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A GJMS CONSTRUCTION FOR 2-TENSORS AND
THE SECOND VARIATION OF THE TOTAL Q-CURVATURE

YOSHIHIKO MATSUMOTO

We construct a series of conformally invariant differential operators acting
on weighted trace-free symmetric 2-tensors by a method similar to that of
Graham, Jenne, Mason, and Sparling. For compact conformal manifolds of
dimension even and greater than or equal to four with vanishing ambient
obstruction tensor, one of these operators is used to describe the second
variation of the total Q-curvature. An explicit formula for conformally
Einstein manifolds is given in terms of the Lichnerowicz Laplacian of an
Einstein representative metric.

Introduction

Let (M, [g]) be a conformal manifold of dimension n ≥ 3. The k-th GJMS operator
[Graham et al. 1992] is a conformally invariant differential operator acting on
densities E(−n/2+ k)→ E(−n/2− k), which is defined for all k ∈ Z+ if n is
odd and for integers within the range 1≤ k ≤ n/2 if n is even. This operator has
a universal expression in terms of any representative metric g ∈ [g] with leading
term the k-th power of the Laplacian. The idea for the construction is realizing
densities as functions on the metric cone G and computing the obstruction of its
formal harmonic extension to the ambient space (G̃, g̃), where g̃ is an ambient
metric of Fefferman and Graham [1985; 2012]. After the appearance of [Graham
et al. 1992], other GJMS-like conformally invariant differential operators have been
constructed in, e.g., [Branson and Gover 2005; Gover and Peterson 2006].

In this article, we establish another variant of the GJMS construction. Our
operators Pk act on weighted trace-free symmetric (covariant) 2-tensors:

Pk : S0

(
−

n
2
+ 2+ k

)
→ S0

(
−

n
2
+ 2− k

)
.

Here, the values that k takes are the same as in the density case, S0 is the space of
trace-free symmetric 2-tensors on M , and S0(w)= S0⊗E(w). The main tool of
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our construction is the Lichnerowicz Laplacian of the ambient metric g̃, which is
defined by

1̃L := 1̃+ 2R̃ic◦− 2 ˚̃R,

where 1̃= ∇̃∗∇̃ is the connection Laplacian and R̃ic◦, ˚̃R are the following tensorial
actions of the Ricci and Riemann curvature tensors of g̃:(

R̃ic◦σ̃
)
(X, Y ) := 1

2

(
〈R̃ic(X, · ), σ̃ (Y, · )〉g̃ +〈R̃ic(Y, · ), σ̃ (X, · )〉g̃

)
,( ˚̃Rσ̃

)
(X, Y ) := 〈R̃(X, · , Y, · ), σ̃ 〉g̃.

Our intention to study the GJMS construction for 2-tensors is because of its
relation to the second variation of the total Q-curvature, i.e., the integral of Branson’s
Q-curvature [1995]. Recall that, for a 4-dimensional compact conformal manifold
(M, [g]) of positive definite signature, the Chern–Gauss–Bonnet formula for the
total Q-curvature Q is

Q = 8π2χ(M)− 1
4

∫
M
|W |2g dVg,

where χ(M) is the Euler characteristic, W is the Weyl tensor, and g ∈ [g] is any
representative. One can deduce from this that Q ≤ 8π2χ(M) and the equality holds
if and only if (M, [g]) is conformally flat. It turns out that there is a partial gener-
alization of this fact to the higher dimensions. Recall that a conformal metric [g]
is identified with a weighted 2-tensor g ∈ S(2). Let K[g] be the conformal Killing
operator. Then we have the following theorem, which is due to Møller and Ørsted
[2009].

Theorem 0.1. Let Sn be the sphere of even dimension n ≥ 4. Then, for any
smooth 1-parameter family gt of conformal metrics on Sn such that g0 = gstd and
ġt |t=0 6∈ image K[gstd], the total Q-curvature Qt attains a local maximum at t = 0.

Our main theorem contains Theorem 0.1 as a special case. Consider the following
decomposition of S0(2), which is valid for any compact positive definite conformal
manifold (M, [g]) and a representative g ∈ [g] (see [Besse 1987, Section 12.21]):

(0-1) S0(2)= image K[g]⊕S
g
TT(2).

Here S
g
TT(w) is the space of TT-tensors (trace-free and divergence-free tensors)

with respect to g. This is an orthogonal decomposition with respect to the L2-inner
product, and if g is Einstein, the Lichnerowicz Laplacian 1L of g respects this
decomposition.

Theorem 0.2. Let (M, [g]) be a compact conformally Einstein manifold of positive
definite signature with even dimension n ≥ 4, and g an Einstein representative
with Schouten tensor Pi j = λgi j . Then, for any smooth 1-parameter family gt of
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conformal metrics such that g0 = g, the second derivative of the total Q-curvature
at t = 0 is

(0-2)
d2

dt2 Qt =−
1
4

∫
M

〈n/2−1∏
m=0

(1L− 4(n− 1)λ+ 4m(n− 2m− 1)λ)ϕg
TT, ϕ

g
TT

〉
g
,

where ϕg
TT is the S

g
TT(2)-component of ϕ= ġt |t=0 with respect to (0-1). In particular,

suppose there is an Einstein representative g with λ ≥ 0 such that the smallest
eigenvalue α of 1L|Sg

TT(2)
satisfies

(0-3) α > 4(n− 1)λ.

Then, for any gt for which ϕ 6∈ image K[g], the total Q-curvature attains a local
maximum at t = 0.

For (Sn, gstd), λ= 1/2 and 1L=1+2n. Therefore the assumption for the latter
half of Theorem 0.2 is satisfied, and hence Theorem 0.1 follows.

Some ideas for the proof of Theorem 0.2 are in order. Let (M, [g]) be a compact
conformal manifold of even dimension n≥4 (here we may allow arbitrary signature).
If we are given a smooth family gt of conformal metrics on M such that g0 = g,
then the derivative ϕt = ġt ∈ S(2) is trace-free with respect to gt . As shown in
[Graham and Hirachi 2005], the derivative of Qt is given by

d
dt

Qt = (−1)n/2
n− 2

2

∫
M
〈Ot , ϕt 〉gt ,

where Ot is the Fefferman–Graham ambient obstruction tensor of gt [Fefferman
and Graham 1985; 2012]. In particular, if (M, [g]) has vanishing obstruction tensor,
which is the case if (M, [g]) is conformally Einstein for instance, then Qt stabilizes
at t = 0. In this case the second derivative of Qt at t = 0 is of interest. It is given
by

(0-4)
d2

dt2 Qt

∣∣∣∣
t=0
= (−1)n/2

n− 2
2

∫
M
〈O′gϕ, ϕ〉g,

where O′g : S0(2)→ S0(2− n) is the linearization at g of the obstruction tensor
operator (O′gϕ is trace-free because g is obstruction-flat). This shows that it suffices
to compute O′g to derive the second variational formula of the total Q-curvature.
The construction of our operators Pk leads to the fact that P = Pn/2 is equal to O′g
up to a constant factor for obstruction-flat manifolds. (For n = 4 and 6, since an
explicit formula of the obstruction tensor is known, one can directly compute its
linearization. In higher dimensions our result is really new, because there is no such
concrete formula for O.) Thus our GJMS construction adds new knowledge of O′g ,
which was previously studied in [Branson 2005; Branson and Gover 2007; 2008].
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If we specialize to the case of conformally Einstein manifolds, explicit com-
putation is possible thanks to a well-known associated ambient metric. We will
derive a formula of Pk restricted to S

g
TT(−n/2+ 2+ k) with respect to an Einstein

representative g with Schouten tensor Pi j = λgi j :

(0-5) Pk |Sg
TT(−n/2+2+k)=

k−1∏
m=0

(
1L−4(n−1)λ−2

(
−

n
2
+k−2m

)(n
2
+k−2m−1

)
λ
)
.

Then Theorem 0.2 is an immediate consequence.
This article is organized as follows. Preliminaries about ambient metrics and

some preparatory lemmas are included in Section 1. In Section 2, our operators Pk

are constructed. One of the characterizations of Pk is that it gives the obstruction to
dilation-annihilating TT-harmonic extension of ϕ ∈ S0(−n/2+ 2+ k) with respect
to the ambient Lichnerowicz Laplacian 1̃L. In Section 3, we first show that the
variation of the normal-form ambient metric modified by adding a certain tensor in
the image of the Killing operator of g̃ is a best possible approximate solution to the
harmonic extension problem mentioned above. Using this fact, we prove that the
trace-free part of O′g equals P in general. In Section 4, we work on conformally
Einstein manifolds and prove Theorem 0.2.

In this article, “conformal manifolds” are of arbitrary signature unless otherwise
stated. Index notation is used throughout. On ambient spaces we use I , J , K , . . .
as indices, while on the original manifolds i , j , k, . . . are used.

1. Preliminaries

Let (M, [g]) be a conformal manifold of dimension n of signature (p, q) with
metric cone G. With a fixed representative metric g ∈ [g], G is trivialized as

G∼= R+×M, t2gx 7→ (t, x).

Let G̃ be the associated ambient space:

G̃ := G×R∼= R+×M ×R= {(t, x, ρ)}.

In our index notation, if G̃ is trivialized as above, we use the indices 0 and∞ for
the t- and ρ-components, respectively.

The space G carries a natural R+-bundle structure. The dilation δs , s ∈ R×, is by
definition the action of s2

∈ R+, and the infinitesimal dilation field is denoted by T .
The spaces of the densities, weighted 1-forms, and weighted covariant symmetric
2-tensors (all of weight w) are denoted by E(w), T(w), and S(w). By the metric
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cone G, these spaces are realized as follows:

(1-1) E(w)=
{

f ∈ C∞(G,R) | T f = w f
}
,

T(w)=
{
τ ∈ C∞(G, T ∗G)

∣∣ T τ = 0, LT τ = wτ
}
,

S(w)=
{
σ ∈ C∞(G,Sym2 T ∗G)

∣∣ T σ = 0, LTσ = wσ
}
.

The R+-action extends to G̃= G×R and so does T . In terms of the extended T ,
we define

Ẽ(w) :=
{

f̃ ∈ C∞
(
G̃,R

) ∣∣ T f̃ = w f̃
}
,

T̃(w) :=
{
τ̃ ∈ C∞

(
G̃, T ∗G̃

) ∣∣ LT τ̃ = wτ̃
}
,

S̃(w) :=
{
σ̃ ∈ C∞

(
G̃,Sym2 T ∗G̃

) ∣∣ LT σ̃ = wσ̃
}
.

When σ̃ ∈ S̃(w) satisfies (T σ̃ )|T G= 0, then σ̃ |T G makes sense as a section in S(w)

via the identification (1-1). We use the notation σ̃ |T M to express this weighted
tensor.

Let g̃ be a preambient metric. This means that g̃∈ S̃(2) is a homogeneous pseudo-
Riemannian metric of signature (p+ 1, q + 1) defined on a dilation-invariant open
neighborhood of G in G̃ such that its pullback to G is equal to g ∈ S(2). In the
sequel we only work asymptotically near G, so we may assume that all preambient
metrics are defined on the whole G̃. We next introduce the straightness condition:

(1-2) ∇̃T = id.

If this is true, the differential of the canonical defining function r = |T |2g̃ of G is

(1-3) dr = 2T g̃.

Recall that it follows immediately from (1-2) that

(1-4) T I R̃I J K L = 0, and hence T I R̃icI J = 0.

The Fefferman–Graham theorem states that there is a straight preambient metric g̃
with

R̃ic=
{

O(r∞) if n is odd,
O(rn/2−1) if n is even.

In this article, such a metric g̃ is called an ambient metric. When n is odd,
ambient metrics are unique modulo O(r∞) and the action of dilation-invariant
diffeomorphisms on G̃ leaving points on G fixed (such diffeomorphisms are called
ambient-equivalence maps in the sequel). If n is even, the situation is subtle. For a
1-form τ̃ ∈ T̃(w), we define

τ̃ = O−(rm)⇐⇒ τ̃ = O(rm−1) and (r1−m τ̃ )|T G vanishes

⇐⇒ τ̃ = O(rm) mod rm−1T g̃.
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We say that σ̃ ∈ S̃(w) is O+(rm) if

(i) σ̃ = O(rm);

(ii) T σ̃ = O−(rm+1) and hence (r−m σ̃ )|T M makes sense; and

(iii) (r−m σ̃ )|T M ∈ S(w− 2m) is trace-free with respect to g.

Then, ambient metrics are unique modulo O+(rn/2) and the action of ambient-
equivalence maps. By [Fefferman and Graham 2012, Equation (3.13)], the condition
R̃ic= O(rn/2−1) for ambient metrics actually forces

R̃ic= O+(rn/2−1).

Let g ∈ [g] and consider the induced trivialization G̃∼=R+×M×R. If a straight
preambient metric g̃ is near G of the form

(1-5) g̃ = 2ρ dt2
+ 2ρ dt dρ+ t2gρ,

where gρ is a 1-parameter family of metrics on M with g0 = g, then g̃ is said to be
in normal form relative to g. For any straight preambient metric g̃ and a choice of
g ∈ [g], it is known [ibid., Proposition 2.8] that there exists an ambient-equivalence
map 8 such that 8∗g̃ is in normal form relative to g.

Lemma 1.1. Let g̃ be a straight preambient metric. For τ̃ ∈ T̃(w) and σ̃ ∈ S̃(w),

∇̃T τ̃ = (w− 1)τ̃ , ∇̃T σ̃ = (w− 2)σ̃ .

Proof. Let ξ̃ ∈ X
(
G̃
)
. Then, since the Levi-Civita connection is torsion-free,(

∇̃T τ̃
)
(ξ̃ )= T

(
τ̃
(
ξ̃
))
− τ̃

(
∇̃T ξ̃

)
= T

(
τ̃
(
ξ̃
))
− τ̃

([
T, ξ̃

]
+∇̃ξ̃T

)
= T

(
τ̃
(
ξ̃
))
− τ̃

(
LT ξ̃

)
− τ̃

(
∇̃ξ̃T

)
= (LT τ̃ )

(
ξ̃
)
− τ̃

(
ξ̃
)
= (w− 1)τ̃

(
ξ̃
)
.

The second equality is proved similarly. �

Now let g̃ be a fixed ambient metric. Let S̃0(w) be the subspace of formally trace-
free tensors of S̃(w), and S̃TT(w) the subspace of formally TT-tensors. Moreover,
we define

S̃X (w) :=
{
σ̃ ∈ S̃(w)

∣∣ T σ̃ = O(r∞)
}
,

S̃X
0 (w) := S̃0(w)∩ S̃X (w), S̃X

TT(w) := S̃TT(w)∩ S̃X (w).

If n is odd, these spaces are invariant under O(r∞)-modifications of g̃. If n is even,
we need some technically defined tensor spaces. For 2− n ≤ w ≤ 2, we set

S̃aTT(w) :=
{
σ̃ ∈ S̃(w)

∣∣ trg̃ σ̃ = O
(
r d(n−2+w)/2e), δg̃σ̃ = O−

(
r d(n−2+w)/2e)}

(“aTT” is for “approximately TT”) and

S̃X
aTT(w) :=

{
σ̃ ∈ S̃aTT(w)

∣∣ T σ̃ = O−
(
r d(n−2+w)/2e+1)},
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where δg̃ is the divergence operator (δg̃σ̃ )I = −∇̃
J σ̃I J , and dxe is the smallest

integer not less than x . Then S̃X
aTT(w) does not depend on the O+(rn/2)-ambiguity

of g̃. To check this, let g̃′ = g̃+ A be another ambient metric with A = O+(rn/2).
Then T A = O−(rn/2+1). Since trg̃′ σ̃ = trg̃ σ̃ + O(rn/2) for any σ̃ , the trace
condition is not affected. The Christoffel symbol of g̃′ is given by

(0̃′)K
I J = 0̃

K
I J −

1
2(g̃
′−1)K L(D A)L I J = 0̃

K
I J −

1
2(D A)K

I J + O(rn/2),

where
(D A)K I J = ∇̃K AI J −∇̃I AK J −∇̃J AK I .

Hence

(δg̃′ σ̃ )I = (δg̃σ̃ )I +
1
2(D A)J K

I σ̃J K +
1
2(D A)J K

K σ̃I J + O(rn/2).

Let A = rn/2 A. Then

(D A)K I J = nrn/2−1(TK AI J − TI AK J − TJ AK I
)
+ O(rn/2)

and, because T A = O−(r),

(D A) I
K I = nrn/2−1TK A I

I + O−(rn/2).

Therefore, if σ̃ ∈ S̃X
aTT(w), δg̃′ σ̃ = δg̃σ̃ + O−(rn/2)= O−(r d(n−2+w)/2e).

Lemma 1.2. Let g̃ be an ambient metric and ϕ ∈ S0(−n/2+2+ k), where k ∈ Z+.
If n is odd, then there exists σ̃ ∈ S̃X

TT(−n/2+ 2+ k) such that σ̃ |T M = ϕ. If n is
even, there exists σ̃ ∈ S̃X

aTT(−n/2+ 2+ k) such that σ̃ |T M = ϕ as long as k ≤ n/2.
In both cases, the restriction ϕ̃ = σ̃ |G is uniquely determined.

Proof. To prove the existence part, take any σ̃(0) ∈ S̃X
0 (−n/2+ 2+ k) for which

σ̃(0)|T M=ϕ. We shall inductively construct σ̃(m)∈ S̃X
0 (−n/2+2+k) for nonnegative

integers m such that

σ̃(m) = σ̃(m−1)+ O(rm−1), δg̃σ̃(m) = O(rm).

Suppose we have σ̃(m−1) ∈ S̃X
0 (−n/2+ 2+ k) with δg̃σ̃(m−1) = O(rm−1). If σ̃(m) ∈

S̃X
0 (−n/2+ 2+ k), then T δg̃σ̃(m) = 0 is automatically guaranteed:

T I
∇̃

J(σ̃(m−1))I J =∇̃
J(T I(σ̃(m−1))I J

)
−
(
∇̃

JT I )(σ̃(m−1))I J =0+g̃ I J(σ̃(m−1))I J =0.

We seek for σ̃(m) assuming that it is of the form

(1-6) (σ̃(m))I J = (σ̃(m−1))I J + 2rm−1T(I VJ ) + rm−1 f̃ TI TJ − rm WI J ,

where V ∈ T̃(−n/2+2+k−2m) satisfies T I VI = 0, f̃ ∈ Ẽ(−n/2+k−2m), and
W ∈ S̃X (−n/2+ 2+ k− 2m) is such that the whole expression (1-6) is trace-free
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and vanishes if contracted with T (hence trg̃ W = f̃ , T J WI J = VI + f̃ TI ). Minus
of the divergences of the additional three terms on the right-hand side of (1-6) are

∇̃
J (2rm−1T(I VJ )

)
= rm−1

·
(
(n/2+ 2+ k)VI + TI ∇̃

J VJ
)
+ O(rm),

∇̃
J (rm−1 f̃ TI TJ

)
= rm−1

· (n/2+ 1+ k) f̃ TI + O(rm),

∇̃
J (−rm WI J )= rm−1

· (−2m)
(
VI + f̃ TI

)
+ O(rm).

Therefore, we first put V = (n/2+ 2+ k − 2m)−1r−m+1δg̃σ̃(m−1), and set f̃ =
−(n/2+ 1+ k− 2m)−1

∇̃
J VJ so that the O(rm−1)-term of the divergence of (1-6)

vanishes. This is possible for all m if n is odd, and until m = bn/2+ kc if n is
even. Applying Borel’s lemma, the proof of the existence for n odd is complete.
When n is even, we get σ̃ = σ̃(b(n/2+k)/2c). Furthermore, if n/2+ 1+ k is an even
number, then δg̃σ̃ can be made O−(r (n/2+1+k)/2). Anyway, δg̃σ̃ finally becomes
O−(r d(n/2+k)/2e), and the existence for n even is proved.

Let us once again take σ̃(0) as we did in the beginning of this proof. If σ̃ is as in
the statement, then since (T σ̃ )|G = 0 and σ̃ |T M = ϕ, σ̃ must be written as

σ̃ = σ̃(0)+ 2T(I VJ ) − r WI J ,

where T I VI = O(r). Moreover, in order for T σ̃ = O(r2) to be satisfied, T J WI J
should be VI + r−1TI T J VJ + O(r). Then

∇̃
J (2T(I VJ ) − r WI J

)
=

(
n
2
+ k

)
VI + TI

(
∇̃

J VJ − 2r−1T J VJ
)
+ O(r).

Therefore, VI mod O−(r) is determined by the condition δg̃σ̃ = O−(r). If we
put f̃ TI into VI , then the right-hand side will be (n+ 2k − 2) f̃ TI . Thus VI is
uniquely determined in order to satisfy δg̃σ̃ = O(r). �

We call ϕ̃ in Lemma 1.2 the ambient lift of ϕ ∈ S(−n/2+ 2+ k).

2. A GJMS construction for trace-free symmetric 2-tensors

Let (M, [g]) be a conformal manifold of dimension n ≥ 3 and g̃ an ambient metric.
We shall play with the following three operators:

x : S̃(w)→ S̃(w+ 2), σ̃ 7→ 1
4r σ̃ ,

y : S̃(w)→ S̃(w− 2), σ̃ 7→ 1̃Lσ̃ ,

h : S̃(w)→ S̃(w), σ̃ 7→
(
∇̃T +

n+2
2

)
σ̃ =

(
w+

n
2
− 1

)
σ̃ .

Just as in the case of the classical GJMS construction, one can verify the following.

Proposition 2.1. The operators x , y, h enjoy the sl(2) commutation relations:

[h, x] = 2x, [h, y] = −2y, [x, y] = h.
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The proof is left to the reader. Consequently we have the following identities:

[ym, x] = −mym−1(h−m+ 1),(2-1)

[xm, y] = mxm−1(h+m− 1),(2-2)

ym−1xm−1
= (−1)m−1(m− 1)! h(h+ 1) · · · (h+m− 2)+ x Zm,(2-3)

where Zm is some polynomial in x , y, h.
We are going to verify that x , y, and h preserve the subspaces S̃X

TT(w) when n
is odd and S̃X

aTT(w) when n is even. For this we need two lemmas.

Lemma 2.2. For f̃ ∈ Ẽ(w), τ̃ ∈ T̃(w),

f̃ = O(rm)H⇒ 1̃ f̃ = O(rm−1),(2-4)

τ̃ = O−(rm)H⇒ 1̃τ̃ = O−(rm−1).(2-5)

In (2-5), we may also replace 1̃ with the Hodge Laplacian 1̃H.

Proof. First we compute 1̃(rm):

1̃(rm)=−∇̃ I
∇̃I (r

m)=−∇̃ I (2mrm−1TI )=−2m(2m+ n)rm−1.

Hence it is clear that f̃ = O(rm) implies 1̃ f̃ = O(rm−1) and that τ̃ = O(rm)

implies 1̃τ̃ = O(rm−1). So, to prove (2-5), it remains to show that 1̃(rm−1 f̃ TI )

is O−(rm−1). This is checked directly:

∇̃J
(
rm−1 f̃ TI

)
= 2(m− 1)rm−2 f̃ TI TJ + rm−1 f̃ g̃I J + rm−1TI ∇̃J f̃

and therefore

1̃
(
rm−1 f̃ TI

)
=−2(m− 1)(2m+ n+ 2w)rm−2 f̃ TI + O(rm−1).

By Bochner’s formula 1̃Hτ̃I = 1̃τ̃I + R̃ic J
I τ̃J , 1̃Hτ̃ = O−(rm−1) is clear. �

Let
(
DR̃ic

)
◦
: S̃(w)→ T̃(w− 4) be defined by((

DR̃ic
)◦
σ̃
)

I =
(
∇̃I R̃icJ K −∇̃J R̃icI K −∇̃K R̃icI J

)
σ̃ J K .

Then it is known that, on any symmetric 2-tensor,

(2-6) δg̃ ◦ 1̃L = 1̃H ◦ δg̃ +
(
DR̃ic

)◦
.

Lemma 2.3. When n is even and 2− n ≤ w ≤ 2,

σ̃ ∈ S̃X
aTT(w)H⇒

(
DR̃ic

)◦
σ̃ = O−(rn/2−1).
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Proof. Let R̃ic= rn/2−1 S̃. Then

(2-7) ∇̃I R̃icJ K = (n− 2)rn/2−2TI S̃J K + O(rn/2−1).

Therefore (
∇̃I R̃icJ K

)
σ̃ J K
= (n− 2)rn/2−2

〈S̃, σ̃ 〉g̃TI + O(rn/2−1).

On the other hand, since T σ̃ is at least O−(r), we can write T I σ̃I J = f̃ TJ +O(r).
Hence, by (2-7) and (1-4),(

∇̃J R̃icI K
)
σ̃ J K
= (n− 2)rn/2−2 f̃ T K S̃I K + O(rn/2−1)= O(rn/2−1).

Consequently,
(
DR̃ic

)
◦σ̃ = O−(rn/2−1). �

Proposition 2.4. If n is odd, then, for any w,

x
(
S̃X

TT(w)
)
⊂ S̃X

TT(w+2), y
(
S̃X

TT(w)
)
⊂ S̃X

TT(w−2), h
(
S̃X

TT(w)
)
⊂ S̃X

TT(w).

If n is even,

x
(
S̃X

aTT(w)
)
⊂ S̃X

aTT(w+ 2), 2− n ≤ w ≤ 0,

y
(
S̃X

aTT(w)
)
⊂ S̃X

aTT(w− 2), −n ≤ w ≤ 2,

h
(
S̃X

aTT(w)
)
⊂ S̃X

aTT(w), 2− n ≤ w ≤ 2.

Proof. Since the case n odd is easier to prove, we discuss the case n even. It is
clear that h(S̃X

aTT(w))⊂ S̃X
aTT(w). For σ̃ ∈ S̃X

aTT(w), we have T (r σ̃ )= rT σ̃ =

O−(r d(n−2+w)/2e+2), trg̃(r σ̃ )= r trg̃ σ̃ = O(r d(n−2+w)/2e+1), and

δg̃(r σ̃ )=−2T σ̃ + rδg̃σ̃ = O−
(
r d(n−2+w)/2e+1).

Hence x σ̃ ∈ S̃X
aTT(w+ 2). It remains to show that yσ̃ ∈ S̃X

aTT(w− 2). The trace
of 1̃Lσ̃ is trg̃ 1̃Lσ̃ = 1̃(trg̃ σ̃ )= O(r d(n−2+w)/2e−1) by (2-4). Furthermore,

∇̃K
(
T J σ̃I J

)
= δ J

K σ̃I J + T J
∇̃K σ̃I J = σ̃I K + T J

∇̃K σ̃I J

and hence

1̃(T J σ̃I J )=−∇̃
K σ̃I K −∇̃

K (T J
∇̃K σ̃I J

)
=−2∇̃K σ̃I K − T J

∇̃
K
∇̃K σ̃I J =−2∇̃K σ̃I K + T J 1̃Lσ̃I J ;

the last equality is because of (1-4). This implies T 1̃Lσ̃ = O−(r d(n−2+w)/2e).
Finally, (2-6) and Lemma 2.3 show δg̃1̃Lσ̃ = O−(r d(n−2+w)/2e−1). �

Theorem 2.5. Let k ∈ Z+ if n is odd, and k ∈ {1, 2, . . . , n/2} if n is even. For any
ϕ ∈ S0(−n/2+ 2+ k), let σ̃ ∈ S̃(−n/2+ 2+ k) be any extension of the ambient
lift ϕ̃. Then 1̃k

Lσ̃ |G depends only on ϕ and not on the extension. Furthermore,
1̃k

Lσ̃ |T M makes sense as a section in S(−n/2+ 2− k).
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Proof. We work on the case n even only. Any two extensions of ϕ̃ differ by a tensor
of the form r τ̃ , where τ̃ ∈ S̃0(−n/2+k). Equation (2-1) shows that the commutator
[1̃k

L, r ] vanishes on S̃0(−n/2+ k) and hence 1̃k
L(r τ̃ )|G = 0. In particular, using

Lemma 1.2 one can take σ̃ ∈ S̃X
aTT(−n/2+ 2+ k) as an extension of ϕ̃. Then by

Proposition 2.4, 1̃k
Lσ̃ ∈ S̃X

aTT(−n/2+ 2− k) and 1̃k
Lσ̃ |T M is defined. �

Theorem 2.6. Let k ∈ Z+ if n is odd, and k ∈ {1, 2, . . . , n/2} if n is even. Let
ϕ ∈ S0(−n/2+ 2+ k) and let ϕ̃ be its ambient lift. Then there exists a solution
σ̃ ∈ S̃X

TT(−n/2+2+ k) if n is odd, and σ̃ ∈ S̃X
aTT(−n/2+2+ k) if n is even, to the

problem

(2-8) 1̃Lσ̃ = O(r k−1), σ̃ |G = ϕ̃,

which is unique modulo O(r k). For any such σ̃ , (r1−k1̃Lσ̃ )|G is independent of the
ambiguity that lives in σ̃ , and agrees with 1̃k

Lσ̃ |G up to a constant factor:

(2-9)
(
r1−k1̃Lσ̃

)∣∣
G
=

1
4k−1(k− 1)!2

1̃k
Lσ̃ |G.

Proof. We work on the case n even only. Let us begin with an arbitrary extension
σ̃(0)∈ S̃X

aTT(−n/2+2+k) of ϕ̃. If an extension σ̃(m−1) satisfies 1̃Lσ̃(m−1)=O(rm−1),
then it has a modification σ̃(m) = σ̃(m−1)+ rm σ̃1, σ̃1 ∈ S̃X

aTT(−n/2+ 2+ k − 2m),
which is unique modulo O(rm+1), satisfying 1̃Lσ̃(m) = O(rm). In fact, by (2-2),
we have

(2-10) 1̃L(rm σ̃1)= 4mrm−1(m− k)σ̃1+ rm1̃Lσ̃1.

Thus σ̃1 can be taken so that 1̃Lσ̃(m)= O(rm) unless m= k. Hence there is a σ̃ with
the property stated in the theorem. Let 1̃Lσ̃ = r k−1 F̃ , with F̃ ∈ S̃X

aTT(−n/2+2−k).
Then, by (2-3), 1̃k

Lσ̃ = 4k−1 yk−1xk−1 F̃ = 4k−1(k−1)!2 F̃+O(r). Hence (2-9). �

Except in the case where n is even and k = n/2, (1̃k
Lσ̃ )|T M is trace-free since

trg̃ 1̃
k
Lσ̃ and T 1̃k

Lσ̃ are both O(r).

Definition 2.7. Let (M, [g]) be a conformal manifold of dimension n ≥ 3 and g̃
an ambient metric. We call

Pk : S0(−n/2+ 2+ k)→ S0(−n/2+ 2− k), Pkϕ = tfg
(
1̃k

Lσ̃ |T M
)

the GJMS operator on trace-free symmetric 2-tensors, where σ̃ ∈ S̃(−n/2+ 2+ k)
is any extension of the ambient lift of ϕ. (One can remove tfg unless n is even and
k = n/2.) In particular, when n = dim M ≥ 4 is even,

P = Pn/2 : S0(2)→ S0(2− n)

is called the critical GJMS operator on trace-free symmetric 2-tensors.
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Theorem 2.8. The GJMS operators on trace-free symmetric 2-tensors do not de-
pend on the choice of g̃, and hence are conformally invariant differential operators.

For the case where n is even and k = n/2, the direct verification of the conformal
invariance is not easy. We will see in Theorem 3.4 that, up to a constant factor, Pϕ
is equal to tfg O′gϕ, which is clearly conformally invariant. Here, we prove the
theorem in the case n odd and the case n even, k ≤ n/2− 1.

Proof of Theorem 2.8 except the case where (n, k)= (even, n/2). By Theorem 2.6,
we may work with r1−k1̃Lσ̃ instead of 1̃k

Lσ̃ . Let g̃ be an ambient metric, ϕ ∈
S0(−n/2+ 2+ k) and, let σ̃ be a solution to the problem stated in Theorem 2.6.
Then, if 8 is an ambient-equivalence map, 8∗σ̃ solves the same problem with
respect to 8∗g̃. Since (8∗r)1−k1̃L,8∗ g̃(8

∗σ̃ )=8∗(r1−k1̃Lσ), the restrictions of
(8∗r)1−k1̃L,8∗ g̃(8

∗σ̃ ) and r1−k1̃Lσ to T M coincide. Therefore we may assume
that g̃ is in normal form.

When n is odd, the assertion is now clear because g̃ is formally unique if it is in
normal form. So we assume that n is even in what follows. It suffices to show that,
if g̃, ˆ̃g are ambient metrics in normal form and σ̃ ∈ S̃X

aTT(−n/2+ 2+ k),

ˆ̃
1Lσ̃ − 1̃Lσ̃ = O(ρn/2−2) and ˆ̃

1Lσ̃i j − 1̃Lσ̃i j = O(ρn/2−1).

Let DK
I J =

ˆ̃
0K

I J − 0̃
K

I J . From [Fefferman and Graham 2012, Equation (3.16)],
one concludes that DK

I J = O(ρn/2−1) and ∇̃ I DK
I J = O(ρn/2−1). Therefore

ˆ̃
1σ̃I J − 1̃σ̃I J = ∇̃

K (2DL
K (I σ̃J )L

)
+ O(ρn/2−1)= O(ρn/2−1).

In addition, ̂̃Ric= R̃ic+O(ρn/2−1) and ˆ̃R= R̃+O(ρn/2−2) by [ibid., Equation (6.1)].

Hence ˆ̃1Lσ̃ − 1̃Lσ̃ = O(ρn/2−2). Moreover, if S̃I J K L =
ˆ̃RI J K L − R̃I J K L , then

ˆ̃
1Lσ̃i j−1̃Lσ̃i j

=−2t−4(g−1
ρ )km(g−1

ρ )lnS̃ik jl σ̃mn−4t−3(g−1
ρ )kmS̃ik j∞ σ̃m0+4t−4ρ(g−1

ρ )kmS̃ik j∞ σ̃m∞

−2t−2 S̃i∞ j∞ σ̃00+4t−3ρ S̃i∞ j∞ σ̃0∞−8t−4ρ2 S̃i∞ j∞ σ̃∞∞+O(ρn/2−1).

Again by [ibid., Equation (6.1)], we have S̃i jkl = O(ρn/2−1), S̃i jk∞ = O(ρn/2−1),

S̃i∞k∞ = O(ρn/2−2) and hence ˆ̃1Lσ̃i j − 1̃Lσ̃i j = O(ρn/2−1). �

We close this section with a lemma that is proved just like the construction of σ̃
in Theorem 2.6.

Lemma 2.9. Let k∈Z+. For any f̃1∈ Ẽ(−n/2−2+k), there exists f̃ ∈ Ẽ(−n/2+k)
such that

1̃ f̃ = f̃1+ O(r k−1).
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Likewise, for any τ̃1 ∈ T̃(−n/2−1+k), there exists τ̃ ∈ T̃(−n/2+1+k) such that

1̃τ̃ = τ̃1+ O(r k−1).

In both problems, we may arbitrarily prescribe the values along G; if we prescribe
f̃ |G, τ̃ |G, then f̃ , τ̃ are unique modulo O(r k).

3. The variations of obstruction tensor and Q-curvature

Let g̃ be an ambient metric for a conformal manifold (M, [g]) of dimension n ≥ 3.
Recall that, from general calculations on (pseudo-)Riemannian curvature tensors,
the differential of the Ricci tensor operator (which we write as Ric here) is

(3-1) Ric′g̃ σ̃ =
1
21̃Lσ̃ − δ

∗

g̃Bg̃σ̃ ,

where δ∗g̃ is the dual of the divergence (δ∗g̃ τ̃ )I J = ∇̃(I τ̃J ) and Bg̃ is defined by

Bg̃σ̃ = δg̃σ̃ +
1
2 d(trg̃ σ̃ ). Therefore, for n even, a solution σ̃ ∈ S̃X

aTT(2) to the
problem in Theorem 2.6 approximately solves Ric′g̃ σ̃ = 0, and hence it is expected
that we can read off O′gϕ from the asymptotics of σ̃ . This will finally turn out to be
true, but since the definition of O depends on the existence theorem of normal-form
ambient metrics, in order to capture O′gϕ our starting point has to be infinitesimal
modifications of ambient metrics in normal form. The differential equation that
they (approximately) satisfy is different from 1̃Lσ̃ = 0. So we shall establish a
method for translating solutions of the two equations.

Let (M, [g]) be an n-dimensional conformal manifold with n ≥ 4 even and
ϕ ∈ S0(2). Suppose that gs is a family of conformal metrics (here we use s for
the parameter, because t will denote a coordinate on G̃) with g0 = g such that
ġs |s=0 = ϕ. Let g ∈ [g] be any representative metric, and gs the corresponding
representatives of gs . By the method of [Fefferman and Graham 2012], we can
construct a family of ambient metrics

g̃s = 2ρ dt2
+ 2t dt dρ+ t2gs

ρ

such that gs
0 = gs and gs

ρ smoothly depends on the two variables ρ, s. All these
metrics satisfy R̃ics = O(rn/2−1) and T R̃ics = O−(rn/2). Differentiating these
equations, we conclude that σ̃ = σ̃norm = (d/ds)g̃s |s=0 solves

Ric′g̃ σ̃ = O(rn/2−1), T Ric′g̃ σ̃ = O−(rn/2).

Note that it satisfies T σ̃norm = 0, trg̃ σ̃norm = O(r), and hence

T I
∇̃

J (σ̃norm)I J = ∇̃
J (T I (σ̃norm)I J

)
− g̃ I J (σ̃norm)I J = O(r);
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therefore it holds that

(3-2) T Bg̃σ̃norm = T δg̃σ̃norm+
1
2 T (trg̃ σ̃norm)= O(r).

Since the obstruction tensor O= Os is defined by

Os = cn
(
r1−n/2R̃ics

)
|T M , cn = (−1)n/2−1 2n−2(n/2− 1)!2

n− 2
,

we have
O′gϕ = cn

(
r1−n/2R̃ic′g̃σ̃norm

)
|T M .

Lemma 3.1. Let σ̃norm be as above. Then, there exists a dilation-invariant vector
field ξ̃ on G̃ such that ξ̃ |G = 0 and

Bg̃
(
σ̃norm+Kg̃ ξ̃

)
= O(rn/2),

where Kg̃ is the Killing operator: (Kg̃ ξ̃ )I J = 2∇̃(I ξ̃J ) . Such a ξ̃ is unique modulo
O(rn/2+1) and satisfies g̃(T, ξ̃ )= O(r2), trg̃ Kg̃ ξ̃ = O(r).

Proof. The equation to be solved is Bg̃Kg̃ ξ̃ =−Bg̃σ̃norm+ O(rn/2). By a straight-
forward calculation, (

Bg̃Kg̃ ξ̃
)

I = 1̃ξ̃I − R̃icI J ξ̃
J .

Since R̃icI J ξ̃
J
= O(rn/2) for any ξ̃ satisfying ξ̃ |G = 0, the equation simplifies to

1̃ξ̃ = −Bg̃σ̃norm + O(rn/2). By Lemma 2.9, ξ̃ is uniquely determined up to an
O(rn/2+1) ambiguity.

If we write ξ̃ = r V , then 1̃ξ̃ = −2nV + O(r). On the other hand, T 1̃ξ̃ =

−2T Bg̃σ̃norm+ O(rn/2) should be O(r) by (3-2). Consequently T V = O(r),
i.e., T ξ̃ = O(r2). Moreover, trg̃ Kg̃ ξ̃ = 2∇̃ I ξ̃I = 4T I VI + O(r)= O(r). �

Let σ̃ = σ̃norm + Kg̃ ξ̃ ∈ S̃(2). It is a consequence of the fact that the Ricci
operator commutes with diffeomorphisms that Ric′g̃ Kg̃ ξ̃ = Ric′g̃ Lξ̃ g̃ = Lξ̃ R̃ic.
Since ξ̃ |G= 0, R̃ic= O(rn/2−1), and T R̃ic= O−(rn/2), Lξ̃ R̃ic itself is O(rn/2−1)

and T Lξ̃ R̃ic= O−(rn/2). Therefore Ric′g̃ σ̃ = O(rn/2−1), T Ric′g̃ σ̃ = O−(rn/2).
Moreover, Bg̃σ̃ = O(rn/2) and hence δ∗g̃Bg̃σ̃ = O(rn/2−1), T δ∗g̃Bg̃σ̃ = O−(rn/2).
Thus we conclude

(3-3) 1̃Lσ̃ = O(rn/2−1), T 1̃Lσ̃ = O−(rn/2).

Lemma 3.2. Let σ̃norm and ξ̃ be as in Lemma 3.1. Then σ̃ = σ̃norm+Kg̃ ξ̃ ∈ S̃X
aTT(2)

and it is a solution to (3-3).

Proof. It remains to show that σ̃ ∈ S̃X
aTT(2). By taking the trace of (3-3), we obtain

1̃(trg̃ σ̃ ) = O(rn/2−1). In addition, since trg̃ Kg̃ ξ̃ = O(r), we have (trg̃ σ̃ )|G = 0.
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Hence, by Lemma 2.9, trg̃ σ̃ = O(rn/2). Then Bg̃σ̃ = O(rn/2) implies δg̃σ̃ =

O−(rn/2). Furthermore,

1̃(T J σ̃I J )= T J 1̃σ̃I J − 2∇̃ J σ̃I J = T J 1̃Lσ̃I J − 2∇̃ J σ̃I J = O−(rn/2)

and

T J σ̃I J = T J (Kg̃ ξ̃ )I J = T J
∇̃I ξ̃J + T J

∇̃J ξ̃I = ∇̃I (T
J ξ̃J )= O(r).

Since 1̃(rn/2 f̃ TI )=−2nrn/2−1 f̃ TI +O(rn/2) for f̃ ∈ Ẽ(−n), one can determine
f̃ so that 1̃(T J σ̃I J + rn/2 f̃ TI )= O(rn/2). Then T J σ̃I J + rn/2 f̃ TI is still O(r),
and hence T σ̃ = O−(rn/2+1) by Lemma 2.9. �

Lemma 3.3. Let σ̃norm and ξ̃ be as in Lemma 3.1 and set σ̃ = σ̃norm+Kg̃ ξ̃ . Then
1̃Lσ̃ − 2 Ric′g̃ σ̃norm = O(rn/2−1), and (r1−n/2(1̃Lσ̃ − 2 Ric′g̃ σ̃norm))|T G vanishes.

Proof. Recall that

1
21̃Lσ̃ −Ric′g̃ σ̃norm = Ric′g̃ Kg̃ ξ̃ − δ

∗

g̃Bg̃σ̃ = Lξ̃ R̃ic− δ∗g̃Bg̃σ̃ .

Let R̃ic= rn/2−1S and ξ̃ = r V . We proved in Lemma 3.1 that T I VI = O(r). As
in the proof of Lemma 1.1, we compute(

Lξ̃ R̃ic
)

I J = ξ̃
K
∇̃K R̃icI J + 2R̃icK (I ∇̃J ) ξ̃

K
= 4rn/2−1SK (I TJ ) V K

+ O(rn/2).

Thus (r1−n/2Lξ̃ R̃ic)|T G vanishes. On the other hand, if we write Bg̃σ̃ = rn/2τ̃ , then

(δ∗g̃Bg̃σ̃ )I = ∇̃(I (r
n/2τ̃ )J ) = nrn/2−1T(I τ̃J ) + O(rn/2),

and hence (r1−n/2δ∗g̃Bg̃σ̃ )|T G = 0. This completes the proof. �

Theorem 3.4. Let (M, [g]) be a conformal manifold of even dimension n. Then the
differential of the obstruction tensor O′g is given by

(3-4) O′gϕ =
(−1)n/2−1

2(n− 2)
Pϕ+

1
n+ 2

〈O, ϕ〉g g.

Proof. Let σ̃norm, ξ̃ as in Lemma 3.1 and σ̃ = σ̃norm+Kg̃ ξ̃ . By Lemma 3.2, Pϕ is
equal to the trace-free part of 2n−2(n/2− 1)!2(r1−n/21̃Lσ̃ )|T M . By the previous
lemma, (r1−n/21̃Lσ̃ )|T M = (2r1−n/2 Ric′g̃ σ̃norm)|T M = c−1

n O′gϕ. Therefore,

tfg O′gϕ =
(−1)n/2−1

2(n− 2)
Pϕ.

On the other hand, trg O′gϕ = 〈O, ϕ〉g , for trg O= 0 for any g. Hence (3-4). �

Combining the theorem above and (0-4), we obtain the following.
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Corollary 3.5. Let (M, [g]) be a compact conformal manifold of even dimension
n ≥ 4 with vanishing obstruction tensor. Let gt be a family of conformal structures
such that g0 = g. Then the second derivative of the total Q-curvature at t = 0 is

d2

dt2 Qt

∣∣∣∣
t=0
=−

1
4

∫
M
〈Pϕ, ϕ〉g,

where ϕ = ġt |t=0 and P : S0(2)→ S0(2− n) is the critical GJMS operator on
trace-free symmetric 2-tensors.

4. Explicit calculations for conformally Einstein manifolds

Recall that, for g ∈ [g] Einstein with Rici j = 2λ(n− 1)gi j so that Pi j = λgi j , the
following formula gives an ambient metric that is genuinely Ricci-flat:

(4-1) g̃ = 2ρ dt2
+ 2t dt dρ+ t2(1+ λρ)2g.

The inverse of g̃ is

(g̃−1)I J
=

 0 0 t−1

0 t−2(1+ λρ)−2gi j 0
t−1 0 −2t−2ρ


and the Christoffel symbol of g̃ is given by

0̃0
I J=

0 0 0
0 −λt (1+λρ)gi j 0
0 0 0

, 0̃k
I J=

 0 t−1δ k
j 0

t−1δ k
i 0k

i j λ(1+λρ)−1δ k
i

0 λ(1+λρ)−1δ k
j 0

,
0̃∞I J=

 0 0 t−1

0 −(1+λρ)(1−λρ)gi j 0
t−1 0 0

.
A direct computation shows that W̃i jkl = t2Wi jkl , where W̃ and W are the Weyl
tensors of g̃ and g, respectively (the latter is extended to G̃= R+×M ×R in the
trivial way). The other components of W̃ are zero.

Lemma 4.1. Let g̃ be as above, and suppose that σ̃ ∈ S̃(w) is of the form

σ̃i j = tw(1+ λρ)wσi j ,

where σi j is a symmetric 2-tensor on (M, g). Then

(4-2) 1̃Lσ̃ = tw−2(1+ λρ)w−2(1L− 4(n− 1)λ− 2(w− 2)(n+w− 3)λ
)
σ,

where 1L =1+ 4nλ− 2W̊ is the Lichnerowicz Laplacian of g.
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Proof. The first covariant derivative of σ̃ is as follows:

∇̃
∞
σ̃i j = ∂ρ σ̃i j − 20̃k

∞(i σ̃ j)k = tw(1+ λρ)w−1(w− 2)λσi j ,

∇̃0 σ̃i j = ∂t σ̃i j − 20̃k
0(i σ̃ j)k = tw−1(1+ λρ)w(w− 2)σi j ,

∇̃k σ̃i j = ∂xk σ̃i j − 20̃l
k(i σ̃ j)l = tw(1+ λρ)w∇kσi j ,

∇̃k σ̃i∞ =−0̃
l
k∞ σ̃il =−tw(1+ λρ)w−1λσik ,

∇̃k σ̃i0 =−0̃
l
k0 σ̃il =−tw−1(1+ λρ)wσik .

Therefore,

∇̃0 ∇̃∞ σ̃i j = ∂t ∇̃∞ σ̃i j − 0̃
∞

0∞∇̃∞ σ̃i j −20̃k
0(i |∇̃∞ σ̃| j)k

= tw−1(1+λρ)w−1(w−2)(w−3)λσi j ,

∇̃
∞
∇̃0 σ̃i j = ∇̃0 ∇̃∞ σ̃i j −2R̃ k

∞0 (i σ̃ j)k = ∇̃0 ∇̃∞ σ̃i j ,

∇̃
∞
∇̃
∞
σ̃i j = ∂ρ∇̃∞ σ̃i j −20̃k

∞(i |∇̃∞ σ̃| j)k = tw(1+λρ)w−2(w−2)(w−3)λ2σi j ,

gkl
∇̃k ∇̃l σ̃i j = ∂xk ∇̃l σ̃i j − 0̃

m
kl ∇̃m σ̃i j −20̃m

k(i |∇̃l σ̃| j)m

− 0̃∞kl ∇̃∞ σ̃i j −20̃∞k(i |∇̃l σ̃| j)∞ − 0̃
0
kl ∇̃0 σ̃i j −20̃0

k(i |∇̃l σ̃| j)0

=−tw(1+λρ)w
(
1σi j −2(n(w−2)−2)λσi j

)
and hence

1̃σ̃i j =−2t−1
∇̃0 ∇̃∞ σ̃i j + 2t−2ρ∇̃

∞
∇̃
∞
σ̃i j − t−2(1+ λρ)−2gkl

∇̃k ∇̃l σ̃i j

= tw−2(1+ λρ)w−2(1+ 4λ− 2(w− 2)(n+w− 3)λ
)
σi j .

Consequently, 1̃Lσ̃ = (1̃− 2 ˚̃W )σ̃ is given by (4-2). �

Theorem 4.2. Let (M, [g]) be a conformally Einstein manifold with dim M=n≥3,
and g ∈ [g] an Einstein representative with Schouten tensor Pi j = λgi j . Then, the
action of Pk restricted to S

g
TT(−n/2+ 2+ k) is given by (0-5).

Proof. Let ϕ= t−n/2+2+kϕ ∈S
g
TT(−n/2+2+k) and σ̃ = (1+λρ)−n/2+2+kϕ. Then

∇̃k σ̃i j = t−n/2+2+k(1+ λρ)−n/2+2+k
∇kϕi j , ∇̃∞ σ̃0i = ∇̃0 σ̃∞i = ∇̃∞ σ̃∞i = 0.

Since ϕ is a TT-tensor on (M, g), σ̃ itself is a TT-tensor with respect to g̃, and hence
is an extension of the ambient lift of ϕ. We may compute 1̃k

Lσ̃ by Lemma 4.1. By
taking the value along G and trivializing with respect to g, we obtain (0-5). �

Now we prove our main theorem.

Proof of Theorem 0.2. Let ϕ = K[g]ξ + ϕ
g
TT be the decomposition of ϕ = ġt |t=0

with respect to (0-1) and 4t the flow generated by ξ . Then g′t = 4∗−t gt satisfies
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ġ′t |t=0 = ϕ
g
TT and the total Q-curvature of g′t is equal to Qt . Therefore

d2

dt2 Qt

∣∣∣∣
t=0
=

d2

dt2 Q′t

∣∣∣∣
t=0
=−

1
4

∫
M

〈
Pϕg

TT, ϕ
g
TT

〉
,

and thus (0-2) follows from Theorem 4.2. Under the assumption of the latter half of
the theorem, any eigenvalue of 1L|Sg

TT(2)
− 4(n− 1)λ+ 4m(n− 2m− 1)λ is strictly

positive for 0≤ m ≤ n/2− 1. Therefore, if ϕg
TT 6= 0, the second derivative of Qt at

t = 0 is negative. �
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