FRACTAL ENTROPY OF NONAUTONOMOUS SYSTEMS

RUI KUANG, WEN-CHIAO CHENG AND BING LI
FRACTAL ENTROPY OF NONAUTONOMOUS SYSTEMS

RUI KUANG, WEN-CHIAO CHENG AND BING LI

We define formulas of entropy dimension for a nonautonomous dynamical system consisting of a sequence of continuous self-maps of a compact metric space. This study reveals analogues of basic propositions for entropy dimension, such as the power rule, product rule and commutativity, etc. These properties allow us to convert to an equality an inequality found by de Carvalho (1997) concerning the product rule for the autonomous dynamical system. We also prove a subadditivity rule of entropy dimension for one-dimensional dynamics based on our previous work.

1. Introduction

Entropies are important factors in the study of autonomous (i.e., deterministic) dynamical systems that are induced by iterations of a single transformation. The concept of topological entropy was originally introduced by Adler, Konheim and McAndrew [Adler et al. 1965] as an invariant of topological conjugacy and a numerical measure for the complexity of a dynamical system. Later on, Bowen [1971] and Dinaburg [1971] gave an equivalent definition when the space is metrizable. Other studies [Brucks and Bruin 2004; Katok and Hasselblatt 1995; Pollicott and Yuri 1998; Walters 1982] and the references therein discuss related definitions and properties. In the 1990s, various authors introduced several refinements of the notion of entropy, leading to significant findings in many different directions.

The commutativity formula for topological entropy (and measure theoretic entropy) was proved first in [Dana and Montrucchio 1986]. With the development of the study of nonautonomous dynamical systems, Kolyada and Snoha [1996] introduced and studied the notion of topological entropy for a sequence of continuous
self-maps of a compact metric space. Many properties for such dynamical systems were studied in [Cánovas 2011; Huang et al. 2008; Kolyada et al. 1999; 2004; Mouron 2007] and elsewhere. Particularly, the commutativity of the topological entropy was proved and announced in [Kolyada and Snoha 1996]. This kind of problem for nonautonomous dynamical systems has been studied for many years by several authors. A good discussion of these properties and applications appears in [Balibrea et al. 1999; Cánovas and Linero 2002; 2005; Hric 1999; 2000; Kolyada and Snoha 1996; Zhu et al. 2006].

Although systems with positive entropy are much more complicated than those with zero entropy, zero entropy systems have various complexities; see [de Carvalho 1997; Dou et al. 2011; Ferenczi and Park 2007; Huang et al. 2007; Misiurewicz 1981; Misiurewicz and Smítal 1988; Misiurewicz and Szlenk 1980]. These studies give some methods of classifying zero entropy dynamical systems. De Carvalho [1997] introduced a notion of entropy dimension to distinguish zero topological entropy systems and obtained some basic properties of entropy dimension. Cheng and Li [2010] presented some examples to show that every number in (0, 1) can be attained by the entropy dimensions of the dynamical systems and a dynamical system whose entropy dimension is one and topological entropy is zero. These findings answered the question asked in [de Carvalho 1997].

This paper analyzes a nonautonomous discrete dynamical system \((X, T_{1,\infty})\) given by a compact metric space \(X\) and a sequence \(T_{1,\infty} = \{T_i\}_{i=1}^{\infty}\) of continuous self-maps of \(X\). The trajectory of a fixed point \(x\) is defined as the sequence \(x, T_1(x), T_2(T_1(x)), \ldots\). Our goal is to study the properties of fractal entropy of nonautonomous dynamical systems. The paper is organized as follows. Section 2 defines and studies the entropy dimension \(D(T_{1,\infty})\) of a nonautonomous dynamical system given by a sequence \(T_{1,\infty} = \{T_i\}_{i=1}^{\infty}\) of continuous maps of a compact metric space \(X\) into itself. Section 3 investigates some formulas of entropy dimension for nonautonomous dynamical systems. These include the power rule, product rule and topological equisemiconjugacy. Applying these results shows that the commutativity of entropy dimension is also true for nonautonomous dynamical systems and the product rule holds for the autonomous dynamics, which was given just as an inequality in [de Carvalho 1997]. Section 4 focuses on continuous maps on the unit interval \([0, 1]\). To show the subadditivity of entropy dimension, this paper uses the main result in [Cheng and Li 2010] to consider two continuous commuting interval maps. Finally, we discuss the notion of the asymptotical entropy dimension.

2. Equivalent definitions

Topological entropy is one of the most fundamental dynamical invariants associated to a continuous map. It roughly measures the orbit structure complexity of the map.
For nonautonomous dynamical systems, a sequence of continuous maps \(\{T_i\}_{i=1}^{\infty} \) is considered. The \(s \)-topological entropy dimension of a nonautonomous dynamical system is introduced in this section. After that, we give different types of equivalent definitions.

Let \((X, d)\) be a compact metric space and \(\{T_i\}_{i=1}^{\infty} \) be a sequence of continuous maps from \(X \) to itself. Denote by \(T_{1,\infty} \) the sequence \(\{T_i\}_{i=1}^{\infty} \) and by \((X, T_{1,\infty})\) the induced nonautonomous dynamical system.

For any \(i \in \mathbb{N} \), let \(T_i^0 = \text{Id} \), where \(\text{Id} \) is the identity map on \(X \). Set

\[
T^n_i = T_i + (n-1) \circ \cdots \circ T_{i+1} \circ T_i \quad \text{and} \quad T^{-n}_i = T_{i+1}^{-1} \circ \cdots \circ T_{i+(n-1)}^{-1}.
\]

For any open cover \(\mathcal{A} \) of \(X \), define

\[
T^{-n}_i(\mathcal{A}) = \{T^{-n}_i(A) : A \in \mathcal{A}\}
\]

and

\[
\mathcal{A}_i^n(T_{1,\infty}) = \bigvee_{j=0}^{n-1} T^{-j}_i(\mathcal{A}) = \{A_{i_0} \cap T_{i_1}^{-1}(A_{i_1}) \cap \cdots \cap T_{i_{n-1}}^{-1}(A_{i_{n-1}}) : A_{i_j} \in \mathcal{A}, 1 \leq j \leq n-1\}.
\]

We write \(\mathcal{A}_i^n \) for simplicity instead of \(\mathcal{A}_i^n(T_{1,\infty}) \) if there is no confusion. Let \(N(\mathcal{A}) \) be the minimal possible cardinality of a subcover chosen from \(\mathcal{A} \).

Definition 2.1. Let \(T_i : X \to X, i = 1, 2, 3, \ldots \), be a sequence of continuous maps and \(s \geq 0 \) be a real number. The \(s \)-topological entropy of \(T_{1,\infty} \) is defined as

\[
D(s, T_{1,\infty}) = \sup_{\mathcal{A}} D(s, T_{1,\infty}, \mathcal{A}),
\]

where \(\mathcal{A} \) ranges over all open covers of \(X \) and

\[
D(s, T_{1,\infty}, \mathcal{A}) = \limsup_{n \to \infty} \frac{1}{n^s} \log N(\mathcal{A}_i^n).
\]

When \(T_i = T \) for all \(i \in \mathbb{N} \), \(D(s, T_{1,\infty}) \) is just the \(s \)-topological entropy of \(T \) defined in [Cheng and Li 2010] (denoted by \(D(s, T) \)). Furthermore, if \(s = 1 \) and \(T_i = T \) for all \(i \in \mathbb{N} \), it is trivial that \(D(s, T_{i,\infty}) \) is just the topological entropy of \(T \) (usually denoted by \(h(T) \)).

From **Definition 2.1** it follows that the \(s \)-topological entropy \(D(s, T_{1,\infty}) \) enjoys the following properties.

Proposition 2.2.

(i) The map \(s > 0 \mapsto D(s, T_{1,\infty}) \) is nonnegative and decreasing with \(s \).

(ii) There exists \(s_0 \in [0, +\infty) \) such that

\[
D(s, T_{1,\infty}) = \begin{cases} +\infty & \text{if } 0 < s < s_0, \\ 0 & \text{if } s > s_0. \end{cases}
\]
Proposition 2.2(ii) indicates that the value of $D(s, T_{1,\infty})$ jumps from infinity to 0 at both sides of some point s_0, which is similar to a fractal measure. Analogously to the fractal dimension, define the entropy dimension of $T_{1,\infty}$ as follows.

Definition 2.3. Let $(X, T_{1,\infty})$ be a nonautonomous dynamical system. Define the entropy dimension of $T_{1,\infty}$ to be

$$D(T_{1,\infty}) = \sup \{ s > 0 : D(s, T_{1,\infty}) = \infty \} = \inf \{ s > 0 : D(s, T_{1,\infty}) = 0 \}.$$

When $T_i = T$ for all $i \in \mathbb{N}$, then $D(T_{1,\infty}) = D(T)$, where $D(T)$ is the entropy dimension of T defined in [Cheng and Li 2010; Dou et al. 2011].

We now turn to definitions motivated by analogues of the topological entropy. Let $n \in \mathbb{N}$ and define a new (Bowen) metric d_n on X by

$$d_n(x, y) = \max_{0 \leq i < n} d(T_i^1(x), T_i^1(y)),$$

where $x, y \in X$.

Definition 2.4. A set $F \subset X$ is called an (n, ε)-spanning set of X for $T_{1,\infty}$ if, for any $x \in X$, there exists $y \in F$ with $d_n(x, y) \leq \varepsilon$. A dual definition is as follows. A set $E \subset X$ is called an (n, ε)-separated set of X for $T_{1,\infty}$ if $d_n(x, y) > \varepsilon$ for every pair of distinct point $x, y \in E, x \neq y$.

Define

$$r(T_{1,\infty}, n, \varepsilon) = \min \{ \#F : F \subset X \text{ is an } (n, \varepsilon)\text{-spanning set for } T_{1,\infty} \},$$

$$s(T_{1,\infty}, n, \varepsilon) = \max \{ \#E : E \subset X \text{ is an } (n, \varepsilon)\text{-separated set for } T_{1,\infty} \},$$

where $\#E$ is the number of elements in E. The following lemma describes the relationship among these two quantities and the number of covering sets.

Lemma 2.5. Let $T_i : X \to X$ be a sequence of continuous maps of a compact metric space (X, d).

(i) For any open cover \mathcal{A} of X with Lebesgue number δ,

$$n \leq r(T_{1,\infty}, n, \delta/2) \leq D(T_{1,\infty}, n, \delta/2).$$

(ii) For any $\varepsilon > 0$ and open cover \mathcal{A} with $\text{diam}(\mathcal{A}) := \max \{ \text{diam}(A) : A \in \mathcal{A} \} \leq \varepsilon$,

$$r(T_{1,\infty}, n, \varepsilon) \leq s(T_{1,\infty}, n, \varepsilon) \leq \mathcal{N}(\mathcal{A})^n.$$

Proof. (i) Since any maximal (n, ε)-separated set of X for $T_{1,\infty}$ is (n, ε)-spanning, the second inequality of (2-1) holds. Thus, it suffices to prove the first inequality. Let F be a $(n, \delta/2)$-spanning set for X of cardinality $r(T_{1,\infty}, n, \delta/2)$. Then

$$X = \bigcup_{x \in F} \bigcap_{i=0}^{n-1} T_1^{-i} B(T_1^i x, \delta/2).$$
Note that $B(T^i x, \delta/2)$ is a subset of a member of \mathcal{A} for any $0 \leq i \leq n - 1$ and $x \in F$; thus,

$$\mathcal{N}(\mathcal{A}^n) \leq r(T_{1,\infty}, n, \varepsilon).$$

(ii) The first inequality of (2-2) holds, as in (i). It suffices to prove the second inequality of (2-2). Let E be an (n, ε)-separated set of cardinality $s(T_{1,\infty}, n, \varepsilon)$. Then no member of the cover \mathcal{A}^n can contain two elements of E since $\text{diam}(\mathcal{A}) \leq \varepsilon$. This implies

$$s(T_{1,\infty}, n, \varepsilon) \leq \mathcal{N}(\mathcal{A}^n).$$

\square

Lemma 2.5 immediately implies the following property, which indicates that the s-topological entropy for $T_{1,\infty}$ can be equivalently defined by the spanning and separated sets.

Proposition 2.6. Let $T_i : X \to X$, $i = 1, 2, 3, \ldots$, be a sequence of continuous maps and $s \geq 0$ a real number. Then

$$D(s, T_{1,\infty}) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n^s} \log r(T_{1,\infty}, n, \varepsilon) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n^s} \log s(T_{1,\infty}, n, \varepsilon).$$

3. Dynamical propositions

The entropy dimension we defined for a nonautonomous dynamical system is a topological equiconjugacy invariant. Thus, we can consider those two entropy zero dynamical systems as being not the same or being not equivalent by different entropy dimension. The main idea of this section is quite similar to that of Kolyada and Snoha’s approximations. The basic proposition of entropy dimension is the power rule. The inequality of the power rule can be shown as follows.

Lemma 3.1 [Kolyada and Snoha 1996]. Let \mathcal{A}, \mathcal{B} be any two open covers of X. Then

(i) $\mathcal{N}(\mathcal{A} \lor \mathcal{B}) \leq \mathcal{N}(\mathcal{A})\mathcal{N}(\mathcal{B})$;

(ii) $\mathcal{N}(T_i^{-n}\mathcal{A}) \leq \mathcal{N}(\mathcal{A})$;

(iii) $T^{-1}(\mathcal{A} \lor \mathcal{B}) = T^{-1}(\mathcal{A}) \lor T^{-1}(\mathcal{B})$;

(iv) $\mathcal{N}(\mathcal{A}) \geq \mathcal{N}(\mathcal{B})$ when \mathcal{A} is finer than \mathcal{B} (denoted by $\mathcal{A} > \mathcal{B}$).

Proposition 3.2. Let X be a compact topological space and $T_{1,\infty}$ a sequence of continuous maps from X to itself. Then

$$D(s, T_{1,\infty}^m) \leq m^s D(s, T_{1,\infty})$$

for any $s > 0$ and $m \in \mathbb{N}$, where $T_{1,\infty}^m = \{ T_{i+1}^m \}_{i=0}^\infty$. As a consequence,

$$D(T_{1,\infty}^m) \leq D(T_{1,\infty}).$$
Proof. Let \(\mathcal{A} \) be any open cover of \(X \). For any \(n \in \mathbb{N} \),
\[
\mathcal{A} \vee T_{1}^{-1}(\mathcal{A}) \vee T_{1}^{-2}(\mathcal{A}) \vee \cdots \vee T_{1}^{-(nm-1)}(\mathcal{A})
\]
\[
> \mathcal{A} \vee T_{1}^{-m}(\mathcal{A}) \vee T_{1}^{-2m}(\mathcal{A}) \vee \cdots \vee T_{1}^{-(n-1)m}(\mathcal{A}),
\]
so by Lemma 3.1(iv),
\[
\mathcal{N}(\mathcal{A} \vee T_{1}^{-1}(\mathcal{A}) \vee \cdots \vee T_{1}^{-(nm-1)}(\mathcal{A})) \geq \mathcal{N}(\mathcal{A} \vee T_{1}^{-m}(\mathcal{A}) \vee \cdots \vee T_{1}^{-(n-1)m}(\mathcal{A})).
\]
Note that
\[
\mathcal{A} \vee T_{1}^{-m}(\mathcal{A}) \vee T_{1}^{-2m}(\mathcal{A}) \vee \cdots \vee T_{1}^{-(n-1)m}(\mathcal{A})
\]
\[
= \mathcal{A} \vee (T_{1}^{m})^{-1}(\mathcal{A}) \vee (T_{1}^{m})^{-1} \circ (T_{m+1}^{m})^{-1}(\mathcal{A}) \vee \cdots
\]
\[
\vee (T_{1}^{m})^{-1} \circ (T_{m+1}^{m})^{-1} \circ \cdots \circ (T_{(n-2)m+1}^{m})^{-1}(\mathcal{A}),
\]
and thus
\[
\limsup_{n \to \infty} \frac{1}{(mn)^{s}} \log \mathcal{N}(\mathcal{A} \vee T_{1}^{-1}(\mathcal{A}) \vee T_{1}^{-2}(\mathcal{A}) \vee \cdots \vee T_{1}^{-(nm-1)}(\mathcal{A}))
\]
\[
\geq \frac{1}{m^{s}} D(s, T_{1}^{m}, \mathcal{A}).
\]
Therefore,
\[
D(s, T_{1}, \mathcal{A}) = \limsup_{k \to \infty} \frac{1}{k^{s}} \log \mathcal{N}(\mathcal{A}_{1}^{k}) \geq \limsup_{n \to \infty} \frac{1}{(nm)^{s}} \log \mathcal{N}(\mathcal{A}_{1}^{nm})
\]
\[
= \limsup_{n \to \infty} \frac{1}{(nm)^{s}} \log \mathcal{N}(\mathcal{A} \vee T_{1}^{-1}(\mathcal{A}) \vee T_{1}^{-2}(\mathcal{A}) \vee \cdots \vee T_{1}^{-(nm-1)}(\mathcal{A}))
\]
\[
\geq \frac{1}{m^{s}} D(s, T_{1}^{m}, \mathcal{A}).
\]
Thus, \(D(s, T_{1}^{m}) \leq m^{s} D(s, T_{1}) \).

For the entropy dimension, assume \(t > D(T_{1}) \) is any real number. Then \(D(t, T_{1}) = 0 \), which, combined with (3-1), implies \(D(t, T_{1}^{m}) = 0 \), so \(t \geq D(T_{1}^{m}) \). Therefore, \(D(T_{1}^{m}) \leq D(T_{1}) \) by the arbitrariness of \(t \).

[Kolyada and Snoha 1996] gives an example showing that the inequality in (3-1) can be sharp when \(s = 1 \). The following two propositions indicate that the inequality in (3-1) can be an equality under some conditions.

Proposition 3.3 (power rule). Let \(X \) be a compact topological space and \(T_{1} \) be a sequence of continuous maps from \(X \) to itself. If \(T_{1} \) is periodic with period \(m \in \mathbb{N} \), that is, \(T_{im+j} = T_{j} \) for any \(1 \leq j \leq m \) and \(i \geq 0 \), then
\[
D(s, T_{1}^{m}) = m^{s} D(s, T_{1}),
\]
for any \(s > 0 \). As a consequence, \(D(T_{1}^{m}) = D(T_{1}) \).
Proof. Assume \(m \geq 2 \) since the case \(m = 1 \) is trivial. From Proposition 3.2, it is only necessary to prove \(D(s, T_{1,\infty}^m) \geq m^s D(s, T_{1,\infty}) \).

Let \(\mathcal{A} \) be any open cover of \(X \) and \(k = nm + r \), where \(n \geq 1 \) and \(1 \leq r \leq m \). Combining \(T_{1,\infty} = \{ T_1, T_2, \ldots, T_m, T_1, T_2, \ldots, T_m, \ldots \} \) and \(T_{1,\infty}^m = \{ T_1^m, T_1^m, \ldots \} \) with Lemma 3.1(iii),

\[
T_1^{-im}(\mathcal{A}) \lor T_1^{-(im+1)}(\mathcal{A}) \lor \cdots \lor T_1^{-(i+1)m-1}(\mathcal{A}) = T_1^{-im}(\mathcal{A} \lor T_1^{-(m-1)}(\mathcal{A})) \lor \cdots \lor T_1^{-(m-1)}(\mathcal{A}) = (T_1^{-im} T_1^{-(m-1)})^{-1}(\mathcal{A} \lor \cdots \lor T_1^{-(m-1)}(\mathcal{A}))
\]

for \(i = 0, 1, 2, \ldots \). Therefore, \(\mathcal{A}_1^k(T_{1,\infty}) \) can be written as

\[
(\mathcal{A} \lor T_1^{-1}(\mathcal{A}) \lor \cdots \lor T_1^{-(m-1)}(\mathcal{A})) \lor (T_1^{m-n}(\mathcal{A}) \lor T_1^{-(m-1)}(\mathcal{A}) \lor \cdots \lor T_1^{-(2m-1)}(\mathcal{A})) \lor \cdots \lor (T_1^{m-nm}(\mathcal{A}) \lor T_1^{-(nm+1)}(\mathcal{A}) \lor \cdots \lor T_1^{-(nm+r-1)}(\mathcal{A})) = (\mathcal{A} \lor T_1^{-1}(\mathcal{A}) \lor \cdots \lor T_1^{-(m-1)}(\mathcal{A})) \lor (T_1^{m-1}(\mathcal{A}) \lor T_1^{-(m-1)}(\mathcal{A}) \lor \cdots \lor T_1^{-(m-1)}(\mathcal{A})) \lor \cdots \lor (T_1^{mnm}(\mathcal{A}) \lor T_1^{-(nm-1)}(\mathcal{A}^r) \lor \cdots \lor T_1^{-(nm-1)}(\mathcal{A}^r)) = (\mathcal{A}_1^m(T_{1,\infty}))^n(T_{1,\infty}^m) \lor (T_{1,\infty}^m)^{-1}(\mathcal{A}_1^r(T_{1,\infty})).
\]

Combining parts (i) and (iii) of Lemma 3.1, we obtain

\[
\mathcal{N}(\mathcal{A}_1^{nm+r}(T_{1,\infty})) = \mathcal{N}(\mathcal{A}_1^m(T_{1,\infty}))^n(T_{1,\infty}^m) \lor (T_{1,\infty}^m)^{-1}(\mathcal{A}_1^r(T_{1,\infty})) \leq \mathcal{N}(\mathcal{A}_1^m(T_{1,\infty}))^n(T_{1,\infty}^m) \mathcal{N}(\mathcal{A}_1^r(T_{1,\infty})).
\]

Thus,

\[
D(s, T_{1,\infty}^m, \mathcal{A}_1^m(T_{1,\infty})) = \limsup_{n \to \infty} n^{-s} \log \mathcal{N}(\mathcal{A}_1^m(T_{1,\infty}))^n(T_{1,\infty}^m) \geq \limsup_{n \to \infty} n^{-s} (\log \mathcal{N}(\mathcal{A}_1^{nm+r}(T_{1,\infty})) - \log \mathcal{N}(\mathcal{A}_1^r(T_{1,\infty}))) = \limsup_{n \to \infty} n^{-s} \log \mathcal{N}(\mathcal{A}_1^{nm+r}(T_{1,\infty})) = m^s \limsup_{n \to \infty} (nm + r)^{-s} \log \mathcal{N}(\mathcal{A}_1^{nm+r}(T_{1,\infty})) = m^s \limsup_{k \to \infty} k^{-s} \log \mathcal{N}(\mathcal{A}_1^k(T_{1,\infty})) = m^s D(s, T_{1,\infty}, \mathcal{A}),
\]

which implies that \(D(s, T_{1,\infty}^m) \geq m^s D(s, T_{1,\infty}) \) by the arbitrariness of \(\mathcal{A} \).

\(\square \)
Applying Proposition 3.3 to the case of one map as a sequence leads to the following, which solves a problem in [de Carvalho 1997], where the author gave an inequality.

Corollary 3.4. Let \((X, T)\) be a topological dynamical system. Then
\[
D(s, T^m) = m^s D(s, T)
\]
for any \(s > 0\) and \(m \in \mathbb{N}\). In particular, \(D(T^m) = D(T)\).

Now let us consider the sequence of equicontinuous maps from \(X\) to itself; that is, \(T_{1,\infty} = \{T_i\}_{i=1}^\infty\) is equicontinuous on \(X\). More precisely, for any \(x \in X\) and \(\varepsilon > 0\), there exists \(\delta > 0\) such that \(d(T_i x, T_i y) < \varepsilon\) for all \(i = 1, 2, \ldots\) whenever \(d(x, y) < \delta\). We know that \(\delta\) can be independent of the choice of \(x\) when \(X\) is compact.

Proposition 3.5 (power rule). Let \((X, d)\) be a compact metric space and \(T_{1,\infty}\) be a sequence of equicontinuous maps from \(X\) to itself. Then
\[
D(s, T_{1,\infty}^m) = m^s D(s, T_{1,\infty})
\]
for any \(s > 0\).

Proof. By Proposition 3.2, it suffices to prove \(D(s, T_{1,\infty}^m) \geq m^s D(s, T_{1,\infty})\) for \(m \geq 2\). For any \(\varepsilon > 0\), let
\[
\delta(\varepsilon) = \varepsilon + \sup_{i \geq 1} \max_{k=1,...,m-1} \sup_{x, y \in X} \{d(T_{i}^k(x), T_{i}^k(y)) : d(x, y) \leq \varepsilon\}.
\]
Since \(X\) is compact and \(T_{1,\infty}\) is equicontinuous, we have:

(i) if \(\varepsilon \to 0\), then \(\delta(\varepsilon) \to 0\);

(ii) if \(d(x, y) \leq \varepsilon\), then \(d(T_{i}^k(x), T_{i}^k(y)) \leq \delta(\varepsilon)\) for any \(i \geq 1\) and \(k = 1, 2, \ldots, m-1\).

Let \(E\) be any \((nm, \delta(\varepsilon))\)-separated set for \(T_{1,\infty}\). Then, \(E\) is an \((n, \varepsilon)\)-separated set for \(T_{1,\infty}^m\) and \(s_{nm}(T_{1,\infty}, \delta(\varepsilon)) \leq s_n(T_{1,\infty}^m, \varepsilon)\).

Therefore, writing \(k = nm + r\) with \(1 \leq r \leq m\), we have the following calculation:

\[
D(s, T_{1,\infty}^m) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n^s} \log s_n(T_{1,\infty}^m, \varepsilon)
\]
\[
\geq \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n^s} \log s_{(n-1)m+r}(T_{1,\infty}, \delta(\varepsilon))
\]
\[
= m^s \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{((n-1)m + r)^s} \log s_{(n-1)m+r}(T_{1,\infty}, \delta(\varepsilon))
\]
\[
\geq m^s \lim_{\delta(\varepsilon) \to 0} \limsup_{k \to \infty} \frac{1}{k^s} \log s_k(T_{1,\infty}, \delta(\varepsilon))
\]
\[
= m^s D(s, T_{1,\infty}).
\]
Proposition 3.6 (monotonicity). Let \(X \) be a compact topological space and \(T_{1,\infty} \) a sequence of continuous maps from \(X \) to itself. Then

\[
D(s, T_{i,\infty}) \leq D(s, T_{j,\infty})
\]

for any \(s > 0 \) and \(1 \leq i \leq j \leq +\infty \).

Proof. Let \(\mathcal{A} \) be any open cover of \(X \). Lemma 3.1(i) implies

\[
N\left(\bigvee_{j=0}^{n-1} T_{i-j}^{-1}(\mathcal{A})\right) = N\left(\mathcal{A} \bigvee_{j=1}^{n-1} T_{i-j}^{-1}(\mathcal{A})\right) \leq N(\mathcal{A}) N\left(\bigvee_{j=1}^{n-1} T_{i-1-j}^{-1}(\mathcal{A})\right).
\]

Lemma 3.1(ii) shows that

\[
N\left(\bigvee_{j=0}^{n-1} T_{i-j}^{-1}(\mathcal{A})\right) = N\left(T_{i-1}^{-1} \bigvee_{j=0}^{n-2} T_{i+1-j}^{-1}(\mathcal{A})\right) \leq N\left(\bigvee_{j=0}^{n-2} T_{i+1-j}^{-1}(\mathcal{A})\right) = N(\mathcal{A}_{i+1}^{n-2}).
\]

Combining (3-3) and (3-4) leads to

\[
N(\mathcal{A}_{i}^{n}) \leq N(\mathcal{A}) N(\mathcal{A}_{i+1}^{n-2}).
\]

Therefore,

\[
D(s, T_{i,\infty}, \mathcal{A}) = \limsup_{n \to \infty} \frac{1}{n^s} \log N(\mathcal{A}_{i}^{n}) \leq \limsup_{n \to \infty} \frac{1}{n^s} \log(N(\mathcal{A}) N(\mathcal{A}_{i+1}^{n-2})).
\]

Thus,

\[
D(s, T_{i,\infty}, \mathcal{A}) \leq \limsup_{n \to \infty} \frac{1}{(n-2)^s} \log N(\mathcal{A}_{i+1}^{n-2}) = D(s, T_{i+1,\infty}, \mathcal{A}),
\]

and \(D(s, T_{i,\infty}) \leq D(s, T_{i+1,\infty}) \) by the arbitrariness of \(\mathcal{A} \). Hence, (3-2) holds. \(\square \)

Applying the monotonicity shows that the \(s \)-topological entropy for the composition of two maps does not depend on the order, as the following theorem indicates.

Theorem 3.7 (commutativity). Let \(X \) be a compact topological space and let \(T, S \) be two continuous maps from \(X \) to itself. Then

\[
D(s, T \circ S) = D(s, S \circ T)
\]

for any \(s > 0 \).

Proof. From Proposition 3.6, we obtain

\[
D(s, \{S, T, S, T, \ldots\}) \leq D(s, \{T, S, T, S, \ldots\}) \leq D(s, \{S, T, S, T, \ldots\}),
\]

which implies

\[
D(s, \{S, T, S, T, \ldots\}) = D(s, \{T, S, T, S, \ldots\}).
\]
By Proposition 3.3,
\[D(s, T \circ S) = D(s, \{ T \circ S, T \circ S, \ldots \}) = 2^s D(s, \{ S, T, S, T, \ldots \}) = 2^s D(s, \{ S \circ T, S \circ T, \ldots \}) = D(s, S \circ T). \]

Corollary 3.8. Let \(X \) be a compact topological space and \(T_i (i = 1, 2, \ldots, n) \) be the continuous self-maps on \(X \). Then, for any \(1 < i \leq n \) and \(s > 0 \),
\[D(s, T_n \circ \cdots \circ T_2 \circ T_1) = D(s, T_{i-1} \circ \cdots \circ T_2 \circ T_1 \circ T_n \circ \cdots \circ T_i). \]

Proof. By Theorem 3.7,
\[D(s, T_n \circ \cdots \circ T_i \circ T_{i-1} \circ \cdots \circ T_2 \circ T_1) = D(s, (T_n \circ \cdots \circ T_i) \circ (T_{i-1} \circ \cdots \circ T_2 \circ T_1)) \]
\[= D(s, (T_{i-1} \circ \cdots \circ T_2 \circ T_1) \circ (T_n \circ \cdots \circ T_i)) \]
\[= D(s, T_{i-1} \circ \cdots \circ T_2 \circ T_1 \circ T_n \circ \cdots \circ T_i). \]

The following corollary was given in [Cheng and Li 2010]; however, this paper provides a quick proof from the commutativity (Theorem 3.7).

Corollary 3.9. Let \(X \) be a compact topological space and \(T_1, T_2 \) be two continuous maps on \(X \). If \((X, T_1) \) is conjugate to \((Y, T_2) \), then \(D(s, T_1) = D(s, T_2) \) for any \(s > 0 \).

Proof. Let \(\phi \) be a conjugacy between \(T_1 \) and \(T_2 \). Since \(T_2 = \phi \circ T_1 \circ \phi^{-1} \), Theorem 3.7 shows that
\[D(s, T_2) = D(s, (\phi \circ T_1) \circ \phi^{-1}) = D(s, T_1). \]

As Corollary 3.9 shows, the \(s \)-topological entropy \(D(s, T) \) for an autonomous dynamical system is a conjugate invariant quantity. For the nonautonomous case, the definition of conjugacy must be adapted to the following.

Definition 3.10. Let \((X, \{T_i\}_{i=1}^\infty)\) and \((Y, \{S_i\}_{i=1}^\infty)\) be two nonautonomous dynamical systems. Denote by \(\pi_{1,\infty} = \{\pi_i\}_{i=1}^\infty \) a sequence of equicontinuous surjective maps from \(X \) to \(Y \). If
\[\pi_{i+1} \circ T_i = S_i \circ \pi_i \]
for every \(i \geq 1 \), we say that \(\pi_{1,\infty} \) is a topological equisemiconjugacy between \(T_{1,\infty} \) and \(S_{1,\infty} \), and the dynamical system \((X, T_{1,\infty})\) is topologically equisemiconjugate with \((Y, S_{1,\infty})\). Furthermore, if \(\pi_{1,\infty} \) is an equicontinuous sequence of homeomorphisms such that the sequence \(\pi_{1,\infty}^{-1} = \{\pi_i^{-1}\}_{i=1}^\infty \) of inverse homeomorphisms is also equicontinuous, we say that \(\pi_{1,\infty} \) is a topological equiconjugacy between \(T_{1,\infty} \) and \(S_{1,\infty} \), and the dynamical system \((X, T_{1,\infty})\) is topologically equiconjugate with \((Y, S_{1,\infty})\).
Theorem 3.11. Let \((X, d)\) and \((Y, \rho)\) be compact metric spaces and \(T_{1,\infty} \) and \(S_{1,\infty}\) be the sequences of continuous maps from \(X\) and \(Y\) into themselves, respectively. If the system \((X, T_{1,\infty})\) is equisemiconjugate with \((Y, S_{1,\infty})\), then

(3-5) \[D(s, S_{1,\infty}) \leq D(s, T_{1,\infty}) \]

for any \(s > 0\).

Proof. Let \(\pi_{1,\infty}\) be the equisemiconjugacy between \(X\) and \(Y\). For any given \(\varepsilon > 0\), noting that \(\pi_{1,\infty}\) is a sequence of equicontinuous maps from \(X\) onto \(Y\) and \(X\) is compact, there exists \(\delta(\varepsilon) > 0\) such that if \(\rho(\pi_{i}(x), \pi_{i}(y)) > \varepsilon\) for some \(i \geq 1\), then \(d(x, y) > \delta(\varepsilon)\). Let \(E \subseteq Y\) be an \((n, \varepsilon)\)-separated set for \(S_{1,\infty}\) with maximal cardinality \(s(S_{1,\infty}, n, \varepsilon)\). Choose one point from each fiber \(\pi_{1}^{-1}(y)\), \(y \in E\) and denote by \(E_{X}\) the set of such points. Then \(E_{X} \subseteq X\) is an \((n, \delta(\varepsilon))\)-separated set for \(T_{1,\infty}\). Therefore, \(s(T_{1,\infty}, n, \delta(\varepsilon)) \geq s(S_{1,\infty}, n, \varepsilon)\), which implies (3-5).

Apply Theorem 3.11, the following statement holds.

Corollary 3.12. Let \((X, d)\) and \((Y, \rho)\) be compact metric spaces and \(T_{1,\infty} \) and \(S_{1,\infty}\) be the sequences of continuous maps from \(X\) and \(Y\) into themselves, respectively. If the system \((X, T_{1,\infty})\) is equiconjugate with \((Y, S_{1,\infty})\), then

\[D(s, S_{1,\infty}) = D(s, T_{1,\infty}) \]

for any \(s > 0\). As a result, \(D(S_{1,\infty}) = D(T_{1,\infty})\).

Theorem 3.13 (product rule). Let \((X, d)\) and \((Y, \rho)\) be compact metric spaces. Let \(\{T_{i}\}_{i=1}^{\infty}\) and \(\{S_{i}\}_{i=1}^{\infty}\) be two sequences of continuous maps on \(X\) and \(Y\), respectively. Define a metric \(d^{*}\) on \(X \times Y\) by \(d^{*}(x_{1}, y_{1}), (x_{2}, y_{2})) = \max\{d(x_{1}, x_{2}), \rho(y_{1}, y_{2})\}\) and a sequence of transformations on \(X \times Y\) by \((T_{i} \times S_{i})(x, y) = (T_{i}x, S_{i}y)\). Then

\[D(s, T_{1,\infty} \times S_{1,\infty}) \leq D(s, T_{1,\infty}) + D(s, S_{1,\infty}) \]

for any \(s > 0\), where \(T_{1,\infty} \times S_{1,\infty} = \{T_{i} \times S_{i}\}_{i=1}^{\infty}\).

Proof. We know that balls in the \(n\)-Bowen metric \(d_{n}^{*}\) are products of balls on \(X\) and \(Y\) since balls in the product metric \(d^{*}\) are products of balls on \(X\) and \(Y\). Therefore,

\[r(T_{1,\infty} \times S_{1,\infty}, n, \varepsilon) \leq r(T_{1,\infty}, n, \varepsilon)r(S_{1,\infty}, n, \varepsilon). \]

Thus \(D(s, T_{1,\infty} \times S_{1,\infty}) \leq D(s, T_{1,\infty}) + D(s, S_{1,\infty})\).

4. Subadditivity

For \(S, T\) two continuous functions from the compact metric space \(X\) to itself, some additional conditions are necessary to obtain some interesting results. It is natural to assume that \(S\) and \(T\) commute, that is, \(S \circ T = T \circ S\). For instance, in [Hu 1993], the subadditivity of topological entropy \(h(S \circ T) \leq h(S) + h(T)\) was proved.
for diffeomorphisms on C^∞ compact Riemannian manifolds. This section also investigates the subadditivity for entropy dimension in one-dimensional dynamics. For convenience, the following two definitions use the same concept and notation adopted in [Cheng and Li 2010].

Definition 4.1. An interval map $T : [0, 1] \to [0, 1]$ is called piecewise monotone continuous if there exist points $0 = a_0 < a_1 < \cdots < a_N = 1$ such that $T|_{(a_{i-1}, a_i)}$ is continuous and monotone.

Definition 4.2. Let T be a piecewise monotone continuous map. If J is a maximal interval on which $T|_J$ is continuous and monotone, then $T : J \to T(J)$ is called a branch or lap of T. The number of laps of T is denoted by $l(T)$.

Rothschild [1971] and Misiurewicz and Szlenk [1980] independently obtained the topological entropy formula for a piecewise monotone map (see [Brucks and Bruin 2004; Pollicott and Yuri 1998]). The following theorem gives a generalized s-topological entropy formula.

Theorem 4.3 [Cheng and Li 2010]. Let $T : [0, 1] \to [0, 1]$ be a piecewise monotone continuous map and $s > 0$ a real number. Then

$$D(s, T) = \limsup_{n \to \infty} \frac{\log l(T^n)}{n^s}.$$

Theorem 4.4 (subadditivity). Let T, S be piecewise monotone continuous maps such that $T \circ S = S \circ T$ and let $s > 0$ be a real number. Then

$$D(s, S \circ T) \leq D(s, S) + D(s, T).$$

Hence, we have the inequality

$$D(S \circ T) \leq \max \{D(S), D(T)\}.$$

Proof. Since $S \circ T = T \circ S$, it is trivial that $S^p \circ T^q = T^q \circ S^p$ for all $p, q \in \mathbb{N}$.

The number of intervals of monotonicity of $S^n \circ T^n$ is smaller than or equal to $l(T^n)l(S^n)$. Thus, we obtain that $l((S \circ T)^n) \leq l(S^n)l(T^n)$. The previous theorem gives that

$$D(s, S \circ T) = \limsup_{n \to \infty} \frac{\log l((S \circ T)^n)}{n^s} \leq \limsup_{n \to \infty} \frac{\log l(S^n)l(T^n)}{n^s} \leq \limsup_{n \to \infty} \frac{\log l(S^n)}{n^s} + \limsup_{n \to \infty} \frac{\log l(T^n)}{n^s} = D(s, S) + D(s, T).$$

For any $t > \max \{D(S), D(T)\}$, it is clear that $D(t, S) = D(t, T) = 0$ by the definition of entropy dimension. Thus, $D(t, S \circ T) = 0$, which implies $D(S \circ T) \leq t$. It follows that $D(S \circ T) \leq \max \{D(S), D(T)\}$ by the arbitrariness of t. \qed
Corollary 4.5. Let T, S be piecewise monotone continuous maps such that $T \circ S = S \circ T$. If $D(S) = D(T) = 0$, then $D(S \circ T) = 0$.

Note that in general from $D(S) > 0$ or $D(T) > 0$, it may not possible to deduce that $D(S \circ T) > 0$. To find a result in this setting, calculate the left shift S and right shift T on the symbolic space $\{1, 2\}^\mathbb{Z}$. Then $S \circ T$ is the identity map. It is trivial that $D(S) = 1$ and $D(T) = 1$. However, $D(S \circ T) = 0$. This example also indicates that the inequality in (4-2) can be sharp. On the other hand, it is easy to see that the inequality can be an equality. For example, if S is the identity map, then $D(S) = 0$, and $D(S \circ T) = D(T) = \max \{D(S), D(T)\}$. Some related properties of topological entropy of composition, $S \circ T$, can be found in [Goodwyn 1972; Raith 2004].

Consider a sequence $T_{1,\infty} = \{T_i\}_{i=1}^\infty$ of continuous functions from a compact metric space X to itself. Proposition 3.6 shows a kind of monotonicity of $\{D(s, T_{i,\infty})\}$ on $i \in \mathbb{N}$. Here, we can introduce the notion of the asymptotical entropy dimension of the considered system as the limit of entropy dimension in

$$D^*(T_{\infty}) = \lim_{i \to \infty} D(T_{i,\infty}),$$

where $T_{i,\infty}$ is the tail T_i, T_{i+1}, \ldots of the sequence $T_{1,\infty}$.

Theorem 4.6. Let $T_{1,\infty} = \{T_i\}_{i=1}^\infty$ be a sequence of monotone continuous functions from X to itself, where X is the unit interval $[0, 1]$ or unit circle S^1. Then the entropy dimension is $D(T_{1,\infty}) = 0$. Consequently, $D^*(T_{\infty}) = 0$.

Proof. Consider the unit interval case first. Assume that $E = \{x_1, x_2, \ldots, x_k\}$ is a subset of $[0, 1]$ with $x_1 \leq x_2 \leq \cdots \leq x_k$. Since the functions T_1, T_2, T_3, \ldots are monotone, for every $j = 0, 1, 2, 3, \ldots$, we obtain either

$$T^j_1(x_1) \leq T^j_1(x_2) \leq T^j_1(x_3) \leq \cdots \leq T^j_1(x_k)$$

or

$$T^j_1(x_1) \geq T^j_1(x_2) \geq T^j_1(x_3) \geq \cdots \geq T^j_1(x_k).$$

This implies that the set E is an (n, ϵ)-separated set if and only if for every $i = 1, 2, \ldots, k - 1$, the set $\{x_i, x_{i+1}\}$ is (n, ϵ)-separated. Denote the integer part of a number z by $[z]$. Since the length of the unit interval $[0, 1]$ is 1, at most $[\frac{1}{\epsilon}]$ of the distances $|T^j_1(x_1) - T^j_1(x_2)|, |T^j_1(x_2) - T^j_1(x_3)|, \ldots, |T^j_1(x_{k-1}) - T^j_1(x_k)|$ are longer than ϵ. Therefore, at most $n[\frac{1}{\epsilon}]$ sets of the form $\{x_i, x_{i+1}\}, i = 1, 2, \ldots, k - 1$ are (n, ϵ)-separated. Thus, if E is (n, ϵ)-separated, then $k - 1 \leq n[\frac{1}{\epsilon}]$. By definition, $D(s, T_{1,\infty}) = 0$ for any $s > 0$, which implies $D(T_{1,\infty}) = 0$. Similarly, $D(T_{j,\infty}) = 0$ for any $j > 1$. Thus, $D^*(T_{\infty}) = 0$

Next, consider the case $X = S^1$. The proof is similar to that of the unit interval case when the order of the points on S^1 is the angle of points on S^1. Therefore, $D^*(T_{\infty}) = 0$ is also obtained in this case. \qed
References

Received February 9, 2012. Revised August 12, 2012.

RUI KUANG
DEPARTMENT OF MATHEMATICS
SOUTH CHINA UNIVERSITY OF TECHNOLOGY
510641 GUANGZHOU
CHINA
kuangrui@scut.edu.cn

WEN-CHIAO CHENG
DEPARTMENT OF APPLIED MATHEMATICS
CHINESE CULTURE UNIVERSITY
YANGMINGSHAN, TAIPEI 11114
TAIWAN
zwq2@faculty.pccu.edu.tw

BING LI
DEPARTMENT OF MATHEMATICS
SOUTH CHINA UNIVERSITY OF TECHNOLOGY
510641 GUANGZHOU
CHINA
and
DEPARTMENT OF MATHEMATICAL SCIENCE
UNIVERSITY OF OULU
P.O. Box 3000
FI-90014 OULU
FINLAND
libing0826@gmail.com
Certifying incompressibility of noninjective surfaces with scl

Danny Calegari 257

Global well-posedness for the 3D rotating Navier–Stokes equations with highly oscillating initial data

Qionglei Chen, Changxing Miao and Zhifei Zhang 263

Presenting Schur superalgebras

Houssein El Turky and Jonathan R. Kujawa 285

Classifying zeros of two-sided quaternionic polynomials and computing zeros of two-sided polynomials with complex coefficients

Feng Lianggui and Zhao Kaiming 317

Coxeter groups, imaginary cones and dominance

Xiang Fu 339

Semicontinuity of automorphism groups of strongly pseudoconvex domains: The low differentiability case

Robert E. Greene, Kang-Tae Kim, Steven G. Krantz and Aeryeong Seo 365

Klein four-subgroups of Lie algebra automorphisms

Jing-Song Huang and Jun Yu 397

Fractal entropy of nonautonomous systems

Rui Kuang, Wen-Chiao Cheng and Bing Li 421

A GJMS construction for 2-tensors and the second variation of the total Q-curvature

Yoshihiro Matsumoto 437

Droplet condensation and isoperimetric towers

Matteo Novaga, Andrei Sobolevski and Eugene Stepanov 457

Brauer’s height zero conjecture for metacyclic defect groups

Benjamin Sambale 481

Acknowledgement 509