalence and
simultaneous conjugation of all factors by a same element in 0g.

A Lefschetz pencil is a nonempty finite set B = {b1, b2, . . . , b`} of X , called the
base locus, together with a smooth map f : X \ B→ CP1 such that each bi has an
orientation-preserving complex coordinate neighborhood in which locally f can be
expressed as f (z1, z2)= z1/z2, and each critical point of f has a local coordinate
neighborhood as a Lefschetz fibration. By the definitions of Lefschetz fibrations and
pencils, the blow-up at the base locus points of a Lefschetz pencil yields a Lefschetz
fibration over S2 with sections of square −1. It is well-known that every projective
complex surface admits a Lefschetz pencil, which is generalized to symplectic
4-manifolds as follows:

Theorem 2-2 [Donaldson 1998]. Every symplectic 4-manifold admits a Lefschetz
pencil whose closed fibers are symplectic submanifolds.

A result of Thurston [1976] on symplectic structures of surface-bundles over
closed oriented surfaces can be generalized as follows to 4-manifolds admitting
Lefschetz fibrations.

Theorem 2-3 [Gompf and Stipsicz 1999]. Let f : X→ S2 be a Lefschetz fibration
and [F] denote the homology class of the fiber. If [F] 6= 0 in H2(X;R), then X
admits a symplectic structure such that fibers are symplectic submanifolds.

If the fiber genus g is greater than 1, then the homology class of a generic fiber
of f is not torsion in H2(X;Z), and so this theorem states that such an X admits a
symplectic structure such that fibers of f are symplectic submanifolds.

From now on, we suppose that the fiber genus g is greater than 1 and we
can use the symplectic topology. Then, combining the remarkable theorems of
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Donaldson and Gompf gives the following topological characterization of symplectic
4-manifolds.

Corollary 2-4. A 4-manifold X admits a symplectic structure if and only if it admits
a Lefschetz pencil.

Proof. By Theorem 2-2, a symplectic 4-manifold X admits a Lefschetz pencil. If X
admits a Lefschetz pencil, then the blow-up at the base locus points of a Lefschetz
pencil yields a Lefschetz fibration f : X # nCP2 → S2 with sections of square
−1. Let F be a generic fiber of f and E a (−1)-section of f . Since F · E = 1,
the homology class of F is nontrivial in H2(X # nCP2;R), and so it follows from
Theorem 2-3 that X # nCP2 admits a symplectic structure ω. If X is rational or
ruled, then X has a symplectic structure. Suppose that X is neither rational nor
ruled. Then, by the (−1)-curve theorem [Li and Liu 1995; Taubes 1995; 1996], we
regard a smooth (−1)-section as an ω-symplectic sphere of square −1. Hence, the
symplectic blow-down of X # nCP2 yields a symplectic structure on X . �

Let fi : X i → S2 (i = 1, 2) be a genus-g Lefschetz fibration. Removing regular
neighborhoods N (F1), N (F2) of generic fibers F1, F2 in each, we glue these open
remainders along their boundaries by using a fiber-preserving diffeomorphism
ϕ : ∂(X1− Int N (F1))→ ∂(X2− Int N (F2)) with f2◦ϕ= f1 on ∂(X1− Int N (F1)).
We denote the resulting 4-manifold by X1 #F X2, that is, X1 #F X2 = (X1 −
Int N (F1))∪ϕ (X2−Int N (F2)). Then X1#F X2 admits a genus-g Lefschetz fibration
f1 #F f2 : X1 #F X2→ S2 associated to f1 and f2. We call the genus-g Lefschetz
fibration f1 #F f2 : X1 #F X2→ S2 the fiber sum of f1 and f2. The diffeomorphism
type of X1#F X2 might depend on the choice of the gluing diffeomorphism ϕ. In fact,
Ozbagci and Stipsicz [2000] constructed infinitely many Lefschetz fibrations as the
fiber sums from the same building blocks by using various gluing diffeomorphisms.
However, for the sake of brevity, we do not record those dependencies. By taking
the fiber sums, we can obtain infinitely many genus-g Lefschetz fibrations. On
the other hand, Stipsicz [2001] and Smith [2001a] showed that, if a Lefschetz
fibration has a (−1)-section, then it cannot be decomposed as any nontrivial fiber
sum. Furthermore, Usher [2006] showed that no nonminimal Lefschetz fibration
can be decomposed as a nontrivial fiber sum (the Stipsicz conjecture).

Therefore, nonminimal Lefschetz fibrations are “irreducible” building blocks in
the fiber sum construction. Thus, we consider nonminimal Lefschetz fibrations in
this paper.

The signature of Lefschetz fibrations. The Hirzebruch signature theorem implies
that the pair (c2

1, c2) of Chern numbers is determined by the signature and the Euler
characteristic. So, when we consider the geography of Lefschetz fibrations later, it
is important to calculate the signature and the Euler characteristic of a 4-manifold
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Figure 3. A pair of pants.

admitting a Lefschetz fibration. Every singular fiber of a genus-g Lefschetz fibration
f : X→ S2 contributes +1 to the Euler characteristic e(X). If the fibration f has
µ singular fibers, then we have e(X)= 4(1− g)+µ.

Compared with the calculation of the Euler characteristic, it is difficult to cal-
culate the signature of X . Now we introduce two signature formulae. One is the
Matsumoto–Endo formula for hyperelliptic Lefschetz fibrations and the other is
the Smith formula for general (possibly nonhyperelliptic) Lefschetz fibrations. Let
F1, F2, . . . , Fµ be singular fibers of f : X → S2. Let N (Fi ) denote the tubular
neighborhood of Fi (i = 1, 2, . . . , µ). We set X0 = X −⋃µ

i=1 N (Fi ). Then the
restriction f|X0 : X0→ f (X0) is the associated6g-bundle over the punctured sphere.
Since an irreducible singular fiber and a reducible singular fiber contribute 0 and
−1 to the signature σ(X), respectively, it follows from the Novikov additivity that
we have

σ(X)= σ(X0)−
[g/2]∑
h=1

sh,

where sh denotes the number of singular fibers of type IIh . The signature σ(X0)

of the bundle part X0 can be calculated from the signature cocycle τg, which
is a 2-cocycle of the Siegel modular group Sp(2g;Z) [Meyer 1973]. Let P =
S2−∐3

i=1 Int D2
i be a pair of pants and E(α, β)→ P the 6g-bundle defined by

monodromies α, β ∈ 0g.
Then, Meyer [1973] showed that for the signature of E(α, β) we have

σ(E(α, β))=−τg(α, β).

Since f has µ singular fibers, we can decompose the µ-punctured sphere f (X0)

into µ− 2 pairs P1, P2, . . . , Pµ−2 of pants as in Figure 4.
Then it follows from Novikov additivity and Meyer’s theorem that we have

σ(X0)=
µ−2∑
i=1

σ( f −1(Pi ))=−
µ∑

i=1

τg(tai−1 · · · ta2 ta1, tai ).
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P1
P2

Pµ−3
Pµ−2

S2

Figure 4. Decomposition of f (X0) into µ− 2 pairs of pants.

Here a1, a2, . . . , aµ are vanishing cycles of f and ta0 denotes the identity map.
Thus, in terms of the signature cocycle τg and monodromies ta1, ta2, . . . , taµ , the
signature of X is given by

σ(X)=−
µ∑

i=1

τg(tai−1 · · · ta2 ta1, tai )−
[g/2]∑
h=1

sh .

The Matsumoto–Endo signature formula. A hyperelliptic Lefschetz fibration is a
Lefschetz fibration whose monodromy representation ρ is equivalent to one taking
isotopy classes commuting with the hyperelliptic involution ι :6g→6g. Since the
hyperelliptic mapping class group 0hyp

2 of genus 2 agrees with 02, every genus-2
Lefschetz fibration is hyperelliptic.

When we restrict the signature cocycle τg to the hyperelliptic mapping class
group 0hyp

g , its cohomology class [τ H
g ] ∈ H 2(0

hyp
g ;Z) is of finite order. So we can

calculate the terms of signature cocycles by the coboundary maps called Meyer’s
functions. Matsumoto [1996] and Endo [2000] calculated Meyer’s functions and
obtained the signature formula for hyperelliptic Lefschetz fibrations.

Theorem 2-5 [Matsumoto 1996; Endo 2000]. Suppose that f : X→ S2 is a genus-g
hyperelliptic Lefschetz fibration with n0 irreducible singular fibers and sh singular
fibers of type IIh (h = 1, 2, . . . , [g/2]). Then, we have

σ(X)=− g+ 1
2g+ 1

n0+
[g/2]∑
h=1

(
4h(g− h)

2g+ 1
− 1

)
sh .
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Smith’s signature formula. Smith obtained the signature formula for (possibly
nonhyperelliptic) Lefschetz fibrations by using the geometry of the moduli space
of stable curves. We denote the Deligne–Mumford compactified moduli space of
stable curves of genus g by Mg. Let f : X→ S2 be a genus-g Lefschetz fibration.
Then, we can have a symplectic structure on X such that each fiber f −1(x) is a
pseudoholomorphic curve. Since a 2-dimensional almost-complex structure is inte-
grable, each fiber f −1(x) determines a point in the Deligne–Mumford compactified
moduli space Mg.

Thus we can define the moduli map φ f : S2→Mg of f by

φ f (x) := [ f −1(x)] ∈Mg for all x ∈ S2.

In particular, if f : X→ CP1 is holomorphic, then the image φ f (CP1) is a rational
curve in Mg.

Theorem 2-6 [Smith 1999]. For any genus-g Lefschetz fibration f : X→ S2 with
µ singular fibers, namely µ= n0+∑[g/2]h=1 sh , the signature of X is given by

σ(X)= 4〈c1(λ), [φ f (S2)]〉−µ,
where λ→Mg denotes the Hodge bundle with fiber

∧g H 0(C; KC), the determinant
line above [C].

For a projective fibration f : X→ CP1, this theorem follows from Mumford’s
formula. Smith’s formula is a generalization of Atiyah’s formula for smooth
fibrations, and related work by Meyer.

3. Examples of Lefschetz fibrations

Let 0g be the mapping class group of 6g. For elements ϕ,ψ ∈ 0g, the product
ψ ·ϕ (or ψϕ) stands for applying ϕ first and then ψ .

Let c1, c2, . . . , c2g+1 be the curves on 6g illustrated in Figure 5. The isotopy
classes of the positive Dehn twists τc1, τc2, . . . , τc2g+1 along c1, c2, . . . , c2g+1 are

c1

c2

c3

c4 c2g
c2g+1

Figure 5. Lickorish generators.
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Lickorish generators of the mapping class group 0g of genus g. For the sake of
brevity, we denote the isotopy class of the positive Dehn twist τa along the curve a
by the same symbol a.

It is well-known that 0g has the following positive relations:

W1 : (c1 · c2 · · · c2g · c2g+1 · c2g+1 · c2g · · · c2 · c1)
2 = 1,

W2 : (c1 · c2 · · · c2g · c2g+1)
2g+2 = 1,

W3 : (c1 · c2 · · · c2g)
4g+2 = 1.

From these positive relations, we can construct hyperelliptic genus-g Lefschetz
fibrations with only irreducible singular fibers and with sections of square −1.
Furthermore, these Lefschetz fibrations are double branched covers of the Hirze-
bruch surfaces and so holomorphic. The total space of the Lefschetz fibration
corresponding to W1 is diffeomorphic to CP2 # (4g+ 5)CP2.

Examples of nonminimal genus-2 Lefschetz fibrations. The Hirzebruch surface
Fn = P(OCP1 ⊕ OCP1(n)) has two disjoint holomorphic sections 1n and 1−n of
square ±n.

(1) M1=CP2#13CP2 : The positive relation W1 : (c1 ·c2 ·c3 ·c4 ·c2
5 ·c4 ·c3 ·c2 ·c1)

2=1
describes the genus-2 Lefschetz fibration on the rational surface M1 obtained as
a double covering of F0 branched along a smooth algebraic curve in the linear
system |61+ 2F |. This fibration is obtained from the composition of the covering
projection with the bundle projection F0→ S2 and has 20 irreducible singular fibers
and sections of square −1.

(2) M2= K 3#2CP2 : The positive relation W2 : (c1 ·c2 ·c3 ·c4 ·c5)
6= 1 describes the

genus-2 Lefschetz fibration on M2 obtained as a double covering of F1 =CP2 #CP2

branched along a smooth algebraic curve in the linear system |6L|, where L is a
line in CP2 avoiding the blown-up point. This fibration has 30 irreducible singular
fibers and sections of square −1.

(3) M3= H ′(1) (Horikawa surface) : The positive relation W3 : (c1 ·c2 ·c3 ·c4)
10= 1

describes the genus-2 Lefschetz fibration on M3 obtained as a double covering
of F2 branched along the disjoint union of a smooth curve in the linear system
|512| and 1−2. This fibration has 40 irreducible singular fibers and a section of
square −1. This section is a lift of the component of the branched set coming
from 1−2. On the other hand, a fiber sum of two copies of the rational genus-2
Lefschetz fibration CP2 # 13CP2→ S2 is a genus-2 Lefschetz fibration, which has
40 irreducible singular fibers and the total space is homeomorphic to H ′(1) but not
diffeomorphic.



202 YOSHIHISA SATO

(4) S2×T 2#4CP2 : Matsumoto showed that S2×T 2#4CP2 has a genus-2 Lefschetz
fibration with 6 irreducible singular fibers and 2 reducible singular fibers. This
also has a section of square −1. The positive relation describing this fibration is
(α1 · σ · α2 · α3)

2 = 1, where α1, α2, α3 and σ are given by positive Dehn twists
along the curves indicated in Figure 6.

α1

α3

α2

σ

Figure 6

(5) Auroux’s genus-2 Lefschetz fibration : Auroux [2003] constructed the interesting
genus-2 Lefschetz fibration f : X→ CP1 with 28 irreducible singular fibers and
one reducible singular fiber. This fibration is nonminimal but does not admit section
of square (−1). See [Sato 2008]. The positive relation corresponding to it is given
as follows:

σ · (c3 · c4 · c5 · c2 · c3 · c4 · c1 · c2 · c3)
2 · (c1 · c2 · c3 · c4 · c5 · c5 · c4 · c3 · c2 · c1)= 1.

For other examples of nonminimal genus-2 Lefschetz fibrations, see [Sato 2008].

Examples of nonminimal genus-3 Lefschetz fibrations.
(1) M1,M2 and M3 corresponding to positive relations W1,W2 and W3 for g = 3
have nonminimal, hyperelliptic and holomorphic genus-3 Lefschetz fibrations.

(2) S2× T 2 # 8CP2 : This has a nonhyperelliptic genus-3 Lefschetz fibration with
positive relation (α1 ·α2 ·α3 ·α4 ·β2

1 ·β2
2 )

2 indicated in Figure 7. This fibration also
has a section of square −1.

(3) Fuller’s example : Fuller constructed a nonhyperelliptic and nonholomorphic
genus-3 Lefschetz fibration with positive relation

(β1 ·β2 · c4 · c3 · c2 · c1 · c5 · c4 · c3 · c2 · c6 · c5 · c4 · c3 · (c1 · · · c6)
10)= 1,

α1

α2

α3

α4
β1

β2

Figure 7



CANONICAL CLASSES AND NONMINIMAL LEFSCHETZ FIBRATIONS OVER S2 203

where β1 and β2 are given by positive Dehn twists along curves indicated in Figure 7.
This fibration also has a section of square −1.

(4) T 4 # 4CP2 : Smith [2001c] showed that T 4 # 4CP2 has a hyperelliptic and
holomorphic genus-3 Lefschetz fibration with 12 irreducible singular fibers and 4
sections of square −1. This fibration is obtained by using the inverse of the usual
Kummer construction of a K 3 surface which is elliptically fibered over S2 with 16
disjoint (−2)-spheres containing 4 sections and 12 singular fibers.

(5) Fermat surface of degree 4 : The Fermat surface of degree 4 is the smooth
hypersurface in CP3 defined by the equation z4

0+ z4
1+ z4

2+ z4
3 = 0. Kuno [2010]

proved that this surface admits a genus-3 Lefschetz pencil with 4 base locus points.
The blow-up of this surface at the base locus points yields a nonminimal, nonhyper-
elliptic, holomorphic genus-3 Lefschetz fibration with only 36 irreducible singular
fibers and 4 sections of square −1. See [Kuno 2010] for its monodromies.

Examples of nonminimal genus-g Lefschetz fibrations. Endo [2008] generalized
some parts of Chakiris’ construction of holomorphic genus-2 Lefschetz fibrations
topologically to give many examples of nonminimal hyperelliptic Lefschetz fibra-
tions of arbitrary genus. Their examples are given in terms of positive relations in
mapping class groups. Now, from Endo’s list, we introduce some examples that we
investigate in Section 5.

For simple closed curves c, a1, a2, . . . , ar on 6g and

W = aεr
r · · · aε2

2 aε1
1 (ε1, ε2, . . . , εr ∈ {±1}),

we put W (c) := τ εr
ar
· · · τ ε2

a2
τ ε1

a1
(c). Furthermore, for a factorization V = ci1ci2 · · · cir ,

we put W V := W (ci1) W (ci2) · · · W (cir ).
We define words I, J,CI,CII, P, Q and R in 0hyp

g as follows. Here, d denotes
the boundary curve of a regular neighborhood of c1 ∪ c2 ∪ · · · ∪ c2[g/2].

I := c1 · c2 · · · c2g · c2
2g+1 · c2g · · · c2 · c1,

J := (c1 · c2 · · · c2g)
2g+1,

CI := (c1 · c2 · · · c2g+1)
2g+2,

CII := (c1 · c2 · · · c2g)
4g+2, namely CII = J 2,

P := d · W (cg+1 · · · c3 · c2) · · · W (c2g · · · cg+2 · cg+1)

· (cg+1 · · · c3 · c2) · · · (c2g · · · cg+2 · cg+1), (g is even)

where W := (c1 ·c2 · · · cg)
−(g+1). When g is even, the words Q and R are defined by

Q := (c1 · c2 · · · c2g+1)
g+1 · d · W1(cg+1) · W2(cg+2) · · · Wg+1(c2g+1),

R := d · W1(cg+1) · W2(cg+2) · · · Wg+1(c2g+1) · (c2g+1 · · · c2 · c1)
g+1,



204 YOSHIHISA SATO

where Wi := (ci+g−1 · · · ci+1ci )
−1 for each i ∈ {1, 2, . . . , g+ 1}. When g is odd,

the words Q and R are defined by

Q := (c1 · c2 · · · c2g+1)
g+2 · d · (cg−1 · c2 · c1)

2 · W1(cg) · W2(cg+1) · · · Wg+2(c2g+1),

R := c1 · c2 · · · c2g+1 · d · (cg−1 · · · c2 · c1)
2 · W1(cg) · W2(cg+1) · · · Wg+2(c2g+1)

·(c2g+1 · · · c2 · c1)
g+1,

where Wi := c−1
i c−1

i+1 · · · c−1
i+g−2 for each i ∈ {1, 2, . . . , g+ 2}.

Endo [2008] proved that the words I , J , CI, CII, P , Q and R, as products of
positive Dehn twists, satisfy the following positive relations:

I 2 = 1, CI = 1, CII = 1,

P2 = 1, Q = 1, P I = 1, PJ = 1, RI = 1 (g is even)

Q = 1, R = 1 (g is odd).

From these positive relations but for RI = 1, we can obtain nonminimal hyperel-
liptic Lefschetz fibrations admitting sections of square (−1); see [Endo 2008]. Of
course, the three relations I 2 = 1, CI = 1 and CII = 1 are the same as the positive
relations W1, W2, W3.

4. The geography of symplectic 4-manifolds

Smooth closed 4-manifolds can be endowed with different structures as complex
structures, almost-complex structures and symplectic structures.

A symplectic structure on a smooth 4-manifold M is a closed 2-form ω that
is nondegenerate as a bilinear form on each tangent space Tx M . A symplectic
4-manifold is a smooth 4-manifold M together with a symplectic structure ω.

An almost-complex structure on M is a bundle endomorphism J : TM→ TM of
the tangent bundle TM with J 2=−idTM . Since (TM, J ) is regarded as a C2-bundle
over M , we can define Chern classes

c1(M, J ) := c1(TM, J ), c2(M, J ) := c2(TM, J ).

Furthermore, it is well-known that any symplectic 4-manifold (M, ω) admits an
ω-compatible almost-complex structure, which is an almost-complex structure J
such that g(u, v) := ω(u, Jv) (u, v ∈ TM) is a Riemannian metric.

A smooth map ϕ : 6 → M from a possibly disconnected compact Riemann
surface (6, j) to (M, J ) is said to be J -holomorphic if the differential dϕ satisfies

dϕ ◦ j = J ◦ dϕ.

We call the image ϕ(6) a J -holomorphic curve or a pseudoholomorphic curve with
respect to J . If C is a pseudoholomorphic curve with respect to an ω-compatible
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almost complex structure, then C is also ω-symplectic. A pseudoholomorphic curve
on a symplectic 4-manifold is one of the most important tools in modern symplectic
4-dimensional topology and has a lot in common with holomorphic curves. For
example, two distinct pseudoholomorphic curves intersect discretely and positively.
Hence, the algebraic intersection number between two distinct pseudoholomorphic
curves stands for the geometric intersection number.

Many typical examples of simply connected 4-manifolds are given by complex
surfaces. Since they are simply connected, they are also Kähler, that is, symplectic
4-manifolds admitting symplectic structures whose compatible almost-complex
structures are integrable. The geography of simply connected minimal complex
surfaces, that is, the range of Chern pairs (c2

1, c2) of such complex surfaces, is as in
Figure 1. The boundary of the range is given by the Noether line (5c2

1 = c2− 36)
and the Bogomolov–Miyaoka–Yau line (c2

1 = 3c2).
Symplectic 4-manifolds have a lot in common with complex surfaces: pseu-

doholomorphic curves play a role as holomorphic curves on complex surfaces.
Donaldson’s theorem (Theorem 2-2) gives us a symplectic version of the ample
divisor. By Taubes’ theorem [1995; 1996] on the Gromov–Witten invariants GrT

and the canonical classes, we can regard a pseudoholomorphic representative of
the canonical class KM of a symplectic 4-manifold (M, ω) as a symplectic version
of the canonical divisor. Thus, one would like to achieve a similar classification
as in complex surfaces for symplectic 4-manifolds. We consider the geography
problem for symplectic 4-manifolds: Which pairs (m, n) of integers are realized as
the Chern pairs (c2

1, c2) of a symplectic 4-manifold?
We review Chern classes of symplectic 4-manifolds. We notice the following

fundamental relations between c2
1 and c2 first:

c1 ≡ w2 (mod 2),

c2
1 = 3σ + 2e (Hirzebruch’s signature theorem),

c2 = e.

Thus, the pair (c2
1, c2) is determined uniquely by the pair (σ, e). Conversely, the

pair (σ, e) is determined uniquely by the pair (c2
1, c2). Furthermore, since c1 is

characteristic, we have that c2
1 ≡ w2 (mod 8). Hence, the Noether formula holds

also for symplectic 4-manifolds:

c2
1+ c2 ≡ 0 (mod 12).

By use of a pseudoholomorphic representative of the canonical class KM , one
can prove part (1) of the following theorem:

Theorem 4-1 [Taubes 1996; Liu 1996]. (1) If M is a minimal symplectic 4-
manifold with b+2 (M) > 1, then c2

1(M)≥ 0.
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(2) Let M be a minimal symplectic 4-manifold with b+2 (M) = 1. If c2
1(M) < 0,

then M must be an irrational ruled surface.

It follows from an easy calculation in (co)homology that, if M is a symplectic
4-manifold with b1(M)≤ 1, then c2

1(M)≤ 5c2(M). As for nonminimal symplectic
4-manifolds, we have

c2
1(M # CP2)= c2

1(M)− 1 and c2(M # CP2)= c2(M)+ 1.

Namely, the blow-up translates lattice points on the (c2, c2
1)-plane along the vector

(1,−1). Thus, the problem of the maximum for the slope c2
1/c2 comes to our

mind. The author has no answer for this problem. However, it is expected that,
if M is a symplectic 4-manifold which is not an irrational ruled surface, then
c2

1(M)≤ 3c2(M). See [Stipsicz 2000].
Since surfaces of general type are Kähler, it follows from the geography of

complex surfaces that, for most of lattice points (m, n) with 1
5(n− 36)≤ m ≤ 3n

and m ≥ 0, there are symplectic 4-manifolds with (c2
1, c2)= (m, n). On the other

hand, Gompf [1995], Stipsicz [1996], and Fintushel and Stern [1998] showed that
the existential range of (c2

1, c2) of symplectic 4-manifolds is larger than that of
complex surfaces.

As for the geography of Lefschetz fibrations, we can regard the geography of
4-manifolds admitting Lefschetz fibrations as one of symplectic 4-manifolds by the
works of Donaldson and Gompf. Furthermore, we can also consider the geography
of fibration structures of Lefschetz fibrations as follows:

Let f : X → S2 be a genus-g Lefschetz fibration with n0 irreducible singular
fibers and sh reducible singular fibers of type IIh (1 ≤ h ≤ [g/2]). We denote
the number of singular fibers of f by µ( f ) := n0+∑[g/2]h=1 sh . Then, we have the
following:

c2
1(X)= 3σ(X)+ 2e(X), c2(X)= e(X)= 4− 4g+µ( f ).

Hence, by Theorem 2-5, we can calculate the Chern pairs (c2
1(X), c2(X)) from

the ([g/2] + 1)-tuple (n0, s1, . . . , s[g/2]) of the numbers of singular fibers for a
hyperelliptic genus-g Lefschetz fibration f : X→ S2. Thus, we regard the geography
problem of (possibly nonhyperelliptic) genus-g Lefschetz fibrations as characterizing
the ([g/2] + 1)-tuple (n0, s1, . . . , s[g/2]) of the numbers of singular fibers.

We now recall some facts about the number of singular fibers. The following
inequalities hold for the number of irreducible singular fibers and the number of
reducible singular fibers:

Theorem 4-2 [Stipsicz 1999]. Let f : X → S2 be a nontrivial genus-g Lefschetz
fibration with n0 irreducible singular fibers and sh reducible singular fibers of
type IIh (1≤ h ≤ [g/2]).



CANONICAL CLASSES AND NONMINIMAL LEFSCHETZ FIBRATIONS OVER S2 207

(1) 5n0 ≥
[g/2]∑
h=1

sh .

(2) n0 > 0, that is, there is no Lefschetz fibration with only reducible singular
fibers.

Let N (g) denote the minimal number of singular fibers in genus-g Lefschetz
fibrations over S2, namely,

N (g) :=min{µ( f ) | f : X→ S2 is a genus-g Lefschetz fibration}.
Theorem 4-3 [Korkmaz and Ozbagci 2001; Stipsicz 1999]. We have estimates on
N (g) as follows:

(1) N (2)= 7, or 8.

(2) N (g)≥ 1
5(4g+ 2).

Proposition 4-4 [Sato 2010b]. Let f : X → S2 be a genus-2 Lefschetz fibration
with µ( f ) singular fibers.

(1) If µ( f )= 7, then X is diffeomorphic to S2× T 2 # 3CP2.

(2) If µ( f )= 8, then X is diffeomorphic to S2× T 2 # 4CP2.

By considering the abelianization of the global monodromy of a Lefschetz
fibration, we can obtain the congruence on the number of singular fibers. The
following proposition is proved by noting that the abelianization H1(02;Z) of 02

is isomorphic to the cyclic group of order 10.

Proposition 4-5 [Persson 1992]. Suppose that a genus-2 Lefschetz fibration over
S2 has n0 irreducible singular fibers and s reducible singular fibers. Then, we have

n0+ 2s ≡ 0 (mod 10).

If g≥ 3, then H1(0g;Z)= 0, and so we can get no information on the number of
singular fibers. However, if we consider the hyperelliptic case, then we can get infor-
mation for hyperelliptic Lefschetz fibrations. Since the abelianization H1(0

hyp
g ;Z)

of the hyperelliptic mapping class group 0hyp
g is isomorphic to Z/2(2g+ 1) if g

is even and Z/4(2g+ 1) if g is odd, we obtain the congruence on the number of
singular fibers of a hyperelliptic fibration.

Proposition 4-6 [Endo 2000]. Suppose that f : X→ S2 is a genus-g hyperelliptic
Lefschetz fibration with n0 irreducible singular fibers and sh singular fibers of
type IIh (h = 1, 2, . . . , [g/2]). Then, we have

n0+ 4
[g/2]∑
h=1

h(2h+ 1)sh ≡ 0
(

mod
{

2(2g+ 1) (if g is even)
4(2g+ 1) (if g is odd)

})
.
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Remark 4-7. By taking the fiber sums, we can construct genus-g Lefschetz fibra-
tions with arbitrarily large numbers of singular fibers. For example, for the genus-g
hyperelliptic Lefschetz fibration f : CP2 # (4g+ 5)CP2→ CP1 corresponding to
the positive relation

W1 : (c1 · c2 · · · c2g · c2g+1 · c2g+1 · c2g · · · c2 · c1)
2 = 1

we consider the fiber sum #m F f of m copies of f . Then, the total space of #m F f is
minimal and #m F f has 4(2g+1)m irreducible singular fibers. Hence, the set of all
(n0, s1, . . . , s[g/2]) of the numbers of singular fibers of genus-g Lefschetz fibrations
over S2 is not bounded.

We shall consider the geography problem of Lefschetz fibrations in Section 6.

5. The canonical classes of nonminimal Lefschetz fibrations over S2

2-spheres of square −1 in Lefschetz fibrations. Now we begin with two important
theorems on smoothly embedded spheres in a symplectic 4-manifold with self-
intersection number −1.

Theorem 5-1 ((−1)-curve theorem, [Li and Liu 1995; Taubes 1996]). Let (M, ω)
be a closed symplectic 4-manifold. Suppose that M is neither the blow-up of a
rational surface nor the blow-up of a ruled surface. Then, any smoothly embedded
sphere of square −1 is Z-homologous to a pseudoholomorphic rational curve of
square −1 after the appropriate choice of an orientation of the sphere.

Taubes showed this theorem for b+2 (M) > 1, and Li and Liu showed this theorem
for b+2 (M)= 1.

Theorem 5-2 [Ohta and Ono 2005]. Let (M, ω) be a closed symplectic 4-manifold
and F an irreducible pseudoholomorphic curve in M with respect to an ω-compat-
ible almost-complex structure J0. Suppose that the genus of F is positive. Then,
there exists an almost-complex structure J , which is arbitrarily close to J0, such
that F and any symplectic sphere of square −1 are represented by J -holomorphic
curves simultaneously.

Next we consider spheres of square −1 in Lefschetz fibrations. Let f : X→ S2

be a nonminimal genus-g Lefschetz fibration. Namely, we let X admit smoothly
embedded spheres of square −1. Since we suppose that g ≥ 2, X has a symplectic
structure ω with an ω-compatible almost complex structure J for which the fibers
are pseudoholomorphic (Theorem 2-3). From now on, we assume that a Lefschetz
fibration f : X→ S2 is not minimal and X admits such structures ω and J .

Let E ∈ H 2(X;Z) be the Poincaré dual of the homology class that is represented
by a smoothly embedded sphere of square −1 in X . By changing the orientation
of this sphere if necessary, we may assume that E · [ω] > 0, because we have
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E · [ω] 6= 0 by the (−1)-curve theorem and the fact that ω|6 on a closed symplectic
submanifold 6 is a volume form of 6. We denote by EX the set of all the Poincaré
duals of the homology classes E that can be represented by smoothly embedded
spheres of square −1 and satisfy E · [ω]> 0. Moreover, let F denote the Poincaré
dual of the homology class represented by a generic fiber. Then, we have the
following theorem:

Theorem 5-3 [Sato 2008]. Suppose that X is neither the blow-up of a rational
surface nor the blow-up of a ruled surface. We set EX = {E1, E2, . . . , Em}. Then:

(1) Ei · F ≥ 1 for any Ei ∈ EX ,

(2) m ≤ (∑m
i=1 Ei

) · F ≤ 2g− 2.

Remark 5-4. Suppose that X is neither the blow-up of a rational surface nor the
blow-up of a ruled surface. Then, by the (−1)-curve theorem, E ∈ EX can be
represented by an ω-symplectic sphere of square −1. Hence, it follows from
Theorem 5-2 and the positivity of intersections of pseudoholomorphic curves that,
if E ∈ EX satisfies E · F = 1, then E is represented by a (−1)-section of f .

Thus, by Theorem 5-3, we can classify EX into several types. For example, EX

in the cases of g = 2 and g = 3 are classified as follows:

The case g = 2: We consider a genus-2 Lefschetz fibration f : X → S2 with
spheres of square −1. If X is neither rational nor ruled, then Theorem 5-3 states
that EX is one of the following three:

Type (1, 1): EX = {E1, E2}, E1 · F = E2 · F = 1.

Type (1): EX = {E}, E · F = 1.

Type (2): EX = {E}, E · F = 2.

In the first and the second cases, spheres representing EX are (−1)-sections of
f : X → S2. Note that E1 · E2 = 0 for E1 and E2 in Type (1, 1), which follows
from the proof of Corollary 3 in [Li 1999].

The case g = 3: We consider a genus-3 Lefschetz fibration f : X → S2 with
spheres of square −1. If X is neither rational nor ruled, Theorem 5-3 states that the
set EX of spheres of square −1 is one of the following 11 types:

Type (1, 1, 1, 1): EX ={E1, E2, E3, E4}, E1 ·F = E2 ·F = E3 ·F = E4 ·F = 1.

Type (1, 1, 2): EX = {E1, E2, E}, E1 · F = E2 · F = 1, E · F = 2.

Type (1, 3): EX = {E1, E}, E1 · F = 1, E · F = 3.

Type (2, 2): EX = {E1, E2}, E1 · F = E2 · F = 2.

Type (4): EX = {E}, E · F = 4.

Type (1, 1, 1): EX = {E1, E2, E3}, E1 · F = E2 · F = E3 · F = 1.
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Type (1, 2): EX = {E1, E}, E1 · F = 1, E · F = 2.

Type (3): EX = {E}, E · F = 3.

Type (1, 1): EX = {E1, E2}, E1 · F = E2 · F = 1.

Type (2): EX = {E}, E · F = 2.

Type (1): EX = {E}, E · F = 1.

Furthermore, if we set
∑

EX :=∑m
i=1 Ei for EX = {E1, E2, . . . , Em}, then types

of EX are shared as follows:(∑
EX
) · F = 4: Type (1, 1, 1, 1), Type (1, 1, 2), Type (1, 3), Type (2, 2),

Type (4)(∑
EX
) · F = 3: Type (1, 1, 1), Type (1, 2), Type (3)(∑

EX
) · F = 2: Type (1, 1), Type (2)(∑

EX
) · F = 1: Type (1)

In general, if the set EX ={E1, E2, . . . , Em} for a nonminimal genus-g Lefschetz
fibration f : X→ S2 satisfies the conditions

Ei · F = ji , j1 ≤ j2 ≤ · · · ≤ jm,

then EX is said to be of Type ( j1, j2, . . . , jm).
Now we can state the main theorem.

Theorem 5-5. Let f : X → S2 be a nonminimal genus-g Lefschetz fibration. Let
K X be the canonical class of (X, ω). Suppose that X is neither the blow-up of a
rational surface nor the blow-up of a ruled surface. Then, the canonical class K X

can be determined according to the types of EX as follows:

[1] If g = 2, we have:

(1) If EX is of Type (1, 1), then K X = E1+ E2, where EX = {E1, E2}.
(2) If EX is of Type (2), then K X = E , where EX = {E}.
(3) If EX is of Type (1), then K X = 2E+ R or K X = 2E+ F. Here, EX = {E}

and R is a genus-1 irreducible component of a reducible singular fiber
such that E · R = 1. Moreover, in the case of K X = 2E + R, the fibration
f has only one reducible singular fiber. In the case of K X = 2E + F , the
fibration f has no reducible singular fiber.

[2] If g ≥ 3, we have:

(1) If
(∑

EX
) · F = 2g− 2, then K X =∑EX .
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(2) If
(∑

EX
) · F = 2g− 3, we have

K X = 2E1+
∑

E∈EX
E 6=E1

E + R.

Here, E1 is a (−1)-section of f and R is a genus-1 irreducible component
of a reducible singular fiber such that E1 · R = 1 and E · R = 0 for
any E ∈ EX (E 6= E1).

Proof. We can find out the proof in the case of g = 2 in the proof of Theorem 5-1
of [Sato 2008]. We suppose that the fiber genus of f is greater than two.

Equip X with an almost complex structure J such that fibers of f are J -
holomorphic curves. Let EX = {E1, E2, . . . , Em} be the set of all cohomology
classes represented by spheres of square−1. Set A= K X−∑EX = K X−∑m

i=1 Ei .
By the adjunction formula, we have K X · F = 2g− 2, K X · Ei =−1 for any i and
so A · Ei = K X · Ei − E2

i = 0 for any i . Furthermore, we have

A2 = A · (K X −∑EX )= A · K X −
m∑

i=1
A · Ei = A · K X ,

A · F = K X · F − (∑EX ) · F = (2g− 2)− (∑EX ) · F.
Hence, if (

∑
EX ) · F is 2g− 2 or 2g− 3, then

A · F =
{

0 if (
∑

EX ) · F = 2g− 2,
1 if (

∑
EX ) · F = 2g− 3.

Since each class Ei of EX is represented by a pseudoholomorphic curve and is a
basic class of the Gromov–Taubes invariant GrT [Taubes 1995; 1996], it follows
from the duality formula of the Gromov–Taubes invariant that A is also a basic
class, that is, GrT (A) 6= 0. Hence, the class A has a J -holomorphic representative
C = {(C j ,m j )}1≤ j≤n such that each C j is a J -holomorphic curve and each m j

(≥ 1) is the multiplicity of C j . The components C j of C are not always nonsingular.

(1) The case of (
∑

EX ) · F = 2g− 2: The cohomology class A is represented by
C = {(C j ,m j )}1≤ j≤n and we have A =∑n

j=1 m j [C j ]. Since A · F = 0, we have∑n
j=1 m j [C j ] · F = 0. Noting that pseudoholomorphic curves have locally positive

intersections, this implies that each component C j of C is contained in a fiber.
Hence, we have [C j ]2 = 0 or −1. If C j is a generic fiber or an irreducible singular
fiber, then [C j ]2 = 0. If C j is a component of a reducible singular fiber, then
[C j ]2 =−1. However, since A · Ei = 0 and Ei · F 6= 0 for any i , each component
C j is neither a generic fiber nor an irreducible singular fiber. Furthermore, since
f is relatively minimal, every fiber contains no sphere-component. Therefore, C j

is a component of a reducible singular fiber with genus (C j )≥ 1 and [C j ]2 =−1.
If distinct components C j and Ck intersected, they would be components of a
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reducible fiber and one of C j and Ck would meet a section Ei . However, since
A · Ei = 0, any component C j does not meet other components Ck .

Now we arrange the indices of components of C. Let C j,k be a component of a
reducible singular fiber such that the genus of C j,k is k. Let m j,k be the multiplicity
of C j,k . If C does not contain a component of genus k, then we set up a virtual
component C1,k and m1,k = 0. Then, we have A=∑g−1

k=1
∑n j

j=1 m j,k[C j,k]. Noting
that K X · [C j,k] = 2k−1 and [Ci,`] · [C j,k] = 0 (k 6= `), we calculate A2 and A ·K X .
We have

A2 =
n1∑

j=1

m2
j,1[C j,1]2+

n2∑
j=1

m2
j,2[C j,2]2+ · · ·+

ng−1∑
j=1

m2
j,g−1[C j,g−1]2

=−
( n1∑

j=1

m2
j,1+

n2∑
j=1

m2
j,2+ · · ·+

ng−1∑
j=1

m2
j,g−1

)
,

A · K X =
n1∑

j=1

m j,1[C j,1] · K X +
n2∑

j=1

m j,2[C j,2] · K X + · · ·

+
ng−1∑
j=1

m j,g−1[C j,g−1] · K X

=
n1∑

j=1

m j,1+ 3
n2∑

j=1

m j,2+ · · ·+ (2g− 3)
ng−1∑
j=1

m j,g−1.

Hence, we have that A2 ≤ 0 and A · K X ≥ 0. Since A2 = A · K X , we have
A2 = A · K X = 0. Therefore, we have m j,k = 0 for any j, k, in particular A = 0.
Hence, K X =∑EX .

(2) The case of (
∑

EX ) · F = 2g− 3: Since A · F = 1, the pseudoholomorphic
representative C of A contains a section S as a component of C. Then, we can
see that S is smooth and the multiplicity of S is one. Suppose that S is singular
and x ∈ S is a singular point of S. The fiber F0 = f −1( f (x)) intersects S at the
singular point x . This fact implies that [S] · [F0] ≥ 2, because pseudoholomorphic
curves have locally positive intersections. However, this contradicts the fact that
A · [F0] = A · F = 1. Hence, S is a smooth section. Moreover, since A · F = 1, the
multiplicity of S is one.

Let {C j | j = 1, 2, . . . , n} be the set of all components of C except S. Then, we
can see that each C j contains in a fiber of f . Since A = [S] +∑n

j=1 m j [C j ] and
A·F = 1, we have that 1= A·F =[S]·F+∑n

j=1 m j [C j ]·F = 1+∑n
j=1 m j [C j ]·F

and
∑n

j=1 m j [C j ] · F = 0. Hence, we have [C j ] · F = 0 for any j , and so each
component C j contains in a fiber.
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Now we divide components of C except S into generic/irreducible fibers and
components of reducible fibers. Furthermore, we divide components of reducible
fibers in C according to genera. Namely, the class A is represented by the pseudo-
holomorphic curve C= {(S, 1), (Fi , ki ), (C j,`,m j,`)}, where each Fi is a generic
fiber or an irreducible singular fiber and each C j,` is a component of a reducible
singular fiber such that the genus of C j,` is `. Of course, we have that [C j,`]2=−1,
[Ci,k] · [C j,`] = 0 ((i, k) 6= ( j, `)), F · [C j,`] = 0 and [C j,`] · K X = 2`− 1. Since
an irreducible singular fiber is homologous to the generic fiber F , components of
C which are generic fibers or irreducible singular fibers yield the homology class
m F , and so the class A is given by

A = [S] +m F +
n1∑

j=1

m j,1[C j,1] +
n2∑

j=1

m j,2[C j,2] + · · · +
ng−1∑
j=1

m j,g−1[C j,g−1]

= [S] +m F +
g−1∑
`=1

n∑̀
j=1

m j,`[C j,`].

We compare A2 with A · K X in the same way as the case (1). We have

A2 = [S]2+m2 F2+
g−1∑
`=1

n∑̀
j=1

m2
j,`[C j,`]2+ 2m[S] · F

+ 2
g−1∑
`=1

n∑̀
j=1

m j,`[S] · [C j,`] + 2
g−1∑
`=1

n∑̀
j=1

m j,`F · [C j,`]

= [S]2−
g−1∑
`=1

n∑̀
j=1

m2
j,`+ 2m+ 2

g−1∑
`=1

n∑̀
j=1

m j,`[S] · [C j,`],

A · K X = [S] · K X +m F · K X +
g−1∑
`=1

n∑̀
j=1

m j,`[C j,`] · K X

=−2− [S]2+ 2m(g− 1)+
g−1∑
`=1

n∑̀
j=1

(2`− 1)m j,`.

Since A2− A · K X = 0, we have

(5-6) −2(1+[S]2)+2m(g−1)+
g−1∑
`=1

n∑̀
j=1

m j,`(2`−1+m j,`−2[S] · [C j,`])= 0.

By Lemma 2.1 of [Stipsicz 2001], the self-intersection number of S is negative, and
so we have −2(1+ [S]2) ≥ 0. Furthermore, since S is a section, the intersection
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number [S]·[C j,`] is 0 or 1. Hence, we have that m j,`(2`−1+m j,`−2[S]·[C j,`])≥0.
Hence, each term in the left side of (5-6) is nonnegative. Therefore, we obtain

−2(1+ [S]2)= 0,
2m(g− 1)= 0,
m j,`(2`− 1+m j,`− 2[S] · [C j,`])= 0 for any j, `.

If ` ≥ 2, then we have 2`− 1+m j,`− 2[S] · [C j,`] ≥ 1 since 0 ≤ [S] · [C j,`] ≤ 1.
Hence it follows from the third equation above that m j,` = 0 for ` ≥ 2. Thus
the pseudoholomorphic representative C consists only of the section S and torus
components of reducible singular fibers. Noting that [S] · [C j,1] is 0 or 1, it follows
that if m j,1(1+m j,1−2[S]·[C j,1])=0 and m j,1 6=0, then m j,1=1 and [S]·[C j,1]=1.
On the other hand, since [S]2 =−1, the smooth section S is a sphere of square −1
and the class [S] is a member of EX . Set E1 = [S].

Now we consider the case where there is a torus component in C. Then, such a
torus component meets the section S and its multiplicity is one. Thus, we can write
A as A= E1+∑n1

j=1[C j,1]. Suppose that n1≥2. Since A·E1=0 and [S]·[C j,1]=1,
we have that n1 − 1 =∑ j 6=1[C j,1] · E1 = A · E1 − (E2

1 + [C1,1] · E1) = 0. This
is a contradiction. Hence, the class A is written as A = E1 + [C1,1]. Therefore,
we obtain

K X = 2E1+
∑

E∈EX
E 6=E1

E + R,

where R = [C1,1] is the class represented by a torus component of a reducible
singular fiber and E1 · R = 1. Since C1,1 is a torus, we have K X · R = 1 and so∑

E∈EX , E 6=E1
E · R = K X · R − (2E1 · R + R2) = 0. Hence, it follows from the

positiveness of local intersections of pseudoholomorphic curves that E · R = 0 for
any E ∈ EX except E1.

Next we consider the case where there is no torus component in C. Then, we
can write A as A = E1. Hence, we obtain

K X = 2E1+
∑

E∈EX
E 6=E1

E .

Then, the minimal model Xmin of X must satisfy that K 2
min < 0. Here, Kmin denotes

the canonical class of Xmin. However, since X is not the blow-up of a ruled surface,
it follows from Theorem 4-1 that K 2

min must be nonnegative. This is a contradiction.
Hence, the case of K X = 2E1 +∑E∈EX , E 6=E1

E cannot occur. This completes
the proof. �

Remark 5-7. (1) If a nonminimal genus-g Lefschetz fibration f : X→ S2 satisfies
g ≥ 3 and EX is of class

(∑
EX
) · F = 2g− 3, then f must have some reducible

singular fibers.
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(2) EX of class
(∑

EX
) · F = 2g−3 must contain some sections of square −1. For

example, the set EX of type (3) does not appear for nonminimal genus-3 Lefschetz
fibrations.

(3) The square of the canonical class K X for X in Theorem 5-5 is bounded. In fact,
when

(∑
EX
) · F = 2g−2, we have that 2−2g ≤ K 2

X ≤−1. When
(∑

EX
) · F =

2g− 3, we have that 3− 2g ≤ K 2
X ≤−2.

The symplectic Kodaira dimension of nonminimal Lefschetz fibrations. Given
any smooth complex surface X , there are four possibilities of the behavior of the
plurigenera Pn(X). The Kodaira dimension κ(X) of X is defined according to
four possibilities: κ(X)=−∞, 0, 1, or 2. It is well-known that smooth compact
complex surfaces are classified in terms of the Kodaira dimension.

The first notion of the symplectic version of the Kodaira dimension appeared in
[McDuff and Salamon 1996] and the symplectic Kodaira dimension is defined and
discussed in detail in [Li 2006].

Definition 5-8. Let (M, ω) be a minimal symplectic 4-manifold with symplectic
canonical class Kω. Then, the symplectic Kodaira dimension κs(M, ω) is defined
as follows:

κs(M, ω)=


−∞ if Kω · [ω]< 0 or K 2

ω < 0,
0 if Kω · [ω] = 0 and K 2

ω = 0,
1 if Kω · [ω]> 0 and K 2

ω = 0,
2 if Kω · [ω]> 0 and K 2

ω > 0.

The symplectic Kodaira dimension of a nonminimal 4-manifold (M, ω) is defined
to be that of any minimal model of (M, ω).

Theorem 5-9 ([Li 2006]; see also [Dorfmeister and Zhang 2009]). Let (M, ω) be
a closed symplectic 4-manifold with symplectic canonical class Kω. If (M, ω) is
minimal, then:

(1) With M given the orientation compatible with ω, the symplectic Kodaira
dimension of (M, ω) only depends on the oriented diffeomorphism type of M ,
that is, if ω′ is another symplectic form on M compatible with the orientation
of M , then κs(M, ω)= κs(M, ω′).

(2) κs(M, ω)=


−∞ if M is rational or ruled,
0 if Kω is torsion,
1 if Kω is nontorsion but K 2

ω = 0,
2 if K 2

ω > 0.

Hence, by Theorem 5-9(2), we can calculate the symplectic Kodaira dimension
of (M, ω) in terms of the canonical class Kω.
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Now, we have two kinds of Kodaira dimension. In the case where (M, ω) admits
a complex structure J , the equivalence of these Kodaira dimensions κ(M, J ) and
κs(M, ω) was proved by Li:

Theorem 5-10 (Li; see [Dorfmeister and Zhang 2009, Theorem 3.1]). Let M be
a smooth 4-manifold that admits a symplectic structure ω as well as a complex
structure J . Then, we have κs(M, ω)= κ(M, J ).

Remark 5-11. There are smooth 4-manifolds M that admits a symplectic structure
ω and a complex structure J but whose (M, ω, J ) is not Kähler. For example,
Kodaira–Thurston manifolds are such manifolds. Theorem 5-10 states that the
equivalence of Kodaira dimensions κ(M, J ) and κs(M, ω) holds for not only the
Kähler case but also the non-Kähler case.

For a nonminimal genus-g Lefschetz fibration f : X→ S2 with(∑
EX
) · F = 2g− 2 or

(∑
EX
) · F = 2g− 3,

we calculate the square K 2
min of the canonical class Kmin of a minimal model of X

by Theorem 5-5. Furthermore, we can calculate the symplectic Kodaira dimension
from K 2

min.

Theorem 5-12. Let f : X→ S2 be a nonminimal genus-g Lefschetz fibration. Equip
X with the natural symplectic structure ω given by Theorem 2-3. Let K X be the
canonical class of (X, ω) and Kmin the canonical class of a minimal model of X.
Suppose that X is neither the blow-up of a rational surface nor the blow-up of a
ruled surface.

[1] If g = 2, we have:

(1) If EX is of Type (1, 1), then K 2
min = 0 and κs(X, ω)= 0.

(2) If EX is of Type (2), then K 2
min = 0 and κs(X, ω)= 0.

(3) If EX is of Type (1), then K 2
min = 0 and κs(X, ω)= 1 when K X = 2E + R.

We have K 2
min = 1 and κs(X, ω)= 2 when K X = 2E + F.

[2] If g ≥ 3, we have:

(1) If
(∑

EX
) · F = 2g− 2, then K 2

min = 0 and κs(X, ω)= 0.

(2) If
(∑

EX
) · F = 2g− 3, then K 2

min = 0 and κs(X, ω)= 1.

For example, Tables 1 and 2 summarize the canonical class K X and the symplectic
Kodaira dimension κs(X) for nonminimal Lefschetz fibrations of fiber genus 2 or 3.

The author has also investigated the Iitaka D-dimension of the adjoint divisor
K X + F of F for holomorphic Lefschetz fibrations. See [Sato 2010a].

Now we can state about the relationship between the Kodaira dimension and the
base loci of Lefschetz pencils.
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(
∑

EX ) · F EX K X κs

(
∑

EX ) · F = 2
Type (1, 1) K X = E1+ E2

κs = 0Type (2) K X = E

(
∑

EX ) · F = 1 Type (1)
K X = 2E + R κs = 1
K X = 2E + F κs = 2

Table 1. The canonical class and the Kodaira dimension of non-
minimal genus-2 Lefschetz fibrations.(∑
EX
) · F EX K X κs

Type (1,1,1,1) K X = E1+ E2+ E3+ E4 κs = 0
Type (1,1,2) K X = E1+ E2+ E κs = 0(∑

EX
) · F = 4 Type (1,3) K X = E1+ E κs = 0

Type (2,2) K X = E1+ E2 κs = 0
Type (4) K X = E κs = 0

Type (1,1,1) K X = 2E1+ E2+ E3+ R κs = 1(∑
EX
) · F = 3 Type (1,2) K X = 2E1+ E + R κs = 1

Type (3) no existence no existence

Table 2. The canonical class and the Kodaira dimension of non-
minimal genus-3 Lefschetz fibrations.

Corollary 5-13. Let (X, ω) be a minimal symplectic 4-manifold that is neither
rational nor ruled. Suppose that X admits a Lefschetz pencil whose fiber genus g is
more than 2.

(1) If the base locus consists of 2g− 2 base points, then the symplectic Kodaira
dimension of X is 0.

(2) If the base locus consists of 2g− 3 base points, then the symplectic Kodaira
dimension of X is 1.

(3) If X is a minimal symplectic 4-manifold with κs(X)=2 (for example, a minimal
complex surface of general type), then the base locus consists of at most 2g−4
base points.

Proof. Suppose that X admits a Lefschetz pencil whose base locus consists of k
base points. By blowing up at these k base points, we obtain a nonminimal genus-g
Lefschetz fibration Y = X # kCP2 → S2 with k sections of square −1. The set
EY is of Type (1, 1, . . . , 1) with

(∑
EY
) · F = k. Therefore, the claim is proved

by Theorem 5-12. �

Remark 5-14. (1) For any g (≥ 1), a K 3 surface admits a Lefschetz pencil whose
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fiber genus is g and whose base locus consists of 2g− 2 base points. See [Smith
2001b].

(2) Auroux [2006a] calculated the monodromies of the canonical Lefschetz
pencils on a pair of homeomorphic Horikawa surfaces X1 and X2. The Horikawa
surface X1 is a double cover of CP1×CP1 branched along a smooth algebraic curve
of bidegree (6, 12). The Horikawa surface X2 is a double cover of the Hirzebruch
surface F6 branched along 4−6 ∪C , where 4−6 is the exceptional section of F6

and C is a smooth algebraic curve in the linear system |546|. By the construction
of X1 and X2, these Horikawa surfaces admit genus-2 Lefschetz fibrations with
120 singular fibers; the corresponding positive relations are

(c1 · c2 · c3 · c4 · c2
5 · c4 · c3 · c2 · c1)

12 = 1 and (c1 · c2 · c3 · c4)
30 = 1,

respectively. See also [Fuller 1998]. Since these have fiber-sum decompositions, X1

and X2 are minimal by Stipsicz’s conjecture. Furthermore, the Kodaira dimension
of X1 and X2 is 2. Auroux showed that X1 and X2 admit genus-17 Lefschetz
pencils with 16 base points.

(3) A surface S of general type embedded in a higher dimensional projective space
CPN has a Lefschetz pencil. The intersections of S with hyperplane sections {Ht |
t ∈CP1} containing a generic linear subspace A of complex codimension 2 make the
family of curves, which give S a Lefschetz pencil. If [S] = r [CP2] ∈ H4(CPN ;Z),
then the base locus B = S ∩ A of the pencil consists on r points. By noting the
Enriques–Kodaira classification of complex surfaces, the genus g of the generic fiber
must be at least 2. On the other hand, we have that g ≥ (r+4)/2 by Corollary 5-13.

Endo’s question. By generalizing Chakiris’ way to construct holomorphic genus-2
Lefschetz fibrations, Endo [2008] gave examples of hyperelliptic Lefschetz fibra-
tions of arbitrary genus. We can find many examples of nonminimal hyperelliptic
Lefschetz fibrations [ibid.].

For a positive relator W , we denote the Lefschetz fibration associated to the
positive relation W = 1 by MW → S2. If g is even, then each of MP2 , MQ ,
MP I and MPJ in Section 3 is nonminimal. In the case of g = 2, the 4-manifolds
MPJ , MRI and K 3 # CP2 are homeomorphic to 3CP2 # 20CP2 by Freedman’s
classification theorem. Furthermore, MPJ for g = 2, K 3 # CP2 and 3CP2 # 20CP2

are mutually nondiffeomorphic. On the other hand, the manifold MRI for g = 2 is
not diffeomorphic to 3CP2 # 20CP2. Hence, the following questions are natural.

Question 5-15 [Endo 2008, Problem 4.13]. Let PJ and RI be the positive relators
introduced on page 204.

(1) Determine whether MPJ and MRI are diffeomorphic or not when g = 2.

(2) Is MRI diffeomorphic to K 3 # CP2 ?
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Remark 5-16. The Lefschetz fibration MRI → S2 for g = 2 is isomorphic to the
genus-2 Lefschetz fibration constructed by Auroux [2003], whose set of spheres of
square −1 is of Type (2). See also [Sato 2008]. Hence, MRI → S2 for g= 2 admits
no section of square −1. Since MPJ → S2 for g = 2 admits a section of square −1,
two genus-2 Lefschetz fibrations MPJ → S2 and MRI → S2 are not isomorphic.
Question 5-15(1) is whether MPJ and MRI are diffeomorphic as manifolds.

In order to answer this question, we note the following proposition:

Proposition 5-17. Let (M, ω) and (M ′, ω′) be minimal symplectic 4-manifolds.
Suppose that the Kodaira dimension κs(M, ω) of (M, ω) is equal to 0. If

κs(M ′, ω′) 6= 0,

then M ′ is not orientation-preserving diffeomorphic to M.

Proof. Suppose there exists an orientation-preserving diffeomorphism f : M→ M ′.
Since the isomorphism f ∗ : H 2(M ′;Z)→ H 2(M;Z) gives a one-to-one correspon-
dence

Bas(M ′)→Bas(M),

if Bas(M ′) has a nontorsion class, then Bas(M) has also a nontorsion class. Here,
Bas(M) and Bas(M ′) denote the set of Seiberg–Witten basic classes of M and
M ′, respectively. By Theorem 5-9, the canonical class Kω ∈Bas(M) is a torsion
class. Furthermore, it follows from a theorem of Taubes [1994] (Theorem 10.1.11
of [Gompf and Stipsicz 1999]) that

|K · [ω]| ≤ |Kω · [ω]| = 0

for any K ∈Bas(M). Hence, |K · [ω]| = |Kω · [ω]| = 0 and Bas(M)= {±Kω}. In
particular, Bas(M) contains only torsion classes. However, since κs(M ′, ω′) 6= 0,
the canonical class Kω′ is nontorsion, and so the set Bas(M ′) contains a nontorsion
class. This is a contradiction. �

Answer to Question 5.1. (1) The manifold MPJ is not orientation-preserving
diffeomorphic to the manifold MRI .

(2) The manifold MRI is diffeomorphic to K 3 # CP2.

Proof. (1) The genus-2 Lefschetz fibration MPJ → S2 is of Type (1) and the
genus-2 Lefschetz fibration MRI → S2 is of Type (2). Let MPJmin and MRI min be
minimal models of MPJ and MRI , respectively. By Theorem 5-12, we have that
κs(MPJmin)= 1 and κs(MRI min)= 0. Therefore, it follows from Proposition 5-17
that MPJmin and MRI min are not mutually orientation-preserving diffeomorphic.
Since MPJ and MRI are not the blow-ups of a rational surface nor the blow-ups
of a ruled surface, two manifolds MPJ and MRI are not orientation-preserving
diffeomorphic by the uniqueness of minimal models of symplectic 4-manifolds.
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(2) Since the Lefschetz fibration MRI → S2 for g= 2 is isomorphic to the genus-
2 Lefschetz fibration constructed by Auroux, MRI is a simply connected Kähler
4-manifold. Furthermore, we have that κ(MRI min) = κs(MRI min) = 0. Hence,
MRI min is a K3 surface. Noting the uniqueness of minimal models of symplectic
4-manifolds, MRI is diffeomorphic to K 3 # CP2. �

6. The geography of nonminimal Lefschetz fibrations over S2

The geography of nonminimal hyperelliptic Lefschetz fibrations. In this section,
we consider the geography problem of genus-g Lefschetz fibrations as characterizing
the ([g/2] + 1)-tuple (n0, s1, . . . , s[g/2]) of the numbers of singular fibers.

Then, we have the finiteness theorem of the geography of nonminimal hyperel-
liptic Lefschetz fibrations:

Theorem 6-1. Suppose that X is neither the blow-up of a rational surface nor
the blow-up of a ruled surface. Then, only finitely many (n0, s1, . . . , s[g/2]) can be
realized as the ([g/2] + 1)-tuple of the numbers of singular fibers for nonminimal
hyperelliptic genus-g (≥ 2) Lefschetz fibrations with

(∑
EX
) · F = 2g− 2, 2g− 3.

Proof. For a hyperelliptic genus-g Lefschetz fibration f : X → S2 with the
([g/2] + 1)-tuple (n0, s1, . . . , s[g/2]) of the numbers of singular fibers, we can
calculate K 2

X from the number of singular fibers as follows:

K 2
X = 3σ(X)+ 2e(X)

= g− 1
2g+ 1

n0+
[g/2]∑
h=1

(
12h(g− h)− (2g+ 1)

2g+ 1

)
sh + 8(1− g).

Since 12h(g−h)−(2g+1)=−12(h−g/2)2+(3g+1)(g−1)>0 for 1≤h≤[g/2],
we have

g− 1
2g+ 1

> 0 and
12h(g− h)− (2g+ 1)

2g+ 1
> 0.

Hence, every coefficient of K 2
X = K 2

X (n0, s1, . . . , s[g/2]) is positive. Therefore,
since K 2

X is bounded by Remark 5-7(3), the number of the ([g/2] + 1)-tuple
(n0, s1, . . . , s[g/2]) satisfying K 2

K and the estimation in Section 4 is finite. In fact,
since K 2

X ≤−1, we have

g− 1
2g+ 1

n0+
[g/2]∑
h=1

(
12h(g− h)− (2g+ 1)

2g+ 1

)
sh + 8(1− g)≤−1.

From the above inequality, we obtain

n0 ≤ (2g+ 1)(8g− 9)
g− 1

.
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Moreover, noting that the number n0 of irreducible singular fibers is positive
[Stipsicz 1999], we have

sh ≤ 16g2− 11g− 8
12h(g− h)− (2g+ 1)

for any h (1≤ h ≤ [g/2]). �

From Theorem 6-4, we can obtain an estimate for µ( f )= n0+∑[g/2]h=1 sh and a
partial answer for Smith’s question (Question 1-1).

Corollary 6-2. There is an upper bound on the number of singular fibers of non-
minimal hyperelliptic genus-g (≥ 3) Lefschetz fibrations with

(∑
EX
) · F = 2g− 2,

2g − 3 whose total spaces are neither the blow-up of a rational surface nor the
blow-up of a ruled surface. In fact, for such hyperelliptic genus-g Lefschetz fibration
f : X→ S2, the number µ( f ) of singular fibers of f satisfies

µ( f )≤ (8g− 9)(2g+ 1)
g− 1

+
[g/2]∑
h=1

16g2− 11g− 8
12h(g− h)− (2g+ 1)

.

Remark 6-3. (1) The estimation of µ( f ) given in Corollary 6-2 is rough. By using
linear programming, one can obtain a strict estimation of µ( f ).

(2) There is no upper bound on the number of singular fibers of minimal Lefschetz
fibrations. In fact, if a Lefschetz fibration f : X→ S2 has µ singular fibers, then
the fiber sum m #F f of m copies of f is a minimal Lefschetz fibration with mµ
singular fibers. Hence, there are minimal Lefschetz fibrations with arbitrarily many
singular fibers.

Given g (≥ 2), we can present the list of possible ([g/2] + 1)-tuples

(n0, s1, . . . , s[g/2])

for nonminimal hyperelliptic genus-g Lefschetz fibrations with
(∑

EX
)·F = 2g−2,

2g− 3. The lists in the cases of g = 2 and g = 3 are given in Tables 3 and 4.

(
∑

EX ) · F EX K X (n0, s) κs

(
∑

EX ) · F = 2
Type (1, 1) K X = E1+ E2 (16, 2), (30, 0)

κs = 0Type (2) K X = E (14, 3), (28, 1)

(
∑

EX ) · F = 1 Type (1)
K X = 2E + R (28, 1) κs = 1
K X = 2E + F (40, 0) κs = 2

Table 3. Possible pairs (n0, s) as geography in the case of g = 2.
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(∑
EX
)·F EX K X (n0, s) κs

Type (1,1,1,1) K X = E1+E2+E3+E4 (8, 4)
Type (1,1,2) K X = E1+E2+E (20, 3)(∑

EX
)·F = 4 Type (1,3) K X = E1+E (32, 2) κs = 0

Type (2,2) K X = E1+E2 (32, 2)
Type (4) K X = E (44, 1)

Type (1,1,1) K X = 2E1+E2+E3+R (20, 3) κs = 1(∑
EX
)·F = 3 Type (1,2) K X = 2E1+E2+R (32, 2) κs = 1

Type (3) none none none

Table 4. Possible pairs (n0, s) as geography in the hyperelliptic
case of g = 3.

The geography of nonminimal, nonhyperelliptic genus-3 Lefschetz fibrations.
At present, we do not know whether the signature σ(X) of X can be calculated from
the number of singular fibers for a nonhyperelliptic Lefschetz fibration f : X→ S2.
Hence, we do not know whether the finiteness theorem of the geography holds for
nonhyperelliptic case. However, in the case of nonhyperelliptic genus-3 Lefschetz
fibrations, we can show the finiteness of the geography for nonminimal holomorphic
Lefschetz fibrations by using Smith’s signature formula and the Deligne–Mumford
compactified moduli space M3 of stable curves of genus 3.

Let 40 and 41 be the divisors of irreducible and reducible nodal curves, respec-
tively. Then, the Deligne–Mumford compactified moduli space M3 is given by
adjoining 40 and 41 to the moduli space M3 of stable curves of genus 3. Let H3

denote the divisor of hyperelliptic curves of genus 3 in M3. Then, a theorem of
Harer [1983] states that the Hodge class c1(λ), [40] and [41] generate H 2(M3;Z)
and the cohomology class [H3] is given, up to a positive rational multiple, by

[H3] = 9c1(λ)− [40] − 3[41].

See [Harris and Morrison 1998].

Theorem 6-4. Suppose that X is neither the blow-up of a rational surface nor the
blow-up of a ruled surface. Then, only finitely many (n0, s) can be realized as pairs
of the numbers of singular fibers for nonminimal, nonhyperelliptic and holomorphic
genus-3 Lefschetz fibrations with

(∑
EX
) · F = 3, 4.

Proof. Suppose that f : X→CP1 is nonhyperelliptic and holomorphic. A holomor-
phic fibration f gives rise to a rational curve φ f (CP1) in M3. The rational curve
φ f (CP1) has positive intersection with any effective divisors that are not contained
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in φ f (CP1). In particular, we have

〈[H3], [φ f (CP1)]〉 ≥ 0.

Since 〈[H3], [φ f (CP1)]〉 is given, up to a positive multiple, by

〈[H3], [φ f (CP1)]〉 = 〈9c1(λ)− [40] − 3[41], [φ f (CP1)]〉
= 9

4(σ (X)+ n0+ s)− n0− 3s

= 9
4σ(X)+ 5

4 n0− 3
4 s,

we can obtain the following inequality:

σ(X)≥− 5
9 n0+ 1

3 s.

Thus, we get the relations 

K 2
X = 3σ(X)+ 2e(X),
−4≤ K 2

X ≤−1,
σ (X)≥− 5

9 n0+ 1
3 s,

e(X)= n0+ s− 8,
5n0 ≥ s,

hence 
n0+ 9s− 45≤ 0,

5n0− s ≥ 0,

n0 > 0, s ≥ 0.

The number of pairs (n0, s) satisfying these inequalities is finite. �
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