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ON THE SECOND K -GROUP OF
A RATIONAL FUNCTION FIELD

KARIM JOHANNES BECHER AND MÉLANIE RACZEK

We give an optimal bound on the minimal length of a sum of symbols in the
second Milnor K -group of a rational function field in terms of the degree of
the ramification.

1. Introduction

Let E be an arbitrary field and F the function field of the projective line P1
E over

E . For m ∈ N, there is a well-known exact sequence

(1.1) 0−→ K (m)
2 E −→ K (m)

2 F
∂
−→

⊕
x∈P

1(1)
E

K (m)
1 E(x)−→K (m)

1 E −→ 0 ,

due to Milnor and Tate; see [Milnor 1970, (2.3)]. Here, K (m)
1 and K (m)

2 are the
functors that associate to a field its first and second K -groups modulo m, respectively,
and P

1(1)
E is the set of closed points of P1

E . The map ∂ is called the ramification
map. By [Gille and Szamuely 2006, (7.5.4)], for m prime to the characteristic of E ,
the sequence (1.1) translates into a sequence in Galois cohomology, and the proof
of its exactness essentially goes back to [Faddeev 1951].

In this article we study how for a given element ρ in the image of ∂ one finds
a good ξ ∈ K (m)

2 F with ∂(ξ)= ρ. Our main result Theorem 3.10 states that there
is such a ξ that is a sum of r symbols (canonical generators of K (m)

2 F) where r
is bounded by half the degree of the support of ρ. This generalizes results from
[Kunyavskiı̆ et al. 2006; Rowen et al. 2005; Sivatski 2007], where the problem has
been studied in terms of Brauer groups in the presence of a primitive m-th root of
unity in E for m > 0. Developing further an idea in [Sivatski 2007, Proposition 2],
we provide examples (Example 4.3) where the bound on r cannot be improved.

This work was done while Becher was a Fellow of the Zukunftskolleg and Raczek was a Postdoctoral
Fellow of the Fonds de la Recherche Scientifique – FNRS. The project was further supported by the
Deutsche Forschungsgemeinschaft (project “Quadratic Forms and Invariants”, BE 2614/3).
MSC2010: 12Y05, 12E30, 12G05, 19D45.
Keywords: Milnor K -theory, field extension, valuation, ramification.
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2. Milnor K -theory of a rational function field

We recall the basic terminology of K -theory for fields as introduced in [Milnor 1970],
with slightly different notation. Let F be a field. For m, n ∈ N, let K (m)

n F denote
the abelian group generated by elements called symbols, which are of the form
{a1, . . . , an} with a1, . . . , an ∈ F×, subject to the defining relations that { · , . . . , · } :
(F×)n→ K (m)

n F is a multilinear map, that {a1, . . . , an} = 0 whenever ai+ai+1= 1
in F for some i < n, and that m · {a1, . . . , an} = 0. For a, b ∈ F× we have {ab} =
{a}+{b} in K (m)

1 F . The second relation above is void when n= 1, hence K (m)
1 F is

the same as F×/F×m , only with different notation for the elements and the group
operation. As shown in [Milnor 1970, (1.1) and (1.3)], it follows from the defining
relations that, for a1, . . . , an ∈ F×, we have {aσ(1), . . . , aσ(n)} = ε{a1, . . . , an} for
any permutation σ of the numbers 1, . . . , n with signature ε=±1, and furthermore
{a1, . . . , an} = 0 whenever ai + ai+1 = 0 for some i < n.

With this notation, K (0)
n F is the full Milnor K -group Kn F introduced in [Milnor

1970], and K (m)
n F is its quotient modulo m for m ≥ 1.

By a Z-valuation we mean a valuation with value group Z. Given a Z-valuation
v on F we denote by Ov its valuation ring and by κv its residue field. For a ∈ Ov let
a denote the natural image of a in κv . By [ibid., (2.1)], for n ≥ 2 and a Z-valuation
v on F , there is a unique homomorphism ∂v : K

(m)
n F→ K (m)

n−1κv such that

∂v({ f, g2, . . . , gn})= v( f ) · {g2, . . . , gn} for f ∈ F× and g2, . . . , gn ∈ O×v .

When n = 2, for f, g ∈ F× we have f −v(g)gv( f )
∈ O×v and

∂v({ f, g})= {(−1)v( f )v(g) f −v(g)gv( f )} in K (m)
1 κv .

We turn to the situation where F is the function field of P1 over E . By the choice
of a generator, we identify F with the rational function field E(t) in the variable t
over E . Let P denote the set of monic irreducible polynomials in E[t]. Any p ∈P

determines a Z-valuation vp on E(t) that is trivial on E and such that vp(p)= 1.
There is further a unique Z-valuation v∞ on E(t) such that v∞( f )=− deg( f ) for
any f ∈ E[t] \ {0}. We set P′ = P ∪ {∞}. For p ∈ P′ we write ∂p for ∂vp and
we denote by E p the residue field of vp. Note that E p is naturally isomorphic to
E[t]/(p) for p ∈ P, and E∞ is naturally isomorphic to E .

It follows from [ibid., Section 2] that the sequence

(2.1) 0−→ K (m)
n E −→ K (m)

n E(t)
⊕
∂p

−−−→

⊕
p∈P

K (m)
n−1 E p −→ 0

is split exact. We are going to reformulate this fact for n = 2 and to relate the
sequences (2.1) and (1.1). We set
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R′m(E)=
⊕
p∈P′

K (m)
1 E p .

For p ∈ P′, the norm map of the finite extension E p/E yields a group homo-
morphism K (m)

1 E p→ K (m)
1 E . Summation over these maps for all p ∈ P′ yields

a homomorphism N :R′m(E)→ K (m)
1 E . Let Rm(E) denote the kernel of N. We

set ∂ =
⊕

p∈P′ ∂p. By [Gille and Szamuely 2006, (7.2.4) and (7.2.5)] we obtain an
exact sequence

(2.2) 0−→ K (m)
2 E −→ K (m)

2 E(t)
∂
−→R′m(E)

N
−→ K (m)

1 E −→ 0 .

In particular, Rm(E) is equal to the image of ∂ : K (m)
2 E(t)→R′m(E).

The choice of the generator of F over E fixes a bijection φ : P1(1)
E → P′ and

for any x ∈ P
1(1)
E a natural isomorphism between E(x) and Eφ(x). This identifies⊕

x∈P
1(1)
E

K (m)
1 E(x) with R′m(E), and further the sequence (1.1) with (2.2). We will

work with (2.2) in the sequel.
For ρ = (ρp)p∈P′ ∈ R′m(E) we denote Supp(ρ) = {p ∈ P′ | ρp 6= 0} and

deg(ρ) =
∑

p∈Supp(ρ)[E p : E], and call this the support and the degree of ρ. The
degree of an element of R′m(E) is invariant under automorphisms of E(t)/E .

3. Bound for representation by symbols in terms of the degree

In this section we study the relation between the degree of ρ ∈ Rm(E) and the
properties of elements ξ ∈ K (m)

2 E(t) with ∂(ξ)= ρ. In Theorem 3.10 we will show
that there always exists such ξ that is a sum of r symbols where r is the integral part
of deg(ρ)/2. In particular, any ramification of degree at most three is realized by a
symbol. This settles a question in [Kunyavskiı̆ et al. 2006, (2.5)]. In some of the
following statements, we consider elements of R′m(E), rather than only of Rm(E).

Proposition 3.1. If ρ ∈Rm(E) then deg(ρ) 6= 1.

Proof. Consider an element ρ ∈R′m(E) with deg(ρ)= 1. The support of ρ consists
of one rational point p ∈P′. Hence N(ρ)= ρp 6= 0 in K (m)

1 E , whereby ρ /∈Rm(E).
�

We say that p ∈P′ is rational if [E p : E] = 1. We call a subset of P′ rational if
all its elements are rational. We give two examples showing how to realize a given
ramification of small degree and with rational support by one symbol.

Examples 3.2. (1) Let a, c ∈ E× and c /∈ E×m . The symbol σ = {t − a, c} in
K (m)

2 E(t) satisfies Supp(σ )= {t − a,∞}, ∂t−a(σ )= {c} and ∂∞(σ )= {c−1
}.

(2) For a1, a2, c1, c2 ∈ E× with a1 6= a2, we compute the ramification of the symbol

σ =
{ t − a1

c2(a2− a1)
,

c1(t − a2)

a1− a2

}
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in K (m)
2 E(t). It has Supp(σ ) ⊆ {t − a1, t − a2,∞}, ∂t−ai (σ ) = {ci } for i = 1, 2,

and ∂∞(σ )= {(c1c2)
−1
}.

A ramification of degree two can, under some extra conditions, be realized by a
symbol one of whose entries is a constant:

Proposition 3.3. Let ρ ∈Rm(E) be such that deg(ρ) = 2. If Supp(ρ) is rational
or char(E) 6= m = 2, there exist e ∈ E× and f ∈ E(t)× such that ρ = ∂({e, f }).

Proof. Suppose first that the support of ρ is rational. We choose a, e ∈ E× such
that t − a ∈ Supp(ρ) and ρt−a = {e} in K (m)

1 E . Then Supp(ρ)= {t − a, p} where
p ∈ P′ is rational. As N (ρ)= 0 we obtain that ρp = {e−1

} in K (m)
1 E p. If p =∞,

we set f = 1/(t − a). Otherwise p = t − b for some for b ∈ E , and we set
f = (t − b)/(t − a). In either case we obtain ρ = ∂({e, f }).

It remains to consider the case where char(E) 6= m = 2 and Supp(ρ) = {p}
for a quadratic polynomial p ∈ P. Then E p/E is a separable quadratic extension.
Let x ∈ E×p be such that ρp = {x}. As Supp(ρ) = {p} and N(ρ) = 0, we obtain
that the norm of x with respect to the extension E p/E lies in E×2, and therefore
x E×2

p = eE×2
p for some e ∈ E×; see [Lam 2005, Chapter VII, (3.9)]. Hence,

ρp = {x} = {e} in K (2)
1 E p, and we obtain ρ = ∂({e, p}). �

In Proposition 3.3 the rationality of the support when m 6= 2 is not a superfluous
condition; the following example was pointed out to us by J.-P. Tignol.

Example 3.4. Let k be a field. We consider the rational function field in two
variables u and v over k. Let τ denote the k-automorphism of k(u, v) satis-
fying τ(u) = v and τ(v) = u. Then τ 2 is the identity map on k(u, v), and
E = {x ∈ k(u, v) | τ(x) = x} is a subfield of k(u, v) such that [k(u, v) : E] = 2.
Consider the element y = v/u ∈ k(u, v). Since y /∈ E , the quadratic polynomial

p = (t − y)(t − τ(y))= t2
−

u2
+v2

uv
t + 1

is irreducible over E .
Let m be an odd positive integer. We consider the symbol σ ={p, t} in K (m)

2 E(t).
Note that the support of ∂(σ ) is contained in {p} and ∂p(σ )= {t}. Moreover, map-
ping t to y induces an E-isomorphism E p→ k(u, v). Since y is not an m-th power
in k(u, v), it follows that ∂p(σ ) 6= 0. Hence, Supp(∂(σ ))= {p} and deg(∂(σ ))= 2.

We claim that ∂p(σ ) 6= ∂p({e, f }) for any e ∈ E× and f ∈ E(t)×. Suppose on
the contrary that there exist e ∈ E× and f ∈ E(t)× such that ∂p(σ )= ∂p({e, f }).
Then we obtain that evp( f )y is an m-th power in k(u, v), and taking norms with
respect to the extension k(u, v)/E yields that e2vp( f )

∈ E×m . Since m is odd, it
follows that evp( f )

∈ E×m , and thus ∂p({e, f })= 0, a contradiction.

The remainder of this section builds up to our main result, Theorem 3.10.
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Lemma 3.5. Let ρ ∈R′m(E) with deg(ρ)≥ 2. There exists a symbol σ in K (m)
2 E(t)

such that deg(ρ−∂(σ ))≤ deg(ρ)−1 and where this inequality is strict if deg(ρ)≥
3 and ρ∞ 6= 0. More precisely, one may choose σ = { f h, g} where f is the
product of the polynomials in Supp(ρ) and where g, h ∈ E[t] \ {0} are such that
deg(g) < deg( f ) and, either deg(h) < deg(g), or gh ∈ E×.

Proof. Let f be the product of the polynomials in Supp(ρ). By the Chinese
Remainder Theorem, we may choose g ∈ E[t] prime to f with deg(g) < deg( f )
such that ∂p({ f, g})= ρp for all monic irreducible polynomials p ∈ Supp(ρ). If g
is constant, let h = 1. If g is not square-free, let h be the product of the different
monic irreducible factors of g. If g is square-free and not constant, then using the
Chinese remainder theorem we choose h ∈ E[t] prime to g with deg(h) < deg(g)
such that

∂p({ f, g})− ρp = {h}

in K (m)
1 E p for every monic irreducible factor p of g. For σ = { f h, g} we obtain

that Supp(ρ− ∂(σ )) \ {∞} is contained in the set of monic irreducible factors of h,
whereby g, h, and σ have the desired properties. �

Lemma 3.6. Let d ∈ N \ {0} and f ∈ E[t] nonconstant and square-free such that
deg(p)≥ d for every irreducible factor p of f . Let F = E[t]/( f ) and let ϑ denote
the class of t in F. For any a ∈ F× there exist nonzero polynomials g, h ∈ E[t]
with deg(h)≤ d − 1 and deg(g)≤ deg( f )− d such that a = g(ϑ)/h(ϑ).

Proof. Let

V =
d−1⊕
i=0

Eϑ i and W =
e−d⊕
i=0

Eϑ i ,

where e=deg( f ). By the choice of d and the Chinese Remainder Theorem, we have
V \{0}⊆ F×, where F× denotes the group of invertible elements of F . As a∈ F× we
have dimE(V a)=dimE(V )=d and dimE(V a)+dimE(W )=e+1>e=[F : E], so
V a∩W 6=0. Therefore h(ϑ)a=g(ϑ) for certain h, g∈ E[t]\{0}with deg(h)≤d−1
and deg(g)≤ e− d . Thus h(ϑ) ∈ V \ {0} ⊆ F× and a = g(ϑ)/h(ϑ). �

Lemma 3.7. Let ρ ∈ R′m(E) and q ∈ Supp(ρ) such that deg(q) = 2n + 1 with
n ≥ 1. There exists a symbol σ in K (m)

2 E(t) such that deg(ρ− ∂(σ ))≤ deg(ρ)− 2.
More precisely, one may choose σ = {qh f −2g−2, g−1 f } with f, g, h ∈ E[t] \ {0}
such that deg( f ), deg(g)≤ n and deg(h)≤ 2n− 1.

Proof. Applying Lemma 3.6 for d = n + 1 we find f, g ∈ E[t] \ {0} with
deg( f ), deg(g) ≤ n such that ∂q({q, g−1 f }) = ρq . Then q is prime to f g. If
f g is constant, let h = 1. If f g is not square-free, let h be the product of
the different monic irreducible factors of f g. If f g is square-free and not con-
stant, we choose h ∈ E[t] prime to f g and with deg(h) < deg( f g) such that
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∂p({h, g−1 f })= ∂p({q−1 f 2g2, g−1 f }) for every monic irreducible factor p of f g.
In any case deg(h)≤ 2n− 1= deg(q)− 2.

Let σ = {qh f −2g−2, g−1 f }. Then we have ∂q(σ ) = ρq and ∂p(σ ) = 0 for
every monic irreducible polynomial p ∈ E[t] prime to h and not contained in
Supp(ρ). It follows that q ∈ Supp(ρ) \Supp(ρ− ∂(σ )) and that every polynomial
in Supp(ρ − ∂(σ )) \ Supp(ρ) divides h. Furthermore, if deg(h) = 2n − 1, then
deg( f )= deg(g)= n, so that deg(qh)= 4n = 2 deg( f g) and thus ∂∞(σ )= 0. We
conclude that deg(ρ− ∂(σ ))≤ deg(ρ)− 2 in any case. �

Proposition 3.8. Let ρ ∈ R′m(E) with deg(ρ) ≥ 2. There exists a symbol σ
in K (m)

2 E(t) such that deg(ρ − ∂(σ )) ≤ deg(ρ) − 1. Moreover, if deg(ρ) ≥ 3
and Supp(ρ) contains an element of odd degree, then there exists a symbol σ in
K (m)

2 E(t) such that deg(ρ− ∂(σ ))≤ deg(ρ)− 2.

Proof. In view of Lemma 3.5 only the second part of the statement remains to be
proven. If Supp(ρ) contains a nonrational point of odd degree, the statement follows
from Lemma 3.7. Suppose now that Supp(ρ) contains a rational point. Note that
the statement is invariant under E-automorphisms of E(t). Hence, we may assume
that∞∈ Supp(ρ), in which case the statement follows from Lemma 3.5. �

Question 3.9. Given ρ ∈Rm(E) with deg(ρ)≥ 3, does there always exist a symbol
σ in K (m)

2 E(t) such that deg(ρ− ∂(σ ))≤ deg(ρ)− 2?

For x ∈ R, the unique z ∈ Z such that z ≤ x < z+ 1 is denoted by bxc.

Theorem 3.10. For ρ ∈Rm(E) and n=bdeg(ρ)/2c, there exist symbols σ1, . . . , σn

in K (m)
2 E(t) such that ρ = ∂(σ1+ · · ·+ σn).

Proof. We proceed by induction on n. If n = 0 then ρ = 0 by Proposition 3.1
and the statement is trivial. Assume that n > 0. We have either deg(ρ)= 2n+ 1,
in which case ρ contains a point of odd degree, or deg(ρ) = 2n. Hence, by
Proposition 3.8 there exists a symbol σ in K (m)

2 E(t) with deg(ρ− ∂(σ ))≤ 2n− 1.
By the induction hypothesis there exist symbols σ1, . . . , σn−1 in K (m)

2 E(t) with
ρ− ∂(σ )= ∂(σ1+ · · ·+ σn−1). Then ρ = ∂(σ1+ · · ·+ σn−1+ σ). �

If we knew that for m ≥ 1 every element of Rm(E) had a lift to R0(E) of the
same degree, it would be sufficient to formulate and prove Theorem 3.10 for m = 0.

4. Example showing that the bound is sharp

In this section we show that the bound in Theorem 3.10 is sharp for all m and in
all degrees. In order to obtain an example in Example 4.3 where the bound of
Theorem 3.10 is an equality, we adapt Sivatski’s argument [2007, Proposition 2].

For any a ∈ E , there is a unique homomorphism sa : K
(m)
n E(t)→ K (m)

n E such
that sa({ f1, . . . , fn})= { f1(a), . . . , fn(a)} for any f1, . . . , fn ∈ E[t] prime to t−a
and such that sa({t−a, · , . . . , · })= 0; see [Gille and Szamuely 2006, (7.1.4)].
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Lemma 4.1. The homomorphism s = s0− s1 : K
(m)
n E(t)→ K (m)

n E has the follow-
ing properties:

(a) s(K (m)
n E)= 0.

(b) s({(1− a)t + a, b2, . . . , bn})= {a, b2, . . . , bn} for any a, b2, . . . , bn ∈ E×.

(c) Any symbol in K (m)
n E(t) is mapped under s to a sum of two symbols in K (m)

n E.

Proof. Since s0 and s1 both restrict to the identity on K (m)
n E , part (a) is clear. For

a, b2, . . . , bn ∈ E× and σ = {(1− a)t + a, b2, . . . , bn}, we have s1(σ ) = 0 and
thus s(σ ) = s0(σ ) = {a, b2, . . . , bn}. This shows (b). Part (c) follows from the
observation that both s0 and s1 map symbols to symbols. �

Proposition 4.2. Let d ∈ N, a1, . . . , ad ∈ E×, and σ1, . . . , σd symbols in K (m)
n−1 E.

Assume that
∑d

i=1{ai } · σi ∈ K (m)
n E is not equal to a sum of less than d symbols

and let

ξ =

d∑
i=1

{(1− ai )t + ai } · σi ∈ K (m)
n E(t) .

Then deg(∂(ξ))= d+1, and if r ∈N is such that ∂(ξ)= ∂(τ1+· · ·+τr ) for symbols
τ1, . . . , τr in K (m)

n E(t), then r ≥ b(d + 1)/2c.

Proof. The hypothesis that
∑d

i=1{ai } · σi ∈ K (m)
n E cannot be written as a sum of

less than d symbols has a few consequences. For i = 1, . . . , d, it follows that
{ai } · σi 6= 0, so in particular ai 6= 1, and with p = t + ai/(1− ai ) we get that
∂p(ξ)= σi 6= 0 in K (m)

n−1 E . Furthermore, since

d∑
i=1

{ai } · σi 6=

d−1∑
i=1

{ai a
−1
d } · σi ,

we have ∂∞(ξ)=−
∑d

i=1 σi 6= 0 in K (m)
n−1 E . Therefore we obtain

Supp(∂(ξ))=
{

t +
ai

1− ai

∣∣∣∣ 1≤ i ≤ d
}
∪ {∞}

and thus deg(∂(ξ))= d + 1.
Assume now that r ∈ N and ∂(ξ) = ∂(τ1 + · · · + τr ) for symbols τ1, . . . , τr

in K (m)
n E(t). Then τ1 + · · · + τr − ξ is defined over E . Let s be the map from

Lemma 4.1. By Lemma 4.1 we obtain that s(τ1+ · · ·+ τr − ξ)= 0 and thus

d∑
i=1

{ai } · σi = s(ξ)= s(τ1)+ · · ·+ s(τr ) ∈ K (m)
n E ,

which is a sum of 2r symbols. Hence 2r ≥ d , by the hypothesis on d . �
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Example 4.3. Let p be a prime dividing m. Let k be a field containing a prim-
itive p-th root of unity ω and a1, . . . , ad ∈ k× such that the Kummer extension
k( p
√

a1, . . . , p
√

ad) of k has degree pd . Let b1, . . . , bd be indeterminates over k and
set E = k(b1, . . . , bd). Using [Tignol 1987, (2.10)] and [Becher and Hoffmann
2004, (2.1)], it follows that

∑d
i=1{ai , bi } is not equal to a sum of less than d symbols

in K (p)
2 E . Since p divides m, it follows immediately that

∑d
i=1{ai , bi } ∈ K (m)

2 E is
not a sum of less than d symbols in K (m)

2 E . Consider

ξ =
d∑

i=1
{(1− ai )t + ai , bi }

in K (m)
2 E(t). By Proposition 4.2, for ρ = ∂(ξ) we have that deg(ρ) = d + 1 and

ρ 6= ∂(ξ ′) for any ξ ′ ∈ K (m)
2 E(t) that is a sum of less than r = bdeg(ρ)/2c symbols.
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ON EXISTENCE OF A CLASSICAL SOLUTION TO
A GENERALIZED KELVIN–VOIGT MODEL

MIROSLAV BULÍČEK, PETR KAPLICKÝ AND MARK STEINHAUER

We consider a two-dimensional generalized Kelvin–Voigt model describing
a motion of a compressible viscoelastic body. We establish the existence of
a unique classical solution to such a model in the spatially periodic setting.
The proof is based on Meyers’ higher integrability estimates that guarantee
the Hölder continuity of the gradient of velocity and displacement.

1. Introduction

In this paper we focus on qualitative properties of a solution to a generalized
Kelvin–Voigt model that describes the motion of a two-dimensional compressible
viscoelastic body. Hence, assuming that the body occupies a domain � := (0, 1)2

and that T > 0 is the length of time interest, such a model is described by the
system of equations

(1-1)

ρ0ut t − div T= ρ0 f in Q,

u(0, · )= u0( · ) in �,

ut(0, · )= v0( · ) in �,

where Q := (0, T )×�. Here, ρ0 :�→R+ is a given density of the body, assumed
to be time-independent, f : Q→ R2 is a given density of external body forces,
u : Q→ R2 denotes an unknown displacement field and T : Q→ R2×2 stands for
the Cauchy stress tensor. The initial displacement is denoted by u0 :�→ R2 and
the initial velocity of the body is v0 :�→ R2.

We assume that

(1-2) T= TT in Q
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for its hospitality.
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and that T is given as a sum of a viscous and an elastic part,

T= Tv +Te,(1-3)

Te = H(D(u)),(1-4)

Tv = G(D(ut)),(1-5)

where H,G : R2×2
sym → R2×2

sym are continuous mappings and D= (∇ +∇T )/2 is the
symmetric part of the gradient.

In the context of continuum mechanics, (1-1)1 represents the balance of linear
momentum written in Lagrangian coordinates. The decomposition (1-3) of the
Cauchy stress tensor corresponds to the fact that the material under consideration is
compressible. The initial density of the body is the given function ρ0, while the
density at time t>0 can be reconstructed from a formula ρ(t, · )(1+div u(t, · ))=ρ0;
see [Bulíček et al. 2012, (26)]. Note that using the balance of angular momentum,
the natural requirement for nonpolar materials is (1-2).

In general, most materials can be understood as viscoelastic and one can try to
investigate their properties in full generality. Unfortunately, the resulting system is
highly nonlinear and may be even hyperbolic and up to our best knowledge there
is no satisfactory existence theory for such problems. Therefore it seems to be
reasonable (and also necessary) to simplify the model in such a way that it still
captures all essential phenomena but it is easier to handle from the mathematical
(and even computational) point of view. One such possible procedure, which is
also used here, is the assumption that the strains are small. Then, following the
fundamental works of Kelvin [Thomson 1865] and Voigt [1892] and taking G
and H to be linear operators, one obtains the standard Kelvin–Voigt model for a
viscoelastic body. However, doing such simplification, and recalling that at the
beginning we assumed that the strains were small, we directly obtained a model,
where also stresses must be small. On the other hand, it is not true in the original
model that even under the assumption that strains are small the Cauchy stress cannot
be large, which is the main drawback of the linear Kelvin–Voigt model. Therefore,
recently Rajagopal [2009] has reconsidered generalizations of the classical Kelvin–
Voigt model wherein he allowed for both the elastic solid and viscous fluid to be
described through implicit constitutive relations. These models were also obtained
by considering small strains, but the essential assumption was that the strain is a
function of the stress. Then using a linearization procedure, one can still end up
with small deformations but keeps the essential nonlinearity in stresses. For a more
sophisticated discussion, we refer the interested reader to [Rajagopal 2009] and
[Bulíček et al. 2012], where the elastic and viscous part of the Cauchy stress are
given by the general formula (1-4)–(1-5). This is also the model we are interested
in here and one can think of the bodies described by these models as of mixtures
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of a material that can store energy and a viscous fluid that can dissipate energy.
Moreover, such models are used in practice and for this we refer to [Fung 1993],
where the author proposed such models to describe the response of biological matter
which exhibits viscoelastic response, and to [Ramberg and Osgood 1943], where
the authors deal with the inelastic response of bodies wherein a linearized measure
of strain is related nonlinearly to stress.

Let us now formulate precise assumptions on G and H. We assume that H,G :
R2×2

sym → R2×2
sym , H,G ∈ C0,1(R2×2

sym )
2×2, G(0) = 0, H(0) = 0, and that there exists

a function F : [0,+∞)→ [0,+∞) such that the potential 8(D) := F(|D|) for
D ∈ R2×2

sym satisfies G= ∂8/∂D. Moreover we assume the existence of r ∈ [2,∞)
and positive constants ν0, ν1 and ν2 such that

ν0(1+ |D|2)(r−2)/2
|B|2 ≤ ∂G(D)

∂D
: B⊗B≤ ν1(1+ |D|2)(r−2)/2

|B|2,(1-6) ∣∣∣∂H(D)
∂D

∣∣∣≤ ν2(1-7)

for all B ∈ R2×2
sym and almost all D ∈ R2×2

sym . The prototypical example of the model
we are interested in is given by

(1-8) G(D)= (1+ |D|2)(r−2)/2D, H(D)= (1+ |D|2)(q−2)/2D

with some r ≥ 2, q ∈ (1, 2]. For (1-8) it is easy to verify (1-6) and (1-7). Note that
(1-7) allows one to consider more general examples than that introduced in (1-8). It
is worth noticing that (1-7) says only that H is uniformly Lipschitz continuous but
does not require any additional structure assumption as potentiality or monotonicity.

Concerning the boundary condition, we restrict ourselves to periodic (with respect
to �) boundary conditions that require some normalization condition (in order to
guarantee uniqueness of a solution). For simplicity we choose the simplest one:

(1-9)
∫
�

ρ0(x)u(t, x) dx =
∫
�

ρ0(x)ut(t, x) dx = 0 for all t ∈ (0, T ).

A direct consequence of (1-9) is that we need to assume a compatibility condition
on the data, namely, for all t ∈ (0, T ) we need that

(1-10)
∫
�

ρ0(x) f (t, x) dx =
∫
�

ρ0(x)v0(x) dx =
∫
�

ρ0(x)u0(x) dx = 0.

Although we use the simplest possible boundary condition we believe that our
result can be adopted to a more general setting with more reasonable physical
boundary data.

Next, we introduce the assumption put on the data of (1-1). For the density ρ0,
we assume that there are 0< ρ∗ ≤ ρ∗ <∞ such that

(1-11) ρ0 ∈ L∞, ρ∗ ≤ ρ0(x)≤ ρ∗ for almost all x ∈�.
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Concerning the density of the external body forces we prescribe

(1-12) ρ0 f ∈
(
Lr(0, T ; (W 1,r

per )
2))∗.

Finally, for the initial displacement and the initial velocity we assume that in addition
to (1-10) they also satisfy

u0 ∈ (W 1,2
per )

2, v0 ∈ (L2)2.(1-13)

The existence of a weak solution for the problem (1-1) with nonlinear Tv satis-
fying (1-6) with r = 2 can be found in [Friedman and Nečas 1988], [Demoulini
2000] and [Tvedt 2008] under certain structural assumptions on T that are more
general than (1-3), (1-4) and (1-5). Next, the existence theory was extended for
r ≥ 2 in [Bulíček et al. 2012], where the authors assumed that the Cauchy stress
satisfies (1-3)–(1-7). In addition they showed the uniqueness of a solution

(1-14) u ∈W 1,∞(0, T ; (L2)2)∩W 1,r (0, T ; (W 1,r )2)

to (1-1). Although all results in [Bulíček et al. 2012] treat the case of mixed
boundary conditions, the method presented there works also in the easier periodic
case in which we are interested in here. Moreover, assuming that the data are
smooth, one can prove by the method introduced there that the unique solution u to
(1-1) is more regular. We state the result in the next theorem.

Theorem 1.1 [Bulíček et al. 2012]. Let r ≥ 2, T > 0 be arbitrary. Assume that T
satisfies (1-3)–(1-7) and the data (ρ0, f , u0, v0) satisfy (1-10), (1-11)–(1-13). Then
there exists a unique weak solution u ∈W 1,∞(0, T ; (L2)2)∩W 1,r (0, T ; (W 1,r

per )
2)

of (1-1).
In addition, assume that there is p > 2 such that the data fulfill

(ρ0, u0, v0) ∈W 1,p
per × (W

2,p
per )

2
× (W 2,p

per )
2,

f ∈W 1,2(0, T ; (L p)2).
(1-15)

Then the weak solution satisfies

(1-16)

(1+ |D(ut)|)
(r−2)/2D(∇ut) ∈ L2(0, T ; (L2)2×2×2),

(1+ |D(ut)|)
(r−2)/2D(ut t) ∈ L2(0, T ; (L2)2×2),

ut t ∈ Lr ′(0, T ; (Lr ′)2).

The main result of our paper is that we improve (1-16) and get the Hölder
continuity of the velocity gradient. Consequently, we use such information to obtain
that the unique weak solution is in fact a classical one provided that the data are
sufficiently smooth. The first improvement is this:
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Theorem 1.2. Let r ≥ 2, T > 0 be arbitrary. Assume that T satisfies (1-3)–(1-7)
and the data (ρ0, f , u0, v0) satisfy (1-10), (1-11)–(1-13). In addition, assume that
there is p > 2 such that (1-15) holds. Then there exists some s ∈ (2, p) such that
the unique solution of (1-1) satisfies

(1-17) ut ∈W 1,∞(0, T ; (Ls)2)∩ L∞(0, T ; (W 2,s
per )

2).

Consequently, for all α ∈ (0, (1− 2/s)/3),

(1-18) ∇ut ∈ (C
0,α(Q))2×2.

As a consequence of Theorem 1.2 we obtain:

Theorem 1.3. Let all assumptions of Theorem 1.2 hold. Then the unique solution
from Theorem 1.2 satisfies

(1-19) ut ∈W 1,p(0, T ; (L p)2)∩ L p(0, T ; (W 2,p
per )

2).

If we in addition assume that

(1-20)
(ρ0, u0, v0) ∈W 1,∞

× (W 3,p
per )

2
× (W 3,p

per )
2,

f ∈ L p(0, T ; (W 1,p
per )

2), G,H ∈ C1,1
loc (R

2×2
sym )

2×2,

then the unique solution from Theorem 1.2 satisfies

(1-21) ∇ut ∈W 1,p(0, T ; (L p)2×2)∩ L p(0, T ; (W 2,p
per )

2×2).

As an immediate consequence of Theorem 1.3 and an interpolation Lemma A.1
we get:

Corollary 1.1. Let all assumptions of Theorem 1.3 hold with some p > 4 and
f ∈ C(Q). Then the unique weak solution u is a classical one.

For general systems of partial differential equations Hölder continuity of weak
solutions is a rare phenomenon, that can be obtained only under special circum-
stances. One of them is that if �⊂ R2 is as in Theorem 1.2. As far as we know the
only former result in this direction for the problem (1-1) is the one from [Friedman
and Nečas 1988] where Theorem 1.2 is proved in the case r = 2. Another special
condition when regularity (1-18) can be obtained is a special structure of the elliptic
term Tv. If it is assumed that the system (1-1) is a linear system of equations, i.e.,
classical Kelvin–Voigt model, one can establish the existence of a unique smooth
solution (provided that data are smooth) by standard results for linear systems. In
[DiBenedetto and Friedman 1984; 1985] a nonlinear function G is treated with the
structure very similar to the one suggested in (1-8) but the symmetric gradient is
replaced with the full gradient, i.e., Tv = G(∇ut). It is a remarkable fact that the
method from [DiBenedetto and Friedman 1984; 1985] cannot be applied in the
situation of (1-5), i.e., if the elliptic term depends only on D(ut). According to
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our best knowledge no results about the Hölder continuity of gradients of weak
solutions are known if �⊂ Rd , d > 2 and the elliptic part of the equation depends
only on the symmetric part of ∇ut .

The method of the proof of Theorem 1.2 is based on the fact that a small
improvement of regularity in (1-16) gives Hölder continuity of ∇ut . This was first
observed in [Boyarskiı̆ 1957] and [Meyers 1963] in the stationary case and extended
to parabolic systems in [Nečas and Šverák 1991] and [Frehse and Seregin 1999].
This method was used in [Friedman and Nečas 1988] to prove Theorem 1.2 for
r = 2. First the integrability of ut t was improved and then the system was treated as
an elliptic one on time levels. This method must be modified if r > 2 as in this case
we do not know how to get separately only information about ut t . Regularity of ut t

and ∇2ut must be dealt with simultaneously as it was suggested for generalized
Navier–Stokes system in [Kaplický et al. 2002]. This is also the approach that we
adopt here to prove Theorem 1.2.

The paper has the following structure. In the next section we introduce some
auxiliary lemmas about linear stationary and parabolic systems with bounded
measurable coefficients. The proofs can be found in the Appendix. In Section 3 we
provide the proof of Theorem 1.2 if r = 2. This result is not new, but it is a basis
for the analysis in Section 4 where Theorem 1.2 is proved for r > 2. Finally, we
present a sketch of the proof of Theorem 1.3 in Section 5.

In the paper we use standard notation for Lebesgue and Sobolev spaces and their
norms. If the domain on which the functions are considered is � = (0, 1)2, we
shorten the notation and write only W 1,q , Lq or ‖·‖q , ‖·‖1,q . The subscript per

denotes periodicity with respect to �. Particularly, W 1,q
per are spaces of functions

from W 1,q
loc (R

2) for which there is a representative that is periodic with respect
to �. Moreover, scalar-, vector- and tensor-valued functions are denoted by small
letters, small bold letters and bold capital letters in what follows. Also in order
to distinguish between scalars, vectors and tensors we use the abbreviations Xd

and Xd×d for vector- and tensor-valued function in a Banach space X . The symbol
R2×2

sym denotes the space of all symmetric 2× 2 matrices and for ξ ∈ R2×2, ξ sym

is its symmetric part. For a function G : R2×2
sym → R2×2 we denote its gradient by

∂DG. Then for any B, D ∈ R2×2
sym we denote by ∂DG(D) : B⊗B a scalar product of

the matrices ∂DG(D) and B⊗B. Symbols ut and ∂t u denote derivative of u with
respect to t ∈ (0, T ).

2. Auxiliary results

In this section we recall some results for a linear system similar to (1-1), the proof
of these results can be found in the Appendix. This linear system will play a crucial
role in the proof of Theorem 1.2, where it will be used as the comparison problem.
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Lemma 2.1. Let T > 0 be given and assume that A : (0, T )×�→ R2×2×2×2 is a
measurable tensor-valued function satisfying for some 0 < λ1 ≤ λ2 <∞ and for
almost all (t, x) ∈ (0, T )×� the following symmetry and ellipticity conditions:

Akl
i j (t, x)= Ai j

kl(t, x)= A j i
kl (t, x) for all i, j, k, l = 1, . . . , 2,(2-1)

λ1|D|2 ≤
2∑

i, j,k,l=1

Ai j
kl(t, x)Di j Dkl ≤ λ2|D|2 for all D ∈ R2×2

sym .(2-2)

Then for any F ∈ L2(0, T ; (L2)2×2) and any �-periodic w0 ∈ (L2)2 having zero
mean value, a unique �-periodic weak solution

w ∈ C(0, T ; (L2)2)∩ L2(0, T ; (W 1,2)2),

∫
�

w(t, x) dx = 0

exists to the problem

(2-3)
wt − div(AD(w))=− div F in (0, T )×�,

w(0, · )= w0( · ) in �.

Moreover, there exist positive constants K , L > 0 that are independent of T , A and
F such that, for all s satisfying

(2-4) 2≤ s ≤ 2+ Lλ1
λ2

,

the following estimate holds:

(2-5) sup
t∈(0,T )

‖w(t)‖2s ≤ K
(

1
λ1
‖F‖2L2(0,T ;Ls)

+‖w0‖
2
s

)
.

In case one replaces D(w) by ∇w in Lemma 2.1, the statement was proved in
[Nečas and Šverák 1991]. However, following the procedure in that paper almost
step by step one can prove Lemma 2.1 in full generality; see the Appendix for a
detailed proof.

Note that in the previous lemma we did not improve the estimate for the gradient
of the solution. As it is usual in parabolic equations the information on the spatial
gradient of the solution will be deduced by comparing the equation with its steady
form. Therefore, we recall the following lemma; see for example [Nečas 1967].

Lemma 2.2. Let A :�→ R2×2×2×2 be a measurable tensor-valued function satis-
fying, for some 0< λ1 ≤ λ2 <∞ and almost all x ∈�,

Akl
i j (x)= Ai j

kl(x)= A j i
kl (x) for all i, j, k, l = 1, . . . , 2,(2-6)

λ1|D|2 ≤
2∑

i, j,k,l=1

Ai j
kl(x)Di j Dkl ≤ λ2|D|2 for all D ∈ R2×2

sym .(2-7)
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Then, for any F ∈ (L2)2×2, there exists a unique �-periodic weak solution w ∈
(W 1,2)2 such that

∫
�
w dx = 0 solving the problem

(2-8) − div(AD(w))=− div F in �.

Moreover, there exist K , L > 0 independent of T , A and F such that, for all

2≤ s ≤ 2+ Lλ1
λ2

,

we have

(2-9) ‖D(w)‖s ≤
K
λ1
‖F‖s .

In general the constants K , L from Lemma 2.1 and Lemma 2.2 may be different
but without loss of generality we assume in what follows that they are the same.

3. Proof of Theorem 1.2 in the case r = 2

This section is devoted to the proof of Theorem 1.2 for r = 2. First, we introduce
an ε-approximation to the problem (1-1), but we still write u instead of uε for its
solution:

(3-1) ρ0ut t − div(G(D(ut)))= ρ0 f + div(H(D(u ?ωε)) in (0, T )×�,

with periodic boundary condition and initial data (u0, v0). Here ω : R2
→ R

is a standard regularizing kernel, i.e., ω ∈ C∞0 (U (0, 1)) is nonnegative, radially
symmetric,

∫
R2 ω dx = 1, and we define

ωε(x)= ε−2ω
( x
ε

)
.

Note that the convolution in the last term of (3-1) is taken only in space direction.
Next, we formulate the existence result for (3-1), that is the starting point of our
analysis.

Lemma 3.1. Let H and G satisfy (1-6)–(1-7) with r = 2. Assume that ρ0, f , u0 and
v0 satisfy (1-10) and (1-11)–(1-13). In addition, assume that f ∈W 1,2(0, T ; (L2)2),
ρ0 ∈ W 1,2+δ

per for a certain δ > 0 and u0, v0 ∈ (W 2,2
per )

2. Then for any ε > 0 there
exists a unique �-periodic weak solution u to (3-1), (1-1)2–(1-1)3 that obeys the
a priori estimate

(3-2)
‖∇

2u‖L∞(0,T ;L2)+‖∇ut‖L∞(I,L2)+‖∇ut‖L2(I,W 1,2)+‖ut t‖L∞(I,L2)+‖ut t‖L2(I,W 1,2)

≤ C1(1+‖G(D(v0))‖1,2+‖H(D(u0))‖1,2),

where C1 > 0 is independent of ν1 and ε. Moreover, this solution converges to the
unique solution of (1-1) as ε→ 0+.
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Proof. The proof is presented in [Bulíček et al. 2012] for the system (1-1) with
mixed (Dirichlet and Neumann) boundary conditions. In our situation, smoothing
of the term with H in (3-1) simplifies the situation and also the periodic boundary
conditions are simpler to deal with. Since the proof of Lemma 3.1 follows [Bulíček
et al. 2012, Theorem 4.1, p. 9] line by line we do not present it here. �

Lemma 3.2. Let all the assumptions of Lemma 3.1 hold. Let ε > 0 be arbitrary and
u the unique weak solution to (3-1). Assume that for some δ > 0 and s satisfying

(3-3) 2≤ s ≤ 2+min
(Lν0ρ∗
ν1ρ∗

,
δ

2

)
,

the data fulfill

(u0, v0, ρ0) ∈ (W 2,s
per )

2
× (W 2,s

per )
2
×W 1,2+δ

per (�),

f ∈W 1,2(0, T ; (Ls)2).
(3-4)

Then the following estimate holds:

sup
t∈(0,T )

‖ut t‖s ≤ (1+ ν1)C(u0, v0, δ, f , ν0, ν2).(3-5)

Proof. First, we construct an �-periodic F having zero mean value over � such that

div F= ρ0 f in (0, T )×�.

Such a construction is possible due to the compatibility condition (1-10). Moreover,
using the theory for the divergence equation (see for example [Feireisl and Novotný
2009; Novotný and Straškraba 2004]) and (1-11) we have

(3-6) ‖F‖W 1,2(0,T ;W 1,s) ≤ C‖ρ0 f ‖W 1,2(0,T ;Ls) ≤ C,

where the last inequality follows from (3-4). Next, we set w := ρ0ut t and applying
∂t to (3-1) (in view of (3-2), this procedure is rigorous) we see that w is a weak
solution of the system

(3-7) wt − div(AD(w))= div F̃ in (0, T )×�,

where

A :=
1
ρ0

∂G(D(ut))

∂D
,

F̃ := Ft +
∂H(D(u ?ωε))

∂D
D(ut ?ω

ε)−

[
∂G(D(ut))

∂D

](
∇ρ0

ρ0
⊗ ut t

)
.

Since G is assumed to satisfy (1-6) with r = 2, and ρ0 satisfies (1-11), we see that
the matrix A fulfills (2-1)–(2-2) with

(3-8) λ1 :=
ν0

ρ∗
and λ2 :=

ν1

ρ∗
.
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Hence, assuming that s satisfies (3-3), it also satisfies s ∈ [2, 2+ Lλ1/λ2] and we
can use Lemma 2.1 to deduce that

(3-9) sup
t∈(0,T )

‖w(t)‖2s ≤ K
(
‖w(0)‖2s +

1
λ1

∫ T

0
‖F̃‖2s

)
.

We check that the right side is finite. To see this, we first evaluate the initial value
w(0). Using (3-1) we see that

w(0) := ρ0ut t(0)= div
(
G(D(v0))+H(D(u0 ?ω

ε))
)
+ ρ0 f (0)

and by using (1-6)–(1-7) and (3-4) we obtain that (for estimating f we use the
embedding W 1,2(0, T ) ↪→ C0,1/2([0, T ]) ↪→ C([0, T ]) in dimension one)

(3-10) ‖w(0)‖s ≤ ‖ div G(D(v0))‖s +‖ div H(D(u0 ?ω
ε))‖s +‖ρ0 f (0)‖s

≤ ν1‖v0‖2,s + ν2‖u0‖2,s + ρ
∗
‖ f (0)‖s ≤ C(1+ ν1).

It remains to estimate the norm of F̃ appearing on the right side of (3-9). Using
(3-6) and (1-6)–(1-7) we obtain that

(3-11)
∫ T

0
‖F̃‖2s ≤

∫ T

0

(
‖Ft‖

2
s+ν2‖D(ut)‖

2
s+
∥∥ρ−1

0 ∂DG(D(ut))∇ρ0⊗ut t
∥∥2

s

)
≤

∫ T

0

(
‖Ft‖

2
1,s+ν2‖D(ut)‖

2
s+

ν2
1

ρ2
∗

‖∇ρ0‖
2
2+δ‖ut t‖

2
s(2+δ)/(2+δ−s)

)
≤ C(v0, u0, f , ρ0, ν2)+C(ρ0, δ)ν

2
1

∫ T

0
‖ut t‖

2
1,2.

Consequently, using the uniform estimate (3-2) we can bound the last term on the
right side of (3-11) and inserting this and (3-10) into (3-9) we deduce (3-5). �

Since, we already know that ut t belongs to a better space than L2 uniformly in
time, we can improve the spatial regularity of u with help of Lemma 2.2.

Lemma 3.3. Let all assumptions of Lemma 3.1 hold. Then for any ε > 0, δ > 0
and s > 0 fulfilling (3-3) and any data satisfying (3-4), the unique solution u to the
problem (3-1) satisfies for almost all t ∈ (0, T ) the estimate:1

(3-12) ‖∇
2ut(t)‖s ≤ C(1+‖ut t‖L∞(0,T ;Ls)+‖∇

2(u(t) ? ωε)‖s),

with C depending only on (ρ0, f , v0, u0, ν0, ν2, T ).

Proof. Since we know from Lemma 3.1 that (3-1) holds pointwise at almost all
time levels t ∈ (0, T ). We fix such an arbitrary t ∈ (0, T ) and rewrite the problem

1The right side of (3-12) is finite, since for the time derivative we have an estimate due to
Lemma 3.2 and the last term in (3-12) is finite due to regularization.
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(3-1) as

(3-13) − div(G(D(ut)))= div
(
F+H(D(u ?ωε))−F0

)
in �,

where F0 is found such that (note that t is fixed in what follows)

(3-14) div F0 = ρ0ut t in �, ‖F0(t)‖1,s ≤ Cρ∗‖ut t(t)‖s

and F satisfies

(3-15) div F= ρ0 f in �, ‖F(t)‖1,s ≤ Cρ∗‖ f (t)‖s .

Next, we fix k ∈ {1, 2}, denote w := ∂k ut and

A := ∂G(D(ut))

∂D

and differentiate (3-13) in the weak sense with respect to xk . We obtain the system
of equations

(3-16) − div(AD(w))= div
(
∂kF+ ∂kH(D(u ?ωε))− ∂kF0

)
in �,

equipped with periodic boundary conditions and requiring zero mean value for w.
Similarly as in the proof of Lemma 3.2, A satisfies the assumption of Lemma 2.2
with λ1 := ν0 and λ2 := ν1. Hence for any s∗ ∈ [2, 2+Lν0/ν1] we have the estimate

(3-17) ‖D(w)‖s∗ ≤
K
ν0

(
‖F‖1,s∗ +‖F0‖1,s∗ +‖H(D(u ?ωε))‖1,s∗

)
.

Since, we know that s ≤ 2+ L(ν0ρ∗)/(ν1ρ
∗)≤ 2+ Lν0/ν1, we see that (3-17) also

holds for s∗ := s. Moreover, since it holds for any k = 1, 2 we can deduce from
(3-17) by using the definition of F and F0 that

(3-18) ‖∇
2ut(t)‖s ≤

C(ρ0)

ν0

(
‖ f (t)‖s +‖ut t(t)‖s + ν2‖D(u ?ωε(t))‖1,s

)
.

Consequently, using (3-4), (3-3) and the a priori uniform estimates (3-2), we deduce
(3-12). �

Having all previous estimates, we are ready to prove Theorem 1.2 for r = 2.
Since, the case r = 2 will be used in the proof of Theorem 1.2 for r > 2 we formulate
it as a special theorem where we trace the important constant ν1.

Theorem 3.1. Let T >0 be arbitrary. Assume that T satisfies (1-3)–(1-7) with r =2
and that data (ρ0, f , u0, v0) satisfy (1-10), (1-11)–(1-13). In addition, assume that
there is p > 2 such that the data fulfill

(u0, v0, ρ0) ∈ (W 2,p
per )

2
× (W 2,p

per )
2
×W 1,p

per (�),

f ∈W 1,2(0, T ; (L p)2).
(3-19)
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Then there exists a constant C depending only on (ρ0, v0, u0, f , T, ν0, ν2, p) such
that for any s fulfilling

(3-20) 2≤ s ≤ 2+min
(

Lν0ρ∗

ν1ρ∗
,

p− 2
2

)
,

the unique weak solution (1-1) satisfies the estimate

(3-21) ‖ut t‖L∞(0,T ;Ls)+‖∇
2ut‖L∞(0,T ;Ls) ≤ C(1+ ν1).

Proof. To prove the theorem it is enough to show estimate (3-21) for the unique solu-
tions of the approximating problem (3-1). Indeed, having uniform (ε-independent)
estimate (3-21) for the solution of the approximate problem it is easy to let ε→ 0+
and to obtain a solution of the original problem (1-1). The estimate (3-21) is valid
for this solution due to the weak∗-lower semicontinuity of the norm in L∞(0, T ; Ls).
Uniqueness of the solution follows by the method of [Bulíček et al. 2012]; compare
Lemma 3.1. Due to our assumption on the data and s we see that also all assumptions
of Lemmas 3.1–3.3 are satisfied. We can use (3-12) to prove (3-21). To do so, we
need to estimate the last two terms on the right side of (3-12). Note that both of
them are finite, so we directly have an estimate of the form (3-21) but with right
side depending on ε. To avoid this dependence we estimate both terms as follows.
We start with the time derivative for which we obtain by direct use of Lemma 3.2
that

(3-22) ‖ut t‖L∞(0,T ;Ls) ≤ C(1+ ν1).

Next, for the second term, we get, by (3-19),

(3-23) ‖∇
2(u(t) ? ωε)‖s ≤ C‖∇2u(t)‖s = C

∥∥∥∥∫ t

0
∇

2ut(τ ) dτ +∇2u0

∥∥∥∥
s

≤ C
(

1+
∫ t

0
‖∇

2ut(τ )‖s dτ
)
.

Using (3-22) and (3-23), we see that (3-12) reduces to

‖∇
2ut(t)‖s ≤ C

(
1+ ν1+

∫ t

0
‖∇

2ut(τ )‖s dτ
)
.

Applying Gronwall’s lemma in its integral form, we deduce (3-21). �

4. Proof of Theorem 1.2 in the case r > 2

This section is devoted to the proof of Theorem 1.2 for r > 2. It is based on a direct
application of the result from the previous section onto a suitable approximating
problem.
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First, we introduce a quadratic approximation of the problem (1-1). For any
λ > 1 we define Lipschitz continuous functions ηλ and µλ as follows:

ηλ(s) :=


1 for s ∈ [0, 2λ2

],

−
s−3λ2

λ2 for s ∈ (2λ2, 3λ2),

0 for s ≥ 3λ2,

(4-1)

µλ(s) :=


0 for s ∈ [0, λ2

],

γλ
s−λ2

λ2 for s ∈ (λ2, 2λ2),

γλ for s ≥ 2λ2,

(4-2)

with some constant γλ ∈ R+ to be specified later. We approximate G by Gλ as

(4-3) Gλ(D) := ηλ(|D|2)G(D)+µλ(|D|2)D.

Note that for Gλ a potential can be constructed. The most important properties of
this approximation are introduced in the following lemma.

Lemma 4.1. Let G satisfy the assumption (1-6) with r > 2 and ν0, ν1 > 0. Let λ> 1
be arbitrary. We set in (4-1) and (4-2)

(4-4) γλ := 7ν1(1+ 3λ2)(r−2)/2.

Then for all B ∈ R2×2
sym and almost all D ∈ R2×2

sym it holds

(4-5) ν0|B|2 ≤ ∂DGλ(D) : B⊗B≤ ν1|B|2

with ν0 and ν1 given as

ν0: = ν0,(4-6)

ν1: = ν1(λ) := 36ν1(1+ 3λ2)(r−2)/2.(4-7)

Moreover, setting λ̄(D) :=min(λ, |D|), we get

(4-8) ν0(1+λ̄(D)2)(r−2)/2
|B|2≤ ∂DGλ(D) :B⊗B≤36ν1(1+3λ̄(D)2)(r−2)/2

|B|2.

Proof. To shorten the notation we write ∂DGλ(D) : B⊗B only as ∂DG(D) : B⊗B.
Using the definition of Gλ we get

I = ηλ(|D|2)∂DG(D) : B⊗B+ 2η′λ(|D|
2)(D ·B)(G(D) ·B)

+µλ(|D|2)|B|2+ 2µ′λ(|D|
2)(D ·B)2.
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From this identity and the definition of ηλ and µλ we finally conclude that

I =



∂DG(D) : B⊗B if |D|2 < λ2,

∂DG(D) : B⊗B+ γλ
|D|2−λ2

λ2 |B|2+ 2γλ
λ2 (D ·B)

2 if |D|2 ∈ (λ2, 2λ2),

−
|D|2−3λ2

λ2 ∂DG(D) : B⊗B− 2
λ2 (D ·B)(G(D) ·B)+ γλ|B|

2

if |D|2 ∈ (2λ2, 3λ2),

γλ|B|2 if |D|2 > 3λ2.

Now we remark that by the assumption (1-6) on G we get

(G(D) ·B)≤ ν1(1+ |D|2)(r−2)/2
|B||D|.

Defining Y := I/|B|2 and noting that λ > 1, it follows that

ν0(1+ |D|2)(r−2)/2
≤ Y ≤ ν1(1+ |D|2)(r−2)/2 if |D|2 < λ2,

ν0(1+ |D|2)(r−2)/2
≤ Y ≤ ν1(1+ |D|2)(r−2)/2

+ 5γλ if |D|2 ∈ (λ2, 2λ2),

γλ− 6ν1(1+ |D|2)(r−2)/2
≤ Y ≤ γλ+ 7ν1(1+ |D|2)(r−2)/2 if |D|2 ∈ (2λ2, 3λ2),

γλ = Y if |D|2 > 3λ2,

and we see that (4-5)–(4-8) follows. �

Next, we find λ0> 1 such that2 min(Lν0ρ∗/(ν1ρ
∗), (p−2)/2)= Lν0ρ∗/(ν1ρ

∗)

and ν1 ≥ 1 for all λ > λ0.
Finally, for arbitrary fixed λ > λ0, we consider an approximation of (1-1) of the

form

(4-9)

ρ0ut t − div Gλ(D(ut)− div H(D(u))= ρ0 f in Q,

u(0, · )= u0( · ) in �,

ut(0, · )= v0( · ) in �,∫
�

ρ0(x)u(t, x) dx =
∫
�

ρ0(x)ut(t, x) dx = 0 for all t ∈ (0, T ),

equipped with periodic boundary conditions for u.
According to Lemma 4.1, Gλ satisfies all assumptions of Theorem 3.1 and we

get that for all s satisfying

(4-10) 2≤ s ≤ 2+
Lν0ρ∗

ν1ρ∗
,

2The constant p > 2 appears in Theorem 1.2 and it is assumed to be the same as in Theorem 3.1.
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the unique weak solution (4-9) satisfies the estimate

(4-11) ‖∇
2ut‖L∞(0,T ;Ls) ≤ C(ρ0, f , T, ν0, ν2, v0, u0, p)(ν1+ 1)

≤ C(ρ0, f , T, ν0, ν2, v0, u0, p)ν1.

Using the definition of ν0 and ν1 we can set

(4-12) 2≤ s = 2+ Rλ2−r

for a fixed R ∈
(

0,
Lρ∗ν0

36ρ∗ν1

(1
2

)r−2
)

and rewrite the estimate (4-11) as

(4-13) ‖∇
2ut‖L∞(0,T ;Ls) ≤ C(ρ0, f , T, ν0, ν2, v0, u0, p, r)λr−2.

Our main goal, based on the estimate (4-13), is to find a sufficiently large λ > λ0

such that

(4-14) M :=
∥∥1+ λ̄(D(ut))

2∥∥
L∞(0,T ;L∞) ≤ λ

2.

For such λ the equality Gλ(D(ut)) = G(D(ut)) holds a.e. in (0, T )×�; hence,
u solves the original problem (1-1).

We start with estimates uniform with respect to λ. In the following the positive
constant C is always independent of λ but it can depend on the data
( f , ρ0, u0, v0, p, r, ν0, ν1, ν2). From Lemma 3.1 we know that

(4-15) ‖∇
2u‖L∞(0,T ;L2)+‖ut t‖L∞(0,T ;L2) ≤ C(1+‖Gλ(D(v0))‖1,2).

This estimate is still λ-dependent. However, using the definition of Gλ and the
assumptions on the data (1-15), we see that

‖Gλ(D(v0))‖1,2≤C
(
1+
∥∥|D(v0)|

r−1∥∥
2+
∥∥|D(v0)|

r−2
|∇

2v0|
∥∥

2

)
≤C(1+‖v0‖

r−1
2,p ),

where for the last inequality we used the Hölder inequality and the embedding
W 2,p ↪→W 1,∞ (valid for p> 2). Consequently, we see that (4-15) can be rewritten
as

(4-16) ‖∇
2u‖L∞(0,T ;L2)+‖ut t‖L∞(0,T ;L2) ≤ C.

Uniform estimates on ∇2ut are obtained by the same method as in the proof of
Lemma 3.3. We rewrite (4-9) for a.e. t ∈ (0, T ) as

− div Gλ(D(ut(t)))= ρ0 f (t)+ div H(D(u(t)))− ρ0ut t(t).

This equation holds pointwise in � due to (4-11) and it is allowed to test it with
ut(t) and −1ut(t). Doing so, one gets with help of (4-16) and (4-8) that∫

�

(1+ λ̄(D(ut(t)))2)(r−2)/2
|∇

2ut(t)|2 ≤ C for any t ∈ (0, T ),
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and by a simple algebraic manipulation we deduce that

(4-17)
∥∥(1+ λ̄(D(ut))

2)r/4
∥∥

L∞(0,T ;W 1,2)
≤ C.

Finally, we combine the nonuniform estimate (4-13) with the uniform ones (4-16)
and (4-17) to deduce (4-14). First, we consider s̄ ∈ (2, s) and α ∈ (0, 2) such that
1= α/2+ (s̄−α)/s, i.e.,

(4-18) s̄− 2= (2−α)(s− 2)/2.

We use the Hölder inequality to get∥∥(1+ λ̄(D(ut))
2)r/4

∥∥s̄
L∞(0,T ;W 1,s̄)

≤ C
∥∥(1+ λ̄(D(ut))

2)r/4
∥∥α

L∞(0,T ;W 1,2)

∥∥(1+ λ̄(D(ut))
2)r/4

∥∥s̄−α
L∞(0,T ;W 1,s)

.

To estimate the term on the right, we use the definition of λ̄, the uniform estimate
(4-17) and the nonuniform estimate (4-13) to conclude that

(4-19)
∥∥(1+ λ̄(D(ut))

2)r/4
∥∥s̄

L∞(0,T ;W 1,s̄)

≤ C
(
1+

∥∥∇(1+ λ̄(D(ut))
2)r/4

∥∥s̄−α
L∞(0,T ;Ls)

)
≤ C

(
1+

∥∥∇2ut
∥∥s̄−α

L∞(0,T ;Ls)
λ(r−2)(s̄−α)/2)

≤ Cλ(r−2)(s̄−α)(3/2).

Finally, we focus on finding such λ> λ0 so that (4-14) holds. Using the embedding
theorem W 1,s̄ ↪→ L∞ with the precise embedding constant (see [Ziemer 1989, proof
of Theorem 2.4.1]), the definition (4-14) of M and the estimate (4-19), we get

(4-20) Mr/4
≤

( C
s̄−2

)1−1/s̄∥∥(1+ λ̄(D(ut))
2)r/4

∥∥
L∞(0,T ;W 1,s̄)

≤

( C
s̄−2

)1−1/s̄
λ

3(r−2)(s̄−α)
2s̄ .

Hence, to show (4-14) and consequently to finish the proof, it is enough to find
λ > λ0, s̄ ∈ (2, s) and α ∈ (0, 2) fulfilling (4-18) such that

(4-21)
( C

s̄−2

)1−1/s̄
λ

3(r−2)(s̄−α)
2s̄ ≤ λr/2.

Next, using (4-12) and (4-18) it is not difficult to deduce the identities(
C

s̄− 2

)1−1/s̄

λ
(r−2)(3/2) s̄−α

s̄ =

(
2C

(2−α)(s− 2)

)1−1/s̄

λ
(r−2)(3/2) s̄−α

s̄

=

(
2C

(2−α)R

)1−1/s̄

λ
(r−2)(1−1

s̄ +(3/2)
s̄−α

s̄ )
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and we see that (4-21) is equivalent to

(4-22)
(

2C
(2−α)R

)1−1/s̄

λ
(r−2)(1− 1

s̄ +
s̄−α

s̄
3
2) ≤ λr/2.

Since limα→2− s̄ = 2 we have

lim
α→2−

(r − 2)
(

1−
1
s̄
+

s̄−α
s̄

3
2

)
=

r − 2
2

<
r
2

and therefore it is always possible to find α ∈ (0, 2) (and consequently s̄) and ε > 0
such that

r
2
− (r − 2)

(
1−

1
s̄
+

s̄−α
s̄

3
2

)
> ε.

Thus, we fix such α and s̄ and we see that to fulfill (4-22) it is enough to find λ>λ0

such that (
2C

(2−α)R

)1−1/s̄

≤ λε,

which is clearly possible and therefore the proof of (1-17) for the case r > 2 is
complete. The regularity statement in (1-18) follows from Lemma A.1, part 2.
Theorem 1.2 is proved.

5. Proof of Theorem 1.3

We start this section by formulating a result on L p regularity for certain parabolic
systems with Hölder continuous coefficients.

Theorem 5.1. Let d ∈ N, α ∈ (0, 1], p > 1, � = (0, 1)d and Q = (0, T )×�.
Assume that Akl

i j : (0, T )× Rd
→ R satisfy the symmetry condition (2-1) and in

addition for all i, j, k, l ∈ {1, . . . , d} there hold

Akl
i j ∈ C0,α([0, T ]×Rd), Akl

i j is periodic with respect to �,(5-1)

∃γ > 0,∀ξ ∈ Rd×d , t > 0, x ∈ Rd
: (A(t, x) : ξ ⊗ ξ)≥ γ |ξ sym|

2.(5-2)

Let 1 < q < p and w ∈ Lq(0, T,W 2,q(Rd)) with ∂tw ∈ Lq(0, T, Lq(Rd)) be a
strong solution of the problem

(5-3) ∂tw j −Akl
i j∂i∂kwl = F j in (0, T )×Rd

such that w is periodic with respect to � and w(0, · )= w0, where w0 ∈W 2,p
per (�)

and F ∈ L p(Q)d . Then this solution satisfies ∇2w ∈ L p(Q)d×d×d , ∂tw ∈ L p(Q)d

with the following uniform estimate:

∃C > 0,∀t ∈ (0, T ) : ‖∇2w‖p,Qt +‖∂tw‖p,Qt ≤ C(‖F‖p,Qt +‖w0‖2,p),

where Qt = (0, t)×� and C > 0 may depend on T but is independent of t .
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Proof. First one finds a smooth approximation of the solution w by convolutions.
Then it is possible to apply slightly modified L p theory from [Schlag 1996] provided
q > 2. If q < 2 first one needs to develop by a duality argument an L p theory for
p < 2 based on the results from the same paper. (The result also follows from
[Ladyzhenskaja et al. 1968, Theorem VII.10.4].) �

In the rest of this section we provide only formal a priori estimates. However,
they can be made rigorous by the method of Section 3, see the approximation (3-1)
and the proof of Theorem 3.1.

Let u be the unique solution constructed in Theorem 1.2 and assume that it is
sufficiently smooth. We suppose that all assumptions of Theorem 1.2 hold and show
an estimate leading to (1-19). We denote w = ut . It follows from Theorem 1.2 that
w is a strong solution of the problem (5-3) with w0 = v0 and

Akl
i j =

1
ρ0

∂Gi j (D(ut))

∂Dkl
, F j = f j +

1
ρ0

2∑
i=1

∂DHi j (Du) : D∂i u.

Here, the symmetry of A was used. Since we already have (1-18) we know that A
satisfies (5-1) and (5-2), ∂DH(Du) is bounded and we can apply Theorem 5.1 to
get

(5-4) ‖∇
2ut‖

p
p,Qt
+‖ut t‖

p
p,Qt
≤ C

(
‖ f ‖p

p,Qt
+‖∇

2u‖p
p,Qt
+‖v0‖

p
2,p

)
.

Using the inequality ‖∇2u(t)‖p
p ≤ C(‖∇2u0‖

p
p + ‖∇

2ut‖
p
p,Qt
+ ‖∇

2u‖p
p,Qt

) we
conclude that

‖∇
2u(t)‖p

p ≤ C
(
‖u0‖

p
2,p +‖v0‖

p
2,p +‖ f ‖p

p,QT
+‖∇

2u‖p
p,Qt

)
.

Gronwall’s lemma with (5-4) then gives (1-19).
To get estimates for (1-21) we proceed similarly as in the first step. We a priori

assume sufficient smoothness of u and define w = ∂k ut for fixed k ∈ {1, 2}. We
differentiate (1-1) with respect to xk and find that w solves the problem (5-3) with
w0 = ∂kv0 and

Akl
i j =

1
ρ0

Gi j (D(ut))

∂Dkl
,

F j =
1
ρ0

( 2∑
i=1

[
∂2

DGi j (D(ut)) : (D(∂i ut)⊗ D(∂k ut))+ ∂DHi j (D(u)) : D(∂i∂k u)

+ ∂2
DHi j (D(u)) : (D(∂i u)⊗ D(∂k u))

]
− ∂kρ0∂

2
t u j + ∂k(ρ0 f j )

)
.

For an arbitrary σ ∈ (1, p], t ∈ (0, T ) we obtain from the properties of G, H and
(1-18) that
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‖F‖σ,Qt ≤ C
(
1+‖∇2ut‖

2
2σ,Qt
+‖∇

3u‖σ,Qt +‖∇u‖22σ,Qt
+‖ut t‖σ,Qt

)
.

The constant C > 0 may depend on H, G, T , u0, ρ0.
Using Theorem 5.1 we obtain, since k = 1, 2 was arbitrary,

‖∇ut t‖σ,Qt +‖∇
3ut‖σ,Qt

≤ C
(
1+‖∇2ut‖

2
2σ,Qt
+‖∇

3u‖σ,Qt +‖∇u‖22σ,Qt
+‖ut t‖σ,Qt +‖v0‖3,σ

)
.

Now we use the inequality ‖∇3u(t)‖σσ ≤ C(‖∇3u‖σσ,Qt
+‖∇

3ut‖
σ
σ,Qt
+‖∇

3u0‖
σ
σ )

to get

‖∇
3u(t)‖σσ,�+‖∇ut t‖

σ
σ,Qt
+‖∇

3ut‖
σ
σ,Qt

≤ C
(
1+‖∇2ut‖

2σ
2σ,Qt
+‖∇

3u‖σσ,Qt
+‖∇u‖2σ2σ,Qt

+‖ut t‖
σ
σ,Qt
+‖u0‖

σ
3,σ+‖v0‖

σ
3,σ
)
.

Due to the assumption on u0 and v0 we know that ‖u0‖
σ
3,σ +‖v0‖

σ
3,σ <+∞ for

all σ ≤ p. If ‖∇2ut‖
2σ
2σ,Qt
+‖∇u‖2σ2σ,Qt

+‖ut t‖
σ
σ,Qt

is bounded we get by Gronwall’s
inequality

(5-5) ‖∇ut t‖
σ
σ,Qt
+‖∇

3ut‖
σ
σ,Qt

<+∞.

This is always true for σ ∈ (1, s/2], where s > 2 is taken from Theorem 1.2. By
the following multiplicative inequality [Ladyzhenskaja et al. 1968, Theorem II.2.2]
we get that, for any measurable function z,

‖z‖σ(s+2)/2
σ(s+2)/2,Q ≤ C‖z‖σ s/2

L∞(0,T ;Ls)‖∇z‖σσ,Q .

If we take into account (5-5) and (1-17) we find that, for σ ∈ (1, s/2],

‖∇
2u‖σ(s+2)/2+‖∇

2ut‖σ(s+2)/2+‖ut t‖σ(s+2)/2,Q <+∞.

Since σ s+2
2 > 2σ for all σ > 1 we get the statement (1-21) of Theorem 1.3 after

finite number of iterations.

Appendix: Proof of Lemma 2.1

First, we sketch the proof of Lemma 2.1. We focus on main differences compared
to [Nečas and Šverák 1991], where the full gradient case is treated.

Proof of Lemma 2.1. The existence and uniqueness of a weak solution to (2-3) is
standard. Therefore, we focus here only on the proof of (2-5). We provide only
the formal proof but everything can be done rigorously by mollifying A and w0,
applying standard results for the heat equation, deriving uniform bounds of the type
(2-5) and then passing to the limit.

The main idea of the proof is to use w|w|s−2 as a test function in the weak
formulation of (2-3). Due to the presence of a nonlinearity in the test function we
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obtain a pollution term coming from the elliptic term. To handle it, we use a simple
inequality that can be deduced by an integration by parts formula. Hence, for any
s ≥ 2 and any smooth periodic u we have∫
�

|u|s−2
|∇u|2

=−

∫
�

|u|s−2
4u·u−(s−2)

∫
�

|u|s−2
|∇|u||2

=−(s−2)
∫
�

|u|s−2∣∣∇|u|∣∣2−2
∫
�

|u|s−2 div(D(u))·u+
∫
�

|u|s−2
∇(div u)·u

=−(s−2)
∫
�

|u|s−2∣∣∇|u|∣∣2+2
∫
�

|u|s−2
|D(u)|2+2(s−2)

∫
�

|u|s−3D(u)u·∇|u|

−

∫
�

|u|s−2
| div u|2−(s−2)

∫
�

|u|s−3 div u∇|u|·u.

Consequently, moving the term with the good sign to the left side we obtain the
inequality∫
�

(
|u|s−2

| div u|2+ (s− 2)|u|s−2
|∇|u||2+ |u|s−2

|∇u|2
)

≤ 2
∫
�

|u|s−2
|D(u)|2+ 2(s− 2)

∫
�

|u|s−2
|D(u)|

∣∣∇|u|∣∣
+ (s− 2)

∫
�

|u|s−2
| div u|

∣∣∇|u|∣∣.
Finally, using the pointwise estimate | div u| ≤ C |D(u)| and applying Young’s
inequality we deduce that for any s > 2 there exists Cs > 0 such that

(A-1)
∫
�

|u|s−2
|∇u|2 ≤ Cs

∫
�

|u|s−2
|D(u)|2.

If we restrict to s ∈ [2, 10] we can find C∗ > 0 such that for all s ∈ [2, 10], Cs <C∗.
With estimate (A-1) we can easily continue by using the standard procedure; see

[Nečas and Šverák 1991; Frehse and Seregin 1999]. We test (2-3) by |w|s−2w with
arbitrary s ∈ [2, 4] to get

(A-2) 1
s

d
dt
‖w‖ss +

∫
�

|w|s−2AD(w) · D(w)

=−

∫
�

F · ∇(|w|s−2w)−

∫
�

AD(w) · (∇|w|s−2
⊗w).

Consequently, using (2-2) and (A-1) we observe that (we use Young’s inequality to
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get the second estimate)

(A-3)
1
s

d
dt
‖w‖ss + λ1

∫
�

|w|s−2
|D(w)|2

≤ C
(∫

�

|F||w|s−2
|∇w| + λ2(s− 2)

∫
�

|w|s−2
|∇w|2

)
≤

(
Cλ2(s− 2)+

λ1

2C∗

)∫
�

|w|s−2
|∇w|2+

C2C∗

2λ1

∫
�

|F|2|w|s−2

≤ λ1

∫
�

|w|s−2
|D(w)|2+

C2C∗

2λ1

∫
�

|F|2|w|s−2,

provided that

(A-4) CC∗λ2(s− 2)+ λ1/2< λ1.

Thus, defining L := 1/(2CC∗), we see that for all 2≤ s ≤ 2+Lλ1/λ2 the condition
(A-4) is automatically met and the inequality (A-3) implies that

d
dt
‖w‖ss ≤

C
λ1

∫
�

|F|2|w|s−2
≤

C
λ1
‖F‖2s‖w‖

s−2
s

and we finally obtain
d
dt
‖w‖2s ≤

C
λ1
‖F‖2s ,

which leads to (2-5) after integration with respect to t ∈ (0, T ). �

Lemma A.1 (See also [Ladyzhenskaja et al. 1968]). Let T > 0 and�⊂R2. Assume
that p > 4; then the embedding

(A-5) W 1,p(0, T ; L p)∩ L p(0, T ;W 2,p
per ) ↪→ C([0, T ],C1

per(�)).

holds. In addition for any s > 2 and α ∈ (0, (1− 2/s)/3) we have

(A-6) W 1,∞(0, T ; Ls)∩ L∞(0, T ;W 2,s) ↪→ C0,α([0, T ],C1,α
per (�)).

Proof. By using an interpolation theorem (see [Amann 2000, proof of Corol-
lary 4.5(ii)]) we find that, for any α ∈ [0, 1], p1, p2 ∈ (1,∞),

(A-7) W 1,p1(0, T ; L p2)∩ L p1(0, T ;W 2,p2
per ) ↪→W α,p1(0, T ;W 2(1−α),p2

per ).

Consequently, setting α := 1
4 , p1 = p2 := p and using the standard Sobolev

embedding we get (A-5), provided that p > 4.
To prove the second part of the lemma, we first note that for any p ∈ [1,∞]

we have W 1,∞(0, T ; Ls)∩ L∞(0, T ;W 2,s) ↪→ W 1,p(0, T ; Ls)∩ L p(0, T ;W 2,s).
Consequently, setting p2 := s, p1 := p in (A-7), we deduce that

(A-8) W 1,∞(0, T ; Ls)∩ L∞(0, T ;W 2,s
per ) ↪→W α,p(0, T ;W 2(1−α),s

per )
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for any p ∈ (1,∞) and any α ∈ [0, 1]. Finally, assuming that p > 2s
s−2

and setting

α :=
ps−2p+s

3ps

in (A-8), we get after using the standard embedding theorem that

W 1,∞(0, T ; Ls)∩ L∞(0, T ;W 2,s
per ) ↪→ C0,β(0, T ;C1,β

per (�))

with β := 1
3
−

2
3s
−

2
3p
. Since p is arbitrarily large the embedding (A-6) follows.
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A LOWER BOUND FOR EIGENVALUES OF
THE POLY-LAPLACIAN WITH ARBITRARY ORDER

QING-MING CHENG, XUERONG QI AND GUOXIN WEI

We study eigenvalues of the poly-Laplacian of arbitrary order on a bounded
domain in an n-dimensional Euclidean space. We obtain a lower bound for
these eigenvalues, significantly improving on that of Levine and Protter. In
particular, the result of Melas (2003) is subsumed.

1. Introduction

Let � � Rn be a bounded domain with piecewise smooth boundary @� in an
n-dimensional Euclidean space Rn. Let �i be the i-th eigenvalue of the Dirichlet
eigenvalue problem of the poly-Laplacian with arbitrary order:

(1-1)

8<:.��/
luD �u in �;

uD
@u

@�
D � � � D

@l�1u

@�l�1
D 0 on @�;

where � is the Laplacian in Rn and � denotes the outward unit normal vector field
of the boundary @�. It is well known that the spectrum of this eigenvalue problem
is real and discrete:

0 < �1 � �2 � �3 � � � � !C1;

where each �i has finite multiplicity and is repeated according to its multiplicity.
Let V.�/ denote the volume of � and let Bn denote the volume of the unit

ball in Rn. When l D 1, the eigenvalue problem (1-1) is called a fixed membrane
problem. In this case, one has Weyl’s asymptotic formula

(1-2) �k �
4�2

.BnV.�//
2
n

k
2
n ; k!C1:
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From the above asymptotic formula, one can obtain

(1-3) 1

k

kX
iD1

�i �
n

nC2

4�2

.BnV.�//
2
n

k
2
n ; k!C1:

Pólya [1961] proved that

(1-4) �k �
4�2

.BnV.�//
2
n

k
2
n ; for k D 1; 2; : : : ;

if � is a tiling domain in Rn. Moreover, he proposed the following:

Conjecture of Pólya. If� is a bounded domain in Rn, then the k-th eigenvalue �k
of the fixed membrane problem satisfies

(1-5) �k �
4�2

.BnV.�//
2
n

k
2
n ; for k D 1; 2; : : : :

Berezin [1972] and Lieb [1980] gave a partial solution to this conjecture. Li and
Yau [1983] proved that

(1-6) 1

k

kX
iD1

�i �
n

nC2

4�2

.BnV.�//
2
n

k
2
n ; for k D 1; 2; : : : :

Formula (1-3) shows that (1-6) is sharp in the sense of averages. From (1-6), one
can derive

(1-7) �k �
n

nC2

4�2

.BnV.�//
2
n

k
2
n ; for k D 1; 2; : : : ;

which gives a partial solution for the conjecture of Pólya with a factor n

nC2
. Melas

[2003] has improved the estimate (1-6) to

(1-8) 1

k

kX
iD1

�i �
n

nC2

4�2

.BnV.�//
2
n

k
2
n C

1

24.nC2/

V .�/

I.�/
; for k D 1; 2; : : : ;

where

I.�/D min
a2Rn

Z
�

jx� aj2 dx

is called the moment of inertia of �.
When l D 2, the eigenvalue problem (1-1) is called the clamped plate problem.

For the eigenvalues of the clamped plate problem, it follows from [Agmon 1965]
and [Pleijel 1950] that

(1-9) �k �
16�4

.BnV.�//
4
n

k
4
n ; k!C1:
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This implies that

(1-10) 1

k

kX
iD1

�i �
n

nC4

16�4

.BnV.�//
4
n

k
4
n ; k!C1:

Furthermore, Levine and Protter [1985] proved that the eigenvalues of the clamped
plate problem satisfy

(1-11) 1

k

kX
iD1

�i �
n

nC4

16�4

.BnV.�//
4
n

k
4
n :

Formula (1-10) shows that the coefficient of k
4
n is the best possible constant. Very

recently, Cheng and Wei [2011] obtained the following improvement of (1-11):

(1-12) 1

k

kX
iD1

�i �

n

nC4

16�4

.BnV.�//
4
n

k
4
n C cn

n

nC2

4�2

.BnV.�//
2
n

V.�/

I.�/
k

2
n C dn

�
V.�/

I.�/

�2
;

where cn and dn are constants depending only on the dimension n.
When l � 3, Levine and Protter [1985] proved that

(1-13) 1

k

kX
iD1

�i �
n

nC2l

.2�/2l

.BnV.�//
2l
n

k
2l
n ; for k D 1; 2; : : : :

From the above formula, one can obtain

(1-14) �k �
n

nC2l

.2�/2l

.BnV.�//
2l
n

k
2l
n ; for k D 1; 2; : : : :

In this paper we investigate eigenvalues of the Dirichlet eigenvalue problem (1-1)
for the Laplacian with any order. We give a significant improvement of (1-13) by
adding l lower-order terms than k2l=n to its right-hand side. In fact, we prove:

Theorem. Let � be a bounded domain in an n-dimensional Euclidean space Rn.
Let �i , i D 1; 2; : : : , be the i -th eigenvalue of the eigenvalue problem (1-1). Then

1

k

kX
jD1

�j �
n

nC2l

.2�/2l

.BnV.�//
2l
n

k
2l
n

C
n

nC2l

lX
pD1

.lC1�p/

.24/pn � � � .nC2p�2/

.2�/2.l�p/

.BnV.�//
2.l�p/

n

�
V.�/

I.�/

�p
k

2.l�p/
n :

Remark. If we take l D 1, we obtain the inequality (1-8).
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2. Proof of the Theorem

Before giving the proof, we introduce some definitions and basic facts about
symmetric decreasing rearrangements.

For a bounded domain �� Rn, the moment of inertia of � is defined by

I.�/D min
a2Rn

Z
�

jx� aj2 dx:

By translating the origin, we may assume that

I.�/D

Z
�

jxj2 dx:

Let �� be the symmetric rearrangement of �, that is, �� is the open ball centered
at the origin with the same volume as �. Then

�� D

�
x 2 RnI jxj<

�
V.�/

Bn

�1
n
�
:

By using the symmetric rearrangement �� of �, we have

(2-1) I.�/D

Z
�

jxj2 dx �

Z
��
jxj2 dx D

n

nC2
V.�/

�
V.�/

Bn

�2
n

:

Let f be a nonnegative continuous function on �. We consider its distribution
function �f .t/ defined by

�f .t/D Vol.fx 2�I f .x/ > tg/:

The distribution function can be viewed as a function from Œ0;C1/ to Œ0; V .�/�.
The symmetric decreasing rearrangement f � of f is defined by

f �.x/D inf
˚
t � 0I �f .t/ < Bnjxj

n
	
; for x 2��:

By definition, we know that f �.x/ is a radially symmetric function and

Vol
�
fx 2�I f .x/ > tg

�
D Vol

�
fx 2��I f �.x/ > tg

�
for all t > 0:

Let f �.x/D�.jxj/. Then one gets that � W Œ0;C1/! Œ0; supf � is a decreasing
function of jxj. We may assume that � is absolutely continuous. It is well known that

(2-2)
Z
�

f .x/ dx D

Z
��
f �.x/ dx D nBn

Z C1
0

sn�1�.s/ ds

and

(2-3)
Z
�

jxj2lf .x/ dx �

Z
��
jxj2lf �.x/ dx D nBn

Z C1
0

snC2l�1�.s/ ds:
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Good sources of further information on rearrangements are [Bandle 1980; Pólya
and Szegő 1951].

One gets from the coarea formula that

�f .t/D

Z supf

t

Z
ffDsg

jrf j�1 d�s ds:

Since f � is radial, we have

�f .�.s//D Vol
˚
x 2�I f .x/ > �.s/

	
D Vol

˚
x 2��I f �.x/ > �.s/

	
D Vol

˚
x 2��I �.jxj/ > �.s/

	
D Bns

n:

It follows that
nBns

n�1
D �0f .�.s//�

0.s/

for almost every s. Putting � WD sup jrf j, we obtain from the above equations and
the isoperimetric inequality that

��0f .�.s//D

Z
ffD�.s/g

jrf j�1 d��.s/��
�1 Voln�1

�
ffD�.s/g

�
���1nBns

n�1:

Therefore, one obtains, for almost every s,

(2-4) �� � �0.s/� 0:

In order to prove our theorem, we need the following lemma.

Lemma. Let b � 1 and �, A> 0, and let  W Œ0;C1/! Œ0;C1/ be a decreasing,
absolutely continuous function such that

���  0.s/� 0; AD

Z C1
0

sb�1 .s/ ds:

For any positive integer l , let

Al WD

Z C1
0

sbC2l�1 .s/ ds:

Then, we have

Al �
1

bC2l

�
.bA/

bC2l
b  .0/�

2l
b C

lX
pD1

.l C 1�p/.bA/
bC2.l�p/

b  .0/
2pb�2.l�p/

b

6pb � � � .bC 2p� 2/�2p

�
:

Proof. The proof is by induction. Firstly, one can get from the lemma of [Melas
2003] that

(2-5) A1 D

Z C1
0

sbC1 .s/ ds �
1

bC2

�
.bA/

bC2
b  .0/�

2
b C

A .0/2

6�2

�
:
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To prove the induction step, we assume the statement holds for l D r , that is,

Ar�
1

bC2r

�
.bA/

bC2r
b  .0/�

2r
b C

rX
pD1

.r C 1�p/.bA/
bC2.r�p/

b  .0/
2pb�2.r�p/

b

6pb � � � .bC 2p� 2/�2p

�
:

Since the formula (2-5) holds for any b � 1, we have

ArC1

D

Z C1
0

sbC2rC1 .s/ ds

�
1

bC2rC2

�
Œ.bC2r/Ar �

bC2rC2
bC2r  .0/�

2
bC2r C

Ar .0/
2

6�2

�

�
 .0/�

2
bC2r

bC2rC2

�

�
.bA/

bC2r
b  .0/�

2r
b C

rX
pD1

.rC1�p/.bA/
bC2.r�p/

b  .0/
2pb�2.r�p/

b

6pb � � � .bC2p�2/�2p

�bC2rC2
bC2r

C
1

.bC2r/.bC2rC2/

rX
pD1

.rC1�p/.bA/
bC2.r�p/

b  .0/
2.pC1/b�2.r�p/

b

6pC1b � � � .bC2p�2/�2pC2

C
.bA/

bC2r
b  .0/

2b�2r
b

6.bC2r/.bC2rC2/�2

D
 .0/�

2
bC2r

bC2rC2

h
.bA/p

bC2r
b  .0/�

2r
b

ibC2rC2
bC2r

�

�
1C

rX
pD1

.rC1�p/.bA/
�2p

b  .0/
2pbC2p

b

6pb � � � .bC2p�2/�2p

�bC2rC2
bC2r

C
.bA/

bC2r
b  .0/

2b�2r
b

6.bC2r/.bC2rC2/�2

C
1

.bC2r/.bC2rC2/

rC1X
pD2

.rC2�p/.bA/
bC2r�2pC2

b  .0/
2pb�2rC2p�2

b

6pb � � � .bC2p�4/�2p

D
.bA/

bC2rC2
b  .0/�

2rC2
b

bC2rC2

�
1C

rX
pD1

.rC1�p/.bA/
�2p

b  .0/
2pbC2p

b

6pb � � � .bC2p�2/�2p

�bC2rC2
bC2r

C
.bA/

bC2r
b  .0/

2b�2r
b

6.bC2r/.bC2rC2/�2
C

.bA/ .0/2.rC1/

6rC1b � � � .bC2rC2/�2.rC1/

C
1

.bC2r/.bC2rC2/

rX
pD2

.rC2�p/.bA/
bC2.rC1�p/

b  .0/
2pb�2.rC1�p/

b

6pb � � � .bC2p�4/�2p
:
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It follows from the Taylor formula that

ArC1

�
1

bC2rC2
.bA/

bC2rC2
b  .0/�

2rC2
b

�

�
1C

bC2rC2

bC2r

rX
pD1

.rC1�p/.bA/
�2p

b  .0/
2pbC2p

b

6pb � � � .bC2p�2/�2p

�

C
.bA/

bC2r
b  .0/

2b�2r
b

6.bC2r/.bC2rC2/�2
C

.bA/ .0/2.rC1/

6rC1b � � � .bC2rC2/�2.rC1/

C
1

.bC2r/.bC2rC2/

rX
pD2

.rC2�p/.bA/
bC2.rC1�p/

b  .0/
2pb�2.rC1�p/

b

6pb � � � .bC2p�4/�2p

D
1

bC2rC2
.bA/

bC2rC2
b  .0/�

2rC2
b

C
1

bC2r

rX
pD1

.rC1�p/.bA/
bC2.rC1�p/

b  .0/
2pb�2.rC1�p/

b

6pb � � � .bC2p�2/�2p

C
.bA/

bC2r
b  .0/

2b�2r
b

6.bC2r/.bC2rC2/�2
C

.bA/ .0/2.rC1/

6rC1b � � � .bC2rC2/�2.rC1/

C
1

.bC2r/.bC2rC2/

rX
pD2

.rC2�p/.bA/
bC2.rC1�p/

b  .0/
2pb�2.rC1�p/

b

6pb � � � .bC2p�4/�2p

D
1

bC2rC2
.bA/

bC2rC2
b  .0/�

2rC2
b

C

h
r

b.bC2r/
C

1

.bC2r/.bC2rC2/

i
1

6�2
.bA/

bC2r
b  .0/

2b�2r
b

C

rX
pD2

�
rC1�p

bC2r
C
.rC2�p/.bC2p�2/

.bC2r/.bC2rC2/

�
.bA/

bC2.rC1�p/
b  .0/

2pb�2.rC1�p/
b

6pb � � � .bC2p�2/�2p

C
.bA/ .0/2.rC1/

6rC1b � � � .bC2rC2/�2.rC1/

�
1

bC2.rC1/
.bA/

bC2.rC1/
b  .0/�

2.rC1/
b

C
1

bC2.rC1/

rC1X
pD1

.rC2�p/.bA/
bC2.rC1�p/

b  .0/
2pb�2.rC1�p/

b

6pb � � � .bC2p�2/�2p
:
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This completes the proof of the lemma. �

Proof of the Theorem. Let uj be an orthonormal eigenfunction corresponding to
the eigenvalue �j , that is, uj satisfies

(2-6)

8̂̂̂<̂
ˆ̂:
.��/luj D �juj ; in �;

uj D
@uj

@�
D � � � D

@l�1uj

@�l�1
D 0; on @�;R

� uiuj D ıij ; for any i , j :

Thus, fuj g1jD1 forms an orthonormal basis of L2.�/. We define a function 'j by

(2-7) 'j .x/D

�
uj .x/; x 2�;

0; x 2 Rn n�:

The Fourier transformb'j .z/ of 'j .x/ is then given by

(2-8) b'j .z/D .2�/�n=2 Z
Rn

'j .x/e
ihx;zi dx D .2�/�n=2

Z
�

uj .x/e
ihx;zi dx:

We fix k � 1 and set

f .z/D

kX
jD1

ˇ̌b'j .z/ˇ̌2; for z 2 Rn:

From Bessel’s inequality, it follows that

(2-9) 0� f .z/D

kX
jD1

ˇ̌b'j .z/ˇ̌2 D .2�/�n kX
jD1

ˇ̌̌̌Z
�

uj .x/e
ihx;zi dx

ˇ̌̌̌2
� .2�/�n

Z
�

ˇ̌
eihx;zi

ˇ̌2
dx D .2�/�nV.�/:

By Parseval’s identity, we have

(2-10)
Z

Rn

f .z/ dz D

kX
jD1

Z
Rn

ˇ̌b'j .z/ˇ̌2 dz D kX
jD1

Z
Rn

'2j .x/ dx

D

kX
jD1

Z
�

u2j .x/ dx D k:

Furthermore, we deduce from integration by parts and Parseval’s identity that
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(2-11)
Z

Rn

jzj2lf .z/ dz

D

kX
jD1

Z
Rn

jzj2l jb'j .z/j2 dz
D

kX
jD1

Z
Rn

jzj2l
ˇ̌̌̌
.2�/�n=2

Z
�

uj .x/e
ihx;zi dx

ˇ̌̌̌2
dz

D

kX
jD1

nX
r1;:::;rlD1

Z
Rn

ˇ̌̌̌
.2�/�n=2

Z
�

zr1
� � � zrl

uj .x/e
ihx;zi dx

ˇ̌̌̌2
dz

D

kX
jD1

nX
r1;:::;rlD1

Z
Rn

ˇ̌̌̌
.2�/�n=2

Z
�

uj .x/
@leihx;zi

@xr1
� � � @xrl

dx

ˇ̌̌̌2
dz

D

kX
jD1

nX
r1;:::;rlD1

Z
Rn

ˇ̌̌̌
.2�/�n=2

Z
�

@luj .x/

@xr1
� � � @xrl

eihx;zi dx

ˇ̌̌̌2
dz

D

kX
jD1

nX
r1;:::;rlD1

Z
Rn

ˇ̌̌̌5@luj

@xr1
� � � @xrl

ˇ̌̌̌2
dz

D

kX
jD1

nX
r1;:::;rlD1

Z
Rn

�
@luj

@xr1
� � � @xrl

�2
dx

D

kX
jD1

Z
�

uj .��/
luj dx D

kX
jD1

�j :

Since

(2-12) rb'j .z/D .2�/�n=2 Z
�

ixuj .x/e
ihx;zi dx;

we obtain from Bessel’s inequality that

(2-13)
kX

jD1

ˇ̌
rb'j .z/ˇ̌2 � .2�/�n Z

�

ˇ̌
ixeihx;zi

ˇ̌2
dx D .2�/�nI.�/:

It follows from (2-9), (2-13) and the Cauchy–Schwarz inequality that, for every
z 2 Rn,

(2-14)
ˇ̌
rf .z/

ˇ̌
� 2

� kX
jD1

ˇ̌b'j .z/ˇ̌2�1=2� kX
jD1

ˇ̌
rb'j .z/ˇ̌2�1=2

� 2.2�/�n
p
V.�/I.�/:



44 QING-MING CHENG, XUERONG QI AND GUOXIN WEI

Using the symmetric decreasing rearrangement f � of f and noting that

f �.x/D �.jxj/; � D sup jrf j � 2.2�/�n
p
V.�/I.�/ WD �;

we obtain, from (2-4),

(2-15) ��� �� � �0.s/� 0

for almost every s. According to (2-2) and (2-10), we infer

(2-16) k D

Z
Rn

f .z/ dz D

Z
Rn

f �.z/ dz D nBn

Z C1
0

sn�1�.s/ ds:

From (2-3) and (2-11), we obtain

(2-17)
kX

jD1

�j D

Z
Rn

jzj2lf .z/ dz �

Z
Rn

jzj2lf �.z/ dz

D nBn

Z C1
0

snC2l�1�.s/ ds:

Now, we can apply the Lemma to the function � with

(2-18) b D n; AD
k

nBn
; �D 2.2�/�n

p
V.�/I.�/:

We conclude that

(2-19)
kX

jD1

�j �
nBn

nC2l

�
k

Bn

�nC2l
n
�.0/�

2l
n

C
nBn

nC2l

lX
pD1

.lC1�p/

6pn � � � .nC2p�2/�2p

�
k

Bn

�nC2l�2p
n

�.0/
2pnC2p�2l

n :

Note that 0 < �.0/� supf � .2�/�nV.�/. Hence we consider the function F
defined by

(2-20) F.t/D
nBn

nC 2l

�
k

Bn

�nC2l
n
t�

2l
n

C
nBn

nC 2l

lX
pD1

.l C 1�p/

6pn � � � .nC 2p� 2/�2p

�
k

Bn

�nC2l�2p
n

t
2pnC2p�2l

n ;

for t 2 .0; .2�/�nV.�/�. From (2-1), we have

(2-21) �� .2�/�nB
� 1

n
n V.�/

nC1
n :
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By a direct calculation, one gets from Bn D
2�n=2

n�.n=2/
that

(2-22)
B
4=n
n

.2�/2
<
1

2
;

where �.n
2
/ is the gamma function. Thus, it follows from (2-21) and (2-22) that
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We obtain that F.t/ is a decreasing function on .0; .2�/�nV.�/�. Then we can
replace �.0/ by .2�/�nV.�/ in (2-19), namely,

kX
jD1

�j �
n

nC2l

.2�/2l

.BnV.�//
2l
n

k
nC2l

n

C
n

nC2l

lX
pD1

.lC1�p/

6pn � � � .nC2p�2/�2p
.V .�//

2pnC2p�2l
n

.2�/2pnC2p�2nB
2l�2p

n
n

k
nC2l�2p

n

D
n

nC2l

.2�/2l

.BnV.�//
2l
n

k
nC2l

n

C
n

nC2l

lX
pD1

.lC1�p/

24pn � � � .nC2p�2/

.2�/2.l�p/

.BnV.�//
2.l�p/

n

�
V.�/

I.�/

�p
k

nC2.l�p/
n :

This completes the proof of the Theorem. �
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Dedicated to our friend Margaret Beattie on the occasion of her retirement

We study the connection between two combinatorial notions associated to
a quiver: the quiver algebra and the path coalgebra. We show that the
quiver coalgebra can be recovered from the quiver algebra as a certain type
of finite dual, and we show precisely when the path coalgebra is the classical
finite dual of the quiver algebra, and when all finite-dimensional quiver rep-
resentations arise as comodules over the path coalgebra. We discuss when
the quiver algebra can be recovered as the rational part of the dual of the
path coalgebra. Similar results are obtained for incidence (co)algebras. We
also study connections to the notion of coreflexive (co)algebras, and give a
partial answer to an open problem concerning tensor products of coreflexive
coalgebras.

1. Introduction and preliminaries

Let 0 be a quiver, and let K be an arbitrary ground field, which will be fixed
throughout the paper. The associated quiver algebra K [0] is an important object
studied extensively in representation theory, and one theme in the field is to relate and
understand combinatorial properties of the quiver via the properties of the category
of representations of the quiver, and vice versa. Quiver algebras also play a role
in general representation theory of algebras; for example, every finite-dimensional
pointed algebra is a quiver algebra “with relations”. A closely related object is the
path coalgebra K0, introduced in [Chin and Montgomery 1997], together with
its comodules (quiver corepresentations). Comodules over path coalgebras turn
out to form a special kind of representations of the quiver, called locally nilpotent
representations in [Chin et al. 2002]. A natural question arises then: what is the
precise connection between the two objects K [0] and K0. We aim to provide such
connections, by finding out when one of these objects can be recovered from the
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other one. This is also important from the following viewpoint: one can ask when
the finite-dimensional locally nilpotent representations of the quiver (i.e., quiver
corepresentations), provide all the finite-dimensional quiver representations. This
situation will be exactly the one in which the path coalgebra is recovered from the
quiver algebra by a certain natural construction involving representative functions,
which we recall below.

Given a coalgebra C , its dual C∗ is always an algebra. Given an algebra A,
one can associate a certain subspace A0 of the dual A∗, which has a coalgebra
structure. This is called the finite dual of A, and it plays an important role in the
representation theory of A, since the category of locally finite left A-modules (i.e.,
modules which are sums of their finite-dimensional submodules) is isomorphic
to the category of right A0-comodules (see, for example, [Green 1976]). A0 is
sometimes also called the coalgebra of representative functions, and consists of
all f : A→ K whose kernel contains a cofinite (i.e., having finite codimension)
ideal. We show that the path coalgebra K0 can be reconstructed from the quiver
algebra K [0] as a certain type of “graded” finite dual, that is, K0 embeds in
the dual space K [0]∗ as the subspace of linear functions f : K [0] → K whose
kernel contains a cofinite monomial ideal. This is an “elementwise” answer to the
recovery problem; its categorical analogue states that the comodules over the quiver
coalgebra are precisely those quiver representations in which the annihilator of
every element contains a cofinite monomial ideal. In order to connect these to the
classical categorical duality, we first note that in general the quiver algebra does
not have identity, but it has enough idempotents. Therefore, we first extend the
construction of the finite dual to algebras with enough idempotents (Section 2). To
such an algebra A we associate a coalgebra A0 with counit, and we show that the
category of right A0-comodules is isomorphic to the category of locally finite unital
A-modules. In Section 3 we show that the path coalgebra K0 embeds in K [0]0,
and we prove that this embedding is an isomorphism, i.e., the path coalgebra can
be recovered as the finite dual of the quiver algebra, if and only if the quiver has no
oriented cycles and there are finitely many arrows between any two vertices. On the
other hand, K [0] embeds as an algebra without identity in the dual algebra (K0)∗

of the path coalgebra. We show that the image of this embedding is the rational
(left or right) part of (K0)∗, i.e., the quiver algebra can be recovered as the rational
part of the dual of the path coalgebra, if and only if for any vertex v of 0 there are
finitely many paths starting at v and finitely many paths ending at v. This is also
equivalent to the fact that K0 is a left and right semiperfect coalgebra.

In Section 4 we obtain similar results for another class of (co)algebras which
are also objects of great combinatorial interest, namely for incidence (co)algebras.
See [Joni and Rota 1979], for instance. We show that the incidence coalgebra of
a partially ordered set X is always the finite dual of a subalgebra FIA(X) of the
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incidence algebra which consists of functions of finite support. In this setting, this
algebra FIA(X) is the natural analogue of the quiver algebra.

It is also interesting to know when can K0 be recovered from (K0)∗, and how
this relates to the results of Section 3. This problem is related to an important
notion in coalgebra theory, that of coreflexive coalgebra. A coalgebra C over K is
coreflexive if the natural coalgebra embedding C→ (C∗)0 is an isomorphism. In
other words, C is coreflexive if it can be completely recovered from its dual. In
Section 5 we aim to study this condition for path coalgebras and their subcoalgebras,
and give the connection with the results of Section 3. We show that, in fact, a
path coalgebra of a quiver with no loops and finitely many arrows between any
two vertices is not necessarily coreflexive, and also, that the quivers of coreflexive
path coalgebras can contain loops. We then prove a general result stating that
under certain conditions a coalgebra C is coreflexive if and only if its coradical is
coreflexive. In particular, this result holds for subcoalgebras of a path coalgebra K0
with the property that there are finitely many paths between any two vertices of 0.
The result applies in particular to incidence coalgebras. For both a path coalgebra
and an incidence coalgebra the coradical is a grouplike coalgebra (over the set of
vertices of the quiver for the first one, or the underlying ordered set for the second
one). Thus the coreflexivity of such a coalgebra reduces to the coreflexivity of a
grouplike coalgebra K (X). By [Heyneman and Radford 1974, Theorem 3.7.3], if K
is an infinite field, then K (X) is coreflexive for most sets in X in set theory and any
set of practical use (see Section 5).

We use our results to give a partial answer to a question of E. J. Taft and
D. E. Radford asking whether the tensor product of two coreflexive coalgebras
is coreflexive. In particular, we show that the tensor product of two coreflexive
pointed coalgebras, which embed in path coalgebras of quivers with only finitely
many paths between any two vertices, is coreflexive.

Throughout the paper 0 = (00, 01) will be a quiver. 00 is the set of vertices,
and 01 is the set of arrows of 0. If a is an arrow from the vertex u to the vertex
v, we denote s(a) = u and t (a) = v. A path in 0 is a finite sequence of arrows
p = a1a2 . . . an , where n ≥ 1, such that t (ai )= s(ai+1) for any 1≤ i ≤ n− 1. We
will write s(p)= s(a1) and t (p)= t (an). Also the length of such a p is n. Vertices
v in 00 are also considered as paths of length zero, and we write s(v)= t (v)= v.
If p and q are two paths such that t (p)= s(q), we consider the path pq by taking
the arrows of p followed by the arrows of q . We denote by K0 the path coalgebra,
which is the vector space with a basis consisting of all paths in 0, comultiplication
1 defined by 1(p)=

∑
qr=p q⊗r for any path p, and counit ε defined by ε(v)= 1

for any vertex v, and ε(p)= 0 for any path of positive length. The underlying space
of K0 can be also endowed with a structure of an algebra, not necessarily with
identity, with the multiplication defined such that the product of two paths p and
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q is pq if t (p)= s(q), and 0 otherwise. We denote this algebra by K [0]; this is
known in literature as the quiver algebra or the path algebra of 0. It has identity if
and only if 00 is finite, and in this case the sum of all vertices is the identity.

Besides the above mentioned recovery connections between quiver algebras and
path coalgebras, one can also ask whether there is any compatibility between them.
More precisely, when do the two structures on the same vector space K0 give rise
to a bialgebra structure. This turns out to be only the case for very special quivers.
Specifically, consider K [0] to be the vector space with basis the oriented paths
of 0, and with the quiver algebra and path coalgebra structures. Then K [0] is a
bialgebra (with enough idempotents in general) if and only if in 0 there are no
(directed) paths of length ≥ 2 and no multiple edges between vertices (i.e., for any
two vertices a, b of 0 there is at most one edge from a to b). Indeed, straightforward
computations show that whenever multiple edges •

x,y
H⇒ • or paths •

x
−→ •

y
−→ •

of length at least 2 occur, then 1(xy) 6= 1(x)1(y). Conversely, a case by case
computation for 1(pq) with p, q paths of possible length 0 or 1 will show that
1(pq)=1(p)1(q).

This shows that the relation between the path coalgebra and quiver algebra
is more of a dual nature than an algebraic compatibility. For basic terminology
and notation about coalgebras and comodules we refer to [Dăscălescu et al. 2001;
Montgomery 1993; Sweedler 1969]. All (co)algebras and (co)modules considered
here will be vector spaces over K , and duality (−)∗ represents the dual K -vector
space.

2. The finite dual of an algebra with enough idempotents

In this section we extend the construction of the finite dual of an algebra with
identity to the case where A does not necessarily have a unit, but it has enough
idempotents. Throughout this section we consider a K -algebra A, not necessarily
having a unit, but having a system (eα)α∈R of pairwise orthogonal idempotents,
such that A =

⊕
α∈R Aeα =

⊕
α∈R eαA. Such an algebra is said to have “enough

idempotents”, and it is also called an algebra with a complete system of orthogonal
idempotents in the literature. Let us note that A has local units, i.e., if a1, . . . , an ∈ A,
then there exists an idempotent e ∈ A (which can be taken to be the sum of some
eα’s) such that eai = ai e = ai for any 1 ≤ i ≤ n. Our aim is to show that there
exists a natural structure of a coalgebra (with counit) on the space

A0
= { f ∈ A∗ | Ker( f ) contains an ideal of A of finite codimension}.

We will call A0 the finite dual of the algebra A.

Lemma 2.1. Let I be an ideal of A of finite codimension. Then the set R′={α ∈ R |
eα /∈ I } is finite.
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Proof. Denote by â the class of an element a ∈ A in the factor space A/I . We
have that (êα)α∈R′ is linearly independent in A/I . Indeed, if

∑
α∈R′ λα êα = 0, then∑

α∈R′ λαeα ∈ I . Multiplying by some eα with α ∈ R′, we find that λαeα ∈ I ,
so then necessarily λα = 0. Since A/I is finite-dimensional, the set R′ must be
finite. �

Assume now that B is another algebra with enough idempotents, say that ( fβ)β∈S

is a system of orthogonal idempotents in B such that B =
⊕

β∈S B fβ =
⊕

β∈S fβB.

Lemma 2.2. Let H be an ideal of A⊗ B of finite codimension. Let

I = {a ∈ A | a⊗ B ⊆ H} and J = {b ∈ B | A⊗ b ⊆ H}.

Then I is an ideal of A of finite codimension, J is an ideal of B of finite codimension
and I ⊗ B+ A⊗ J ⊆ H.

Proof. Let a ∈ I and a′ ∈ A. If b ∈ B and f is an idempotent in B such that f b= b,
we have that a′a⊗b=a′a⊗ f b= (a′⊗ f )(a⊗b)∈H . Thus a′a⊗B⊆H , so a′a∈ I .
Similarly aa′ ∈ I , showing that I is an ideal of A. Similarly J is an ideal of B.

It is clear that (eα⊗ fβ)α∈R,β∈S is a set of orthogonal idempotents in A⊗ B and

A⊗ B =
⊕
α∈R
β∈S

(A⊗ B)(eα ⊗ fβ)=
⊕
α∈R
β∈S

(eα ⊗ fβ)(A⊗ B).

By Lemma 2.1, there are finitely many idempotents eα1⊗ fβ1, . . . , eαn ⊗ fβn which
lie outside H . If α ∈ R \{α1, . . . , αn}, then for any β ∈ S we have that eα⊗ fβ ∈ H ,
so eα ⊗ B fβ = (eα ⊗ B fβ)(eα ⊗ fβ)⊆ H . Then eα ⊗ B ⊆ H , so eα ∈ I . Similarly
for any β ∈ S \ {β1, . . . , βn} we have that fβ ∈ J .

For any β ∈ S let φβ : A→ A⊗ B be the linear map defined by φβ(a)= a⊗ fβ .
If a ∈ A, then a ∈ I if and only if for any β ∈ S we have a⊗B fβ ⊆ H ; because there
is a local unit for a, this is further equivalent to a⊗ fβ ∈ H for β ∈ S. This condition
is obviously satisfied for β ∈ S \ {β1, . . . , βn} since fβ ∈ J , so we obtain that

I =
⋂

1≤i≤n

φ−1
βi
(H),

a finite intersection of finite codimensional subspaces of A, thus a finite codimen-
sional subspace itself. Similarly J has finite codimension in B. The fact that
I ⊗ B+ A⊗ J ⊆ H is obvious. �

Now we essentially proceed as in [Sweedler 1969, Chapter VI] or [Dăscălescu
et al. 2001, Section 1.5], with some arguments adapted to the case of enough
idempotents.

Lemma 2.3. Let A and B be algebras with enough idempotents. The following
assertions hold.
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(i) If f : A→ B is a morphism of algebras, then f ∗(B0)⊆ A0, where f ∗ is the
dual map of f .

(ii) If φ : A∗⊗ B∗→ (A⊗ B)∗ is the natural linear injection, then φ(A0
⊗ B0)=

(A⊗ B)0.

(iii) If M : A⊗ A→ A is the multiplication of A, and ψ : A∗⊗ A∗→ (A⊗ A)∗ is
the natural injection, then M∗(A0)⊆ ψ(A0

⊗ A0).

Proof. It goes as the proof of [Dăscălescu et al. 2001, Lemma 1.5.2], with part of the
argument in (ii) replaced by using the construction and the result of Lemma 2.2. �

Lemma 2.3 shows that by restriction and corestriction we can regard the natural
linear injection ψ as an isomorphism ψ : A0

⊗ A0
→ (A⊗ A)0. We consider the

map 1 : A0
→ A0

⊗ A0, 1 = ψ−1 M∗. Thus 1( f ) =
∑

i ui ⊗ vi is equivalent to
f (xy)=

∑
i ui (x)vi (y) for any x, y ∈ A. On the other hand, we define a linear map

ε : A0
→ K as follows. If f ∈ A0, then Ker( f ) contains a finite codimensional ideal

I . By Lemma 2.1, there are finitely many eα’s outside I . Therefore only finitely
many eα’s lie outside Ker( f ), so it makes sense to define ε( f )=

∑
α∈R f (eα) (only

finitely many terms are nonzero).

Proposition 2.4. Let A be an algebra with enough idempotents. Then (A0,1, ε)

is a coalgebra with counit.

Proof. The proof of the coassociativity works exactly as in the case where A has a
unit; see [Dăscălescu et al. 2001, Proposition 1.5.3]. To check the property of the
counit, let f ∈ A0 and 1( f ) =

∑
i ui ⊗ vi . Let a ∈ A and F a finite subset of R

such that a ∈
∑

α∈F eαA. Then clearly
(∑

α∈F eα
)
a = a. We have that(∑

i

ε(ui )vi

)
(a)=

∑
i,α

ui (eα)vi (a)=
∑
α

f (eαa)

=

∑
α∈F

f (eαa)= f
((∑

α∈F

eα

)
a
)
= f (a),

so
∑

i ε(ui )vi = f . Similarly
∑

i ε(vi )ui = f , and this ends the proof. �

Let us note that if f : A→ B is a morphism of algebras with enough idempotents,
then the map f 0

: B0
→ A0 induced by f ∗ is compatible with the comultiplications

of A0 and B0, but not necessarily with the counits (unless f is compatible in some
way to the systems of orthogonal idempotents in A and B).

We denote by ⇀ (respectively ↼) the usual left (respectively right) actions of
A on A∗. As in the unitary case, we have the following characterization of the
elements of A0.

Proposition 2.5. Let f ∈ A∗. With notation as above, the following assertions are
equivalent.



QUIVER ALGEBRAS, PATH COALGEBRAS AND COREFLEXIVITY 55

(1) f ∈ A0.

(2) M∗( f ) ∈ ψ(A0
⊗ A0).

(3) M∗( f ) ∈ ψ(A∗⊗ A∗).

(4) A ⇀ f is finite-dimensional.

(5) f ↼ A is finite-dimensional.

(6) A ⇀ f ↼ A is finite-dimensional.

(7) Ker( f ) contains a left ideal of finite codimension.

(8) Ker( f ) contains a right ideal of finite codimension.

Proof. (1)⇒ (2)⇒ (3)⇒ (4) and (1)⇒ (6) work exactly as in the case where A
has identity; see [Dăscălescu et al. 2001, Proposition 1.5.6]. We adapt the proof of
(4)⇒ (1) to the case of enough idempotents. Since A ⇀ f is a left A-submodule
of A∗, there is a morphism of algebras (without unit) π : A→ End(A⇀ f ) defined
by π(a)(m) = a ⇀ m for any a ∈ A, m ∈ A ⇀ f . Since End(A ⇀ f ) has finite
dimension, we have that I = Ker(π) is an ideal of A of finite codimension. Let
a ∈ I . Then a ⇀ (b ⇀ f ) = (ab) ⇀ f = 0 for any b ∈ A, so f (xab) = 0 for
any x, b ∈ A. Let e ∈ A such that ea = ae = a. Then f (a) = f (eae) = 0, so
a ∈Ker( f ). Thus I ⊆Ker( f ), showing that f ∈ A0. The equivalence (1)⇔ (5) is
proved similarly.

(6)⇒(1) can be adapted from the unital case; see [Montgomery 1993, Lemma 9.1.1],
with a small change. Indeed, R = (A⇀ f ↼ A)⊥ = {x ∈ A | g(x)= 0 for any g ∈
A ⇀ f ↼ A} is an ideal of A of finite codimension, and R ⊆ Ker( f ), since for
any r ∈ R there exists e ∈ A such that r = er = re, so then f (r)= f (ere)= (e⇀
f ↼ e)(r)= 0.

(1)⇒ (7) is obvious, while (7)⇒ (1) follows from the fact that a left ideal I of
finite codimension contains the finite codimensional ideal J = {r ∈ A | r A ⊆ I }.
(1)⇔ (8) is similar. �

We end this section with an interpretation of the connection between an algebra A
with enough idempotents and its finite dual A0 from the representation theory point
of view. This extends the results presented in [Abe 1980, Chapter 3, Section 1.2] in
the case where A has identity. Let M be a left A-module. Then M is called unital
if AM = M . Also, M is called locally finite if the submodule generated by any
element is finite-dimensional. Denote by LocFinA M the full subcategory of the
category of left A-modules consisting of all locally finite unital modules. We will
also use the notations AM,MA for the categories of left, or right modules over A;
similarly, for a coalgebra C , CM andMC will be used to denote the categories of
left and respectively right comodules.
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Proposition 2.6. Let A be an algebra with enough idempotents. Then the category
MA0

of right A0-comodules is isomorphic to the category LocFinA M.

Proof. Let M be a right A0-comodule with comodule structure m 7→
∑

m0⊗m1.
Then M is a left A-module with the action am =

∑
m1(a)m0 for any a ∈ A and

m ∈ M . The counit property m =
∑
ε(m1)m0, with all m1’s in A0, shows that

m =
∑

α∈F eαm for a finite set F , so M is unital. Since Am is contained in the
subspace spanned by all m0’s, we have that M is also locally finite.

Conversely, let M ∈ LocFinA M. Let m ∈ M , and let (mi )i=1,n be a (finite)
basis of Am. Define a∗1 , . . . , a∗n ∈ A∗ such that am =

∑
i=1,n a∗i (a)mi for any

a ∈ A. Since
⋂

i=1,n annA(mi )= annA(Am)⊆ annA(m)=
⋂

i=1,n Ker a∗i and each
annA(mi ) has finite codimension, we get that a∗i ∈ A0 for any i . Now we define
ρ : M→ M⊗ A0 by ρ(m)=

∑
i=1,n mi ⊗a∗i . It is easy to see that the definition of

ρ(m) does not depend on the choice of the basis (mi )i , and that (ρ⊗ I )ρ= (I⊗1)ρ.
To show that M is a right A0-comodule it remains to check the counit property, and
this follows from the fact that M is unital.

It is clear that the above correspondences define an isomorphism of categories. �

3. Quiver algebras and path coalgebras

We examine the connection between the quiver algebra K [0] and the path coalgebra
K0 associated to a quiver 0. The algebra K [0] has identity if and only if 0 has
finitely many vertices. However, K [0] always has enough idempotents (the set of
all vertices). Thus by Section 2 we can consider the finite dual K [0]0, which is
a coalgebra with counit. One has that K [0]0 ⊇ K0, i.e., the path coalgebra can
be embedded in the finite dual of the quiver algebra. The embedding is given as
follows: for each path p ∈ 0, denote by θ(p) ∈ K [0]∗ the function θ(p)(q)= δp,q .
We have that θ(p) ∈ K [0]0 since if we denote by S(p) the set of all subpaths of p,
and by P the set of all paths in 0, the span of P \ S(p) is a finite codimensional
ideal of K [0] contained in Ker θ(p). It is easy to see that θ : K0 ↪→ K [0]0 is an
embedding of coalgebras. In general, K [0] ↪→ (K0)∗ is surjective if and only if
the quiver 0 is finite. Also, in general, θ is not surjective. To see this, let A be the
quiver algebra of a loop 0, i.e., a quiver with one vertex and one arrow:

•
��

so A = K [X ], the polynomial algebra in one indeterminate. The finite dual of this
algebra is

lim
−→

f irreducible
n∈Z≥0

(K [X ]/( f n))∗ =
⊕

f irreducible

[ lim
−→

n∈Z≥0

(K [X ]/( f n))∗],
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while the path coalgebra is precisely the divided power coalgebra, which can be
written as lim

−→ n∈Z≥0
(K [X ]/(Xn))∗. These two coalgebras are not isomorphic, so

the map θ above is not a surjection. Indeed, K0 has just one grouplike element, the
vertex of 0, while the grouplike elements of A0, which are the algebra morphisms
from A = K [X ] to K , are in bijection to K .

The embedding of coalgebras θ : K0 ↪→ K [0]0 also gives rise to a functor
Fθ : K0M→ K [0]0M, associating to a left K0-comodule the left K [0]0-comodule
structure obtained by extension of coscalars via θ . We aim to provide a criterion
for when the above map θ is bijective, that is, when the path coalgebra is recovered
as the finite dual of the quiver algebra. Even though this is not always the case, we
show that it is possible to interpret the quiver algebra as a certain kind of “graded”
finite dual. We will think of K0 as embedded into K [0]0 through θ , and sometimes
write K0 instead of θ(K0).

Recall that in a quiver algebra K [0], there is an important class of ideals, those
which have a basis of paths; equivalently, the ideals generated by paths. Let us call
such an ideal a monomial ideal. When I is a cofinite monomial right ideal, the
quotient K [0]/I produces an interesting type of representation often considered
in the representation theory of quivers; we refer to [Villarreal 2001] for the theory
monomial algebras and representations. In fact, such a representation also becomes
a left K0-comodule, i.e., it is in the “image” of the functor Fθ . To see this, let
B be basis of paths for I and let E be the set of paths not belonging to I ; then E
is finite, and because I is a right ideal, one sees that if p ∈ E and p = qr , then
q ∈ E . This shows that K E , the span of E , is a right K0-subcomodule of K0,
so it is a rational left (K0)∗-module (for example, by [Dăscălescu et al. 2001,
Theorem 2.2.5]). By [Dăscălescu et al. 2001, Lemma 2.2.12], the right (K0)∗-
module (K E)∗ is rational, and so it has a compatible left K0-comodule structure.
Hence (K E)∗ is a right K [0]-module via the algebra map K [0] ↪→ (K0)∗. Now,
it is straightforward to see that K [0]/I ∼= (K E)∗ as right K [0]-modules, and this
proves the claim. Thus, Fθ ( K0((K E)∗)) = K [0]0(K [0]/I ), since every finite-
dimensional right K [0]-module is a left K [0]0-comodule.

We can now state a characterization of the path coalgebra in terms of the quiver
algebra, as a certain type of finite dual.

Proposition 3.1. The coalgebra θ(K0) consists of all f ∈ K [0]∗ such that ker( f )
contains a two-sided cofinite monomial ideal.

Proof. Let P be the set of paths in 0. If p is a path, and S(p) is the set of subpaths
of p, then the cofinite-dimensional vector space with basis P \ S(p) is an ideal, and
it is obviously contained in ker(θ(p)). Then clearly ker(θ(z)) contains a cofinite
monomial ideal for any z ∈ K0.
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Let now f ∈ K [0]∗ such that ker( f ) contains the cofinite monomial ideal I .
Let B be a basis of I consisting of paths, and let E = P \ B, which is finite, since
I is cofinite. Then if q ∈ B, we have f (q) = 0 =

∑
p∈E f (p)θ(p)(q), while if

q ∈ E , we have
(∑

p∈E f (p)θ(p)
)
(q) = f (q). Therefore f =

∑
p∈E f (p)θ(p)

lies in θ(K0). �

The core of our characterization is the following easy combinatorial condition:

Proposition 3.2. Let 0 be a quiver. The following conditions are equivalent:

(i) 0 has no oriented cycles and between any two vertices there are only finitely
many arrows.

(ii) For any finite set of vertices E ⊂ 0, there are only finitely many paths passing
only through vertices of E.

We recall that a representation of the quiver 0 is a pair R= ((Vu)u∈00, ( fa)a∈01)

consisting of a family of vector spaces and a family of linear maps, such that fa :

Vu→Vv , where u=s(a) and v= t (a) for any a∈01. A morphism of representations
is a family of linear maps (indexed by 00) between the corresponding Vu’s, which
are compatible with the corresponding linear morphisms in the two representations.
The category Rep 0 of representations of 0 is equivalent to the category u.MK [0]

of unital right K [0]-modules. The equivalence H : u.MK [0] → Rep 0 works
as follows. To a unital right K [0]-module V we associate the representation
H(V )= ((Vu)u∈00, ( fa)a∈01), where Vu = V u for any u ∈ 00, and for an arrow a
from u to v we define fa : Vu→ Vv, fa(x)= xa. An inverse equivalence functor
associates to representation R as above the space

⊕
u∈00

Vu endowed with a right
K [0]-action defined by xp= f p(x) for p= a1 . . . an and x ∈ Vu such that s(a1)= u.
Here we denote f p = fan . . . fa1 . If s(a1) 6= u, the action is xp = 0.

A representation R is locally finite if for any u ∈00 and any x ∈ Vu the subspace
〈 f p(x) | p is a path with s(p)= u〉 of

⊕
u∈00

Vu is finite-dimensional. Denote the
subcategory of locally finite representations by LocFinRep 0. The equivalence H
restricts to an equivalence H1 : LocFin MK [0]→ LocFinRep 0.

Recall from [Chin et al. 2002] that a representation R is locally nilpotent if for
any u ∈00 and any x ∈Vu , the set {p | p path with f p(x) 6=0} is finite. This is easily
seen to be equivalent to each x ∈

⊕
u∈00

Vu being annihilated by a monomial ideal
of finite codimension. Denote by LocNilpRep0 the category of locally nilpotent
representations, which is clearly a subcategory of LocFinRep 0.

We have the following diagram:

K0M
Fθ //

∼H2

��

K [0]0M
G
∼
// LocFinMK [0]

I1 //

H1 ∼

��

u.MK [0]

H ∼

��
LocNilpRep 0

I2 // LocFinRep 0
I3 // Rep 0
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Here G is the equivalence of categories as in Proposition 2.6 (the version for
right modules), and the I j ’s are inclusion functors. It is easy to see that the image
(on objects) of the functor H1G Fθ lies in LocNilpRep0, so we actually have a
functor H2 :

K0M→ LocNilpRep0, and this is just the equivalence noticed in
[Chin et al. 2002, Proposition 6.1]. In this way, at the level of representations, the
functor Fθ can be regarded as a functor (embedding) from the locally nilpotent
quiver representations to the locally finite quiver representations.

We can now characterize precisely when the path coalgebra can be recovered
from the quiver algebra, that is, when the above mentioned embedding θ is an
isomorphism.

Theorem 3.3. Let 0 be a quiver. The following assertions are equivalent:

(i) 0 has no oriented cycles and between every two vertices of 0 there are only
finitely many arrows.

(ii) θ(K0)= K [0]0.

(iii) Every cofinite ideal of K [0] contains a cofinite monomial ideal.

(iv) The functor Fθ : K0M→ K [0]0M is an equivalence.

(v) Every locally finite quiver representation of 0 is locally nilpotent.

Proof. The equivalence of (ii) and (iv) is a general coalgebra fact: if C ⊆ D is
an inclusion of coalgebras, then the corestriction of scalars F : CM→ DM is an
equivalence if and only if C = D. Indeed, if F is an equivalence, pick an arbitrary
x ∈ D and let N = x D∗ ∈ DM be the finite-dimensional D-subcomodule of D
generated by x . Then N ' F(M), M ∈ CM, and considering the coalgebras of
coefficients CN and CM of N and M , we see that CN = CM ⊆ C by the definition
of F . Since x ∈ CN , this ends the argument.

The equivalence of (ii) and (iii) follows immediately from Proposition 3.1.

(iv)⇔ (v) The previous remarks on Fθ (and the diagram drawn there) show that
Fθ is an equivalence functor if and only if so is I2. On the other hand, the inclusion
functor I2 is an equivalence if and only if every locally finite quiver representation
of 0 is locally nilpotent.

(i)⇒ (iii) Let I be an ideal of K [0] of finite codimension. By Lemma 2.1 applied
for the algebra K [0] and the complete set of orthogonal idempotents 00, we have
that the set S′={a ∈00 |a 6∈ I }must be finite. Let S={a ∈00 |a ∈ I }. Note that any
path p starting or ending at a vertex in S belongs to I , since p= s(p)p= pt (p)∈ I
if either s(p) ∈ I or t (p) ∈ I . Furthermore, this shows that if p contains a vertex
in S, then p ∈ I , since in that case p = qr with x = t (q)= s(r) ∈ S. Denote the
set of paths containing some vertex in S by M . Let H be the vector space spanned
by M and let M ′ be the set of the rest of the paths in 0. Obviously, M ′ consists of
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the paths whose all vertices belong to S′. Since S′ is finite, we see that M ′ is finite,
by the conditions of (i) and Proposition 3.2. Therefore H has finite codimension.
Also, since H is spanned by paths passing through some vertex in S, we see that
H is an ideal. We conclude that I contains the cofinite monomial ideal H .

(iii)⇒ (i) We show first that there are no oriented cycles in 0. Assume 0 has a
cycle

C : v0
x0
−→ v1

x1
−→ · · · −→ vs−1

xs−1
−→ vs = v0,

and consider such a cycle that does not self-intersect. We can consider the vertices
v0, . . . , vs−1 modulo s. Denote by qn,k the path starting at the vertex vn (0≤ n ≤
s− 1), winding around the cycle C and of length k. Denote again by P the set of
all paths in 0, and by X = {qn,k | 0≤ n ≤ s− 1, k ≥ 0}. Since the set X is closed
under subpaths, it is easy to see that the vector space H spanned by the set P \ X
is an ideal of K [0]. Let E be the subspace spanned by S = {qn,ks+i − qn,i | 0 ≤
n ≤ s− 1, i ≥ 0, k ≥ 1}, and let I = E + H . We have

(qn,ks+i − qn,i )qn+i, j = qn,ks+i+ j − qn,i+ j ∈ S,

(qn,ks+i − qn,i )qm, j = 0 for m 6= n+ i,

qm, j (qn,ks+i − qn,i )= qm,ks+i+ j − qm,i+ j ∈ S if m+ j = n,

qm, j (qn,ks+i − qn,i )= 0 if m+ j 6= n.

Here in the notation qn,i the first index is considered modulo s, while the second
index is a nonnegative integer. The above equations show that if we multiply an
element of S to the left (or right) by an element of X , we obtain either an element
of S or 0. Combined with the fact that H is an ideal, this shows that I is an ideal.

It is clear that I has finite codimension, since S∪{qn,i |0≤n≤ s−1, 0≤ i ≤ s−1}
spans K C = 〈X〉. Indeed, if 0 ≤ n ≤ s − 1 and j is a nonnegative integer, write
j = ks + i with k ≥ 0 and 0 ≤ i ≤ s − 1, and we have that qn, j = qn,ks+i =

(qn,ks+i − qn,i )+ qn,i .
On the other hand, I does not contain a cofinite monomial ideal. Indeed, it is

easy to see that an element of the form qm, j cannot be in 〈S∪ (P \ X)〉 = I , so any
monomial ideal contained in I must have infinite codimension.

Thus, we have found a cofinite ideal I which does not contain a cofinite monomial
ideal. This contradicts (iii), and we conclude that 0 cannot contain cycles.

We now show that in 0 there are no pair of vertices with infinitely many arrows
between them. Assume such a situation exists between two vertices a, b: a

xn
−→ b,

n ∈ Z≥0. We let X = {xn | n ∈ Z≥0} ∪ {a, b}, H be the span of P \ X , which is an
ideal since X is closed under taking subpaths. Let S = {xn − x0 | n ≥ 1} and I be
the span of S ∪ (P \ X). As above, since xn − x0 multiplied by an element of X
gives either xn − x0 or 0, we have that I is an ideal. I has finite codimension since
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{a, b, x0} ∪ S ∪ (P \ X) spans K0. Also, I does not contain a monomial ideal of
finite codimension since no xn lies in I . Thus we contradict (iii). In conclusion
there are finitely many arrows between any two vertices, and this ends the proof. �

It is clear that a finite quiver 0 (i.e., 00 and 01 are finite) without oriented cycles
satisfies condition (i) in Theorem 3.3. In this case K0 is finite-dimensional, and we
obviously have K [0] = (K0)∗ (i.e., the map θ is bijective) and also K0 = K [0]0.
This can also be thought as a trivial case of the above theorem.

We now present a few examples to further illustrate the above theorem.

Example 3.4. Let ∞A∞ be the infinite line quiver

· · · → •→ •→ · · · → •→ . . .

The quiver coalgebra C = K∞A∞ of this quiver is serial, that is, the injective
indecomposable left and right comodules are uniserial, i.e., they have a unique
composition series; see [Gómez-Torrecillas and Navarro 2008]. For such a coalgebra,
the finite dimensional comodules are easily classified: they are all serial [ibid.].
Moreover, the indecomposable finite-dimensional comodules, i.e., the uniserial ones,
correspond to finite paths in ∞A∞. Note that this quiver satisfies the conditions
of Theorem 3.3, and so the locally nilpotent representations of ∞A∞ (i.e., the
comodules over K∞A∞) coincide with the locally finite representations of the
quiver algebra A= K [∞A∞], and also, the finite-dimensional quiver representations
of ∞A∞ are the comodules over K∞A∞. Moreover, the coalgebra of representative
functions on K [∞A∞] is isomorphic to K∞A∞.

Note that in general, it is not easy to describe arbitrary comodules even for a serial
coalgebra. By results in [Iovanov 2011], if an infinite dimensional indecomposable
injective comodule exists, then there are comodules which do not decompose into
indecomposable comodules (and, in particular, are not indecomposable). Moreover,
for the left bounded infinite quiver A∞ : • → • → · · · → • → . . . , it is shown
in [Iovanov 2011] that all left comodules over K A∞ are serial direct sums of
indecomposable uniserial comodules corresponding to finite paths, while in the
category of right comodules over K A∞ there are objects which do not decompose
into direct sums of indecomposables.

Example 3.5. Let Cn be the following quiver of affine Dynkin type Ãn:

◦
1 // ◦2 // ◦3

��
Cn ◦

n

??

◦
4

~~
. . .

``

. . . ◦oo
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The path coalgebra K Cn is again serial, and the finite dimensional (left and
right) comodules are all direct sum of uniserial objects (corresponding to finite
paths). These correspond to finite-dimensional locally nilpotent representations.
This quiver does not satisfy the hypothesis of Theorem 3.3. We give an example
of a quiver representation which is locally finite (even finite-dimensional) but not
locally nilpotent. Let x1, . . . , xn denote the arrows of the quiver, with ai = s(xi ).
Let M = K [Cn]/I where I is the (two sided) ideal generated by elements p− 1,
where p is a path of length n and with 1= a1+· · ·+an (M is actually an algebra).
One can easily see that M is spanned as a vector space by paths of length less than
n. A not too difficult computation shows that I does not contain any monomial
ideal of finite codimension, and so M as a representation of K [Cn] is not locally
nilpotent, but it is finite-dimensional. We again note that the infinite dimensional
comodules over the coalgebra K Cn are hard to understand, as there are both left
and right comodules which are not direct sum of indecomposable comodules.

An easy particular example of this can be obtained for n = 1; in this case,
K [Cn] ∼= K [X ]— the polynomial algebra. As noted before, the finite dual of this
algebra is not the path coalgebra of C1. Also, the representation K [X ]/(X − 1) is
not locally nilpotent.

Let ψ : K [0] → (K0)∗ be the linear map defined by ψ(p)(q) = δp,q for any
paths p and q. In fact ψ is just θ as a linear map, but we denote it differently
since we regard it now as a morphism in the category of algebras not necessarily
with identity. Indeed, it is easy to check that ψ is multiplicative. Thus the quiver
algebra embeds in the dual of the path coalgebra. Our aim is to show that in certain
situations K [0] can be recovered from (K0)∗ as the rational part. Obviously, this is
the case when K [0] is finite-dimensional, which will also be seen as a consequence
of the next result, which characterizes completely these situations. We recall that
if C is a coalgebra, the rational part of the left C∗-module C∗, consisting of all
elements f ∈ C∗ such that there exist finite families (ci )i in C and ( fi )i in C∗

with c∗ f =
∑

i c∗(ci ) fi for any c∗ ∈ C∗, is denoted by C∗ rat
l . This is the largest

C∗-submodule which is rational, i.e., whose C∗-module structure comes from a
right C-comodule structure. Similarly, C∗ rat

r denotes the rational part of the right
C∗-module C∗. A coalgebra C is called right (respectively left) semiperfect if the
category of right (respectively left) C-comodules has enough projectives. This is
equivalent to the fact that C∗ rat

l (respectively C∗ rat
r ) is dense in C∗ in the finite

topology, see [Dăscălescu et al. 2001, Section 3.2].

Theorem 3.6. The following are equivalent.

(i) Im(ψ)= (K0)∗ rat
l .

(ii) Im(ψ)= (K0)∗ rat
r .
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(iii) For any vertex v of 0 there are finitely many paths starting at v and finitely
many paths ending at v.

(iv) The path coalgebra K0 is left and right semiperfect.

Proof. (iii)⇒ (i) Let p be a path. We show that p∗=ψ(p)∈ Im(ψ). If c∗ ∈ (K0)∗

and q is a path, we have that

(c∗ p∗)(q)=
∑
rs=q

c∗(r)p∗(s)=
{

c∗(r) if q = r p for some path r,
0 if q does not end with p.

Let q1 = r1 p, . . . , qn = rn p be all the paths ending with p. By the formula above,
(c∗ p∗)(qi )= c∗(ri ) for any 1≤ i ≤n, and (c∗ p∗)(q)=0 for any path q 6=q1, . . . , qn .
This shows that c∗ p∗ =

∑
1≤i≤n c∗(ri )q∗i , thus p∗ ∈ (K0)∗ rat

l , and we have that
Im(ψ)⊆ (K0)∗ rat

l .
Now let c∗ ∈ (K0)∗ rat

l , so there exist (ci )1≤i≤n in K0 and (c∗i )1≤i≤n in (K0)∗

such that d∗c∗ =
∑

1≤i≤n d∗(ci )c∗i for any d∗ ∈ (K0)∗. Let p1, . . . , pm be all the
paths that appear with nonzero coefficients in some of the ci ’s (represented as a
linear combination of paths). Then for any p 6= p1, . . . , pm we have that p∗(ci )= 0,
so then p∗c∗= 0. Let v be a vertex such that no one of p1, . . . , pm passes through v.
Then for any path p starting at v we have that 0= (v∗c∗)(p)= v∗(v)c∗(p)= c∗(p).
Therefore c∗ may be nonzero on a path p only if s(p)∈ {p1, . . . , pm}. By condition
(iii), there are only finitely many such paths p, denote them by q1, . . . , qe. Then
c∗ =

∑
1≤i≤e c∗(qi )q∗i ∈ Im(ψ), and we also have that (K0)∗ rat

l ⊆ Im(ψ).

(i)⇒ (iii) Let v be a vertex. Then v∗=ψ(v)∈ (K0)∗ rat
l , so there exist finite families

(ci ) ⊆ K0 and (c∗i )i ⊆ (K0)
∗ such that c∗v∗ =

∑
i c∗(ci )c∗i for any c∗ ∈ (K0)∗.

Then for any path q ,

(1)
∑

i

c∗(ci )c∗i (q)= (c
∗v∗)(q)=

{
c∗(q) if q ends at v,
0 otherwise.

If there exist infinitely many paths ending at v, we can find one such path q which
does not appear in the representation of any ci as a linear combination of paths. Then
there exists c∗ ∈ (K0)∗ with c∗(q) 6= 0 and c∗(ci )= 0 for any i , in contradiction
with (1). Thus only finitely many paths can end at v. In particular 0 does not have
cycles.

On the other hand, if we assume that there are infinitely many paths p1, p2, . . .

starting at v, let c∗ ∈ (K0)∗ which is 1 on each pi and 0 on any other path. Clearly
c∗ /∈ Im(ψ). We show that c∗ ∈ (K0)∗ rat

l , and the obtained contradiction shows
that only finitely many paths start at v. Indeed, we have

(2) (d∗c∗)(q)=
{

d∗(r) if q = r pi for some i ≥ 1 and some path r,
0 otherwise.
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Let r1, . . . , rm be all the paths ending at v (they are finitely many as we proved
above). For each 1 ≤ j ≤ m we consider the element c∗j ∈ (K0)

∗ which is 1 on
every path of the form r j pi , and 0 on any other path. Using (2) and the fact that
r j pi 6= r j ′ pi ′ for (i, j) 6= (i ′, j ′) (this follows because r j , r j ′ end at v and pi , pi ′ start
at v, and there are no cycles containing v), we see that d∗c∗ =

∑
1≤ j≤m d∗(r j )c∗j ,

and this will guarantee that c∗ is a rational element.

(ii)⇔ (iii) is similar to (i)⇔ (iii).

(iii)⇔ (iv) follows from [Chin et al. 2002, Corollary 6.3]. �

4. Incidence coalgebras and incidence algebras

In this section we parallel the results in Section 3 in the framework of incidence
(co)algebras. Let (X,≤) be a partially ordered set which is locally finite, i.e., the set
{z | x ≤ z ≤ y} is finite for any x ≤ y in X . The incidence coalgebra of X , denoted
by KX , is the vector space with basis {ex,y | x, y ∈ X, x ≤ y}, and comultiplication
and counit defined by1(ex,y)=

∑
x≤z≤y ex,z⊗ez,y , ε(ex,y)= δx,y for any x, y ∈ X

with x ≤ y. For such a X , we can consider the quiver 0 with vertices the elements
of X , and such that there is an arrow from x to y if and only if x < y and there is
no element z with x < z < y. It was proved in [Dăscălescu et al. ≥ 2013] that the
linear map φ : KX→ K0, defined by

φ(ex,y)=
∑
p path

from x to y

p

for any x, y ∈ X, x ≤ y, is an injective coalgebra morphism. We note that this
map is surjective if and only if in 0 there is at most one path between any to
vertices x, y ∈ X . To see this, let P(x, y) denote the set of paths from x to y.
Note that the incidence coalgebra KX is then KX =

⊕
x,y∈X 〈P(x, y)〉, and that

φ(〈ex,y〉)⊂ P(x, y) for x ≤ y. Thus, φ is surjective if and only if dim(P(x, y))= 1
for all x ≤ y, which is equivalent to the above stated condition. In fact, this is also
a consequence of the following more general fact.

Proposition 4.1. A coalgebra C is both an incidence coalgebra and a path co-
algebra if and only if it is the path coalgebra of a quiver 0 for which there is at
most one path between any two vertices.

Proof. If the condition is satisfied for a quiver 0, we can introduce an obvious order
on the set X of vertices of0 setting x≤ y if and only if there is a path from x to y. It is
easy to check that this is an ordering, and so the above map φ :KX→K0 is bijective.
Conversely, let C ∼= KX ∼= K0 for a locally finite partially ordered set X and a
quiver 0. We note that the simple subcoalgebras (and simple left subcomodules,
simple right subcomodules) of C are precisely the spaces K x for x ∈ X and Kv for v
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vertex in 0, and X , respectively 0 correspond to the group-like elements of C . Thus,
X must be the set of vertices of 0. Furthermore, we note that in either an incidence
coalgebra or a path coalgebra, the injective hull of a simple left comodule K x is
uniquely determined as follows (note that in general, given an injective module M
and a submodule N of M , there is an injective hull of N contained in M but it is
not necessarily uniquely determined). For incidence/path coalgebras, the right (left)
injective hull Er (K x) of K x (respectively, El(K x)) of the right (respectively, left)
comodule K x is the span of all segments/paths starting (respectively, ending) at
x (see the proof of [Simson 2009, Proposition 2.5] for incidence coalgebras and
[Chin et al. 2002, Corollary 6.2(b)] for path coalgebras). Then, for x ≤ y, from the
incidence coalgebra results we get Er (K x)∩ El(K y)= 〈ex,y〉 and from the path
coalgebra we get Er (K x)∩ El(K y)= 〈P(x, y)〉. This shows that 〈P(x, y)〉 is one
dimensional, and the proof is finished. �

Apart from the incidence coalgebra KX , there is another associated algebraic
object with a combinatorial relevance. This is the incidence algebra IA(X), which
is the space of all functions f : {(x, y) | x, y ∈ X, x ≤ y} → K (functions on the
set of closed intervals of X ), with multiplication given by convolution:

( f g)(x, y)=
∑

x≤z≤y

f (x, z)g(z, y)

for any f, g ∈ IA(X) and any x, y ∈ X , x ≤ y. See [Spiegel and O’Donnell 1997]
for details on the combinatorial relevance of the incidence algebra. It is clear that
IA(X) is isomorphic to the dual algebra of KX , if we identify a map f ∈ IA(X)
with the element of (KX)∗ which takes ex,y to f (x, y) for any x ≤ y. For simplicity,
we will identify IA(X) with (KX)∗.

Comparing to path coalgebras and quiver algebras, the situation is different,
since the incidence algebra always has identity. However, we can consider the
subspace FIA(X) of IA(X) spanned by all the elements Ex,y with x ≤ y, where
Ex,y(eu,v)= δx,uδy,v for any u ≤ v. Equivalently, FIA(X) consists of all functions
on {(x, y) | x, y ∈ X, x ≤ y} that have finite support. Then FIA(X) is a subalgebra
of IA(X) which does not have an identity when X is infinite, but it has enough
idempotents, the set of all Ex,x . The algebra FIA(X) plays the role of the quiver
algebra in this new framework.

The subspace FIA(X) is dense in IA(X) in the finite topology, since it is easy
to see that FIA(X)⊥ = 0 (see [Dăscălescu et al. 2001, Corollary 1.2.9]). We have
a coalgebra morphism θ : KX → FIA(X)0, defined by θ(c)(c∗) = c∗(c) for any
c ∈ KX and any c∗ ∈ FIA(X). We note that θ(c) indeed lies in FIA(X)0, since
Ker(θ(c))= 〈c〉⊥ ∩ FIA(X)⊇ D⊥ ∩ FIA(X), where D is the (finite dimensional)
subcoalgebra generated by c in KX . Then D⊥ is an ideal of IA(X) of finite
codimension, and then D⊥ ∩ FIA(X) is an ideal of FIA(X) of finite codimension.
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Since FIA(X) is dense in IA(X), θ is injective. The next result shows that we can
recover the incidence coalgebra KX as the finite dual of the algebra with enough
idempotents FIA(X). The result parallels Theorem 3.3; note that the conditions
analogous to the ones in (i) in Theorem 3.3 are always satisfied in incidence algebras.

Theorem 4.2. For any locally finite partially ordered set X , the map

θ : KX→ FIA(X)0

is an isomorphism of coalgebras.

Proof. It is enough to show that θ is surjective. Let F ∈ FIA(X)0, so F maps
FIA(X) to K and Ker(F) contains an ideal I of FIA(X) of finite codimension.
Then the set X0 = {x ∈ X | Ex,x /∈ I } is finite by Lemma 2.1.

If x ∈ X \X0, then Ex,y = Ex,x Ex,y ∈ I for any x ≤ y. Similarly Ex,y ∈ I for any
y ∈ X \ X0 and x ≤ y. Thus in order to have Ex,y /∈ I , both x and y must lie in X0.
This shows that only finitely many Ex,y’s lie outside I . Let F be the set of all pairs
(x, y) such that Ex,y /∈ I . Then we have that F =

∑
(x,y)∈F F(Ex,y)θ(ex,y). Indeed,

when evaluated at Eu,v, both sides are 0 if (u, v) /∈ F, or F(Eu,v) if (u, v) ∈ F.
Thus F ∈ Im(θ). �

The next result and its proof parallel Theorem 3.6.

Theorem 4.3. Let C = KX. The following assertions are equivalent.

(i) FIA(X)= C∗ rat
l .

(ii) FIA(X)= C∗ rat
r .

(iii) For any x ∈ X there are finitely many elements u ∈ X such that u ≤ x , and
finitely many elements y ∈ X such that x ≤ y.

(iv) KX is a left and right semiperfect coalgebra.

Proof. (i)⇒ (iii) Since Ex,x ∈ C∗ rat
l , there exist finite families (ci )i in C and (c∗i )i

in C∗ such that c∗Ex,x =
∑

i c∗(ci )c∗i for any c∗ ∈ C∗. If there are infinitely many
elements u in X such that u ≤ x , then we can choose such an element u0 for which
eu0,x does not show up in the representation of any ci (as a linear combination of
the standard basis of C). Since Eu0,x(ep,q) = δu0,pδx,q , we get Eu0,x(ci ) = 0 for
any i , so

∑
i Eu0,x(ci )c∗i = 0, while (Eu0,x Ex,x)(eu0,x)= 1, a contradiction.

Assume now that for some x ∈ X the set of all elements y with x ≤ y, say (yi )i ,
is infinite. Let c∗ ∈ C∗ which is 1 on each ex,yi and 0 on any other ep,q . Then it is
easy to see that

(d∗c∗)(eu,v)=

{
d∗(eu,x) if u ≤ x ≤ v, and v ∈ {yi | i},
0 otherwise.

Let (u j ) j be the family of all elements u with u ≤ x . As we proved above, this
family is finite. For each j , let c∗j ∈ C∗ equal 1 on every eu j ,yi , and 0 on any
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other ep,q . We have that d∗c∗ =
∑

j d∗(eu j ,x)c
∗

j for any d∗ ∈ C∗. Indeed, using
the formula above we see that both sides equal d∗(eu j0 ,x) when evaluated at some
eu j0 ,yi , and 0 when evaluated at any other ep,q .

Therefore c∗ ∈C∗ rat
l , but obviously c∗ /∈ FIA(X), since it is nonzero on infinitely

many ep,q ’s.

(iii)⇒ (i) Choose some x, y with x ≤ y. Then for any c∗ ∈ C∗ we have that

(c∗Ex,y)(eu,v)=

{
c∗(eu,x) if u ≤ x ≤ y = v,
0 otherwise.

This shows that if (u j ) j is the finite family of all elements u with u ≤ x , then
c∗Ex,y =

∑
j c∗(eu j ,x)Eu j ,y , so Ex,y lies in C∗ rat

l .
Now let c∗ ∈ C∗ rat

l , so

d∗c∗ =
∑

i

d∗(ci )c∗i

for some finite families (ci )i in C and (c∗i )i in C∗. If x ∈ X such that ex,x does
not appear in any ci (with nonzero coefficient), then Ex,x c∗ = 0. In particular
0= (Ex,x c∗)(ex,y)= c∗(ex,y) for any x ≤ y. Since only finitely many eu,u appear
in the representations of the ci ’s, and for any such u there are finitely many v with
u ≤ v, we obtain that c∗(eu,v) is nonzero for only finitely many eu,v. So c∗ lies in
the span of all Ex,y’s, which is FIA(X).

(ii)⇔ (iii) is similar.

(iii)⇔ (iv) follows from [Simson 2009, Lemma 5.1]. �

5. Coreflexivity for path subcoalgebras and subcoalgebras
of incidence coalgebras

We recall from [Radford 1973; Taft 1972] that a coalgebra C is called coreflexive if
any finite-dimensional left (or equivalently, any finite-dimensional right) C∗-module
is rational. This is also equivalent to asking that the natural embedding of C into
the finite dual of C∗, C→ (C∗)0 is surjective (so an isomorphism), or that any left
(equivalently, any right) cofinite ideal is closed in the finite topology. See [Radford
1974; 1973; Taft 1972; 1977] for further equivalent characterizations.

Given the definition of coreflexivity and the characterizations of the previous
section, it is natural to ask what is the connection between the situation when the
path coalgebra can be recovered as the finite dual of the quiver algebra, and the
coreflexivity of the path coalgebra. We note that these two are closely related. We
have an embedding ι : K0 ↪→ (K0)∗0; at the same time, we note that the embedding
of algebras (without identity) ψ : K [0] ↪→ (K0)∗ which is dense in the finite
topology of (K0)∗, produces a comultiplicative morphism ϕ : (K0)∗0→ K [0]0.
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Note that ϕ is not necessarily a morphism of coalgebras, since it may not respect
the counits. It is easy to see that these canonical morphisms are compatible with θ ,
i.e., they satisfy θ = ϕ ◦ ι:

K0
↪→

ι //

θ ##

(K0)∗0

ϕ

��
K [0]0

It is then natural to ask what is the connection between the bijectivity of θ , and
coreflexivity of K0, i.e., bijectivity of ι. In fact, we notice that if C is coreflexive
(equivalently, ι is surjective), then ϕ is necessarily injective.

The following two examples will show that, in fact, C can be coreflexive and
θ not an isomorphism, and also that θ can be an isomorphism without C being
coreflexive.

Example 5.1. Consider the path coalgebra of the following quiver 0:

a

b177x11

c

''
y11

b2
//x21

c
//

y21

b2//
x22

c//
y22

. . .

bn

�� xn1
...

c

??
yn1

...

bn

��
xnn

...

c

??
ynn

...

...
...

...

Here there are n arrows from vertex a to vertex bn and n arrows from bn to c for
each positive integer n. We note that the one-dimensional vector space I spanned
by a − c is a coideal, since a − c is an (a, c)-skew-primitive element. It is not
difficult to observe that the quotient coalgebra C/I is isomorphic to the coalgebra
from [Radford 1974, Example 3.4], and so C/I is not coreflexive, as shown in
[Radford 1974]. By [Heyneman and Radford 1974, 3.1.4], we know that if I is
a finite-dimensional coideal of a coalgebra C then C is coreflexive if and only if
C/I is coreflexive. Therefore, C is not coreflexive. However, it is obvious that C
satisfies the quiver conditions of Theorem 3.3, and therefore, K0 = K [0]0.

Hence, a path coalgebra of a quiver with no cycles and finitely many arrows
between any two vertices is not necessarily coreflexive. Conversely, we note that in
a coreflexive path coalgebra there are only finitely many arrows between any two
vertices. This is true since a coreflexive coalgebra is locally finite by [Heyneman and
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Radford 1974, 3.2.4], which means that the wedge X ∧Y =1−1(X ⊗C +C ⊗Y )
of any two finite-dimensional vector subspaces X, Y of C is finite-dimensional
(one applies this for X = K a and Y = K b). However, if a path coalgebra K0
is coreflexive, 0 may contain cycles: consider the path coalgebra C of a loop (a
graph with one vertex and one arrow); C is then the divided power coalgebra,
C∗ = K [[X ]], the ring of formal power series, and its only ideals are (Xn), which
are closed in the finite topology of C∗. Thus, every finite dimensional C∗-module
is rational and C is coreflexive.

We will prove coreflexivity of an interesting class of path coalgebras, whose
quiver satisfy a slightly stronger condition than that required by Theorem 3.3 (so in
particular, they will satisfy K0 = K [0]0). We first prove a general coreflexivity
criterion.

Theorem 5.2. Let C be a coalgebra with the property that for any finite dimen-
sional subcoalgebra V there exists a finite-dimensional subcoalgebra W such that
V ⊆W and W⊥W⊥ =W⊥. Then C is coreflexive if and only if its coradical C0 is
coreflexive.

Proof. If C is coreflexive, then so is C0, since a subcoalgebra of a coreflexive
coalgebra is coreflexive (see [Heyneman and Radford 1974, Proposition 3.1.4]).
Conversely, let C0 be coreflexive. We prove that any finite-dimensional left C∗-
module M is rational, by induction on the length l(M) of M . If l(M)= 1, i.e., M
is simple, then M is also a left C∗/J (C∗)-module, where J (C∗) is the Jacobson
radical of C∗. Since C∗/J (C∗) ' C∗0 and C0 is coreflexive, we have that M is a
rational C∗0 -module, so then it is a rational C∗-module, too.

Assume now that the statement is true for length < n, where n > 1, and let M be
a left C∗-module of length n. Let M ′ be a simple submodule of M , and consider
the associated exact sequence

0→ M ′→ M→ M ′′→ 0.

By the induction hypothesis M ′ and M ′′ are rational. By [Dăscălescu et al. 2001,
Theorem 2.2.14] we have that annC∗(M ′) and annC∗(M ′′) are finite codimensional
closed two-sided ideals in C∗. Using [Dăscălescu et al. 2001, Corollary 1.2.8
and Proposition 1.5.23], annC∗(M ′)=U⊥1 and annC∗(M ′′)=U⊥2 for some finite-
dimensional subcoalgebras of C . Using the hypothesis for V = U1 +U2, there
is a finite dimensional subcoalgebra W of C such that U1 ⊆ W , U2 ⊆ W and
W⊥W⊥ =W⊥. Then, by [Dăscălescu et al. 2001, Proposition 1.5.23],

W⊥ =W⊥W⊥ ⊆U⊥1 U⊥2 = annC∗(M ′) annC∗(M ′′)⊆ annC∗(M)

is a two-sided closed ideal of C∗, of finite codimension. Therefore, M is a rational
C∗-module by using again [Dăscălescu et al. 2001, Theorem 2.2.14]. �
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Proposition 5.3. Let C be the path coalgebra K0, where 0 is a quiver such
that there are finitely many paths between any two vertices. Then for any finite-
dimensional subcoalgebra V of C there exists a finite-dimensional subcoalgebra
W such that V ⊆W and W⊥W⊥ =W⊥. As a consequence, C is coreflexive if and
only if the coradical C0 (which is the grouplike coalgebra over the set of vertices of
0) is coreflexive.

Proof. Let V be a finite-dimensional subcoalgebra of C = K0. An element c ∈ V
is of the form

c =
n∑

i=1

αi pi , αi 6= 0,

a linear combination of paths p1, . . . , pn . Consider the set of all vertices at least
one of these paths passes through, and let S0 be the union of all these sets of vertices
when c runs through the elements of V . Since V is finite-dimensional, we have that
S0 is finite (in fact, one can see that S0 consists of all vertices in 0 which belong
to V , so that K S0 is the socle of V ). Let P be the set of all paths p such that
s(p), t (p) ∈ S0. We consider the set S of all vertices at least one path of P passes
through. It is clear that P is finite, and then so is S. We note that if v1, v2 ∈ S and
p is a path from v1 to v2, then any vertex on p lies in S. Indeed, v1 is on a path
from u1 to u′1 (vertices in S0), and let p1 be its subpath from u1 to v1. Similarly, v2

is on a path from u2 to u′2 (in S0), and let p2 be the subpath from v2 to u′2. Then
p1 pp2 ∈ P , so any vertex of p is in S. Let W be the subspace spanned by all paths
starting and ending at vertices in S. It is clear that any subpath of a path in W is
also in W , so then W is a finite-dimensional subcoalgebra containing V (since S0

is contained in S).
We show that W⊥W⊥ = W⊥. For this, given η ∈ W⊥, we construct elements

f1, f2, g1, g2 ∈W⊥ such that η= f1g1+ f2g2. We define fi (p) and gi (p), i = 1, 2,
on all paths p by induction on the length of p. For paths p of length zero, i.e., if p
is a vertex v, we define fi (v)= gi (v)= 0, i = 1, 2, for any v ∈ S, while for v /∈ S,
we set f1(v)= g2(v)= 1, and f2(v) and g2(v) are such that g1(v)+ f2(v)= η(v).
Then clearly η = f1g1 + f2g2 on paths of length zero. For the induction step,
assume that we have defined fi and gi , i = 1, 2, on all paths of length < l, and
that η = f1g1+ f2g2 on any such path. Let now p be a path of length l, starting
at u and ending at v. If u, v ∈ S, then we define fi (p)= gi (p)= 0, i = 1, 2, and
clearly η(p)=

∑
i=1,2

∑
qr=p fi (q)gi (r), since both sides are zero. If either u /∈ S

or v /∈ S, we need the following equality to hold:

(3) f1(u)g1(p)+ f1(p)g1(v)+ f2(u)g2(p)+ f2(p)g2(v)

= η(p)−
∑

i=1,2

∑
qr=p

q 6=p,r 6=p

fi (q)gi (r).
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We note that the terms of the right-hand side of the equality (3) have already been
defined, because when p = qr and q 6= p, r 6= p, the length of the paths q and r is
strictly less than the length of p. We define f1(p) and g2(p) to be any elements of
K , and then since either f1(u)= 1 or g2(v)= 1 (since either u /∈ S or v /∈ S), we
can choose suitable g1(p) and f2(p) such that (3) holds true.

The fact that C is coreflexive if and only if so is C0 follows now follows directly
from Theorem 5.2. �

Moreover, we can extend the result in the previous proposition to subcoalgebras
of path coalgebras.

Proposition 5.4. Let C be a subcoalgebra of a path coalgebra K0, such that there
are only finitely many paths between any two vertices in 0. Then C is coreflexive if
and only if C0 is coreflexive.

Proof. Let 0′ be the subquiver of 0 whose vertices are all the vertices v of 0 such
that there is an element c=

∑
i αi pi ∈C , where the αi ’s are nonzero scalars and the

pi ’s are pairwise distinct paths, and at least one pi passes through v. The arrows of
0′ are all the arrows of 0 between vertices of 0′. Clearly, there are only finitely
many paths between any two vertices in 0′. Then we have that C is a subcoalgebra
of K0′ and C0= (K0′)0. Obviously, C0⊂ (K0′)0; for the converse, let us consider
a vertex u in 0′, so there is c ∈ C such that c =

∑
i αi pi , with αi 6= 0 and distinct

pi ’s, and some pk passes through u. Let us write then pk = qr such that q ends at
u and r begins at u. Since C is a subcoalgebra of K0′ it is also a sub-bicomodule,
so then r∗cq∗ ∈ C , where q∗, r∗ ∈ (K0′)∗ are equal to 1 on q, r respectively and 0
on all other paths of K0′. Now

r∗ pi q∗ =
∑

pi=stw

q∗(s)tr∗(w)

and the only nonzero terms can occur if pi = qtir , where ti is a path starting and
ending at u (loop at u). Let J be the set of these indices. In this situation r∗ pi q∗= ti .
Note that since the pi ’s are distinct, the t j ’s, j ∈ J are distinct too. Also, since
pk = qr , there is at least such a j . We have

r∗cq∗ =
∑

j

α j t j ,

with all t j beginning and ending at u, and tk = u. Let l ∈ J be an index such that tl
has maximum length among the t j ’s, j ∈ J . We note then that t∗l t j = 0 if j 6= l,
since for any decomposition t j = st , we have t 6= tl because of the maximality of tl
and of the fact that t j 6= tl . However, t∗l tl = u. Therefore, t∗l c = αlu ∈ C , so u ∈ C
since αl 6= 0.
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Thus if C0 is coreflexive, we have that (K0′)0 is coreflexive, and then by
Proposition 5.3, we have that K0′ is coreflexive. Then C is coreflexive, as a
subcoalgebra of K0′. Conversely, if C is coreflexive, clearly C0 is coreflexive. �

Corollary 5.5. Let C be a subcoalgebra of an incidence coalgebra KX. Then C is
coreflexive if and only if C0 is coreflexive.

Proof. As explained in Section 4, KX can be embedded in a path coalgebra K0,
where 0 is a quiver for which there are finitely many paths between any two vertices.
Then C is isomorphic to a subcoalgebra of K0 and we apply Proposition 5.4. �

Recall that for a path coalgebra or incidence coalgebra C , C0∼ K (X), where X is
the set of grouplike elements in C . At this point, we believe it is worth mentioning
that by [Heyneman and Radford 1974, Theorem 3.7.3], K (X) is coreflexive whenever
X is a nonmeasurable cardinal. More precisely, an ultrafilter F on a set X is
called an Ulam ultrafilter if F is closed under countable intersection. X is called
nonmeasurable (or reasonable in the language of [Heyneman and Radford 1974])
if every Ulam ultrafilter is principal (i.e., it equals the collection of all subsets of
X containing some fixed x ∈ X ). The class of nonmeasurable sets contains the
countable sets and is closed under usual set-theoretic constructions, such as the
power set, subsets, products, and unions. If a nonreasonable (i.e., measurable) set
exists, its cardinality has to be “very large” (inaccessible in the sense of set theory).

We now give an example to show that it is possible to have a coalgebra which
is both coreflexive, and satisfies the path coalgebra “recovery” conditions of
Theorem 3.3; however, in its quiver, some vertices are joined by infinitely many
paths. Thus, in general, the coreflexivity question for path coalgebras is more
complicated.

Example 5.6. Consider the path coalgebra C of the following quiver 0:

a

b1

77x1

c

''y1

b2//
x2

c//
y2

. . .

bn

�� xn
...

c

??yn
...

...
...

...

Here there are infinitely many vertices bn , one for each positive integer n. Let Wn

be the finite-dimensional subcoalgebra of C with basis

B = {a, c, b1, . . . , bn, x1, . . . , xn, y1, . . . , yn, x1 y1, . . . , xn yn}.
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We show that W⊥n =W⊥n ·W
⊥
n . Let f ∈W⊥n . We show that we can find elements

g1, g2, h1, h2 ∈ W⊥n such that f = g1h1 + g2h2. This condition is already true
on elements of B if we set g1, g2, h1, h2 to be zero on Wn . For k > n we define
g1, g2, h1, h2 on xk, yk and xk yk such that

f (xk yk)=
∑

i=1,2

(gi (a)hi (xk yk)+ gi (xk)hi (yk)+ gi (xk yk)hi (c)),

f (xk)=
∑

i=1,2

(gi (a)hi (xk)+ gi (xk)hi (bk)),

f (yk)=
∑

i=1,2

(gi (bk)hi (yk)+ gi (yk)hi (c)),

f (bk)=
∑

i=1,2

gi (bk)hi (bk).

and since gi (a)= hi (a)= gi (c)= hi (c)= 0 this is equivalent to the matrix equality(
f (bk) f (yk)

f (xk) f (xk yk)

)
=

(
g1(bk)

g1(xk)

)
·
(
h1(bk) h1(yk)

)
+

(
g2(bk)

g2(xk)

)
·
(
h2(bk) h2(yk)

)
.

But it is a standard linear algebra fact that any arbitrary 2 × 2 matrix can be
written this way as a sum of two matrices of rank 1, and thus the claim is proved.
Since every finite-dimensional subcoalgebra V of C is contained in some Wn with
W⊥n =W⊥n ·W

⊥
n and C0 ∼= K Z>0 is coreflexive, by Theorem 5.2 we obtain that C

is coreflexive.

Reflexivity for quiver and incidence algebras. Recall from [Taft 1972] that an
algebra is called reflexive if the natural (evaluation) map from A to A0∗ is an
isomorphism. Using our construction in Section 2, we can extend this to algebras
with enough idempotents, and call such an algebra reflexive if the map 8 : a 7−→
( f 7→ f (a)) ∈ A0∗ is an isomorphism. We note that in general the coalgebra A0

is a coalgebra with counit, and therefore, A0∗ is an algebra with unit. Hence, a
reflexive algebra must be unital. Parallel to algebras with unit we call an algebra
proper if the map 8 is injective and we call A weakly reflexive if 8 is surjective. It
is not difficult to see that an algebra is proper if and only if the intersection of all
cofinite ideals is 0.

Theorem 5.7. Let 0 be a quiver.

(i) The quiver algebra K [0] is proper.

(ii) K [0] is reflexive (equivalently, weakly reflexive) if and only if it is finite-
dimensional, equivalently, 0 has finitely many vertices and arrows, and has no
oriented cycles.
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Proof. (i) follows since K [0] embeds in (K0)∗ which is proper by Proposition 3.1
of [Taft 1972], and one can easily see that Proposition 3.4 of the same reference,
stating that a subalgebra of a proper algebra is proper can be extended to algebras
with enough idempotents. Alternatively, one can see that the intersection of cofinite
ideals of K [0] is always 0.

(ii) Assume K [0] is weakly reflexive, so K [0] → K [0]0∗ is surjective. The
inclusion K0 ⊆ K [0]0 yields a surjective morphism of algebras

K [0]0∗→ (K0)∗.

This shows that the natural map ψ : K [0] ↪→ (K0)∗ is surjective (and, in fact,
bijective). Consider the “gamma function” on K [0], i.e., the function γ ∈ K [0]
equal to 1 on all paths. Then γ is in the image of ψ , and since every function in
the image of ψ has finite support as a function on the set of paths of 0, it follows
that there are only finitely many paths in 0. Therefore, K [0] is finite-dimensional.
The converse is obvious (as noticed before). �

In the case of incidence algebras, using [Taft 1972, Proposition 6.1] which states
that a coalgebra C is coreflexive if and only if C∗ is reflexive, and using also
Corollary 5.5, we immediately get this:

Theorem 5.8. Let X be a locally finite partially ordered set. The following asser-
tions are equivalent:

(i) The incidence algebra IA(X) of X over K is reflexive.

(ii) The incidence coalgebra KX is coreflexive.

(iii) The coalgebra (KX)0 = KX0 (the grouplike coalgebra on the elements of X )
is coreflexive.

(iv) The algebra K X of functions on X is reflexive.

These yield as a corollary the algebra analogue of Proposition 4.1.

Corollary 5.9. Let A be an algebra of a nonmeasurable cardinality. Then A is
isomorphic both to a quiver algebra and to an incidence algebra if and only if and
only if it is the quiver algebra of a finite quiver with no oriented cycles, equivalently,
it is elementary, finite dimensional and hereditary.

Proof. If A ∼= K [0] ∼= IA(X) for a quiver 0 and a locally finite partially ordered
set X , then K (X) is coreflexive by [Heyneman and Radford 1974] since X is also
nonmeasurable. Now A ∼= IA(X) is reflexive since K X ∼= (K (X))∗ is reflexive by
[Taft 1972, Proposition 6.1]. By Theorem 5.7, A∼= K [0] must be finite dimensional
since it is reflexive. The final statements follow from the well known characteriza-
tions of finite-dimensional quiver algebras. �



QUIVER ALGEBRAS, PATH COALGEBRAS AND COREFLEXIVITY 75

An application. We give now an application of our considerations on coreflexive
coalgebras. If 0,0′ are quivers, then we consider the quiver 0 × 0′ defined as
follows. The vertices are all pairs (a, a′) for a, a′ vertices in 0 and 0′ respectively.
The arrows are the pairs (a, x ′), which is an arrow from (a, a′1) to (a, a′2), where a
is a vertex in 0 and x ′ is an arrow from a′1 to a′2 in 0′, and the pairs (x, a′), which
is an arrow from (a1, a′) to (a2, a′), where x is an arrow from a1 to a2 in 0, and a′

is a vertex in 0′. Let p = x1x2 . . . xn be a path in 0 going (in order) through the
vertices a0, a1, . . . , an and q = y1 y2 . . . yk be a path in 0′ going through vertices
b0, b1, . . . , bk (some vertices may repeat). We consider the 2 dimensional lattice
L = {0, . . . , n}× {0, . . . , k}. A lattice walk is a sequence of elements of L starting
with (0, 0) and ending with (n, k), and always going either one step to the right or
one step upwards in L , i.e., (i, j) is followed either by (i + 1, j) or by (i, j + 1).
There are

(n+k
k

)
such walks.

To p, q and a lattice walk (0, 0)= (i0, j0), (i1, j1), . . . , (in+k, jn+k)= (n, k) in
L we associate a path of length n + k in 0 × 0′, starting at (a0, b0) and ending
at (an, bk) such that the r-th arrow of the path, from (air−1, b jr−1) to (air , b jr ) is
(xr−1, b jr−1) if ir = ir−1+ 1, and (air−1, yr−1) if jr = jr−1+ 1.

Conversely, if γ is a path in 0×0′, there are (uniquely determined) paths p in
0 and q in 0′, and a lattice walk such that γ is associated to p, q and that lattice
walk as above. Indeed, we take p to be the path in 0 formed by considering the
arrows x such that there are arrows of the form (x, a′) in γ , taken in the order they
appear in γ . Similarly, q is formed by considering the arrows of the form (a, y) in
γ . The lattice walk is defined according to the succession of arrows in γ .

For two such paths p, q let us denote W (p, q) the set of all paths in 0 × 0′

associated to p and q via lattice walks.

Functoriality, (co)products of quivers and recovery problems. We note that if 0
and 0′ satisfy condition (i) in Theorem 3.3 (i.e., if their path coalgebras can be
recovered as finite duals of the corresponding quiver algebras), then 0×0′ satisfies
this condition, too. Indeed, the description of the arrows in 0×0′ shows that there
are finitely many arrows between any two vertices. Also, if an oriented cycle existed
in 0×0′, then it would produce an oriented cycle in each of 0 and 0′.

Also, if 0 and 0′ satisfy condition (iii) in Theorem 3.6 (i.e., if their quiver
algebras can be recovered as the rational part of the dual of the corresponding path
coalgebras), then 0 × 0′ satisfies this condition, too. Indeed, a path in 0 × 0′

starting at the vertex (a, a′) is determined by a path in 0 starting at a, a path in 0′

starting at a′ (and there are finitely many such paths in both cases), and a lattice
walk (chosen from a finite family). These can be extended to finite products of
quivers in the obvious way.

Given a family of quivers (0i )i , one can consider the coproduct quiver 0=
∐

i 0i .
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The path coalgebra functor commutes with coproducts and one has

K0 =
⊕

i

K0i .

Also, the quiver algebra functor from the category of quivers to the category of
algebras with enough idempotents has the property that

K
[∐

i

0i

]
=

⊕
i

K [0i ].

It is clear that
∐

i 0i satisfies the conditions of Theorem 3.3 (i) if and only if each
0i satisfies the same condition, so each K0i can be recovered from K [0i ] if and
only if K0 is recoverable from K [0]. Also, each of the quivers (0i )i satisfies
condition (iii) in Theorem 3.6, if and only if so does their disjoint union

∐
i 0i . In

coalgebra terms, this is justified by the fact that a direct sum
⊕

i Ci of coalgebras
is semiperfect if and only if each Ci is semiperfect.

Returning to coreflexivity problems, we need the following.

Lemma 5.10. The linear map α : K0⊗K0′ ↪→ K (0×0′) defined by α(p⊗q)=∑
w∈W (p,q)w, where p ∈ 0 and q ∈ 0′ are paths, is an injective morphism of

K -coalgebras.

Proof. We keep the notations above. Denote δ and 1 the comultiplications of
K0⊗ K0′ and K (0×0′). We have

δα(p⊗ q)=
∑

w∈W (p,q)

∑
w′w′′=w

w′⊗w′′,

(α⊗α)1(p⊗ q)=
∑

p′ p′′=p

∑
q ′q ′′=q

∑
u∈W (p′,q′)

v∈W (p′′,q ′′)

u⊗ v.

On the one hand, if p = p′ p′′, q = q ′q ′′, u ∈W (p′, q ′) and v ∈W (p′′, q ′′), we
have uv ∈W (p, q). On the other hand, if w ∈W (p, q) and w = w′w′′, then there
exist p′ p′′ in 0 and q ′, q ′′ in 0′ such that p = p′ p′′, q = q ′q ′′, w′ ∈ W (p′, q ′)
and w′′ ∈W (p′′, q ′′). These show that δα(p⊗ q)= (α⊗α)1(p⊗ q), i.e., α is a
morphism of coalgebras (the compatibility with counits is easily verified).

To prove injectivity, if p = x1x2 . . . xn is a path in 0 starting at a0 and ending
at an , and q = y1 y2 . . . yk is a path in 0′ starting at b0 and ending at bk , we
denote by (p∗, q∗) the linear map on K (0 × 0′) which equals 1 on the path
(x1, b0), . . . , (xn, b0), (an, y1), . . . , (an, yk) (for simplicity we also denote this path
by (p, b0); (an, q)) and 0 on the rest of the paths. Let

∑
i λi pi⊗qi ∈Ker(α). Then

we have

(4)
∑

i

∑
w∈W (pi ,qi )

λiw = 0.
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Fix some j . Say that p j ends at an and q j starts at b0. We have that

(p∗j , q∗j )(w)=


0 if w ∈W (pi , qi ), i 6= j,
0 if w ∈W (p j , q j ) and w 6= (p j , b0), (an, q j ),

1 if w = (p j , b0), (an, q j ).

Note that we used the fact that W (p, q)∩W (p′, q ′)=∅ for (p, q) 6= (p′, q ′). Now
applying (p∗j , q∗j ) to (4) we see that λ j = 0. We conclude that α is injective. �

Combining the above, we derive a result about tensor products of certain core-
flexive coalgebras. It is known that a tensor product of a coreflexive and a strongly
coreflexive coalgebra is coreflexive (see [Radford 1973]; see also [Taft 1977]).
It is not known whether the tensor product of coreflexive coalgebras is necessarily
coreflexive. We have the following consequences.

Proposition 5.11. Let C, D be coreflexive subcoalgebras of path coalgebras K0
and K0′ respectively such that between any two vertices in 0 and 0′ respectively
there are only finitely many paths. Then C ⊗ D is coreflexive.

Proof. Without any loss of generality we may assume that C0= (K0)0= K (00) and
D0 = (K0′)0 = K (00) (otherwise we replace 0 and 0′ by appropriate subquivers),
where K (00) denotes the grouplike coalgebra with basis the set 00 of vertices of 0.
Now C ⊗ D is a subcoalgebra of K0⊗ K0′, so by Lemma 5.10, it also embeds in
K (0×0′). Since the coradical of K (0×0′) is K (00×0

′

0), and

K (00×0
′

0) ' K (00)⊗ K (0′0) = C0⊗ D0 ⊆ C ⊗ D,

we must have that (C ⊗ D)0 = K (00×0
′

0). We claim that K (00×0
′

0) is coreflexive.
Indeed, this is obvious if 00 and 0′0 are both finite. Otherwise, card(00×0

′

0) =

max{card(00), card(0′0)}, hence K (00×0
′

0) is isomorphic either to K (00) or to K (0′0),
both of which are coreflexive by Proposition 5.4. Since it is clear that in 0×0′ there
are also finitely many paths between any two vertices, we can use Proposition 5.4
to show that C ⊗ D is coreflexive. �

Corollary 5.12. If C, D are coreflexive subcoalgebras of incidence coalgebras,
then C ⊗ D is coreflexive.

Proof. It follows immediately from the embedding of C and D in path coalgebras
verifying the hypothesis of Proposition 5.11. �
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A POSITIVE DENSITY OF FUNDAMENTAL DISCRIMINANTS
WITH LARGE REGULATOR

ÉTIENNE FOUVRY AND FLORENT JOUVE

We prove that there is a positive density of positive fundamental discrimi-
nants D such that the fundamental unit ε(D) of the ring of integers of the
field Q(

√
D) is essentially greater than D3.

1. Introduction

Let D > 1 be a fundamental discriminant which means that D is the discriminant
of the quadratic field K := Q(

√
D). Let ZK be its ring of integers and let ω =

(D+
√

D)/2. Then ZK is a Z-module of rank 2

(1) ZK = Z⊕Zω.

Furthermore there exists a unique element ε(D) > 1 such that the group UK of
invertible elements of ZK has the shape

UK = {± ε(D)n ; n ∈ Z}.

The element ε(D) is called the fundamental unit of ZK and its logarithm R(D) :=
log ε(D) is called the regulator. The regulator R(D) is a central object of algebraic
number theory. For instance R(D) plays a role in the computation of the class
number (see (34)). The study of the properties of the unruly function D 7→ R(D)
is a fascinating problem in both theoretical and computational aspects (see [Cohen
1993], for instance).

A rather similar but not completely equivalent problem — see the discussion
in Section 5 — is the study of the fundamental solution εd to the so-called Pell
equation

PE(d) T 2
− dU 2

= 1,

where the parameter d is a nonsquare positive integer and the unknown is the pair
(T,U ) of integers. It is convenient to write any given solution of PE(d) under the
form T +U

√
d . Let εd be the least of these solutions greater than 1. Then the set

of solutions of PE(d) is infinite and also has the shape {± εn
d ; n ∈ Z}.

MSC2010: primary 11D09; secondary 11R11.
Keywords: regulator of a real quadratic field, Pell equation.
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It is known that there exists an absolute constant C such that the following
inequalities hold

(2)
√

D < ε(D)≤ exp(C
√

D log D) and 2
√

d < εd ≤ exp(C
√

d log d).

It is widely believed that most of the time ε(D) and εd are huge compared to the
size of D or d , and this fact is confirmed by numerical evidence. One can find more
precise conjectures ([Hooley 1984; Sarnak 1985], for instance) which would imply
in particular that for all ε > 0 the inequality

(3) εd ≥ exp d(1/2)−ε,

holds for almost all nonsquare d (and for almost all fundamental discriminants
D, since these D form a subset of positive density). Recall that a subset A of
positive integers is said to have a positive density if its counting function satisfies
the inequality

lim inf
# {a ∈A ; 1≤ a ≤ x}

x
> 0 (x→∞).

The set A is said to be negligible (or with zero density) if one has

lim sup
# {a ∈A ; 1≤ a ≤ x}

x
= 0 (x→∞).

Since a proof of (3) still seems to be out of reach, it is a challenging problem to
construct infinite sequences of fundamental discriminants D (resp. of nonsquare d)
with a huge ε(D) (resp. with a huge εd ). In the case of fundamental discriminants D,
it is now proved that there exists c> 1 such that the inequality ε(D) > exp(logc D)
is true for infinitely many D’s; see, for example, [Yamamoto 1971; Reiter 1985;
Halter-Koch 1989].

In the case of a nonsquare d the situation is better understood. Indeed we know
that for some positive c there exists infinitely many d’s such that εd > exp(dc). We
refer the reader to the pioneering work of Dirichlet [1856] leading to the optimality
of (2), and to more recent work on the subject, for instance [Zagier 1981, pp. 74, 85;
Fouvry and Jouve 2012, Theorem 2]. See also [Golubeva 1987] for the study of the
case d = 5p2. However none of these works manages to produce an infinite family
of squarefree d’s.

Besides, it is not known whether there exists a constant c > 1 such that the
inequality εd ≥ exp(logc d) holds for a positive density of d’s. So we may ask for
the frequency of weaker inequalities, such as εd > dθ or ε(D) > Dθ , where θ > 1

2 is
a fixed constant. In that direction, Hooley [1984, Corollary] proved that for almost
every d one has εd > d(3/2)−ε. This was improved to εd > d(7/4)−ε by Fouvry and
Jouve [2013, Corollary 1] (ε > 0 arbitrary).
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The same work of Hooley implies that there exists a positive density of d
satisfying εd > d3/2/ log d . By a complete different technique based on the theory
of continued fractions, Golubeva [2002, Theorem] constructed a set of d’s of positive
density such that εd ≥ d2−ε (ε > 0 arbitrary). It does not seem to be an easy task
to extend these two results to the case of a fundamental D because the condition
for an integer to be squarefree seems hard to insert in the corresponding proofs of
Hooley and Golubeva.

Our main result asserts that there is a positive density of positive fundamental
discriminants D with fundamental unit of size essentially larger than D3. In fact
we can say more: first we show it is enough to consider the contribution of positive
fundamental discriminants with fundamental unit of positive norm to get our density
estimate. Moreover we can further restrict our study to positive fundamental
discriminants D that satisfy a very specific divisibility property. This property
is of an algebraic nature. To explain precisely what it is, we state the following
proposition the first version of which goes back (at least) to Dirichlet (see the
beginning of Section 3 for historical background and references).

If D > 1 is a fundamental discriminant set

D′ =


D if D is odd,
D/2 if D = 4d, d ≡ 3 mod 4,
D/4 if 8 |D.

In other words D′ is the kernel of D. Finally let Fund+ denote the set of fundamental
discriminants D > 1 such that ε(D) has norm 1.

Proposition 1. For every D ∈ Fund+ there exists exactly two distinct positive
divisors of D′, both different from 1 and D/(4, D), among the set of norms of
principal ideals of ZQ(

√
D).

Let 8 be the function on Fund+ sending D to the minimum of the two distinct
divisors of D′ the existence of which is guaranteed by Proposition 1. With notation
as above our main result can be stated as follows.

Theorem 2. For every δ > 0 there exists x0(δ) > 0 and c0(δ) > 0 such that

(4) #
{

D ∈ Fund+ ; X < D ≤ 2X, 22
‖D,8(D) < Dδ, ε(D)≥ D3−δ}

≥ c0(δ)X,

for every X > x0(δ).
Similar statements are true when the condition 22

‖D in the set on the left-hand
side is replaced by 8 |D, or D ≡ 1 mod 4.

We shall mainly concentrate on the case 22
‖D since the situation is simplified a lot

thanks to an easy link between units of Q(
√

D) and the equation PE(d/4) via the
equality

(5) ε(D)= εD/4.
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Proposition 1 can naturally be seen as a feature of the algebraic interpretation
of the transformation of Legendre and Dirichlet we describe in Section 2.1. We
devote Section 3 to the proof of this statement. The proof of (4) in Theorem 2 is
given in Section 4. The cases 8 |D and D odd will be treated in Section 5.

The last part of the paper explains another application of the ideas leading to
Theorem 2. It is well known that any information on the size of ε(D) can be
interpreted in terms of the ordinary class number h(D) of the field Q(

√
D). Among

the various possible illustrations, we have selected the following one.

Theorem 3. Let C0 denote the converging Euler product:

C0 :=
∏
p≥3

(
1+

p
(p+ 1)2(p− 1)

)
.

There exists a constant δ > 0 such that for every sufficiently large x one has the
inequality

(6)
∑
D≤x
22
‖D

h(D)≤
( 8

21π2 C0− δ
) x3/2

log x
.

The proof of this theorem is essentially based on [Fouvry and Jouve 2013] and
Proposition 7. It will be given in Section 6 where we will explain why the inequality
(6) is better than the trivial upper bound by some constant factor strictly larger than
3.5. We shall also use in a crucial way the fact that the set of D’s with a large ε(D)
exhibited in Theorem 2 has some regularity. More precisely this set consists, up to a
few exceptions, in integers of the form pm with p large (see (29) for the definition
of D

γ
m(x)). However the inequality (6) is certainly far from giving a crucial step

towards the proof of the following expected asymptotic formula∑
D≤x
22
‖D

h(D)∼ c0x log2 x,

where x tends to infinity and c0 is some absolute positive constant.

2. Preliminaries

2.1. Legendre and Dirichlet’s transformation. In this subsection d denotes any
positive integer, not necessarily a fundamental discriminant. We describe and use
an easy transformation of the Pell equation PE(d) which was initiated by Legendre
[Legendre 1830, Chapter VII, pp. 61–74] and then extended by Dirichlet [Dirichlet
1834, Section 1]. For the sake of completeness we give the detail of Legendre’s
argument. For a more detailed presentation together with historical background



DENSITY OF FUNDAMENTAL DISCRIMINANTS WITH LARGE REGULATOR 85

and interpretations of this technique we refer to [Lemmermeyer 2003]. See also
[Hooley 1984, p. 109; Cremona and Odoni 1989, pp. 18–19].

Let us write PE(d) under the form

(7)
T 2
− 1
d
=U 2.

Since d |T 2
− 1, we have d = (T 2

− 1, d)= ((T + 1)(T − 1), d). Because the gcd
of T + 1 and T − 1 can only take the values 1 or 2, we are led to consider the two
corresponding cases:

• If T + 1 and T − 1 are coprime (i.e., T is even), we factorize

d = (T + 1, d)(T − 1, d)=: d1d2,

in a unique way. Combining this splitting of d with (7) yields the four equations

T + 1= d1U 2
1 , T − 1= d2U 2

2 , d = d1d2, U =U1U2,

which are equivalent to

(8) d1U 2
1 − d2U 2

2 = 2, T =−1+ d1U 2
1 , d = d1d2, U =U1U2, 2-d1U1.

• If 2= (T + 1, T − 1), two subcases are to be considered:

– either 4-d , in which case U is even and the Equation (7) can be written

((T + 1)/2) · ((T − 1)/2)
d

= (U/2)2.

Arguing as in the previous case we are reduced to considering the following set of
equations:

(9) d1U 2
1 − d2U 2

2 = 1, T =−1+ 2d1U 2
1 , d = d1d2, U = 2U1U2, 4-d,

– or 4 |d , in which case we can write (7) as follows:

((T + 1)/2) · ((T − 1)/2)
(d/4)

=U 2.

We factorize d/4 = ((T + 1)/2, d/4)((T − 1)/2, d/4) =: d1d2 and get the set of
equations

(10) d1U 2
1 − d2U 2

2 = 1, T =−1+ 2d1U 2
1 , d = 4d1d2, U =U1U2.

The following statement summarizes the above decomposition in a more concise
and applicable way.

Lemma 4 (Legendre and Dirichlet). Let d , U ∈ N≥1 be fixed integers. Set

A(d,U ) := {T ≥ 1 ; T 2
− dU 2

= 1}
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and

• if 2 -dU :

B(d,U ) :=
{
(d1, d2,U1,U2) ∈ N4

≥1 ; U1U2 =U, d1d2 = d, d1U 2
1 − d2U 2

2 = 2
}
,

• if 2 |dU and 4 -d:

B(d,U ) :=
{
(d1, d2,U1,U2) ∈ N4

≥1 ; 2U1U2 =U, d1d2 = d, d1U 2
1 − d2U 2

2 = 1
}
,

• if 4 |d:

B(d,U ) :=
{
(d1, d2,U1,U2) ∈N4

≥1 ; U1U2 =U, 4d1d2 = d, d1U 2
1 − d2U 2

2 = 1
}
.

Then in each case, we have

#A(d,U )= #B(d,U ) ∈ {0, 1}.

Proof. We start with the obvious observation that #A(d,U ) ∈ {0, 1}. We give the
rest of the argument in detail only in the first case, the other two cases being exactly
similar.

Next, #B(d,U ) ∈ {0, 1}. To see this we fix (d1, d2,U1,U2) a quadruple in
B(d,U ) and we show that the values of d1, U1 are prescribed by those of d , U . We
compute the square of d1U 2

1 −1= d2U 2
2 +1: it is (d1U 2

1 −1)(d2U 2
2 +1)= dU 2

+1.
Thus d1U 2

1−1 is determined by d , U and so is the gcd (d1U 2
1 , d). We claim this gcd

is d1. Indeed (d1, d2)= 1 since these integers satisfy d1U 2
1 − d2U 2

2 = 2 and 2-dU .
Thus if (d1U 2

1 , d) 6= d1, there is a nontrivial common factor q to U1 and d2. Again
using the equation satisfied by (d1, d2,U1,U2) we deduce q = 2, contradicting the
condition 2-dU .

To conclude the proof we observe that both the implications

(#A(d,U )= 1)⇒ (#B(d,U )≥ 1) and (#B(d,U )= 1)⇒ (#A(d,U )≥ 1)

hold. The first implication is just a way of rephrasing the reduction step explained
before the statement of the lemma. To prove the second implication we notice that
a quadruple (d1, d2,U1,U2) gives rise to an element T := d2U 2

2 + 1 = d1U 2
1 − 1

belonging to A(d,U ). �

2.2. Remarks on Lemma 4. The first remark concerns the implicit decomposition
(d, T,U ) 7→ (d1, d2,U1,U2) of Lemma 4, which should really be seen as a square
rooting process. This explains the efficiency of the method as a tool to study the size
of the solutions to the Pell equation PE(d). More precisely, a solution T +U

√
d

to PE(d) produces via Lemma 4 the algebraic integer U1
√

d1+U2
√

d2 which has
degree at most 4 (and at least 2 when d is not a square) over Q and which satisfies(

U1
√

d1+U2
√

d2
)2
= d1U 2

1 + d2U 2
2 + 2U1U2

√
d1d2.
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If T is odd this is precisely T +U
√

d. If T is even this number is 2(T +U
√

d).
Therefore Lemma 4 enables us to significantly reduce the order of magnitude of
the algebraic integers we work with.

The second remark concerns the special case where d = p ≡±1 mod 4. In that
case the integer d can only be factored in two ways under the form d = d1d2: either
(d1, d2)= (1, p) or (d1, d2)= (p, 1). Hence the study of the equation T 2

− pU 2
= 1

is reduced to the four equations

U 2
1 − pU 2

2 =

{
±2 if 2-U,
±1 if 2 |U.

Since U2 ≥ 1 we deduce that U1 ≥
√

p− 2, and also that in every case one has the
inequality U ≥

√
p− 2. Hence any nontrivial solution 4= T +U

√
p of the Pell

equation T 2
− pU 2

= 1 satisfies the inequality

4=
√

pU 2
+ 1+U

√
p ≥

√
p(p− 2)+ 1+

√
p(p− 2)≥ p.

This shows that the fundamental solution εp of PE(p) satisfies the inequality

(11) εp > p.

For p ≡ 3 mod 4 we deduce the lower bound

(12) ε(4p) > p,

for the fundamental unit of Q(
√

4p). In the general case of the equation T 2
−dU 2

=

1, the corresponding fundamental solution is greater than 2
√

d and this bound is
essentially best possible, as the choice d = n2

− 1 shows.
As E. P. Golubeva pointed out to us, the lower bound (11), which is certainly

already in the literature, can be deduced from properties of the continued fraction
expansion of

√
p. For instance, by Perron [1913, Satz 14, p. 94] we know that if

the nonsquare integer d is such that the period k of the expansion of
√

d is even
then it has the shape

√
d =

[
b0; b1, . . . , bν−1, bν, bν−1, . . . , b1, 2b0

]
,

where b0 is the integral part of
√

d, the central coefficient bν of index ν := k/2
either equals b0 or b0−1 or is less than (2/3)b0, and where any b`, 1≤ `< ν, is less
than (2/3)b0. If d is divisible by some prime congruent to 3 mod 4 it is well known
that the associated integer k is even. In the particular case where d = p ≡ 3 mod 4
we even know that bν = b0 or b0 − 1 (see [Golubeva 1993, p. 1277]). Note that
this last property is false if d ≡ 3 mod 4 is not a prime. Consider for instance
√

15= [3; 1, 6].
Classical properties of continued fraction expansions of quadratic integers imply

that if
√

d has even period k = 2ν, the fundamental solution T0+U0
√

d of PE(d)
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satisfies
T0

U0
= [b0; b1, . . . , bν−1, bν, bν−1, . . . , b1].

We deduce from the above discussion that in the case d = p ≡ 3 mod 4 one has

U0 ≥ bν ≥ b0− 1≥
√

p− 2.

This gives (11).

3. Proof of Proposition 1

This result has been known for a long time. Dirichlet [1834, Section 5]) was the first
to solve the question of the uniqueness of the decomposition d=d1d2 (or d= 4d1d2)
appearing in (8), (9) and (10) but without, of course, using the language of modern
algebraic number theory. We reprove this uniqueness result for squarefree d in
passing in Section 3.1. For a statement using the language of binary quadratic forms
see [Pall 1969], where the author notes that the result at issue essentially follows
from a theorem due to Gauss (see the references in [Pall 1969]). For more on this
subject we refer the reader to [Lemmermeyer 2003], in particular Theorem 3.3 there
and the subsequent discussion. (The statement of that theorem contains a minor
typo. One should allow the right-hand side of the equation to be negative since,
e.g., the set of integral solutions (r, s) to each of the two equations pr2

− s2
= 1

and pr2
− s2
= 2 is empty if p ≡ 7 mod 8.)

3.1. Applying Gauss’s theorem on the 2-rank of CD. Let D ∈ Fund+. We denote
by ClD (resp. CD) the group of ideal classes of ZQ(

√
D) in the ordinary (resp.

narrow) sense. Let pi , 1≤ i ≤ t , be the pairwise distinct prime divisors of D. These
primes are precisely the ones ramifying in ZQ(

√
D). For each 1≤ i ≤ t , let pi be the

prime ideal of ZQ(
√

D) above pi . Let us define:

(13) M = {pδ1
1 · · · p

δt
t ; δi ∈ {0, 1} for all i}.

It is exactly the set of integral ideals of norm dividing D′.
Let S be the subgroup of the group of fractional ideals of ZQ(

√
D) generated by

the prime ideals pi , 1≤ i ≤ t . Of course M is a subset of S. Moreover a well known
result of Gauss (see, e.g., [Fröhlich and Taylor 1993, Chapter V, Theorem 39])
asserts that the narrow class map

ν : S→ CD

induces a surjection

S/S2
→ CD,2 := {g ∈ CD : g2

= 1},
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whose kernel has order 2 and where S2 denotes the subgroup of squares of the
abelian group S.

One deduces that each class in CD,2 has exactly two representatives in M . In
particular, the image under the narrow class map of

P+
Q(
√

D)
:=

{fractional principal ideals of ZQ(
√

D) generated by a totally positive element},

which is the trivial class of CD,2, has two representatives in M . These representatives
are (1) and a nontrivial ideal I ∈ M . By definition of M the norm of I divides
D′. Besides it is easily seen that the norm of I is not D/(4, D). Indeed if by
contradiction the norm of I were D/(4, D) then the ideal I would be principal
and equal to (

√
D/(4, D)), since I ∈ M . However D ∈ Fund+ and (

√
D/(4, D))

is generated by an element of negative norm. Thus (
√

D/(4, D)) cannot be a
representative of the trivial class of CD,2.

It turns out the ideal I can be described explicitly thanks to the Legendre–Dirichlet
transformation. To see this let us analyze each case separately.

(i) Assume first that D = 4d, d ≡ 3 mod 4. The fundamental unit of Q(
√

D) may
be written ε(D)= T +U

√
d . Applying the transformation described in Section 2.1

to the norm equation T 2
−dU 2

= 1 leads either to (8) or (9) depending on whether
T is even or odd.

• In case we are led to (8) (i.e., T is even) the integer 2d1 > 1 is a divisor of D′

thus the ideal I is (d1U1+U2
√

d). Indeed the norm of the algebraic integer
d1U1+U2

√
d is 2d1 > 0 (note that U1

√
d +U2d2 has norm −2d2 < 0).

• Otherwise T is odd, hence U is even. Therefore, as explained in Section 2.2,
ε(D)= T +U

√
d is the square of the algebraic integer U1

√
d1+U2

√
d2. We

deduce d1 > 1 since otherwise this algebraic integer would be a unit (it would
have norm 1) of ZQ(

√
D) contradicting the minimality of ε(D). Thus one also

has I = (d1U1+U2
√

d), the element d1U1+U2
√

d having norm d1 > 0.

(ii) The second case we consider is D ≡ 1 mod 4. For convenience and to unify the
notation we set in that case d := D. We may write ε(D)= T/2+ (U/2)

√
d , where

T ≡ U mod 2. If T and U are both even we argue as in the previous case (note
that by reducing modulo 4 we see that T/2 has to be odd). Otherwise T and U are
both odd and satisfy T 2

− dU 2
= 4. Mimicking the transformation of Legendre

and Dirichlet described in Section 2.1 (see also Lemma 9) one easily gets a set of
equalities analogous to (8) and (9):

(14) d1U 2
1 − d2U 2

2 = 4, T =−2+ d1U 2
1 , d = d1d2, U =U1U2.

Therefore the integral principal ideal (d1U1/2+ (U2/2)
√

d) (note that both d1U1
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and U2 are odd) is generated by an element of norm d1 > 0. To see that this ideal
is I it is enough to prove that d1 > 1. Indeed if by contradiction d1 = 1 then
(U1/2)

√
d1+ (U2/2)

√
d2 would be a unit of ZQ(

√
D) the square of which equals

ε(D) contradicting the minimality of the fundamental unit.

(iii) Finally let us consider the case where D= 4d, d ≡ 2 mod 4. As in the first case
the fundamental unit may be written ε(D)= T +U

√
d. From the norm equation

T 2
− dU 2

= 1 we deduce that T is odd and U is even; i.e., the transformation
of Legendre and Dirichlet leads to (9). As in the first case one easily shows that
I = (d1U1+U2

√
d).

However what we want to understand is how (the narrow classes of) the elements
of PQ(

√
D) := { fractional principal ideals of ZQ(

√
D)} ⊃ P+

Q(
√

D)
are represented in

M . It turns out (see [Fouvry and Klüners 2010a, (6)], for instance) that one has a
short exact sequence

1→ F∞→ CD→ ClD→ 1,

where F∞ has order at most 2. It is straightforward from the definitions that |F∞| =
[PQ(

√
D) : P

+
Q(
√

D)]. Moreover one knows that |F∞|= 2 if and only if ε(D) has norm
1 (see the discussion following [Fouvry and Klüners 2010a, (6)] and the references
therein). Since we have assumed D ∈ Fund+ we have [PQ(

√
D) : P

+
Q(
√

D)] = 2 and
the above discussion then implies that PQ(

√
D) has four representatives in M . We

can even argue in a completely explicit way: PQ(
√

D) is the disjoint union of two left
cosets with respect to the subgroup P+Q(

√
D). We have exhibited two elements ((1)

and I =: (a)) in the coset P+Q(
√

D). In the other coset obviously lies the ideal (
√

d):
the algebraic integer

√
d has norm −d dividing D′. Using (a) and (

√
d) we easily

deduce the construction of the fourth suitable ideal. Indeed in the decomposition
of (a
√

d) as a product of prime ideals, the pi ’s are the only prime ideals that may
appear. Reducing the exponent of each pi appearing modulo 2 we get a principal
ideal (recall that p2

j = (p j ) for each j) the norm of which divides D′. Clearly this
ideal is different from (1), (a) and (

√
d). (We can deduce more: since both I and

(
√

d) are elements of M and since d differs from D′ by at most a factor 2 then
either the norm d̃ of I = (a) divides d and therefore the norm of the “fourth” ideal
is d/d̃ or d̃ is even and the norm of the fourth ideal is 4d/d̃.)

In terms of the Legendre–Dirichlet transformation and besides (1) and I = (a)
the ideals (

√
d) and (U1

√
d + d2U2) (or ((U1/2)

√
d + d2U2/2) in the case d =

D ≡ 1 mod 4) are representatives of PQ(
√

D) in M . Of these four integral principal
ideals one has norm 1 and one has norm d . The norms of the other two are d1 and
d2 (or 2d1 and 2d2 in the case where D = 4d, d ≡ 3 mod 4, and the coordinate T
of the fundamental unit ε(D) = T +U

√
d is even) respectively. This concludes

the proof of Proposition 1.
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3.2. Remarks on Proposition 1 and its proof. Among the constraints defining the
sets on the left-hand side of (4) one may object that there is some redundancy in
imposing both the conditions D ∈ Fund+ and 22

‖D. However the norm of the
fundamental unit is of course no longer automatically positive in the cases D odd
or 8 |D.

In view of the above proof of Proposition 1, we see that the integer 8(D) can
be given explicitly via the Legendre–Dirichlet transformation. Indeed we deduce
from the proof the following explicit version of Proposition 1.

Proposition 5. Let D ∈ Fund+ and d := D/(4, D). Let d = d1d2 be the coprime
factorization of d obtained by applying (8), (9) or (14) to the norm equation satisfied
by the fundamental unit ε(D). Then

8(D)=
{

min(2d1, 2d2) if D = 4d, d ≡ 3 mod 4, T ≡ 0 mod 2,
min(d1, d2) otherwise,

where in the first case ε(D)= T +U
√

d.

As a consequence one deduces 8(D) <
√

d unless D = 4d, d ≡ 3 mod 4 and
the coordinate T of the fundamental unit ε(D)= T +U

√
d is even. In the latter

case one can only infer 8(D) <
√

D.

Example 6. Assuming D ∈ Fund+ one might get the intuitive idea that among the
four integral principal ideals of norm dividing D′, the ideal (

√
d) is the one with

norm of maximal absolute value. Of course this is true if the norms of the four
ideals in question divide d which is always the case unless D = 4d , d ≡ 3( mod 4),
and ε(D)= T +U

√
d with T even. However this intuitive idea is not necessarily

true in the latter situation. Consider the case D = 12. Thus D′ = 6 and d = 3. If N

denotes the norm map relative to the extension Q(
√

3)/Q, one easily checks that

N(
√

3)=−3, N(1+
√

3)=−2, N(3+
√

3)= 6.

In the notation of the Legendre–Dirichlet transformation the maximum of the
absolute values of the three norms above is 2d1 = 6. Moreover 8(12)= 2 and one
notices as expected the identity among ideals:

(
√

3) · (3+
√

3)= (3) · (1+
√

3),

which is congruent to (1+
√

3) modulo squares (i.e., modulo S2 in the notation of
the proof of Proposition 1).

This example contains even more information. Not only does it show that d is
not in general the maximum of the four divisors of D′ among the norms of integral
principal ideals, but also that at most one of the other three divisors is larger than d .
Otherwise we would have 2d1 ≥ d and 2d2 ≥ d, by virtue of Proposition 5. Since
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d = d1d2 ≡ 3 mod 4 this implies d = 3. This corresponds to D = 12, in which case
d2 = 1, as shown above.

4. Proof of Theorem 2 when 22‖D

4.1. Notation. The letter p is reserved for prime numbers. The Möbius function
is denoted by µ, the number of distinct prime divisors of the integer n is ω(n), the
cardinality of the set of primes p ≤ x which are congruent to a mod q is denoted
by π(x; q, a). The condition n ∼ N means that the variable n has to satisfy the
inequalities N < n ≤ 2N . As it shall not lead to confusion the symbol ∼ will also
be used in the usual sense: if f, g are two functions of the real variable x defined
on a neighborhood of a on which g does not vanish, f (x)∼ g(x) as x→ a means
that f/g approaches 1 as x→ a.

4.2. The basic splitting. Let D be a fundamental discriminant such that 22
‖D.

Hence d := D/4 is squarefree and congruent to 3 mod 4. In that particular case (1)
simplifies into ZK =Z⊕Z

√
d . As already mentioned both the facts that D ∈ Fund+

and that D is divisible by some p ≡ 3 mod 4 imply that there is no unit with norm
− 1. Hence T +U

√
d belongs to UK if and only if T 2

− dU 2
= 1, i.e., (5) holds.

We construct a sequence of fundamental discriminants D = 4d with a large
ε(D)= εd by starting from

d = pm,

where p ≡ 3 mod 4 and m ≡ 1 mod 4 is squarefree. We keep in mind that m is
small compared to p, hence m is coprime with p.

For any squarefree integer m and any x ≥ 2 let

(15) Dm(x) := {pm ; pm ∼ x, p ≥ 7, p ≡ 3 mod 4}.

Dirichlet’s Theorem on primes in arithmetic progressions directly implies

(16) # Dm(x)∼
x

2m log(x/m)
,

as x→∞ uniformly for m ≤
√

x . We now introduce the following subset of Dm(x)
consisting of elements pm with a small εpm : for δ = δ(x) > 0, we consider

Dm(x, δ) := {pm ; pm ∈ Dm(x), εpm ≤ (4pm)3−δ}.

By counting solutions that may not be fundamental, we have the inequality

(17) # Dm(x, δ)≤ #
{
(p, T,U ) ; T, U ≥ 1, pm ∈ Dm(x), T 2

− pmU 2
= 1,

T +U
√

pm ≤ (4pm)3−δ
}
.
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We now want to apply Lemma 4 with the choice d = pm, where m satisfies

(18) 2-m and µ2(m)= 1.

Let m1m2 = m be a decomposition of m. For

(19) η ∈ {±1, ±2}.

we consider the equation

E(m1,m2, η) m1U 2
1 − pm2U 2

2 = η.

By (17) and using the values of T appearing in (8) & (9) we get the inequality

(20) # Dm(x, δ)
≤

∑
m1m2=m

∑
η=±1

#
{
(p,U1,U2) ; pm ∈ Dm(x), m1U 2

1 − pm2U 2
2 = η,

−1+ 2m1U 2
1 + 2U1U2

√
pm ≤ (4pm)3−δ

}
+

∑
m1m2=m

∑
η=±2

#
{
(p,U1,U2) ; pm ∈ Dm(x), m1U 2

1 − pm2U 2
2 = η,

−1+m1U 2
1 +U1U2

√
pm ≤ (4pm)3−δ

}
.

We now want to simplify the above inequality by studying the orders of magnitude
of the variables U1 and U2. The equation E(m1,m2, η) and the assumption p ≥ 7
in (15) imply that we have

1
2 m1U 2

1 ≤ pm2U 2
2 ≤ 2m1U 2

1 .

Multiplying these inequalities by m1 and using the assumption pm ∼ x we obtain:

(21) 1
2 m1U1x−1/2

≤U2 ≤ 2m1U1x−1/2.

From the inequalities defining the sets in the right-hand side of (20) we deduce

U1U2
√

pm ≤ 64 (pm)3−δ,

which implies in turn

(22) U1U2 ≤ 400 x (5/2)−δ.

Also note that (21) and (22) imply the inequalities

(23) U2 ≤ 30 m1/2
1 x1−(δ/2) and U1 ≤ 2m−1

1 x1/2U2.

Now we drop the condition that p is prime in (20). We deduce the inequality

(24) # Dm(x, δ)≤
∑

m1m2=m

∑
η=±1,±2

F(m1,m2, η).

Here F(m1,m2, η) is the number of solutions to the congruence

(25) m1U 2
1 ≡ η mod m2U 2

2 ,
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where (U1,U2) is subject to (23). Let ρη,m1(t) be the number of solutions to the
congruence

m1u2
− η ≡ 0 mod t,

where η satisfies (19) and m1 is odd. The study of the function ρη,m1(t) is classically
reduced to the study of ρη,m1(p

k). Since we always have (m1, η)= 1 in every case
one has ρη,m1(2

k) ≤ 4 and ρη,m1(p
k) ≤ 2 (k ≥ 1 and p ≥ 3). This leads to the

inequality

(26) ρη,m1(t)≤ 2 · 2ω(t) for any t ≥ 1.

Looking back at (24) we split the interval of variation of U1 into intervals of length
m2U 2

2 together with perhaps an incomplete one. Inserting (26) and noting that η
can take four distinct values we obtain the inequality

# Dm(x, δ)≤ 8
∑

m1m2=m

∑
U2≤30 m1/2

1 x1−δ/2

2ω(m2U2)

(
2

x1/2

m1m2U2
+ 1

)
(27)

≤ 16
x1/2

m
61+ 862,

with

61 :=
∑

m1m2=m

2ω(m2)
∑

U2≤30 m1/2
1 x1−δ/2

2ω(U2)

U2
,

and
62 :=

∑
m1m2=m

2ω(m2)
∑

U2≤30 m1/2
1 x1−δ/2

2ω(U2).

It remains to apply techniques for summing multiplicative functions (recall that m
is squarefree). We obtain

61�
∑

m1m2=m

2ω(m2) log2 x � 3ω(m) log2 x,

and

62� x1−δ/2 log x
∑

m1m2=m

2ω(m2)m1/2
1 = (x

1−δ/2 log x)m1/2
∑

m2 |m

2ω(m2)

√
m2

,

�κ κ
ω(m)m1/2x1−δ/2 log x,

for any fixed κ > 1. Putting everything together via (27) we have finally proved:

Proposition 7. For every κ > 1 there exists c(κ) > 0 such that the inequality

(28) # Dm(x, δ)≤ c(κ)(3ω(m)m−1x1/2 log2 x + κω(m)m1/2x1−δ/2 log x ),
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holds for every x ≥ 2, for every odd squarefree m ≤
√

x and for every δ = δ(x)≥ 0.

Applying this proposition with m = 1 one instantly deduces:

Corollary 8. Let t 7→ ψ(t) be any increasing function of the variable t ≥ 1, ap-
proaching infinity as t→∞. Then as x tends to infinity one has

#
{

p ≤ x ; p ≡ 3 mod 4, ε(4p)≤ p3/(ψ(p) log4 p)
}
= o(x/(log x)).

In other words, this corollary tells us that for almost every p≡3 mod 4, the regulator
R(4p) of the field Q(

√
4p) is greater than (3− ε) log p (where ε > 0 is arbitrary).

However Corollary 8 is not new: it is slightly weaker by a power of log p than
[Golubeva 1993, Corollary 5] which was obtained by Golubeva via the theory of
continued fractions. In the statement of Corollary 8 it is possible to make the power
of log p decrease. It requires a better control of the function ρη,1(p) which can be
achieved by appealing to oscillations of some Legendre symbol. One essentially
deduces the fact that this ρ-function has mean value 1 as long as η 6= 1. Actually,
requiring that T +U

√
p be a fundamental solution to PE(p) is enough to reduce to

this case.

4.3. End of the proof of the lower bound in Theorem 2. Let γ be a constant
satisfying 0≤ γ ≤ 1

2 . Let

(29) Dγ (x) :=
⋃
m

Dm(x),

where the union is taken over the integers m satisfying

(30) 1≤ m ≤ xγ , µ2(m)= 1 and m ≡ 1 mod 4.

Since the sets Dm(x) are pairwise disjoint (when m runs over the set of integers
satisfying (30)) we have the equality

# Dγ (x)=
∑

m satisfies (30)

# Dm(x).

Inserting (16), summing over m, and using the formula∑
m≤y

m≡1 mod 4

µ2(m)∼
2
π2 y (y→∞),

we deduce that for every γ0 > 0 and for x→∞, one has

(31) # Dγ (x)∼−
log(1− γ )

π2 x,

uniformly for γ0 ≤ γ ≤
1
2 .
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Now we apply Proposition 7 and (31) with the choice γ = δ/4. Consider

E(x, δ) :=
⋃
m
(Dm(x) \Dm(x, δ)),

where the union is taken over the indices m satisfying (30). Every element pm ∈
E(x, δ) is squarefree and congruent to 3 mod 4. Hence D := 4pm is a fundamental
discriminant and it satisfies the inequality εd = ε(D) ≥ D3−δ and the inequality
D≤ 8x . Furthermore, because the sets Dm(x) appearing in the definition of E(x, δ)
are pairwise disjoint, one trivially has:

E(x, δ)= Dγ (x) \
(⋃

m
Dm(x, δ)

)
,

where the union appearing on the right-hand side is a disjoint union. Therefore,

# E(x, δ)≥−
(1− o(1)) log(1− δ/4)

π2 · x − O
(

x1−δ/2 log x
∑

m≤xδ/4
(3/2)ω(m)m1/2

)
≥−

(1− o(1)) log(1− δ/4)
π2 · x .

This gives the first case of Theorem 2. Indeed the argument so far has only
involved splittings of positive fundamental discriminants D of type D/4=d1d2 with
d1 =m1 and d2 = pm2 (see (20)). Since m =m1m2 is a divisor of D of very small
size (see (30)) the condition on 8(D) on the left-hand side of (4) is automatically
fulfilled for the particular D’s under consideration in view of Proposition 1 or rather
its explicit version Proposition 5.

4.4. Comments on the proof of Proposition 7. To obtain the inequality (24) we
have dropped the condition p prime. By sieve techniques it is possible to handle
this constraint. The upshot of this would consist in saving a power of log x in the
first term of the right-hand side of (28). This improvement does not seem to affect
the exponent 3− δ in the statement of (4).

A more promising way to improve this exponent is to apply a better treatment
of the congruence (25) in small intervals. After a classical expansion via Fourier
techniques we would be led to bound the general exponential sum∑∑

m1m2=m

∑
U2≤30 m1/2x1−δ/2

∑
U1 mod m2U 2

2
m1U 2

1≡η mod m2U 2
2

∑
1≤|h|≤

m1m2x−1/2U 1+ε
2

exp
(

2π ıh
U1

m2U 2
2

)
.

5. Proof of the remaining cases

5.1. The case D divisible by 8. In that case set d := D/4. We still have

K :=Q(
√

D)=Q(
√

d) and ZK = Z⊕Z
√

d.
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However, contrary to the case 22
‖D, the fact that D∈Fund+ is no longer guaranteed

which means that the negative Pell equation T 2
− dU 2

=−1 may be solvable.
Since we are only dealing with discriminants in Fund+ we are led to modify

(15):
Dm(x) := {2pm ; 2pm ∼ x, p ≡ 3 mod 4},

hence d ∈Dm(x) implies D ∈ Fund+. We shall consider these sets for m squarefree
and congruent to 1 mod 4. The proof of Theorem 2 is essentially the same in this
case.

5.2. The case D odd. In that case D is squarefree and congruent to 1 mod 4, write
d := D. Then K = Q(

√
D) and ZK = {(a + b

√
d)/2 ; a, b ∈ Z, a ≡ b mod 2}.

Hence the study of the fundamental unit of K is reduced to the question of finding
the smallest nontrivial solution to the equation

T 2
− dU 2

=±4.

As above we can ensure the equation T 2
−dU 2

=−4 has no integral solution (thus
D ∈ Fund+) by imposing d to be divisible by some p ≡ 3 mod 4. To deal with the
equation T 2

− dU 2
= 4 we appeal to a variant of Lemma 4 that we state without

proof.

Lemma 9. Let d and U be positive integers such that 2 -d. Define A(d,U ) as in
Lemma 4. Set

Ã(d,U ): = {T ≥ 1 ; T 2
− dU 2

= 4},

B̃(d,U ): =
{
(d1, d2,U1,U2) ∈ N4

≥1 ; U1U2 =U, d1d2 = d, d1U 2
1 − d2U 2

2 = 4
}
.

Then we have

Ã(d,U )= 2 ·A(d,U/2) if 2 |U,(32)

# Ã(d,U )= # B̃(d,U ) ∈ {0, 1} if 2 -U.(33)

We are led to modify (15) in the following way:

Dm(x) := {pm ; pm ∼ x, p ≡ 3 mod 4}.

We shall consider these sets for m squarefree and congruent to 3 mod 4. Thanks to
Lemma 9 the proof of Theorem 2 in this last case is once more essentially the same.

The proof of Theorem 2 is now complete.

Remark 10. The “algebraic interpretation” provided by Proposition 1 and translated
by the condition on the function8 in (4) relies heavily on the assumption that for the
D’s under consideration the fundamental unit ε(D) has norm 1 (see Section 3). If
ε(D) has norm −1 then d = D/(4, D) is the norm of the algebraic integer ε(D)

√
d .

Gauss’s theorem on the 2-rank of CD still applies and shows that the only two
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divisors of D′ among norms of integral principal ideals generated by totally positive
elements are 1 and d . Recall that if ε(D) has norm −1 then the groups PQ(

√
D) and

P+Q(
√

D) coincide.

Remark 11. One may wonder why neglecting the contribution of positive fun-
damental discriminants with fundamental unit of negative norm has such little
influence on the difficulty of showing the lower bound (4). This comes from the
fact that the set of fundamental discriminants with fundamental unit of norm −1
is negligible. More precisely the number of special discriminants (i.e., positive
fundamental discriminants only divisible by 2 or primes congruent to 1 modulo
4) up to X is asymptotic to c · X (log X)−1/2, where c is an absolute constant (see
[Fouvry and Klüners 2010a, Section 1] and the references therein).

6. Proof of Theorem 3

Our starting point is the following well known class number formula (see [Cohen
1993, Proposition 5.6.9, p. 262], for instance)

(34) h(D)=
L(1, χD)

2 R(D)

√
D,

where D is a positive fundamental discriminant and L(s, χD) is the Dirichlet L-
function associated to the Kronecker symbol χD = (D/·)

L(s, χD) :=

∞∑
n=1

χD(n) n−s (<s > 1).

Recall the classical upper bound

(35) L(1, χ)� log(q + 1),

which holds for any nonprincipal Dirichlet character χ modulo q > 1. To prove
Theorem 3 we have to study the sum

6(x) :=
∑
D≤x
22
‖D

h(D),

and prove the inequality

(36) 6(x)≤
( 8

21π2 C0− δ
) x3/2

log x
,

for sufficiently large x . Define the two positive valued functions

κ(D) := R(D)/ log D, ξ(D) := L(1, χD)
√

D
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and

(37) 6̃(x) :=
∑
D≤x
22
‖D

ξ(D)
κ(D)

.

By (34) and by partial summation, we see that (36) can be deduced from the
inequality

(38) 6̃(x)≤ 2
( 8

21π2 C0− 2δ
)

x3/2,

for sufficiently large x .
Let γ , η and η′ be small positive numbers and let E(x) be the set of indices over

which the summation (37) is performed. We write any D ∈ E(x) under the form
D = 4d . Hence D ∈ E(x) if and only if d ∈ F(x) where

(39) F(x) :=
{
d ; µ2(d)= 1, d ≡ 3 mod 4 and d ≤ x/4

}
.

We now consider two disjoint subsets of F(x) defined as follows:

F1(x) :=
{
d ∈ F(x) ; κ(4d)≤ 7

4 − η
′
}
,

F2(x) :=
{
d ∈ F(x) ; κ(4d) > 7

4 − η
′,

d = pm, pm ∼ x/8, p ≡ 3 mod 4,m ≡ 1 mod 4, m ≤ xγ
}
.

We denote by G(x) the complement of F1(x)∪F2(x) in F(x). Let us then use the
condition κ(4d)≤ (7/4)+η to split further F2(x) into the partition F+2 (x)∪F−2 (x)
where:

F−2 (x) :=
{
d ∈ F2(x) ; κ(4d)≤ 7

4 + η
}
,

F+2 (x) :=
{
d ∈ F2(x) ; κ(4d) > 7

4 + η
}
.

Using this decomposition we split the sum 6̃(x) accordingly:

(40) 6̃(x)= σF1(x)+ σF−2
(x)+ σF+2

(x)+ σG(x),

where each term on the right-hand side is a sum over the corresponding obvious
subset of F(x) we have just defined. To upper bound σF1(x) we use [Fouvry and
Jouve 2013, Theorem 1] which asserts that for any ε > 0 one has

#
{
(D, εD); D nonsquare , 2≤ D ≤ x, εD ≤ D(1/2)+α }

= Oε(x (α/3)+(7/12)+ε),

uniformly for α ≥ 0 and x ≥ 2. Together with (5) the above formula (with the
choices ε = η′/12 and α = 5/4− η′) implies:

# F1(x)�γ x1−η′/4.
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Hence by the inequality κ(4d)≥ 1/2 (see (2)) and by (35), we deduce the inequality

(41) σF1(x)� x (3/2)−(η
′/4) log x .

By (28), we also know that

# F−2 (x)� x1−η/10,

with the choice γ = η/10. As for the proof of (41) we deduce that

(42) σF−2
(x)� x (3/2)−(η/10) log x .

Next note the following easy inequality, consequence of the definitions of the sets
F+2 (x), F−2 (x) and G(x):

σF+2
(x)+ σG(x)≤

1
7/4+η

∑
d∈F+2 (x)

ξ(4d)+ 1
7/4−η′

∑
d∈G(x)

ξ(4d).

Set

(43) F̃2(x) :=
{
d ; d = pm, µ2(d)= 1, pm ∼ x/8, m ≤ xγ ,

p ≡ 3 mod 4,m ≡ 1 mod 4
}
.

From the inclusion F1(x)∪F2(x)⊃ F̃2(x) one deduces∑
d∈F1(x)∪F2(x)

ξ(4d)≥
∑

d∈F̃2(x)

ξ(4d).

Combining the last two inequalities with the following obvious facts:∑
d∈G(x)

ξ(4d)=
∑

d∈F(x)

ξ(4d)−
∑

d∈F1(x)∪F2(x)

ξ(4d),
∑

d∈F+2 (x)

ξ(4d)6
∑

d∈F̃2(x)

ξ(4d)

we deduce the inequality
(44)

σF+2
(x)+ σG(x)≤

1
7/4− η′

∑
d∈F(x)

ξ(4d)−
η+ η′

(7/4+ η)(7/4− η′)

∑
d∈F̃2(x)

ξ(4d).

It remains to evaluate each of the two sums in (44). To that end we state and prove
two lemmas, the most classical of which is the following:

Lemma 12. As y→∞, one has∑
d≤y

d≡3 mod 4

µ2(d)L(1, χ4d)
√

d ∼
4C0

3π2 y3/2.
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Proof. Let A1(y) be the sum we want to evaluate. By the properties of the Kronecker
symbol we have the equality

A1(y)=
∑
d≤y

d≡3 mod 4

µ2(d)
√

d
∑

n≥1, 2-n

(d/n)
n

,

that now involves a Jacobi symbol. By the fact that the sum over n varying in
any interval of length 4d of the symbols (4d/n) equals zero, we can express using
partial summation the above infinite series as a finite sum with a small enough error
term: ∑

n≥1
2-n

(d/n)
n
=

∑
1≤n≤y2

2-n

(d/n)
n
+ O(y−1),

uniformly for d ≤ y. Inserting this equality in the definition of A1(y) and splitting
the sum according to whether n is a square or not, we get the equality

(45) A1(y)=MT1(y)+Err1(y)+ O(y1/2).

In the above equality the sum MT1(y) which will appear as the main term is the
following

(46) MT1(y) :=
∑
d≤y

d≡3 mod 4

∑
1≤t≤y
(t,2d)=1

µ2(d)
√

d
t2 ,

whereas Err1(y) is defined by

(47) Err1(y) :=
∑
d≤y

d≡3 mod 4

∑
1≤n≤y2

2-n, n 6=�

µ2(d)
√

d
n

(d
n

)
.

We first consider Err1(y). We want to prove that it behaves as an error term.
More precisely we want to show:

(48) Err1(y)= o(y3/2) (y→∞).

To do so we split the double sum in (47) in O(log2 y) subsums Err1(D, N ) where
the sizes of d and n are controlled:

(49) Err1(D, N ) :=
∑
d∼D

d≡3 mod 4

∑
n∼N

2-n, n 6=�

µ2(d)
√

d
n

(d
n

)
,
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with D ≤ y/2 and N ≤ y2/2. Our purpose is to prove that in all these cases we
have

(50) Err1(D, N )= O(y3/2 log−3 y).

Of course the trivial bound is Err1(D, N )� D3/2. Hence (50) is proved for any
(D, N ) such that D ≤ y log−2 y. Thus for the rest of the proof we suppose that

(51) D > y log−2 y.

The sum Err1(y) is a particular case of a double sum of Jacobi or Kronecker
symbols, which is nowadays quite common in analytic number theory. For instance
we have (see [Fouvry and Klüners 2010b, Proposition 10]):

Lemma 13. For every A > 0, there exists c(A) > 0, such that for every bounded
complex sequences (αm) and (βn) and for every M and N satisfying the inequalities
M , N ≥max(2, logA(M N )), one has the inequality∣∣∣∣ ∑

m∼M

∑
n∼N

αmβnµ
2(2m) µ2(2n)

(m
n

)∣∣∣∣≤ c(A) ‖(α)‖∞ ‖(β)‖∞ M N log−A/2(M N ).

However in the definition (49) of Err1(D, N ) the variable n is not squarefree. To
circumvent this difficulty we decompose n= `2n′ where now n′ is squarefree and we
consider two cases. Either `≤ N 1/4 and we apply Lemma 13 where the parameters
M and N respectively have the values D and N`−2. Or ` > N 1/4 and we apply
the trivial bound. Summing over `, choosing a big enough A in Lemma 13 and
appealing to (51), we finally deduce the inequality

Err1(D, N )� D3/2 log−10(DN )� y3/2 log−3 y,

which holds uniformly for N ≥ log100 y. Hence we have also proved (50) in that
case. Combining with (51) it remains to prove (50) in the case where D is large
and N is small:

(52) D ≥ y log−2 y and N ≤ log100 y.

We shall now benefit from the oscillations of the character d 7→ (d/n) when d runs
over squarefree integers d ≡ 3 mod 4 as follows. Our argument uses the following
rather standard lemma which can be found in [Prachar 1958, formula (1)].

Lemma 14. The following equality∑
n≤x

n≡` mod k

µ2(n)=
6
π2

∏
p |k

(
1−

1
p2

)−1 x
k
+ O(x1/2),

holds uniformly for x ≥ 2, k ≥ 1 and ` coprime with k.
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Applying Lemma 14 to each of the reduced classes ` modulo 4n such that
`≡ 3 mod 4 and summing over these `, we obtain the equality

(53)
∑
d≤t

d≡3 mod 4

µ2(d)
(d

n

)
= O(nt1/2),

uniformly for t ≥ 1 and for n ≥ 1 odd and nonsquare.
Integrating by part and summing over n ∼ N , we easily see that (50) also holds

under the condition (52). As a conclusion the proof of (48) is now complete.
We now deal with MT1(y). From Lemma 14 we deduce that for any given A> 0

the formula ∑
d≤z

(d,t)=1
d≡3 mod 4

µ2(d)∼
2
π2

∏
p | t

(
1+ 1

p

)−1
z,

holds as z→∞ uniformly for t odd satisfying t ≤ z A. By a partial summation and
by comparison with an integral we have∑

d≤z
(d,t)=1

d≡3 mod 4

µ2(d)
√

d ∼
4

3π2 ·
∏
p | t

(
1+ 1

p

)−1
z3/2.

Inserting this formula in the definition (46) and summing over every odd t ≤ y
yields:

MT1(y)∼y→∞
4

3π2 y3/2
∑
2-t

t−2
∏
p | t

(
1+ 1

p

)−1
.

The infinite series above admits an expansion as an Euler product

(54) MT1(y)∼y→∞
4

3π2

∏
p≥3

(
1+

p
(p+ 1)2(p− 1)

)
y3/2
=

4C0

3π2 y3/2.

Putting together (45), (48) and (54) we complete the proof of Lemma 12. �

The second lemma we need in order to evaluate the sums in (44) is the following.

Lemma 15. Let 0<γ < 1
2 and, for any x > 0, let F̃2(x) be defined as in (43). Then

there exists c(γ ) > 0, such that as x→∞ one has∑
d∈F̃2(x)

L(1, χ4d)
√

d ∼ c(γ )x3/2.

The asymptotics is uniform for γ0 ≤ γ ≤
1
2 − γ0, whenever 0< γ0 <

1
4 .



104 ÉTIENNE FOUVRY AND FLORENT JOUVE

Proof. The proof is very similar to the proof of Lemma 12. The main difference
being that (53) is replaced by the following consequence of the classical Siegel–
Walfisz theorem

(55)
∑

m≡1 mod 4
m≤xγ

µ2(d)
∑

p≡3 mod 4
p∼D/m

( pm
n

)
= OA(

√
nD log−A D),

which holds for any constant A > 0. Note that the upper bound contained in (55)
is only interesting if n ≤ log2A D. This exactly fits the constraint we have on the
summation over n (see (52)).

The corresponding main term will have the shape (see (46))∑
m≤xγ

m≡1 mod 4

µ2(m)
√

m
∑

p∼x/(8m)
p≡3 mod 4

√
p

∑
t,(t,2pm)=1

1
t2 .

Inverting summations we first sum over p (where we use a variant of (16)), then
over m and finally over t , as in the proof of (54). We note in passing that c(γ )
could be given an explicit value. �

6.1. End of the proof of Theorem 3 and remarks. Putting together the definition
(40), Lemma 12, Lemma 15 (with the choice γ = η/10), and the equalities (41),
(42) and (44), we get the inequality

6̃(x)

≤

{ 4C0

3π2(7/4− η′)
(1+o(1))−

(η+ η′)c(η/10)
(7/4+ η)(7/4− η′)

(1−oη(1))
}

x3/2
+oη,η′(x3/2).

Now fix η = 1
10 . Then by fixing a very small η′ > 0 the above upper bound can be

written
6̃(x)≤ K0x3/2,

for sufficiently large x and for some fixed K0 satisfying the inequality

K0 <
16 C0

21π2 .

This proves (38) hence (36) and completes the proof of Theorem 3.
We now discuss the influence of the different results about the size of ε(D) we

have used on the sum we have studied. If our only input is the trivial lower bound
ε(D)≥ 2

√
D (see (2)), we cannot get anything better than

(56)
∑
D≤x
22
‖D

h(D)≤
(

4 C0

3π2 + δ

)
x3/2

log x
,

for every positive δ and every sufficiently large x .
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Using [Fouvry and Jouve 2013, Theorem 1] has enabled us to improve the
multiplicative coefficient in the above upper bound by the factor 3.5. Finally the
purpose of our Proposition 7 has been to improve the inequality (56) by some factor
slightly larger than 3.5.

6.2. A consequence of Corollary 8. A natural question is to ask for some upper
bound on average for the class number h(D) when D is essentially prime. So we
consider the sum

S(x) :=
∑
p≤x

p≡3 mod 4

h(4p).

By techniques very similar to those presented in the beginning of Section 6 and
the trivial bound ε(4p)≥ 2

√
p, we can prove that we have the trivial asymptotic

inequality

S(x)≤
(1

2
+ o(1)

) x3/2

log2 x
.

When appealing instead to (12), we improve this upper bound by a factor 2. Finally,
Corollary 8 improves by a factor 6 the trivial asymptotic inequality. More precisely
we get the following result the proof of which easily follows from Corollary 8 and
is left to the reader.

Corollary 16. As x→∞, one has the inequality

S(x)≤
( 1

12
+ o(1)

) x3/2

log2 x
.
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ON THE ISENTROPIC COMPRESSIBLE EULER EQUATION
WITH ADIABATIC INDEX γ = 1

DONG LI, CHANGXING MIAO AND XIAOYI ZHANG

We consider the isentropic compressible Euler equations with polytropic
gamma law P(ρ)= ργ in dimensions d ≤ 3. We address the borderline case
when adiabatic index γ = 1 and establish local theory in the Sobolev space
C0

t L p
x ∩C0

t Ḣ k
x for d < p≤ 4. This covers a class of physical solutions which

can decay to vacuum at spatial infinity and are not compact perturbations
of steady states. We construct a blowup scenario where initially the fluid is
quiet in a neighborhood of the origin but is supersonic near the spatial infin-
ity. For this special class of noncompact initial data, we prove the formation
of singularities in finite time.

1. Introduction and main results

We consider the Cauchy problem for the d-dimensional, d ≤ 3, isentropic com-
pressible Euler equation

(1-1)


∂tρ+∇ · (ρv)= 0,

ρ(∂tv+ (v · ∇)v)+∇P = 0,

(ρ, v)(0, x)= (ρ0, v0)(x).

(t, x) ∈ R+×Rd .

Here, ρ = ρ(t, x) is a scalar function representing density, v = v(t, x) is a vector-
valued function representing velocity. P is the pressure, satisfying the polytropic
gamma law

P(ρ)= Aργ , γ ≥ 1,

where A > 0 is a constant and γ is so-called adiabatic index. In this paper, we will
mainly consider the borderline case γ = 1. For simplicity we shall set A = 1.

There is an extensive one-dimensional theory on the singularity formation of
solutions to the compressible Euler equation and related equations (see [John
1974; Klainerman and Majda 1980; Lax 1964; Liu 1979]). The proofs are usually

Li is supported in part by an NSERC Discovery grant and by the NSF under agreement DMS-1128155.
Miao is supported by the NSF of China (11171033 and 11231006). Zhang is supported by an Alfred
P. Sloan fellowship.
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based on method of characteristics which is not robust enough to treat dimensions
d ≥ 2 (see, however, [Chae and Ha 2009] for a blowup result in 3D using method
of characteristics). Sideris [1985] considered the following three-dimensional
compressible Euler system:

(1-2)


∂tρ+∇ · (ρv)= 0,

ρ(∂tv+ (v · ∇)v)+∇P = 0,

∂t S+ v · ∇S = 0,

(ρ, v, S)(0, x)= (ρ0, v0, S0)(x).

Here S = S(t, x) denotes the specific entropy and the pressure law is given by

(1-3) P(ρ, S)= Aργ eS, A > 0, γ > 1.

If we set S(t, x) ≡ S̄ = const, the system (3-1) reduces to (1-1) (hence the name
“isentropic”). The following set of initial data was considered in [Sideris 1985],
where R > 0 is fixed:

(1-4)
ρ0(x) > 0 for all x,

ρ0(x)= ρ̄, v0(x)= 0, S0(x)= S̄ if |x | ≥ R.

Such initial data can be viewed as compact perturbations of the steady state
(ρ, v, S)≡ (ρ̄, 0, S̄). By a change of variable c = const · ρ(γ−1)/2, one can rewrite
(3-1) as a symmetric positive hyperbolic system in terms of (c, v, S). For initial
data of the form (1-4), local wellposedness of (c, v, S) in C0

t H (5/2)+
x then follows

easily; see [Kato 1975]. The speed of sound σ is defined by

(1-5) σ =

(
∂P(ρ, S)
∂ρ

)1/2∣∣∣∣
(ρ,S)=(ρ̄,S̄)

= (Aγ ρ̄γ−1e S̄ )1/2.

A result of [Sideris 1985], roughly speaking, is that for a set of initial data (1-4)
which is supersonic in a neighborhood of the origin, the corresponding C1 solution
to (1-2)–(1-3) must have finite lifespan. This was extended to the two-dimensional
case by Rammaha [1989]. There are also more precise results on the estimate
of lifespan of blowup solutions which are small perturbations of steady states.
For the 3D compressible Euler equation (1-1) with irrotational (i.e., ∇ × v = 0)
initial data (ρ0, v0) = (ερ̃0 + ρ̄, εṽ0), where ρ̃0 ∈ S(R3), ṽ0 ∈ S(R3)3 (S(R3) is
the usual Schwartz space), Sideris [1991] proved that the lifespan of the classical
solution Tε > exp(C/ε). For the upper bound it follows from [Sideris 1985] that
Tε < exp(C/ε2) under some mild conditions on the initial data. For initial data
which is spherically symmetric and is smooth compact ε-perturbation of the constant
state, Godin [2005] obtained by using a suitable approximation solution the precise
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asymptotic of the lifespan Tε as

lim
ε→0

ε log Tε = T ∗,

where T ∗ is a constant. These results rely crucially on the observation that after some
simple manipulations, the compressible Euler equation in rescaled variables is given
by a vectorial nonlinear wave equation with pure quadratic nonlinearities. This fact
together with the positivity of fundamental solutions of the wave operator were also
exploited in [Sideris 1985; Rammaha 1989] to establish a different set of blowup
results which are analogs of corresponding results on nonlinear wave equations.

In this paper we will be concerned with the d-dimensional isentropic compressible
Euler system (1-1) with adiabatic index γ = 1. This is the borderline case, since
previous results in the literature are mainly for the case γ > 1. We discuss first the
local theory. In the case γ > 1, all the results mentioned before essentially deal
with initial data which contain no vacuum states and are compact perturbations of
steady states, cf. (1-4). Local wellposedness to (1-1) in C0

t H s
x for some regularity

index s > d/2 + 1 then follow easily from [Kato 1975] after some change of
variables transforming to a symmetric positive hyperbolic system. In principle
one can essentially repeat this kind of analysis in the case γ = 1 and obtain local
wellposedness for initial data which are compact perturbations of steady states.
However we shall not discuss this simple case and will focus instead on the more
interesting case where the initial data can be essentially noncompact. A useful
example is where the initial density ρ0(x) decays as (1+ |x |2)−β for some large
exponent β as |x |→∞; in other words, we allow the density to decay to vacuum at
spatial infinity. As it turns out, even the local theory for such initial data requires a
bit of work, since the standard H k

x spaces which fit so well with the usual symmetric
hyperbolic systems are not suitable for closing the estimates due to problems at low
frequencies. Instead, we will establish the local existence in L p(Rd)∩ Ḣ k(Rd):

Theorem 1.1 (local existence). Let the dimension be d ≤ 3. Let k ≥ 10d be a large
integer and take p such that d < p ≤ 4. Assume the initial data satisfy

(1-6)
ρ0 > 0, ρ0

−1
∇ρ0 ∈ L p(Rd)∩ Ḣ k−1(Rd),

ρ0 ∈ L p(Rd)∩ Ḣ k−1(Rd), v0 ∈ L p(Rd)∩ Ḣ k(Rd).

Then there exists T > 0 such that the Cauchy problem (1-1) admits a unique solution

ρ ∈ C([0, T ]; L p(Rd)∩ Ḣ k−1(Rd)), v ∈ C([0, T ]; L p(Rd)∩ Ḣ k(Rd)),

with ρ > 0. Moreover, ρ−1
∇ρ ∈ C([0, T ], L p(Rd) ∩ Ḣ k−1(Rd)). If in addition

ρ0 ∈ L1(Rd), we have mass conservation:∫
ρ(t, x) dx =

∫
ρ0(x) dx .
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Remark 1.2. In Theorem 1.1, the restriction p > d comes from the physical
assumptions we put on the initial data ρ0. Since we allow ρ0 to be essentially
noncompact, in particular we can take ρ0 ∼ (1+ |x |2)−β for |x | � 1. It is not
difficult to check that in this case ρ−1

0 ∇ρ0 ∈ L p(Rd) only for p > d. On the other
hand the upper bound p ≤ 4 comes from bounding certain L2-norm of products in
the nonlinear estimates. For example (see also (2-2)), if we have two functions f , g
with frequencies supported on the ball |ξ | ≤ 1, that is, f ∼ P≤1 f , g ∼ P≤1g (here
P≤1 is the usual Littlewood–Paley projector, see Section 2), and we only know that
f and g are bounded in L p, then

‖ f g‖L2
x (R

d ) . ‖ f ‖L2p/(p−2)
x

‖g‖p . ‖ f ‖p‖g‖p,

where in the last inequality we have to use the Bernstein inequality for which the
constraint 2p/(p− 2) ≥ p or p ≤ 4 is deduced. By the constraint d < p ≤ 4 we
deduce d ≤ 3 and this is the main reason for the restriction of the dimension.

The next result is on the formation of singularities in finite time. We will show
that the local solutions constructed in Theorem 1.1 have finite life spans. As
was mentioned before, the class of data that leads to blowups is a not a compact
perturbation of the constant state. More precisely we have the following

Theorem 1.3 (blowup from spatial infinity). Let ρ0, v0 satisfy the conditions in
(1-6) and ρ0 ∈ L1(Rd). For d = 2, 3, we also assume v0 is irrotational: curl(v0)= 0.
Let ρ0(x) = 1, v0(x) = 0, for all |x | ≤ 10. Let φ(x) be a Schwartz function such
that ∇2φ(x) is positive definite on |x |> 1. Set

(1-7) N :=
∫
ρ0v0 · ∇φ(x) dx .

Then there exist a constant C = C(‖ρ0‖1) > 0 such that whenever N > C , the
corresponding solution constructed in Theorem 1.1 blows up at some time T ∗ < 1.

Remark 1.4. The blowup constructed in Theorem 1.3 is different from the usual
case where the initial data is concentrated near the origin. In our scenario, the bulk
of the initial data is concentrated near spatial infinity and the quantity N defined
in (1-7) measures this concentration. The intuitive picture is that initially the fluid
is quiet in an O(1)-neighborhood of the origin but is supersonic near the spatial
infinity. After an O(1)-finite time the fluid develops singularities in the transient
region away from the origin.

2. Preliminaries

We will often use the notation X . Y whenever there exists some constant C such
that X ≤CY . For any two operators A, B, we use the notation [A, B] := AB− B A
to denote the commutator.
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We will also need to use the Littlewood–Paley theory. Let ϕ(ξ) be a smooth
bump function supported in the ball |ξ | ≤ 2 and equal to one on the ball |ξ | ≤ 1.
For each dyadic number N ∈ 2Z we define the Littlewood–Paley operators

P̂≤N f (ξ) := ϕ(ξ/N ) f̂ (ξ), P̂>N f (ξ) := [1−ϕ(ξ/N )] f̂ (ξ),

P̂N f (ξ) := [ϕ(ξ/N )−ϕ(2ξ/N )] f̂ (ξ).

Similarly we can define P<N , P≥N , and PM<·≤N := P≤N − P≤M , whenever M and
N are dyadic numbers. We will frequently write f≤N for P≤N f and similarly for
the other operators. We recall the following standard Bernstein- and Sobolev-type
inequalities:

Lemma 2.1. For any 1≤ p ≤ q ≤∞ and s > 0, we have

‖P≥N f ‖L p
x
. N−s

‖|∇|
s P≥N f ‖L p

x
,

‖|∇|
s P≤N f ‖L p

x
. N s

‖P≤N f ‖L p
x
,

‖|∇|
±s PN f ‖L p

x
∼ N±s

‖PN f ‖L p
x
,

‖P≤N f ‖Lq
x
. N d/p−d/q

‖P≤N f ‖L p
x
,

‖PN f ‖Lq
x
. N d/p−d/q

‖PN f ‖L p
x
.

We will use the following simple estimate frequently:

(2-1) ‖ f ‖∞ . ‖P≤1 f ‖p +
∑
N>1
N∈2Z

N d/2
‖PN f ‖2 . ‖P≤1 f ‖p +‖P>1 f ‖Ḣd/2+1 .

We prove below some commutator estimates which will be useful in controlling
the nonlinear terms. To simple notations we shall assume that the functions are
scalar-valued. The extension to vector-valued functions is rather trivial. In order not
to be burdened with notations, we will sometimes use the same notations for vector-
valued functions as in the scalar-valued case. For example if v = (v1, · · · , vd) and
v j ∈ L2

x(R
d), we shall simply write v ∈ L2

x(R
d) in place of v ∈ L2

x(R
d)d .

Lemma 2.2. Let f, g ∈ S(Rd). Let ∂ denote any partial derivative. Let 2≤ p ≤ 4
and k > d + 2. Then

‖[∂k, f ∂]g‖2 . ‖ f ‖Ḣ k∩L p‖g‖Ḣ k∩L p , ‖[∂k, f ]g‖2 . ‖ f ‖Ḣ k∩L p‖g‖Ḣ k−1∩L p ,

‖[∂k−1, f ]∂g‖2 . ‖ f ‖Ḣ k∩L p‖g‖Ḣ k−1∩L p .

Proof. We only prove the first one. By the chain rule and the triangle inequality, we
have the bound

‖[∂k, f ∂]g‖2 .
∑

1≤ j≤k

‖∂ j f ∂k+1− j g‖2.
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In the case 1 ≤ j ≤ k/2, we split g into low and high frequencies. For the low-
frequency piece, we use the fact p ≤ 4 and Bernstein to get

‖∂ j f ∂k+1− j P≤1g‖2 ≤ ‖∂ j f ‖2p/(p−2)‖∂
k+1− j P≤1g‖p

. (‖∂ j P≤1 f ‖2p/(p−2)+‖∂
j P>1 f ‖2p/(p−2))‖g‖p

. ‖ f ‖Ḣ k∩L p‖g‖p.

In the last estimate, we used a similar estimate as in (2-1). For the high-frequency
piece, we use Sobolev embedding and Bernstein to get

‖∂ j f ∂k+1− j P>1g‖2 ≤ ‖∂ j f ‖∞‖∂k+1− j P>1g‖2(2-2)

. ‖ f ‖Ḣ k∩L p‖g‖Ḣ k .

Again we invoke (2-1) in the last step. In the case k/2< j ≤ k, we can instead split
f into low and high frequencies. Then the estimate just follows by symmetry. �

We need to use the following space which will be useful for proving some
contraction estimates in Section 3. For any positive integer k, define

(2-3) Xk = { f, ‖ f ‖Xk := ‖ f ‖p +‖P>1 f ‖Ḣ k <∞}.

It is not difficult to check that for k > d/2 the space Xk forms an algebra. This fact
together with some useful commutator estimates and product estimates are stated
in the next

Lemma 2.3. Under the same conditions as in Lemma 2.2, we have:

‖[∂k−1, f ∂]P>1g‖2 . ‖ f ‖Xk−1‖P>1g‖Ḣ k−1,

‖∂k−1( f P.1g)‖2 . ‖ f ‖Xk−1‖g‖p,

‖[∂k−1, f ]P>1g‖2 . ‖ f ‖Xk−1‖g‖Xk−2,

‖∂k−1( f ∂g)‖2 . ‖ f ‖Xk−1‖g‖Xk ,

‖∂k−1( f g)‖2 . ‖ f ‖Xk−1‖g‖Xk−1 .

Proof. The proof proceeds in a similar way as in Lemma 2.2. One has to split both
f and g into high- and low-frequency pieces and discuss several cases. We omit
the details. �

3. Proof of Theorem 1.1

To construct the local solution, we will use the usual Picard iteration but in a slightly
nonstandard space and exploiting in an essential way the structure of the system.
Due to the singular nature of the problem, we need both the hyperbolic formulation
of the equation and the original formulation. The tricky part of the analysis is to
define a good iteration scheme.
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To this end, we define
f = log ρ,

and rewrite the Cauchy problem (1-1) in terms of ( f , v) as

(3-1)


∂t f + v · ∇ f +∇ · v = 0,

∂tv+ (v · ∇)v+∇ f = 0,

f (0, x)= log ρ0(x), v(0, x)= v0(x).

By bringing in the f -function, we have obtained the hyperbolic formulation (3-1)
for the original system.

Remark 3.1. It is tempting to invoke the usual wellposedness theory in H k , k>d/2
spaces and conclude that the system (3-1) admits local solutions in C0

t H k
x . However

there is a serious problem with this due to the physical assumptions we put on the
initial data. Namely f = log ρ does not lie in L2

x in general. To see it one can
consider the sample case ρ(x)= 〈x〉−C which immediately yields f ∼ log〈x〉 /∈ L2

x .
In fact it is not difficult to check f /∈ Ḣ k

x (R
d) for any k ≤ d/2.

By Remark 3.1, we shall proceed differently from the usual fashion and work
with an enlarged (and redundant) system of equations which includes both the
hyperbolic formulation and the original system. The advantage is that with a little
bit of work we can obtain regularity of all functions at one stroke.

We start with the zeroth iterate, defined as

ρ(0)(t, x)= ρ0(x), v(0)(t, x)= v0(x), f (0)(t, x)= log ρ0(x).

For any integer n ≥ 0, we inductively define (ρ(n+1), v(n+1), f (n+1)) as solutions
to the linear system

(3-2)


∂tρ

(n+1)
+∇ · (ρ(n+1)v(n))= 0,

∂t f (n+1)
+ v(n) · ∇ f (n+1)

+∇ · v(n+1)
= 0,

∂tv
(n+1)
+ (v(n) · ∇)v(n+1)

+∇ f (n+1)
= 0,

ρ(n+1)(0, x)= ρ0(x), f (n+1)(0, x)= logρ0(x), v(n+1)(0, x)= v0(x).

Remark 3.2. Strictly speaking, instead of f (n+1), we should be working with
g(n+1)

=∇ f (n+1) and write the second equation in (3-2) as

∂t g(n+1)
+∇(v(n) · g(n+1))+∇(∇ · v(n+1))= 0,

with initial data g(n+1)
=∇ρ0/ρ0. Correspondingly in the third equation of (3-2)

we should replace ∇ f (n+1) by g(n+1). In this way we do not need to prove any
regularity or solvability estimates of f (n+1) themselves in the iteration system.
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We first show that the sequence of functions v(n) are uniformly bounded in
the space L∞t ([0, T ]; Ḣ k

∩ L p), (ρ(n), ∇ f (n)) are uniformly bounded in the space
L∞t ([0, T ]; Ḣ k−1

∩ L p) for some suitably small T .

Step 1: The L p boundedness of the iterates (ρ(n+1), v(n+1),∇ f (n+1)). Multiplying
the first equation in (3-2) by |ρ(n+1)

|
p−2ρ(n+1) and integrating by parts, we get

1
p

d
dt
‖ρ(n+1)(t)‖p

p +
p− 1

p

∫
(ρ(n+1))p

∇ · v(n) dx = 0.

Therefore
d
dt
‖ρ(n+1)(t)‖p ≤ ‖∇ · v

(n)(t)‖∞‖ρ(n+1)(t)‖p(3-3)

. ‖v(n)(t)‖Ḣ k∩L p‖ρ
(n+1)(t)‖p.

Next we take the inner product with |v(n+1)
|

p−2v(n+1) on both sides of the third
equation in (3-2). After integrating on Rd , we get

1
p

d
dt
‖v(n+1)(t)‖p

p −
1
p

∫
∇ · v(n)|v(n+1)

|
p dx

+

∫
|v(n+1)

|
p−2
∇ f (n+1)

· v(n+1) dx = 0.

Hölder’s inequality yields

(3-4)
d
dt
‖v(n+1)(t)‖p . ‖∇ · v

(n)(t)‖∞‖v(n+1)(t)‖p +‖∇ f (n+1)(t)‖p

. ‖v(n)(t)‖Ḣ k∩L p‖v
(n+1)(t)‖p +‖∇ f (n+1)(t)‖p.

To close the estimate, we need to estimate ‖∇ f (n+1)
‖p. Differentiating the

second equation in (3-2) once, we have the equation for ∂i f (n+1):

∂t∂i f (n+1)
+ ∂i (v

(n)
· ∇ f (n+1))+∇ · ∂iv

(n+1)
= 0.

Multiplying both sides by |∂i f (n+1)
|

p−2∂i f (n+1) and integrating by parts, we get

1
p

d
dt
‖∂i f (n+1)(t)‖p

p +

∫
∂iv

(n)
· ∇ f (n+1)

|∂i f (n+1)
|

p−2∂i f (n+1) dx

−
1
p

∫
∇ · v(n)|∂i f (n+1)

|
p dx +

∫
∇ · ∂iv

(n+1)
|∂i f (n+1)

|
p−2∂i f (n+1) dx = 0.

By Hölder’s inequality,

1
p

d
dt
‖∂i f (n+1)(t)‖p

p ≤ ‖∂iv
(n)(t)‖∞‖∇ f (n+1)(t)‖p‖∂i f (n+1)(t)‖p−1

p

+
1
p
‖∇ · v(n)(t)‖∞‖∂i f (n+1)(t)‖p

p +‖∂i∇ · v
(n+1)(t)‖p‖∂i f (n+1)(t)‖p−1

p .
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Summing in i = 1, . . . , d gives

(3-5)
d
dt
‖∇ f (n+1)(t)‖p

.
d∑

i=1

‖∂iv
(n)(t)‖∞‖∇ f (n+1)(t)‖p +

d∑
j,i=1

‖∂ j∂iv
(n+1)(t)‖p

. ‖v(n)(t)‖Ḣ k∩L p‖∇ f (n+1)(t)‖p +‖v
(n+1)(t)‖Ḣ k∩L p .

This ends the L p-estimate. Next we turn to high-order energy estimates.

Step 2: Ḣ k-estimates. Let ∂k denote a differential operator of order k, we compute

(3-6)
d
dt

∫
|∂kv(n+1)

|
2 dx

= 2
∫
∂kv(n+1)

· ∂k∂tv
(n+1) dx

=−2
∫
∂kv(n+1)

· ∂k
[(v(n) · ∇)v(n+1)

]dx − 2
∫
∂kv(n+1)

· ∂k
∇ f (n+1) dx

=−2
∫
∂kv(n+1)

·[(v(n)·∇)∂kv(n+1)
]−2

∫
∂kv(n+1)

·[∂k, (v(n)·∇)]v(n+1) dx

− 2
∫
∂kv(n+1)

· ∂k
∇ f (n+1) dx

=

∫
∇ · v(n)|∂kv(n+1)

|
2dx − 2

∫
∂kv(n+1)

· [∂k, (v(n) · ∇)]v(n+1) dx

− 2
∫
∂kv(n+1)

· ∇∂k f (n+1) dx .

Similarly for f (n+1) we have

(3-7)
d
dt

∫
|∂k f (n+1)

|
2 dx =

∫
∇ · v(n)|∂k f (n+1)

|
2

− 2
∫
∂k f (n+1)

[∂k, v(n)] · ∇ f (n+1)
− 2

∫
∂k f (n+1)∂k

∇ · v(n+1) dx .

Adding (3-6), (3-7) together, we have

d
dt

(
‖∂kv(n+1)(t)‖22+‖∂

k f (n+1)(t)‖22
)

=

∫
∇ · v(n)|∂kv(n+1)

|
2dx − 2

∫
∂kv(n+1)

· [∂k, (v(n) · ∇)]v(n+1) dx

+

∫
∇ · v(n)|∂k f (n+1)

|
2dx − 2

∫
∂k f (n+1)

[∂k, v(n)] · ∇ f (n+1) dx .
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By Hölder’s inequality and Lemma 2.2, we have
d
dt

(
‖∂kv(n+1)(t)‖22+‖∂

k f (n+1)(t)‖22
)

. ‖∇ · v(n)‖∞
(
‖∂kv(n+1)

‖
2
2+‖∂

k f (n+1)
‖

2
2
)

+‖v(n)‖Ḣ k∩L p

(
‖∂kv(n+1)

‖2‖v
(n+1)
‖Ḣ k∩L p+‖∂

k f (n+1)
‖2‖∇ f (n+1)

‖Ḣ k−1∩L p

)
.

Since ‖∇ · v(n)‖∞ . ‖v(n)‖Ḣ k∩L p , we then obtain

(3-8)
d
dt

(
‖v(n+1)(t)‖2Ḣ k +‖ f (n+1)(t)‖2Ḣ k

)
. ‖v(n)(t)‖Ḣ k∩L p

(
‖v(n+1)(t)‖2Ḣ k∩L p +‖∇ f (n+1)(t)‖2Ḣ k−1∩L p

)
.

The estimates are now complete. However, to prove the contraction estimates,
we still need the high-order energy estimate of ρ(n+1): the Ḣ k−1-norm. By using
integration by parts, we compute

d
dt

∫
|∂k−1ρ(n+1)

|
2 dx =−

∫
∂k−1ρ(n+1)

∇∂k−1ρ(n+1)
· v(n) dx

−

∫
∂k−1ρ(n+1)

[∂k−1, v(n)] · ∇ρ(n+1) dx

−

∫
∂k−1ρ(n+1)∂k−1(ρ(n+1)

∇ · v(n)) dx .

By Hölder and using again Lemma 2.2, we obtain

(3-9)
d
dt
‖ρ(n+1)(t)‖Ḣ k−1 . ‖v(n)(t)‖Ḣ k∩L p‖ρ

(n+1)(t)‖Ḣ k−1∩L p .

Set

M (n+1)(t) := ‖ρ(n+1)(t)‖2Ḣ k−1∩L p +‖v
(n+1)
‖

2
Ḣ k∩L p +‖∇ f (n+1)

‖
2
Ḣ k−1∩L p .

Collecting the estimates (3-3), (3-4), (3-5), (3-8) and (3-9), we have{ d
dt

M (n+1)(t)≤ C M (n+1)(t)(1+M (n)(t)),

M (n+1)(0)= ‖ρ0‖
2
Ḣ k−1∩L p +‖v0‖

2
Ḣ k∩L p +‖∇ f0‖

2
Ḣ k−1∩L p := M0.

Here the constant depends only on p, d . Applying Gronwall’s inequality, we obtain

(3-10) M (n+1)(t)≤ M0 exp
{

C
∫ t

0
(1+M (n)(s)) ds

}
.

It suffices to take T small enough such that

(3-11) 8CT (1+M0)≤
1

100 .
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Then the sequence M (n)(t) are uniformly bounded as

(3-12) ‖M (n)
‖L∞t ([0,T ]) ≤ 2M0.

Therefore, for the chosen T , the sequence {ρ(n),∇ f (n)} are bounded in

L∞t
(
[0, T ]; (Ḣ k−1

∩ L p)
)
,

and {v(n)} are bounded in L∞t
(
[0, T ]; (Ḣ k

∩ L p)
)
. In the next step, we shall show

that they are Cauchy in an intermediate topology.

Step 3: Contraction estimates. It is easy to check that the differences ρ(n+1)
− ρ(n),

v(n+1)
− v(n), and f (n+1)

− f (n) satisfy the system of equations

∂t(ρ
(n+1)
− ρ(n))+∇ · ((ρ(n+1)

− ρ(n))v(n))+∇ · (ρ(n)(v(n)− v(n−1)))= 0,

∂t(v
(n+1)
− v(n))+ (v(n) · ∇)(v(n+1)

− v(n))

+ [(v(n)− v(n−1)) · ∇]v(n)+∇( f (n+1)
− f (n))= 0,

∂t( f (n+1)
− f (n))+ v(n) · (∇ f (n+1)

−∇ f (n))

+ (v(n)− v(n−1)) · ∇ f (n)+∇ · (v(n+1)
− v(n))= 0.

We shall prove that the sequence v(n) is Cauchy in Xk−1 and (ρ(n), f (n)) is
Cauchy in Xk−2. Here the space X j is defined in (2-3). We first estimate the L p

norm as

d
dt
‖ρ(n+1)

− ρ(n)(t)‖p
p . ‖∇ · v

(n)
‖∞‖ρ

(n+1)
− ρ(n)‖p

p

+‖∇ρ(n)‖∞‖v
(n)
− v(n−1)

‖p‖ρ
(n+1)
− ρ(n)‖p−1

p

+‖ρ(n)‖∞‖∇ · (v
(n)
− v(n−1))‖p‖ρ

(n+1)
− ρ(n)‖p−1

p .

Note that
‖ρ(n)‖∞+‖∇ρ

(n)
‖∞ . ‖ρ

(n)
‖Xk−1,

‖∇ · v(n−1)
‖∞ . ‖v

(n−1)
‖Xk ,

‖v(n)− v(n−1)
‖p . ‖v

(n)
− v(n−1)

‖Xk−1,

‖∇ · (v(n)− v(n+1))‖p . ‖v
(n)
− v(n−1)

‖Xk−1 .

Therefore

(3-13)
d
dt
‖ρ(n+1)

− ρ(n)‖p

. ‖v(n)‖Xk‖ρ
(n+1)
− ρ(n)‖p +‖ρ

(n)
‖Xk−1‖v

(n)
− v(n−1)

‖Xk−1 .

Similarly we also have
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d
dt
‖v(n+1)(t)− v(n)(t)‖p

p

. ‖∇ · v(n)(t)‖∞‖(v(n+1)
− v(n))(t)‖p

p

+‖∇v(n)(t)‖∞‖(v(n)− v(n−1))(t)‖p‖(v
(n+1)
− v(n))(t)‖p−1

p

+‖(∇ f (n+1)
−∇ f (n))(t)‖p‖(v

(n+1)
− v(n))(t)‖p−1

p .

Using the fact ‖∇ f (n+1)
−∇ f (n)‖p . ‖∇ f (n+1)

−∇ f (n)‖Xk−2 , we arrive at

(3-14)
d
dt
‖(v(n+1)

− v(n))(t)‖p . ‖v
(n)(t)‖Xk‖(v

(n)
− v(n−1))(t)‖Xk−1

+‖(∇ f (n+1)
−∇ f (n))(t)‖Xk−2 .

For the L p estimate of ∇ f (n+1)
−∇ f (n), we have

d
dt
‖∂ f (n+1)(t)− ∂ f (n)(t)‖p

p

. ‖∇v(n)‖∞‖∇( f (n+1)
− f (n))‖p‖∂ f (n+1)

− ∂ f (n)‖p−1
p

+‖∇ · v(n)‖∞‖∂ f (n+1)
− ∂ f (n)‖p

p

+‖∇ f (n)‖∞‖∂(v(n)− v(n−1))‖p‖∂ f (n+1)
− ∂ f (n)‖p−1

p

+‖∂∇ f (n)‖∞‖v(n)− v(n−1)
‖p‖∂ f (n+1)

− ∂ f (n)‖p−1
p

+‖∂∇ · (v(n+1)
− v(n))‖p‖∂ f (n+1)

− ∂ f (n)‖p−1
p .

Or, simplifying a bit,

(3-15)
d
dt
‖(∇ f (n+1)

−∇ f (n))(t)‖p

. ‖v(n)(t)‖Xk‖(∇ f (n+1)
−∇ f (n))(t)‖Xk−2

+‖∇ f (n)(t)‖Xk−1‖(v
(n)
− v(n−1))(t)‖Xk−1 +‖(v

(n+1)
− v(n))(t)‖Xk−1 .

We now turn to the Ḣ k−1 estimates of the high-frequency part of the iterate
differences. From direct computation, we have

(3-16)
d
dt

∫
|P>1∂

k−1(v(n+1)
− v(n))|2 dx = I1+ I2+ I3,

where we have set

I1 =−2
∫

P>1∂
k−1(v(n+1)

− v(n)) · P>1∂
k−1
[(v(n) · ∇)(v(n+1)

− v(n))] dx,

I2 =−2
∫

P>1∂
k−1(v(n+1)

− v(n)) · P>1∂
k−1
[(v(n)− v(n−1)) · ∇v(n)] dx,

I3 =−2
∫

P>1∂
k−1(v(n+1)

− v(n)) · P>1∂
k−1
∇( f (n+1)

− f (n)) dx .
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We can write

I1 =−2
∫

P>1∂
k−1(v(n+1)

−v(n)) · P>1∂
k−1
[(v(n) ·∇)P2

>1(v
(n+1)
−v(n))] dx

−2
∫

P>1∂
k−1(v(n+1)

−v(n)) · P>1∂
k−1
[(v(n) ·∇)(I−P2

>1)(v
(n+1)
−v(n))] dx

=−2
∫

P2
>1∂

k−1(v(n+1)
−v(n)) ·(v(n) ·∇)∂k−1 P2

>1(v
(n+1)
−v(n)) dx

−2
∫

P2
>1∂

k−1(v(n+1)
−v(n)) · [∂k−1, (v(n) ·∇)]P2

>1(v
(n+1)
−v(n)) dx

−2
∫

P2
>1∂

k−1(v(n+1)
−v(n)) ·∂k−1

[(v(n) ·∇)(I − P2
>1)(v

(n+1)
−v(n))] dx .

Integrating by parts and using Hölder’s inequality together with Lemma 2.3 (the
first two), we obtain the estimate

I1 . ‖∇·v
(n)
‖∞‖∂

k−1 P2
>1(v

(n+1)
−v(n))‖22

+‖P>1∂
k−1(v(n+1)

−v(n))‖2‖[∂
k−1, (v(n) ·∇)]P2

>1(v
(n+1)
−v(n))‖2

+‖P>1∂
k−1(v(n+1)

−v(n))‖2‖∂
k−1((v(n) ·∇)(I−P2

>1)(v
(n+1)
−v(n)))‖2

. ‖v(n)‖Xk‖P>1∂
k−1(v(n+1)

−v(n))‖22

+‖P>1∂
k−1(v(n+1)

−v(n))‖2‖v
(n)
‖Xk‖v

(n+1)
−v(n)‖Xk−1

. ‖v(n)‖Xk‖P>1∂
k−1(v(n+1)

−v(n))‖2‖v
(n+1)
−v(n)‖Xk−1 .

For the next term, we use Lemma 2.3 to write

(3-17) I2 . ‖∂
k−1 P>1(v

(n+1)
− v(n))‖2‖P>1∂

k−1([(v(n)− v(n−1)) · ∇]v(n))‖2

. ‖v(n)‖Xk‖P>1∂
k−1(v(n+1)

− v(n))‖2‖v
(n)
− v(n−1)

‖Xk−1 .

Collecting the estimates above, we have

(3-18)
d
dt
‖P>1∂

k−1(v(n+1)
− v(n))‖22

≤ C‖v(n)‖Xk‖P>1∂
k−1(v(n+1)

− v(n))‖2

×
[
‖v(n+1)

− v(n)‖Xk−1 +‖v
(n)
− v(n−1)

‖Xk−1

]
− 2

∫
P>1∂

k−1(v(n+1)
− v(n)) · P>1∂

k−1
∇( f (n+1)

− f (n)) dx .

The estimate for f (n+1)
− f (n) follows similarly. We compute
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d
dt

∫
|P>1∂

k−1( f (n+1)
− f (n))|2dx

=−2
∫

P>1∂
k−1( f (n+1)

− f (n))P>1∂
k−1
[v(n) · (∇ f (n+1)

−∇ f (n))] dx

− 2
∫

P>1∂
k−1( f (n+1)

− f (n))P>1∂
k−1
[(v(n)− v(n−1)) · ∇ f (n)] dx

− 2
∫

P>1∂
k−1( f (n+1)

− f (n))∇ · P>1∂
k−1(v(n+1)

− v(n)) dx

=−2
∫

P2
>1∂

k−1( f (n+1)
− f (n))v(n) · ∂k−1 P2

>1(∇ f (n+1)
−∇ f (n)) dx

− 2
∫

P2
>1∂

k−1( f (n+1)
− f (n))[∂k−1, v(n)] · P2

>1(∇ f (n+1)
−∇ f (n)) dx

− 2
∫

P2
>1∂

k−1( f (n+1)
− f (n))∂k−1(v(n) · (I − P2

>1)(∇ f (n+1)
−∇ f (n))) dx

− 2
∫

P>1∂
k−1( f (n+1)

− f (n))P>1∂
k−1
[(v(n)− v(n−1)) · ∇ f (n)] dx

− 2
∫

P>1∂
k−1( f (n+1)

− f (n))∇ · P>1∂
k−1(v(n+1)

− v(n)) dx .

Applying Lemma 2.3 (the last two estimates), we get

(3-19) d
dt
‖P>1∂

k−1( f (n+1)
− f (n))‖22

≤ C‖v(n)‖Xk‖∇ f (n+1)
−∇ f (n)‖Xk−2‖P>1∂

k−1( f (n+1)
− f (n))‖2

+C‖∇ f (n)‖Xk−1‖v
(n)
− v(n−1)

‖Xk−1‖P>1∂
k−1( f (n+1)

− f (n))‖2

− 2
∫

P>1∂
k−1( f (n+1)

− f (n))∇ · P>1∂
k−1(v(n+1)

− v(n)) dx .

Adding together (3-18) and (3-19), we have

d
dt
‖P>1∂

k−1(v(n+1)
− v(n))‖22+

d
dt
‖P>1∂

k−1( f (n+1)
− f (n))‖22

≤ C‖v(n)‖Xk‖P>1(v
(n+1)
− v(n))‖Ḣ k−1‖v

(n)
− v(n−1)

‖Xk−1

+C‖v(n)‖Xk‖∇ f (n+1)
−∇ f (n)‖Xk−2‖P>1∂

k−1( f (n+1)
− f (n))‖2

+C‖∇ f (n)‖Xk−1‖v
(n)
− v(n−1)

‖Xk−1‖P>1∂
k−1( f (n+1)

− f (n))‖2.
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Summing over all the partial derivatives and using Cauchy–Schwartz, we have

(3-20) d
dt
(
‖P>1(v

(n+1)
− v(n))‖2Ḣ k−1 +‖P>1∇( f (n+1)

− f (n))‖2Ḣ k−2

)
. ‖v(n)‖Xk ·

(
‖v(n)− v(n−1)

‖
2
Xk−1
+‖v(n+1)

− v(n)‖2Xk−1

)
+‖v(n)‖Xk · ‖∇( f (n+1)

− f (n))‖2Xk−2

+‖∇ f (n)‖Xk−1 ·
(
‖v(n)− v(n−1)

‖
2
Xk−1
+‖∇( f (n+1)

− f (n))‖2Xk−2

)
.

Similarly, we get the estimate for ρ as follows:

(3-21) d
dt
‖P>1(ρ

(n+1)
− ρ(n))‖Ḣ k−2 . ‖ρ(n)‖Xk−1‖v

(n)
− v(n−1)

‖Xk−1

+‖v(n)‖Xk‖ρ
(n+1)
− ρ(n)‖Xk−2 .

Let

N n(t)= ‖v(n+1)
− v(n)‖2Xk−1

+‖∇ f (n+1)
−∇ f (n)‖2Xk−2

+‖ρ(n+1)
− ρ(n)‖2Xk−2

.

Collecting estimates (3-13)–(3-15), (3-20), (3-21), and integrating in t , we have

N (n+1)(t)≤ C
∫ t

0
(1+M (n)(τ ))N (n)(τ ) dτ +C

∫ t

0
(1+M (n)(τ ))N (n+1)(τ ) dτ.

Using Gronwall’s inequality we get

‖N (n+1)
‖L∞t ([0,T ]) ≤ CT ‖M (n)N (n)

‖L∞t ([0,T ]) exp
{
CT (1+‖M (n)

‖L∞t ([0,T ]))
}
.

From (3-12) and the choice of T (3-11), we have

(3-22) ‖N (n+1)
‖L∞t ([0,T ]) ≤ 2C M0T ‖N (n)

‖L∞t ([0,T ]) exp{2CT (1+M0)}

≤
1
2‖N

(n)
‖L∞t ([0,T ]).

Step 4: Limiting system and regularity of solutions. The estimate (3-22) easily
implies that

{ρ(n)}∞n=1 is Cauchy in L∞t ([0, T ], Xk−2),

{v(n)}∞n=1 is Cauchy in L∞t ([0, T ], Xk−1),

{∇ f (n)}∞n=1 is Cauchy in L∞t ([0, T ], Xk−2).

From the condition k ≥ 10d, and using the embedding Xk−2 ⊂ W [k/2],p, we
know that all sequences {ρ(n), v(n),∇ f (n)}∞n=1 are Cauchy in L∞t ([0, T ];W [k/2],p).
Using the iteration system (3-2) and noting W [k/5],p is an algebra, we can up-
grade the regularity in time and obtain that {ρ(n), v(n),∇ f (n)}∞n=1 are Cauchy in
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W [k/5],∞t ([0, T ];W [k/5],p). Therefore there exist

ρ ∈ L∞t ([0, T ], Ḣ k−1
∩ L p)∩W [k/5],∞t ([0, T ];W [k/5],p),

g ∈ L∞t ([0, T ], Ḣ k−1
∩ L p)∩W [k/5],∞t ([0, T ];W [k/5],p),

v ∈ L∞t ([0, T ], Ḣ k
∩ L p)∩W [k/5],∞t ([0, T ];W [k/5],p).

such that the following equations hold true in the classical sense:

(3-23)


∂tρ+∇ · (ρv)= 0,

∂tv+ (v · ∇)v+ g = 0,

∂t g+∇(v · g)+∇(∇ · v)= 0.

Step 5: Continuity in highest norm. Since (ρ, v, g) ∈ C([0, T ], L p
x ), we only need

to show (ρ, g) ∈ C([0, T ], Ḣ k−1
x ), v ∈ C([0, T ], Ḣ k). We shall only prove it for ρ

as the others are similar. Fix any t0 ∈ [0, T ], we compute

(3-24) ‖∂k−1(ρ(t)− ρ(t0))‖22
= ‖∂k−1ρ(t)‖22−‖∂

k−1ρ(t0)‖22+ 2〈∂k−1ρ(t0)− ∂k−1ρ(t), ∂k−1ρ(t0)〉,

where 〈 , 〉 is the usual L2-pairing. By a simple density argument and the fact that
ρ ∈ C([0, T ], L p

x ), we have1

lim
t→t0
|(3-24)| = 0.

Therefore we only need to check the norm continuity, that is:

lim
t→t0
‖∂k−1ρ(t)‖22 = ‖∂

k−1ρ(t0)‖22.

But this follows from a simple Gronwall estimate, which was essentially done in
Step 1. We omit the details.

Finally to recover the equation in (1-1) we still need to show ρ >0 and g=∇ρ/ρ.
Since the initial data ρ0 is positive, the positivity of ρ follows easily from the method
of characteristics and the fact that v ∈ C2. We leave the proof that g = ∇ρ/ρ to
the next step.

Step 6: Identification of g with ∇ρ/ρ. We first show that

(3-25)
∇ρ

ρ
∈ C([0, T ], L p

x ).

1If t0 = 0, then the left continuity can be obtained by the simple fact that our solution actually
belongs to C([−T1, T ], L p

x ) for some small T1 since our system is inviscid.
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From Step 4 and using the positivity of ρ(n) and ρ, it is not difficult to check that
up to a subsequence,

∇ρ(n)

ρ(n)
(t, x)→

∇ρ

ρ
(t, x), a.e. (t, x) ∈ [0, T ]×Rd .

Thus (3-25) can be proved if the sequence ∇ρ(n)/ρ(n) is Cauchy in C0
t L p

x . To this
end, we set g(n+1)

1 =∇ρ(n+1)/ρ(n+1). By the ρ-equation in (3-2) we have

∂t g(n+1)
1 +∇(∇ · v(n))+∇(v(n) · g(n+1)

1 )= 0.

Using integration by parts (note that g(n+1)
1 is gradient-like), we obtain

d
dt
‖g(n+1)

1 (t)‖p . ‖v
(n)(t)‖Xk (1+‖g

(n+1)
1 (t)‖p).

From Gronwall’s inequality and the choice of T (shrinking T if necessary), we
obtain

‖g(n+1)
1 ‖L∞t ([0,T ];L

p
x )
≤ 2M0.

Similarly, we have
‖∂ g(n+1)

1 ‖L∞t ([0,T ];L
p
x )
≤ 2M0.

Summing over all partial derivatives we see ∇ g(n+1)
1 is bounded in L p.

For the L p norm of the difference, we have

d
dt
‖g(n+1)

1 − g(n)1 ‖p . ‖v
(n)
‖Xk‖g

(n+1)
1 − g(n)1 ‖p +‖v

(n)
− v(n−1)

‖Xk−1‖g
(n)
1 ‖W 1,p .

Using the boundedness of g(n)1 in W 1,p and Gronwall, we have

‖g(n+1)
1 − g(n)1 ‖L∞t ([0,T ];L p) ≤ C‖v(n)− v(n−1)

‖L∞t ([0,T ];Xk−1).

Therefore g(n)1 is Cauchy in C0
t ([0, T ]; L p

x ). This completes the proof of (3-25).
We are now ready to show g =∇ρ/ρ. Indeed, from the first equation in (3-23),

we see ∇ρ/ρ satisfies in the classical sense

∂t

(
∇ρ

ρ

)
+∇

(
v ·
∇ρ

ρ

)
+∇(∇ · v)= 0.

This equation has exactly the same form as the g-equation in (3-23). The identifica-
tion of g with ∇ρ/ρ then follows from the uniqueness of the solutions in the L p

class, to the following vector equation

∂t h+∇(v · h)= 0, h(0) ∈ L p.

The uniqueness in L p follows from a simple energy estimate which is omitted
here. We note that if ρ0 ∈ L1, then the mass conservation follows from a standard
truncation argument. We omit the details.
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4. Proof of Theorem 1.3

By Theorem 1.1, for any chosen ρ0, v0, there exists a time T > 0 such that (1-1)
admits a unique solution (ρ(t, x), v(t, x)) on [0, T ]. In particular, the local solution
is at least C2 and satisfies the equation in the classical sense. Since curl(v0)= 0, it
is easy to check that curl(v(t))= 0 for any t . We first observe the property of finite
propagation speed. Indeed, set

f = log ρ.

Then the Euler equation (1-1) can be written as{
∂t f +∇ · v+ v · ∇ f = 0,

∂tv+ (v · ∇)v+∇ f = 0.

Taking one more derivative in t for both equations and using the irrotational condition
curlv = 0, we have{
∂t t f −1 f = 1

21(|v|
2)+ 1

2∇ f · ∇(|v|2)+ |∇ f |2+ v · ∇(∇ · v)+ v · ∇(v · ∇ f ),

∂t tv−1v =∇(v · (v · ∇)v)+ 2∇(v · ∇ f ).

This is a standard quasilinear wave equation. The standard arguments (compare
[Sogge 1995]), yields the finite propagation speed. In particular, we have ρ(t, x)=1,
v(t, x)= 0 for all t, x such that |x | ≤ 10− t and t ≤ T .

We claim that the corresponding local solution ρ(t, x), v(t, x) must blow up
before t = 1. We argue by contradiction. Suppose ρ, v exist on [0, 1], then we have

d
dt

∫
ρφ dx =

∫
ρv · ∇φ dx .

Taking one more derivative in t , we get

d2

dt2

∫
ρφ dx =

d
dt

∫
ρv · ∇φ dx

=

∫
ρ∂tv · ∇φ+

∫
∂tρv · ∇φ dx

=−

∫
(ρ(v · ∇)v) · ∇φ dx −

∫
∇ · (ρv)v · ∇φ dx −

∫
∇ρ · ∇φ dx

=

∫
ρv jvk∂ jkφ(x) dx +

∫
ρ1φ dx .

Note v(t, x) vanishes on |x | ≤ 1 for all t ∈ [0, 1]. For |x |> 1, we use the fact that
∇

2φ is positive definite and the boundedness of 1φ to get

d2

dt2

∫
ρφ dx >−C,
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for some C depending on ‖ρ0‖1. Therefore from the condition (1-7), we have

d
dt

∫
ρφ dx ≥ N −C for t ∈ [0, 1].

This implies ∫
ρ(1, x)φ(x) dx ≥

∫
ρ0(x)φ(x)+ N −C,

which, for N large enough, contradicts the fact that∫
ρ(1, x)φ(x) dx ≤ ‖ρ(1)‖1‖φ‖∞.

This completes the proof of Theorem 1.3.
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SYMMETRIC REGULARIZATION,
REDUCTION AND BLOW-UP OF

THE PLANAR THREE-BODY PROBLEM

RICHARD MOECKEL AND RICHARD MONTGOMERY

We carry out a sequence of coordinate changes for the planar three-body
problem, which successively eliminate the translation and rotation symme-
tries, regularize all three double collision singularities and blow-up the triple
collision. Parametrizing the configurations by the three relative position
vectors maintains the symmetry among the masses and simplifies the regu-
larization of binary collisions. Using size and shape coordinates facilitates
the reduction by rotations and the blow-up of triple collision while empha-
sizing the role of the shape sphere. By using homogeneous coordinates to
describe Hamiltonian systems whose configurations spaces are spheres or
projective spaces, we are able to take a modern, global approach to these
familiar problems. We also show how to obtain the reduced and regularized
differential equations in several convenient local coordinates systems.

1. Introduction and history

The three-body problem of Newton has symmetries and singularities. The reduction
process eliminates symmetries thereby reducing the number of degrees of freedom.
The Levi-Civita regularization eliminates binary collision singularities by a nonin-
vertible coordinate change together with a time reparametrization. The McGehee
blow-up eliminates the triple collision singularity by an ingenious polar coordi-
nate change and another time reparametrization. Each process has been applied
individually and in various combinations to the three-body problem, many times.

In this paper we apply all three processes globally and systematically, with no
one body singled out in the various transformations. The end result is a complete
flow on a five-dimensional manifold with boundary. We focus attention on the
geometry of the various spaces and maps appearing along the way. At the heart
of this paper is a beautiful degree-4 octahedral covering map of the shape sphere,
branched over the binary collision points (see Figure 4 on page 179). This map
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first appears in the work of Lemaître [1954; 1964]. One of our goals is to give a
modern, geometrical approach to this regularizing map.

The reduction procedure for the three body problem dates back to Lagrange
[1772] who found elegant differential equations for 10 translation and rotation
invariant variables, including the squares of the lengths of the three sides of the
triangle formed by the bodies. These equations are valid for the three-body problem
in any dimension. The variables of Lagrange also have the advantage of maintaining
the symmetry among the masses. On the other hand, for the planar problem they are
subject to 3 nonlinear constraints in addition to the energy and angular momentum
integrals. Moreover, we do not know a way to regularize the binary collision
singularities in Lagrange’s equations. For a modern introduction to Lagrange’s
equations; see [Albouy and Chenciner 1998; Albouy 2004; Chenciner 2011].

Jacobi eliminates the translation symmetry by the familiar device of fixing the
center of mass at the origin and introducing Jacobi coordinates [1843]. The elimi-
nation of rotations is achieved by introducing some angular variable (or variables
in the spatial case) to describe the overall rotation of the triangle together with
some complementary, rotation-invariant variables. This method, which is the basis
for much of the later work on the three-body problem, has some disadvantages.
First, the Jacobi coordinates break the symmetry among the masses, making it
much more difficult to regularize all three binary collisions at once. Second, for
topological reasons, there is no way to choose an angular variable suitable for a
global reduction that includes the binary collision configurations, namely, the map
from the normalized configuration space to the shape sphere is a Hopf fibration, a
nontrivial circle bundle. If we delete the binary collision points, the bundle becomes
trivial but this deletion is not conducive to subsequent regularization.

Murnaghan [1936] derived a symmetrical Hamiltonian for the planar three-body
problem in terms of the lengths of the sides and an angular variable representing the
overall rotation of the triangle with respect to an inertial coordinate system. Then
he obtains a reduced system by ignoring the angular variable. Van Kampen and
Wintner [1937] carry out a similar reduction for the spatial three-body problem.
While these reductions avoid breaking the symmetry, they are still subject to the
problem about the use of angular variables in a nontrivial bundle. In addition, using
the side lengths as variables leads to differential equations that are not smooth at
the collinear configurations (a problem seemingly avoided somehow by Lagrange).

Lemaître [1954] introduced a symmetrical approach to reduction and regular-
ization of binary collisions leading to the octahedral branched covering map of
the sphere mentioned above. After using Euler angles to reduce by rotations, he
introduces a size variable and two shape variables, which can be viewed as spherical
coordinates on the shape sphere which we use below. The regularization of binary
collisions is done in the shape variables by means of the octahedral covering map.
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The use of Euler angles limits the validity of the reduction step of Lemaître’s work
and the derivations are based on rather heavy trigonometric computations. But much
of this paper can be viewed as a modern, global way to arrive at his covering map.

In this endeavor we have the advantage of the modern theory of reduction of
Hamiltonian systems with symmetry. Smale [1970] describes the reduction process
for the three-body problem as the formation of a quotient manifold with a reduced
Hamiltonian flow. Meyer [1973] and Marsden and Weinstein [1974] formalized the
reduction procedure into what is now called “symplectic reduction theory”. Fixing
the integrals of motion determines invariant manifolds in phase space. The quotient
spaces of these invariant manifolds are the reduced phase spaces and the flows
induced on them are again Hamiltonian with respect to an appropriate symplectic
structure and a reduced Hamiltonian function.

The regularization procedure goes back to Levi-Civita [1920], who showed how
to regularize binary collisions in perturbed planar Kepler problems by using the
complex squaring map (a branched double covering of the complex plane). It is
easy to adapt his method to regularize one of the binary collisions in the three-body
problem, but regularizing all three requires more ingenuity. Lemaître’s regularizing
map behaves like the complex squaring map at each of the binary collision points
on the shape sphere. Another approach to simultaneous regularization (without
reduction) was introduced by Waldvogel [1972], who used a quadratic mapping
of the translation-reduced configuration space C2. We use a similar quadratic
mapping applied to certain homogeneous shape variables below. Heggie [1974]
found an elegant, symmetrical way to regularize all of the binary collisions for the
N -body problem. In the planar case, his method is to apply separate Levi-Civita
transformations to each of the difference vectors qi − q j . We apply this same
idea below, but to the homogeneous shape variables, where it is found to induce
Lemaître’s octahedral covering.

Triple collision acts like an essential singularity in the three-body problem.
McGehee [1974] showed how an extension of spherical coordinates, together with
a time reparametrization, yields a flow with no singularities at triple collision.
This “McGehee blow-up” has the effect of replacing the triple collision point by a
manifold called the collision manifold. Relative to the new parametrization, it takes
forever to reach triple collision, whereas the Newtonian time to triple collision is
finite. The flow on the triple collision manifold governs the behavior of near-triple
collision solutions. One aspect of the blow-up procedure is the use of separate size
and shape coordinates to describe the configuration of the bodies. As shown below,
such a splitting also facilitates the global reduction by rotations.

Several authors have combined blow-up of triple collision with reduction and/or
regularization of binary collision. Waldvogel [1982] reduced and regularized the
flow on the zero-angular-momentum triple collision manifold. The first part of his
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paper combines Murnaghan’s reduction procedure with some formulas of Lemaître
to obtain a reduced and regularized Hamiltonian for the zero-angular momentum
three-body problem. Binary collisions are not regularized on the nonzero angular
momentum levels. However, it is known that triple collisions can only occur when
the angular momentum is zero. After restricting to the zero angular momentum
manifold, Waldvogel blows up the triple collision to get reduced, regularized and
blown-up differential equations. Simó and Susín [1991] used these coordinates in
their study of the dynamics on the collision manifold. These coordinates are very
much in the spirit of this paper but do not achieve a full reduction, regularization
and blow-up due to the restriction to zero angular momentum.

The present paper draws on all these sources. We begin with some symplectic
reduction theory. Turning to the three-body problem, we eliminate translation
symmetry by introducing the three difference vectors Qi j = qi − q j as coordinates.
Since these are linearly dependent, some effort is needed to justify the change of
coordinates. Next we introduce a size variable and associated spherical coordinates
X i j . One novelty of our approach is that we use homogeneous coordinates to
describe points on spheres. Instead of constraining the spherical coordinates to have
a fixed norm, we only ask them to avoid the origin and then we find differential
equations for them that are invariant under scaling.

Once this point of view is adopted, it is relatively easy to carry out a global
reduction by rotations. Using complex coordinates, the combined action of scaling
and rotation is just scaling by a complex number. Quotienting by complex scaling,
we end up with a complex projective space, in fact with CP1. Of course, as real
manifolds, CP1

' S2, and this is our version of the shape sphere. We finally obtain
a global reduction of the planar three-body problem with a six-dimensional reduced
phase space, the cotangent bundle of R+× S2.

Turning to regularization, we use simultaneous Levi-Civita transformations
of the homogeneous variables X i j to regularize all three binary collisions. This
regularizing map is applied to both the rotation-reduced and unreduced problems. In
the reduced case we get a reduced and regularized system on the cotangent bundle
of R+× S2, which is related to the unregularized version by Lemaître’s map.

Finally we show how McGehee’s blow-up procedure can be applied to the various
Hamiltonians we have found.

2. Symplectic reduction

In this section we recall some results about the reduction of a Hamiltonian system
with symmetry. In addition we show how to tell when two symmetric Hamiltonian
systems lead to equivalent reduced systems.
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First we describe the basic symplectic reduction theory of Meyer [1973] and
Marsden and Weinstein [1974] in the case of a system with symmetry. Suppose
(M, ω) is a symplectic manifold and G is a Lie group which acts on M as a group
of symplectic diffeomorphisms. Let J : M→ g∗ be the momentum map, where g∗

is the dual of the Lie algebra of G. If we fix a momentum value µ∈ g∗ and suppose
that the action of G maps the level set J−1(µ) into itself, the quotient space

Pµ = J−1(µ)/G

is called the reduced phase space.
If the group action is free and proper, then this space is a smooth manifold. There

is an induced symplectic form ωµ on Pµ, which is obtained as follows. First, for
x ∈ M , restrict ω(x) to the tangent spaces Tx J−1(µ). The resulting two-form has
a kernel, which is precisely the tangent space to the group orbit through x . This
implies that there is an induced two-form on the quotient vector space that is the
tangent space to the quotient manifold.

Now if H : M→ R is a G-invariant Hamiltonian then the corresponding Hamil-
tonian flow has J−1(µ) as an invariant set and G-orbits map to G-orbits under
the flow. Hence there is a well-defined quotient flow on J−1(µ)/G. There is also
a reduced Hamiltonian Hµ : Pµ → R and the reduction theorem states that the
quotient flow on (Pµ, ωµ) is the Hamiltonian flow of the reduced Hamiltonian.

Now suppose we have two such Hamiltonian systems with symmetry. For
i = 1, 2, there will be symplectic manifolds (Mi , ωi ), symmetry groups Gi and
momentum maps Ji . If we fix momentum values µi , we get reduced phase spaces
Pi = J−1

i (µi )/Gi with symplectic formsωµi . Suppose Hi :Mi→R are Gi -invariant
Hamiltonians and let Hµi : Pi → R be the corresponding reduced Hamiltonians.
We want to give a concrete way to check that the two reduced Hamiltonian flows
are equivalent.

Suppose we have a smooth map F : J−1
1 (µ1)→ J−1

2 (µ2) that maps G1-orbits
into G2-orbits; that is, F is equivariant. Then F induces a smooth map of quotient
manifolds F̂ : P1 → P2. We will call F partially symplectic if it preserves the
restrictions of the symplectic forms, that is,

F∗(ω2|J−1
2 (µ2)

)= ω1|J−1
1 (µ1)

.

It follows that F̂ : (P1, ωµ1)→ (P2, ωµ2) is symplectic. Hence F̂ is a local diffeo-
morphism, even if F itself is locally neither injective nor surjective. Then the usual
theory of symplectic maps applied to F̂ gives:

Theorem 1. Suppose F : J−1
1 (µ1)→ J−1

2 (µ2) is a partially symplectic, equivariant
map and that the restrictions of the Hamiltonians are related by H1 = H2 ◦ F. Then



134 RICHARD MOECKEL AND RICHARD MONTGOMERY

F̂ : P1→ P2 is a symplectic, local diffeomorphism of the reduced phase spaces,
which takes orbits of the reduced Hamiltonian flow of Hµ1 to those of Hµ2 .

Definition 2. A partially symplectic, equivariant map G : J−1
2 (µ2)→ J−1

1 (µ1)

such that F ◦G = id (mod G2) and G ◦ F = id (mod G1) (so that these maps take
group orbits into group orbits) will be called a pseudoinverse for F .

A partial inverse G for F induces a bona fide inverse Ĝ for F̂ , which exhibits
an equivalence between the two reduced Hamiltonian flows.

As a special case, suppose the two Hamiltonians are both defined on the same
space and have the same symmetry group. If their restrictions to J−1(µ) agree
then they will lead to the same reduced system. The identity map will provide the
required partially symplectic map. We will call two such Hamiltonians equivalent.
Equivalent Hamiltonians may produce different flows on J−1(µ) but the quotient
flows will agree.

The following theorems about the symplectic reduction of a cotangent bundle
M = T ∗X will be used later. (See [Abraham and Marsden 1978, Theorem 4.3.3]
for a version of these theorems.) Suppose G acts freely on the configuration space
X and that the G-action on M is the canonical lift of this base action. Suppose that
the orbit space B for the G action on X is a manifold and the projection π : X→ B
a submersion.

Theorem 3. Under the above assumptions, the reduced space P0 of T ∗X at µ= 0
is isomorphic to T ∗B with its canonical symplectic structure ωB .

The theorem can be proved as a special case of Theorem 1. Because π is onto,
dπx : Tx X→ Tπ(x)B is an onto linear map for each x ∈ X . Consequently the dual
map dπ∗x : T

∗

π(x)B→ T ∗x X is injective. In the next paragraph we will show that the
image of this dual is J−1(0)x :

(1) im(dπ∗x )= J−1(0)x := J−1(0)∩ T ∗x X.

It follows that we can invert dπ∗x on the fiber J−1(0)x ⊂ T ∗x X . Define

F : J−1(0)→ T ∗B ; F(x, p)= (π(x), dπ∗−1
x (p)).

One verifies that F is a partially symplectic map relative to G acting on J−1(0), and
the trivial group acting on T ∗B. A particularly easy way to see the partially symplec-
tic nature of F is to introduce local bundle coordinates X ⊃ π−1(U )∼=U ×G. (X
is covered by sets of this nature.) In bundle coordinates π(x, g)= x , and so T ∗U X ∼=
T ∗U×G×g∗. We write elements of T ∗X over U as (b, P; g, µ), b ∈U , P ∈ T ∗b U ,
g ∈ G, µ ∈ g∗. In these coordinates J (b, P; g, µ)= µ, so that the general element
of J−1(0)U can be written (b, Pb, g, 0) and F(b, Pb, g, 0) = (b, Pb). We have
ωX = dx∧d P+dg∧dµ and, ωB = dx∧d P , where we hope the meaning of these
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symbolic expressions is obvious. It follows immediately that F∗ωB = ωX |J−1(0),
which is the claimed partially symplectic nature of F . Theorem 3 follows.

We explain why (1) holds, and in the process gain some understanding of the
momentum map. The group action is a map G×X→ X which, when differentiated
with respect to g∈G at the identity, yields the “infinitesimal action” σ :g×X→ TX .
For each frozen x , the map σx : g→ Tx X is linear and, because G acts freely,
injective. As we vary x , σ forms a vector bundle map, part of an exact sequence of
vector bundle maps over X :

0→ g× X
σ
−→ TX

dπ
−→ π∗TB

where π∗TB = {(x, V ); x ∈ X, V ∈ Tπ(x)B} is the pull-back of TB over B by the
map π : X→ B. (Exactness of the sequence follows by differentiating the statement
that the fibers of π are the G-orbits.) Dualizing, we get

0← g∗× X←
σ ∗

T ∗X←−
dπ∗

π∗T ∗B.

The momentum map for the G-action on T ∗X is π1 ◦ σ
∗, where π1 : g

∗
× X→ g∗

is the projection onto the first factor. In other words,

J (x, p)= σ ∗x p.

It follows from the exactness of the dual sequence that im(dπ∗x )= ker(σ ∗x ), which
is precisely (1).

In order to identify the reduction of M = T ∗X at a nonzero value, µ 6= 0, we
introduce a connection 0 for the bundle G → X → B. The curvature of the
connection 0 is a g-valued two-form � on B, which we may pull-back to T ∗B via
the canonical projection τB : T ∗B→ B. Then µ ·� is a scalar-valued two-form
on B.

Theorem 4. Under the same assumptions as above on G, the reduced space Pµ of
T ∗X at µ is isomorphic to T ∗B with the twisted symplectic structure ωB − τ

∗

Bµ ·�.

We only present the proof in the case G = S1, whose Lie algebra we identify
with R in the usual way. Then a connection is a G-invariant one-form on T ∗X that
satisfies the normalization property J (x, 0(x))= 1. Its curvature � is defined by
d0 = π∗�. We define the momentum shift map

8µ : J−1(0)→ J−1(µ), 8µ(x, p)= (x, p+µ0(x)),

which adds µ0 pointwise to each covector. The fiber-linearity of J shows that 8µ
does indeed map J−1(0) onto J−1(µ). (The inverse of 8µ subtracts µ0.) The
map is G-equivariant since 0 is G-invariant. Thus 8µ induces a G-equivariant
diffeomorphism J−1(0)/G→ J−1(µ)/G. We have already identified J−1(0)/G
with T ∗B. However, 8µ is not partially symplectic, so we cannot directly apply
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Theorem 1. To understand and quantify this failure, let2= P dQ denote the canon-
ical one-form on T ∗X . Compute 8∗µ2=2+µτ

∗

X0. Taking the exterior derivative,
using ωX =−d2, we find that 8∗µωX =ωX −µτ

∗

Xπ
∗�. This equation implies that

if we shift the canonical two-form on J−1(0) by subtracting µτ ∗Xπ
∗� then 8µ is a

partially symplectic map between J−1(0) and J−1(µ). Theorem 4 follows.

3. Reduction by translations

To formulate the Newtonian planar three-body problem, it is convenient to use the
complex plane, where we identify (x, y) ∈ R2 with x + iy ∈ C.

Let q1, q2, q3 ∈C be the positions of the three bodies and let q= (q1, q2, q3)∈C3.
We will adopt the Hamiltonian point of view, where the conjugate momentum
variables pi are covectors rather than vectors. If we identify a covector (a, b) ∈R2∗

with a+ ib ∈ C, then we have momentum variables

pi ∈ C∗ ' C and p = (p1, p2, p3) ∈ C3∗.

The planar three-body problem is the Hamiltonian system on the phase space
(C3
\1)×C3∗ with Hamiltonian

(2)

H(q, p)= K0(p)−U (q),

K0(p)=
|p1|

2

2m1
+
|p2|

2

2m2
+
|p3|

2

2m3
,

U (q)=
m1m2

|q1− q2|
+

m3m1

|q3− q1|
+

m2m3

|q2− q3|
,

where 1 = {q : qi = q j for some i 6= j}, the singular set. From now on, we will
not explicitly mention that the singular set must be deleted from the domains of the
various Hamiltonians we construct.

The Newtonian potential is invariant under the group G =C acting by translation
on the position vectors and leaving the momenta fixed. The momentum map is
given by

ptot = p1+ p2+ p3 ∈ C∗.

By fixing a value of this integral and passing to the quotient space, one obtains
a reduced Hamiltonian system. A simple and familiar way to accomplish this
reduction is to assume ptot = 0 and then fix the center of mass at the origin:
m1q1+m2q2+m3q3 = 0.

However, we will now describe an alternative method for eliminating the transla-
tion symmetry, which will make it easier to regularize double collisions later on.
This approach is a variation on the one used in [Heggie 1974]. We will view it as
an application of Theorem 1.
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3.1. Relative coordinates. Introduce relative position variables Q12, Q31, Q23 ∈C

and corresponding momentum variables P12, P31, P23∈C∗. The relative coordinates
are related to the positions variables qi by a linear map Q = Lq

(3) L : C3
→ C3, Q12 = q1− q2, Q31 = q3− q1, Q23 = q2− q3.

The dual map, which describes the pull-back of the relative momenta Pi j to p space,
is given by

(4) L∗ : C3∗
→ C3∗, p1 = P12− P31, p2 = P23− P12, p3 = P31− P23.

We naturally have Q j i = −Qi j and consequently Pj i = −Pi j so that (4) can be
written pi =6 j Pi j , a form which extends to the N -body problem.

The linear map L is neither one-to-one nor onto. Its kernel,

ker L = {q : q = (c, c, c) for some c ∈ R2
= C},

is the subspace of translation symmetries in q-space. So its image

W= im L = {Q : Q12+ Q31+ Q23 = 0}

is isomorphic to the quotient space of C3 by translations. W is a complex subspace
of C3 with complex dimension two, or real dimension 4. We can define a map in
the other direction, q = L†(Q):

(5) L†
: q1=

m2 Q12−m3 Q31

m
, q2=

m3 Q23−m1 Q12

m
, q3=

m1 Q31−m2 Q23

m
,

where m = m1+m2+m3. L† maps C3 onto

W′ = im L†
= {q : m1q1+m2q2+m3q3 = 0},

the zero-center of mass subspace, and it is easy to check that the restrictions L|W′
and L†

|W are inverses.
For the dual map, we find that the kernel is generated by translations in P-

momentum space

ker L∗ = {P : P = (c, c, c) for some c ∈ C∗}

while the image is the zero-momentum subspace

V= im L∗ = {p : p1+ p2+ pn = 0}.

The map L†∗
: C3∗
→ C3∗

(6) L†∗
: P12=

m2 p1−m1 p2

m
, P31=

m1 p3−m3 p1

m
, P23=

m3 p2−m2 p3

m
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maps C3∗ onto

V′ = im L†∗
= {P : m3 P12+m2 P31+m1 P23 = 0},

and the restrictions L∗|V′ and L†∗
|V are inverses.

Define a relative coordinate Hamiltonian on the (Q, P) phase space C3
×C3∗ by

(7)

Hrel(Q, P)= K (P)−U (Q),

K (P)= K0(L∗P)= |P12−P31|
2

2m1
+
|P23−P12|

2

2m2
+
|P31−P23|

2

2m3
,

U (Q)= m1m2
|Q12|

+
m3m1
|Q31|

+
m2m3
|Q23|

,

so that

(8) H(q, L∗P)= Hrel(Lq, P).

The kinetic energy can be written

(9) K (P)= 1
2 PTB P, with B =



( 1
m1
+

1
m2

)
I −

1
m1

I −
1

m2
I

−
1

m1
I

( 1
m3
+

1
m1

)
I −

1
m3

I

−
1

m2
I −

1
m3

I
( 1

m2
+

1
m3

)
I

,
where I denotes the 2× 2 identity matrix.

3.2. Equivalence to the translation-reduced three-body problem. We will now
show that the reduction of the Hamiltonian system with Hamiltonian Hrel(Q, P)
by translations in momentum space is equivalent to the reduction of the three-body
Hamiltonian H by translations in configuration space.

Theorem 5. W×C3∗ is invariant under the Hamiltonian flow of Hrel(Q, P). The
restricted flow is invariant under translations in momentum space and it induces a
quotient flow, which is conjugate to the zero total momentum flow of the three-body
problem reduced by translations.

The proof will be an application of Theorem 1. First we describe how the relevant
symplectic structures look in complex coordinates. If Q ∈ C3 and P ∈ C3∗ it is
convenient to define a Hermitian variant of the natural evaluation pairing:

(10) 〈P, Q〉 = P̄12 Q12+ P̄31 Q31+ P̄23 Q23.

As a result, if Q jk = x jk + i y jk and Pjk = a jk + i b jk , we get

(11)
re〈P, Q〉 = a12x12+ b12 y12+ · · · ,

im〈P, Q〉 = a12 y12− b12x12+ · · · .
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Thus the real part of the complex pairing agrees with the usual real pairing and,
as a bonus, the imaginary part is −µ, where µ is the angular momentum. With
this convention, the canonical one-forms on (q, p)-space and (Q, P)-space can be
written

(12)
θ = re〈p, dq〉 = re( p̄1 dq1+ p̄2 dq2+ p̄3 dq3)

2= re〈P, d Q〉 = re(P̄12 d Q12+ P̄31 d Q31+ P̄23 d Q23).

Proof of Theorem 5. For the three-body problem we have the phase space

M1 = C6
×C6∗

= {(q, p)},

with the standard symplectic structure. The Hamiltonian H(q, p) is invariant under
the action of the group G1 = C acting by

c · (q, p)= (q1+ c, q2+ c, q3+ c, p1, p2, p3), c ∈ C.

We fix the momentum level ptot = 0 and obtain a quotient Hamiltonian flow.
For the Hamiltonian Hrel, the phase space is M2 = C3

×C3∗
= {(Q, P)} with

the standard symplectic structure. Hrel(Q, P) is invariant under the action of the
group G2=C∗ acting on by c ·(Q, P)= (Q12, Q31, Q23, P12+c, P31+c, P23+c),
c ∈C∗. The momentum map is Qtot = Q12+Q31+Q23 and we fix the momentum
level Qtot = 0 giving a second quotient Hamiltonian flow.

To see that these two quotient flows are equivalent we apply Theorem 1. Define

F(q, p)= (Lq, L†∗ p), G(Q, P)= (L† Q, L∗P).

Then, F : {ptot = 0} → {Qtot = 0} and G : {Qtot = 0} → {ptot = 0}. Moreover,
G ◦ F(q, p)= c · (q, p), where −c= 1

m (m1q1+m2q2+m3q3) ∈C is the center of
mass. Similarly, F ◦G(q, p)= c · (Q, P), where

−c = 1
m
(m3 P12+m2 P31+m1 P23) ∈ C∗.

In other words G ◦ F = id (mod G1) and F ◦G = id (mod G2).
It remains to verify that F and G are partially symplectic. Consider the canonical

one-forms (12). From (3) and (6). We find, for example F∗ P̄12= (m2 p̄1−m1 p̄2)/m
and F∗d Q12 = dq1− dq2. After a bit of algebra we get

F∗2= θ − re
(

p̄tot(m1dq1+m2dq2+m3dq3)

m

)
.

Restricting to {ptot = 0} shows that F is partially symplectic. Similarly,

G∗θ =2−
re((m3 P̄12+m2 P̄31+m1 P̄23)(d Q12+ d Q31+ d Q23))

m
,
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which we restrict to {Qtot = 0} to see that G is also partially symplectic. We have
shown that F and G are pseudoinverses in the sense of Definition 2. According
to (8) these pseudoinverses intertwine H and Hrel. The hypotheses of Theorem 1
have been verified, completing the proof. �

Hamilton’s equations for the Hamiltonian Hrel(Q, P) are simply

(13)
Q̇ = B P,

Ṗ =UQ =−

(
m1m2 Q12

r3
12

,
m3m1 Q31

r3
31

,
m2m3 Q23

r3
23

)
,

where ri j = |Qi j |. (Note that here and in all of the differential equations below,
partial derivatives like UQ are calculated by simply calculating the corresponding
real partial derivatives and converting the resulting real vector or covector to complex
notation; no complex differentiations are involved.) Differential equations for the
three-body problem reduced by translations are obtained by restricting Q to W.
Then Q remains in W under the flow. Moreover, covectors P , P ′, which are initially
equivalent under translation remain so.

Since the symmetry group C∗ acts only on the momenta Pi j , the reduced phase
space is the eight-dimensional space W× (C3∗/C∗)'W× im L∗ =W×V. This
can be identified with the cotangent bundle T ∗W=W×W∗ as follows. Let P ∈C3∗.
Then P|W ∈W∗ and two covectors P, P ′ ∈ C3∗ have the same restriction to W if
they differ by an element of ker L∗; that is, if they are equivalent under the symmetry
group.

So far we have not really accomplished any “reduction” since there are still
twelve (Q, P) variables. Essentially, we have traded the constraint

ptot = p1+ p2+ p3 = 0

and the translation symmetry in q for the constraint Qtot= Q12+Q31+Q23= 0 and
translation symmetry in P . We will see below that the use of the Qi j is advantageous
for regularizing double collisions. A genuine reduction of dimension can be easily
achieved by introducing a basis for W. Moreover, this can be accomplished in
several ways as we will see in Section 3.4 below. But one virtue of (7) is that it
avoids making a choice of parametrization and thereby preserves the symmetry of
the problem under permutations of the masses.

3.3. Mass metrics and the kinetic energy. The potential energy U (Q) of (7) is
particularly simple, but the kinetic energy K (P) seems less natural. In this section
we will see that it is related by duality to a Hermitian metric which will play an
important role later on.
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Define a Hermitian mass metric on C3 by

(14) 〈V,W 〉 = 1
m
(
m1m2V̄ T

12W12+m3m1V̄ T
31W31+m2m3V̄ T

23W23
)
.

The corresponding norm is given by

(15) |Q|2 = 1
m
(
m1m2|Q12|

2
+m3m1|Q31|

2
+m2m3|Q23|

2).
The mass norm

r = |Q| =
√
〈Q, Q〉

provides a natural measure of the size of a configuration Q= (Q12, Q31, Q23)∈C3.
In particular, r = 0 represent triple collision. There is a dual mass metric on C3∗

given by

(16) 〈P, R〉 = m
(

P̄T
12 R12

m1m2
+

P̄T
31 R31

m3m1
+

P̄T
23 R23

m2m3

)
,

with squared norm

(17) |P|2 = m
(
|P12|

2

m1m2
+
|P31|

2

m3m1
+
|P23|

2

m2m3

)
.

Note: Altogether we have three interpretations of 〈 · , · 〉 depending on whether the
arguments are two vectors (14), two covectors (16), or a vector and a covector, (10).
All three pairings are Hermitian, being complex-linear in the second argument and
antilinear in the first.

Introduce the notation W0 =W \ 0 (and a similar notation for any vector space).
If Q ∈ W0 then it is easy to check that the vectors Q, N , T form a Hermitian-
orthogonal complex basis for TQC3 with respect to the Hermitian mass metric,
where

(18)

Q = (Q12, Q31, Q23), N = (m3,m2,m1),

T =
(

Q̄31

m2
−

Q̄23

m1
,

Q̄23

m1
−

Q̄12

m3
,

Q̄12

m3
−

Q̄31

m2

)
.

Q is a radial vector and N , T are, respectively, normal and tangent to W. Clearly
{Q, T } is a basis for W.

The next lemma shows the relationship between the kinetic energy and the dual
of the mass metric.

Remark on terminology. A nondegenerate quadratic form on a vector space, or
on the fibers of a vector bundle, determines uniquely a quadratic form on the dual
vector space, or on the fibers of the dual vector bundle. We refer to this dual
quadratic form as either the “cometric” or the “dual norm”.
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Lemma 6. The kinetic energy satisfies

(19) K (P)= 1
2
|〈P, Q〉|2

|Q|2
+

1
2
|〈P, T 〉|2

|T |2
=

1
2 |P|

2
−

1
2
|〈P, N 〉|2

|N |2
=

1
2 |π
∗

W P|2,

where |P| is the dual mass norm and where πW : C
3
→ C3 is orthogonal projection

onto W with respect to the mass metric.
Moreover, K (P) can be characterized as one-half of the unique translation-

invariant quadratic form on T ∗QC3 representing the dual of the restriction of the
mass norm to TQW.

Proof. A direct computation shows that

|P|2−
|〈P, N 〉|2

|N |2
=
|P12− P31|

2

2m1
+
|P23− P12|

2

2m2
+
|P31− P23|

2

2m3
= 2K (P).

On the other hand, dual norms, or cometrics, can be characterized by the property
that for any orthogonal basis {Q, N , T },

|P|2 =
|〈P, Q〉|2

|Q|2
+
|〈P, N 〉|2

|N |2
+
|〈P, T 〉|2

|T |2
.

Hence

2K (P)= |P|2−
|〈P, N 〉|2

|N |2
=
|〈P, Q〉|2

|Q|2
+
|〈P, T 〉|2

|T |2
,

and this is also the formula for |P ◦πW|
2.

If we view T ∗QW as the quotient space of T ∗QC3 under momentum translations,
then any norm on T ∗QW is represented by a unique translation-invariant quadratic
form on T ∗QC3. In particular, this applies to the dual norm of the restriction of the
mass norm to TQW. Since {Q, T } is an orthogonal basis for TQW with respect to
the mass metric, this “lift” of the dual norm will be given by

|〈P, Q〉|2

|Q|2
+
|〈P, T 〉|2

|T |2
= 2K (P). �

3.4. Parametrizing W. Let e1 = (a12, a31, a23), e2 = (b12, b31, b23) ∈ W be any
complex basis for W. The corresponding coordinate map is

f : C2
→W⊂ C3, f (ξ1, ξ2)= ξ1 e1+ ξ2 e2 or Qi j = ξ1 ai j + ξ2 bi j ,

where ξ = (ξ1, ξ2) ∈ C2 are the new coordinates.
Extend f to a map F : T ∗C2

→W×C3∗ by letting P ∈ C3∗ be any solution
to the equations 〈P, e1〉 = η̄1, 〈P, e2〉 = η̄2, where η = (η1, η2) ∈ C2∗ is the dual
momentum to ξ and N is the normal vector to W from (18). Any two solutions will
differ by a momentum translation, which will not affect the computations below.
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This definition makes F partially symplectic, where the symplectic structure on
T ∗C2 derives from the canonical one-form

θ = re〈η, ξ〉 = re(η̄1 ξ1+ η̄2 ξ2).

To find the new Hamiltonian, note that the pull-back of the Hermitian mass
metric is

〈ξ, ξ ′〉 = ξ̄ TGξ ′, with G =
[

g11 g12

g21 g22

]
, gi j = 〈ei , e j 〉.

Clearly this can be viewed as the pull-back of the restriction of the mass metric to
W. The dual of this metric is

〈η, η′〉 = ξ̄ TGξ ′, with G−1
=

1
g

[
g22 −g21

−g12 g11

]
, g = det G.

It follows from Lemma 6 and the fact that the momenta also transform as pull-backs
that the kinetic energy will be one-half of the dual norm.

The Hamiltonian becomes

(20) H(ξ, η)= 1
2 η̄

T G−1η−U (ξ),

where

U (ξ)=
m1m2

ρ12
+

m1m3

ρ31
+

m2m3

ρ23
, ρi j = |Qi j | = |ai jξ1+ bi jξ2|.

Example 7 (heliocentric coordinates). One can form such a parametrization of W

by choosing one of the masses, say m1, to play the role of the origin. Set Q12=−ξ1,
Q31 = ξ2, Q23 = ξ1− ξ2 so that ξ1, ξ2 ∈ C are the coordinates of m2,m3 relative
to m1. The corresponding basis for W e1 = (−1, 0, 1), e2 = (0, 1,−1), and the
momenta η̄i = 〈P, ei 〉 satisfy η1 = P23 − P12, η2 = P31 − P23. For example, we
can choose P12 =−η1, P31 = η2, P23 = 0. Substituting into Hred gives the familiar
Hamiltonian

H(ξ, η)=
|η1+ η2|

2

2m1
+
|η1|

2

2m2
+
|η2|

2

2m3
−

m1m2

|ξ1|
−

m1m3

|ξ2|
−

m2m3

|ξ1− ξ2|
.

Example 8 (Jacobi coordinates). Alternatively one can introduce Jacobi coordinates
ξ1, ξ2 by setting

Q12 =−ξ1, Q31 = ξ2+ ν2ξ1, Q23 =−ξ2+ ν1ξ1, νi =
mi

m1+m2
.

This corresponds to the orthogonal basis e1 = (−1, ν2, ν1), e2 = (0, 1,−1), and we
have mass metric

G =
[
µ1 0
0 µ2

]
, with µ1 =

m1m2

m1+m2
, µ2 =

(m1+m2)m3

m
.
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The momenta satisfy η1=−P12+ν2 P31+ν1 P23, η2= P31−P23, and for an inverse
we could choose P12 = 0, P31 = η1+ ν1η2, P23 = η1− ν2η2. From (20) we get the
equally familiar Hamiltonian

H(ξ, η)=
|η1|

2

2µ1
+
|η2|

2

2µ2
−

m1m2

|ξ1|
−

m1m3

|ξ2+ ν2ξ1|
−

m2m3

|ξ2− ν1ξ1|
.

4. Spherical-homogeneous coordinates

The Hamiltonian Hrel(Q, P) of (7), representing the translation-reduced planar
three-body problem, has further symmetries. The potential function U (Q) is
symmetric under simultaneous rotation of the Qi j in C and is also homogeneous of
degree −1 with respect to scaling. In this section we exploit the scaling symmetry
by converting the system to spherical coordinates. This will be useful later when
we blow-up the triple collision singularity.

We use the mass norm r = |Q| as a measure of the size of a configuration
Q = (Q12, Q31, Q23) ∈ C3. In particular, r = 0 represent triple collision. For
Q ∈ C3

0 we want to define a spherical variable X ∈ S5 to describe the normalized
configuration. However, instead of using the unit sphere S5

= {X ∈ C3
: |X | = 1}

we will view the sphere as the quotient space of C3
0 under scaling by positive real

numbers. This gives a convenient way to work globally on S5. We will take a similar
approach when working with the complex projective space CP2 in the next section.

Let M = T ∗C3
0 ' C3

0×C3∗ with the standard symplectic structure. Let G = R+

be the group of positive real numbers and let G act on M by k ·(X, Y )= (k X, Y/k),
where X ∈ C3

0, Y ∈ C3∗, k > 0. We will use the notation [X ], [X, Y ] to denote
equivalence classes under scaling. In other words, two vectors X, X ′ ∈ C3

0 are
equivalent, denoted X ′∼ X , if X ′= k X for some k> 0. Similarly (X ′, Y ′)∼ (X, Y )
if X ′ = k X , Y ′ = Y/k for some k > 0.

The momentum map for this group action is given by S(X, Y )= re〈Y, X〉, where
the angle bracket denotes the Hermitian evaluation pairing (10). Fixing this scaling-
momentum to be re〈Y, X〉 = 0 and passing to the quotient space we get a reduced
symplectic manifold, which can be identified with the cotangent bundle T ∗S5. This
is a special case of cotangent bundle reduction at zero momentum, as described in
Theorem 3. Introduce the notation

T ∗sphC3
= S−1(0)= {(X, Y ) ∈ T ∗C3

0 : re〈Y, X〉 = 0}.

Then we have TsphC3/R+ ' T ∗S5.
We are going to pass from the relative configuration variable Q ∈ C3

0 to a size
variable r and a homogeneous variable X ∈ C3

0.

Definition 9. If r = |Q| and [X ] = [Q], we say that (r, X)∈R+×C3
0 are spherical-

homogeneous coordinates for the configuration Q ∈ C3
0
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X will be defined only up to a positive real factor and will be viewed as rep-
resenting a point of S5. We can use Q itself as a homogeneous representative
of the corresponding point in S5. Hence we define a spherical-homogeneous
coordinate map

f : C3
0→ R+×C3

0 r = |Q|, X = Q.

Extend f (Q) to a map F(Q, P), F : T ∗C3
0→ T ∗R+× T ∗sphC3 by setting

F : pr =
re〈P, Q〉
|Q|

, Y = P −
re〈P, Q〉
|Q|2

Q∗.

Here pr ∈R∗, Y ∈C3∗ are the conjugate momentum variables to r, X and Q∗ is the
dual covector to Q with respect to the mass metric. By definition, this means the
unique covector in C3∗ such that 〈Q∗, V 〉 = 〈Q, V 〉, where the first angle bracket
is the evaluation pairing and the second is the mass metric. We find

(21) Q∗ = 1
m
(m1m2 Q12,m1m3 Q31,m2m3 Q23) ∈ C3∗.

A pseudoinverse G(r, pr , X, Y ), G : T ∗R+× T ∗sphC3
→ T ∗C3

0 to F is given by

(22) G : Q = r X
|X |

, P =
pr

|X |
X∗+

|X |
r

Y.

We have G ◦ F = id and

F ◦G(r, pr , X, Y )= (r, pr , k X, Y/k), where k = r
|X |

.

Hence f ◦G = id mod R+.
To check that F,G are partially symplectic, compute the pull-backs of the

canonical one-forms

(23) θ = pr dr + re(Ȳ12 d X12+ Ȳ31 d X31+ Ȳ23 d X23)

and 2 from (12). We find G∗θ =2 while F∗2= θ+· · · , where the omitted terms
are divisible by re〈Y, X〉. Hence the maps preserve the restricted symplectic forms
as required.

The spherical-homogeneous Hamiltonian is Hsph = Hrel ◦G. Using the formula
for Q in (22), the potential U (Q) becomes Usph(r, X)= (1/r)V (X), where

(24) V (X)= |X |U (X)= |X |
(

m1m2

|X12|
+

m3m1

|X31|
+

m2m3

|X23|

)
.

Note that V is invariant with respect to scaling of X so it determines a well-defined
function, V : S5

→ R, which we will sometimes write as V ([X ]).
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The kinetic energy is Ksph = K (P), where P is given by (22). It follows from
Lemma 6 that the two terms in (22) are orthogonal with respect to the quadratic
form K . To see this, note that they are orthogonal with respect to the dual mass
metric since 〈Y, X∗〉 = 〈Y, X〉 = 0. Since X ∈W we have

〈Y ◦πW, X∗◦πW〉 = 〈Y ◦πW, πW X〉 = 〈Y, X〉 = 0,

so X∗◦ πW and Y ◦ πW are still orthogonal. Evaluating K separately on the two
terms of (22), we find

(25) Ksph =
1
2 p2

r +
|X |2

r2 K (Y ),

and so the spherical-homogeneous Hamiltonian is

(26) Hsph(r, pr , X, Y )= 1
2 p2

r +
|X |2

r2 K (Y )− 1
r

V ([X ]).

Theorem 10. The Hamiltonian flow of Hsph on T ∗R+× T ∗C3
0 has invariant sub-

manifold {re〈Y, X〉 = 0} and the quotient of the restricted flow by the scaling
symmetry is equivalent to the Hamiltonian flow of Hrel on T ∗C3

0. This submanifold
contains a codimension 2 invariant submanifold {re〈Y, X〉=0, X12+X31+X23=0}
for which the quotient of the restricted flow by the symmetry of scaling and trans-
lations of the Yi j is conjugate to the flow of the zero total momentum three-body
problem reduced by translations.

Proof. For the first part we apply Theorem 1 with M1= T ∗C3
0, M2= T ∗R+×T ∗C3

0
and symmetry groups G1 = {id} and G2 = R+. The momentum level is

S(X, Y )= re〈Y, X〉 = 0.

It was shown above that the maps F,G between T ∗C3
0 and S−1(0) are partially

symplectic pseudoinverses.
For the second part we change the groups to be G1 = C∗ and G2 is a semidirect

product of the scaling group R+ and the momentum translation group C∗ with group
multiplication (k2, c2) ·(k1, c1)= (k2k1, c1/k2+c2), where (ki , ci )∈R+×C∗. The
momentum levels are {Qtot = 0} and {X tot = 0, re〈Y, X〉 = 0}, respectively, and
these are fixed by the actions of the groups. The maps F,G restrict to maps between
these level sets and the restrictions are partially symplectic pseudoinverses. �

If we use the formula K (Y )= 1
2 Ȳ TBY , with B from (9), we find that Hamilton’s

equations for Hsph are

(27)
ṙ = pr , ṗr =

2|X |2 K (Y )
r3 −

1
r2 V (X),

Ẋ =
|X |2

r2 BY, Ẏ = 1
r

DV (X)− 2K (Y )
r2 X.
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The quotient space of T ∗R+×T ∗sphC3
0 mentioned in Theorem 10 is diffeomorphic

to T ∗R+ × T ∗S5 (by simply thinking of X, Y as homogeneous coordinates for
[X, Y ] ∈ T ∗S5). The quotient space of T ∗R+ × T ∗sph,WC3

0 is diffeomorphic to
T ∗R+×T ∗S(W), where S(W)=W∩S5 is diffeomorphic to S3. Hence the reduced
space is eight-dimensional as before. The reduced flow is just the translation-reduced
three-body problem in spherical coordinates.

At this point, instead of reducing the number of dimensions, we have actually
increased it from twelve to fourteen. The value of the present formulation lies in the
fact that it has been put in a form where double collisions can be easily regularized
and the triple collision easily blown-up without destroying the symmetry among
the masses. As in the previous section, one could explicitly realize the reduction
to eight dimensions by parametrizing the subspace W. However we will not do
this here.

5. Reduction by rotations: the shape sphere

Next we form the quotient by rotations. Since we are using complex coordinates,
the combined action of scaling Q by a real factor r > 0 and rotating Q by an angle
θ is represented by Q 7→ k Q, where k = reiθ

∈ C0 = C \ 0, the space of nonzero
complex numbers. A point in the resulting quotient space represents the size and
shape of a configuration.

5.1. Projective-homogeneous coordinates. As before we will measure the size by
r = |Q|. To represent the shape, we project Q ∈ C3

0 to the quotient of C3
0 by the

action of C0. This quotient space is the complex projective plane P(C3) = CP2.
Homogeneous coordinates will provide a way to work globally on the projective
plane, just as they did for the sphere S5 in the last section. For X ∈C3

0 let [X ] ∈CP2

denote the corresponding element of the projective plane, that is, the equivalence
class of X under the relation that X ∼ Q if X = k Q for some k ∈ C, k 6= 0. (Thus
the square bracket will now mean a projective point rather than a spherical one.)

Definition 11. (r, X) are a pair of projective-homogeneous coordinates for Q ∈C3
0

if r = |Q| and [X ] = [Q] ∈ CP2.

X is defined only up to a nonzero complex factor. We can take X = Q itself to
define the projective-homogeneous coordinate map

f : C3
0→ R+×C3

0, r = |Q|, X = Q.

Remark. Despite the fact that spherical-homogeneous coordinates and projective-
homogeneous coordinates are both denoted (r, X), there are differences between
the two coordinate systems. Spherical-homogeneous coordinates represent points
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in C3
0 ' R+× S5, whereas projective-homogeneous coordinates represent points in

the quotient space (C3
0)/S1

' R+×CP2.
If we include the origin and form the quotient space under rotations we have

C3/S1
=Cone(CP2), the cone over CP2, where the cone point corresponds to total

collision 0 ∈ C3. For any topological space X , we can form the space Cone(X)
which has a distinguished cone point ∗ and Cone(X) \ ∗ = R+× X . In this case,
the cone is not a smooth manifold.

The equivalence class [X ] = [Q] ∈ CP2 represents the shape of a three-body
configuration only if Q ∈W. Restricting to such Q we get [Q] ∈ P(W), where
P(W) is the projective space of the subspace W⊂C3. Since W is a two-dimensional
complex subspace, P(W) is a projective line, that is, P(W) ' CP1

' S2. P(W)

will be called the shape sphere.
Any function on our original configuration space that is invariant under translation,

rotation, and scaling induces a function on the shape sphere, the most important
example being our homogenized potential

V (X)= |X |U (X) : PW→ R.

We will also use homogeneous momentum variables. A pair

(X, Y ) ∈ T ∗C3
0 ' C3

0×C3∗

will represent a point of T ∗CP2. Let G =C0 be the group of nonzero complex num-
bers and let G act on T ∗C3

0 by k·(X, Y )= (k X, Y/k̄). We will use the notation [X, Y ]
to denote equivalence classes under scaling. In other words, (X ′, Y ′)∼ (X, Y ) if
X ′ = k X , Y ′ = Y/k̄ for some nonzero k ∈ C. The momentum map for this group
action is given by the Hermitian evaluation pairing σ(X, Y )= 〈Y, X〉 ∈C. The real
part of the complex number σ(X, Y ) is the real scaling-momentum S(X, Y ) (which
we want to be zero as in the last section). On the other hand, from (11) we see that
im σ(X, Y )=−iµ, where µ is the angular momentum.

If we fix the complex scaling-momentum to be 〈Y, X〉 = 0 and pass to the
quotient space, then as in Theorem 3 we get a reduced symplectic manifold, which
is naturally identified with the cotangent bundle T ∗CP2 with its natural symplectic
structure. Introduce the notation

T ∗prC
3
= σ−1(0)= {(X, Y ) ∈ T ∗C3

0 : 〈Y, X〉 = 0}.

Then we have
T ∗prC

3/C0 ' T ∗CP2.

If, on the other hand, we fix the complex scaling-momentum to be 〈Y, X〉 = −iµ
and pass to the quotient space we still get a reduced symplectic manifold, which
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can be identified with the cotangent bundle T ∗CP2 but with a twisted symplectic
structure, as described in Theorem 4. More about this below.

To get a system equivalent to the reduced three-body problem we will also need to
include the radial variables. Restrict X to W and quotient by the action of the group
C of translations in Y -momentum space. Let M = T ∗R+× T ∗C3

0 with coordinates
(r, pr , X, Y ) and let G = C0×C act by

(k, c)·(r, pr , X, Y )= (r, pr , k X, c·(Y/k̄)), with c·Y = (Y12+c, Y31+c, Y23+c).

Fixing the momentum level J (X, Y )= (σ (X, Y ), X tot)= (−iµ, 0)∈C2 and passing
to the quotient space gives the reduced phase space

P = {(r, pr , X, Y ) : 〈Y, X〉 = −iµ, X12+ X31+ X23 = 0}/G

of real dimension dim P = 14− 4− 4= 6 as expected. In fact we have

P ' T ∗R+× T ∗P(W)' T ∗R+× T ∗S2.

We still need to find the reduced Hamiltonian and show that the reduced Hamil-
tonian system is equivalent to the reduced three-body problem. This is easy to do
starting from the spherical Hamiltonian in the last section. Indeed, the passage
from the spherical-homogeneous variables (r, pr , X, Y ) ∈ T ∗R+ × T ∗C3

0 to the
corresponding projective-homogeneous ones is just given by the identity map. The
new feature here is that the symmetry group is enlarged from R+×C∗ ' R+×C

to C0×C. Then we have the following extension of Theorem 10:

Theorem 12. The Hamiltonian flow of Hsph on T ∗R+× T ∗C3
0 has an invariant set

where 〈Y, X〉 = −iµ. The quotient of the restricted flow by the complex scaling
symmetry is equivalent to the Hamiltonian flow of Hrel on T ∗C3

0/S1. There is
another invariant set where 〈Y, X〉=−iµ and X12+X31+X23= 0 and the quotient
of the restricted flow by the complex scaling symmetry and by translations of the Yi j

is conjugate to the flow of the three-body problem with zero total momentum and
angular momentum µ, reduced by translations and rotations.

Proof. The maps F and G as in the proof of Theorem 10 restrict to maps of the µ
angular momentum levels. They are still partially symplectic pseudoinverses. �

The next step is to use a momentum shift map to pull-back the problem to the
zero-angular-momentum level. This expresses all of the reduced problems on the
same phase space and makes the role of the angular momentum constant explicit. Let

(28) 8µ(r, pr , X, Z)= (r, pr , X, Y ), Y = Z +µ0(X), 0(X)=
i X∗

|X |2
,

where
X∗ = 1

m
(m1m2 X12,m3m1 X31,m2m3 X23) ∈ C3∗.
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Note that 8µ : J−1(0, 0)→ J−1(−iµ, 0), since if 〈Z , X〉 = 0 we have

im〈Y, X〉 = im
〈
iµ

X∗

|X |2
, X
〉
=−µ re

〈
X∗

|X |2
, X
〉
=−µ.

Composing Hsph with 8µ we get a Hamiltonian

(29) Hµ(r, pr , X, Z)= 1
2

(
p2

r +
µ2

r2

)
+
|X |2

r2 K (Z)−
1
r

V ([X ]).

To verify this we need to show that the kinetic energy can be written

(30) Kµ =
1
2

(
p2

r +
µ2

r2

)
+
|X |2

r2 K (Z).

This decomposition follows from an orthogonality argument based on Lemma 6.
Namely, the vectors i X and Z are orthogonal with respect to the mass metric and
the first one lies in W. Then, as in the last section, Lemma 6 shows that they are
orthogonal with respect to the quadratic form K and so K (Y )= K (µ0(X))+K (Z).
K (µ0(X)) gives µ2-term in Kµ.

Equation (30) gives a decomposition of the kinetic energy into radial and angular
parts and a third term which can be viewed as the kinetic energy due to changes in the
shape of the configuration. Some authors call this decomposition of kinetic energy,
or the consequent orthogonal decomposition of velocities the “Saari decomposition”.
(See [Saari 1984].) In the next subsection we show how this last shape term can be
understood in terms of the Fubini–Study metric on the shape sphere.

5.2. Fubini–Study metrics and the shape kinetic energy. Using a complex orthog-
onal basis, we give a simple decomposition of the dual mass metric, which leads to
deeper insights into the kinetic energy decomposition (30). Since the shape sphere
has complex dimension one, there are some very simple formulas for the shape
term of this decomposition.

To describe the Fubini–Study metric (also called the Kähler metric), let V

denote any complex vector space and let 〈V,W 〉 be any Hermitian metric on V. If
X ∈ V0 = V \ 0 then the corresponding Fubini–Study metric on TX V is

(31) 〈V,W 〉FS =
〈V,W 〉〈X, X〉− 〈V, X〉〈X,W 〉

〈X, X〉2
.

As a bilinear form on TX V, the Fubini–Study “metric” is degenerate with kernel
the complex line spanned by the vector X . But it induces a bona fide Hermitian
metric on the projective space P(V).

To see this, let π : V0→ P(V) denote the projection map: π(X) = [X ]. The
tangent map Tπ : T V0→ T P(V), Tπ(X, V )= ([X ], Dπ(X)V ) has the property
that Tπ(X, V )= Tπ(X ′, V ′) if and only if X ′ = k X and V ′ = kV + l X for some
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complex numbers k 6= 0, l. So it is natural to view the tangent bundle T P(V) as the
set of equivalence classes [X, V ] of pairs (X, V ) ∈ V0×V under this equivalence
relation. It is easy to check that the formula for 〈 · , · 〉FS is invariant under this
equivalence relation and so it gives a well-defined Hermitian metric on P(V). The
real part re〈V,W 〉FS gives a Riemannian metric on P(V) and the imaginary part
gives a two-form called the Fubini–Study form, which will be important later

�FS(V,W )= im〈V,W 〉FS.

Starting with the mass metric on V = C3, we get a Fubini–Study metric on
CP2. However, because of Lemma 6, we will be interested in its restriction to the
two-dimensional complex subspace W⊂C3, which we denote by 〈 · , · 〉FS,W, which
induces a Hermitian metric on the shape sphere P(W).

Our goal is to show that the shape kinetic energy is the cometric dual to this Fubini–
Study metric on P(W). (By a “cometric” on a manifold X we mean the fiberwise
quadratic form on T ∗X that is dual to a Riemannian metric on X .) To this end we
will need to describe cometrics on projective space in homogeneous coordinates. We
continue to identify T ∗CP2 with the quotient space of T ∗prC

3
= {(X, Z)∈C3

0×C3∗
:

〈Z , X〉 = 0} under the complex scaling symmetry. In the same spirit, the cotangent
bundle T ∗P(W) is the quotient space (a symplectic reduced space)

T ∗P(W)' (T ∗pr,WC3
0)/C0×C,

where

T ∗pr,WC3
0 = {(X, Z) ∈W×C3∗

: 〈Z , X〉 = 0, X 6= 0}

and where the group C0×C represents the scaling symmetry and the momentum
translation in Z -space. We refer to (X, Z) as homogeneous coordinates on P(W).
The restriction of Z ∈C3∗ to W representing a covector in T ∗

[X ]P(W). Expressed in
homogeneous coordinates a cometric on P(W) is a function of the form Q(X, Z)
which is quadratic in Z and invariant under the C0×C action.

Theorem 13. The Fubini–Study cometric |Z |2FS,W at [X ] ∈ PW is related to the
kinetic energy (formula (19)) by

1
2 |Z |

2
FS,W = |X |

2K (Z).

Proof. Substitute (X, Z) for (Q, P) in formula (19). Use 〈Z , X〉 = 0 to get
K (Z)= (1/2|T |2)〈Z , T 〉. The vector field T (X) appearing in that formula is tangent
to W and orthogonal to X , hence fits the hypothesis of Lemma 14 immediately
below. The lemma asserts that we have

|Z |2FS,W = |〈Z , e(X)〉|2, with e(X)=
|X |
|T (X)|

T (X). �
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Lemma 14. Let T (X), X ∈W0 be a nonzero complex vector field tangent to W0

and normal to X with respect to the Hermitian metric mass metric. Then

e(X)= |X |
|T (X)|

T (X)

is a unit tangent vector field on W0 with respect to the pulled back Fubini–Study
metric 〈 · , · 〉FS,W. Moreover

(32) 〈V,W 〉FS,W=
〈V, e(X)〉〈e(X),W 〉

|X |4
, with V,W ∈W/(CX)∼= T[X ]P(W),

and the pulled-back cometric is given by the quadratic form

(33) |Z |2FS,W = |〈Z , e(X)〉|2, with Z ∈ T ∗X,prC
3.

Proof. Since T (X) is orthogonal to X , (31) gives |T |2FS = |T |
2/|X |2 and so e(X) is

a Fubini–Study unit vector at X .
The tangent space TX W has complex dimension two and {X, e(X)} is a basis. If

we expand V ∈ TX W as

V =
〈V, X〉
|X |2

X +
〈V, T (X)〉
|T (X)|2

T (X)

and similarly for W , then since X is in the kernel of 〈 · , · 〉FS we get

〈V,W 〉FS,W = 〈V,W 〉FS =
〈V, T (X)〉〈T (X),W 〉
|X |2|T (X)|2

=
〈V, e(X)〉〈e(X),W 〉

|X |4
,

as claimed.
Observe that if E, 〈 · , · 〉 is a one-dimensional complex Hermitian vector space

with unit vector e then the cometric on E∗ is given by the quadratic form

Z ∈ E∗ 7→ |〈Z , e〉|2.

From this observation the last formula of the lemma follows. �

Remark. The manifold P(W), being a two-sphere, admits no nonvanishing vector
field. So how did we just construct a unit vector field e(X) to this two-sphere?
We did not! The gadget e(X) is a unit section of the pull-back f ∗T P(W) of this
tangent bundle by the homogenization map f :W0→ P(W) that sends X→ [X ].
This pull-back bundle can be viewed as a subbundle of T W0, and hence e(X) is a
vector field on W0.

Using the vector field T (X) of formula (19) (with X substituted for Q), we
obtain the Fubini–Study unit tangent vector

e(X)=
√

m1m2m3

m

(
X̄31

m2
−

X̄23

m1
,

X̄23

m1
−

X̄12

m3
,

X̄12

m3
−

X̄31

m2

)
.
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From this expression we get simple formulas for the Fubini–Study metric and
two-form on W:

(34) 〈 · , · 〉FS,W =
m1m2m3

m|X |4
σ̄ ⊗ σ, �FS,W =

m1m2m3

m|X |4
im σ̄ ⊗ σ,

where the complex-valued one-form σ is given by any of the following formulas

(35) σ = 〈e, d X〉 = X31 d X12− X12 d X31

= X12 d X23− X23 d X12 = X23 d X31− X31 d X23.

For example, the second formula for σ is obtained by eliminating X23, d X23 from
〈e, d X〉 using the equations X23 =−X12− X31 and d X23 =−d X12− d X31. Note
that the formulas for σ are independent of the masses. This implies that the Fubini–
Study metrics for different masses are all conformal to one another.

Similarly we get a formula for the dual norm and the shape kinetic energy:

(36) |X |2K (Z)= 1
2 |Z |

2
FS,W =

m|α(Z)|2

2m1m2m3
,

where α(Z) is given by any of the following formulas:

(37) α=
1
m
(m1m2 X12(Z23−Z31)+m3m1 X31(Z12−Z23)+m2m3 X23(Z31−Z12))

=
|X |2(Z31− Z12)

X̄23
=
|X |2(Z12− Z23)

X̄31
=
|X |2(Z23− Z31)

X̄12
.

Our identification of the shape kinetic energy with the Fubini–Study cometric
gives an alternative formula for the reduced Hamiltonian on T ∗prC

3

(38) Hµ(r, pr , X, Z)= 1
2

(
p2

r +
µ2

r2

)
+

1
2r2 |Z |

2
FS,W−

1
r

V (X),

where |Z |2FS,W is the Fubini–Study cometric on W.

5.3. Induced symplectic structure and the reduced differential equations. Using
the momentum shift map, we have pulled back the Hamiltonian to the reduced
Hamiltonian Hµ defined on the zero-angular momentum level T ∗R+×T ∗prC

3, where

T ∗prC
3
= {(X, Z) ∈ T ∗C3

: 〈Z , X〉 = 0}.

However, as described in Theorem 4, there is also an induced symplectic structure
on this set which different from the restriction of the standard one. The pull-back
of the canonical one-form θ under the momentum shift map (28) is

8∗µθ = pr dr + re〈Z , d X〉+
µ

|X |2
im〈X∗, d X〉 =2+µ21
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with

21 = im
〈X∗, d X〉
|X |2

= im
〈X, d X〉
|X |2

,

where we changed the evaluation pairing to the mass metric in the second equation.
The modified symplectic form will be �µ =�−µ d21, where we find

(39) d21 = 2 im
〈d X, d X〉|X |2−〈d X, X〉〈X, d X〉

|X |4
= 2�′FS,

where �′FS is the Fubini–Study two-form determined by the mass metric on C3 (as
opposed to its restriction to W as in Section 5.2). Geometrically, �′FS represents
the curvature of the circle bundle S5

→ CP2.
Once we have �µ we calculate Hamilton’s differential equations using the

defining equation for Hamiltonian vector fields:

(40) (ṙ , ṗr , Ẋ , Ż) �µ = d Hµ.

The interior product with the standard form gives the usual result:

(ṙ , ṗr , Ẋ , Ż) �=− ṗr dr + ṙ dpr − re〈Ż , d X〉+ re〈Ẋ , d Z〉.

Since �′FS involves only d X , it can be viewed as a two-form on C3 instead of on
phase space. Moreover, it only affects the differential equations for Ż . Hamilton’s
equations read:

(41) ṙ = Hµ,pr , ṗr =−Hµ,r , Ẋ = Hµ,Z , Ż =−Hµ,X − 2µHµ,Z �′FS,

where Hµ is given by (29). The term involving the Fubini–Study metric will be
called the curvature term, T ′curv =−2µHµ,Z �′FS.

Lemma 15. If X ∈W and 〈Z , X〉=0, then the vector Hµ,Z is in W and 〈X, Hµ,Z 〉=
0. In fact

(42) Hµ,Z =
〈Z , e〉

r2 e ∈W,

where e(X) is as in Lemma 14.
The curvature term T ′curv is equivalent under the translation symmetry in C3∗ to

(43) Tcurv =−
2µ
r2 i Z .

Proof. From (29) we have Hµ,Z = (|X |2/r2)DK (Z). Note that since Z ∈ C3∗, we
have DK (Z) : C3∗

→ R. By duality we can view DK (Z) as a vector in C3. Let
X ∈W. Since Ẋ = Hµ,Z and W is invariant, we must have Hµ,Z ∈W. If 〈Z , X〉= 0
then an orthogonality argument as above shows K (Z + X∗) = K (Z)+ K (X∗),



PLANAR THREE-BODY PROBLEM 155

which implies, since K is a quadratic form, that DK (Z)(X∗)= 〈DK (Z), X〉 = 0,
as required.

In Section 5.2 we showed that in the subspace {Z : 〈Z , X〉 = 0} we have
|X |2K (Z) = 1

2 |〈Z , e〉|2. In fact, we will see that the Z -derivatives of these two
functions also agree:

(44) |X |2 DK (Z)= 〈Z , e〉 e.

To see that (44) indeed holds, note that differentiation along the subspace shows
that they must agree when evaluated on any δZ with 〈δZ , X〉 = 0. On the other
hand, both sides vanish on the complementary covector Z ′= X∗. Note that the right
hand side was calculated, as always, by converting to real variables, finding the real
derivative and then converting back to a complex vector. Equivalently, we expand

1
2 |〈Z + δZ , e〉|2 = 1

2 |〈Z , e〉|2+ re〈δZ , 〈Z , e〉 e〉+ · · ·

for all δZ , showing that the vector in question is the complex representative of the
real vector derivative.

To show the equivalence of T ′curv and Tcurv we will show that they agree when
restricted to W. The argument can be based on a kind of Fubini–Study duality.
Namely, if V ∈W we will show that

(45) 〈Hµ,Z , V 〉FS =
1
r2 〈Z , V 〉,

which means that r2 Hµ,Z is a dual vector to Z with respect to the Fubini–Study
metric on W. To see this note that (44) gives

〈Hµ,Z , V 〉FS =
1
r2

〈〈Z , e〉 e, V 〉
|X |2

=
〈Z , e〉〈e, V 〉

r2|X |2
.

On the other hand any V ∈W is a linear combination

V =
〈X, V 〉
|X |2

X +
〈e, V 〉
|e|2

e.

Since e is a Fubini–Study unit vector, we have |e| = |X | and so

1
r2 〈Z , V 〉 =

〈Z , e〉〈e, V 〉
r2|e|2

=
〈Z , e〉〈e, V 〉

r2|X |2

and (45) holds. From this we can calculate that for any V ∈W

T ′curv(V )=−2µ im〈Hµ,Z , V 〉FS =−
2µ
r2 im〈Z , V 〉 = −

2µ
r2 re〈i Z , V 〉.

Thus T ′curv and Tcurv agree as real-valued one-forms on W as claimed. Replacing
T ′curv by Tcurv introduces only an irrelevant translation of the momentum Z . �
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Taking this lemma into account we finally get Hamilton’s equations for the
reduced Hamiltonian in the form

(46)
ṙ = pr , ṗr =

µ2
+ |X |2 2K (Z)

r3 −
1
r2 V (X),

Ẋ =
|X |2

r2 DK (Z), Ż = 1
r

DV (X)−
2K (Z)

r2 X − 2µ
r2 i Z .

Applying Theorem 1 to the momentum shift map and remembering Theorem 12,
we have:

Theorem 16. The Hamiltonian flow of Hµ on T ∗R+× T ∗C3
0 has an invariant set

T ∗R+×T ∗prC
3, where 〈Z , X〉=0 with symplectic structure given by the restriction of

the standard form minus 2µ�FS. The quotient of the restricted flow by the complex
scaling symmetry is equivalent to the Hamiltonian flow of H on T ∗C3

0/S1. There is
another invariant set T ∗R+×T ∗pr,WC3, where 〈Z , X〉 = 0 and X12+ X31+ X23 = 0
and the quotient of the restricted flow by the complex scaling symmetry and by
translations of the Zi j is conjugate to the flow of the three-body problem with zero
total momentum and angular momentum µ, reduced by translations and rotations.

This Hamiltonian system represents the reduced three-body problem in a way
which is convenient for regularization of binary collisions and blow-up of triple
collision. However, the phase space is still fourteen-dimensional. Next we describe
how to find lower-dimensional representations of the reduced three-body problem
by parametrizing the shape sphere in various ways.

5.4. Parametrizing the shape sphere. The shape sphere is the projective space
P(W). As in Section 3.4, choosing a complex basis {e1, e2} for W gives a map
f :C2

→W, X = f (ξ). By viewing X ∈W and ξ ∈C2 as homogeneous coordinates
we get an induced parametrization of the shape sphere fpr : CP1

→ P(W).
The formulas of Section 3.4 (with (Q, P) replaced by (X, Z)) allow us to find

the reduced Hamiltonian for any such basis. If

e1 = (a12, a31, a23), e2 = (b12, b31, b23) ∈W,

then we have, as before, X i j = ξ1 ai j + ξ2 bi j and η̄1 = 〈Y, e1〉, η̄2 = 〈Y, e2〉. We
define a Hermitian mass metric and dual mass metric for ξ, η to be the pull-backs
of the metrics for X, Y . The squared norms are

|ξ |2 = ξ̄ T G ξ, |η|2 = η̄T G−1η,

where G is the matrix with entries Gi j =〈ei , e j 〉, and these squared norms represent
the mass metric and cometric on W.
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The relation between the cometric and kinetic energy yields the Hamiltonian
(see (29), (30) and Theorem 13):

(47) Hµ(r, pr , ξ, η)=
1
2

(
p2

r +
µ2

r2 +
|ξ |2|η|2

r2

)
−

1
r

V (ξ),

where the shape potential is

V (ξ)= |ξ |
(

m1m2

ρ12
+

m1m3

ρ31
+

m2m3

ρ23

)
, ρi j = |X i j | = |ai jξ1+ bi jξ2|.

To make the map F of Section 3.4 be partially symplectic we need to alter the
standard symplectic form in (ξ, η)-space by subtracting 2µ F∗�′FS. Pulling back
the Fubini–Study metric 〈 · , · 〉FS by f gives the Fubini–Study metric in ξ space

〈 · , · 〉FS =
〈dξ, dξ〉〈ξ, ξ〉− 〈dξ, ξ〉〈ξ, dξ〉

〈ξ, ξ〉2
.

With the help of (34) one can show

〈 · , · 〉FS =
g
|ξ |4

σ̄0⊗ σ0, where σ0 = ξ1dξ2− ξ2dξ1, g = det G.

The Fubini–Study two-form is the imaginary part.
Since σ0 is independent of the choice of basis, the Fubini–Study metrics for vari-

ous choices of basis are all conformal to one another. If we choose an orthonormal
basis the metrics are Euclidean. The Fubini–Study metric for a general basis is
related to the Euclidean one by

〈 · , · 〉FS = κ(ξ) 〈 · , · 〉FS,euc,

where the conformal factor is

(48) κ(ξ)=
g|ξ |4euc

|ξ |4
,

where |ξ |2euc = |ξ1|
2
+ |ξ2|

2.
The curvature term can be calculated directly from the definition Hµ,η �FS and

we find

Tcurv =−
2µ
r2 iη.

Hamilton’s equations in T ∗R+× T ∗prC
2 are

(49)
ṙ = pr , ṗr =

µ2
+ |ξ |2|η|2

r3 −
1
r2 V (ξ),

ξ̇ =
|ξ |2

r2 G−1η, η̇ =
1
r

DV (ξ)−
|η|2

r2 G ξ −
2µ
r2 iη.
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There are still 10 variables but the invariant set T ∗R+× T ∗prC
2 with 〈η, ξ〉 = 0 is

eight-dimensional and we have a complex scaling symmetry. The introduction of
an affine coordinate on the projective line yields a full local reduction to 6 variables.
For example, consider those points [ξ ] = [ξ1, ξ2] ∈ CP1 with ξ1 6= 0. If ρ is any
nonzero constant complex number then every such point has a unique representative
of the form [ξ1, ξ2] = [ρ, z], z = x + iy ∈ C, thus parametrizing almost all of the
shape sphere by a single complex variable z, the affine coordinate. Of course the
roles of ξ1, ξ2 could be reversed to parametrize the subset with ξ2 6= 0.

If ζ = α + iβ ∈ C∗ denotes the momentum vector dual to z then the unique
extension of f (z)= (ρ, z) to a partially symplectic map T ∗C→T ∗prC

2
={〈η, ξ〉=0}

is defined by ξ1= ρ, ξ2= z, η1=−zζ/ρ, η2= ζ . One computes the mass metric is

|ξ(z)|2 = g11|ρ|
2
+ g22|z|2+ 2 re(ρ̄g12z)

and the cometric is

|ζ |2 =
|ξ(z)|2|ζ |2

g|ρ|2
, with g = det (Gi j ).

This gives a Hamiltonian system with 3 degrees of freedom:

(50) Hµ(r, pr , x, y, α, β)= 1
2

(
p2

r +
µ2

r2 +
|ξ(z)|4|ζ |2

g|ρ|2r2

)
−

1
r

V (x, y),

where

V (z)= |ξ(z)|
(

m1m2

ρ12
+

m1m3

ρ31
+

m2m3

ρ23

)
, with ρi j = |ai j + bi j z|.

The Fubini–Study form is

�FS =
g

|ρ|2|ξ(z)|2
im dz̄⊗ dz =

g dx ∧ dy
|ρ|2|ξ(z)|2

.

The curvature term is just Tcurv =−
2µ
r2 iζ , as usual.

Example 17 (projective Jacobi coordinates). As a first example, consider using
Jacobi coordinates as in Section 3.4, only this time applied to the homogeneous
variables X, Z . As before, the basis which defines the Jacobi coordinates is the
orthogonal basis e1 = (−1, ν2, ν1), e2 = (0, 1,−1). We have

X = (−ξ1, ξ2+ ν2ξ1,−ξ2+ ν1ξ1), ξ = (−X12, ν1 X31− ν2 X23),

Z = (0, η1+ ν1η2, η1− ν2η2), η = (−Z12+ ν2 Z31+ ν1 Z23, Z31− Z23),

where, as usual, Z is nonunique.
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The Hamiltonian is (47), where the shape potential is

V (ξ)= |ξ |
(

m1m2

|ξ1|
+

m1m3

|ξ2+ ν2ξ1|
+

m2m3

|ξ2− ν1ξ1|

)
.

The mass matrix G = diag(µ1, µ2) has determinant g = µ1µ2 = m1m2m3/m and
associated norm and conorm

|ξ |2 = µ1|ξ1|
2
+µ2|ξ2|

2 and |η|2 =
|η1|

2

µ1
+
|η2|

2

µ2
.

Hamilton’s equations with the curvature term are given by (49).
If we introduce affine variables by setting ξ1 = ρ, ξ2 = z as above and if we

choose ρ =
√
µ2/µ1 the mass norm reduces to |ξ |2 = µ2(1+ x2

+ y2) and we get
the affine Jacobi Hamiltonian

Hµ(r, pr , x, y, α, β)= 1
2

(
p2

r +
µ2

r2 +
(1+ x2

+ y2)2|ζ |2

r2

)
−

1
r

V (x, y).

Hamilton’s equations with the curvature term are

(51)

ṙ = pr , ṗr =
1
r3 [µ

2
+ (1+ x2

+ y2)2(α2
+β2)] −

1
r2 V (ξ),

ẋ =
(1+ x2

+ y2)2

r2 α, ẏ =
(1+ x2

+ y2)2

r2 β,

α̇ =
1
r

Vx(x, y)−
2
r2 (1+ x2

+ y2)(α2
+β2)x +

2µ
r2 β,

β̇ =
1
r

Vy(x, y)−
2
r2 (1+ x2

+ y2)(α2
+β2)y−

2µ
r2 α.

Example 18 (equilateral coordinates). In projective Jacobi coordinates (ξ1, ξ2), the
binary collision points b12, b13, b23 are located at the projective points

[1, 0], [1,−ν2], [1, ν1] ∈ CP1

while the equilateral triangle configurations (the Lagrange points) are at

[1, `±] ∈ CP1, where `± =
m1−m2

2(m1+m2)
±

√
3

2
i =

ν1− ν2

2
±

√
3

2
i.

Using a Möbius transformation, we can put three points anywhere we like on
the shape sphere, CP1. Remarkably, it turns out that if we put the binary collisions
at the third roots of unity

(52) [ξ1, ξ2] = [1, 1], [1, ω], [1, ω̄] ∈ CP1 with ω = 1
2(−1+ i

√
3 ),

then the equilateral points are automatically moved to the north and south poles
[1, 0], [0, 1]. These coordinates were introduced in [Moeckel et al. 2012].
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These coordinates are obtained by choosing the basis

e1 = (1, ω, ω̄), e2 =−ē1 = (−1,−ω̄,−ω)

for W. The coordinate change map is X = ξ1 e1+ ξ2 e2 or

X12 = ξ1− ξ2, X31 = ωξ1− ω̄ξ2, X23 = ω̄ξ1−ωξ2,

and indeed takes the roots of unity (52) to the binary collisions. Setting ξ2 = 0, we
see that |X12| = |X32| = |X23| corresponding to an equilateral triangle, with the
same result if ξ1 = 0. Thus the coordinate change map sends the poles ξ = [1, 0],
[0, 1] to the equilateral triangles.

The mutual distances (of the homogeneous variables) ρi j = |X i j | that appear in
the shape potential are very simple:

ρ12 = |ξ1− ξ2|, ρ31 = |ξ1−ωξ2|, ρ23 = |ξ1− ω̄ξ2|.

The mass metric can also be written in terms of these

|ξ |2 =
1
m
(m1m2ρ

2
12+m3m1ρ

2
31+m2m3ρ

2
23).

It is represented by the matrix G with entries gi j = 〈e1, e2〉:

g11= g22=
m1m2+m3m1+m2m3

m
, g12= ḡ21=−

m1m2+m3m1 ω+m2m3 ω̄

m
,

and determinant g = det G = 3m1m2m3/m.
The inverse transformation is given by

ξ1 =
1
3(X12+ ω̄X31+ωX23), ξ2 =−

1
3(X12+ωX31+ ω̄X23),

and the momenta satisfy η1 = Z12+ ω̄Z31+ωZ23, η2 =−Z12−ωZ31− ω̄Z23.
Choosing affine variables by setting ξ1 = z, ξ2 = 1, we get the Hamiltonian

(50) with

|ξ(z)|2 =
1
m

(
m1m2|z− 1|2+m3m1|z−ω|2+m2m3|z− ω̄|2

)
.

The complexity of mass norm is perhaps outweighed by the fact that the potential
is given by the wonderful expression

V (z)= |ξ(z)|
(

m1m2

|z− 1|
+

m1m3

|z− ω|
+

m2m3

|z− ω̄|

)
.

The advantage of these coordinates is that they provide the homogenized potential
V with “radial monotonicity”’. Let E = x(∂/∂x)+ y(∂/∂y) be the radial vector
field in the z plane, where z = x+ iy. Then E[V ]> 0 for 0< |z|< 1, E[V ]< 0 for
|z|> 0, and E[V ] = 0 if and only if |z| = 1 or z= 0. (See Proposition 4 of [Moeckel
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et al. 2012].) This monotonicity was the key ingredient to the main theorem of
[Montgomery 2002].

5.5. Making the shape sphere round. Instead of using projective or local affine
coordinates, one can map the shape sphere to the unit sphere in R3. First we do
this homogeneously, then restrict to the unit sphere to get another version with 6
degrees of freedom. Let ξ = (ξ1, ξ2) ∈ C2 be coordinates associated with some
choice of basis e1, e2 for W.

Consider the Hopf map h : C2
→ R3 given by w1 = 2 re ξ̄1ξ2, w2 = 2 im ξ̄1ξ2,

w3 = |ξ1|
2
− |ξ2|

2. Using the Euclidean metric for w we get

|w|2 = w2
1 +w

2
2 +w

2
3 = |ξ |

4
euc = (|ξ1|

2
+ |ξ2|

2)2.

It follows that 2|ξ1|
2
= |w| +w3, 2|ξ2|

2
= |w| −w3, 2ξ̄1ξ2 = w1+ iw2.

We will need formulas for ρi j = |X i j | = |ai jξ1 + bi jξ2| in the variables wi .
We have

(53) ρ2
i j = |ai j |

2
|ξ1|

2
+|bi j |

2
|ξ2|

2
+2 re(ξ̄1ξ2āi j bi j )

=
1
2

(
|ai j |

2
+|bi j |

2)
|w|+ 1

2

(
|ai j |

2
−|bi j |

2)w3+re(āi j bi j )w1−im(āi j bi j )w2.

Then the mass metric will be given by

(54) |ξ |2 =
1
m
(m1m2ρ

2
12+m3m1ρ

2
31+m2m3ρ

2
23).

If we let α1, α2, α3 be dual momentum variables, we can extend the Hopf map h
to a partially symplectic map F : T ∗prC

2
→ T ∗sphR3 by defining its (pseudo) inverse:

η = α ◦ Dh := Dhtα.

To find the reduced Hamiltonian in w coordinates we will exploit the fact that the
Euclidean metric transforms nicely. Recall that the shape kinetic energy is the dual
of the Fubini–Study metric and that the latter is related conformally to the Euclidean
metric with conformal factor κ−1, where κ is given by (48). In other words, since
we are restricting to 〈η, ξ〉 = 0 we have

|ξ |2|η|2 = κ−1
|ξ |2euc |η|

2
euc.

One can verify that the Euclidean norms transform under the Hopf map in such a
way that

|ξ |2euc |η|
2
euc = 4|w|2|α|2,

where we are using the Euclidean norm on R3,R3∗. Hence the reduced Hamiltonian
on the sphere is given by

Hµ(r, pr , w, α)=
1
2

(
p2

r +
µ2

r2 +
4|w|2|α|2

κ(w)r2

)
−

1
r

V (w),
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where |w|2 =w2
1+w

2
2+w

2
3 and |α|2 = α2

1+α
2
2+α

2
3 and where the shape potential

is given by

V (w)= |ξ(w)|
(

m1m2

ρ12
+

m3m1

ρ31
+

m2m3

ρ23

)
with the ρi j and |ξ | as in (53) and (54).

The Fubini–Study form becomes a multiple κ/4 of the Euclidean solid angle
form

�FS =
κ

4|w|3
(w1 dw2 ∧ dw3+w2 dw3 ∧ dw1+w3 dw1 ∧ dw2).

This leads to the curvature term

Tcurv =
2µ
|w|r2 α×w,

where w×α denotes the cross product in R3.
The differential equations are

(55)
ṙ = pr , ṗr =

1
r3

(
µ2
+

4|w|2|α|2

κ

)
−

1
r2 V (ξ), ẇ =

4|w|2

κr2 α,

α̇ =
1
r

DV (w)−
4|α|2

κr2 w+
4|w|2|α|2

κ2r2 κw +
2µ
|w|r2α×w.

From Theorem 1, if we restrict to T ∗R+×T ∗sphR3
= {〈α,w〉euc= 0} and quotient

by the scaling action of R+, we get a reduced system equivalent to the reduced
three-body problem. But 〈α,w〉euc = 0 implies that |w| is constant under the
flow. Hence we have a six-dimensional invariant submanifold given by |w| =
1, 〈α,w〉euc = 0 representing the reduced three-body problem. The reduced phase
space is T ∗R+ × T ∗S2 and the shape sphere is represented by the standard unit
sphere.

To get to six dimensions with no constraints one could parametrize the sphere
with two variables. If this is done with stereographic projection, the result is similar
to the affine coordinate reduction of Section 5.4. On the other hand one could also
use spherical coordinates θ, φ. However, both of these are just local coordinates
while the system above is global, albeit constrained.

Example 19 (Jacobi coordinates on S2). If we choose an orthonormal basis for W

then we get the conformal factor κ = 1 and the resulting Hamiltonian will have a
simpler shape kinetic energy. For example, we could normalize the Jacobi basis of
Example 17 to

e′1 =
1
√
µ1
(−1, ν2, ν1), e′2 =

1
√
µ2
(0, 1,−1).
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The coordinates ξi are replaced by
√
µi ξi in all of the formulas. We get rather

complicated homogeneous mutual distances

2µ1µ2ρ
2
12 = µ2(|w| +w3),

2µ1µ2ρ
2
31 = (µ2ν

2
2 +µ1)|w| + (µ2ν

2
2 −µ1)w3+ 2ν2

√
µ1µ2w1,

2µ1µ2ρ
2
23 = (µ2ν

2
1 +µ1)|w| + (µ2ν

2
1 −µ1)w3− 2ν1

√
µ1µ2w1.

In the equal mass case with mi = 1 and |w| = 1, however, we get

ρ2
12 = |w| +w3, ρ2

31 = |w| +

√
3

2
w1−

1
2w3, ρ2

23 = |w| −

√
3

2
w1−

1
2w3.

On the other hand the Hamiltonian is

Hµ(r, pr , w, α)=
1
2

(
p2

r +
µ2

r2 +
4|w|2|α|2

r2

)
−

1
r

V (w),

where the norms are Euclidean.

Example 20 (equilateral coordinates on S2). If we use the basis of Example 18
e1 = (1, ω, ω̄), e2 =−ē1 = (−1,−ω̄,−ω), we get simple mutual distances

ρ2
12 = |w| −w1 ρ2

31 = |w| +
1
2w1−

√
3

2
w2 ρ2

23 = |w| +
1
2w1+

√
3

2
w2.

Collinear shapes form the equator w3 = 0 with the binary collisions placed at the
roots of unity.

On the other hand we have a formidable conformal factor

κ =
3m1m2m3m(w2

1 +w
2
2 +w

2
3)

(m1m2ρ
2
12+m3m1ρ

2
31+m2m3ρ

2
23)

2
.

In the equal mass case (mi = 1) we see κ = 1.

5.6. Visualizing the shape sphere. Having reduced the planar three-body problem
by using size and shape coordinates, we will pause to have a closer look at the
shape sphere and the shape potential.

Using the spherical variablesw= (w1, w2, w3) we can visualize the shape sphere
as the round unit sphere in R3. The equilateral basis of Example 20 puts the binary
collisions at the third roots of unity on the equator and the Lagrange equilateral
configurations at the poles. Figure 1 shows some of the level curves of V for two
choices of the masses. In addition to the binary collisions shapes where V →∞,
there are three saddle points at the Eulerian central configurations. The Lagrange
points are always minima of V .

If we use stereographic projection to map the sphere to the complex plane, we get
the affine coordinate representation of Example 18. Figure 2 shows affine contour
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Figure 1. Contour plot of the shape potential on the unit sphere
w2

1 +w
2
2 +w

2
3 = 1 in the equal mass case (left) and for masses

m1 = 1, m2 = 2, m3 = 10 (right).

Figure 2. Contour plot of the shape potential on the complex plane
in the equal mass case (left) and for masses m1=1, m2=2, m3=10
(right). These plots can be viewed as stereographic projections of
those in Figure 1.

plots for the same two choices of the masses. Now the collinear shapes are on the
real axis.

6. Levi-Civita regularization

In this section, we describe a way to simultaneously regularize all 3 binary collision
using 3 separate Levi-Civita transformations. This approach to simultaneous regu-
larization was introduced by Heggie [1974]. There are two versions depending on
whether the variables Qi j or the homogeneous variables X i j are used. The former
approach was used by Heggie; we will take the latter. We begin with a review of
Levi-Civita regularization for the Kepler problem.
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Levi-Civita showed how to regularize the two-body problem, which is to say, the
Kepler problem. Let q ∈C denote the position of a planet going around an infinitely
massive sun placed at the origin. After a normalization, the Kepler Hamiltonian is
1
2 |p|

2
−α/|q|. Levi-Civita’s transformation is the map

z 7→ z2
= q

together with the induced map on momenta

η 7→
1
2z̄
η = p

and the time rescaling
d

dτ
= r

d
dt
.

To understand the map on momenta, make the substitution q = z2 in the expression
〈p, dz〉 for the canonical one-form. We have 〈p, dq〉 = 〈p, 2zdz〉 = 〈2z̄ p, dz〉,
which shows that if η = 2z̄ p then 〈η, dz〉 = 〈p, dq〉. This computation shows that
the map (η, z)→ (p, q)with p= (1/(2z̄))η, q= z2 is a 2:1 canonical transformation
away from the origin. Observe that r = |z|2. Thus in terms of the new variables

H =
1
2r

(
|η|2−

α

|z|2

)
.

Time rescaling is equivalent to rescaling the Hamiltonian vector field. This
rescaling can be implemented using the following “Poincaré trick”. If X H is
the Hamiltonian vector field for H , and if h is a value of H , then f X H is the
Hamiltonian vector field for the Hamiltonian H̃ = f (H − h) provided we restrict
ourselves to the level set {H = h}. We take f = r = |z|2 and compute that

H̃ = 1
2(|η|

2
− h|z|2−α),

which is the Hamiltonian for a harmonic oscillator when h < 0.

6.1. Simultaneous regularization. Let (r, X) denote either the spherical-homo-
geneous or projective-homogeneous coordinates. To simultaneously regularize
all three double collisions we perform a Levi-Civita transformation on each of
the homogeneous complex variables X i j . Thus, we introduce three new complex
variables zi j =−z j i and set X i j = z2

i j . Define a regularizing map f : C3
0→ C3

0 by

X = f (z12, z31, z23)= (z2
12, z2

31, z2
23).

The preimage of the subspace W is the quadratic cone

C : z2
12+ z2

31+ z2
23 = 0.
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We have f :C0→W0. Every X ∈W0 has 8 preimages under f , except for the three
binary collision points (X i j = 0 some i j), which each have 4 preimages. (Since
X 6= 0, at most one of the X i j or zi j can vanish at a time on W0 or C0.)

Since f is homogeneous, it induces maps fsph : S5
→ S5 and fpr : CP2

→ CP2.
In this case we also view zi j as homogenous spherical or projective coordinates.
These restrict to regularizing maps fsph : S(C)→ S(W) and fpr : P(C)→ P(W),
where, as above, S(·) and P(·) denote quotient spaces under real and complex
scaling, respectively.

The mutual distances become

(56) ρi j = |X i j | = |zi j |
2

and the mass norm is

(57) |X (z)|2 = | f (z)|2 =
m1m2ρ

2
12+m1m3ρ

2
31+m2m3ρ

2
23

m1+m2+m3
.

We will use the standard Hermitian inner product, denoted 〈〈 · , · 〉〉, on z-space so

(58) ‖z‖2 = |z12|
2
+ |z31|

2
+ |z23|

2
= ρ12+ ρ31+ ρ23.

Let ηi j be the conjugate momenta to zi j and let Yi j the homogenous momenta
conjugate to X i j . We extend f to a map (r, pr , X, Y )= F(r, pr , z, η) by setting

Yi j =
1

2z̄i j
ηi j .

Then F restricts to maps

T ∗R+× T ∗sphC3
→ T ∗R+× T ∗sphC3 and T ∗R+× T ∗prC

3
→ T ∗R+× T ∗prC

3,

where in (z, η)-variables we have the constraints re〈η, z〉 = 0 for the sphere and
〈η, z〉 = 0 for the projective plane. We continue to denote these restricted maps by
the letter F .

The action of c ∈C by translation of the momenta Yi j to Yi j+c pulls-back under
F to translation of ηi j by 2cz̄i j , that is, to the action

c · (r, pr , z, η)= (r, pr , z, η+ 2cz̄).

The momentum map for this pulled back action is γ = z2
12+z2

31+z2
23. Of course we

will be interested in the level set γ = 0. We will call this the z-translation symmetry
of η.

6.1.1. Geometry of C and the regularized shape sphere. It is interesting to investi-
gate the algebraic surface C in more detail. If we write the complex vector z ∈ C3

as z = a+ i b, where a = re z and b = im z ∈ R3, then

z2
12+ z2

31+ z2
23 = 0 if and only if |a|2 = |b|2, a · b = 0.
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This means a, b are real, orthogonal vectors of equal length

s2
= |a|2 = |b|2 = |z|

2

2
.

If we define a third vector c= a×b we get an orthogonal frame in R3 and the matrix

(59) A(z)= 1
s

a12 b12 c12/s
a31 b31 c31/s
a23 b23 c23/s

 ∈ SO(3).

The mapping A(z) induces a diffeomorphism between the quotient space S(C)
of C0 by positive real scalings to SO(3) and hence, as is well-known, to the real
projective space RP(3) (and to the unit tangent bundle to S2).

The projective curve P(C) turns out to be diffeomorphic to the two-sphere S2

and, accordingly, we will call it the regularized shape sphere. One way to see this
is to note that P(C)' S(C)/S1 is the quotient of S(C) under rotations. It is easy
to see that action the rotation group on z rotates the vectors a, b ∈R3 above in their
own plane and leaves c= a×b invariant. It follows that the map z 7→ c/|c| induces
a diffeomorphism P(C)' S2.

In the sections below, we will apply the regularizing map to obtain several
regularized Hamiltonians for the three-body problem. Starting with spherical-
homogenous variables leads to a regularized system not reduced by rotations while
the projective-homogenous variables lead to a Hamiltonian system which is both
regularized and reduced. In addition we will consider several ways to parametrize
the cone C to obtain lower-dimensional systems. Theorem 1 can be applied to show
the equivalence of the Hamiltonian systems below, but we will omit most of the
details.

6.2. Spherical regularization. First we will find the regularized Hamiltonian in
spherical-homogeneous coordinates. This gives a regularization of binary colli-
sions without reducing by the rotational symmetry. Let (r, X) be the spherical-
homogeneous coordinates of Section 4. The spherical Hamiltonian is

Hsph(r, pr , X, Y )= 1
2 p2

r +
|X |2

r2 K (Y )− 1
r

V (X).

Using the formula analogous to the one in (7) for K (Y ) and applying the regularizing
map gives

(60) Hsph(r, pr , z, η)= 1
2 p2

r +
|X (z)|2

r2

(
|π1|

2

8m1ρ12ρ31
+
|π2|

2

8m2ρ12ρ23
+
|π3|

2

8m3ρ31ρ23

)
−

1
r

(
m1m2

ρ12
+

m3m1

ρ31
+

m2m3

ρ23

)
,
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where

(61) π1 = η12 ¯z31− η31 ¯z12, π2 = η23 ¯z12− η12 ¯z23, π3 = η31 ¯z23− η23 ¯z31.

Next we rescale time using the Poincaré trick. One choice of time-rescaling
factor is |z12z31z23|

2
= ρ12ρ31ρ23. But since X, z are homogeneous coordinates, a

degree-zero homogeneous function such as

(62) τ =
ρ12ρ31ρ23

(ρ12+ ρ31+ ρ23)3
=
ρ12ρ31ρ23

‖z‖6

seems more appropriate. Note that by the arithmetic-geometric mean inequality we
have 0≤ τ ≤ 1

27 . In Section 6.3 we will choose a different time rescaling function λ.
The rescaled solution with energy Hsph = h become the zero-energy solutions

for the Hamiltonian H̃sph(r, pr , z, η)= τ(Hsph− h):

(63) H̃sph =
τ p2

r

2
+
|X (z)|2

r2‖z‖6

(
|π1|

2ρ23

8m1
+
|π2|

2ρ31

8m2
+
|π3|

2ρ12

8m3

)
−

1
r

W (z)− hτ,

where the regularized shape potential W is

(64) W (z)=
|X (z)|
‖z‖6

(m1m2ρ31ρ23+m1m3ρ12ρ23+m2m3ρ12ρ31).

Note that since z is a homogeneous variable representing [z] ∈ S5, we have z 6= 0.
For a homogeneous coordinate representing a binary collision we will have exactly
one of the variables zi j = 0 and ‖z‖> 0. Thus H̃ is nonsingular at these points and
the binary collisions are regularized.

Theorem 21. The Hamiltonian flow of H̃sph on T ∗R+ × T ∗C3
0 has an invariant

submanifold T ∗R+× T ∗sph,CC3
0 defined by re〈η, z〉 = 0 and z2

12+ z2
31+ z2

23 = 0. The
quotient of the restricted flow by scaling and by translation of η by z̄ represents
the zero total momentum three-body problem with regularized binary collisions,
reduced by translations (but not by rotations).

The quotient space of T ∗sph,CC3
0 by these symmetries can be identified with

T ∗S(C)' T ∗RP(3). The regularizing map induces an 8-to-1 branched covering
map fsph : S(C)→ S(W), that is, an 8-to-1 branched covering RP3

7→ S3. The
map is a diffeomorphism except where (exactly) one of the zi j = 0 and X i j = 0. To
describe the branching behavior, note that in the two-dimensional complex subspace
W, the set where X12 = 0 is a complex line which corresponds to a circle S1 in the
sphere S(W). The preimage of this circle will be 2 circles in the projective space
S(C). Altogether, the map is branched over 3 circles, each circle having preimage
2 circles in the projective space RP3.
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6.2.1. Quadratic parametrization of C. Instead of writing Hamilton’s equations
for H̃sph, we will describe a parametrization of the cone C that leads to a lower-
dimensional system of equations. There is a nice 2-to-1 parametrization by quadratic
polynomials which is related to the double covers of RP3 by S3, of SO(3) by the
unit quaternions, and of SO(3) by SU(2).

Define a 2-to-1 mapping g : C2
→ C⊂ C3 by

(65) g : z12 = 2i x1x2, z31 = x2
1 + x2

2 , z23 = i(x2
1 − x2

2),

where x1, x2 ∈ C. This can be seen as a variant of a map used by Waldvogel [1972]
in his regularization of the planar problem. But here we are applying the idea to
the homogeneous variables X , which makes it easier to blow-up triple collision
later on.

By homogeneity, there is an induced map gsph : S3
→ S(C). The induced map is

given by the same formula except that x, z now denote homogenous coordinates for
the points of S3, S5. (This double covering map gives another way to see that S(C)
is diffeomorphic to the real projective space RP3.) The map gsph can be motivated
in several ways. First, after omitting the factors of i , it resembles the formulas for
parametrizing Pythagorean triples. Next, write x1 = u1− iu2, x2 = u3+ iu4 and
define the unit quaternion u= u1+ i u2+ j u3+k u4. Then the familiar conjugation
map v 7→ uvū, where v is an imaginary quaternion, defines a rotation R(x) on the
three-dimensional space of v’s. Up to a permutation of the columns, R(x)= A(z),
the matrix of (59), and hence the conjugation map defines a map x 7→ z. As a
variation on this construction, define the unitary x-dependent matrix

U =
[

x̄1 x2

−x̄2 x1

]
∈ SU(2).

Then the adjoint representation v 7→ U (x)vU (x)−1 on su(2) ' R3 produces the
same rotation R(x).

The composition f ◦ gsph of the regularizing map and the quadratic parametriza-
tion gives a 16-to-1 branched cover S3

7→ S3, which becomes 8-to-1 over the
binary collisions. Each binary collision is represented by a circle in the range which
has 2 preimage circles for a total of 6 branching circles in the domain. Using
stereographic projection, it is possible to get some idea of the behavior of this
remarkable, regularizing map. Figure 3 shows the projection of the three-sphere.
The three transparent surfaces are tori representing the collinear configurations
with a given ordering of the bodies along the line. These intersect in 6 circles
representing the binary collisions. The figure shows thin tubes around each of
these circles.
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Figure 3. Stereographic projection of S3 showing the preimage
under the regularizing map of the collinear configurations and small
tubes around the binary collision circles.

To extend g to a partially symplectic map G : T ∗R+×T ∗C2
→ T ∗R+×C×C3∗

we transform the momenta η, y so that y = ηD f (z) or

[
y1 y2

]
=
[
η12 η31 η23

]−2i x̄2 −2i x̄1

2x̄1 2x̄2

−2i x̄1 2i x̄2

 .
The value of η is not uniquely determined but any two solutions will yield equivalent
covectors and the same transformed Hamiltonian. For example, we could take

η12 = 0, η31 =
1
4

(
y1

x̄1
+

y2

x̄2

)
, η23 =

i
4

(
y1

x̄1
−

y2

x̄2

)
.

G restricts to G : T ∗R+× T ∗sphC2
→ T ∗R+× T ∗sph,CC3∗, where

T ∗sphC2
= {(x, y) : re〈y, x〉 = 0} and T ∗sph,CC3∗

= {(z, η) : z ∈ C, re〈η, z〉 = 0}.
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The regularized spherical Hamiltonian becomes

(66) H̃sph =
τp2

r

2
+
|X (x)|2

r2‖x‖12

(
|π ′1|

2ρ23

256m1
+
|π ′2|

2ρ31

256m2
+
|π ′3|

2ρ12

256m3

)
−

1
r

W (x)− hτ,

π ′1 = y1 x̄2+ y2 x̄1, π ′2 = y1 x̄2− y2 x̄1, π ′3 = y1 x̄1− y2 x̄2,

ρ12 = |2x1x2|
2, ρ31 = |x2

1 + x2
2 |

2, ρ23 = |x2
1 − x2

2 |
2,

‖z‖2 = 2‖x‖4 = ρ12+ ρ31+ ρ23,

|X (x)|2 =
m1m2ρ

2
12+m1m3ρ

2
31+m2m3ρ

2
23

m1+m2+m3
.

Note that H̃ is invariant under the scaling symmetry (x, y)→ (kx, k−1 y), k > 0.
The corresponding Hamiltonian system on the ten-dimensional space T ∗(R+×C2)

can be reduced to the expected eight dimensions by restricting to the invariant set
T ∗R+× T ∗sphC2 and then passing to the quotient space under scaling.

6.3. Projective regularization. Next we will get a regularized version of the re-
duced three-body problem. Let (r, X) be the projective-homogeneous coordinates
of Section 5. For a fixed angular momentum, we have the reduced Hamiltonian
on T ∗R+× T ∗prC

3

Hµ(r, pr , X, Z)= 1
2

(
p2

r +
µ2

r2

)
+
|X |2

r2 K (Z)−
1
r

V ([X ]).

After making the Levi-Civita transformations, fixing an energy and changing time-
scale by the factor τ from (62) we obtain a regularized reduced Hamiltonian

(67) H̃µ=
τp2

r

2
+
τµ2

2r2 +
|X (z)|2

r2‖z‖6

(
|π1|

2ρ23

8m1
+
|π2|

2ρ31

8m2
+
|π3|

2ρ12

8m3

)
−

1
r

W (ξ)−hτ,

where the various quantities appearing in the formula are given by (56), (57), (58),
(61) and (64). The only difference between the spherical and projective Hamiltonians
is the term involving µ2. We also impose the extra constraint im〈η, z〉 = 0 and there
will be extra curvature terms in the differential equations.

To find the curvature terms we need to pull-back the Fubini–Study form under
the regularizing map X = f (z), X i j = z2

i j . The Fubini–Study metric on z-space is
derived from the standard Hermitian metric on C3 by a formula analogous to (31).
We can express its restriction to C in terms of a tangent vector field as we did in
Lemma 14. The analogous formula to (32) is

(68) 〈〈V,W 〉〉FS,C =
〈〈V, e〉〉〈〈e,W 〉〉
‖z‖4

, V,W ∈ TX S,
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where e(z) is a Fubini–Study unit vector field tangent to C and normal to z. For
example, observe that if z ∈ C0 = C \ 0 then the vectors z, z̄, T form a Hermitian-
orthogonal complex basis for TzC3, where

(69) T = z× z̄ = (z31 z̄23− z23 z̄31, z23 z̄12− z12 z̄23, z12 z̄31− z31 z̄12).

Hence we can take
e =
‖z‖
‖T ‖

T = (z× z̄)/‖z‖.

This gives

(70) 〈〈 · , · 〉〉FS,C =
6⊗6

‖z‖4
,

where 6 is given by any of the formulas

(71) 6 =
〈〈z× z̄, dz〉〉
‖z‖

=
‖z‖(z12 dz31− z31 dz12)

z23

=
‖z‖(z23 dz12− z12 dz23)

z31
=
‖z‖(z31dz23− z23dz31)

z12
.

For example, the first version is just 6 = 〈〈e, dz〉〉 and the second is obtained by
eliminating z23, dz23 using the equations

z2
23 =−z2

12− z2
31 and z23 dz23 =−z12 dz12− z31 dz31.

Using these formulas, we find that the pull-back of the Fubini–Study metric on
W is a conformal multiple of the Fubini–Study metric on C.

Lemma 22. The pull-back of the Fubini–Study metric on W is given by

f ∗〈 · , · 〉FS,W = λ(z)〈〈 · , · 〉〉FS,C,

where the conformal factor is

(72) λ=
4m1m2m3 ρ12ρ31ρ23‖z‖2

m|X (z)|4
=

4m m1m2m3(ρ12+ ρ31+ ρ23) ρ12ρ31ρ23

(m1m2ρ
2
12+m1m3ρ

2
31+m2m3ρ

2
23)

2

and where ρi j = |zi j |
2.

Proof. Equation (34) shows that we need to compute the pullback f ∗σ , where σ is
given by (35). Using the first formula for σ gives

f ∗σ = 2z2
12z31 dz31− 2z2

31z12 dz31 = 2z12z31z236.

Hence

f ∗〈〈 · , · 〉〉FS,W =
m1m2m3

m|X (z)|4
f ∗σ ⊗ f ∗σ =

4m1m2m3

m|X (z)|4
|z12|

2
|z31|

2
|z23|

26⊗6.

Now use (57), (58) and (70) to get the formula in the proposition. �
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Similarly we can pull-back the Fubini–Study cometric on W and compare it with
the Fubini–Study cometric on C. The formula analogous to (33) is

(73) ‖η‖2FS,C = |〈η, e〉|2 =
|〈η, z× z̄〉|2

‖z‖2
, η ∈ T ∗z,prC

3.

This is a degenerate quadratic form, invariant under z-translation of η, which
represents the Fubini–Study cometric on C.

The next lemma relates this to the pull-back of the Fubini–Study cometric on W

and hence, to the shape kinetic energy.

Lemma 23. The pull-back of the Fubini–Study cometric on W is

F∗‖ · ‖2FS,W = λ
−1
‖ · ‖

2
FS,C,

where λ is given by (72). Hence the shape kinetic energy in regularized coordi-
nates is

1
2λ
−1
‖η‖2FS,C =

1
2
|〈η, z× z̄〉|2

λ ‖z‖2
.

Proof. Equation (36) shows that we need to compute the pullback F∗α, where α is
given by (37). Using the second formula for α gives

|z23|
2

|X |2
F∗α =

(η31 z̄12− η12 z̄31)z23

2z̄12 z̄31 z̄23

and there are two similar equations from the third and fourth formulas. Adding
these gives

F∗α =
|X (z)|2

‖z‖2
〈η̄, z× z̄〉.

Therefore,

F∗‖η‖2FS,W =
m|X (z)|4|〈η, z× z̄〉|2

4m1m2m3ρ12ρ31ρ23‖z‖4
=

m|X (z)|4

4m1m2m3ρ12ρ31ρ23‖z‖2
‖η‖2FS,C.

Comparing with the formula for λ completes the proof. �

It follows from the lemma that we have an equivalent reduced, regularized
Hamiltonian

H̃µ =
τp2

r

2
+
τµ2

2r2 +
τ‖η‖2FS,C

2λ(z)r2 −
1
r

W (ξ)− hτ.

Some simplification is obtained by choosing the degree-zero homogeneous function
λ as our time rescaling function instead of the function τ of (62), that is, by setting
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τ = λ. This gives the reduced, regularized Hamiltonian

(74) H̃µ =
λ p2

r

2
+
λµ2

2r2 +
‖η‖2FS,C

2r2 −
1
r

W (ξ)− hλ

=
λ p2

r

2
+
λµ2

2r2 +
|〈η, z× z̄〉|2

2r2‖z‖2
−

1
r

W (ξ)− hλ,

where the new regularized shape potential is

(75) W =
4
√

m m1m2m3(ρ12+ρ31+ρ23)(m1m2ρ31ρ23+m1m3ρ12ρ23+m2m3ρ12ρ31)

(m1m2ρ
2
12+m1m3ρ

2
31+m2m3ρ

2
23)

3/2
.

The factor of λ in the Fubini–Study two-form and the factor of λ−1 in the
shape kinetic energy cancel out in the interior product defining the curvature term.
Remembering the timescale factor λ we find that the curvature term is

(76) Tcurv =−
2µλ
r2 iη,

which is added to the right hand side (that is to−∂H/∂z) of the Hamilton’s equation
for η̇.

Theorem 24. The Hamiltonian flow of H̃µ on T ∗R+× T ∗C3
0 has an invariant set

T ∗R+×T ∗pr,CC3, where 〈η, z〉 = 0 and z2
12+ z2

31+ z2
23 = 0 with symplectic structure

given by the restriction of the standard form minus 2µλ�FS. The quotient of the
restricted flow by the complex scaling symmetry and by z̄-translations of η represents
the three-body problem with zero total momentum and angular momentum µ, with
regularized binary collisions, reduced by translations and rotations.

The regularized, reduced Hamiltonian H̃µ, together with the curvature term gives
a system of differential equations on the fourteen-dimensional space T ∗(R+×C3)

with variables (r, pr , z, η). The six-dimensional quotient space of T ∗R+× T ∗pr,CC3

is diffeomorphic to T ∗R+×T ∗P(C). Instead of writing these fourteen-dimensional
differential equations, we will describe several ways to parametrize the regularized
shape sphere P(C) to arrive at lower-dimensional systems of equations.

6.3.1. Quadratic parametrization of the regularized shape sphere. We can parame-
trize C using the same quadratic map g : C2

→ C⊂ C3 as in Section 6.2.1:

z12 = 2i x1x2, z31 = x2
1 + x2

2 , z23 = i(x2
1 − x2

2).

Since g is homogeneous with respect to complex scaling, it induces a map gpr :

CP1
→ P(C) from the projective line onto P(C). Although g and the induced

map gsph of S3 in Section 6.2.1 are both 2-to-1, the extra quotienting makes gpr a
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diffeomorphism. This shows again that P(C) is diffeomorphic to the two-sphere.
The same partially symplectic extension

G : T ∗R+× T ∗C2
→ T ∗R+×C×C3∗

restricts to a map G : T ∗R+× T ∗prC
2
→ T ∗R+× T ∗pr,CC3, where

T ∗prC
2
= {(x, y) : 〈y, x〉 = 0} and T ∗pr,CC3

= {(z, η) : z ∈ C, 〈η, z〉 = 0}.

If we use (74) together with the formula (73) for the dual Fubini–Study metric,
we obtain, after some simplification, the reduced, regularized Hamiltonian

(77)
H̃µ =

λ p2
r

2
+
λµ2

2r2 +
|y1x2− x1 y2|

2

4r2 −
1
r

W (x)− hλ,

ρ12 = |2x1x2|
2, ρ31 = |x2

1 + x2
2 |

2, ρ23 = |x2
1 − x2

2 |
2,

where W (x) is still given by (75) and λ(x) by (72) but with the ρi j replaced by the
given expressions in terms of x .

We have the complex constraint 〈y, x〉 = 0 and the system is invariant under
complex scaling symmetry (x, y)→ (kx, y/k̄), k ∈ C0. Applying the constraint
and passing to the quotient space reduces the dimension from 10 to 6. As usual,
Hamilton’s differential equations will have a curvature term

Tcurv =−
2µλ
r2 iy

added to the ẏ equation.

6.3.2. Dynamics in regularized affine coordinates. As in Section 5.4 we can use
affine local coordinates on CP1. Every projective point [x1, x2] ∈ CP1 with x1 6= 0
has a representative of the form [x1, x2] = [1, z] = [1, x+ iy], where x, y ∈R. The
appropriate momentum substitution is y1 =−z̄ζ , y2 = ζ , where ζ = α+ iβ ∈ C∗ is
a momentum vector dual to z.

We get a Hamiltonian system with 6 degrees of freedom:

(78) H̃µ =
λ p2

r

2
+
λµ2

2r2 +
(1+x2

+y2)2(α2
+β2)

4r2 −
1
r

W (x, y)−hλ,

ρ12 = 4(x2
+y2), ρ31 = (1+x2

−y2)2+4x2 y2, ρ23 = (1−x2
+y2)2+4x2 y2.

The Fubini–Study form becomes

�FS =
dx ∧ dy

(1+ x2+ y2)2
.
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Hamilton’s equations with the curvature term are

(79)

ṙ = λpr , ṗr =
1
r3

[
(1+ x2

+ y2)2(α2
+β2)+ λµ2]

−
1
r2 W (x, y),

ẋ =
(1+ x2

+ y2)2

2r2 α, ẏ =
(1+ x2

+ y2)2

2r2 β,

α̇ =
1
r

Wx − λx

[
p2

r

2
+
µ2

2r2 − h
]
−
(1+ x2

+ y2)(α2
+β2)x

r2 +
2λµβ

r2 ,

β̇ =
1
r

Wy − λy

[
p2

r

2
+
µ2

2r2 − h
]
−
(1+ x2

+ y2)(α2
+β2)y

r2 −
2λµα

r2 .

6.3.3. Dynamics in regularized spherical coordinates. Instead of using projective
or local affine coordinates, one can map the regularized shape sphere to the unit
sphere in R3. A particularly elegant way to do this is to use the diffeomorphism
between C and SO(3) described in Section 6.1.1.

Given z ∈ C we write z = a+ ib, where a, b ∈ R3, and define c = a× b ∈ R3.
We saw that the matrix

A(z)=
1
s

a12 b12 c12/s
a31 b31 c31/s
a23 b23 c23/s


is in SO(3), where s2

= |z|2/2= |a|2 = |b|2 = |c|.
We will work homogeneously and define a map g : C→ R3,

g(z)= c = re(z)× im(z).

By homogeneity, there is an induced map gpr : P(C)→ S(R3) ' S2, where we
view z and c as homogeneous coordinates with respect to complex and positive real
scaling respectively.

The orthogonality of the matrix A(z) can be used to derive some useful formulas.
Since the rows as well as the columns are unit vectors, we find

ρi j = |zi j |
2
= a2

i j + b2
i j =
|c|2− c2

i j

|c|
,

which gives the beautiful formulas

(80) ρ12 =
c2

31+ c2
23

|c|
, ρ31 =

c2
12+ c2

23

|c|
, ρ23 =

c2
12+ c2

31

|c|
,

for the homogeneous mutual distances. Similar formulas were given in [Lemaître
1964].
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Next, consider the quantity

z̄12z31 = a12a31+ b12b31+ i(a12b31− a31b12)= (a12, b12) · (a31, b31)+ ic23.

Using the orthogonality of the rows we can express this entirely in terms of c.
We find

z̄12z31 =−
c12c31

|c|
+ ic23, z̄23z12 =−

c23c12

|c|
+ ic31, z̄31z23 =−

c31c23

|c|
+ ic12.

These last formulas allow us to write down local inverses for gpr. Namely, consider
the map h12 : R

3
→ C3,

h12(c)= |c|z̄12(z12, z31, z23)= |c|(z̄12z12, z̄12z31, z̄12z23)

= (c2
31+ c2

23,−c12c31+ i |c|c23,−c12c23− i |c|c31).

If z12 6= 0, then h12(c) represents the same projective point in P(C) as z does so
h12(c) give a local inverse for the projective map gpr. There are similar partial
inverses h31, h23.

To find the regularized, reduced Hamiltonian system, we need to convert the
Fubini–Study metric and its dual norm (that is, cometric) to c-coordinates. The
spherical analogue of the Fubini–Study metric is the spherical metric

〈 · , · 〉sph =
|c|2〈dc, dc〉− 〈dc, c〉〈c, dc〉

|c|4
=
|c× dc|2

|c|4
,

where we are using the Euclidean inner product on R3. We will see that

g∗〈 · , · 〉sph = 2〈〈 · , · 〉〉FS,C =
2|〈〈z× z̄, dz〉〉|2

‖z‖6
.

To see this, note that z× z̄ =−2ia× b =−2ic. Hence

dc =
i
2
(dz× z̄+ z× dz̄).

This, together with the fact that 〈〈z, z̄〉〉 = 0 on C leads, after some algebra, to the
pull-back formula. Correspondingly, the Euclidean solid angle form pulls back to
twice the Fubini–Study form, hence

λ�FS,C = g∗
λ

2|c|3
(c1 dc2 ∧ dc3+ c2 dc3 ∧ dc1+ c3 dc1 ∧ dc2).

Let γ ∈ R3∗ be a dual momentum vector to c ∈ R3. From the spherical scaling,
we will have γ · c = 0. If we split the momentum vector η into real and imaginary
parts, η = u+ iv, then the momenta transform via

u = b× γ, v =−a× γ, with γ =−
u · c
|c|2

a−
v · c
|c|2

b.
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From this we find that the dual spherical norm

|γ |2sph = |γ × c|2 = |c|2|γ |2

corresponds to 1
2‖ · ‖

2
FS,C. So we get the reduced, regularized Hamiltonian

(81)
H̃µ =

λ p2
r

2
+
λµ2

2r2 +
|c|2|γ |2

r2 −
1
r

W (c)− hλ,

ρ12 = c2
31+ c2

23, ρ31 = c2
12+ c2

23, ρ23 = c2
12+ c2

31.

Here we have used the homogeneity of the formulas to redefine ρi j to eliminate the
factors of |c|. The curvature term is

(82) Tcurv =
2µλ
|c|r2 γ × c.

6.4. Visualizing the regularized shape sphere — Lemaître’s conformal map. The
map of projective curves fpr : P(C)→ P(W), induced by the squaring map, can be
visualized as a map of the two-sphere into itself. Indeed this is the point of view
taken by Lemaître [1964], but he arrived at it in a rather different way.

The map is a four-to-one branched covering map with octahedral symmetry (see
Figure 4). The map is generically four-to-one except at the binary collision points,
where it is two-to-one. In the figure, each octant of the regularized sphere maps
to one or the other hemisphere of the unregularized sphere. Thus, for example,
the north pole of the unregularized sphere (representing a Lagrangian, equilateral
central configuration) has four preimages, which lie in alternate octants. Each
binary collision point on the equator of the unregularized shape sphere has two
preimages, which lie on a coordinate axes of the regularized sphere.

Using affine coordinates, it is possible to express the regularizing map as a
map of the complex plane. For example, let u = x2/x1, where (x1, x2) are the
parameters of Section 6.3.1. Choose a basis for W so that the coordinates (ξ1, ξ2)

satisfy ξ1 = X12, ξ2 = X23− X31 and let v = ξ2/ξ1. Then it is easy to check that
the regularizing map X i j = z2

i j is given by the degree-four rational map

v = 1
2(u

2
+ u−2).

The three-dimensional sphere of Figure 3 is just the preimage of the regularized
two-sphere sphere in Figure 4 under a Hopf-map. Each point of the two-sphere
determines a circle in the three-sphere. The three large tori in Figure 3 are the
preimages of the collinear circles in the two-sphere (where the coordinate planes
cut the sphere). The six tubes in Figure 3 are the preimages of small circles around
the binary collision points (where the coordinate axes cut the sphere).
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Figure 4. The regularizing map is a four-to-one branched cover
of the two-sphere with octahedral symmetry. Each octant of the
regularized shape sphere (left) maps onto a hemisphere of the
unregularized shape sphere (right). The planes represent collinear
configurations. The figure also shows level curves of the unregu-
larized shape potential and their preimages in the equal mass case.

7. Blowing up triple collision

Our systematic use of the radial coordinate r together with the homogeneous
coordinates used to describe the shape make it easy to implement McGehee’s
method for blowing-up total collision. We need only rescale momenta and change
the timescale. The changes can be made before or after reduction. The changes
are noncanonical, so destroy the Hamiltonian character of the equations. We will
describe the general method for the rotation-reduced and unreduced cases and then
make some comments on the results of applying it to some of the Hamiltonians
described above.

7.1. Before reduction. Consider a Hamiltonian of the general form

(83) H(r, pr , X, Y )=
1

2r2 B(X)(Y, Y )−
1
r

V (X)+ [12 A(X)p2
r −C(X)]

when expanded in powers of r . This covers the rotation-unreduced Hamiltonian
Hsph of Section 4 and the corresponding regularized Hamiltonians H̃sph(r, pr , z, η)
and H̃sph(r, pr , x, y) of Section 6.2 (after changing the names of the variables).
For the unregularized Hamiltonian Hsph we have A(X)= 1, C(X)= 0, while for
the regularized Hamiltonians H̃sph we have A(X) = τ(X), C(X) = h τ(X). The
quantity B(X)(Y, Y ) represents the nonradial part of the kinetic energy. It is a
quadratic form in Y , which we represent by a symmetric matrix B(X) depending on
X . The dependence of B on X must also be quadratic since H must be homogeneous
of degree 0 with respect to the scaling (X, Y ) 7→ (k X, (1/k)Y ).
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Let f (r) be a positive, real-valued function. We will introduce a new timescale
such that ′ = f (r)˙. The usual choice is McGehee’s scaling factor f1(r)= r3/2 but
we will also consider f2(r)= (r/(r + 1))3/2, which has better behavior for large r .
(With the first choice, solutions can reach r =∞ in finite time.) For any such f (r),
we replace (pr , Y ) by rescaled momentum variables

(84) v =
f (r)pr

r
, α =

f (r)Y
r2 .

The shape variable X remains the same. When we make these substitutions of inde-
pendent and dependent variables in the Hamilton’s differential equations resulting
from (83), we get

(85)

r ′ = A(X)vr,

v′ = 1
2(1+r(ln ν)r )A(X)v2

+B(X)(α, α)−ν(r)V (X)

X ′ = B(X)α,

α′ =− 1
2

(
(1−r(ln ν)r )A(X)vα+AX v

2
+BX (α, α)

)
+ν(r)VX+rν(r)CX ,

where ν(r)= f (r)2/r3 and the subscripts denote differentiation. For McGehee’s
scaling f (r)= f1(r)= r3/2 we have ν(r)= 1, (ln ν)r = 0 and the equations simplify
considerably. For f2(r) we have ν(r)= (1+ r)−3 and both ν and (ln ν)r are still
smooth all the way down to r = 0.

Writing the energy equations Hsph = h or H̃sph = 0 in terms of the rescaled
momenta gives

(86) 1
2 A(X)v2

+
1
2 B(X)(α, α)− ν(r)V (X)= rν(r)C(X).

For example if we use the r3/2 rescaling with Hsph, we have

A = 1, B(X)= |X |2 B0, C = 0, V (X)= |X |
∑
i< j

mi ,m j

|X i j |
,

where B0 is the constant symmetric matrix (9). We get the blown-up differential
equations

r ′ = vr, v′ = 1
2v

2
− |X |2 B0(α, α)+ V (X),

X ′ = |X |2 B0α, α′ =− 1
2vα− B0(α, α)X + VX ,

with the energy relation 1
2v

2
+

1
2 B0(X)(α, α)− V (X)= rh.

The regularized equations arising from H̃sph are considerably more complicated
due to the B(X) terms (or rather the B(z) or B(x) terms). Instead of writing them
explicitly, we will just make some observations about them. Consider, for example,
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H̃sph(r, pr , x, y) from (66). B(x) will be a complicated, 4× 4 real matrix arising
from the second term in (66). The phase space before blow-up is

T ∗R+× T ∗C2
' (0,∞)×R×C2

×C2.

In addition to the energy relation H̃sph = 0, we have re〈y, x〉 = 0 and the scaling
symmetry by positive real numbers so there is an induced flow on an quotient
manifold of real dimension 7. After blow-up we have variables

(r, v, x, α) ∈ [0,∞)×R×C2
×C2,

where we have extended the flow to the collision manifold where r = 0, which
is an invariant set for the differential equations. We have a real-analytic vector
field on this manifold-with-boundary. Imposing the constraints and passing to the
quotient under scaling gives a real-analytic vector field on a seven-dimensional
manifold-with-boundary representing the planar three-body problem on a fixed
energy manifold, with all binary collisions regularized and with triple collision
blown-up. Note in particular that the regularization of binary collisions passes
smoothly to the boundary.

We claim that if the timescale factor f (r)= f2(r)= (r/(r + 1))3/2 is used, then
the differential equations define a complete flow on [0,∞)×R×C2

×C2 and hence
the induced seven-dimensional flow is complete. Since the differential equations
are smooth, the only obstruction to completeness would be orbits that become
unbounded in finite time. It is well-known that, with the usual timescale, such orbits
do not exist for the three-body problem. It follows that if we use only bounded
time-rescaling factors, the same will hold for the modified differential equations.
McGehee’s factor r3/2 is unbounded and it is possible for orbits to escape in finite
time. Indeed, there are solutions of the three body problem for which r(t)= O(t)
as t→∞ with respect to the usual time-scale and these will reach infinity in finite
rescaled time. The factor f2, while producing less elegant differential equations,
eliminates this problem.

7.2. After reduction. The rotation-reduced Hamiltonians Hµ and their many regu-
larized forms H̃µ have the general form
(87)

Hµ(r, pr , X, Z)=
1

2r2 [B(X)(Z , Z)+ A(X)µ2
] −

1
r

V (X)+ [12 A(X)p2
r −C(X)]

(after changing the names of the variables). The only new term here, when compared
to the Hamiltonian of Section 7.1, is the quadratic term in the angular momentum µ.
We have a momentum constraint 〈Z , X〉=0 and there will be a curvature term, Tcurv,
added to the Ż equation. As in Section 7.1, for the unregularized Hamiltonians Hµ,
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we have

A(X)= 1, C(X)= 0, Tcurv =−
2µ
r2 i Z ,

while for the regularized Hamiltonians H̃µ, we have

A(X)= λ(X), C(X)= h λ(X), Tcurv =−
2µλ
r2 i Z .

As in the last section, the variables X, Z can denote either homogeneous coordinates
on the cotangent bundle of projective space, before or after Levi-Civita transfor-
mation, or they can be local holomorphic coordinates on the cotangent bundle of
the shape sphere or of the regularized shape sphere P(C) (see the examples below).
Our computations immediately below hold for all these cases.

We rescale time and the momenta as in (84) with Z replacing Y . We must also
rescale angular momentum according to

(88) µ̃=
f (r)µ

r2 .

Then energy equations Hµ = h or H̃µ = 0 become

(89) 1
2 A(X)(v2

+ µ̃2)+ 1
2 B(X)(α, α)− ν(r)V (X)= rν(r)C(X),

where

(90) ν =
f 2

r3 ,

so that ν = 1 for f = r3/2 and ν = (1+ r)−3 for f = f2.
In order to express the differential equations succinctly, let

K̃ = 1
2 A(X)(v2

+ µ̃2)+ 1
2 B(X)(α, α)

denote the blown-up kinetic energy and let

(91) φ(r)=− 1
2(1− r(ln ν)r ).

Then the equations of motion are

(92)

r ′ = A(X)vr, v′ = φ(r)A(X)v2
+ 2K̃ − ν(r)V,

µ̃′ = φ(r)A(X)vµ̃, X ′ = B(X)α,

α′ = φ(r)A(X)vα− K̃ X + ν(r)VX + rν(r)CX + Tcurv,

where
Tcurv =−2iµ̃α or − 2iµ̃τ (X)α
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for the unregularized and regularized cases, respectively. We remark that the v′

equation can also be written

v′ = (φ+ 1)A(X)v2
+ B(X)(α, α)+ A(X)µ̃2

− ν(r)V (X).

In these equations, we are regarding µ̃ as a new variable subject, by definition, to
the constraint

(93)
√

r µ̃=
√
ν(r) µ,

where µ is the old angular momentum constant. This point of view is necessary to
make the curvature term smooth at r = 0.

As in Section 7.1, all functions of r extend smoothly to r = 0. If we start with
one of the regularized Hamiltonians H̃µ, then for the resulting differential equations,
all binary collisions have been regularized and the triple collision blown-up. We
obtain a flow on a manifold-with-boundary of dimension 5 after fixing µ, setting
H̃µ = 0, imposing the constraint on µ̃, the constraints that X ∈ C and 〈Z , X〉 = 0
and passing to the quotient under complex scaling. Binary collisions are regularized
for all values of µ and if the time rescaling is done using f2(r), the flows on these
manifolds will be complete.

It is well-known that triple collisions are possible in the three-body problem only
when µ = 0. In this case, (93) shows that either µ̃ = 0 or r = 0. Both of these
submanifolds are invariant sets for the dynamical system. The five-dimensional
manifold-with-boundary with the above constraints and with µ̃= 0 represents the
closure of zero-angular-momentum three-body problem. The four-dimensional
manifold where µ̃ = r = 0 forms the boundary. Even though orbit with µ 6= 0
cannot have r → 0, the part of the collision manifold {r = 0} where µ̃ 6= 0 is
relevant for studying low-angular-momentum orbits passing close to triple collision
[Moeckel 1984; 1989].

We will now present a couple of versions of the regularized, reduced and blown-
up differential equations for the three-body problem.

Example 25 (the blown-up regularized affine equations). In Section 6.3.2, we used
affine local coordinates on the regularized shape sphere to obtain a regularized
Hamiltonian H̃(z, ζ ) with 6 degrees of freedom. (We wrote z = x+ iy, ζ = α+ iβ
in Section 6.3.2.) Comparing with the general form (87) we have

A(X)= λ(z), B(X)(Z , Z)= 1
2(1+ |z|

2)2 |ζ |2,

C(X)= hλ(z), V (X)=W (z).

Recall that λ and W are given by the formulas (72) and (75) with ρ12 = 4|z|2,
ρ31 = |1+ z2

|
2, ρ23 = |1− z2

|
2. As per the preceding subsection, we continue

to write the rescaled momentum variable as α (thus α = ( f/r2)ζ ), trusting that
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there will be no confusing with the previous use of α. The rescaled kinetic energy
satisfies

2K̃ = λv2
+ λµ̃2

+
1
2(1+ |z|

2)2 |ζ |2.

Then the regularized, blown-up equations read:

(94)

r ′ = λ(z)vr, v′ = φ(r)λ(z)v2
+ 2K̃ − ν(r)W (z),

µ̃′ = φ(r)λ(z)vµ̃, z′ = 1
2(1+ |z|

2)2α,

α′ = φ(r)λ(z)vα− K̃z + ν(r)Wz + rν(r)hτz(z)− 2iµ̃λ(z)α.

The possibilities for ν(r), φ(r) are described in the previous subsection, in equations
(90), (91).

We have 7 variables, (r, v, µ̃, z, α)∈ [0,∞)×R×R×C×C. The constraints are

1
2λ(z)(v

2
+µ̃2)+ 1

4(1+|z|
2)2 |α|2−ν(r)W (z)=rν(r)λ(z)h and

√
r µ̃=

√
ν(r) µ.

Example 26 (the blown-up regularized spherical equations). In Section 6.3.3, we
used spherical-homogeneous variables c= (c1, c2, c3) to give a global representation
of the regularized shape sphere. We found a regularized Hamiltonian

H̃µ(r, c, pr , γ ).

Comparing with the general form (87), we have

A(X)= λ(c), B(X)(Z , Z)= 2|c|2|γ |2, C(X)= hλ(c), V (X)=W (c).

λ and W are given by the usual formulas with

ρ12 = c2
31+ c2

23, ρ31 = c2
12+ c2

23, ρ23 = c2
12+ c2

31.

With α= ( f/r2)γ , the rescaled kinetic energy satisfies 2K̃ =λv2
+λµ̃2

+2|c|2 |α|2.
Then the regularized, blown-up equations read:

(95)

r ′ = λ(c)vr, v′ = φ(r)λ(c)v2
+ 2K̃ − ν(r)W (c),

µ̃′ = φ(r)λ(c)vµ̃, c′ = 2|c|2α,

α′ = φ(r)λ(c)vα− K̃c+ νWc+ rν(r)hλc(c)+
2µ̃λ(c)
|c| α× c.

We have 9 variables, (r, v, µ̃, c, α)∈ [0,∞)×R×R×R3
0×R3. However, (c, α)

are homogeneous variables. They satisfy 〈α, c〉 = 0 and the equations are invariant
under the real scaling (c, α)→ (kc, (1/k)α). Taking this into account, we have an
induced system on the seven-dimensional quotient space [0,∞)×R×R× T ∗S2.
The energy and angular momentum constraints are

(96) 1
2λ(c)(v

2
+ µ̃2)+ |c|2 |α|2− ν(r)W (c)= rν(r)λ(c)h

and
√

r µ̃=
√
ν(r) µ, giving a subvariety of dimension 5.
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A nice alternative to the quotient construction is just to observe that 〈α, c〉 =
0 implies that |c| is invariant under the differential equations (95). Instead of
quotienting by the scaling symmetry, we can simply restrict c to the unit sphere.
Let

M(h, µ)= {(r, v, µ̃, c, α) : |c| = 1, 〈α, c〉 = 0,
√

rµ̃=
√
ν(r) µ, (96) holds}.

Then M(h, µ) is a five-dimensional submanifold (or subvariety when µ = 0) of
[0,∞)×R×R×R3

0 ×R3, which is invariant under (95). The flow on M(h, µ)
globally represents the planar three-body problem reduced by translations and
rotations, with all binary collisions regularized and with triple collision blown-up.

8. Summary

In Section 2 we recall the theory of symplectic reduction by an Abelian group G of
a cotangent bundle T ∗X of some configuration space X . The theory asserts that
the reduced space is the manifold T ∗(X/G)— the cotangent bundle of the quotient
space X/G. There is a twist: the symplectic structure of this cotangent bundle is
typically not the standard one. Reduction depends on selecting a value µ of the
“angular momentum” and the symplectic structure on T ∗(X/G) depends linearly
on µ, becoming the standard one only when µ = 0. In Sections 3, 4, and 5 we
apply this reduction theory to the non-Abelian group G of orientation-preserving
similarities acting on the phase space T ∗C3 of the configuration space C3 of the
planar three-body problem. In order to apply the theory we break the group up into
its three Abelian parts: translations, scalings, and rotations. Reduction by these
three subgroups make up the next three sections: Section 3 (translations), Section 4
(scalings), and Section 5 (rotations).

In Section 3 we use the linear map

L : C3
→ C3, L(q1, q2, q3)= (q1− q2, q2− q3, q3− q1)= (Q12, Q23, Q31)

to form the quotient of C3 by translations. The image of L realizes the quotient of
C3 by translations. This image is the two-dimensional complex subspace W⊂ C3

consisting of those Q’s that satisfy the “triangle closure” relation

Q12+ Q23+ Q31 = 0.

In Sections 4 and 5, we form the quotient of the W= im(L) from Section 3 by
the group of scalings (Section 4) and the group of rotations (Section 5). These two
groups combine to form the Abelian group C∗ of nonzero complex numbers acting
by scalar multiplication on the C3 of Qi j ’s, and hence on its subspace im(L). To
form the quotient we must subtract out the triple collision point 0∈W⊂C3 obtaining
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W0 :=W\{0}. We then implement the well-known fact that W0'C2
0/C
∗
=CP1

=

S2
= shape sphere.
Three-body dynamics does depend on overall size so we cannot possibly get a

reduced dynamics on T ∗CP1. Instead we use the reduction by scale in Section 4
as a tool for coherently separating the size variable r from the shape variables X i j .
Together the r, X i j form the “projective-homogeneous” coordinates of Section 5.

In Section 6.1 we introduce the Levi-Civita regularizing map f : C3
→ C3 to

regularize all three binary collisions. The map sends zi j to X i j = z2
i j . The map is C∗-

equivariant and so induces the following commutative diagram, which summarizes
the paper:

(97)

C3 Levi-Civita f (Section 6.1)
// C3

C \ {0}
f restricted

//

C∗

��

?�

OO

W \ {0}

C∗, Sections 4, 5
��

?�

Section 3

OO

P(C)
Lemaître // P(W)= CP1

regularized shape sphere shape sphere

The space C = {z2
12 + z2

23 + z2
31 = 0} is an affine cone and is the pullback of

W = {Q12+ Q23+ Q31 = 0} by the regularizing map f . The downward arrows
are the standard projections used in defining projective space.

To obtain the phase spaces of the paper, take the cotangent bundles T ∗X of each
space X in the diagram (97), and cross with the space T ∗(0,∞) = (0,∞)×R,
which encodes the radial variable r and its momentum pr . For angular momentum
µ nonzero, the twist referred to in the first paragraph of this summary arises as the
pull-back of the Fubini–Study form on CP1, or of its Levi-Civita pull-back.

The separation into radial and shape variables begun in Section 4 allows us to
make the final McGehee blow-up rescalings of time and momenta in Section 7. We
end with a dynamical system, which is regular through all binary collisions and
whose flow is complete.

We will close the paper with some pictures illustrating how the size and shape
variables can help to visualize the behavior of orbits of the planar three-body
problem. The figure-eight orbit of [Chenciner and Montgomery 2000] features
three equal masses moving on a single curve in the plane, as shown in the top image
of Figure 5. The other two images show how the size and shape of the triangle
formed by the bodies varies using unregularized and regularized shape variables.
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Figure 5. The famous figure-eight orbit of three equal masses. As
the three bodies chase one another on the figure-eight curve in the
plane, the size and shape vary as shown in the top right picture.
The behavior seems much simpler in the regularized covering space
(bottom).

The shape spheres are represented by the unit sphere in R3. The size and shape
are treated as spherical coordinates with the radial variable in R3 representing size
r + 1 (so the unit spheres represent triple collision). For the figure-eight orbit, the
size is nearly constant while the shape almost follows a level curve of the shape
potential. The behavior of the regularized shape is surprisingly simple with the
orbit close to a great circle on the sphere.
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CANONICAL CLASSES AND THE GEOGRAPHY OF
NONMINIMAL LEFSCHETZ FIBRATIONS OVER S2

YOSHIHISA SATO

The Stipsicz conjecture on the fiber-sum decomposability of Lefschetz fibra-
tions states that nonminimal Lefschetz fibrations over S2 are irreducible
with respect to fiber-sum decompositions. We can conclude that such Lef-
schetz fibrations are prime and fundamental. In this paper, we determine
the canonical classes of nonminimal Lefschetz fibrations admitting spheres
of square −1 whose total intersection number with generic fiber is big. As a
consequence, we consider the Kodaira dimension and the geography prob-
lem of such Lefschetz fibrations.

1. Introduction

If a 4-dimensional manifold M admits some fibration structure, then we can under-
stand its topology in detail. Elliptic surfaces, which are complex surfaces admitting
elliptic fibrations whose generic fibers are smooth elliptic curves, were deeply
studied by Kodaira, Kas, Moishezon and so on. Much is known about not only the
topology of elliptic surfaces but also the differentiable structures on elliptic surfaces
[Matsumoto 1986; Ue 1986; Donaldson 1987; Kametani and Sato 1994].

After that, symplectic structures are often studied as well as differentiable struc-
tures in 4-dimensional topology. In particular, Lefschetz fibrations have been studied
in 4-dimensional symplectic topology since the latter half in the 1990’s. A Lefschetz
fibration is a smooth fibration of a smooth 4-manifold over a surface with finitely
many critical points as complex analogues of Morse functions. Elliptic fibrations
can be regarded as genus-1 Lefschetz fibrations. The importance of Lefschetz
fibrations from the viewpoint of topology was reverified by Matsumoto [1996].
Lefschetz pencils and Lefschetz fibrations have played a major role in 4-dimensional
symplectic topology by the support of the remarkable works of Donaldson [1998]
and Gompf [1999], which imply that Lefschetz fibrations provide a topological
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Figure 1. Geography of simply connected, minimal complex surfaces.

characterization of symplectic 4-manifolds and that most of symplectic 4-manifolds
correspond to 4-manifolds with Lefschetz fibrations.

The geography problem in complex surfaces is the characterization of pairs of
integers that are realized as the pairs (c2

1, c2) of Chern numbers of complex surfaces,
and it is well studied in algebraic geometry. By the classification of complex
surfaces due to Kodaira, a simply connected complex surface is rational, elliptic or
of general type. We know completely the range that rational surfaces and elliptic
surfaces cover in the (c2

1, c2)-plane. Minimal surfaces of general type must satisfy
c2

1, c2 > 0 (Noether inequality) and (c2−36)/5≤ c2
1 ≤ 3c2 (Bogomolov–Miyaoka–

Yau inequality). In fact, the range of (c2
1, c2) of simply connected, minimal complex

surfaces is as shown in Figure 1.
A complex surface with even first Betti number b1 is Kähler and so sym-

plectic. Since any symplectic 4-manifold M with symplectic structure ω ad-
mits an ω-compatible almost-complex structure J , we can define Chern classes
c1(TM, J ), c2(TM, J ) for a symplectic 4-manifold M . Therefore, the geography
for symplectic 4-manifolds comes into our mind. These problems are raised by
McCarthy and Wolfson [1994]:

(1) Which pairs of integers are realized as (c2
1, c2) of a symplectic 4-manifold?

(2) If there is a symplectic 4-manifold corresponding to a given lattice point (m, n),
how many symplectic 4-manifolds realize (m, n) as the pair (c2

1, c2) of Chern
numbers?

Questions (1) and (2) are called the geography problem and the botany problem,
respectively. Since simply connected complex surfaces are symplectic, the range of
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(c2
1, c2) for symplectic 4-manifolds contains the range for simply connected complex

surfaces. The remarkable works of Donaldson and Gompf suggest that the geography
of symplectic 4-manifolds is nearly the same as one of Lefschetz fibrations. Every
lattice point (c2

1, c2), except finitely many lying in (c2 − 36)/5 ≤ c2
1 ≤ 2c2, is

realized as the total space of a Lefschetz fibration [Persson 1987]. On the other
hand, Fintushel and Stern [1998] showed that there exists a minimal Lefschetz
fibration that does not satisfy the Noether inequality. Stipsicz [1998] addressed
the Bogomolov–Miyaoka–Yau inequality for Lefschetz fibrations. Therefore, there
exists a difference between the range in the complex case and one in the symplectic
case. See also [Gompf 1995; Stipsicz 1996].

Instead of investigating all of the objects, we restrict them to prime (or irreducible)
things and examine these. Topologists often construct new manifolds by the cut-
and-paste method. As one can make a new manifold from given manifolds by
taking the connected sum, we can make a new Lefschetz fibration from given
Lefschetz fibrations by taking the fiber sum. In the category of Lefschetz fibrations,
Lefschetz fibrations that cannot be decomposed as any nontrivial fiber sum are
prime (or irreducible) with respect to fiber sum decompositions. Therefore, it is
natural and enough to investigate the geography of irreducible Lefschetz fibrations,
that is, Lefschetz fibrations that cannot be decomposed as any nontrivial fiber
sum. Lefschetz fibrations with smooth spheres of square −1 have the following
properties:

(1) Every projective complex surface admits the structure of a Lefschetz pencil
and the notion of a Lefschetz pencil is important in the 4-dimensional topology.
The blow-up of a Lefschetz pencil along the base locus yields a Lefschetz
fibration with sections of square −1. Conversely, by blowing down, we can
obtain a Lefschetz pencil from a Lefschetz fibration with sections of square−1.

(2) Any nonminimal Lefschetz fibration over S2 that has smooth spheres of square
−1 cannot be decomposed as a nontrivial fiber sum.

Fact (2) was conjectured by Stipsicz [2001]. The Stipsicz conjecture asserting
the minimality of Lefschetz fibrations with fiber sum decomposability was proved
by Usher [2006] affirmatively. In [Sato 2006] the author gave an independent and
easier proof of the Stipsicz conjecture in the case of fiber genus 2. Thus, nonminimal
Lefschetz fibrations S2 are irreducible with respect to the fiber sum decompositions
and we can conclude that such Lefschetz fibrations are fundamental.

The canonical class KM of a symplectic 4-manifold (M, ω, J ) is defined by
KM = −c1(TM, J ). Thus, if we determine the canonical class KM , then we can
calculate c2

1(TM, J )= K 2
M . In this paper, we determine the canonical classes for

nonminimal Lefschetz fibrations over S2. By using K 2
X of nonminimal Lefschetz

fibrations X→ S2, we can calculate the symplectic Kodaira dimension κs and solve
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the geography problem for nonminimal Lefschetz fibrations. By using the symplec-
tic Kodaira dimension κs , we can answer a question of Endo [2008, Problem 4.13]
on the diffeomorphism type of three symplectic 4-manifolds admitting nonminimal
Lefschetz fibrations.

Smith [2001b] showed the finiteness of the geography of genus-2 Lefschetz
pencils; that is, there are only finitely many possible Chern pairs (c2

1, c2) of genus-2
Lefschetz pencils. This implies that there an upper bound on the number of singular
fibers of a genus-2 Lefschetz pencil. In fact, the number of singular fibers of such a
pencil is less than or equal to 40. From this, the following question comes to our
mind:

Question 1-1 (Smith [Auroux 2006b]). Is there an upper bound (in terms of the
genus only) on the number of singular fibers of a Lefschetz fibration admitting a
section of square −1?

In [Sato 2008], the author generalized Smith’s result on genus-2 Lefschetz
pencils to the geography on nonminimal genus-2 Lefschetz fibrations over S2.
In this paper, we consider the geography problem of nonminimal genus-g (≥ 3)
Lefschetz fibrations over S2 and show the finiteness of the geography of certain
classes of nonminimal genus-g Lefschetz fibrations, which gives us a partial answer
for Question 1-1. For example, in the case where nonminimal Lefschetz fibrations
are hyperelliptic and have only (−1)-sections as smooth spheres of square −1, we
have:

Theorem 1-2. For g ≥ 3, there are only finitely many possible Chern pairs (c2
1, c2)

of hyperelliptic genus-g Lefschetz fibrations with 2g−2 or 2g−3 sections of square
−1 whose total spaces are neither the blow-up of a rational surface nor the blow-up
of a ruled surface. As a consequence, there is an upper bound on the number of
singular fibers of such a Lefschetz fibration. In fact, for any such hyperelliptic
genus-g Lefschetz fibration f : X → S2, the number µ( f ) of singular fibers of f
satisfies

µ( f )≤ (8g− 9)(2g+ 1)
g− 1

+
[g/2]∑
h=1

16g2− 11g− 8
12h(g− h)− (2g+ 1)

.

We can answer Question 1-1 in a generic situation; see Section 6. On the
other hand, considering the fiber sum construction, we see that minimal Lefschetz
fibrations can have arbitrarily many singular fibers.

The organization of this paper is as follows: In Sections 2–3, we recall the notion
of Lefschetz fibrations over S2 and give some examples of nonminimal Lefschetz
fibrations. In Section 4, we consider the geography of symplectic 4-manifolds
and Lefschetz fibrations. In Section 5, we determine the canonical classes of
nonminimal Lefschetz fibrations and answer Endo’s question. In Section 6, we show
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the finiteness of the geography of nonminimal hyperelliptic Lefschetz fibrations.
Furthermore, we consider the geography of nonminimal, nonhyperelliptic genus-3
Lefschetz fibrations.

2. Lefschetz fibrations over S2

The definition of Lefschetz fibrations. A smooth map f : X→6 from a closed,
connected, oriented smooth 4-manifold X onto a closed, connected, oriented smooth
2-manifold 6 is said to be a Lefschetz fibration if f admits finitely many critical
points C = {p1, p2, . . . , pk} on which f is injective and around which there are
orientation-preserving complex coordinate neighborhoods such that locally f can
be expressed as f (z1, z2) = z2

1 + z2
2. It is a consequence of this definition that

f |X\C : X \C → 6 \ f (C) is a smooth fiber bundle with fiber a closed oriented
2-manifold.

If a generic fiber that is the inverse image of a regular value has genus g, or
equivalently if f |X\C is a surface bundle with fiber a closed orientable surface of
genus g, we refer to f as a genus-g Lefschetz fibration. Moreover, we assume that
f is relatively minimal, that is, there is no fiber containing a sphere of square −1.

Two Lefschetz fibrations f : X→6 and f ′ : X ′→6′ are isomorphic if there are
diffeomorphisms 8 : X → X ′ and ϕ : 6→ 6′ such that f ′ ◦8 = ϕ ◦ f . In this
paper, we will assume that a base space 6 is a 2-sphere.

A fiber containing a critical point is called a singular fiber, which is obtained by
collapsing a simple closed curve, called a vanishing cycle, on a nearby generic fiber
to a point. A singular fiber is called reducible or irreducible according to whether
the corresponding vanishing cycle separates or dose not separate in the generic
fiber. In particular, if a vanishing cycle α separates the closed surface 6g of genus
g into two components with genera h and g−h (1≤ h ≤ [g/2]), then the reducible
singular fiber corresponding to α is said to be of type IIh .

Let 0g be the mapping class group of genus g, namely the group of all isotopy
classes of orientation-preserving self-diffeomorphisms of6g. The local monodromy
around a singular fiber of a Lefschetz fibration f : X→ S2 is a positive Dehn twist
τa along the corresponding vanishing cycle a. See Figure 2. Since the base space
of f is a 2-sphere, the product of all the local monodromies of f is trivial in 0g.
Such a relation in 0g

ta1 ta2 · · · taµ = 1

is called a positive relation, where a1, a2, . . . , aµ are vanishing cycles of f and
each tai is the isotopy class of τai in 0g.

Isomorphism classes of Lefschetz fibrations are determined by the monodromy
representations as follows:
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a a

τa τa(C)

Figure 2. A positive Dehn twist.

Theorem 2-1 [Matsumoto 1996]. Suppose that g ≥ 2. Then, there is a one-to-one
correspondence{

isomorphism classes of Lefschetz
fibrations with n singular fibers

}
←→ {conjugacy classes of ρ},

where ρ : π1
(
S2 \ ⋃ f (pi ), b0

)→ 0g is the monodromy representation.

From this theorem, it is well-known that a genus-g Lefschetz fibration is charac-
terized by a positive relation ta1 ta2 · · · taµ = 1 in 0g up to Hurwitz equivalence and
simultaneous conjugation of all factors by a same element in 0g.

A Lefschetz pencil is a nonempty finite set B = {b1, b2, . . . , b`} of X , called the
base locus, together with a smooth map f : X \ B→ CP1 such that each bi has an
orientation-preserving complex coordinate neighborhood in which locally f can be
expressed as f (z1, z2)= z1/z2, and each critical point of f has a local coordinate
neighborhood as a Lefschetz fibration. By the definitions of Lefschetz fibrations and
pencils, the blow-up at the base locus points of a Lefschetz pencil yields a Lefschetz
fibration over S2 with sections of square −1. It is well-known that every projective
complex surface admits a Lefschetz pencil, which is generalized to symplectic
4-manifolds as follows:

Theorem 2-2 [Donaldson 1998]. Every symplectic 4-manifold admits a Lefschetz
pencil whose closed fibers are symplectic submanifolds.

A result of Thurston [1976] on symplectic structures of surface-bundles over
closed oriented surfaces can be generalized as follows to 4-manifolds admitting
Lefschetz fibrations.

Theorem 2-3 [Gompf and Stipsicz 1999]. Let f : X→ S2 be a Lefschetz fibration
and [F] denote the homology class of the fiber. If [F] 6= 0 in H2(X;R), then X
admits a symplectic structure such that fibers are symplectic submanifolds.

If the fiber genus g is greater than 1, then the homology class of a generic fiber
of f is not torsion in H2(X;Z), and so this theorem states that such an X admits a
symplectic structure such that fibers of f are symplectic submanifolds.

From now on, we suppose that the fiber genus g is greater than 1 and we
can use the symplectic topology. Then, combining the remarkable theorems of
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Donaldson and Gompf gives the following topological characterization of symplectic
4-manifolds.

Corollary 2-4. A 4-manifold X admits a symplectic structure if and only if it admits
a Lefschetz pencil.

Proof. By Theorem 2-2, a symplectic 4-manifold X admits a Lefschetz pencil. If X
admits a Lefschetz pencil, then the blow-up at the base locus points of a Lefschetz
pencil yields a Lefschetz fibration f : X # nCP2 → S2 with sections of square
−1. Let F be a generic fiber of f and E a (−1)-section of f . Since F · E = 1,
the homology class of F is nontrivial in H2(X # nCP2;R), and so it follows from
Theorem 2-3 that X # nCP2 admits a symplectic structure ω. If X is rational or
ruled, then X has a symplectic structure. Suppose that X is neither rational nor
ruled. Then, by the (−1)-curve theorem [Li and Liu 1995; Taubes 1995; 1996], we
regard a smooth (−1)-section as an ω-symplectic sphere of square −1. Hence, the
symplectic blow-down of X # nCP2 yields a symplectic structure on X . �

Let fi : X i → S2 (i = 1, 2) be a genus-g Lefschetz fibration. Removing regular
neighborhoods N (F1), N (F2) of generic fibers F1, F2 in each, we glue these open
remainders along their boundaries by using a fiber-preserving diffeomorphism
ϕ : ∂(X1− Int N (F1))→ ∂(X2− Int N (F2)) with f2◦ϕ= f1 on ∂(X1− Int N (F1)).
We denote the resulting 4-manifold by X1 #F X2, that is, X1 #F X2 = (X1 −
Int N (F1))∪ϕ (X2−Int N (F2)). Then X1#F X2 admits a genus-g Lefschetz fibration
f1 #F f2 : X1 #F X2→ S2 associated to f1 and f2. We call the genus-g Lefschetz
fibration f1 #F f2 : X1 #F X2→ S2 the fiber sum of f1 and f2. The diffeomorphism
type of X1#F X2 might depend on the choice of the gluing diffeomorphism ϕ. In fact,
Ozbagci and Stipsicz [2000] constructed infinitely many Lefschetz fibrations as the
fiber sums from the same building blocks by using various gluing diffeomorphisms.
However, for the sake of brevity, we do not record those dependencies. By taking
the fiber sums, we can obtain infinitely many genus-g Lefschetz fibrations. On
the other hand, Stipsicz [2001] and Smith [2001a] showed that, if a Lefschetz
fibration has a (−1)-section, then it cannot be decomposed as any nontrivial fiber
sum. Furthermore, Usher [2006] showed that no nonminimal Lefschetz fibration
can be decomposed as a nontrivial fiber sum (the Stipsicz conjecture).

Therefore, nonminimal Lefschetz fibrations are “irreducible” building blocks in
the fiber sum construction. Thus, we consider nonminimal Lefschetz fibrations in
this paper.

The signature of Lefschetz fibrations. The Hirzebruch signature theorem implies
that the pair (c2

1, c2) of Chern numbers is determined by the signature and the Euler
characteristic. So, when we consider the geography of Lefschetz fibrations later, it
is important to calculate the signature and the Euler characteristic of a 4-manifold
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b

Figure 3. A pair of pants.

admitting a Lefschetz fibration. Every singular fiber of a genus-g Lefschetz fibration
f : X→ S2 contributes +1 to the Euler characteristic e(X). If the fibration f has
µ singular fibers, then we have e(X)= 4(1− g)+µ.

Compared with the calculation of the Euler characteristic, it is difficult to cal-
culate the signature of X . Now we introduce two signature formulae. One is the
Matsumoto–Endo formula for hyperelliptic Lefschetz fibrations and the other is
the Smith formula for general (possibly nonhyperelliptic) Lefschetz fibrations. Let
F1, F2, . . . , Fµ be singular fibers of f : X → S2. Let N (Fi ) denote the tubular
neighborhood of Fi (i = 1, 2, . . . , µ). We set X0 = X −⋃µ

i=1 N (Fi ). Then the
restriction f|X0 : X0→ f (X0) is the associated6g-bundle over the punctured sphere.
Since an irreducible singular fiber and a reducible singular fiber contribute 0 and
−1 to the signature σ(X), respectively, it follows from the Novikov additivity that
we have

σ(X)= σ(X0)−
[g/2]∑
h=1

sh,

where sh denotes the number of singular fibers of type IIh . The signature σ(X0)

of the bundle part X0 can be calculated from the signature cocycle τg, which
is a 2-cocycle of the Siegel modular group Sp(2g;Z) [Meyer 1973]. Let P =
S2−∐3

i=1 Int D2
i be a pair of pants and E(α, β)→ P the 6g-bundle defined by

monodromies α, β ∈ 0g.
Then, Meyer [1973] showed that for the signature of E(α, β) we have

σ(E(α, β))=−τg(α, β).

Since f has µ singular fibers, we can decompose the µ-punctured sphere f (X0)

into µ− 2 pairs P1, P2, . . . , Pµ−2 of pants as in Figure 4.
Then it follows from Novikov additivity and Meyer’s theorem that we have

σ(X0)=
µ−2∑
i=1

σ( f −1(Pi ))=−
µ∑

i=1

τg(tai−1 · · · ta2 ta1, tai ).
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p1 p2 p3 pµ−1pµ−2 pµ

a1 a2 a3 aµ−2 aµ−1 aµ

P1
P2

Pµ−3
Pµ−2

S2

Figure 4. Decomposition of f (X0) into µ− 2 pairs of pants.

Here a1, a2, . . . , aµ are vanishing cycles of f and ta0 denotes the identity map.
Thus, in terms of the signature cocycle τg and monodromies ta1, ta2, . . . , taµ , the
signature of X is given by

σ(X)=−
µ∑

i=1

τg(tai−1 · · · ta2 ta1, tai )−
[g/2]∑
h=1

sh .

The Matsumoto–Endo signature formula. A hyperelliptic Lefschetz fibration is a
Lefschetz fibration whose monodromy representation ρ is equivalent to one taking
isotopy classes commuting with the hyperelliptic involution ι :6g→6g. Since the
hyperelliptic mapping class group 0hyp

2 of genus 2 agrees with 02, every genus-2
Lefschetz fibration is hyperelliptic.

When we restrict the signature cocycle τg to the hyperelliptic mapping class
group 0hyp

g , its cohomology class [τ H
g ] ∈ H 2(0

hyp
g ;Z) is of finite order. So we can

calculate the terms of signature cocycles by the coboundary maps called Meyer’s
functions. Matsumoto [1996] and Endo [2000] calculated Meyer’s functions and
obtained the signature formula for hyperelliptic Lefschetz fibrations.

Theorem 2-5 [Matsumoto 1996; Endo 2000]. Suppose that f : X→ S2 is a genus-g
hyperelliptic Lefschetz fibration with n0 irreducible singular fibers and sh singular
fibers of type IIh (h = 1, 2, . . . , [g/2]). Then, we have

σ(X)=− g+ 1
2g+ 1

n0+
[g/2]∑
h=1

(
4h(g− h)

2g+ 1
− 1

)
sh .
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Smith’s signature formula. Smith obtained the signature formula for (possibly
nonhyperelliptic) Lefschetz fibrations by using the geometry of the moduli space
of stable curves. We denote the Deligne–Mumford compactified moduli space of
stable curves of genus g by Mg. Let f : X→ S2 be a genus-g Lefschetz fibration.
Then, we can have a symplectic structure on X such that each fiber f −1(x) is a
pseudoholomorphic curve. Since a 2-dimensional almost-complex structure is inte-
grable, each fiber f −1(x) determines a point in the Deligne–Mumford compactified
moduli space Mg.

Thus we can define the moduli map φ f : S2→Mg of f by

φ f (x) := [ f −1(x)] ∈Mg for all x ∈ S2.

In particular, if f : X→ CP1 is holomorphic, then the image φ f (CP1) is a rational
curve in Mg.

Theorem 2-6 [Smith 1999]. For any genus-g Lefschetz fibration f : X→ S2 with
µ singular fibers, namely µ= n0+∑[g/2]h=1 sh , the signature of X is given by

σ(X)= 4〈c1(λ), [φ f (S2)]〉−µ,
where λ→Mg denotes the Hodge bundle with fiber

∧g H 0(C; KC), the determinant
line above [C].

For a projective fibration f : X→ CP1, this theorem follows from Mumford’s
formula. Smith’s formula is a generalization of Atiyah’s formula for smooth
fibrations, and related work by Meyer.

3. Examples of Lefschetz fibrations

Let 0g be the mapping class group of 6g. For elements ϕ,ψ ∈ 0g, the product
ψ ·ϕ (or ψϕ) stands for applying ϕ first and then ψ .

Let c1, c2, . . . , c2g+1 be the curves on 6g illustrated in Figure 5. The isotopy
classes of the positive Dehn twists τc1, τc2, . . . , τc2g+1 along c1, c2, . . . , c2g+1 are

c1

c2

c3

c4 c2g
c2g+1

Figure 5. Lickorish generators.
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Lickorish generators of the mapping class group 0g of genus g. For the sake of
brevity, we denote the isotopy class of the positive Dehn twist τa along the curve a
by the same symbol a.

It is well-known that 0g has the following positive relations:

W1 : (c1 · c2 · · · c2g · c2g+1 · c2g+1 · c2g · · · c2 · c1)
2 = 1,

W2 : (c1 · c2 · · · c2g · c2g+1)
2g+2 = 1,

W3 : (c1 · c2 · · · c2g)
4g+2 = 1.

From these positive relations, we can construct hyperelliptic genus-g Lefschetz
fibrations with only irreducible singular fibers and with sections of square −1.
Furthermore, these Lefschetz fibrations are double branched covers of the Hirze-
bruch surfaces and so holomorphic. The total space of the Lefschetz fibration
corresponding to W1 is diffeomorphic to CP2 # (4g+ 5)CP2.

Examples of nonminimal genus-2 Lefschetz fibrations. The Hirzebruch surface
Fn = P(OCP1 ⊕ OCP1(n)) has two disjoint holomorphic sections 1n and 1−n of
square ±n.

(1) M1=CP2#13CP2 : The positive relation W1 : (c1 ·c2 ·c3 ·c4 ·c2
5 ·c4 ·c3 ·c2 ·c1)

2=1
describes the genus-2 Lefschetz fibration on the rational surface M1 obtained as
a double covering of F0 branched along a smooth algebraic curve in the linear
system |61+ 2F |. This fibration is obtained from the composition of the covering
projection with the bundle projection F0→ S2 and has 20 irreducible singular fibers
and sections of square −1.

(2) M2= K 3#2CP2 : The positive relation W2 : (c1 ·c2 ·c3 ·c4 ·c5)
6= 1 describes the

genus-2 Lefschetz fibration on M2 obtained as a double covering of F1 =CP2 #CP2

branched along a smooth algebraic curve in the linear system |6L|, where L is a
line in CP2 avoiding the blown-up point. This fibration has 30 irreducible singular
fibers and sections of square −1.

(3) M3= H ′(1) (Horikawa surface) : The positive relation W3 : (c1 ·c2 ·c3 ·c4)
10= 1

describes the genus-2 Lefschetz fibration on M3 obtained as a double covering
of F2 branched along the disjoint union of a smooth curve in the linear system
|512| and 1−2. This fibration has 40 irreducible singular fibers and a section of
square −1. This section is a lift of the component of the branched set coming
from 1−2. On the other hand, a fiber sum of two copies of the rational genus-2
Lefschetz fibration CP2 # 13CP2→ S2 is a genus-2 Lefschetz fibration, which has
40 irreducible singular fibers and the total space is homeomorphic to H ′(1) but not
diffeomorphic.
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(4) S2×T 2#4CP2 : Matsumoto showed that S2×T 2#4CP2 has a genus-2 Lefschetz
fibration with 6 irreducible singular fibers and 2 reducible singular fibers. This
also has a section of square −1. The positive relation describing this fibration is
(α1 · σ · α2 · α3)

2 = 1, where α1, α2, α3 and σ are given by positive Dehn twists
along the curves indicated in Figure 6.

α1

α3

α2

σ

Figure 6

(5) Auroux’s genus-2 Lefschetz fibration : Auroux [2003] constructed the interesting
genus-2 Lefschetz fibration f : X→ CP1 with 28 irreducible singular fibers and
one reducible singular fiber. This fibration is nonminimal but does not admit section
of square (−1). See [Sato 2008]. The positive relation corresponding to it is given
as follows:

σ · (c3 · c4 · c5 · c2 · c3 · c4 · c1 · c2 · c3)
2 · (c1 · c2 · c3 · c4 · c5 · c5 · c4 · c3 · c2 · c1)= 1.

For other examples of nonminimal genus-2 Lefschetz fibrations, see [Sato 2008].

Examples of nonminimal genus-3 Lefschetz fibrations.
(1) M1,M2 and M3 corresponding to positive relations W1,W2 and W3 for g = 3
have nonminimal, hyperelliptic and holomorphic genus-3 Lefschetz fibrations.

(2) S2× T 2 # 8CP2 : This has a nonhyperelliptic genus-3 Lefschetz fibration with
positive relation (α1 ·α2 ·α3 ·α4 ·β2

1 ·β2
2 )

2 indicated in Figure 7. This fibration also
has a section of square −1.

(3) Fuller’s example : Fuller constructed a nonhyperelliptic and nonholomorphic
genus-3 Lefschetz fibration with positive relation

(β1 ·β2 · c4 · c3 · c2 · c1 · c5 · c4 · c3 · c2 · c6 · c5 · c4 · c3 · (c1 · · · c6)
10)= 1,

α1

α2

α3

α4
β1

β2

Figure 7
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where β1 and β2 are given by positive Dehn twists along curves indicated in Figure 7.
This fibration also has a section of square −1.

(4) T 4 # 4CP2 : Smith [2001c] showed that T 4 # 4CP2 has a hyperelliptic and
holomorphic genus-3 Lefschetz fibration with 12 irreducible singular fibers and 4
sections of square −1. This fibration is obtained by using the inverse of the usual
Kummer construction of a K 3 surface which is elliptically fibered over S2 with 16
disjoint (−2)-spheres containing 4 sections and 12 singular fibers.

(5) Fermat surface of degree 4 : The Fermat surface of degree 4 is the smooth
hypersurface in CP3 defined by the equation z4

0+ z4
1+ z4

2+ z4
3 = 0. Kuno [2010]

proved that this surface admits a genus-3 Lefschetz pencil with 4 base locus points.
The blow-up of this surface at the base locus points yields a nonminimal, nonhyper-
elliptic, holomorphic genus-3 Lefschetz fibration with only 36 irreducible singular
fibers and 4 sections of square −1. See [Kuno 2010] for its monodromies.

Examples of nonminimal genus-g Lefschetz fibrations. Endo [2008] generalized
some parts of Chakiris’ construction of holomorphic genus-2 Lefschetz fibrations
topologically to give many examples of nonminimal hyperelliptic Lefschetz fibra-
tions of arbitrary genus. Their examples are given in terms of positive relations in
mapping class groups. Now, from Endo’s list, we introduce some examples that we
investigate in Section 5.

For simple closed curves c, a1, a2, . . . , ar on 6g and

W = aεr
r · · · aε2

2 aε1
1 (ε1, ε2, . . . , εr ∈ {±1}),

we put W (c) := τ εr
ar
· · · τ ε2

a2
τ ε1

a1
(c). Furthermore, for a factorization V = ci1ci2 · · · cir ,

we put W V := W (ci1) W (ci2) · · · W (cir ).
We define words I, J,CI,CII, P, Q and R in 0hyp

g as follows. Here, d denotes
the boundary curve of a regular neighborhood of c1 ∪ c2 ∪ · · · ∪ c2[g/2].

I := c1 · c2 · · · c2g · c2
2g+1 · c2g · · · c2 · c1,

J := (c1 · c2 · · · c2g)
2g+1,

CI := (c1 · c2 · · · c2g+1)
2g+2,

CII := (c1 · c2 · · · c2g)
4g+2, namely CII = J 2,

P := d · W (cg+1 · · · c3 · c2) · · · W (c2g · · · cg+2 · cg+1)

· (cg+1 · · · c3 · c2) · · · (c2g · · · cg+2 · cg+1), (g is even)

where W := (c1 ·c2 · · · cg)
−(g+1). When g is even, the words Q and R are defined by

Q := (c1 · c2 · · · c2g+1)
g+1 · d · W1(cg+1) · W2(cg+2) · · · Wg+1(c2g+1),

R := d · W1(cg+1) · W2(cg+2) · · · Wg+1(c2g+1) · (c2g+1 · · · c2 · c1)
g+1,
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where Wi := (ci+g−1 · · · ci+1ci )
−1 for each i ∈ {1, 2, . . . , g+ 1}. When g is odd,

the words Q and R are defined by

Q := (c1 · c2 · · · c2g+1)
g+2 · d · (cg−1 · c2 · c1)

2 · W1(cg) · W2(cg+1) · · · Wg+2(c2g+1),

R := c1 · c2 · · · c2g+1 · d · (cg−1 · · · c2 · c1)
2 · W1(cg) · W2(cg+1) · · · Wg+2(c2g+1)

·(c2g+1 · · · c2 · c1)
g+1,

where Wi := c−1
i c−1

i+1 · · · c−1
i+g−2 for each i ∈ {1, 2, . . . , g+ 2}.

Endo [2008] proved that the words I , J , CI, CII, P , Q and R, as products of
positive Dehn twists, satisfy the following positive relations:

I 2 = 1, CI = 1, CII = 1,

P2 = 1, Q = 1, P I = 1, PJ = 1, RI = 1 (g is even)

Q = 1, R = 1 (g is odd).

From these positive relations but for RI = 1, we can obtain nonminimal hyperel-
liptic Lefschetz fibrations admitting sections of square (−1); see [Endo 2008]. Of
course, the three relations I 2 = 1, CI = 1 and CII = 1 are the same as the positive
relations W1, W2, W3.

4. The geography of symplectic 4-manifolds

Smooth closed 4-manifolds can be endowed with different structures as complex
structures, almost-complex structures and symplectic structures.

A symplectic structure on a smooth 4-manifold M is a closed 2-form ω that
is nondegenerate as a bilinear form on each tangent space Tx M . A symplectic
4-manifold is a smooth 4-manifold M together with a symplectic structure ω.

An almost-complex structure on M is a bundle endomorphism J : TM→ TM of
the tangent bundle TM with J 2=−idTM . Since (TM, J ) is regarded as a C2-bundle
over M , we can define Chern classes

c1(M, J ) := c1(TM, J ), c2(M, J ) := c2(TM, J ).

Furthermore, it is well-known that any symplectic 4-manifold (M, ω) admits an
ω-compatible almost-complex structure, which is an almost-complex structure J
such that g(u, v) := ω(u, Jv) (u, v ∈ TM) is a Riemannian metric.

A smooth map ϕ : 6 → M from a possibly disconnected compact Riemann
surface (6, j) to (M, J ) is said to be J -holomorphic if the differential dϕ satisfies

dϕ ◦ j = J ◦ dϕ.

We call the image ϕ(6) a J -holomorphic curve or a pseudoholomorphic curve with
respect to J . If C is a pseudoholomorphic curve with respect to an ω-compatible
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almost complex structure, then C is also ω-symplectic. A pseudoholomorphic curve
on a symplectic 4-manifold is one of the most important tools in modern symplectic
4-dimensional topology and has a lot in common with holomorphic curves. For
example, two distinct pseudoholomorphic curves intersect discretely and positively.
Hence, the algebraic intersection number between two distinct pseudoholomorphic
curves stands for the geometric intersection number.

Many typical examples of simply connected 4-manifolds are given by complex
surfaces. Since they are simply connected, they are also Kähler, that is, symplectic
4-manifolds admitting symplectic structures whose compatible almost-complex
structures are integrable. The geography of simply connected minimal complex
surfaces, that is, the range of Chern pairs (c2

1, c2) of such complex surfaces, is as in
Figure 1. The boundary of the range is given by the Noether line (5c2

1 = c2− 36)
and the Bogomolov–Miyaoka–Yau line (c2

1 = 3c2).
Symplectic 4-manifolds have a lot in common with complex surfaces: pseu-

doholomorphic curves play a role as holomorphic curves on complex surfaces.
Donaldson’s theorem (Theorem 2-2) gives us a symplectic version of the ample
divisor. By Taubes’ theorem [1995; 1996] on the Gromov–Witten invariants GrT

and the canonical classes, we can regard a pseudoholomorphic representative of
the canonical class KM of a symplectic 4-manifold (M, ω) as a symplectic version
of the canonical divisor. Thus, one would like to achieve a similar classification
as in complex surfaces for symplectic 4-manifolds. We consider the geography
problem for symplectic 4-manifolds: Which pairs (m, n) of integers are realized as
the Chern pairs (c2

1, c2) of a symplectic 4-manifold?
We review Chern classes of symplectic 4-manifolds. We notice the following

fundamental relations between c2
1 and c2 first:

c1 ≡ w2 (mod 2),

c2
1 = 3σ + 2e (Hirzebruch’s signature theorem),

c2 = e.

Thus, the pair (c2
1, c2) is determined uniquely by the pair (σ, e). Conversely, the

pair (σ, e) is determined uniquely by the pair (c2
1, c2). Furthermore, since c1 is

characteristic, we have that c2
1 ≡ w2 (mod 8). Hence, the Noether formula holds

also for symplectic 4-manifolds:

c2
1+ c2 ≡ 0 (mod 12).

By use of a pseudoholomorphic representative of the canonical class KM , one
can prove part (1) of the following theorem:

Theorem 4-1 [Taubes 1996; Liu 1996]. (1) If M is a minimal symplectic 4-
manifold with b+2 (M) > 1, then c2

1(M)≥ 0.
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(2) Let M be a minimal symplectic 4-manifold with b+2 (M) = 1. If c2
1(M) < 0,

then M must be an irrational ruled surface.

It follows from an easy calculation in (co)homology that, if M is a symplectic
4-manifold with b1(M)≤ 1, then c2

1(M)≤ 5c2(M). As for nonminimal symplectic
4-manifolds, we have

c2
1(M # CP2)= c2

1(M)− 1 and c2(M # CP2)= c2(M)+ 1.

Namely, the blow-up translates lattice points on the (c2, c2
1)-plane along the vector

(1,−1). Thus, the problem of the maximum for the slope c2
1/c2 comes to our

mind. The author has no answer for this problem. However, it is expected that,
if M is a symplectic 4-manifold which is not an irrational ruled surface, then
c2

1(M)≤ 3c2(M). See [Stipsicz 2000].
Since surfaces of general type are Kähler, it follows from the geography of

complex surfaces that, for most of lattice points (m, n) with 1
5(n− 36)≤ m ≤ 3n

and m ≥ 0, there are symplectic 4-manifolds with (c2
1, c2)= (m, n). On the other

hand, Gompf [1995], Stipsicz [1996], and Fintushel and Stern [1998] showed that
the existential range of (c2

1, c2) of symplectic 4-manifolds is larger than that of
complex surfaces.

As for the geography of Lefschetz fibrations, we can regard the geography of
4-manifolds admitting Lefschetz fibrations as one of symplectic 4-manifolds by the
works of Donaldson and Gompf. Furthermore, we can also consider the geography
of fibration structures of Lefschetz fibrations as follows:

Let f : X → S2 be a genus-g Lefschetz fibration with n0 irreducible singular
fibers and sh reducible singular fibers of type IIh (1 ≤ h ≤ [g/2]). We denote
the number of singular fibers of f by µ( f ) := n0+∑[g/2]h=1 sh . Then, we have the
following:

c2
1(X)= 3σ(X)+ 2e(X), c2(X)= e(X)= 4− 4g+µ( f ).

Hence, by Theorem 2-5, we can calculate the Chern pairs (c2
1(X), c2(X)) from

the ([g/2] + 1)-tuple (n0, s1, . . . , s[g/2]) of the numbers of singular fibers for a
hyperelliptic genus-g Lefschetz fibration f : X→ S2. Thus, we regard the geography
problem of (possibly nonhyperelliptic) genus-g Lefschetz fibrations as characterizing
the ([g/2] + 1)-tuple (n0, s1, . . . , s[g/2]) of the numbers of singular fibers.

We now recall some facts about the number of singular fibers. The following
inequalities hold for the number of irreducible singular fibers and the number of
reducible singular fibers:

Theorem 4-2 [Stipsicz 1999]. Let f : X → S2 be a nontrivial genus-g Lefschetz
fibration with n0 irreducible singular fibers and sh reducible singular fibers of
type IIh (1≤ h ≤ [g/2]).
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(1) 5n0 ≥
[g/2]∑
h=1

sh .

(2) n0 > 0, that is, there is no Lefschetz fibration with only reducible singular
fibers.

Let N (g) denote the minimal number of singular fibers in genus-g Lefschetz
fibrations over S2, namely,

N (g) :=min{µ( f ) | f : X→ S2 is a genus-g Lefschetz fibration}.
Theorem 4-3 [Korkmaz and Ozbagci 2001; Stipsicz 1999]. We have estimates on
N (g) as follows:

(1) N (2)= 7, or 8.

(2) N (g)≥ 1
5(4g+ 2).

Proposition 4-4 [Sato 2010b]. Let f : X → S2 be a genus-2 Lefschetz fibration
with µ( f ) singular fibers.

(1) If µ( f )= 7, then X is diffeomorphic to S2× T 2 # 3CP2.

(2) If µ( f )= 8, then X is diffeomorphic to S2× T 2 # 4CP2.

By considering the abelianization of the global monodromy of a Lefschetz
fibration, we can obtain the congruence on the number of singular fibers. The
following proposition is proved by noting that the abelianization H1(02;Z) of 02

is isomorphic to the cyclic group of order 10.

Proposition 4-5 [Persson 1992]. Suppose that a genus-2 Lefschetz fibration over
S2 has n0 irreducible singular fibers and s reducible singular fibers. Then, we have

n0+ 2s ≡ 0 (mod 10).

If g≥ 3, then H1(0g;Z)= 0, and so we can get no information on the number of
singular fibers. However, if we consider the hyperelliptic case, then we can get infor-
mation for hyperelliptic Lefschetz fibrations. Since the abelianization H1(0

hyp
g ;Z)

of the hyperelliptic mapping class group 0hyp
g is isomorphic to Z/2(2g+ 1) if g

is even and Z/4(2g+ 1) if g is odd, we obtain the congruence on the number of
singular fibers of a hyperelliptic fibration.

Proposition 4-6 [Endo 2000]. Suppose that f : X→ S2 is a genus-g hyperelliptic
Lefschetz fibration with n0 irreducible singular fibers and sh singular fibers of
type IIh (h = 1, 2, . . . , [g/2]). Then, we have

n0+ 4
[g/2]∑
h=1

h(2h+ 1)sh ≡ 0
(

mod
{

2(2g+ 1) (if g is even)
4(2g+ 1) (if g is odd)

})
.
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Remark 4-7. By taking the fiber sums, we can construct genus-g Lefschetz fibra-
tions with arbitrarily large numbers of singular fibers. For example, for the genus-g
hyperelliptic Lefschetz fibration f : CP2 # (4g+ 5)CP2→ CP1 corresponding to
the positive relation

W1 : (c1 · c2 · · · c2g · c2g+1 · c2g+1 · c2g · · · c2 · c1)
2 = 1

we consider the fiber sum #m F f of m copies of f . Then, the total space of #m F f is
minimal and #m F f has 4(2g+1)m irreducible singular fibers. Hence, the set of all
(n0, s1, . . . , s[g/2]) of the numbers of singular fibers of genus-g Lefschetz fibrations
over S2 is not bounded.

We shall consider the geography problem of Lefschetz fibrations in Section 6.

5. The canonical classes of nonminimal Lefschetz fibrations over S2

2-spheres of square −1 in Lefschetz fibrations. Now we begin with two important
theorems on smoothly embedded spheres in a symplectic 4-manifold with self-
intersection number −1.

Theorem 5-1 ((−1)-curve theorem, [Li and Liu 1995; Taubes 1996]). Let (M, ω)
be a closed symplectic 4-manifold. Suppose that M is neither the blow-up of a
rational surface nor the blow-up of a ruled surface. Then, any smoothly embedded
sphere of square −1 is Z-homologous to a pseudoholomorphic rational curve of
square −1 after the appropriate choice of an orientation of the sphere.

Taubes showed this theorem for b+2 (M) > 1, and Li and Liu showed this theorem
for b+2 (M)= 1.

Theorem 5-2 [Ohta and Ono 2005]. Let (M, ω) be a closed symplectic 4-manifold
and F an irreducible pseudoholomorphic curve in M with respect to an ω-compat-
ible almost-complex structure J0. Suppose that the genus of F is positive. Then,
there exists an almost-complex structure J , which is arbitrarily close to J0, such
that F and any symplectic sphere of square −1 are represented by J -holomorphic
curves simultaneously.

Next we consider spheres of square −1 in Lefschetz fibrations. Let f : X→ S2

be a nonminimal genus-g Lefschetz fibration. Namely, we let X admit smoothly
embedded spheres of square −1. Since we suppose that g ≥ 2, X has a symplectic
structure ω with an ω-compatible almost complex structure J for which the fibers
are pseudoholomorphic (Theorem 2-3). From now on, we assume that a Lefschetz
fibration f : X→ S2 is not minimal and X admits such structures ω and J .

Let E ∈ H 2(X;Z) be the Poincaré dual of the homology class that is represented
by a smoothly embedded sphere of square −1 in X . By changing the orientation
of this sphere if necessary, we may assume that E · [ω] > 0, because we have
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E · [ω] 6= 0 by the (−1)-curve theorem and the fact that ω|6 on a closed symplectic
submanifold 6 is a volume form of 6. We denote by EX the set of all the Poincaré
duals of the homology classes E that can be represented by smoothly embedded
spheres of square −1 and satisfy E · [ω]> 0. Moreover, let F denote the Poincaré
dual of the homology class represented by a generic fiber. Then, we have the
following theorem:

Theorem 5-3 [Sato 2008]. Suppose that X is neither the blow-up of a rational
surface nor the blow-up of a ruled surface. We set EX = {E1, E2, . . . , Em}. Then:

(1) Ei · F ≥ 1 for any Ei ∈ EX ,

(2) m ≤ (∑m
i=1 Ei

) · F ≤ 2g− 2.

Remark 5-4. Suppose that X is neither the blow-up of a rational surface nor the
blow-up of a ruled surface. Then, by the (−1)-curve theorem, E ∈ EX can be
represented by an ω-symplectic sphere of square −1. Hence, it follows from
Theorem 5-2 and the positivity of intersections of pseudoholomorphic curves that,
if E ∈ EX satisfies E · F = 1, then E is represented by a (−1)-section of f .

Thus, by Theorem 5-3, we can classify EX into several types. For example, EX

in the cases of g = 2 and g = 3 are classified as follows:

The case g = 2: We consider a genus-2 Lefschetz fibration f : X → S2 with
spheres of square −1. If X is neither rational nor ruled, then Theorem 5-3 states
that EX is one of the following three:

Type (1, 1): EX = {E1, E2}, E1 · F = E2 · F = 1.

Type (1): EX = {E}, E · F = 1.

Type (2): EX = {E}, E · F = 2.

In the first and the second cases, spheres representing EX are (−1)-sections of
f : X → S2. Note that E1 · E2 = 0 for E1 and E2 in Type (1, 1), which follows
from the proof of Corollary 3 in [Li 1999].

The case g = 3: We consider a genus-3 Lefschetz fibration f : X → S2 with
spheres of square −1. If X is neither rational nor ruled, Theorem 5-3 states that the
set EX of spheres of square −1 is one of the following 11 types:

Type (1, 1, 1, 1): EX ={E1, E2, E3, E4}, E1 ·F = E2 ·F = E3 ·F = E4 ·F = 1.

Type (1, 1, 2): EX = {E1, E2, E}, E1 · F = E2 · F = 1, E · F = 2.

Type (1, 3): EX = {E1, E}, E1 · F = 1, E · F = 3.

Type (2, 2): EX = {E1, E2}, E1 · F = E2 · F = 2.

Type (4): EX = {E}, E · F = 4.

Type (1, 1, 1): EX = {E1, E2, E3}, E1 · F = E2 · F = E3 · F = 1.
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Type (1, 2): EX = {E1, E}, E1 · F = 1, E · F = 2.

Type (3): EX = {E}, E · F = 3.

Type (1, 1): EX = {E1, E2}, E1 · F = E2 · F = 1.

Type (2): EX = {E}, E · F = 2.

Type (1): EX = {E}, E · F = 1.

Furthermore, if we set
∑

EX :=∑m
i=1 Ei for EX = {E1, E2, . . . , Em}, then types

of EX are shared as follows:(∑
EX
) · F = 4: Type (1, 1, 1, 1), Type (1, 1, 2), Type (1, 3), Type (2, 2),

Type (4)(∑
EX
) · F = 3: Type (1, 1, 1), Type (1, 2), Type (3)(∑

EX
) · F = 2: Type (1, 1), Type (2)(∑

EX
) · F = 1: Type (1)

In general, if the set EX ={E1, E2, . . . , Em} for a nonminimal genus-g Lefschetz
fibration f : X→ S2 satisfies the conditions

Ei · F = ji , j1 ≤ j2 ≤ · · · ≤ jm,

then EX is said to be of Type ( j1, j2, . . . , jm).
Now we can state the main theorem.

Theorem 5-5. Let f : X → S2 be a nonminimal genus-g Lefschetz fibration. Let
K X be the canonical class of (X, ω). Suppose that X is neither the blow-up of a
rational surface nor the blow-up of a ruled surface. Then, the canonical class K X

can be determined according to the types of EX as follows:

[1] If g = 2, we have:

(1) If EX is of Type (1, 1), then K X = E1+ E2, where EX = {E1, E2}.
(2) If EX is of Type (2), then K X = E , where EX = {E}.
(3) If EX is of Type (1), then K X = 2E+ R or K X = 2E+ F. Here, EX = {E}

and R is a genus-1 irreducible component of a reducible singular fiber
such that E · R = 1. Moreover, in the case of K X = 2E + R, the fibration
f has only one reducible singular fiber. In the case of K X = 2E + F , the
fibration f has no reducible singular fiber.

[2] If g ≥ 3, we have:

(1) If
(∑

EX
) · F = 2g− 2, then K X =∑EX .
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(2) If
(∑

EX
) · F = 2g− 3, we have

K X = 2E1+
∑

E∈EX
E 6=E1

E + R.

Here, E1 is a (−1)-section of f and R is a genus-1 irreducible component
of a reducible singular fiber such that E1 · R = 1 and E · R = 0 for
any E ∈ EX (E 6= E1).

Proof. We can find out the proof in the case of g = 2 in the proof of Theorem 5-1
of [Sato 2008]. We suppose that the fiber genus of f is greater than two.

Equip X with an almost complex structure J such that fibers of f are J -
holomorphic curves. Let EX = {E1, E2, . . . , Em} be the set of all cohomology
classes represented by spheres of square−1. Set A= K X−∑EX = K X−∑m

i=1 Ei .
By the adjunction formula, we have K X · F = 2g− 2, K X · Ei =−1 for any i and
so A · Ei = K X · Ei − E2

i = 0 for any i . Furthermore, we have

A2 = A · (K X −∑EX )= A · K X −
m∑

i=1
A · Ei = A · K X ,

A · F = K X · F − (∑EX ) · F = (2g− 2)− (∑EX ) · F.
Hence, if (

∑
EX ) · F is 2g− 2 or 2g− 3, then

A · F =
{

0 if (
∑

EX ) · F = 2g− 2,
1 if (

∑
EX ) · F = 2g− 3.

Since each class Ei of EX is represented by a pseudoholomorphic curve and is a
basic class of the Gromov–Taubes invariant GrT [Taubes 1995; 1996], it follows
from the duality formula of the Gromov–Taubes invariant that A is also a basic
class, that is, GrT (A) 6= 0. Hence, the class A has a J -holomorphic representative
C = {(C j ,m j )}1≤ j≤n such that each C j is a J -holomorphic curve and each m j

(≥ 1) is the multiplicity of C j . The components C j of C are not always nonsingular.

(1) The case of (
∑

EX ) · F = 2g− 2: The cohomology class A is represented by
C = {(C j ,m j )}1≤ j≤n and we have A =∑n

j=1 m j [C j ]. Since A · F = 0, we have∑n
j=1 m j [C j ] · F = 0. Noting that pseudoholomorphic curves have locally positive

intersections, this implies that each component C j of C is contained in a fiber.
Hence, we have [C j ]2 = 0 or −1. If C j is a generic fiber or an irreducible singular
fiber, then [C j ]2 = 0. If C j is a component of a reducible singular fiber, then
[C j ]2 =−1. However, since A · Ei = 0 and Ei · F 6= 0 for any i , each component
C j is neither a generic fiber nor an irreducible singular fiber. Furthermore, since
f is relatively minimal, every fiber contains no sphere-component. Therefore, C j

is a component of a reducible singular fiber with genus (C j )≥ 1 and [C j ]2 =−1.
If distinct components C j and Ck intersected, they would be components of a
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reducible fiber and one of C j and Ck would meet a section Ei . However, since
A · Ei = 0, any component C j does not meet other components Ck .

Now we arrange the indices of components of C. Let C j,k be a component of a
reducible singular fiber such that the genus of C j,k is k. Let m j,k be the multiplicity
of C j,k . If C does not contain a component of genus k, then we set up a virtual
component C1,k and m1,k = 0. Then, we have A=∑g−1

k=1
∑n j

j=1 m j,k[C j,k]. Noting
that K X · [C j,k] = 2k−1 and [Ci,`] · [C j,k] = 0 (k 6= `), we calculate A2 and A ·K X .
We have

A2 =
n1∑

j=1

m2
j,1[C j,1]2+

n2∑
j=1

m2
j,2[C j,2]2+ · · ·+

ng−1∑
j=1

m2
j,g−1[C j,g−1]2

=−
( n1∑

j=1

m2
j,1+

n2∑
j=1

m2
j,2+ · · ·+

ng−1∑
j=1

m2
j,g−1

)
,

A · K X =
n1∑

j=1

m j,1[C j,1] · K X +
n2∑

j=1

m j,2[C j,2] · K X + · · ·

+
ng−1∑
j=1

m j,g−1[C j,g−1] · K X

=
n1∑

j=1

m j,1+ 3
n2∑

j=1

m j,2+ · · ·+ (2g− 3)
ng−1∑
j=1

m j,g−1.

Hence, we have that A2 ≤ 0 and A · K X ≥ 0. Since A2 = A · K X , we have
A2 = A · K X = 0. Therefore, we have m j,k = 0 for any j, k, in particular A = 0.
Hence, K X =∑EX .

(2) The case of (
∑

EX ) · F = 2g− 3: Since A · F = 1, the pseudoholomorphic
representative C of A contains a section S as a component of C. Then, we can
see that S is smooth and the multiplicity of S is one. Suppose that S is singular
and x ∈ S is a singular point of S. The fiber F0 = f −1( f (x)) intersects S at the
singular point x . This fact implies that [S] · [F0] ≥ 2, because pseudoholomorphic
curves have locally positive intersections. However, this contradicts the fact that
A · [F0] = A · F = 1. Hence, S is a smooth section. Moreover, since A · F = 1, the
multiplicity of S is one.

Let {C j | j = 1, 2, . . . , n} be the set of all components of C except S. Then, we
can see that each C j contains in a fiber of f . Since A = [S] +∑n

j=1 m j [C j ] and
A·F = 1, we have that 1= A·F =[S]·F+∑n

j=1 m j [C j ]·F = 1+∑n
j=1 m j [C j ]·F

and
∑n

j=1 m j [C j ] · F = 0. Hence, we have [C j ] · F = 0 for any j , and so each
component C j contains in a fiber.
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Now we divide components of C except S into generic/irreducible fibers and
components of reducible fibers. Furthermore, we divide components of reducible
fibers in C according to genera. Namely, the class A is represented by the pseudo-
holomorphic curve C= {(S, 1), (Fi , ki ), (C j,`,m j,`)}, where each Fi is a generic
fiber or an irreducible singular fiber and each C j,` is a component of a reducible
singular fiber such that the genus of C j,` is `. Of course, we have that [C j,`]2=−1,
[Ci,k] · [C j,`] = 0 ((i, k) 6= ( j, `)), F · [C j,`] = 0 and [C j,`] · K X = 2`− 1. Since
an irreducible singular fiber is homologous to the generic fiber F , components of
C which are generic fibers or irreducible singular fibers yield the homology class
m F , and so the class A is given by

A = [S] +m F +
n1∑

j=1

m j,1[C j,1] +
n2∑

j=1

m j,2[C j,2] + · · · +
ng−1∑
j=1

m j,g−1[C j,g−1]

= [S] +m F +
g−1∑
`=1

n∑̀
j=1

m j,`[C j,`].

We compare A2 with A · K X in the same way as the case (1). We have

A2 = [S]2+m2 F2+
g−1∑
`=1

n∑̀
j=1

m2
j,`[C j,`]2+ 2m[S] · F

+ 2
g−1∑
`=1

n∑̀
j=1

m j,`[S] · [C j,`] + 2
g−1∑
`=1

n∑̀
j=1

m j,`F · [C j,`]

= [S]2−
g−1∑
`=1

n∑̀
j=1

m2
j,`+ 2m+ 2

g−1∑
`=1

n∑̀
j=1

m j,`[S] · [C j,`],

A · K X = [S] · K X +m F · K X +
g−1∑
`=1

n∑̀
j=1

m j,`[C j,`] · K X

=−2− [S]2+ 2m(g− 1)+
g−1∑
`=1

n∑̀
j=1

(2`− 1)m j,`.

Since A2− A · K X = 0, we have

(5-6) −2(1+[S]2)+2m(g−1)+
g−1∑
`=1

n∑̀
j=1

m j,`(2`−1+m j,`−2[S] · [C j,`])= 0.

By Lemma 2.1 of [Stipsicz 2001], the self-intersection number of S is negative, and
so we have −2(1+ [S]2) ≥ 0. Furthermore, since S is a section, the intersection
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number [S]·[C j,`] is 0 or 1. Hence, we have that m j,`(2`−1+m j,`−2[S]·[C j,`])≥0.
Hence, each term in the left side of (5-6) is nonnegative. Therefore, we obtain

−2(1+ [S]2)= 0,
2m(g− 1)= 0,
m j,`(2`− 1+m j,`− 2[S] · [C j,`])= 0 for any j, `.

If ` ≥ 2, then we have 2`− 1+m j,`− 2[S] · [C j,`] ≥ 1 since 0 ≤ [S] · [C j,`] ≤ 1.
Hence it follows from the third equation above that m j,` = 0 for ` ≥ 2. Thus
the pseudoholomorphic representative C consists only of the section S and torus
components of reducible singular fibers. Noting that [S] · [C j,1] is 0 or 1, it follows
that if m j,1(1+m j,1−2[S]·[C j,1])=0 and m j,1 6=0, then m j,1=1 and [S]·[C j,1]=1.
On the other hand, since [S]2 =−1, the smooth section S is a sphere of square −1
and the class [S] is a member of EX . Set E1 = [S].

Now we consider the case where there is a torus component in C. Then, such a
torus component meets the section S and its multiplicity is one. Thus, we can write
A as A= E1+∑n1

j=1[C j,1]. Suppose that n1≥2. Since A·E1=0 and [S]·[C j,1]=1,
we have that n1 − 1 =∑ j 6=1[C j,1] · E1 = A · E1 − (E2

1 + [C1,1] · E1) = 0. This
is a contradiction. Hence, the class A is written as A = E1 + [C1,1]. Therefore,
we obtain

K X = 2E1+
∑

E∈EX
E 6=E1

E + R,

where R = [C1,1] is the class represented by a torus component of a reducible
singular fiber and E1 · R = 1. Since C1,1 is a torus, we have K X · R = 1 and so∑

E∈EX , E 6=E1
E · R = K X · R − (2E1 · R + R2) = 0. Hence, it follows from the

positiveness of local intersections of pseudoholomorphic curves that E · R = 0 for
any E ∈ EX except E1.

Next we consider the case where there is no torus component in C. Then, we
can write A as A = E1. Hence, we obtain

K X = 2E1+
∑

E∈EX
E 6=E1

E .

Then, the minimal model Xmin of X must satisfy that K 2
min < 0. Here, Kmin denotes

the canonical class of Xmin. However, since X is not the blow-up of a ruled surface,
it follows from Theorem 4-1 that K 2

min must be nonnegative. This is a contradiction.
Hence, the case of K X = 2E1 +∑E∈EX , E 6=E1

E cannot occur. This completes
the proof. �

Remark 5-7. (1) If a nonminimal genus-g Lefschetz fibration f : X→ S2 satisfies
g ≥ 3 and EX is of class

(∑
EX
) · F = 2g− 3, then f must have some reducible

singular fibers.
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(2) EX of class
(∑

EX
) · F = 2g−3 must contain some sections of square −1. For

example, the set EX of type (3) does not appear for nonminimal genus-3 Lefschetz
fibrations.

(3) The square of the canonical class K X for X in Theorem 5-5 is bounded. In fact,
when

(∑
EX
) · F = 2g−2, we have that 2−2g ≤ K 2

X ≤−1. When
(∑

EX
) · F =

2g− 3, we have that 3− 2g ≤ K 2
X ≤−2.

The symplectic Kodaira dimension of nonminimal Lefschetz fibrations. Given
any smooth complex surface X , there are four possibilities of the behavior of the
plurigenera Pn(X). The Kodaira dimension κ(X) of X is defined according to
four possibilities: κ(X)=−∞, 0, 1, or 2. It is well-known that smooth compact
complex surfaces are classified in terms of the Kodaira dimension.

The first notion of the symplectic version of the Kodaira dimension appeared in
[McDuff and Salamon 1996] and the symplectic Kodaira dimension is defined and
discussed in detail in [Li 2006].

Definition 5-8. Let (M, ω) be a minimal symplectic 4-manifold with symplectic
canonical class Kω. Then, the symplectic Kodaira dimension κs(M, ω) is defined
as follows:

κs(M, ω)=


−∞ if Kω · [ω]< 0 or K 2

ω < 0,
0 if Kω · [ω] = 0 and K 2

ω = 0,
1 if Kω · [ω]> 0 and K 2

ω = 0,
2 if Kω · [ω]> 0 and K 2

ω > 0.

The symplectic Kodaira dimension of a nonminimal 4-manifold (M, ω) is defined
to be that of any minimal model of (M, ω).

Theorem 5-9 ([Li 2006]; see also [Dorfmeister and Zhang 2009]). Let (M, ω) be
a closed symplectic 4-manifold with symplectic canonical class Kω. If (M, ω) is
minimal, then:

(1) With M given the orientation compatible with ω, the symplectic Kodaira
dimension of (M, ω) only depends on the oriented diffeomorphism type of M ,
that is, if ω′ is another symplectic form on M compatible with the orientation
of M , then κs(M, ω)= κs(M, ω′).

(2) κs(M, ω)=


−∞ if M is rational or ruled,
0 if Kω is torsion,
1 if Kω is nontorsion but K 2

ω = 0,
2 if K 2

ω > 0.

Hence, by Theorem 5-9(2), we can calculate the symplectic Kodaira dimension
of (M, ω) in terms of the canonical class Kω.
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Now, we have two kinds of Kodaira dimension. In the case where (M, ω) admits
a complex structure J , the equivalence of these Kodaira dimensions κ(M, J ) and
κs(M, ω) was proved by Li:

Theorem 5-10 (Li; see [Dorfmeister and Zhang 2009, Theorem 3.1]). Let M be
a smooth 4-manifold that admits a symplectic structure ω as well as a complex
structure J . Then, we have κs(M, ω)= κ(M, J ).

Remark 5-11. There are smooth 4-manifolds M that admits a symplectic structure
ω and a complex structure J but whose (M, ω, J ) is not Kähler. For example,
Kodaira–Thurston manifolds are such manifolds. Theorem 5-10 states that the
equivalence of Kodaira dimensions κ(M, J ) and κs(M, ω) holds for not only the
Kähler case but also the non-Kähler case.

For a nonminimal genus-g Lefschetz fibration f : X→ S2 with(∑
EX
) · F = 2g− 2 or

(∑
EX
) · F = 2g− 3,

we calculate the square K 2
min of the canonical class Kmin of a minimal model of X

by Theorem 5-5. Furthermore, we can calculate the symplectic Kodaira dimension
from K 2

min.

Theorem 5-12. Let f : X→ S2 be a nonminimal genus-g Lefschetz fibration. Equip
X with the natural symplectic structure ω given by Theorem 2-3. Let K X be the
canonical class of (X, ω) and Kmin the canonical class of a minimal model of X.
Suppose that X is neither the blow-up of a rational surface nor the blow-up of a
ruled surface.

[1] If g = 2, we have:

(1) If EX is of Type (1, 1), then K 2
min = 0 and κs(X, ω)= 0.

(2) If EX is of Type (2), then K 2
min = 0 and κs(X, ω)= 0.

(3) If EX is of Type (1), then K 2
min = 0 and κs(X, ω)= 1 when K X = 2E + R.

We have K 2
min = 1 and κs(X, ω)= 2 when K X = 2E + F.

[2] If g ≥ 3, we have:

(1) If
(∑

EX
) · F = 2g− 2, then K 2

min = 0 and κs(X, ω)= 0.

(2) If
(∑

EX
) · F = 2g− 3, then K 2

min = 0 and κs(X, ω)= 1.

For example, Tables 1 and 2 summarize the canonical class K X and the symplectic
Kodaira dimension κs(X) for nonminimal Lefschetz fibrations of fiber genus 2 or 3.

The author has also investigated the Iitaka D-dimension of the adjoint divisor
K X + F of F for holomorphic Lefschetz fibrations. See [Sato 2010a].

Now we can state about the relationship between the Kodaira dimension and the
base loci of Lefschetz pencils.
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(
∑

EX ) · F EX K X κs

(
∑

EX ) · F = 2
Type (1, 1) K X = E1+ E2

κs = 0Type (2) K X = E

(
∑

EX ) · F = 1 Type (1)
K X = 2E + R κs = 1
K X = 2E + F κs = 2

Table 1. The canonical class and the Kodaira dimension of non-
minimal genus-2 Lefschetz fibrations.(∑
EX
) · F EX K X κs

Type (1,1,1,1) K X = E1+ E2+ E3+ E4 κs = 0
Type (1,1,2) K X = E1+ E2+ E κs = 0(∑

EX
) · F = 4 Type (1,3) K X = E1+ E κs = 0

Type (2,2) K X = E1+ E2 κs = 0
Type (4) K X = E κs = 0

Type (1,1,1) K X = 2E1+ E2+ E3+ R κs = 1(∑
EX
) · F = 3 Type (1,2) K X = 2E1+ E + R κs = 1

Type (3) no existence no existence

Table 2. The canonical class and the Kodaira dimension of non-
minimal genus-3 Lefschetz fibrations.

Corollary 5-13. Let (X, ω) be a minimal symplectic 4-manifold that is neither
rational nor ruled. Suppose that X admits a Lefschetz pencil whose fiber genus g is
more than 2.

(1) If the base locus consists of 2g− 2 base points, then the symplectic Kodaira
dimension of X is 0.

(2) If the base locus consists of 2g− 3 base points, then the symplectic Kodaira
dimension of X is 1.

(3) If X is a minimal symplectic 4-manifold with κs(X)=2 (for example, a minimal
complex surface of general type), then the base locus consists of at most 2g−4
base points.

Proof. Suppose that X admits a Lefschetz pencil whose base locus consists of k
base points. By blowing up at these k base points, we obtain a nonminimal genus-g
Lefschetz fibration Y = X # kCP2 → S2 with k sections of square −1. The set
EY is of Type (1, 1, . . . , 1) with

(∑
EY
) · F = k. Therefore, the claim is proved

by Theorem 5-12. �

Remark 5-14. (1) For any g (≥ 1), a K 3 surface admits a Lefschetz pencil whose
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fiber genus is g and whose base locus consists of 2g− 2 base points. See [Smith
2001b].

(2) Auroux [2006a] calculated the monodromies of the canonical Lefschetz
pencils on a pair of homeomorphic Horikawa surfaces X1 and X2. The Horikawa
surface X1 is a double cover of CP1×CP1 branched along a smooth algebraic curve
of bidegree (6, 12). The Horikawa surface X2 is a double cover of the Hirzebruch
surface F6 branched along 4−6 ∪C , where 4−6 is the exceptional section of F6

and C is a smooth algebraic curve in the linear system |546|. By the construction
of X1 and X2, these Horikawa surfaces admit genus-2 Lefschetz fibrations with
120 singular fibers; the corresponding positive relations are

(c1 · c2 · c3 · c4 · c2
5 · c4 · c3 · c2 · c1)

12 = 1 and (c1 · c2 · c3 · c4)
30 = 1,

respectively. See also [Fuller 1998]. Since these have fiber-sum decompositions, X1

and X2 are minimal by Stipsicz’s conjecture. Furthermore, the Kodaira dimension
of X1 and X2 is 2. Auroux showed that X1 and X2 admit genus-17 Lefschetz
pencils with 16 base points.

(3) A surface S of general type embedded in a higher dimensional projective space
CPN has a Lefschetz pencil. The intersections of S with hyperplane sections {Ht |
t ∈CP1} containing a generic linear subspace A of complex codimension 2 make the
family of curves, which give S a Lefschetz pencil. If [S] = r [CP2] ∈ H4(CPN ;Z),
then the base locus B = S ∩ A of the pencil consists on r points. By noting the
Enriques–Kodaira classification of complex surfaces, the genus g of the generic fiber
must be at least 2. On the other hand, we have that g ≥ (r+4)/2 by Corollary 5-13.

Endo’s question. By generalizing Chakiris’ way to construct holomorphic genus-2
Lefschetz fibrations, Endo [2008] gave examples of hyperelliptic Lefschetz fibra-
tions of arbitrary genus. We can find many examples of nonminimal hyperelliptic
Lefschetz fibrations [ibid.].

For a positive relator W , we denote the Lefschetz fibration associated to the
positive relation W = 1 by MW → S2. If g is even, then each of MP2 , MQ ,
MP I and MPJ in Section 3 is nonminimal. In the case of g = 2, the 4-manifolds
MPJ , MRI and K 3 # CP2 are homeomorphic to 3CP2 # 20CP2 by Freedman’s
classification theorem. Furthermore, MPJ for g = 2, K 3 # CP2 and 3CP2 # 20CP2

are mutually nondiffeomorphic. On the other hand, the manifold MRI for g = 2 is
not diffeomorphic to 3CP2 # 20CP2. Hence, the following questions are natural.

Question 5-15 [Endo 2008, Problem 4.13]. Let PJ and RI be the positive relators
introduced on page 204.

(1) Determine whether MPJ and MRI are diffeomorphic or not when g = 2.

(2) Is MRI diffeomorphic to K 3 # CP2 ?
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Remark 5-16. The Lefschetz fibration MRI → S2 for g = 2 is isomorphic to the
genus-2 Lefschetz fibration constructed by Auroux [2003], whose set of spheres of
square −1 is of Type (2). See also [Sato 2008]. Hence, MRI → S2 for g= 2 admits
no section of square −1. Since MPJ → S2 for g = 2 admits a section of square −1,
two genus-2 Lefschetz fibrations MPJ → S2 and MRI → S2 are not isomorphic.
Question 5-15(1) is whether MPJ and MRI are diffeomorphic as manifolds.

In order to answer this question, we note the following proposition:

Proposition 5-17. Let (M, ω) and (M ′, ω′) be minimal symplectic 4-manifolds.
Suppose that the Kodaira dimension κs(M, ω) of (M, ω) is equal to 0. If

κs(M ′, ω′) 6= 0,

then M ′ is not orientation-preserving diffeomorphic to M.

Proof. Suppose there exists an orientation-preserving diffeomorphism f : M→ M ′.
Since the isomorphism f ∗ : H 2(M ′;Z)→ H 2(M;Z) gives a one-to-one correspon-
dence

Bas(M ′)→Bas(M),

if Bas(M ′) has a nontorsion class, then Bas(M) has also a nontorsion class. Here,
Bas(M) and Bas(M ′) denote the set of Seiberg–Witten basic classes of M and
M ′, respectively. By Theorem 5-9, the canonical class Kω ∈Bas(M) is a torsion
class. Furthermore, it follows from a theorem of Taubes [1994] (Theorem 10.1.11
of [Gompf and Stipsicz 1999]) that

|K · [ω]| ≤ |Kω · [ω]| = 0

for any K ∈Bas(M). Hence, |K · [ω]| = |Kω · [ω]| = 0 and Bas(M)= {±Kω}. In
particular, Bas(M) contains only torsion classes. However, since κs(M ′, ω′) 6= 0,
the canonical class Kω′ is nontorsion, and so the set Bas(M ′) contains a nontorsion
class. This is a contradiction. �

Answer to Question 5.1. (1) The manifold MPJ is not orientation-preserving
diffeomorphic to the manifold MRI .

(2) The manifold MRI is diffeomorphic to K 3 # CP2.

Proof. (1) The genus-2 Lefschetz fibration MPJ → S2 is of Type (1) and the
genus-2 Lefschetz fibration MRI → S2 is of Type (2). Let MPJmin and MRI min be
minimal models of MPJ and MRI , respectively. By Theorem 5-12, we have that
κs(MPJmin)= 1 and κs(MRI min)= 0. Therefore, it follows from Proposition 5-17
that MPJmin and MRI min are not mutually orientation-preserving diffeomorphic.
Since MPJ and MRI are not the blow-ups of a rational surface nor the blow-ups
of a ruled surface, two manifolds MPJ and MRI are not orientation-preserving
diffeomorphic by the uniqueness of minimal models of symplectic 4-manifolds.
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(2) Since the Lefschetz fibration MRI → S2 for g= 2 is isomorphic to the genus-
2 Lefschetz fibration constructed by Auroux, MRI is a simply connected Kähler
4-manifold. Furthermore, we have that κ(MRI min) = κs(MRI min) = 0. Hence,
MRI min is a K3 surface. Noting the uniqueness of minimal models of symplectic
4-manifolds, MRI is diffeomorphic to K 3 # CP2. �

6. The geography of nonminimal Lefschetz fibrations over S2

The geography of nonminimal hyperelliptic Lefschetz fibrations. In this section,
we consider the geography problem of genus-g Lefschetz fibrations as characterizing
the ([g/2] + 1)-tuple (n0, s1, . . . , s[g/2]) of the numbers of singular fibers.

Then, we have the finiteness theorem of the geography of nonminimal hyperel-
liptic Lefschetz fibrations:

Theorem 6-1. Suppose that X is neither the blow-up of a rational surface nor
the blow-up of a ruled surface. Then, only finitely many (n0, s1, . . . , s[g/2]) can be
realized as the ([g/2] + 1)-tuple of the numbers of singular fibers for nonminimal
hyperelliptic genus-g (≥ 2) Lefschetz fibrations with

(∑
EX
) · F = 2g− 2, 2g− 3.

Proof. For a hyperelliptic genus-g Lefschetz fibration f : X → S2 with the
([g/2] + 1)-tuple (n0, s1, . . . , s[g/2]) of the numbers of singular fibers, we can
calculate K 2

X from the number of singular fibers as follows:

K 2
X = 3σ(X)+ 2e(X)

= g− 1
2g+ 1

n0+
[g/2]∑
h=1

(
12h(g− h)− (2g+ 1)

2g+ 1

)
sh + 8(1− g).

Since 12h(g−h)−(2g+1)=−12(h−g/2)2+(3g+1)(g−1)>0 for 1≤h≤[g/2],
we have

g− 1
2g+ 1

> 0 and
12h(g− h)− (2g+ 1)

2g+ 1
> 0.

Hence, every coefficient of K 2
X = K 2

X (n0, s1, . . . , s[g/2]) is positive. Therefore,
since K 2

X is bounded by Remark 5-7(3), the number of the ([g/2] + 1)-tuple
(n0, s1, . . . , s[g/2]) satisfying K 2

K and the estimation in Section 4 is finite. In fact,
since K 2

X ≤−1, we have

g− 1
2g+ 1

n0+
[g/2]∑
h=1

(
12h(g− h)− (2g+ 1)

2g+ 1

)
sh + 8(1− g)≤−1.

From the above inequality, we obtain

n0 ≤ (2g+ 1)(8g− 9)
g− 1

.
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Moreover, noting that the number n0 of irreducible singular fibers is positive
[Stipsicz 1999], we have

sh ≤ 16g2− 11g− 8
12h(g− h)− (2g+ 1)

for any h (1≤ h ≤ [g/2]). �

From Theorem 6-4, we can obtain an estimate for µ( f )= n0+∑[g/2]h=1 sh and a
partial answer for Smith’s question (Question 1-1).

Corollary 6-2. There is an upper bound on the number of singular fibers of non-
minimal hyperelliptic genus-g (≥ 3) Lefschetz fibrations with

(∑
EX
) · F = 2g− 2,

2g − 3 whose total spaces are neither the blow-up of a rational surface nor the
blow-up of a ruled surface. In fact, for such hyperelliptic genus-g Lefschetz fibration
f : X→ S2, the number µ( f ) of singular fibers of f satisfies

µ( f )≤ (8g− 9)(2g+ 1)
g− 1

+
[g/2]∑
h=1

16g2− 11g− 8
12h(g− h)− (2g+ 1)

.

Remark 6-3. (1) The estimation of µ( f ) given in Corollary 6-2 is rough. By using
linear programming, one can obtain a strict estimation of µ( f ).

(2) There is no upper bound on the number of singular fibers of minimal Lefschetz
fibrations. In fact, if a Lefschetz fibration f : X→ S2 has µ singular fibers, then
the fiber sum m #F f of m copies of f is a minimal Lefschetz fibration with mµ
singular fibers. Hence, there are minimal Lefschetz fibrations with arbitrarily many
singular fibers.

Given g (≥ 2), we can present the list of possible ([g/2] + 1)-tuples

(n0, s1, . . . , s[g/2])

for nonminimal hyperelliptic genus-g Lefschetz fibrations with
(∑

EX
)·F = 2g−2,

2g− 3. The lists in the cases of g = 2 and g = 3 are given in Tables 3 and 4.

(
∑

EX ) · F EX K X (n0, s) κs

(
∑

EX ) · F = 2
Type (1, 1) K X = E1+ E2 (16, 2), (30, 0)

κs = 0Type (2) K X = E (14, 3), (28, 1)

(
∑

EX ) · F = 1 Type (1)
K X = 2E + R (28, 1) κs = 1
K X = 2E + F (40, 0) κs = 2

Table 3. Possible pairs (n0, s) as geography in the case of g = 2.
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(∑
EX
)·F EX K X (n0, s) κs

Type (1,1,1,1) K X = E1+E2+E3+E4 (8, 4)
Type (1,1,2) K X = E1+E2+E (20, 3)(∑

EX
)·F = 4 Type (1,3) K X = E1+E (32, 2) κs = 0

Type (2,2) K X = E1+E2 (32, 2)
Type (4) K X = E (44, 1)

Type (1,1,1) K X = 2E1+E2+E3+R (20, 3) κs = 1(∑
EX
)·F = 3 Type (1,2) K X = 2E1+E2+R (32, 2) κs = 1

Type (3) none none none

Table 4. Possible pairs (n0, s) as geography in the hyperelliptic
case of g = 3.

The geography of nonminimal, nonhyperelliptic genus-3 Lefschetz fibrations.
At present, we do not know whether the signature σ(X) of X can be calculated from
the number of singular fibers for a nonhyperelliptic Lefschetz fibration f : X→ S2.
Hence, we do not know whether the finiteness theorem of the geography holds for
nonhyperelliptic case. However, in the case of nonhyperelliptic genus-3 Lefschetz
fibrations, we can show the finiteness of the geography for nonminimal holomorphic
Lefschetz fibrations by using Smith’s signature formula and the Deligne–Mumford
compactified moduli space M3 of stable curves of genus 3.

Let 40 and 41 be the divisors of irreducible and reducible nodal curves, respec-
tively. Then, the Deligne–Mumford compactified moduli space M3 is given by
adjoining 40 and 41 to the moduli space M3 of stable curves of genus 3. Let H3

denote the divisor of hyperelliptic curves of genus 3 in M3. Then, a theorem of
Harer [1983] states that the Hodge class c1(λ), [40] and [41] generate H 2(M3;Z)
and the cohomology class [H3] is given, up to a positive rational multiple, by

[H3] = 9c1(λ)− [40] − 3[41].

See [Harris and Morrison 1998].

Theorem 6-4. Suppose that X is neither the blow-up of a rational surface nor the
blow-up of a ruled surface. Then, only finitely many (n0, s) can be realized as pairs
of the numbers of singular fibers for nonminimal, nonhyperelliptic and holomorphic
genus-3 Lefschetz fibrations with

(∑
EX
) · F = 3, 4.

Proof. Suppose that f : X→CP1 is nonhyperelliptic and holomorphic. A holomor-
phic fibration f gives rise to a rational curve φ f (CP1) in M3. The rational curve
φ f (CP1) has positive intersection with any effective divisors that are not contained
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in φ f (CP1). In particular, we have

〈[H3], [φ f (CP1)]〉 ≥ 0.

Since 〈[H3], [φ f (CP1)]〉 is given, up to a positive multiple, by

〈[H3], [φ f (CP1)]〉 = 〈9c1(λ)− [40] − 3[41], [φ f (CP1)]〉
= 9

4(σ (X)+ n0+ s)− n0− 3s

= 9
4σ(X)+ 5

4 n0− 3
4 s,

we can obtain the following inequality:

σ(X)≥− 5
9 n0+ 1

3 s.

Thus, we get the relations 

K 2
X = 3σ(X)+ 2e(X),
−4≤ K 2

X ≤−1,
σ (X)≥− 5

9 n0+ 1
3 s,

e(X)= n0+ s− 8,
5n0 ≥ s,

hence 
n0+ 9s− 45≤ 0,

5n0− s ≥ 0,

n0 > 0, s ≥ 0.

The number of pairs (n0, s) satisfying these inequalities is finite. �
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HILBERT–KUNZ INVARIANTS
AND EULER CHARACTERISTIC POLYNOMIALS

LARRY SMITH

We study the Hilbert–Kunz invariants of homogeneous ideals in graded
polynomial algebras and develop a homological formula for the Hilbert–
Kunz multiplicity resembling the formula of J.-P. Serre using Koszul homol-
ogy for the ordinary multiplicity of an ideal. We apply this in the special
case of maximal primary irreducible ideals to obtain several new results,
among which is a reciprocity formula for the Hilbert–Kunz invariants of
directly linked ideals in a graded polynomial algebra.

The Hilbert–Kunz invariants grew out of the paper of E. Kunz [1969] character-
izing regular local rings in characteristic p 6= 0 and they were put into their present
form by P. Monsky [1983]. These invariants are defined by analogy with the Hilbert
function and its associated multiplicity, but instead of using the ordinary powers of
an ideal to do so, one uses its Frobenius powers instead. Specifically, fix a field F of
characteristic p 6= 0 and a commutative graded connected1 F-algebra A. Recall that
for an ideal I ⊂ A the Frobenius power I [p] of I is the ideal generated by the p-th
powers of elements of I . If A is Noetherian and M is a finitely generated A-module,
so M is of finite type,2 one defines the Hilbert–Kunz function HK(I,M) :N0−→N0

of a maximal primary ideal I ⊂ A on M by HK(I,M)(e)= dimF(M/I [p
e
]
·M) for

e ∈ N0. The Hilbert–Kunz multiplicity of I on M is defined to be the real number

eHK(I,M)= lim
e→∞

{
dimF

(
M/I [p

e
]
·M

)
pe·dim(A)

}
= lim

e→∞

{
HK(I,M)(e)

pe·dim(A)

}
.

The fact that the numbers {dimF(M/I [p
e
]
· M)/pe·dim(A)

}|e∈N0 form a bounded
Cauchy sequence, so that the preceding limit makes sense, was proved by P. Monsky

MSC2010: 13A15, 13D02, 18G00.
Keywords: Hilbert–Kunz invariants, linkage of ideals.

1By a connected algebra over F is meant a nonnegatively graded algebra R whose degree 0
component is F · 1 where 1 ∈ R is the unit of the algebra. The terminology comes from algebraic
topology: a (nonpathological) topological space X is connected if and only if its cohomology algebra
is connected.

2A graded vector space V is of finite type if all its homogeneous components Vi are finite-
dimensional.
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(see, e.g., [Monsky 1983]). If the ideal I is the maximal ideal3 then one speaks of
the Hilbert–Kunz function of M , and writes it as HKM(−−), and the Hilbert–Kunz
multiplicity of M , and denotes it by eHK(M).

The colength formula of [Watanabe and Yoshida 2000] for eHK(I ) provided
our starting point. Using it we obtain a homological formula, Proposition 3.1, for
eHK(I ) based on work of W. Smoke [1972] going back to D. Hilbert [1890]. The
colength formula yields a relation between the Hilbert–Kunz multiplicity of bundle
and base ideals in the context of the projective bundle theorem (see [Smith and
Stong 2011] and Section 2), as well as the Hilbert–Kunz multiplicity of Gorenstein
ideals with socle degree 2 or 3 in polynomial algebras (see Section 2 and Section 4).
Proposition 3.1 also leads to a reciprocity relation for the Hilbert–Kunz multiplicity
of a pair of directly linked ideals (see Section 5) in polynomial algebras.

We pay particular attention here to setting things up in a graded context. Being
of the J. C. Moore school,4 a Z-graded object X is a collection {X i | i ∈ Z}, not
a direct sum, and only homogeneous elements are considered. If the direct sum
makes sense we write Tot(X) for the direct sum

⊕
X i to distinguish it from the

graded object X . Unless specifically mentioned to the contrary all graded vector
spaces are nonnegatively graded, i.e., X i = 0 for all i < 0.

1. Background from homological algebra

In this section we collect results from homological algebra needed for the proofs in
the later sections. These consist of a brief review of [Smoke 1972] which formulates
some fundamental ideas of D. Hilbert, in particular the syzygy theorem and its
application to computing Poincaré series (see, e.g., [Hilbert 1890]) in the language
of homological algebra.

Fix a ground field F which for the present may be arbitrary. Let R denote a
commutative graded connected algebra over F. Unless otherwise stated to the
contrary the algebra R should be assumed Noetherian, i.e., finitely generated over F.

3In the graded context there is only one maximal ideal in A; to wit, the augmentation ideal, which
sometimes is referred to as the irrelevant ideal, denoted by A and consisting of all the homogeneous
elements of strictly positive degree and a zero in all other degrees, i.e., A is the kernel of the
augmentation map η : A−→ F defined by

η(a)=
{

a if deg(a)= 0,
0 otherwise.

If A = F[x1, . . . , xn] is a polynomial algebra, then, since the notation ¯F[x1, . . . , xn] is quite ugly we
prefer to write m for the maximal ideal in this case and also to use the expression m-primary for a
maximal primary ideal in F[x1, . . . , xn]. More generally, we write mA for the maximal ideal of A if
A is a complicated symbol such as F[V ]G .

4Though I myself am a Massey product.
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Definition. A function ξ from isomorphism classes of R-modules of finite type to
an abelian group A is called an Euler characteristic with values in A, or said to
have the Euler characteristic property, if for every short exact sequence

0−→M ′−→M −→M ′′−→ 0

of R-modules of finite type one has

ξ(M ′)+ ξ(M ′′)= ξ(M).

Example 1. The Poincaré series,5 to wit,

P(M, t)=
∑
i∈N0

dimF(Mi )t i ,

for a finite type R-module M , defines an Euler characteristic with values in the
abelian group Z[[t]] of formal power series with integral coefficients.

The following general nonsense result should at least be recorded. A proof is
not really necessary (but if you insist on seeing one, consult, e.g., [Fraser 1969]).

Lemma 1.1. Let R be a commutative graded connected algebra over F and denote
by K (R) the Grothendieck group of the category of finite type R-modules. Then
an Euler characteristic ξ with values in the abelian group A is nothing but a
homomorphism of abelian groups K (R)−→ A.

In other words, the map [−−] that assigns to an R-module of finite type its
equivalence class in the Grothendieck group K (R) is a universal function with the
Euler characteristic property. This means that given any Euler characteristic ξ
with values in the abelian group A, there is a unique group homomorphism 4 :

K (R)−→ A such that the diagram

MODR
[ ]

−−−−→K (R)

ξ

−
−
→

−
−
−
−
−
−
→

4

A

commutes, where MODR denotes the set (sic!) of isomorphism classes of R-modules
of finite type.

Definition. A resolution of an R-module M of finite type

F · · · −→ Fi −→ Fi−1−→· · ·−→ F0−→M −→ 0

5We prefer to work with Poincaré series in place of the Hilbert function.
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is said to be weakly minimal if

· · ·> cx(Fi ) > cx(Fi−1) > · · ·> cx(F0),

where cx(−−) denotes the connectivity6 of the module −− . If in addition all the
induced maps Q(Fi )−→ Q(Fi−1) of the vector spaces of indecomposables7 are
zero for i ∈ N then we say that F is minimal.

The notion of a weakly minimal resolution is a bit ad hoc, but it is the condition
that was employed in [Broer et al. 2011] to prove the following lemmas culminating
in the formula of Proposition 1.5 below, which is the nonequivariant version of
the starting point for [Broer et al. 2011]. Also, by working with weakly minimal
resolutions we can choose one resolution with some special algebraic structure to be
put on homology modules, and another resolution to prove finiteness results such as
in the next lemma. This kind of strategy was used in [Broer et al. 2011], especially
Section 2, to incorporate a group action and character series. For another example
of this kind see the discussion following Proposition 3.1 to follow where such a
special structure is imposed for example by choosing a resolution as in [Buchsbaum
and Eisenbud 1977], though one could alternatively invoke [Avramov and Golod
1971].

Lemma 1.2. If F is a weakly minimal resolution of an R-module of finite type with
each term Fi of F of finite type for i ∈N0 then the alternating sum of their Poincaré
series ∑

I∈N0

(−1)i P(Fi , t) ∈ Z[[t]]

makes sense as a formal power series.

Proof. For any integer j there are only finitely many Fi for i ∈ N0 with (Fi ) j 6= 0,
so for any i and j there are only finitely many P(Fi , t) in which t j has a nonzero
coefficient. �

The next lemma says that the formal power series in Lemma 1.2 does not depend
on the choice of the weakly minimal free resolution and provides a value for it.

Lemma 1.3. If F is a weakly minimal free resolution of an R-module M of finite
type and each term Fi (i ∈ N0) of F is of finite type, then

P(R, t) ·
∑
i∈N0

(−1)i P(Vi , t)=
∑
i∈N0

(−1)i P(Fi , t)= P(M, t) ∈ Z[[t]],

where Vi = F⊗R Fi is the indecomposable module of Fi for i ∈ N0.

6The connectivity cx(M) of a graded vector space M is the largest integer such that Mi = 0 for
i ≤ cx(M).

7If M is an R-module its vector space of indecomposable elements is F⊗R M . It is often denoted
by Q(M).



HILBERT–KUNZ INVARIANTS AND EULER CHARACTERISTIC POLYNOMIALS 231

Proof. This follows from the Euler characteristic property of the function P(−−, t)
and the fact that P(Fi , t)= P(R, t) · P(Vi , t). �

So Lemma 1.3 tells us for an R-module of finite type that the alternating sum

(1-1)
∑
I∈N0

(−1)i P(Fi , t) ∈ Z[[t]]

associated with a weakly minimal resolution F of finite type8 is independent of the
resolution F. To evaluate it we are free to pick F in a particular way; for example
to be a minimal resolution. For a minimal resolution F of a finite type module M
one has9

Fi ∼= R⊗TorR
i (M, F) for i ∈ N0,

so we obtain a second way to evaluate the alternating sum (1-1). To wit:

Lemma 1.4. If F is a weakly minimal resolution of an R-module of finite type with
each term Fi of F of finite type for i ∈ N0 then∑

I∈N0

(−1)i P(Fi , t)= P(R, t) ·
∑
i∈N0

(−1)i P
(
TorR

i (M, F), t
)
.

To summarize this part of the discussion we have proven the following result
going back in spirit to [Hilbert 1890].

Proposition 1.5. Let M be an R-module of finite type. Then

P(M, t)= P(R, t) ·
∑
i∈N0

(−1)i · P
(
TorR

i (M, F), t
)
.

2. Background on Hilbert–Kunz invariants and first applications

The definition of the Hilbert–Kunz multiplicity in general requires the asymptotics
introduced by P. Monsky to prove its existence. However in the special case of
ideals in a polynomial algebra this is unnecessary. The existence is a more or less a
direct consequence of the formula for the Hilbert–Kunz function of an ideal in terms
of the Frobenius functor and the exactness of that functor for polynomial algebras
(see, e.g., [Huneke and Yao 2002, Remark 2.4]). For the sake of simplicity we
assume that all algebras in this section have a standard grading, i.e., are generated
as algebras by their homogeneous component of degree 1.

8We say that a resolution F is of finite type if the modules Fi in it are finitely generated for all
i ∈ N0.

9Minimal resolutions are unique up to isomorphism, hence the minimal resolution: though
one should not overdo it here: the isomorphism is not unique nor functorial. The isomorphism
Fi ∼= R⊗TorR

i (F,M) is a result of the fact that per definition of minimal resolution the differentials
in the complex F⊗R F are identically zero and of course Fi is a free R-module for i ∈ N0.
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Proposition 2.1. Let I ⊂ F[x1, . . . , xn] be a maximal primary ideal in the standard
graded polynomial algebra S = F[x1, . . . , xn] over the field F of characteristic
p 6= 0 and set H = F[x1, . . . , xn]/I . Then the Hilbert–Kunz function HK(I,S)(−−)

is given by
HK(I,S)(e)= pe·n

· dimF(H) for e ∈ N0,

and the Hilbert–Kunz multiplicity by eHK(I, S)= dimF(H), i.e., the colength of I .

The following simple example illustrates this; additional examples may be found
further on in this section as well as Section 4. It is due to F. S. Macaulay [1916,
Section 71] and has served ever since to demonstrate that irreducible ideals need
not be generated by a regular sequence.

Example 2 (F. S. Macaulay). Let F be a field and consider the five quadratic forms

z2
−x2, z2

−y2, xy, xz, yz ∈ F[x, y, z]

and the ideal M ⊂ F[x, y, z] that they generate. The quotient algebra is easily seen
to be a Poincaré duality algebra, so by [Meyer and Smith 2005, Proposition I.1.4]
the ideal M is irreducible. In fact, the quotient algebra is the F-cohomology with
the grading halved of the complex surface10 CP(2) # CP(2) # CP(2), which is
the connected sum of three copies of the complex projective plane CP(2). The
preceding formula tells us that for any field of characteristic p 6= 0 the Hilbert–Kunz
multiplicity is eHK(M, F[x, y, z])= 5.

In [Smith and Stong 2011] we studied the algebra associated with the projective
bundle theorem of algebraic topology (see, e.g., [Stong 1968, p. 62]). For such
ideals Proposition 2.1 yields a formula for the Hilbert–Kunz multiplicity of the
bundle ideal in terms of the base ideal and the bundle dimension. Recall that for
I ⊂ F[V, X ] an m-primary ideal and J = I ∩ F[V ] we call I a projective bundle
ideal with base ideal J if F[V, X ]/I is a free F[V ]/J -module with respect to the
module structure defined by the canonical inclusion F[V ]/J ↪→ F[V, X ]/I . For
such an ideal there is a coexact sequence11

(2-1) F←− F[X ]/(X k+1)←− F[V, X ]/I←− F[V ]/J←− F

10Or of CP(2) # (S2
× S2), which is the connected sum of a projective plain and a torus (see, e.g.,

the proof of Lemma 1.3 in [Smith and Stong 2010]).
11If A′′

f ′′
←− A

f ′
←− A′ are maps between commutative graded connected algebras, the sequence is

called coexact if ker f ′′ is the ideal f ′(A′) · A of A generated by the image of the augmentation ideal
A′ of A′. Equivalently, f ′′(A) ∼= F⊗A′ A. The category CCA∗ of commutative graded connected
algebras over a field has categorical images and cokernels, the image of a map f : A′−→ A′′ being
the monomorphism ιf : f (A′) ↪→ A′′ and the cokernel the epimorphism η f : A′′−→ F⊗′A A′′. To say
that the sequence is coexact is equivalent to requiring that the natural map of the categorical cokernel
of f ′ to categorical image of f ′′ is an isomorphism. The categorical cokernel of a map f : R−→ S
in CCA∗ is often denoted by R// f or R//S. So coexact is the categorical concept dual to exact.
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of algebras. This sequence is an analogue of the coexact sequence of cohomology
algebras

F←− H∗(CP(k); F)←− H∗(P(ξ ↓ B); F)←− H∗(B; F)←− F

associated to a complex vector bundle ξ ↓ B of dimension k + 1 over the base
space B, where P(ξ ↓ B) is the associated projective space bundle (see, e.g., [Stong
1968, loc. cit.]). For this reason we use the following terminology in connection
with the coexact sequence (2-1) of a projective bundle ideal. The integer k + 1
is called the bundle dimension, F[V, X ]/I the bundle algebra, F[V ]/J the base
algebra, and F[X ]/(X k+1) the fiber algebra. A detailed example of a projective
bundle ideal follows Proposition 2.2 which relates the Hilbert–Kunz multiplicity of
the three algebras in the coexact sequence (2-1).

The proof of Lemma 2.2 in [Smith and Stong 2011] yields the formula

(2-2) P(F[V, X ]/I, t)= P(F[V ]/J, t) · P(F[X ]/(X k+1), t)

relating the Poincaré series of the terms of the coexact sequence (2-1). Therefore
one has the following relation for the Hilbert–Kunz multiplicities (compare [Huneke
and Yao 2002, Lemma 2.1]).

Proposition 2.2. Let I ⊂ F[V, X ] be a projective bundle ideal with base ideal
J ⊂ F[V ] and bundle dimension k+ 1. Then

eHK(I, F[V, X ])= (k+ 1) · eHK(J, F[V ]).

Proof. Evaluate both sides of formula (2-2) at t = 1 and use Proposition 2.1. �

Here is an example to illustrate Proposition 2.2. The choice of F2 as ground field
is merely a convenience in relating this example to its topological origins.

Example 3. Let t , r ∈ N0 be nonnegative integers and V = F2t+r
2 . Denote by

x1, . . . , xt , y1, . . . , yt , u1, . . . , ur a basis for the space V ∗ of linear forms on V .
Choose a linear formw1∈F[V ]1 and a quadratic formw2∈F[V ]2. In the polynomial
algebra F2[V, X ] consider the ideal I generated by the following t2

+
(t

2

)
+ 2tr + 1

forms:

x2
1 , . . . , x2

t , y2
1 , . . . , y2

t ,

xi · y j for 1≤ i 6= j ≤ t,

xi · u j for 1≤ i ≤ t and 1≤ j ≤ r,

yi · u j for 1≤ i ≤ t and 1≤ j ≤ r,

X2
+w1 · X +w2.

This is a projective bundle ideal with bundle dimension 2 and base ideal J ⊂ F2[V ]
generated by all the previous forms except for X2

+w1 · X +w2. The quotient of
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F2[V ] by the base ideal is the cohomology with F2 coefficients of the closed surface

F = (S1
× S1) # · · · # (S1

× S1)
←−−−−−−− t −−−−−−−→

# RP(2) # · · · # RP(2)
←−−−−− r −−−−−→

,

where # denotes the connected sum of closed manifolds. So

eHK(F[V ]/J )= dimF2

(
Tot(F[V ]/J )

)
= 4t + 2r,

and since the bundle dimension is 2,

eHK(F[V, X ]/I )= 2 · (4t + 2r).

The corresponding Poincaré duality quotient algebra F2[V, X ]/I is isomorphic to
the F2-cohomology of the projective space bundle of a 2-plane bundle ξ over the
closed surface F whose Stiefel–Whitney classes are w1 and w2.

Ever since the publication of [Cartan and Eilenberg 1956], change of rings
phenomena have played an important role in algebra. An essential such result for
Hilbert–Kunz multiplicity was proven in [Watanabe and Yoshida 2000]. Here it is
in the graded form.

Theorem 2.3 (K. Watanabe and K. Yoshida). Let A ↪→ B be a finite extension of
graded connected commutative Noetherian integral domains over the field F of
characteristic p 6= 0 and I ⊂ A a maximal primary ideal. Then

eHK(I · B, B)= r · eHK(I, A),

where r is equal to the degree |L :K| of the field extension K ⊆ L, and we have
written K for the field of fractions12 FF(A) of A and L for the field of fractions
FF(B) of B.

The following example shows that an analogous formula for the Hilbert–Kunz
function does not hold.

Example 4. Let A be the subalgebra of B = F[x, y] that is generated by x2, xy, y2.
Since x2, y2

∈ A is a system of parameters for B the extension A ↪→ B is finite.
If K is the field of fractions of A and L the field of fractions of B then the field
extension K ⊂ L has degree r = |L :K| = 2. One way13 to see this is to let E be

12The terminology quotient field or field of fractions of A, where A is a domain, is unfortunately
not so clear as it might be. What is meant is the field consisting of all the fractions of the form a/b
where a, b ∈ A and b 6= 0; not the quotient of A by its maximal ideal. If A is graded then only
homogeneous elements would be allowed and the resulting graded object is Z-graded and a graded
field. We employ the notation FF(A) for the field of fractions of an integral domain A, graded or
not. In the special case of the field of fractions of F[V ], we denote it by F(V ), or F(z1, . . . , zn) if
z1, . . . , zn is a basis for the linear forms.

13Alternatively, for F of characteristic different from 2 one has A ∼= F[x, y]Z/2 where Z/2 <
GL(2, F) is generated by −Id ∈GL(2, F). Galois theory would then tell us the degree of the extension
is 2.
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the field of fractions of F[x2, y2
] so E $ K $ L. Since |L : E| has degree 4 the only

possible value for |L :K| is 2 since it must be a proper nontrivial divisor of 4.
We consider the augmentation ideal A of A and note that dimF(A/A) = 1 =

HK(A,A)(0). Note that A · B = (x2, xy, y2) ⊂ F[x, y] = B so HK(A·B,B)(0) =
dim(B/(A · B))= 4. Therefore

HK(A·B,B)(0)= 4 6= 2 · 1= r ·HK(A,A)(0).

A similar computation would apply to any e ∈ N by Proposition 2.1.

As an illustration of Theorem 2.3 let us return to Example 2 and instead of
considering the ideal of F[x, y, z] generated by the five quadratic forms listed there
the subalgebra they generate.

Example 5. Let A ⊂ F[x, y, z] be the subalgebra generated by the five forms

z2
−x2, z2

−y2, xy, xz, yz ∈ F[x, y, z].

Then Theorem 2.3 tells us that we can compute the Hilbert–Kunz multiplicity of A
over a field of nonzero characteristic from the ideal in F[x, y, z] the five forms
generate with the formula

eHK(A)= r · eHK
(

A · F[x, y, z], F[x, y, z]
)
,

where r is the degree of the field extension FF(A)⊂ F(x, y, z). That the degree of
this field extension is 4 may be seen by enlarging F to contain a square root i of −1.
This does not change the degree of the resulting field extension. Then apply the
automorphism α of F[x, y, z] given by sending z to i · z and leaving x and y fixed.
The algebra A gets mapped to α(A) which is generated by z2

+ x2, z2
+ y2, xy,

xz, yz ∈ F[x, y, z]. The element z ∈ F(x, y, z) is integral over α(A) with minimal
polynomial

t4
+ (x2

+ y2)t2
+ (xy)2 ∈ α(A)[t].

If we adjoin z to FF(α(A)) then the resulting field extension also contains y = yz/z
and x = xz/z so coincides with F(x, y, z). Hence r = 4 and therefore eHK(A)=
eHK(α(A))= 5/4.

If A is a commutative graded connected Noetherian algebra of Krull dimension
n = dim(A) over the field F then its Poincaré series has integral coefficients and a
pole of order n at t = 1. Therefore the rational number

(1− t)n · P(A, t)
∣∣
t=1 = deg(A)

is well defined; it is called the degree of A (see [Smith 1995, Section 5.5] for a
discussion of this invariant and its occurrence in invariant theory in particular). For
a finite extension A ↪→ B of commutative graded connected Noetherian integral
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domains, the ratio of their degrees is the degree14 of the corresponding field extension
of their respective fields of fractions. Specifically, if K is the field of fractions of A
and L the field of fractions of B then deg(B) = |L :K| · deg(A) (see, e.g., [Smith
1995, Proposition 5.5.2]). So using the notion of the degree of an algebra allows us
to rephrase the change of rings theorem for integral domains in a more symmetric
form.

Corollary 2.4. Let A ↪→ B be a finite extension of Noetherian integral domains
over the field F of characteristic p 6= 0 and I ⊂ A a maximal primary ideal. Then

eHK(I · B, B) · deg(A)= eHK(I, A) · deg(B).

In this next example it is easier to compute the degree of the subalgebra of F[V ]
being investigated rather than the degree of the field extension.

Example 6. Consider the subalgebra A in the polynomial algebra F[x, y, z] gen-
erated by the four forms x2, xy, y2, z4. It is not hard to see that x2, y2, z4 is a
system of parameters for A and that A is Cohen–Macaulay with basis 1, xy as an
F[x2, y2, z4

]-module. Hence the Poincaré series of A is

P(A, t)= 1+t2

(1−t2)2
·

1
1−t4 =

1
(1−t2)3

so for the degree we have deg(A) = 1/8. Since the quotient of F[x, y, z] by the
ideal I has dimension 12 we obtain from Corollary 2.4 that eHK(A)= 12/8= 3/2.
So, although the Poincaré series of A looks like that of a polynomial algebra on
three elements of degree 2 the Hilbert–Kunz invariant tells it is not (see, e.g., [Kunz
1969]). This example is well known from invariant theory (see, e.g., [Stanley 1979]).

3. An Euler characteristic formula for the Hilbert–Kunz multiplicity

In a famous paper, D. Hilbert [1890] proved not only the finiteness of the number
of generators of the ring of invariants of certain classical groups, but also of the
number of relations between invariants, and relations between relations, etc. In
modern terms (we follow the notations and terminology of [Smith 1995]), and
formulated for finite groups, what he did was to choose a minimal resolution15

(3-1) 0−→ Fn −→ Fn−1−→· · ·−→ F1−→ F0−→ F[V ]G −→ 0

of the ring16 of coinvariants F[V ]G of a representation ρ : G ↪→GL(n, F), of a
finite group G over the field F, regarded as an F[V ]-module. Then, by the Euler

14This multiple use of degree hopefully will cause no confusion.
15Which he first had to prove existed!
16By definition the coinvariant algebra F[V ]G is F⊗F[V ]G F[V ].
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characteristic property of the Poincaré series one has, as in Section 1,

(3-2) P(F[V ]G, t)=
n∑

i=0

(−1)i P(Fi , t).

From the definition of a minimal resolution one finds (loc. cit.)

(3-3) Fi ∼= F[V ]⊗TorF[V ]
i (F[V ]G, F) for i = 0, . . . , n,

so putting (3-2) and (3-3) together leads to the formula

(3-4)

P(F[V ]G, t)= P(F[V ], t) ·
n∑

i=0

(−1)i P(TorF[V ]
i (F[V ]G, F), t)

=
1

(1−t)n
·

n∑
i=0

(−1)i P(TorF[V ]
i (F[V ]G, F), t).

The discussion in Section 1 allows us to reformulate this in the following more
general terms for use in computing Hilbert–Kunz multiplicities. It is an analog
for Hilbert–Kunz multiplicity of the formula of J.-P. Serre (see, e.g., [Serre 1965,
Part V]) for the ordinary multiplicity.

Proposition 3.1. Let S = F[x1, . . . , xn] be a graded polynomial algebra on gener-
ators with degrees deg(xi ) = di for i = 1, . . . , n over the field F of characteristic
p 6= 0, I ⊂ S an S-primary ideal,17 and S/I = R. Then

eHK(I, S)=
[

1
(1−td1) · · · (1−tdn )

·

n∑
i=0

(−1)i P(TorS
i (R, F), t)

] ∣∣∣∣
t=1
.

Proof. This follows Proposition 1.5, after accounting for the degrees of the variables,
and Proposition 2.1. �

Although this formula seems pretty useless on the surface (after all, how is one
to compute the Poincaré series of the various syzygy modules without really having
so firm a grip on R that one knows its Poincaré series already?), there are several
answers to this objection in the case of irreducible ideals I ⊂ S = F[x1, . . . , xn],
because, in this case, the algebra TorS

∗
(R, F)∗ carries the additional structure of a

Poincaré duality algebra (see, e.g., [Meyer and Smith 2005, Part I] for a discussion
of the relation between Poincaré duality quotients of graded Gorenstein algebras
and irreducible ideals). Specifically, the modules (see [Avramov and Golod 1971]
for the local case) TorS

∗
(R, F)∗ form a bigraded algebra, which, if we regrade it by

total degree, are, apart from the cosmetic difference18 of being graded commutative

17There is no loss of generality in assuming that I is S-primary since eHK(I, S)= 0 if it is not.
18For an algebraic topologist in fact this is not a difference: it is with these commutation rules that

Poincaré duality algebras arise as the cohomology of manifolds.
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instead of commutative, a Poincaré duality algebra. Moreover, R itself is a Poincaré
duality algebra (loc. cit.), and if R has formal dimension d (which means the socle
of R is in homogeneous degree d) then the formal dimension of the singly graded
algebra TorS(R, F) is n+ d , where n = dimF(V ). Therefore the ordinary Poincaré
series of this singly graded torsion algebra, to wit, the formal series

n∑
i=0

P
(
TorS

i (R, F), t
)
,

must be a palindromic polynomial of degree n+ d, i.e., if

n∑
i=0

P
(
TorS

i (R, F), t
)
= a0+ a1t + · · ·+ an+d tn+d , a0, . . . , an+d ∈ N0,

then ai = an+d−i for all i = 0, . . . , b(n+ d)/2c. This means that in case n = 3 we
can actually write down a closed formula for the Hilbert–Kunz multiplicity of a
maximal primary irreducible ideal I ⊂ F[x, y, z] knowing only the degrees of the
generators of I and the socle degree of the quotient R = F[x, y, z]/I .

Proposition 3.2. Let F be a field of characteristic p 6= 0, I ⊂ F[x, y, z] be a
maximal primary irreducible ideal in the polynomial algebra on three generators
x , y, z of degrees a, b, c, and set d equal to the degree of the socle of the quotient
algebra R = F[x, y, z]/I . Let the degrees of a minimal set of ideal generators for I
be d1, . . . , dk . Then eHK(I, F[x, y, z]) is equal to[

1
(1−ta)·(1−tb)·(1−tc)

·

[
1−(td1+· · ·+tdk )+(t3+d−d1+· · ·+t3+d−dk )−t3+d

]]∣∣∣∣
t=1
.

Proof. Write S for F[x, y, z]. Let (K, ∂) be the Koszul resolution for F regarded as
an S-module which has

K= S⊗ E(u, v, w),
{
∂( f ⊗ 0)= 0 for f ∈ S and
∂(1⊗ u)= x, ∂(1⊗ v)= y, ∂(1⊗w)= z.

So there are no boundaries of homological degree 3 and f ⊗ u · v ·w is a cycle if
and only if

0= ∂( f ⊗ u · v ·w)= f · x ⊗ v ·w+ f · y⊗ u ·w+ f ·w⊗ u · v.

Since the elements vw, uw, uv are linearly independent in E(u, v, w) this is the
case if and only if f · x = f · y = f ·w = 0, and therefore f ∈ soc(R). Hence

TorS
3 (R, F)= soc(R)⊗ uvw

and is 1-dimensional concentrated in degree 3+ deg(soc(R)) just as it should be.



HILBERT–KUNZ INVARIANTS AND EULER CHARACTERISTIC POLYNOMIALS 239

There is a short exact sequence 0−→ I −→ S−→ R−→ 0 of S-modules which
leads to the long exact sequence of torsion modules

0= TorS
1 (S, F)−→TorS

1 (R, F)
∂
−→ I ⊗S F−→ S⊗S F

π
−→ R⊗S F−→ 0.

Since S⊗S F∼= F∼= R⊗S F the map π is an isomorphism and hence so is ∂ . This
tells us that

P(TorS
1 (R, F), t)= td1 + · · ·+ tdk

and therefore the Euler characteristic polynomial for the torsion product is

P(TorS(R, F), t)= 1− (td1 + · · ·+ tdk )+ (t3+d−d1 + · · ·+ t3+d−dk )− t3+d ,

as follows from the preceding discussion. The final formula is then a consequence
of Proposition 3.1. �

A maximal primary irreducible ideal I in a polynomial algebra F[V ] would more
often than not be specified by giving its Macaulay dual µI in the sense of [Macaulay
1916, Part IV] (see also [Meyer and Smith 2005, Parts I and VI]). The element
µI may be viewed in several different ways: first, as an element of the divided
polynomial algebra 0(V )with degree s equal to the formal dimension of the quotient
algebra F[V ]/I ; equivalently, as a form of degree −s in the inverse polynomial
algebra associated with F[V ] and a basis for the space of linear forms V ∗; or, as an
element in the local cohomology module H n

m(F[V ])−s−n , where n = dimF(V ) (see,
e.g., [Greenlees and Smith 2008; Smith 2013]). So the degree of the socle would be
a priori known. In the case of F2[x, y, z] and socle degree 3 for the quotient algebra
there are up to automorphism twenty-one possible choices for the Macaulay dual,
and the corresponding ideals and quotient algebras have been classified and listed
in [Smith and Stong 2010]. For all of these Proposition 3.2 gives the Hilbert–Kunz
multiplicity.19 Here is an example.

Example 7 [Smith and Stong 2010, Section 5, Orbit 10]. Consider the inverse
ternary cubic form20

θ10 = x−3
+ y−3

+ x−1 y−2
+ x−1 y−1z−1

∈ F2
[
x−1, y−1, z−1],

which defines a maximal primary ideal I (θ10)⊂ F[x, y, z]. Using the method of
catalecticant matrices due to J. J. Sylvester (see, e.g., [Meyer and Smith 2005,

19It would be interesting to know how to express the Hilbert–Kunz multiplicity of these examples
in terms of the invariants from [Smith and Stong 2010, Section 6] used to separate them.

20This is the classical terminology for a form in three variables (cubic) of degree three. Since
we are dealing with variables of degree −1 (inverse) this means that θ10 is a form in three inverse
variables, here x−1, y−1, and z−1, and has degree −3.
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Section 6.2]), one finds that this ideal is generated by the three forms x2
+ xz+ y2,

x2
+ yz, z2 as an ideal of S = F[x, y, z]. If one examines the catalecticant matrix

catθ10(1, 2) x2 y2 z2 xy xz yz
x 1 1 0 0 0 1
y 0 1 0 1 1 0
z 0 0 0 1 0 0

representing this orbit, one can see that z2
= 0, and that the algebra H(θ10) =

F[x, y, z]/I (θ10) corresponding to this matrix can be visualized as pictured in
Diagram 1. As in [Meyer and Smith 2005] the entries on a given horizontal line
in the diagram are a basis for the homogeneous component of H of degree equal
to the number of lines above the unit 1 of the algebra. So one reads off that the
dimension of H is 8 and hence eHK(I (θ10), S)= 8.

•

xyz
•

xy
•

xz
•

yz
•

x
•

y
•

z
•

1

Diagram 1. The algebra H(θ10).

From Diagram 1 one finds the relations

x2
= yz, y2

= xz+ yz.

This shows that H(θ10) is a free module over the subalgebra F[z]/(z2)⊂ H(θ10)

with basis the four elements 1, x , y, xy. So H(θ10) looks like the F2-cohomology of
the total space M3 of a fibering S1

×S1 ↪→M3
↓ S1 which is totally nonhomologous

to zero. Such a fibered manifold is constructed in [Smith and Stong 2010, Section 7].

The situation for surface algebras H =F[x, y, z]/I , where I is a maximal primary
irreducible ideal and the socle degree of H is 2 is somewhat simpler. Here is how
this goes.

Example 8. Consider a nonzero inverse quadratic form µ in three inverse variables
in F[x−1, y−1, z−1

] which defines a maximal primary ideal I (µ)⊂ F[x, y, z] = S
with quotient algebra R(µ)= S/I (µ) a Poincaré duality algebra of formal dimension
2; a surface algebra in the language of [Smith and Stong 2010]. Making use of
Proposition 3.2 and [Eisenbud 1995, Exercise 21.6] allows us to construct the
following table:
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rank(µ) P(TorS(R(µ), t) eHK(I (µ))
1 1− 2t + t2

− t3
+ 2t4

− t5 3
2 1− t − t2

+ t3
+ t4
− t5 4

3 1− 5t + 5t2
− t5 5

Table 1. Hilbert–Kunz multiplicity of ternary surface algebras.

In [Smith and Stong 2010, Section 2] we showed that any surface algebra over F2

can be written as a connected sum of the two basic examples: F2 [x, y]/(x2, y2),
with Macaulay dual form of rank 2, and F2[z]/(z3), with Macaulay dual form of
rank 1, so with the aide of the above table and Proposition 4.1 one has a formula
for the Hilbert–Kunz multiplicity of any surface algebra at least over F2. See the
discussion of connected sums in Section 4 and Examples 10, 11 there.

In fact, already the two-variable case of Proposition 3.1 is interesting, as we
explain next. We use its proof to provide a short and simple proof of the result of F.
S. Macaulay that an irreducible ideal in a polynomial algebra in two variables is
generated by a regular sequence (for a different modern proof, see, e.g., [Vasconcelos
1967]).

Theorem 3.3 [Macaulay 1904]. Let F be a field and I ⊂ F[x, y] = S an ideal such
that R = S/I is a Poincaré duality algebra. Then I is generated by a regular
sequence.

Proof. To evaluate the formula in Proposition 3.1 in this case we recycle the proof of
Proposition 3.2 to compute TorS

i (R, F) for i = 1 and 2. This results in the formula

P(R, t)= 1
(1−ta)·(1−tb)

·
[
1− (tk

1 + · · ·+ tkr )+ t2+d],
where deg(x)= a, deg(y)= b, d = a+ b, k1, . . . , kr are the degrees of a minimal
set of generators for I , and d = f–dim(R), i.e., the socle degree of R. The left hand
side of this equality is a polynomial so the right hand side must be one also. This
says that

(1− ta) · (1− tb)= (1− t)2 · (1+ t + · · ·+ ta−1) · (1+ t + · · ·+ tb−1)

must divide

(3-5) p(t)= 1− (tk1 + · · ·+ tkr )+ t2+d

so p(1) = 0. Evaluating p(1) from the formula (3-5) and equating the result to
zero gives 0 = p(1) = 2− r, so r = 2 and I is generated by two elements f , h
which must then be a system of parameters since R is totally finite. Since S is
Cohen–Macaulay it follows that f , h ∈ S = F[x, y] is a regular sequence. �
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We can change viewpoint and replace the ideal I in the statement of Proposition
3.1 with a subalgebra A such as an algebra of invariants. The reformulated result
takes the following form. An illustrative example is given in Example 9.

Proposition 3.4. Let S = F[x1, . . . , xn] be a graded polynomial algebra on gener-
ators with degrees deg(xi ) = di for i = 1, . . . , n over the field F of characteristic
p 6= 0, A ⊂ S a subalgebra making S into a finitely generated A-module, and set21

R = S // A ∼= S⊗A F. Then

eHK(A)= deg(A) ·
[

1
(1−td1) · · · (1−tdn )

·

n∑
i=0

(−1)i P(TorS
i (R, F), t)

] ∣∣∣∣
t=1
.

Proof. This follows from Theorem 2.3, Proposition 1.5 after accounting for the
degrees of the variables, and Proposition 2.1. �

4. Further applications and examples

In this section we collect some examples of computations of Hilbert–Kunz invariants
to illustrate the behavior of these in special circumstances. We begin with the
possibility that there is an integral form of the algebra being studied. Then one
can ask if, and if so how, these invariants change with the characteristic. Rings
of invariants of permutation groups are natural candidates in this context. The
following example provides such a case where there seems to be a connection with
F-rationality (see, e.g., [Glassbrenner 1995; Singh 1998; Smith 2004]).

Example 9. Consider the ring of invariants F[z1, . . . , zn]
An of the alternating group

An acting by means of its tautological permutation representation on the variables.
Denote by e1, . . . , en ∈ F[z1, . . . , zn] the elementary symmetric polynomials in
z1, . . . , zn . These are invariants of the full symmetric group 6n and hence also of
its alternating subgroup, so they belong to F[z1, . . . , zn]

An . If the characteristic of
F is not 2 and we restrict the permutation representation of 6n to the alternating
subgroup An , then, as is also well known, the ring of invariants F[z1, . . . , zn]

An is
a complete intersection generated by e1, . . . , en and the discriminant

1n =
∏

1≤i< j≤n

(zi − z j )=
∑
σ∈6n

sgn(σ ) · z0
σ(1)z

1
σ(2) · · · z

n−1
σ(n),

the square 12
n being a polynomial in e1, . . . , en given by the resultant of ϕn and ϕ′n

(see, e.g., [Smith 1995, Section 1.3; Glassbrenner 1995, Section 12]), where

ϕn(t)= en + en−1 · t + · · ·+ e1 · tn−1
+ tn
=

n∏
i=1

(t + zi ) ∈ F[z1, . . . , zn][t].

21Recall that S // A is defined to be S⊗A F and is the categorical cokernel of the map including A
into S in the category of commutative graded connected algebras over the field F.
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Less well known22 would appear to be the invariants in characteristic 2. If we set

Sn =
∑
σ∈An

z0
σ(1)z

1
σ(2) · · · z

n−1
σ(n),

then regardless of the characteristic, F[z1, . . . , zn]
An is a hypersurface algebra

(hence Gorenstein) generated by e1, . . . , en and Sn , the square S2
n being a polyno-

mial in e1, . . . , en (see, e.g., [Smith 1995, Theorem 1.3.5]).
D. Glassbrenner [1995] discovered that the Hilbert ideals23 h(An) and h(6n)

coincide if the characteristic p of the field F divides
(n

2

)
. This was extended to all

odd p ≤ n in [Singh 1998] and all p ≤ n in [Smith 2004]. Specifically, one has

h(An)= (e1, . . . , en)= h(6n) ⇐⇒ p ≤ n.

This being the case, we get from Proposition 3.4 the following formulae for the
Hilbert–Kunz multiplicity of the algebra F[z1, . . . , zn]

An as a function of the charac-
teristic of the ground field F (see also [Brenner 2010] for a more complete discussion
of Hilbert–Kunz multiplicities of algebras of invariants):

eHK(F[z1, . . . , zn]
An )=


n!

(1/2)·n!
= 2 if p ≤ n,

n!−1
(1/2)·n!

= 2− 2
n!

otherwise.

This follows from the discussion of this example in [Smith 2004], in particular
the computation of a Macaulay dual for the Hilbert ideal h(An), which shows that
F[z1, . . . , zn]An is the algebra F[z1, . . . , zn]6n with the socle removed if p > n,
and that the degree of the algebra F[z1, . . . , zn]

An is (1/2) · n! independent of the
characteristic of F (see, e.g., [Smith 1995, Theorem 5.5]).

Remark. If one lets n↑∞ in these formulae one gets 2 in all cases, i.e., independent
of p. Does this have any significance? Can it be explained by some integral analog
for integral alternating invariants of the ring of integral symmetric polynomials in
infinitely many variables?

A standard way to study ideals, or even to define special properties for them, is to
examine the corresponding quotient algebra. In [Smith and Stong 2010; 2011] we
studied a natural construction coming from algebraic topology on Poincaré duality
algebras called the connected sum.24 If R′ and R′′ are Poincaré duality algebras
over the field F of the same formal dimension d then their connected sum R′ # R′′ is

22This fact gets rediscovered every couple of years and published circa once a decade.
23If ρ : G ↪→GL(n, F) is a representation of a group over the field F then the Hilbert ideal is the

ideal in F[z1, . . . , zn] generated by all G-invariant forms of strictly positive degree.
24This construction seems much more natural on the quotients than on the ideals defining them.
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defined by identifying in their direct sum the two units and fundamental classes,25

so by the requirements

(R′ # R′′)i =


F · 1 if i = 0,
R′i ⊕ R′′i if 0< i < d, and
F · [R′ # R′′] if i = d,

where [R′] ∈ R′ and [R′′] ∈ R′′ are chosen fundamental classes. Put another way,
if S(d) denotes the Poincaré duality algebra26 with F · 1 in degree 0 and [S] · F in
degree d with all other homogeneous degrees being 0, then for any Poincaré duality
algebra R of formal dimension d with fundamental class [R] there is a natural map
τ : S(d)−→ R sending unit to unit and fundamental class to fundamental class.
The connected sum is defined by requiring that

S(d)
τ
−−→ R′

−
−
→ •

−
−
→

R′′
τ
−−→ R′ # R′′

be a pushout diagram.
If R′ = S′/I ′ and R′′ = S′′/I ′′ where S′ and S′′ are standard graded polynomial

algebras so I ′⊂ S′ and I ′′⊂ S′′ are maximal primary irreducible ideals, then R′# R′′

is of the form (S′⊗ S′′)/I for a maximal primary irreducible ideal I ′# I ′′= I ⊂ S=
S′⊗ S′′ in the standard graded polynomial algebra S. From the colength formula in
Proposition 2.1 we then get the following formula for the Hilbert–Kunz multiplicity.

Proposition 4.1. Let S′ = F[x ′1, . . . , x ′n′] and S′′ = F[x ′′1 , . . . , x ′′n′′] be standard
graded polynomial algebras over the field F of characteristic p 6= 0, and let
I ′ ⊂ S′ and I ′′ ⊂ S′′ be maximal primary ideals with Poincaré duality quo-
tients R′ = S′/I ′ and R′′ = S′′/I ′′ of the same formal dimension d > 0. If
I ⊂ S′ ⊗ S′′ = F[x1, . . . , xn′, x ′′1 , . . . , x ′′n′′] defines the Poincaré duality quotient
algebra R′ # R′′ as a quotient of S then eHK(I, S)= eHK(I ′, S)+ eHK(I ′′, S′′)− 2.

The case d = 0 of the previous result is trivial because in this case R′ = F= R′′

so I is the maximal ideal and eHK(I, S)= 1. The result for more than two parts in
the connected sum is easily extended by induction to yield the formula

eHK(I (1) # · · · # I (k)
←−−−− k−−−−→

, S)= eHK(I (1), (S(1))+· · ·+ eHK(I (k), S(k))−2 · (k−1)

for the Hilbert–Kunz multiplicity of the ideal defining the connected sum of k
irreducible ideals in k standard graded polynomial algebras.

25A fundamental class is a nonzero element of the socle.
26This is nothing but H∗(Sd

; F).
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Corollary 4.2. Let I ⊂ F2[z1, . . . , zn] = S be a maximal primary irreducible ideal
with quotient algebra H = S/I a surface algebra, i.e., the socle degree of H is 2.
If qI ∈ F[z−1

1 , . . . , z−1
n ] is an inverse quadratic form that is a Macaulay dual for I

then eHK(I, S)= 2+ rank(qI ).

Proof. By [Smith and Stong 2010, Corollary 2.6] any surface algebra over F2 is a
connected sum of the algebras with ranks 1 or 2 listed in Table 1. The result then
follows from Proposition 4.1 by induction on the number of terms in the connected
sum. �

As an example of Proposition 4.1 we return to Example 2 from Section 2.

Example 10. The connected sum(
F[x]/(x3)

)
#
(
F[y]/(y3)

)
#
(
F[z]/(z3)

)
is a Poincaré duality quotient of F[x, y, z] with formal dimension 3. Its defining
ideal is the ideal M of Example 2. Therefore we find from Proposition 4.1 for its
Hilbert–Kunz multiplicity eHK(M, F[x, y, z])= 3+ 3+ 3− 2 · 2= 9− 4= 5, just
as computed previously.

In [Smith and Stong 2010] we provided several criteria to check if a Poincaré
duality algebra is in fact a connected sum, one of which we use in the next example.

Example 11. Consider the ideal I ⊂ F[x, y, z] = S generated by the five quadratic
forms

x2, y2, xz, yz, z2
−xy.

It is not hard to see that Lemma 1.1 of [Smith and Stong 2010] applies to the
quotient algebra R = S/I with H ′1 = SpanF{x, y} and H ′′1 = SpanF{z} so27 R =
F[x, y]/(x2, y2) # F[z]/(z3). Therefore Proposition 4.1 tells us that eHK(I, S) =
4+ 3− 2= 5.

Remark. Let S′ = F[x ′1, . . . , x ′n′] and S′′ = F[x ′′1 , . . . , x ′′n′′] be standard graded
polynomial algebras over the field F of characteristic p 6= 0 and I ′ ⊂ S′, I ′′ ⊂ S′′

maximal primary ideals with Poincaré duality quotients R′= S′/I ′ and R′′= S′′/I ′′

of the same formal dimension d > 0. If I ⊂ S′⊗ S′′ = F[x1, . . . , xn′, x ′′1 , . . . , x ′′n′′]
defines the Poincaré duality algebra R= R′# R′′ as a quotient of S, then the theorem
of [Avramov and Golod 1971] tells us that the three torsion products

TorS′(R′, F), TorS′′(R′′, F), and TorS(R, F)

27Topologists should recognize this as H∗((S2
×S2)#CP(2); F) after halving the grading degrees;

algebraists as the ideal with Macaulay dual z−2
+ x−1 y−1

∈ F[x−1, y−1, z−1
] (see, e.g., [Eisenbud

1995, Example 21.7]). In characteristic 2 the algebras in this and the previous example are isomorphic;
see, e.g., [Smith and Stong 2010, Lemma 2.4].
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are Poincaré duality algebras, the first of dimension d+n′, the second of dimension
d + n′′ and the third of dimension d + n, where n = n′ + n′′. So all three of the
algebras

TorS′(R′, F)⊗ E ′′, TorS′′(R′′, F)⊗ E ′, and TorS(R, F)

are Poincaré duality algebras of formal dimension d + n, where E ′′, E ′ are ex-
terior the algebras E ′′ = TorS′′(F, F) = E(u′′1, . . . , u′′n′′) and E ′ = TorS′(F, F) =

E(u′1, . . . , u′n′). If we regard R′ and R′′ as quotients of S = S′⊗ S′′ by means of
the maps

R′ ∼= R′⊗ F
π ′⊗ε′′

←−−−− S′⊗ S′′
ε′⊗π ′′

−−−−→ F⊗ R′′ ∼= R′′,

where ε′, ε′′ are the augmentation maps of S′ and S′′ respectively, and π ′ and π ′′

the quotient maps from S′ and S′′ onto R′ and R′′ respectively, then

TorS′(R′, F)⊗ E ′′ ∼= TorS(R′, F),

TorS′′(R′′, F)⊗ E ′ ∼= TorS(R′′, F),

so all three of the torsion products

TorS(R′, F), TorS(R′′, F), and TorS(R, F)

become Poincaré duality algebras of formal dimension d + n. Moreover there is a
map

η : TorS(R′, F) # TorS(R′′, F)−→TorS(R′ # R′′, F)

of degree one basically induced by forming the connected sum of the two maps

TorS(R′, F)−→TorS(R′ # R′′, F)←−TorS(R′′, F).

The map η being of degree one must be a monomorphism (see, e.g., the proof, not
the statement, of Lemma I.3.1 in [Meyer and Smith 2005]). It does not seem to be
an isomorphism for the case of the connected sum F[x]/(x3) # F[y]/(y3): so what
can we say about it?

5. Reciprocity formulae for linked ideals

Recall that two ideals I , J ⊂ A in a commutative graded connected algebra A over
the field F are said to be directly linked if there is a regular sequence f1, . . . , fm ∈ A
such that

I =
(
( f1, . . . , fm) :

A
J
)

and J =
(
( f1, . . . , fm) :

A
I
)
.

In this case one also says that I and J are linked over the complete intersection ideal
f= ( f1, . . . , fm) in A. If A is a Gorenstein algebra, then an ideal generated by a
regular sequence of maximal length is irreducible (see, e.g., [Meyer and Smith 2005,
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Proposition I.1.4 and Lemma I.1.3]) and hence the Noether involution theorem [loc.
cit., Theorem I.2.1] assures us that either one of these conditions implies the other.

The purpose of this section is to prove the following reciprocity formula for the
Hilbert–Kunz multiplicity of a pair of directly linked maximal primary ideals in a
polynomial algebra:

(5-1) eHK(I, S)+ eHK(J, S)= eHK(f, S).

Here S=F[x1, . . . , xn] is a polynomial algebra over the field F, f= ( f1, . . . , fn)⊂ S
is an ideal generated by a regular sequence f1, . . . , fn ∈ S of maximal length, and
I ⊂ S is a maximal primary ideal containing f with J = (f :A I ) the directly linked
ideal. Note that the right hand side of (5-1) may be evaluated by means of the
colength formula to yield

eHK(f, S)= dimF(S/f)=
∏n

i=1 deg( fi )∏n
i=1 deg(xi )

,

since S is a free module over the subalgebra F[ f1, . . . , fn].
The plan for the proof of formula (5-1) is to use Proposition 2.1 and first prove

the reciprocity formula

(5-2) dimF(S/I )+ dimF(S/J )= dimF(S/f)

for the dimensions of the corresponding quotient algebras.28 To do this we make
use of some elementary homological tic-toc-toe. We begin with the following basic
fact.29

Lemma 5.1. Let A be a commutative graded connected algebra over the field F,
f1, . . . , fn ∈ A, and M an A-module. If f1, . . . , fn form a regular sequence on M ,
then on the category of A/( f1, . . . , fn)-modules there are natural equivalences of
functors

ExtiA(−−,M)∼=
{

HomA(−−,M/( f1, . . . , fn) ·M) if i = n,
0 for i < n.

The proof of this lemma rests on the following observation.

Lemma 5.2. Let A be a commutative graded connected algebra over the field F

and M , N a pair of A-modules. If AnnA(N ) contains a regular element on M then
HomA(N ,M)= 0.

28Here, and throughout this section, we abuse notation and write dimF(X), where X is a totally
finite graded vector space for the more correct dimF(Tot(X)).

29Versions of these lemmas go back at least to [Serre 1965] and can be found in [Bass 1963,
Proposition 2.9] as well as [Bruns and Herzog 1993, Lemmas 1.2.3 and 1.2.4].
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Proof. Let ϕ : N −→M be a homomorphism of A-modules and u ∈ AnnA(N ) a
regular element on M . If w ∈ N then u ·ϕ(w)= ϕ(u ·w)= ϕ(0)= 0 implies that
ϕ(w)= 0 since u is a regular element on M ; hence ϕ = 0 since w was arbitrary. �

Proof of Lemma 5.1. By induction on n. For n = 0 there is nothing to prove, so
suppose that n>0 and the result is established for n−1. Let N be an A/( f1, . . . , fn)-
module. By the induction hypothesis,

Extn−1
A (N ,M)∼= HomA(N ,M/( f1, . . . , fn−1) ·M).

Since fn ∈ AnnA(N ) is a regular element on the A-module M/( f1, . . . , fn−1) ·M ,
Lemma 5.2 tells us that HomA

(
N ,M/( f1, . . . , fn−1) ·M

)
= 0. Therefore of course

Extn−1
A (N ,M)= 0 as well.

The element fn ∈ A being regular on M means one has a short exact sequence
of A-modules

0−→M
· fn
−→M −→M/ fn ·M −→ 0.

The long exact sequence for Ext•(N , −−) associated to it yields30

0= Extn−1
A (N ,M)−→Extn−1

A (N ,M/ fn ·M)
δ
−→Extn−1

A (N ,M)
· fn
−→ExtnA(N ,M)−→· · · .

The map · fn is induced by multiplication with fn on M , but, Ext•A(−−,−−) is a
balanced functor so it is equally well induced by multiplication with fn on N which
is the zero map. Therefore δ : Extn−1

A (N ,M)−→ExtnA(N ,M) is an isomorphism.
The n − 1 elements f1, . . . , fn−1 form a regular sequence on M/ fn · M , so the
induction hypothesis yields an isomorphism

Extn−1
A (N ,M/ fn ·M)∼= HomA

(
N ,M/( f1, . . . , fn−1, fn) ·M

)
,

completing the inductive proof that ExtnA(N ,M)∼=HomA(N ,M/( f1, . . . , fn) ·M).
To complete the inductive step note that for k > 0 we have Extn−k

A (N ,M) ∼=
Hom(N ,M/( f1, . . . , fn−k) ·M) and fn is a regular element on the quotient mod-
ule M/( f1, . . . , fn−k) · M . Since fn annihilates N , Lemma 5.2 tells us that
Hom(N ,M/( f1, . . . , fn−k) ·M)= 0, and hence Extn−k

A (N ,M)= 0 as well. �

There are a number of special cases of these lemmas that are relevant to the notion
of linkage. We need to record these, but before we do so, note that, if f1, . . . , fn ∈ A
is a regular sequence in the commutative graded connected algebra A over the field F

and the ideal f= ( f1, . . . , fn) is irreducible, then the Noether involution theorem
(see, e.g., [Meyer and Smith 2005, Theorem I.2.1]) implies that J = (f :A I ) if and
only if I = (f :A J ). This is the case if n = dim(A) and A is Gorenstein. It will

30We will use a • to denote the indexing of derived functors rather than a ∗ to distinguish it from
the internal grading index on these functors.
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allow us under these circumstances to interchange the roles of I and J in the next
result.

Lemma 5.3. Let A be a commutative graded connected algebra over the field
F, f1, . . . , fn ∈ A a regular sequence, and I ⊂ S a maximal primary ideal. Set
J = (( f1, . . . , fn) :A I ). Then ExtnA(S/I, A)∼= J/( f1, . . . , fn).

Proof. In Lemma 5.1, put −− = A/I and M = A. The result is an isomorphism

ExtnA(A/I, A)∼= HomA(A/I, A/( f1, . . . , fn)).

Any element ϕ ∈ HomA(A/I, A/( f1, . . . , fn)) is determined by ϕ(1) from the
requirement that it be an A-module homomorphism, viz., ϕ(a)= ϕ(a ·1)= a ·ϕ(1).
In order that this formula define a map A/I −→ A/( f1, . . . , fn) it is necessary and
sufficient that ϕ(1) annihilate the image of I in A/( f1, . . . , fn). Note that

ϕ(1) ∈ AnnA/( f1,..., fn)

(
I/( f1, . . . , fn)

)
=
(
0 :

A/( f1,..., fn)
I/( f1, . . . , fn)

)
∼=
(
( f1, . . . , fn) :

A
I
)
/( f1, . . . , fn)

∼= J/( f1, . . . , fn).

Hence the map HomA(A/I, A/( f1, . . . , fn))−→ J/( f1, . . . , fn) defined by sending
an element ϕ ∈ HomA(A/I, A/( f1, . . . , fn)) to ϕ(1) ∈ J/( f1, . . . , fn) is an iso-
morphism, which combined with the isomorphism of Lemma 5.1, ExtnA(A/I, A)∼=
HomA(A/I, A/( f1, . . . , fn)), yields the desired conclusion. �

Remark. As a special case of Lemma 5.3 we can put I = ( f1, . . . , fn) and conclude

ExtnA(A/( f1, . . . , fn), A)∼= A/( f1, . . . , fn).

This will prove useful in the sequel.

In Lemma 5.3 the Noether involution theorem tells us that if the ideal ( f1, . . . , fn)

⊂ A is maximal primary and irreducible then we can interchange the roles of I
and J . What is somewhat surprising is that we can also interchange the roles of
A/I and J/( f1, . . . , fn) if A is a polynomial algebra;31 to wit:

Lemma 5.4. Let S= F[x1, . . . , xn] be a graded polynomial algebra over the field F

and f1, . . . , fn ∈ S a regular sequence (so the ideal ( f1, . . . , fn) ⊂ S is maximal
primary and irreducible). Let I ⊂ S be an ideal containing f1, . . . , fn and J =
(( f1, . . . , fn) :S I ) the directly linked ideal. Then ExtnS(J/( f1, . . . , fn), S)∼= S/I .

Proof. Consider the short exact sequence of S-modules

0−→ J/( f1, . . . , fn)−→ S/( f1, . . . , fn)−→ S/J −→ 0.

31Careful study of the proof shows it would be enough to suppose that the ideal ( f1, . . . , fn) is
maximal primary and irreducible as well as Extn+1

S (S/J, S)= 0.
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Apply the functor ExtnS(−−, S) to it. One gets a long exact sequence

(5-3) · · ·←−ExtnS(J/( f1, . . . , fn), S)←−ExtnS(S/( f1, . . . , fn), S)

←−ExtnS(S/J, S)←−· · · .

By Lemma 5.3 and the Remark following it we find

ExtnS(S/J, S)∼= I/( f1, . . . , fn)

and
ExtnS(S/( f1, . . . , fn), S)∼= S/( f1, . . . , fn).

If we put this into (5-3) we obtain the exact sequence

· · · ←− ExtnS(J/( f1, . . . , fn), S)←− S/( f1, . . . , fn)←− I/( f1, . . . , fn)←− · · · .

The map I/( f1, . . . , fn)−→ S/( f1, . . . , fn) is monic, and in addition the map
ExtnS(S/( f1, . . . , fn), S)−→ExtnS(J/( f1, . . . , fn), S) in the exact sequence (5-3)
is epic since its cokernel lies in Extn+1

S (S/J, S), which is zero because S has global
dimension n. Therefore we have a short exact sequence

0←−ExtnS(J/( f1, . . . , fn), S)←− S/( f1, . . . , fn)←− I/( f1, . . . , fn)←− 0

so ExtnS(J/( f1, . . . , fn), S)∼= S/I as required. �

Again, Noether’s involution theorem tells us we can interchange the roles of I
and J in this lemma. In the remainder of this section we will use the isomorphism

S/J ∼= ExtnS(I/( f1, . . . , fn), S)

to prove the formula (5-2), from which the formula (5-1) follows by Proposition 2.1.
To do this we will construct a weakly minimal free resolution of I/( f1, . . . , fn),
use (see Lemma 5.1) that ExtiS(I/( f1, . . . , fn), S) = 0 for i 6= n, and the Euler
characteristic of an exact sequence is zero, as well as Lemma 1.3. We begin with
a review of the mapping cone construction from homological algebra (see, e.g.,
[MacLane 1963, pp. 46–47]).

Recollection. If ϕ : A−→B is a map of chain complexes the mapping cone
C(ϕ)= C is the chain complex with chains Ci =Bi⊕Ai−1 for i ∈Z and boundary ∂
maps defined by ∂(b, a)= (∂B(b)+ ϕ(a), ∂A(a)) where ∂B , ∂A are the boundary
maps of the complexes B and A, respectively.

Note that the mapping cone C of a chain map ϕ :A−→B fits into a short exact
sequence of complexes

0−→B
ιϕ
−→ C π

−→6(A)−→ 0,
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where the map ιϕ is defined by ιϕ(b)= (b, 0). In the resulting long exact sequence
in homology the boundary map ∂ : Hi (6(C))−→ Hi−1(B) may be identified up to
sign with the induced map ϕ∗ : Hi−1(C)−→ Hi−1(B) (loc. cit.).

Let S = F[x1, . . . , xn] be a polynomial algebra over the field F, f1, . . . , fn ∈ S a
regular sequence, and I ⊂ S a maximal primary ideal containing f1, . . . , fn with
directly linked ideal J = (( f1, . . . , fn) :S I ). We next describe32 how to construct
(see, e.g., [Peskine and Szpiro 1974, Proposition 2.6; Martsinkovsky and Strooker
2004, Proposition 10]) a (weakly minimal) free resolution of I/( f1, . . . , fn) as
S-module. Choose (weakly minimal) free resolutions of finite type, F of S/I and
K of S/( f1, . . . , fn) (e.g., K could be the Koszul complex for f1, . . . , fn ∈ S) as
S-modules. Let C be the mapping cone of a map of complexes ϕ :K−→F lifting
the natural quotient map S/( f1, . . . , fn)−→ S/I . Then C is a (weakly minimal)
complex of free S-modules of finite type. We claim that apart from a degree shift it
is a resolution of I/( f1, . . . , fn). To see this we examine the long exact homology
sequence associated with the exact sequence of complexes

0−→F −→ C−→6(K)−→ 0.

Since F and K are acyclic the only portion of this long exact sequence with nonzero
terms looks as follows:

0−→H1(C)−→H1(6(K))
∂

−−−→ H0(F)−→H0(C)−→ 0

←
→ ∼=

←
→ ∼=

S/( f1, . . . , fn)
π
−→S/I,

where π is the natural quotient map. Hence H0(C)= 0 and H1(C)∼= I/( f1, . . . , fn).
Therefore we have proven the following result (loc. cit.).

Lemma 5.5. Let S = F[x1, . . . , xn] be a polynomial algebra over the field F,
f1, . . . , fn ∈ S a regular sequence, and I ⊂ S a maximal primary ideal containing
f1, . . . , fn with directly linked ideal J = (( f1, . . . , fn) :S I ). Let F be a (weakly
minimal) free resolution of S/I and K of S/( f1, . . . , fn). If C is the mapping cone
of a map of complexes lifting the natural quotient map S/( f1, . . . , fn)−→ S/I
then6−1(C) is a (weakly minimal) free resolution of I/( f1, . . . , fn), where6−1(C)
denotes the shifted33 complex 6−1(C)i = Ci+1 for i ∈ Z.

Continuing with the notations preceding Lemma 5.5 we note that the cocomplex
H = HomS(6

−1(C), S) has as cohomology H•(H) = Ext•S(I/( f1, . . . , fn), S)
and that by Lemma 5.1, ExtiS(I/( f1, . . . , fn), S) = 0 for i 6= n. We augment the

32The geometric version of this construction would appear to be due to D. Ferrand (see [Peskine
and Szpiro 1974, Section 2]).

33A topologist would say desuspended.
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cocomplex H with ExtnS(I/( f1, . . . , fn), S) to obtain an exact sequence, viz.,

0←−ExtnS(I/( f1, . . . , fn), S)←−Hn
←−· · ·←−H0

←−H−1
←− 0.

The Euler characteristic of an exact sequence is zero, so after rearranging things
we obtain the following equality for Euler characteristic polynomials:

P
(
ExtnS(I/( f1, . . . , fn), S), t

)
=

∑
(−1)i P(Hi , t).

At this point we require an elementary, but necessary, lemma.

Lemma 5.6. Let A be a commutative graded connected algebra over the field F and
L a finitely generated free A-module. Then as graded vector spaces HomA(L , A)∼=
Q(L)∗⊗ A where Q(L)∗ = HomF(L ⊗A F, F), where Q(L)= L ⊗A F.

Proof. Set Q(L)= L ⊗A F. We have isomorphisms of graded vector spaces

HomA(L , A)∼=HomA(A⊗ Q(L), A)∼=HomF(Q(L), F)

∼=HomF

(
HomF(F,Q(L)),A

)
∼=HomF(F,Q(L)∗⊗A)∼=Q(L)∗⊗A,

where the next to the last isomorphism results from the Hom −−⊗ interchange. �

Returning to the discussion preceding the lemma, write F = S⊗U and K= S⊗V
as bigraded vector spaces. Unravel the definition of the cocomplex H and use
Lemma 5.6 to write

H= HomS(6
−1(C), S)=6−1(HomS(F ⊕6(K), S)

)
=6−1(HomS(F , S)⊕HomS(6(K), S)

)
=6−1(HomS(S⊗U , S)⊕HomS(S⊗6(V), S)

)
=
[
6−1(S⊗HomF(U , F))

]
⊕
[
S⊗HomF(6(V), F)

]
as graded vector spaces. By taking Euler characteristic polynomials and applying
Lemma 1.3 we obtain

(5-4) P
(
ExtnS(I/( f1, . . . , fn), S), t

)
= P(S, t) ·

∑
(−1)i P(Ui , t)− P(S, t) ·

∑
(−1)i P(Vi , t)

= P
(
S/( f1, . . . , fn), t

)
− P(S/I, t),

and with this we can prove the formula (5-2); to wit:

Theorem 5.7. Let S = F[x1, . . . , xn] be a polynomial algebra over the field F,
f1, . . . , fn ∈ S a regular sequence, and I ⊂ S a maximal primary ideal containing
f1, . . . , fn with directly linked ideal J = (( f1, . . . , fn) :S I ). Then

dimF(S/I )+ dimF(S/J )= dimF(S/( f1, . . . , fn)).
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Proof. By Lemma 5.1 we have an isomorphism

(5-5) S/J ∼= ExtnS(I/( f1, . . . , fn), S).

By (5-4) we have an equality of Poincaré series

P
(
ExtnS(I/( f1, . . . , fn), S), t

)
= P

(
S/( f1, . . . , fn), t

)
− P(S/I, t),

so putting t = 1 into this equality yields an equality of dimensions

(5-6) dimF

(
ExtnS(I/( f1, . . . , fn), S)

)
= dimF

(
S/( f1, . . . , fn)

)
− dimF(S/I )

for the corresponding vector spaces. Combining the two equalities (5-5) and (5-6)
completes the proof. �

Corollary 5.8. Let S = F[x1, . . . , xn] be a polynomial algebra over the field F,
f1, . . . , fn ∈ S a regular sequence, and I ⊂ S a maximal primary ideal containing
f1, . . . , fn with directly linked ideal J = (( f1, . . . , fn) :S I ). Then

eHK(S/I )+ eHK(S/J )= eHK(S/( f1, . . . , fn)).

Proof. This follows from Theorem 5.7 and Proposition 2.1. �
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