Vol. 263, No. 1, 2013

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 320: 1
Vol. 319: 1  2
Vol. 318: 1  2
Vol. 317: 1  2
Vol. 316: 1  2
Vol. 315: 1  2
Vol. 314: 1  2
Vol. 313: 1  2
Online Archive
Volume:
Issue:
     
The Journal
Subscriptions
Editorial Board
Officers
Contacts
 
Submission Guidelines
Submission Form
Policies for Authors
 
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
Special Issues
Author Index
To Appear
 
Other MSP Journals
Biharmonic hypersurfaces in complete Riemannian manifolds

Luis J. Alías, S. Carolina García-Martínez and Marco Rigoli

Vol. 263 (2013), No. 1, 1–12
Abstract

We consider biharmonic hypersurfaces in complete Riemannian manifolds and prove that, under some additional assumptions, they are minimal.

Keywords
mean curvature vector, biharmonic hypersurfaces, Chen conjecture
Mathematical Subject Classification 2010
Primary: 53C40, 53C42
Secondary: 58E20
Milestones
Received: 27 April 2012
Revised: 25 September 2012
Accepted: 3 October 2012
Published: 14 May 2013
Authors
Luis J. Alías
Departamento de Matemáticas
Universidad de Murcia
Campus de Espinardo
30100 Espinardo, Murcia
Spain
S. Carolina García-Martínez
Departamento de Matemàticas
Universidad de Murcia
Campus de Espinardo
30100 Espinardo, Murcia
Spain
Departamento de Matemática
Universidade de São Paulo
Rua do Matão 1010
05508-900 São Paulo, SP
Brazil
Marco Rigoli
Dipartimento di Matematica
Università degli studi di Milano
via Saldini 50
I-20133 Milano
Italy