Vol. 263, No. 1, 2013

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Geometric inequalities in Carnot groups

Francescopaolo Montefalcone

Vol. 263 (2013), No. 1, 171–206
Abstract

Let 𝔾 be a subriemannian k-step Carnot group of homogeneous dimension Q. We prove several geometric inequalities concerning smooth hypersurfaces (submanifolds of codimension one) immersed in  𝔾, endowed with the H-perimeter measure.

Keywords
Carnot groups, subriemannian geometry, hypersurfaces, geometric inequalities
Mathematical Subject Classification 2010
Primary: 49Q15
Secondary: 46E99, 43A80
Milestones
Received: 28 March 2012
Revised: 1 October 2012
Accepted: 19 October 2012
Published: 14 May 2013
Authors
Francescopaolo Montefalcone
Dipartimento di Matematica
Università degli Studi di Padova
Via Trieste, 63
35121 Padova
Italy