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KLEIN FOUR-SUBGROUPS OF
LIE ALGEBRA AUTOMORPHISMS

JING-SONG HUANG AND JUN YU

We classify the Klein four-subgroups 0 of Aut(u0) for each compact simple
Lie algebra u0 up to conjugation, by calculating the symmetric subgroups
Aut(u0)

θ and their involution classes. This leads to a new approach to the
classification of semisimple symmetric pairs and Z2 × Z2-symmetric spaces.
We also determine the fixed point subgroups Aut(u0)

0 .

1. Introduction

Riemannian symmetric pairs were classified by Élie Cartan (see [Carter 1993],
for example) and the more general semisimple symmetric pairs were classified by
Marcel Berger [1957]. The algebraic structure of semisimple symmetric spaces
is even more interesting for geometric and analytic reasons. Some of the recent
works are Ōshima and Sekiguchi’s classification [1984] of reduced root systems
and Helminck’s classification [1988] for algebraic groups. Most recently some new
approaches to the classification and the parametrization of semisimple symmetric
pairs were given in [Huang 2002] by using admissible quadruplets and in [Chuah
and Huang 2010] by using double Vogan diagrams.

In this paper we study semisimple symmetric spaces from a different point of
view — by determining the Klein four-subgroups in Lie algebra automorphisms.
Let u0 be a compact simple Lie algebra and g be its complexification. Denote
by Aut(u0) the automorphism group of u0. For any involution θ in Aut(u0), we
first determine the centralizer Aut(u0)

θ of θ , which is a symmetric subgroup. By
understanding the conjugacy classes of involutions in Aut(u0)

θ , we proceed to
classify Klein four-subgroups 0 of Aut(u0) up to conjugation. This gives a new
approach to the classification of commuting pairs of involutive automorphisms
of u0 or g. We note that the ordered commuting pairs of involutions correspond to
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Berger’s classification of semisimple symmetric pairs.
If 0 is a finite abelian subgroup of the automorphism group of a Lie group G,

then the homogeneous space G/H is called a 0-symmetric space provided that
(G0)0 ⊆ H ⊆G0; see [Lutz 1981]. In the case of 0 = Z2 this is a symmetric space
and in the case of 0 = Zk it is the k-symmetric space studied in [Wolf and Gray
1968]. In the case of 0 = Z2×Z2 it is the Klein four-group; Z2×Z2-symmetric
spaces were studied in [Bahturin and Goze 2008; Kollross 2009]. This paper
contains a complete list of all Z2 × Z2-symmetric pairs and our method is very
different from theirs. Finally, we determine the fixed point subgroups Aut(u0)

0.

2. Preliminaries

2A. Complex semisimple Lie algebras and Dynkin diagrams. Let g be a com-
plex semisimple Lie algebra and h a Cartan subalgebra. Then g has a root-space
decomposition

g= h⊕
( ⊕
α∈1

gα

)
,

where1=1(g, h) is the root system of g and gα is the root space of the root α ∈1.
Let B be the Killing form on g. It is a nondegenerate symmetric form. The restriction
of B to h is also nondegenerate. For any λ ∈ h∗, let Hλ ∈ h be determined by

B(Hλ, H)= λ(H) for all H ∈ h.

For any λ,µ ∈ h∗, define 〈λ,µ〉 := B(Hλ, Hµ).
For any root α, we have

(1) Hα ∈ h.

Define

(2) H ′α =
2

α(Hα)
Hα,

which is called a coroot; let

(3) 0 6= Xα ∈ gα

be any nonzero vector (recall that dim gα = 1), which is called a root vector of the
root α. The notation Hα, H ′α, Xα will be used frequently in this paper.

Note that, for any α, β ∈1,

〈α, β〉 = B(Hα, Hβ)= β(Hα)= α(Hβ) ∈ R,

〈α, α〉 = B(Hα, Hα)= α(Hα) 6= 0,

and 2〈α, β〉/〈β, β〉 ∈ Z. We also note that spanR{α | α ∈1} ⊂ h∗ is a real vector
space of dimension equal to r = rank g= dimC h; see [Knapp 2002, pp. 140–162].
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We set Aα,β = 2〈α, β〉/〈β, β〉 = α(H ′β). Then

[H ′α, Xβ] = β(H ′α)Xβ =
2〈α, β〉
〈α, α〉

Xβ = Aβ,αXβ .

Choose a lexicography order of spanR{α | α ∈1} to get a positive system 1+

and a simple system 5. Let

(4) 5= {α1, α2, . . . , αr }.

For brevity, we write

(5) Hi , H ′i

instead of Hαi , H ′αi
for a simple root αi .

Draw Aα,β Aβ,α edges to connect any two distinct simple roots α and β, and
draw an arrow from α to β if 〈α, α〉> 〈β, β〉; this gives us a graph. This graph is
connected if and only if g is a simple Lie algebra; in this case it is called the Dynkin
diagram of g. In this paper, we always follow Bourbaki numbering to order the
simple roots; see [Bourbaki 2002, pp. 265–300]. The following are all the possible
(connected) Dynkin diagrams.1

An #
α1

#
α2

· · · #
αn−1

#
αn

Bn #
α1

#
α2

#
α3

· · · #
αn−1

+3#
αn

Cn #
α1

#
α2

#
α3

· · · #
αn−1

ks #
αn

Dn

#
αn−1

#
α1

#
α2

#
α3

· · · #
αn−3

#
αn−2

#
αn

E6

#
α1

#
α3

#
α4

#
α5

#
α6

# α2

E7

#
α1

#
α3

#
α4

#
α5

#
α6

#
α7

# α2

E8

#
α1

#
α3

#
α4

#
α5

#
α6

#
α7

#
α8

# α2

F4 #
α1

#
α2

+3#
α3

#
α4

G2 #
α1

*4#
α2

1These diagrams are drawn by using a Latex package of Professor Jiu-Kang Yu. We are grateful to
him for the kind permission to use this package.
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Let Aut(g) be the group of all complex linear automorphisms of g and Int(g) be
the subgroup of inner automorphisms. We define

Out(g) := Aut(g)/ Int(g).

The exponential map exp : g→ Aut(g) is given by

exp(X)= exp(ad(X)) for all X ∈ g= Lie(Aut(g)).

2B. A compact real form. One can normalize the root vectors {Xα, X−α} so that
B(Xα, X−α) = 2/α(Hα). Then [Xα, X−α] = H ′α. Moreover, one can normalize
{Xα} appropriately, such that

(6) u0 = spanR{Xα − X−α, i(Xα + X−α), i Hα : α ∈1+}

is a compact real form of g [Knapp 2002, pp. 348–354]. Define

θ(X + iY ) := X − iY for all X, Y ∈ u0.

Then θ is a Cartan involution of g (as a real semisimple Lie algebra) and u0 = gθ is
a maximal compact subalgebra of g. Any other compact real form of g is conjugate
to u0. Below, whenever we discuss a compact real form of g, we always use this
compact real form u0 in (6).

Let Aut(u0) be the group of automorphisms of u0 and Int(u0) be the subgroup of
inner automorphisms. Any automorphism of u0 extends uniquely to a holomorphic
automorphism of g, so Aut(u0)⊂ Aut(g). Similarly, Int(u0)⊂ Int(g). Define

2( f ) := θ f θ−1 for all f ∈ Aut(g).

Then it is a Cartan involution of Aut(g) with differential θ . It follows that Aut(u0)=

Aut(g)2 and Int(u0)= Int(g)2 are maximal compact subgroups of Aut(g) and Int(g),
respectively. We also have

Out(u0) := Aut(u0)/ Int(u0)∼= Out(g)∼= Aut(5),

where Aut(5) is the symmetry group of the graph 5 consisting of permutations of
vertices preserving the multiples of edges and directions of arrows.

2C. Notation. We denote by e6 the compact simple Lie algebra of type E6. Let
E6 be the connected and simply connected Lie group with Lie algebra e6. Let
e6(C) and E6(C) denote their complexifications. Similar notation will be used for
other types.

Let Z(G) and z(g) denote the center of a group G and a Lie algebra g, respectively,
and G0 denote the connected component of G containing identity element. For Lie
groups H ⊂ G, let ZG(H) denote the centralizer of H in G, and for Lie algebras
h⊂ g, let Zg(h) denote the centralizer of h in g. Let NG(H) denote the normalizer
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of H in G. For any two elements x, y ∈ G, we write x ∼ y to mean x, y are
conjugate in G, that is, y = gxg−1 for some g ∈ G and x ∼H y to mean y = gxg−1

for some g ∈ H .
In the case of G = E6 or E7, let c denote a nontrivial element in Z(G).
In the case of u0 = e7, let

H ′0 =
H ′2+ H ′5+ H ′7

2
∈ ie7 ⊂ e7(C).

Let Pin(n) (Spin(n)) be the Pin (Spin) group in degree n. Write

c = e1e2 · · · en ∈ Pin(n).

Then c is in Spin(n) if and only if n is even; in this case c ∈ Z(Spin(n)). If n is
odd, then Spin(n) has a spinor module M of dimension 2(n−1)/2. If n is even, then
Spin(n) has two spinor modules M+, M− of dimension 2(n−2)/2. We distinguish
M+ and M− by requiring that c acts on M+ as the identity when 4 | n and as
multiplication by −i when 4 | n− 2 (and thus c acts on M− as multiplication by
−1 and i , respectively, in the same two cases).

We define the matrices

Jm =

(
0 Im

−Im 0

)
, Ip,q =

(
−Ip 0

0 Iq

)
,

I ′p,q =


−Ip 0 0 0

0 Iq 0 0
0 0 −Ip 0
0 0 0 Iq

 , Jp,q =


0 Ip 0 0
−Ip 0 0 0

0 0 0 Iq

0 0 −Iq 0

 ,

K p =


0 0 0 Ip

0 0 −Ip 0
0 Ip 0 0
−Ip 0 0 0

 .
and the groups

Zm = {λIm | λ
m
= 1},

Z ′ = {(ε1, ε2, ε3, ε4) | εi =±1, ε1ε2ε3ε4 = 1},

0p,q,r,s =

〈
−Ip 0 0 0

0 −Iq 0 0
0 0 Ir 0
0 0 0 Is

 ,

−Ip 0 0 0

0 Iq 0 0
0 0 −Ir 0
0 0 0 Is


〉
.
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3. Involutions

The classical compact simple Lie algebras are as follows. For F = R,C,H, let
Mn(F) be the set of n× n matrices with entries in F , and

so(n)= {X ∈ Mn(R) | X + X t
= 0},

su(n)= {X ∈ Mn(C) | X + X∗ = 0, tr X = 0},

sp(n)= {X ∈ Mn(H) | X + X∗ = 0}.

Then {su(n) : n≥ 3}, {so(2n+1) : n≥ 1}, {sp(n) : n≥ 3}, {so(2n) : n≥ 4} represent
all isomorphism classes of compact classical simple Lie algebras.

Let u0 be a compact simple Lie algebra and g= (u0)⊗R C be its complexification.
Note that the conjugacy classes of involutions in Aut(u0) are in one-to-one corre-
spondence with isomorphism classes of noncompact real forms of g, and are also
in one-to-one correspondence with isomorphism classes of irreducible Riemannian
symmetric pairs (u0, k0) of compact type or (g0, k0) of noncompact type; see [Huang
2002; Helminck 1988] and references therein. One direction of this correspondence
is as follows: let θ be an involutive automorphism of a compact real simple Lie
algebra u0, and extend it to a holomorphic automorphism of g. Let k0 ⊂ u0 and
ip0 ⊂ u0 (so p0 ⊂ iu0) be the +1, −1 eigenspaces of θ on u0, respectively. Let

g0 = k0⊕ p0

(this is also the Cartan decomposition of g0). Then g0 is a real simple Lie algebra
(that is, a real form of g), (u0, k0) is a Riemannian symmetric pair of compact
type and (g0, k0) is a Riemannian symmetric pair of noncompact type. The other
direction of this correspondence needs a sophisticated argument.

These objects were classified by Élie Cartan in 1926. We list this classification
here. Our presentation below is mainly from [Knapp 2002, pp. 408–426; Helgason
2001, pp. 515–518]. In each case, we also define a specific involution in each
conjugacy class of involutions in Aut(u0), which corresponds to a real simple Lie
algebra or symmetric space. In the exceptional simple Lie algebras case, these
involutions are labeled as σ1, σ2, σ3, σ4, σ and τ = σ3 (this is used only in the E6

case). We will use this notation for involutions frequently in the rest of this paper.
The notation AI–G is Cartan notation and the notation e6,−2, etc., is Helgason

notation (with a little difference). For a real simple Lie algebra g0 with a Cartan
decomposition g0 = k0⊕p0 and whose complexified Lie algebra g is an exceptional
simple Lie algebra, Helgason [2001, pp. 517–518] made an interesting observation:
the isomorphism type of g0 is distinguished by the type of g (or its compact real
form u0) and the integer dim k0−dim p0. For example, the notation e6,−2 (written by
Helgason as e6(2), as he used the integer dim p0−dim k0 instead) means the compact
real form of the complexified Lie algebra has type e6 and dim k0− dim p0 = −2.
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The elements (coroots) H ′i are defined in (2) and (5).
i) Type A. For u0 = su(n), n ≥ 3, {Ad(Ip,n−p) | 1 ≤ p ≤ n/2} (type AIII),
{τ = complex conjugation} (type AI), {τ ◦ Ad(Jn/2)}} (type AII) represent all
conjugacy classes of involutions in Aut(u0). The corresponding real forms are
su(p, n− p), sl(n,R), sl(n

2 ,H).
ii) Type B. For u0 = so(2n+ 1), n ≥ 1, {Ad(Ip,2n+1−p) | 1 ≤ p ≤ n} (type BI)

represent all conjugacy classes of involutions in Aut(u0). The corresponding real
forms are so(p, 2n+ 1− p).

iii) Type C. For u0 = sp(n), n ≥ 3, {Ad(Ip,n−p) | 1≤ p ≤ n/2} (type CII) and
{Ad(iI )} (type CI) represent all conjugacy classes of involutions in Aut(u0). The
corresponding real forms are sp(p, n− p), sp(n,R).

iv) Type D. For u0 = so(2n), n ≥ 4, {Ad(Ip,2n−p) | 1 ≤ p ≤ n} (type DI) and
{Ad(Jn)} (type DIII) represent all conjugacy classes of involutions in Aut(u0). The
corresponding real forms are so(p, 2n− p), so∗(2n,R).2

v) Type E6. For u0 = e6, let τ be a specific diagram involution defined by

τ(Hα1)= Hα6, τ (Hα6)= Hα1, τ (Hα3)= Hα5,

τ (Hα5)= Hα3, τ (Hα2)= Hα2, τ (Hα4)= Hα4,

τ (X±α1)= X±α6, τ (X±α6)= X±α1, τ (X±α3)= X±α5,

τ (X±α5)= X±α3, τ (X±α2)= X±α2, τ (X±α4)= X±α4 .

Let σ1 = exp(π i H ′2), σ2 = exp(π i(H ′1 + H ′6)), σ3 = τ , σ4 = τ exp(π i H ′2). Then
σ1, σ2, σ3, σ4 represent all conjugacy classes of involutions in Aut(u0), which
correspond to Riemannian symmetric pairs of type EII, EIII, EIV, EI and the
corresponding real forms are e6,−2, e6,14, e6,26, e6,−6. Also, σ1, σ2 are inner auto-
morphisms and σ3, σ4 are outer automorphisms.

vi) Type E7. For u0 = e7, let

σ1 = exp(π i H ′2),

σ2 = exp
(
π i

H ′2+ H ′5+ H ′7
2

)
,

σ3 = exp
(
π i

H ′2+ H ′5+ H ′7+ 2H ′1
2

)
.

Then σ1, σ2, σ3 represent all conjugacy classes of involutions in Aut(u0), which
correspond to Riemannian symmetric pairs of type EVI, EVII, EV and the corre-
sponding real forms are e7,5, e7,25, e7,−7.

vii) Type E8. For u0 = e8, let

σ1 = exp(π i H ′2), σ2 = exp(π i(H ′2+ H ′1)).

2When n = 4, we have Ad(I2,6)∼ Ad(J4), and so(2, 6)∼= so∗(8).
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Then σ1, σ2 represent all conjugacy classes of involutions in Aut(u0), which corre-
spond to Riemannian symmetric pairs of type EIX, EVIII and the corresponding
real forms are e8,24, e8,−8.

viii) Type F4. For u0 = f4, let

σ1 = exp(π i H ′1), σ2 = exp(π i H ′4).

Then σ1, σ2 represent all conjugacy classes of involutions in Aut(u0), which corre-
spond to Riemannian symmetric pairs of type FI, FII and the corresponding real
forms are f4,−4, f4,20.

ix) Type G2. For u0 = g2, let σ = exp(πH ′1), which represents the unique conju-
gacy class of involutions in Aut(u0) and corresponds to a Riemannian symmetric
pair of type G and the corresponding real form is g2,−2.

4. Centralizer of an automorphism

In this section we prove a property of the centralizer Gx of an element x in a
complex or compact Lie group G. First, we recall a theorem of Steinberg [Carter
1993, pp. 93–95].

Proposition 4.1 (Steinberg). Let G be a connected and simply connected semisim-
ple complex (or compact) Lie group. Then the centralizer Gx for any x ∈ G
is connected.

For an element x in a group, we write o(x) for the order of x . The notation

(7) Int(g)θ0

in this paper always means (Int(g)θ )0, not (Int(g)0)θ . Similarly for

(8) Int(u0)
θ
0, Aut(u0)

θ
0, Aut(g)θ0.

Proposition 4.2. Let g be a complex simple Lie algebra. Suppose that the order
of an element θ ∈ Aut(g) is equal to the order of the coset element θ Int(g) in
Out(g)= Aut(g)/ Int(g), that is, o(θ)= o(θ Int(g)). Then ZInt(g)(Int(g)θ0)= 1.

Proof. By the assumption, θ is a diagram automorphism; this means there exists
a Cartan subalgebra t which is stable under θ and θ maps 1+ to itself, where
1 = 1(g, t) and 1+ is a positive system. For any α ∈ 1, let θ(Xα) = aαXθα
with aα 6= 0.

Let k = o(θ)= o(θ Int(g)). Then, for any α ∈1,

Xα = θ k(Xα)=
( ∏

0≤ j≤k−1

aθ jα

)
Xθ kα.
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It follows that ∏
0≤ j≤k−1

aθ jα = 1.

Let L = Int(g)θ0 , s= tθ , T = exp(ad t) and S = exp(ad s). It is clear that S ⊂ L .
We first show that ZInt(g)(S) = T . It is clear that t ⊂ Zg(s). Suppose that

Xα ∈ Zg(s) for some α ∈ 1+. Since θ k
= 1, we have

∑
0≤ j≤k−1 θ

j (H) ∈ tθ = s

for any H ∈ t. Then
[∑

0≤ j≤k−1 θ
j (H), Xα

]
= 0.

For any j , we have

[θ j H, Xα] = θ j ([H, θ k− j Xα])= θ j
(( ∏

0≤i≤k− j−1

aθ iα

)
· ((θ k− jα)H) · Xθ k− jα

)

=

( ∏
0≤i≤k− j−1

aθ iα

)
· ((θ k− jα)H) ·

( ∏
0≤i≤ j−1

aθ k− j+iα

)
Xα

=

( ∏
0≤i≤k−1

aθ iα

)
· ((θ k− jα)H) · Xα = ((θ k− jα)H) · Xα.

Hence 0=
[∑

0≤ j≤k−1 θ
j (H), Xα

]
=
((∑

0≤ j≤k−1 θ
k− jα

)
H
)
· Xα. This implies∑

0≤ j≤k−1

θ jα = 0,

which contradicts that all θ jα are positive roots. So Zg(s) = t. Since ZInt(g)(S)
is connected (by Corollary 4.51 of [Knapp 2002, p. 260], which also applies to
complex semisimple groups), ZInt(g)(S)= T .

Now we show that ZInt(g)(L)= 1. Suppose that 1 6= τ ∈ ZInt(g)(L). By the above,
we have ZInt(g)(L)⊂ ZInt(g)(S)= T , then τ = exp(ad H) for some H ∈ t. For any
α ∈1,

∑
0≤ j≤k−1 θ

j (Xα) ∈ gθ (since θ k
= 1), so

∑
0≤ j≤k−1

θ j (Xα)=τ
( ∑

0≤ j≤k−1

θ j (Xα)
)
=

∑
0≤ j≤k−1

τ(θ j (Xα))=
∑

0≤ j≤k−1

e(θ
jα)Hθ j (Xα).

Since each θ j (Xα) is of the form θ j (Xα) = b j Xθ jα for some b j 6= 1, the last
equality implies τ(Xα)= Xα if {θ jα, 0≤ j ≤ k− 1} are distinct.

Claim 4.3. Those α ∈ 1 with roots in {θ jα, 0 ≤ j ≤ k − 1} pairwise different
generate 1 (as a root system).

Since τ(Xα) = Xα when the elements θ jα are distinct for 0 ≤ j ≤ k − 1, by
Claim 4.3, we have τ(Xα) = Xα for any α ∈ 1. Hence τ = 1, which is to say,
ZInt(g)(Int(g)θ0)= 1. �
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Proof of Claim 4.3. Note that θ maps 1+ to itself, so it maps the simple system
5= {α1, . . . , αr } to itself. We have four cases to consider, that is, 1=An (n ≥ 2),
Dn (n ≥ 4), E6 and θ is an automorphism of order 2, or 1 = D4 and θ is an
automorphism of order 3. We give the proof when 1= A2n (n ≥ 1) and o(θ)= 2.
The proof for other cases is similar.

When1=A2n (n≥ 1) and o(θ)= 2, we have θ(αi )=α2n+1−i and θ(α2n+1−i )=

αi for any i , 1≤ i ≤ n. For 1≤ i ≤ n, let

βi =
∑

1≤ j≤i

α j and β ′i =
∑

1≤ j≤i

α2n+1− j .

Then θ(±βi ) 6= ±βi , θ(±β ′i ) 6= ±β
′

i and {±βi ,±β
′

i : 1≤ i ≤ n} generate 1. �

Corollary 4.4. Let u0 be a compact simple Lie algebra. If θ ∈ Aut(u0) satisfies the
condition o(θ)= o(θ Int(u0)), then ZInt(u0)(Int(u0)

θ
0)= 1.

Corollary 4.4 indicates that if G is a compact (simple) Lie group of adjoint type
and x is of minimal possible order among all elements in the connected component
containing it, then (Gx)0 is also of adjoint type and the conjugation action of any
element y ∈ Gx

− (Gx)0 on (Gx)0 is an outer automorphism.

5. Symmetric subgroups of Aut(u0)

Let u0 be a compact simple Lie algebra. For each conjugacy class of involutions in
Aut(u0), we choose a representative θ as in Section 3 and determine the symmetric
subgroup Aut(u0)

θ .
When u0 is a classical simple Lie algebra nonisomorphic to so(8) or u0 = so(8)

but θ 6∼ Ad(I4,4), we can use matrices to represent involutions θ and calculate
the corresponding Aut(u0)

θ . In the case of θ = Ad(I4,4) ∈ Aut(so(8)), we have
θ ∼ exp(π i H ′2). Then

Int(so(8))θ = (Sp(1)4/Z ′)o D,

where Z ′ = {(ε1, ε2, ε3, ε4) | εi = ±1, ε1ε2ε3ε4 = 1}, and D ⊂ S4 is the (unique)
normal order four subgroup of S4 with conjugation action on (Sp(1)4)/Z ′ by per-
mutations. Then we observe that there exists a subgroup of Aut(so(8)) that projects
isomorphically to Aut(so(8))/ Int(so(8))∼= S3 and is contained in Aut(so(8))θ . A
little more argument shows

Aut(so(8))θ = (Sp(1)4/Z ′)o S4.

When u0 is an exceptional simple Lie algebra, we first determine the symmetric
subalgebra k0 = uθ0 and the highest weights of the isotropic space p0 = u−θ0 as a
k0-module. The results are summarized in Table 1. The coroots H ′i are defined in
(2) and (5) and the involutions are defined in Section 3.
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θ k0 p

EI σ4 = τ exp(π i H ′2) sp(4) Vω4

EII σ1 = exp(π i H ′2) su(6)⊕ sp(1)
∧3

C6
⊗C2

EIII σ2 = exp(π i(H ′1+ H ′6)) so(10)⊕ iR (M+⊗ 1)⊕ (M−⊗ 1)
EIV σ3 = τ f4 Vω4

EV σ3 = exp(π i(H ′1+ H ′0)) su(8)
∧4

C8

EVI σ1 = exp(π i H ′2) so(12)⊕ sp(1) M+⊗C2

EVII σ2 = exp(π i H ′0) e6⊕ iR (Vω1 ⊗ 1)⊕ (Vω6 ⊗ 1)
EVIII σ2 = exp(π i(H ′1+ H ′2)) so(16) M+
EIX σ1 = exp(π i H ′1) e7⊕ sp(1) Vω7 ⊗C2

FI σ1 = exp(π i H ′1) sp(3)⊕ sp(1) Vω3 ⊗C2

FII σ2 = exp(π i H ′4) so(9) M
G σ = exp(π i H ′1) sp(1)⊕ sp(1) Sym3 C2

⊗C2

Table 1. Symmetric pairs and isotropic modules (exceptional Lie
algebras case).

Since any element of Aut(u0)
θ which acts trivially on both k0 and p0 must be

trivial, the isomorphism type of k0 and its isotropic module p determine Aut(u0)
θ
0

completely. We may get Aut(u0)
θ
0 in the following way. Start with a compact

connected Lie group H of the form H = A×Hs with A= Z(Aut(u0)
θ
0)0 a connected

torus (A ∼= U(1)s with s = dim z(k0)) and Hs a connected and simply connected
compact Lie group with Lie Hs = [k0, k0] (then Lie H = k0 = uθ0). Then we have a
surjective homomorphism

π : H → Aut(u0)

determined by g as a k0-module. With this construction, it is clear that Im(π) =
Aut(u0)

θ
0 and kerπ is determined by k0 and its module p (as described in Table 1). By

Proposition 4.1 and Corollary 4.4, we can also determine the number of connected
components of Aut(u0)

θ . Then we could find elements outside Aut(u0)
θ
0 to generate

Aut(u0)
θ together with Aut(u0)

θ
0. We show the detailed argument in most cases

below. The results about the symmetric subgroups Aut(u0)
θ are given in the last

column of Table 2. The information about the first three columns of Table 2 is
contained in [Knapp 2002, pp. 408–426]. The fourth column is from Section 3.

5A. Type E6. Now u0 = e6. Consider an outer automorphism θ = σ3 or σ4. By
Corollary 4.4, any element in Int(u0)

θ
− Aut(u0)

θ
0 acts on uθ0 as an outer auto-

morphism. Note that uθ0 ∼= sp(4) or f4, so it has no outer automorphisms. By
Corollary 4.4, it follows that Int(u0)

θ
= Aut(u0)

θ
0 and Aut(u0)

θ
= Aut(u0)

θ
0 ×〈θ〉.

Moreover, Aut(u0)
θ
0 is of adjoint type by Corollary 4.4.
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Type (u0,k0) rank θ symmetric subgroup Aut(u0)
θ

AI (su(n),so(n)) n−1 X (O(n)/〈−I 〉)×〈θ〉

AII (su(2n),sp(n)) n−1 Jn X J−1
n (Sp(n)/〈−I 〉)×〈θ〉

AIII (su(p+q),s(u(p)+u(q))) p Ip,q X Ip,q (S(U (p)×U (q))/Z p+q)o〈τ 〉
p < q Ad(τ )= complex conjugation
AIII (su(2p),s(u(p)+u(p))) p Ip,p X Ip,p (S(U (p)×U (p))/Z2p)o〈τ, Jp〉

p = q Ad(Jp)(X,Y )= (Y,X)

BDI
p < q

(so(p+q),so(p)+so(q)) p Ip,q X Ip,q (O(p)×O(q))/〈(−Ip,−Iq)〉

DI (so(2p),so(p)+so(p)) p Ip,p X Ip,p ((O(p)×O(p))/〈(−Ip,−Ip)〉)o〈Jp〉

p > 4 Ad(Jp)(X,Y )= (Y,X)

DI (so(8),so(4)+so(4)) 4 I4,4 X I4,4 ((Sp(1)4)/Z ′)oS4
p = 4 S4 acts by permutations
DIII (so(2n),u(n)) n Jn X J−1

n (U (n)/{±I })o〈In,n〉

Ad(In,n)= complex conjugation
CI (sp(n),u(n)) n (iI )X (iI )−1 (U (n)/{±I })o〈jI 〉

Ad(jI )= complex conjugation

CII
p < q

(sp(p+q),sp(p)+sp(q)) p Ip,q X Ip,q (Sp(p)×Sp(q))/〈(−Ip,−Iq)〉

CII (sp(2p),sp(p)+sp(p)) p Ip,p X Ip,p ((Sp(p)×Sp(p)/〈(−Ip,−Ip)〉)o〈Jp〉

p = q Ad(Jp)(X,Y )= (Y,X)

EI (e6, sp(4)) 6 σ4 (Sp(4)/〈−1〉)×〈θ〉

EII (e6, su(6)+sp(1)) 4 σ1 (SU (6)×Sp(1)/〈(e
2π i

3 I,1),(−I,−1)〉)o〈τ 〉
kτ0 = sp(3)⊕sp(1)

EIII (e6, so(10)+iR) 2 σ2 (Spin(10)×U (1)/〈(c,i)〉)o〈τ 〉
kτ0 = so(9)

EIV (e6, f4) 2 σ3 F4×〈θ〉

EV (e7, su(8)) 7 σ3 (SU (8)/〈i I 〉)o〈ω〉
kω0 = sp(4)

EVI (e7, so(12)+sp(1)) 4 σ1 (Spin(12)×Sp(1))/〈(c,1),(−1,−1)〉

EVII (e7, e6+iR) 3 σ2 ((E6×U (1))/〈(c,e
2π i

3 )〉)o〈ω〉
kω0 = f4

EVIII (e8, so(16)) 8 σ2 Spin(16)/〈c〉
EIX (e8, e7+sp(1)) 4 σ1 E7×Sp(1)/〈(c,−1)〉
FI (f4, sp(3)+sp(1)) 4 σ1 (Sp(3)×Sp(1))/〈(−I,−1)〉
FII (f4, so(9)) 1 σ2 Spin(9)
G (g2, sp(1)+sp(1)) 2 σ (Sp(1)×Sp(1))/〈(−1,−1)〉

Table 2. Symmetric pairs and symmetric subgroups. (When n= 4,
DIII is identical to BDI when p = 2 and q = 6.)
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Consider an inner automorphism θ = σ1 or σ2. Let θ ′ ∈ E6 be an involution
which maps to θ under the covering π : E6→ Int(e6). We have

Int(e6)
θ
= {g ∈ E6 | θ

′gθ ′−1g−1
∈ Z(E6)}/Z(E6),

Int(e6)
θ
0 = {g ∈ E6 | θ

′gθ ′−1g−1
= 1}/Z(E6),

(use Proposition 4.1 here). If {g ∈ E6 | θ
′gθ ′−1g−1

∈ Z(E6)} 6= Eθ6, then there
exists g ∈ E6 such that θ ′gθ ′−1g−1

= c ∈ Z(E6). Then gθ ′g−1
= θ ′c−1. But

o(θ ′)=2 6=6=o(θ ′c−1). So gθ ′g−1
6=θ ′c−1. Then {g∈E6 |θ(g)g−1

∈ Z(E6)}=Eθ6
and so Int(e6)

θ
= Int(e6)

θ
0. Since σ1, σ2 commutes with τ ,

Aut(e6)
θ
= Int(e6)

θ
0 o 〈τ 〉.

The conjugation action of τ on Int(e6)
θ
0 is determined by its action on k0 = uθ0 , and

(eσ1
6 )

τ
= sp(3)⊕ sp(1), (eσ2

6 )
τ
= so(9).

5B. Type E7. Now u0=e7 and Aut(e7)= Int(e7) is connected. Let π :E7→Aut(e7)

be the adjoint homomorphism, which is a 2-fold covering. Let

σ ′1 = exp(π i H ′2) ∈ E7,

σ ′2 = exp
(
π i

H ′2+ H ′5+ H ′7
2

)
∈ E7,

σ ′3 = exp
(
π i

2H ′1+ H ′2+ H ′5+ H ′7
2

)
∈ E7 .

Then π(σ ′i )= σi , o(σ ′1)= 2, o(σ ′2)= 4 and o(σ ′3)= 4. One has

Aut(e7)
σi ∼= {g ∈ E7 | gσ ′i g−1σ ′−1

i ∈ Z(E7)}/Z(E7),

Aut(e7)
σi
0
∼= {g ∈ E7 | gσ ′i g−1σ ′−1

i = 1}/Z(E7)

(use Proposition 4.1 here), where Z(E7) = 〈exp(π i(H ′2+ H ′5+ H ′7))〉 ∼= Z/2Z is
the center of E7.

For θ = σ1, suppose that there exists g ∈ E7 such that

gσ ′1g−1(σ ′1)
−1
= exp(π i(H ′2+ H ′5+ H ′7)).

Then g exp(π i H ′2)g
−1
= exp(π i(H ′5 + H ′7)). Then there exists w ∈ W such

that w(exp(π i H ′2))= exp(π i(H ′5+ H ′7)). Since w(exp(π i H ′α2
))= exp(π i H ′w(α2)

),
we get exp(π i H ′w(α2)

)= exp(π i(H ′5+ H ′7)). Then

w(α2) ∈ (α5+α7)+ 2 spanZ{α1, α2, α3, α4, α5, α6, α7}.

There are no roots in (α5+ α7)+ 2 spanZ{α1, α2, α3, α4, α5, α6, α7}, so there are
no g ∈ E7 such that (gσ ′1g−1)σ ′−1

1 = exp(π i(H ′2+ H ′5+ H ′7)). Then

{g ∈ E7 | (gσ ′1g−1)σ ′−1
1 ∈ Z(E7)} = E

σ ′1
7 .
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So Aut(e7)
σ1 = Aut(e7)

σ1
0 .

For θ = σ2 or σ3, let

ω = exp
(
π(Xα2 − X−α2)

2

)
exp

(
π(Xα5 − X−α5)

2

)
exp

(
π(Xα7 − X−α7)

2

)
.

Then
ωσ ′2ω

−1
= σ ′−1

2 = σ ′2 exp(π i(H ′2+ H ′5+ H ′7)),

ωσ ′3ω
−1
= σ ′−1

3 = σ ′3 exp(π i(H ′2+ H ′5+ H ′7)),

and ω2
= 1. Then Aut(e7)

θ
= Aut(e7)

θ
0 o 〈ω〉. The conjugation action of ω on

Aut(e7)
θ
0 is determined by its action on k0 = uθ0, and we have

(eσ2
7 )

ω
= f4, (eσ3

7 )
ω
= sp(4).

Further, ω acts on h as sα2sα5sα7 , where sα in the Weyl group is the reflection
corresponding to the root α.

5C. Types E8, F4, G2. If u0 = e8, f4, g2, then Aut(u0) is connected and simply
connected. By Proposition 4.1, Aut(u0)

θ is connected. Then they are determined
by uθ0 and p= g−θ .

6. Klein four-subgroups of Aut(u0)

In this section, we classify Klein four-subgroups 0 (called simply Klein subgroups)
in Aut(u0) up to conjugation. We also determine the fixed-point subgroups Aut(u0)

0 .
Note that such a 0 is equal to {1, θ, σ, θσ } for two commuting involutions θ 6= σ .
Fix an involution θ ; the conjugacy class of 0 is determined by the conjugacy classes
of the involution σ (6= θ ) in Aut(u0)

θ .

6A. Ordered commuting pairs of involutions and semisimple symmetric pairs.
For a compact simple Lie algebra u0 and its complexification g, the isomorphism
classes of semisimple symmetric pairs (g0, h0) with g0 a real form of g and h0(6=g0)

noncompact are in one-to-one correspondence with the conjugacy classes of ordered
commuting pairs of involutions (θ, σ ) in Aut(u0) with θ 6= σ . One direction of
this correspondence is as follows: let ui, j (i , j = 0 or 1) be the joint eigenspace
of θ and σ where θ acts on it as (−1)i and σ acts on it as (−1) j . Then we have
a decomposition

u0 = u0,0⊕ u0,1⊕ u1,0⊕ u1,1.

Then k0= uθ0 = u0,0⊕u0,1 and ip0= u−θ0 = u1,0⊕u1,1. Extend θ , σ to holomorphic
automorphisms of g and let

g0 = k0+ p0 = u0,0+ u0,1+ i(u1,0+ u1,1) and h0 = gσ0 = u0,0+ iu1,0.
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u0 0i l0=u
0i
0 Type

su(p+q) 0p,q=〈τ,Ip,q〉 so(p)+so(q) AI-AI-AIII, S
su(2p) 0p=〈τ,Jp〉 u(p) AI-AII-AIII, N

su(2p+2q) 0′p,q=〈τ Jp+q ,I ′p,q〉 sp(p)+sp(q) AII-AII-AIII, S
su(p+q+r+s) 0p,q,r,s s(u(p)+u(q)+u(r)+u(s)) AIII-AIII-AIII, NSV

su(2p) 0p=〈Ip,p,Jp〉 su(p) AIII-AIII-AIII, V
so(p+q+r+s) 0p,q,r,s so(p)+so(q)+so(r)+so(s)) BDI-BDI-BDI, NSV

so(2p) 0p=〈Jp,Ip,p〉 so(p) DI-DI-DIII, S
so(2p+2q) 0p,q=〈Jp+q ,I ′p,q〉 u(p)+u(q) DI-DIII-DIII, S
so(4p) 0′p=〈J2p,K p〉 sp(p) DIII-DIII-DIII, V
sp(p) 0p=〈iI,jI 〉 so(p) CI-CI-CI, V

sp(p+q) 0p,q=〈iI,Ip,q〉 u(p)+u(q) CI-CI-CII, S
sp(2p) 0′p=〈iI,jJp〉 sp(p) CI-CII-CII, S

sp(p+q+r+s) 0p,q,r,s sp(p)+sp(q)+sp(r)+sp(s) CII-CII-CII, NSV

Table 3. Klein subgroups in Aut(u0) for the classical cases. (When
p=1, q=3, 01,3 is very special since Ad(I2,6)∼Ad(J4).)

Then g0 is a real form of g and (g0, h0) is a semisimple symmetric pair with
h0 6= g0 and noncompact. The other direction of this correspondence needs a more
sophisticated argument.

When θ is fixed, the conjugacy classes of the pairs (θ, σ ) in Aut(u0) are in
one-to-one correspondence with the Aut(u0)

θ -conjugacy classes of involutions in
Aut(u0)

θ
−{θ}.

For an exceptional compact simple Lie algebra u0 and any representative θ of
involution classes in Section 3, we give the representatives of classes of involutions
in Aut(u0)

θ
−{θ} and identify their classes in Aut(u0). For any classical compact

simple Lie algebra u0 and a representative θ of an involution class, we have a similar
classification of involutions in Aut(u0)

θ
−{θ}; we omit it here but remark that the

representatives can be constructed from Table 3. This gives a new proof to Berger’s
classification of semisimple symmetric pairs.

In most cases the symmetric subgroup Aut(u0)
θ is a product of classical groups

with some twisting, for which we can classify their involution classes by matrix
calculations. In the remaining cases, uθ0 = s0 ⊕ z for an exceptional simple Lie
algebra s0 and an algebra z= 0, iR or sp(1). We have a homomorphism

p : Aut(u0)
θ
→ Aut(s0).

Then what we need to do is to classify involutions in p−1(σ ) for σ ∈ Aut(s0) an
involution or the identity element, which is not hard in general.

For an exceptional compact simple Lie algebra u0, the conjugacy class of an
involution σ ∈Aut(u0) is determined by dim gσ . (This is an accidental phenomenon
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observed by Helgason [2001, pp. 517–518].) For any involution σ ∈Aut(u0)
θ
−{θ},

the class of σ in Aut(u0) is determined by dim gσ = dim kσ + dim pσ and the
dimensions dim kσ , dim pσ can be calculated from the class of σ in Aut(u0)

θ . The
coroots H ′i are defined in (2) and (5) and the involutions σi , σ , τ are defined in
Section 3.

Type E6. Now u0 = e6. For θ = σ1 = exp(π i H ′2), one has

Aut(u0)
σ1 = (SU(6)×Sp(1)/〈(e2π i/3 I, 1), (−I,−1)〉)o 〈τ 〉,

σ1 = (I,−1)= (−I, 1), where Ad(τ )(X, Y )= (J3 X J−1
3 , Y ). Then, in Aut(u0),((

−I4 0
0 I2

)
, 1
)
∼ σ2,

((
−I2 0

0 I4

)
, 1
)
∼ σ1,((

i I5 0
0 −i I1

)
, i
)
∼ σ2,

((
i I3 0
0 −i I3

)
, i
)
∼ σ1,

τ ∼ σ3, τσ1 ∼ σ4, τ (J3, i)∼ σ4.

These elements represent all the conjugacy classes of involutions in Aut(u0)
θ
−{θ}.

For θ = σ2 = exp(π i(H ′1+ H ′6)), one has

Aut(u0)
σ2 =

(
(Spin(10)×U(1))/〈(c, i)〉

)
o 〈τ 〉, σ2 = (−1, 1)= (1,−1),

where c= e1e2 · · · e10 and Ad(τ )(x, z)= ((e1e2 · · · e9)x(e1e2 · · · e9)
−1, z−1). Then,

in Aut(u0),
(e1e2e3e4, 1)∼ σ1, (e1e2 · · · e8, 1)∼ σ2,(
δ,

1+ i
√

2

)
∼ σ2,

(
−δ,

1+ i
√

2

)
∼ σ1,

τ ∼ σ3, τ (e1e2e3e4, 1)∼ σ4,

where

δ =
1+ e1e2
√

2

1+ e3e4
√

2
· · ·

1+ e9e10
√

2
.

These elements represent all the conjugacy classes of involutions in Aut(u0)
θ
−{θ}.

For θ =σ3= τ , one has Aut(u0)
σ3 =F4×〈τ 〉. Let τ1, τ2 be involutions in F4 with

fτ1
4
∼= sp(3)⊕ sp(1), fτ2

4
∼= so(9).

Then, in Aut(u0),
τ1 ∼ σ1, τ2 ∼ σ2,

σ3τ1 ∼ σ4, σ3τ2 ∼ σ3,

these elements represent all the conjugacy classes of involutions in Aut(u0)
θ
−{θ}.
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For θ = σ4 = τ exp(π i H ′2), one has Aut(u0)
σ4 = (Sp(4)/〈−I 〉)×〈σ4〉. Let

τ1 = iI, τ2 =

(
−I2 0

0 I2

)
, τ3 =

(
−1 0
0 I3

)
.

Then, in Aut(u0),

τ1 ∼ σ1, τ2 ∼ σ2, τ3 ∼ σ1,

σ4τ1 ∼ σ4, σ4τ2 ∼ σ4, σ4τ3 ∼ σ3.

These elements represent all the conjugacy classes of involutions in Aut(u0)
θ
−{θ}.

Type E7. Now u0 = e7. For θ = σ1 = exp(π i H ′2), one has

Aut(u0)
σ1 = (Spin(12)×Sp(1))/〈(c, 1), (−1,−1)〉,

where σ1 = (−1, 1)= (1,−1), c = e1e2 · · · e12. Let

δ =
1+ e1e2
√

2

1+ e3e4
√

2
· · ·

1+ e11e12
√

2
.

Then, in Aut(u0),

(e1e2e3e4, 1)∼ σ1, (e1e2, i)∼ σ2, (e1e2 · · · e6, i)∼ σ3,

(δ, 1)∼ σ2, (−δ, 1)∼ σ3, (e1δe1, i)∼ σ1.

These elements represent all conjugacy classes of involutions in Aut(u0)
θ
− {θ}.

Moreover,
〈σ1, (e1e2e3e4, 1)〉 ∼ F2, 〈σ1, (e1δe1, i)〉 ∼ F1.

For θ = σ2 = τ = exp
(
π i

H ′2+ H ′5+ H ′7
2

)
, one has

Aut(u0)
σ2
0 = ((E6×U(1))/〈(c, e

2π i
3 )〉)o 〈ω〉,

where c is a nontrivial central element of E6 with o(c) = 3, σ2 = (1,−1) and
(e6⊕ iR)ω = f4⊕ 0. Let τ1, τ2 be involutions in E6 with

eτ1
6
∼= su(6)⊕ sp(1), eτ2

6
∼= so(10)⊕ iR.

Then, in Aut(u0),
τ1 ∼ σ1, τ2 ∼ σ1,

τ1σ2 ∼ σ3, τ2σ2 ∼ σ2,

ω ∼ σ2, ωη ∼ σ3,

where η ∈ F4 = Eω6 is an involution with (f4)η ∼= sp(3)⊕ sp(1). These elements
represent all the conjugacy classes of involutions in Aut(u0)

θ
−{θ}.



414 JING-SONG HUANG AND JUN YU

For

θ = σ3 = exp
(
π i

H ′2+ H ′5+ H ′7+ 2H ′1
2

)
,

one has

Aut(u0)
σ3
0 = (SU(8)/〈i I 〉)o 〈ω〉, σ3 =

1+ i
√

2
I,

where Ad(ω)X = J4 X J−1
4 . Let τ1 =

(
−I2

I6

)
, τ2 =

(
−I4

I4

)
. Then, in Aut(u0),

τ1 ∼ σ1, τ2 ∼ σ1, τ1σ3 ∼ σ2, τ2σ3 ∼ σ3,

ω ∼ σ2, ωσ3 ∼ σ3, ωJ4 ∼ σ3.

These elements represent all conjugacy classes of involutions in Aut(u0)
θ
−{θ}.

Type E8. Now u0 = e8. For θ = σ1 = exp(π i H ′2), one has

Aut(u0)
σ1 ∼= (E7×Sp(1))/〈(c,−1)〉,

where σ1 = (1,−1)= (c, 1). Let τ1, τ2 denote the elements in E7 with τ 2
1 = τ

2
2 = c

and eτ1
7
∼= e6⊕ iR, eτ2

7
∼= su(8). Let τ3, τ4 be involutions in E7 such that there exist

Klein subgroups 0,0′ ⊂ E7 with three nonidentity elements in 0 all conjugate to
τ3, three nonidentity elements in 0′ all conjugate to τ4, and e07

∼= su(6)⊕ (iR)2,
e0
′

7
∼= so(8)⊕ (sp(1))3. Then, in Aut(u0),

(τ1, i)∼ σ1, (τ2, i)∼ σ2, (τ3, 1)∼ σ1, (τ4, 1)∼ σ2.

These elements represent all conjugacy classes of involutions in Aut(u0)
θ
−{θ}.

For θ = σ2 = exp(π i(H ′2 + H ′1)), one has Aut(u0)
σ2 ∼= Spin(16)/〈c〉, where

σ2 =−1, c = e1e2 · · · e16. Let

δ =
1+ e1e2
√

2

1+ e3e4
√

2
· · ·

1+ e15e16
√

2
,

τ1 = e1e2e3e4, τ2 = e1e2e3 · · · e8, τ3 = δ, τ4 =−δ.

Then, in Aut(u0),

τ1 ∼ σ1, τ2 ∼ σ2, τ3 ∼ σ1, τ4 ∼ σ2.

These elements represent all the conjugacy classes of involutions in Aut(u0)
θ
−{θ}.

Type F4. When u0 = f4, for θ = σ1 = exp(π i H ′1),

Aut(u0)
σ1 ∼= Sp(3)×Sp(1)/〈(−I,−1)〉,

where σ1 = (−I, 1)= (I,−1). Let

τ1 =

−1 0 0
0 1 0
0 0 1

 , 1

 , τ2 =

−1 0 0
0 −1 0
0 0 1

 , 1

 , τ3 = (iI, i).
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Then, in Aut(u0),
τ1 ∼ σ1, τ2 ∼ σ2, τ3 ∼ σ1.

These elements represent all conjugacy classes of involutions in Aut(u0)
θ
−{θ}.

For θ = σ2 = exp(π i H ′4), one has Aut(u0)
σ2 ∼= Spin(9), σ2 = −1. Let τ1 =

e1e2e3e4, τ2 = e1e2e3 · · · e8. Then, in Aut(u0), we have τ1 ∼ σ1 and τ2 ∼ σ2. These
elements represent all conjugacy classes of involutions in Aut(u0)

θ
−{θ}.

Type G2. When u0 = g2 and θ = σ = exp(π i H ′1), one has

Aut(u0)
σ1 ∼= Sp(1)×Sp(1)/〈(−1,−1)〉,

where σ1 = (−1, 1)= (1,−1). Denote τ = (i, i). Then, in Aut(u0), we have τ ∼ σ ,
and τ represents the unique conjugacy class of involutions in Aut(u0)

θ
−{θ}.

By the above, we have reproved Berger’s classification of semisimple symmetric
pairs. The next proposition is an immediate consequence of this classification.

Proposition 6.1. There are 23, 19, 8, 5, and 1 isomorphism classes of nontrivial
(that is, h0 6= g0) semisimple symmetric pairs (g0, h0) with g0 noncompact and
g = g0 ⊗R C a complex simple Lie algebra of types E6, E7, E8, F4, and G2,
respectively.

6B. Klein subgroups, speciality, regularity and centralizers. For a Klein group
0⊂Aut(u0), we call the conjugacy classes of the involutions in 0 the involution type
of0, and the classes of Riemannian symmetric pairs corresponding to the involutions
in 0 the symmetric space type of 0. Since there is a one-to-one correspondence
between these two types, we simply say type of 0 for either involution type or
symmetric space type.

For a compact simple Lie algebra u0, a Klein subgroup 0 of Aut(u0) is called
regular if any two distinct conjugate (in Aut(u0)) elements σ, θ ∈ 0 are conjugate
by an element g ∈ Aut(u0) commuting with θσ (that is, g ∈ Aut(u0)

θσ ).
A Klein subgroup 0⊂Aut(u0) is called special if there are two (distinct) elements

of 0 which are conjugate in Aut(u0). It is called very special if three involutions
of 0 are pairwise conjugate in Aut(u0). Otherwise it is called nonspecial. The
definition of special is due to [Ōshima and Sekiguchi 1984].

In Tables 3 and 4, we list some Klein subgroups 0i ⊂ Aut(u0) for each compact
simple Lie algebra u0 together with their symmetric space types (when u0 is classical)
or involution types (when u0 is exceptional). These subgroups are not conjugate to
each other since their fixed point subalgebras u0i

0 are nonisomorphic. In the last
column we also indicate whether they are special or not. For brevity, we write N to
mean nonspecial, S to mean special but not very special, V to mean very special.
The speciality of the subgroups 0p,q,r,s depends on the parameters. In general they
can be nonspecial, special or very special; in this case we use NSV to denote their
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u0 0i l0 = u
0i
0 Type

e6 01 = 〈exp(π i H ′2), exp(π i H ′4)〉 (su(3))2⊕(iR)2 (σ1, σ1, σ1), V
e6 02 = 〈exp(π i H ′4), exp(π i(H ′3+H ′4+H ′5))〉 su(4)⊕(sp(1))2⊕iR (σ1, σ1, σ2), S
e6 03 = 〈exp(π i(H ′2+H ′1)), exp(π i(H ′4+H ′1))〉 su(5)⊕(iR)2 (σ1, σ2, σ2), S
e6 04 = 〈exp(π i(H ′1+H ′6)), exp(π i(H ′3+H ′5))〉 so(8)⊕(iR)2 (σ2, σ2, σ2), V
e6 05 = 〈exp(π i H ′2), τ 〉 sp(3)⊕sp(1) (σ1, σ3, σ4), N
e6 06 = 〈exp(π i H ′2), τ exp(π i H ′4)〉 so(6)⊕iR (σ1, σ4, σ4), S
e6 07 = 〈exp(π i(H ′1+H ′6))), τ 〉 so(9) (σ2, σ3, σ3), S
e6 08 = 〈exp(π i(H ′1+H ′6)), τ exp(π i H ′2)〉 so(5)⊕so(5) (σ2, σ4, σ4), S
e7 01 = 〈exp(π i H ′2), exp(π i H ′4)〉 su(6)⊕(iR)2 (σ1, σ1, σ1), V
e7 02 = 〈exp(π i H ′2), exp(π i H ′3)〉 so(8)⊕(sp(1))3 (σ1, σ1, σ1), V
e7 03 = 〈exp(π i H ′2), τ 〉 so(10)⊕(iR)2 (σ1, σ2, σ2), S
e7 04 = 〈exp(π i H ′1), τ 〉 su(6)⊕sp(1)⊕iR (σ1, σ2, σ3), N
e7 05 = 〈exp(π i H ′2), τ exp(π i H ′1)〉 su(4)⊕su(4)⊕iR (σ1, σ3, σ3), S
e7 06 = 〈τ, ω〉 f4 (σ2, σ2, σ2), V
e7 07 = 〈τ, ω exp(π i H ′1)〉 sp(4) (σ2, σ3, σ3), S
e7 08 = 〈τ exp(π i H ′1), ω exp(π i H ′3)〉 so(8) (σ3, σ3, σ3), V
e8 01 = 〈exp(π i H ′2), exp(π i H ′4)〉 e6⊕(iR)2 (σ1, σ1, σ1), V
e8 02 = 〈exp(π i H ′2), exp(π i H ′1)〉 so(12)⊕(sp(1))2 (σ1, σ1, σ2), S
e8 03 = 〈exp(π i H ′2), exp(π i(H ′1+H ′4))〉 su(8)⊕iR (σ1, σ2, σ2), S
e8 04 = 〈exp(π i(H ′2+H ′1)), exp(π i(H ′5+H ′1))〉 so(8)⊕so(8) (σ2, σ2, σ2), V
f4 01 = 〈exp(π i H ′2), exp(π i H ′1)〉 su(3)⊕(iR)2 (σ1, σ1, σ1), V
f4 02 = 〈exp(π i H ′3), exp(π i H ′2)〉 so(5)⊕(sp(1))2 (σ1, σ1, σ2), S
f4 03 = 〈exp(π i H ′4), exp(π i H ′3)〉 so(8) (σ2, σ2, σ2), V
g2 0 = 〈exp(π i H ′1), exp(π i H ′2)〉 (iR)2 (σ, σ, σ ), V

Table 4. Klein four-subgroups in Aut(u0) for the exceptional cases.

speciality. The reader can determine for which parameters they are nonspecial,
special or very special. The notation Ip,q , Jp, etc. is defined in Section 2C.

Theorem 6.2. For a compact simple Lie algebra u0, any Klein subgroup0⊂Aut(u0)

is conjugate to one in Table 3 or Table 4 and they are all regular.

Proof. When u0 is a classical compact simple Lie algebra, we can do matrix calcula-
tion to show Table 3 is complete and any Klein subgroup is regular. When u0 is an
exceptional compact simple Lie algebra, from Klein subgroups we get nonconjugate
commuting pairs of involutions (θ1, θ2) distinguished by the isomorphism type of
u
〈θ1,θ2〉
0 or the distribution of the classes of the (ordered) tuples (θ1, θ2, θ3). When

u0 is of type E6, E7, E8, F4, or G2, we get (at least) 23, 19, 8, 5, or 1 nonconjugate
commuting pairs, respectively. By Proposition 6.1, they represent all conjugacy
classes of commuting pairs of involutions. So Table 4 is complete.
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For an exceptional simple Lie algebra u0, suppose that some Klein subgroup
fails to be regular. Then we can construct nonconjugate commuting pairs (θ1, θ2)

and (θ ′1, θ
′

2) (= (θ2, θ1)) with 〈θ1, θ2〉 = 〈θ
′

1, θ
′

2〉, θ1∼ θ
′

1, θ2∼ θ
′

2, θ1θ2∼ θ
′

1θ
′

2. Then
there should exist more isomorphism classes of semisimple symmetric pairs. But it
is not the case, and it follows that any Klein subgroup is regular. �

Another way of proving all Klein subgroups of Aut(u0) are regular is as follows.
First we just need to check for any commuting pair of involutions θ1, θ2 ∈ Aut(u0)

with θ1 ∼ θ2 (in Aut(u0)), θ1, θ2 are conjugate in Aut(u0)
θ , where θ = θ1θ2. Fix θ

as a representative in Section 3, when u0 is an exceptional simple Lie algebra. This
was already checked in the last subsection; when u0 is a classical simple Lie algebra,
we can check this from the data in Table 3 (list of Klein groups with symmetric
space type) and Table 2 (symmetric subgroups).

A statement equivalent to the regularity of all Klein subgroups (Theorem 6.2) is
that two commuting pairs of involutions (θ, σ ) and (θ ′, σ ′) are conjugate in Aut(u0)

if and only if
θ ∼ θ ′, σ ∼ σ ′, θσ ∼ θ ′σ ′

and the Klein subgroups 〈θ, σ 〉, 〈θ ′, σ ′〉 are conjugate. This statement clearly implies
the second statement in Theorem 6.2. To derive this statement from Theorem 6.2,
give two pairs (θ, σ ) and (θ ′, σ ′)with θ∼θ ′, σ ∼σ ′, θσ ∼θ ′σ ′ and 〈θ, σ 〉∼〈θ ′, σ ′〉.
After replacing (θ ′, σ ′) by a pair conjugate to it, we may assume 〈θ, σ 〉 = 〈θ ′, σ ′〉,
that is, (θ, σ ) and (θ ′, σ ′) generate the same Klein subgroup. By Theorem 6.2,
〈θ, σ 〉 is regular, so (θ, σ ) and (θ ′, σ ′) are conjugate. Since any Klein subgroup of
Aut(u0) is regular, a conjugacy class of Klein subgroups gives 6, 3, or 1 isomorphism
types of semisimple symmetric pairs when it is nonspecial, special but not very
special, or very special, respectively.

The fact that all Klein subgroups in Aut(u0) are regular is an interesting phenom-
enon. The property of regularity can be generalized to closed subgroups of any Lie
group; a vast array of examples of nonregular subgroups is given in [Larsen 1994].

From Tables 1 and 4, we can abstract the following facts.

Proposition 6.3. When u0 is an exceptional compact simple Lie algebra, any
two classes of involutions have commuting representatives; for any Klein group
0 ⊂ Aut(u0) the centralizer Aut(u0)

0 intersects of Aut(u0).

For classical compact simple Lie algebras, both statements of the above proposi-
tion fail in general. For example, in Aut(su(2n)) and for an odd p with 1≤ p≤n−1,
τ ◦Ad(In,n) (τ = complex conjugation) doesn’t commute with any involution con-
jugate to Ad(Ip,2n−p); in Aut(so(4n)), Aut(so(4n))0n ⊂ Int(so(4n)) (see Table 3
for the definition of 0n).

For each Klein subgroup 0 listed in Table 3 or 4 with two generators θ, σ ∈
Aut(u0), we get the centralizer Aut(u0)

0 by calculating (Aut(u0)
θ )σ . The results
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about Aut(u0)
0 are listed in Table 5 for classical compact simple Lie algebras and

in Table 6 for exceptional compact simple Lie algebras.
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u0 0i L = Aut(u0)
0i

su(p+q), p 6= q 0p,q ((O(p)×O(q))/〈(−Ip,−Iq)〉)×〈τ 〉

su(2p) 0p,p ((O(p)×O(p))/〈(−Ip,−Ip)〉)o〈τ, Jp〉,
Ad(Jp)(X,Y )= (Y,X), Ad(τ )= 1

su(2p) 0′p (U (p)/〈−Ip〉)o〈τ,z〉, Ad(z)= 1
su(2p+2q), p 6= q 0′p,q ((Sp(p)×Sp(q))/〈(−Ip,−Iq)〉)×〈τ Jp+q〉

su(4p) 0′p,p ((Sp(p)×Sp(p))/〈(−Ip,−Ip)〉)o〈τ J2p, Jp〉,
Ad(Jp)(X,Y )= (Y,X), Ad(τ J2p)= 1

su(p+q+r+s) 0p,q,r,s ((S(U (p)×U (q)×Ur×Us)/〈Z p+q+r+s〉)o〈τ 〉
Ad(τ )= complex conjugation

su(2p+2r),p 6= r 0p,p,r,r ((S(U (p)×U (p)×Ur×Ur )/〈Z2p+2r 〉)o〈τ, Jp,r 〉

Ad(Jp,r )(X1,X2,X3,X4)= (X2,X1,X4,X3)

su(4p) 0p,p,p,p ((S(U (p)×U (p)×U (p)×U (p))/〈Z4p〉)o〈τ, J2p, Jp,p〉

Ad(J2p)(X1,X2,X3,X4)= (X3,X4,X1,X2)

su(2p) 0p P SU (p)o〈Fp,τ 〉

Ad(τ )= complex conjugation, Ad(Fp)= 1
so(p+q+r+s) 0p,q,r,s (O(p)×O(q)×O(r)×O(s))/〈−Ip+q+r+s〉

so(2p+2r),p 6= r 0p,p,r,r ((O(p)×O(p)×O(r)×O(r))/〈−I2p+2r 〉))o〈Jp,r 〉

Ad(Jp,r )(X1,X2,X3,X4)= (X2,X1,X4,X3)

so(4p), p 6= 2 0p,p,p,p ((O(p))4/〈−I4p〉)o〈J2p, Jp,p〉

Ad(J2p)(X1,X2,X3,X4)= (X3,X4,X1,X2)

so(8) 02,2,2,2 (U (1)4/Z ′)o〈ε1,2,ε1,3,ε1,4,S4〉

Ad(ε1,2)(X1,X2,X3,X4)= (−X1,−X2,X3,X4),etc
S4 acts by permutations

so(2p) 0p (O(p)/〈−Ip〉)×Fp

so(2p+2q), p 6= q 0p,q ((U (p)×U (q))/〈(−Ip,−Iq)〉)o〈τ 〉
Ad(τ )= complex conjugation

so(4p) 0p,p ((U (p)×U (p))/〈(−Ip,−Ip)〉)o〈τ, Jp〉,
Ad(Jp)(X,Y )= (Y,X)

so(4p) 0′p (Sp(p)/〈−Ip〉)×F ′p
sp(n) 0p (O(n)/〈−In〉)×Fp

sp(p+q), p 6= q 0p,q ((U (p)×U (q))/〈(−Ip,−Iq)〉)×〈τ 〉

sp(2p) 0p,p ((U (p)×U (p))/〈(−Ip,−Ip)〉)o〈τ, Jp〉,
Ad(τ )= complex conjugation, Ad(Jp)(X,Y )= (Y,X)

sp(2p) 0′p (Sp(p)/〈−Ip〉)×F ′p
sp(p+q+r+s) 0p,q,r,s (Sp(p)×Sp(q)×Sp(r)×Sp(s))/〈−Ip+q+r+s〉

sp(2p+2r),p 6= r 0p,p,r,r ((Sp(p)×Sp(p)×Sp(r)×Sp(r))/〈−I2p+2r 〉)o〈Jp,r 〉

Ad(Jp,r )(X1,X2,X3,X4)= (X2,X1,X4,X3)

sp(4p) 0p,p,p,p ((Sp(p))4/〈−I4p〉)o〈J2p, Jp,p〉

Ad(J2p)(X1,X2,X3,X4)= (X3,X4,X1,X2)

Table 5. Fixed point subgroups of Klein four-subgroups: classical cases.
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u0 0i L = Aut(u0)
0i

e6 01 ((SU (3)×SU (3)×U (1)×U (1))/〈(e
2π i

3 I, I,e
2π i

3 ,1),(I,e
2π i

3 I,e
−2π i

3 ,1)〉)o〈z,τ 〉,
Ad(τ )(X,Y,λ,µ)= (Y ,X ,λ,µ), Ad(z)(X,Y,λ,µ)= (Y,X,λ−1,µ−1)

e6 02 (SU (4)×Sp(1)×Sp(1)×U (1))/〈(i I,−1,1,i),(I,−1,−1,−1)〉)o〈τ 〉,
Ad(τ )(X,y,z,λ)= (J2 X(J2)

−1,y,z,λ−1)

e6 03 (SU (5)×U (1)×U (1))o〈τ ′〉, Ad(τ ′)(X,λ,µ)= (X ,λ−1,µ−1)

e6 04 ((Spin(8)×U (1)×U (1))/〈(−1,−1,1),(c,1,−1)〉)o〈τ 〉,
Ad(τ )(x,λ,µ)= (x,λ−1,µ−1)

e6 05 ((Sp(3)×Sp(1))/〈(−I,−1)〉)×〈τ 〉
e6 06 ((SO(6)×U (1))/〈(−I,−1)〉)o〈τ ′,z〉,

Ad(z)(X,λ)= (I3,3 X I3,3,λ
−1), Ad(τ ′)= 1

e6 07 Spin(9)×〈τ 〉
e6 08 ((Spin(5)×Spin(5))/〈(−1,−1)〉)o〈τ ′,z〉, Ad(z)(x,y)= (y,x)

e7 01 ((SU (6)×U (1)×U (1))/〈(e
2π i

3 I,e
−2π i

3 ,1),(−I,1,1)〉)o〈z〉,
Ad(z)(X,λ,µ)= (J3 X J−1

3 ,λ−1,µ−1)

e7 02 (Spin(8)×Sp(1)3)/〈(c,−1,1,1),(1,−1,−1,−1),(−1,−1,−1,1)〉
e7 03 ((Spin(10)×U (1)×U (1))/〈(c,i,1)〉)o〈z〉,

Ad(z)(x,λ,µ)= (e1xe−1
1 ,λ−1,µ−1)

e7 04 ((SU (6)×Sp(1)×U (1))/〈(e
2π i

3 I,1,e
−2π i

3 ),(−I,−1,1)〉)o〈z〉,
Ad(z)(X,y,λ)= (J3 X J−1

3 ,y,λ−1)

e7 05 ((Spin(6)×Spin(6)×U (1))/〈(c,c′,1),(1,−1,−1)〉)o〈z1,z2〉,
Ad(z1)(x,y,λ)= (y,x,λ−1), Ad(z2)(x,y,λ)= (e1xe−1

1 ,e1 ye−1
1 ,λ−1)

e7 06 F4×〈τ,ω〉

e7 07 (Sp(4)/〈−I 〉)×〈τ,ω′〉
e7 08 (SO(8)/〈−I 〉)×〈τ ′,ω′〉

e8 01 ((E6×U (1)×U (1))/〈(c,e
2π i

3 ,1)〉)o〈z〉, lz0 = f4⊕0⊕0
e8 02 (Spin(12)×Sp(1)×Sp(1))/〈(c,−1,1),(−1,−1,−1)〉
e8 03 ((SU (8)×U (1))/〈(−I,1),(i I,−1)〉)o〈z〉, lz0 = sp(4)⊕0
e8 04 ((Spin(8)×Spin(8))/〈(−1,−1),(c,c)〉)o〈z〉, Ad(z)(x,y)= (y,x)

f4 01 ((SU (3)×U (1)×U (1))/〈(e
2π i

3 I,e
−2π i

3 ,1)〉)o〈z〉, lz0 = so(3)⊕0⊕0
f4 02 ((Sp(2)×Sp(1)×Sp(1))/〈(−I,−1,−1)〉
f4 03 Spin(8)
g2 0 (U (1)×U (1))o〈z〉, Ad(z)(λ,µ)= (λ−1,µ−1)

Table 6. Fixed point subgroups of Klein four-subgroups: excep-
tional cases.
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