Pacific Journal of Mathematics

BIHARMONIC HYPERSURFACES IN COMPLETE RIEMANNIAN MANIFOLDS

Luis J. Alías, S. Carolina García-Martínez and Marco Rigoli

Volume 263 No. 1 May 2013
BIHARMONIC HYPERSURFACES IN COMPLETE RIEMANNIAN MANIFOLDS

LUIS J. ALÍAS, S. CAROLINA GARCÍA-MARTÍNEZ AND MARCO RIGOLI

We consider biharmonic hypersurfaces in complete Riemannian manifolds and prove that, under some additional assumptions, they are minimal.

1. Introduction

According to a definition first given by B. Y. Chen [1991], an isometrically immersed oriented hypersurface in Euclidean space, \(\varphi : M \to \mathbb{R}^{m+1} \) is biharmonic if its mean curvature vector field \(H \) satisfies

\[
\Delta H = 0,
\]

where \(\Delta \) denotes the Laplacian on the hypersurface. It is well known that for submanifolds of Euclidean space, \(\text{trace}(B) = mH = \Delta \varphi \), where \(B \) is the second fundamental form of the immersion. Hence, for any fixed unit vector \(a \) of \(\mathbb{R}^{m+1} \),

\[
m\Delta \langle H, a \rangle = \Delta^2 \langle \varphi, a \rangle
\]

and the hypersurface is biharmonic if and only if each component of the immersion \(\varphi \) is a biharmonic function. Chen [1991; 1996] conjectured that a biharmonic hypersurface (in fact any biharmonic submanifold) of \(\mathbb{R}^{m+1} \) is minimal, the converse being, of course trivially true. This statement is of a local nature and the conjecture holds for hypersurfaces in \(\mathbb{R}^3 \) [Chen 1991] and \(\mathbb{R}^4 \) [Hasanis and Vlachos 1995; Defever 1998]. However, in general, it has been shown to be true only under some additional assumptions, sometimes of a global nature: see for instance [Akutagawa and Maeta 2013] and [Nakauchi and Urakawa 2011].

MSC2010: primary 53C40, 53C42; secondary 58E20.

Keywords: mean curvature vector, biharmonic hypersurfaces, Chen conjecture.
This problem can be considered in a more general perspective. Indeed, let \((M, g)\) and \((N, h)\) be Riemannian manifolds and \(\varphi : (M, g) \rightarrow (N, h)\) a smooth map. Let \(\tau(\varphi)\) denote its tension field, that is,

\[
\tau(\varphi) = \text{trace}(\nabla d\varphi) = \sum_{i=1}^{m} (\nabla d\varphi)(e_i, e_i), \quad m = \dim M,
\]

where \(\nabla d\varphi\) is the generalized second fundamental tensor and \(\{e_1, \ldots, e_m\}\) is a local orthonormal frame on \((M, g)\). Given a relatively compact domain \(\Omega \subset M\) one introduces the bienergy functional \(E^\varphi (\Omega)\) on \(\Omega\) by setting

\[
E^\varphi (\Omega) = \frac{1}{2} \int_{\Omega} |\tau(\varphi)|^2,
\]

where integration is understood with respect to the volume element of \((M, g)\). Then \(\varphi\) is a biharmonic map (meaning a critical point of this functional on \(M\) — i.e., on each relatively compact domain \(\Omega \subset M\), if and only if the bitension field

\[
\tau_2(\varphi) = \Delta \tau(\varphi) - \sum_{i} R^N (\tau(\varphi), \varphi_*(e_i)) \varphi_*(e_i)
\]

vanishes identically. Here \(R^N\) denotes the \((3,1)\) curvature tensor of \((N, h)\).

When \(\varphi : (M^m, g) \rightarrow (N^{m+1}, h)\) is an isometric immersion of an \(m\)-dimensional hypersurface and \(\nu\) is a local unit normal vector field along \(\varphi\), writing the mean curvature vector as

\[
H = H \nu
\]

and indicating with \(B\) the second fundamental form in the direction of \(\nu\), a heavy computation shows that (2) is equivalent to the system

\[
\begin{align*}
\Delta H - |B|^2 H + \text{Ric}^N(\nu, \nu) H &= 0, \\
2B(\nabla H, \cdot)^\# + \frac{1}{2} m \nabla H^2 - 2H(\text{Ric}^N(\nu, \cdot)^\#, \cdot)^T &= 0,
\end{align*}
\]

where \(^\#: TM^* \rightarrow TM\) denotes the musical isomorphism, \(^T\) the tangential component and \(\text{Ric}^N\) the Ricci tensor of \((N, h)\) [Ou 2010, Theorem 2.1].

At this point one easily verifies that a biharmonic hypersurface in \(\mathbb{R}^{m+1}\) in the sense of Chen is exactly a biharmonic hypersurface as defined in this more general setting. In this new perspective Chen’s conjecture has been generalized to the following [Caddeo et al. 2001; 2002]:

\[
\text{Let } \varphi : (M, g) \rightarrow (N, h) \text{ be an isometric immersion into a Riemannian manifold of nonpositive sectional curvature. If } \varphi \text{ is biharmonic then it is minimal.}
\]
This new conjecture has been shown to be true if M is compact [Jiang 1986] or if H is constant [Ou 2010], but false in general [Ou and Tang 2012]. Here we restrict ourselves to complete noncompact biharmonic hypersurfaces and in fact we concentrate our efforts on the consequences of (4a) alone.

To avoid confusion with a terminology used for biharmonic submanifolds, we underline that in what follows by a proper immersion we mean an immersion that is topologically proper: preimages of compact sets are compact sets.

2. Statement of main results

Our first main result is the following.

Theorem 1. Let $\varphi : M \to (N, \langle \cdot, \cdot \rangle)$ be an oriented, proper, isometrically immersed, biharmonic hypersurface in the complete manifold N. For some origin $o \in N$ assume that

$$\varphi(M) \cap \text{cut}(o) = \emptyset.$$

Having set $\varphi = \text{dist}_N(\cdot, o)$, suppose that the radial sectional curvature K^N_{rad} of N satisfies

$$K^N_{\text{rad}} \geq -G(\varphi)$$

for $\varphi \gg 1$ and some $G \in \ell^2(\mathbb{R}_0^+) \text{ such that } G(0) > 0$, $G'(t) \geq 0$ and $G(t) = o(t^2)$ as $t \to +\infty$. Let ν be a unit normal vector field along φ and suppose

$$\text{Ric}^N(\nu, \nu) \leq 0$$

along φ. Then φ is minimal. In particular if the sectional curvature K^N_{sect} is nonpositive, $\varphi(M)$ is unbounded in N.

As an immediate consequence of Theorem 1, using [Mari and Rigoli 2010] and [Alías et al. 2009], we obtain:

Corollary 2. Let $\varphi : M \to \mathbb{R}^{m+1}$ be an oriented, isometrically immersed, biharmonic hypersurface. If the image $\varphi(M)$ is contained in a nondegenerate open cone of \mathbb{R}^{m+1} or the hypersurface is cylindrically bounded as $\varphi(M) \subset B_r(o) \times \mathbb{R}^{m-1} \subset \mathbb{R}^2 \times \mathbb{R}^{m-1}$, then the immersion cannot be proper.

We recall here that, fixed an origin $o \in \mathbb{R}^{m+1}$, the nondegenerate cone with vertex o, direction a and width θ is the subset

$$\mathcal{C} = \mathcal{C}_{o,a,\theta} = \left\{ p \in \mathbb{R}^{m+1} \setminus \{o\} : \left| \frac{p - o}{|p - o|}, a \right| \geq \cos \theta \right\},$$

where $a \in \mathbb{S}^m$ is a unit vector and $\theta \in (0, \pi/2)$. By nondegenerate we mean that it is strictly smaller than a half-space. On the other hand, following the definition introduced in [Alfás et al. 2009], an immersed hypersurface $\varphi : M \to \mathbb{R}^{m+1}$ is said
to be cylindrically bounded if $\varphi(M) \subset B_r(o) \times \mathbb{R}^{m+1-p} \subset \mathbb{R}^p \times \mathbb{R}^{m+1-p}$, where $p \geq 2$ and $B_r(o) \subset \mathbb{R}^p$ denotes the ball of radius r. In particular, $p = 2$ gives the weakest requirement.

To introduce the next result we consider the operator

$$L = \Delta + \text{Ric}^N(v, v)$$

where v is a unit normal vector field along the hypersurface $\varphi : M \to (N, \langle \cdot, \cdot \rangle)$ and we let $\lambda_1^L(M)$ denote its spectral radius. Clearly if $\text{Ric}^N(v, v) \leq 0$ then $\lambda_1^L(M) \geq 0$ but this latter fact can be true even if $\text{Ric}^N(v, v) > 0$ provided this positivity compensate with the geometry of M. (For a detailed discussion see [Bianchini et al. 2012]). Thus $\lambda_1^L(M) \geq 0$ is weaker than $\text{Ric}^N(v, v) \leq 0$.

Theorem 3. Let $\varphi : M \to (N, \langle \cdot, \cdot \rangle)$ be a biharmonic, complete, oriented hypersurface with mean curvature H. Suppose that the operator L in (7) satisfies

$$\lambda_1^L(M) \geq 0.$$

If $H \in L^2(M)$ then φ is minimal.

This result is extended to a different class of integrability for H in Theorem 7 of Section 3 below.

Next, we consider the case when $(N, \langle \cdot, \cdot \rangle)$ is a Cartan–Hadamard manifold, that is, N is complete, simply connected and with nonpositive sectional curvature. What follows is a gap theorem.

Theorem 4. Let $\varphi : M \to (N, \langle \cdot, \cdot \rangle)$ be an isometrically immersed, oriented, biharmonic hypersurface of dimension $m \geq 3$ into a Cartan–Hadamard manifold. Suppose that the mean curvature H satisfies

$$(9) \quad \|H\|_{L^m(M)} < \frac{\omega_m^{1/m}}{\pi^{2(m-1)/2} m^{1+1/m}(m+1)^{1+1/m}},$$

where ω_m is the volume of the unit ball of \mathbb{R}^m. Then φ is a minimal hypersurface.

3. Proof of the main theorems and some further results

With the notations of Theorem 1 we consider the function $v = \varphi^2 \circ \varphi$. The assumption $\varphi(M) \cap \text{cut}(o) = \emptyset$ implies that v is smooth on M. Clearly,

$$|\nabla v| \leq 2\sqrt{v}.$$

Since M is complete and noncompact and φ is proper we have

$$v(x) \to +\infty \quad \text{as} \quad x \to \infty \quad \text{in} \quad M.$$
To compute Δv we recall (see, for instance, [Jorge and Koutroufiotis 1981]) that
\begin{equation}
\Delta (\varphi^2 \circ \varphi) = (\text{Hess } \varphi^2)(\varphi_*(e_i), \varphi_*(e_i)) + \langle \nabla \varphi^2, mH \rangle
\end{equation}
with $\{e_i\}$ a local orthonormal frame on M. Let $G \in C^\infty(\mathbb{R}_0^+)$ satisfy
\begin{equation}
G(0) > 0 \quad \text{and} \quad G'(t) \geq 0 \quad \text{on } \mathbb{R}_0^+.
\end{equation}
(In particular, G can be chosen to agree, for t large, with the function ct^d, where $0 < d < 2$, or with $ct^2(\log t)^{-\varepsilon}$, where $\varepsilon > 0$.)

If $K_r^N \geq -G$, by the Hessian comparison theorem (see Theorem 2.3 and Remark 2.3 of [Pigola et al. 2008] for the appropriate statement that we are using here) we get
\begin{equation}
\text{Hess}(\varphi^2) \leq C \varphi \sqrt{G(\varphi)} (\cdot, \cdot)
\end{equation}
outside a compact set and for some appropriate constant $C > 0$. Up to modifying C we can assume that (14) is true on M. Hence, from (12) and (14) we deduce that
\begin{equation}
\Delta v \leq C^2 \sqrt{v} \sqrt{G(\sqrt{v})} + 2m \sqrt{v} |H|
\end{equation}
on M. Next, from (4a), letting $u = H^2$ we get
\begin{equation}
\Delta u = 2H \Delta H + 2|\nabla H|^2 = 2|B|^2 u - 2 \text{Ric}^N(v, v)u + 2|\nabla H|^2.
\end{equation}
Using Newton’s inequality,
\begin{equation}
|B|^2 \geq m|H|^2,
\end{equation}
we obtain
\begin{equation}
\Delta u + 2 \text{Ric}^N(v, v)u - 2mu^2 \geq 2|\nabla H|^2 \geq 0,
\end{equation}
and we are left with a solution $u \geq 0$ of the differential inequality
\begin{equation}
\Delta u + a(x)u - 2mu^2 \geq 0
\end{equation}
with
\begin{equation}
a(x) = 2 \text{Ric}^N(v, v) \circ \varphi(x).
\end{equation}

Proof of Theorem 1. First observe that since φ is proper and N is complete, the induced metric on M is complete. Next we follow an idea introduced in [Akutagawa and Maeta 2013]. Since φ is proper, for every $T \in \mathbb{R}^+$, the set
\begin{equation}
D_T = v^{-1}([0, T])
\end{equation}
is compact. Suppose $u \neq 0$. Then there exists $x_0 \in M$ such that $u(x_0) > 0$ and we can suppose to have chosen T sufficiently large that $x_0 \in D_{T/2} \setminus \partial D_{T/2}$.
We define
\begin{equation}
F(x) = (T - v(x))^2 u(x)
\end{equation}
on D_T. Note that $F \geq 0$, $F \equiv 0$ on ∂D_T and $F(x_0) > 0$. It follows that there exists a positive absolute maximum for $F(x)$ at some point $\tilde{x} \in D_T \setminus \partial D_T$. At this point we have
\begin{equation}
\nabla F \bigg(\frac{\tilde{x}}{D_T} \bigg) = 0 \quad \text{and} \quad \frac{\Delta F}{F} \bigg(\frac{\tilde{x}}{D_T} \bigg) \leq 0.
\end{equation}
From (22), a straightforward computation yields
\begin{equation}
\frac{\nabla u(\tilde{x})}{u(\tilde{x})} = \frac{2}{T - v(\tilde{x})} \nabla v(\tilde{x})
\end{equation}
and
\begin{equation}
\frac{\Delta u(\tilde{x})}{u(\tilde{x})} \leq \frac{2}{T - v(\tilde{x})} \Delta v(\tilde{x}) - \frac{2}{(T - v(\tilde{x}))^2} |\nabla v(\tilde{x})|^2 + \frac{4}{T - v(\tilde{x})} \frac{|\nabla u(\tilde{x})|}{u(\tilde{x})} |\nabla v(\tilde{x})|.
\end{equation}
We use (23), (15) at \tilde{x} with $\sqrt{u} = |H|$, and (10) at \tilde{x} into the above inequality to obtain (omitting \tilde{x} for the ease of notation)
\begin{align*}
\frac{\Delta u}{u} & \leq \frac{2}{T - v} \left[C^2 \sqrt{G(\sqrt{v})} + 2m \sqrt{u} \right] \sqrt{v} + \frac{6}{(T - v)^2} |\nabla v|^2 \\
& \leq \frac{2}{T - v} \left[C^2 \sqrt{G(\sqrt{v})} + 2m \sqrt{u} \right] \sqrt{v} + \frac{24}{(T - v)^2} v.
\end{align*}
From (19) we then deduce
\begin{equation}
u \leq \frac{a}{2m} + \frac{C^2 \sqrt{v}}{m(T - v)} \sqrt{G(\sqrt{v})} + \frac{2 \sqrt{v}}{T - v} \sqrt{u} + \frac{12}{m(T - v)^2} v.
\end{equation}
Multiplying by $(T - v(x))^2$ both sides of (24) and using that $a(x) = a_+(x) - a_-(x)$, that G is nondecreasing, and that $\tilde{x} \in D_T$ we have
\begin{align*}
F(\tilde{x}) & \leq \frac{a_+(\tilde{x})}{2m}(T - v(\tilde{x}))^2 + \frac{C^2}{m} \frac{\sqrt{v(\tilde{x})}}{m(T - v(\tilde{x}))} \sqrt{G(\sqrt{v(\tilde{x})})} \\
& \quad + 2 \sqrt{v(\tilde{x})} \sqrt{F(\tilde{x})} + \frac{12}{m} v(\tilde{x}) \\
& \leq \frac{T^2}{2m} a_+(\tilde{x}) + \frac{C^2 T^{3/2}}{m} \sqrt{G(\sqrt{T})} + 2 \sqrt{T} \sqrt{F(\tilde{x})} + \frac{12}{m} T.
\end{align*}
Therefore
\begin{align*}
F(\tilde{x}) - 2 \sqrt{T} \sqrt{F(\tilde{x})} - T Z(T) & \leq 0,
\end{align*}
where
\begin{align*}
Z(T) &= \frac{T}{2m} \sup_{D_T} a_+ + \frac{C^2}{m} \sqrt{T} \sqrt{G(\sqrt{T})} + \frac{12}{m}.
\end{align*}
Note that $Z(T) \geq 0$. Then
\[F(x_0) \leq F(\tilde{x}) \leq T \left(1 + \sqrt{1 + Z(T)}\right)^2 \leq C^2 T (1 + Z(T)) \]
and therefore, since $x_0 \in D_{T/2}$,
\[u(x_0) \leq \frac{C^2 T}{(T - v(x_0))^2} \left(T \sup_{D_T} a_+ + \sqrt{T} \sqrt{G(\sqrt{T})}\right) \]
\[\leq \frac{C^2}{T} \left(T \sup_{D_T} a_+ + \sqrt{T} \sqrt{G(\sqrt{T})}\right) = C^2 \left(\sup_{D_T} a_+ + \frac{1}{\sqrt{T}} \sqrt{G(\sqrt{T})}\right). \]
However, by assumption $a_+ \equiv 0$ and using $G(t) = o(t^2)$ as $t \to +\infty$ we have
\[T^{-1/2} \sqrt{G(v)} = o(1) \quad \text{as } T \to +\infty. \]
Thus, letting $T \to +\infty$ in (25), we deduce $u(x_0) \leq 0$ which contradicts the assumption $u(x_0) > 0$. The contradiction shows that $u = H^2 \equiv 0$ on M, that is, φ is minimal.

Suppose now that $K_{\text{sect}}^N \leq 0$. Since φ is minimal (15) becomes
\[\Delta v \leq C^2 \sqrt{v} \sqrt{G(\sqrt{v})}. \]
This, together with (10) and (11), guarantees the validity of the Omori–Yau maximum principle on M (see Theorem 1.9 of [Pigola et al. 2005]). Now the result follows from Theorem 3.9 of [Pigola et al. 2005].

For the proof of Theorem 3 we need the next proposition which is a version, adapted to the present purposes, of Lemma 3.1 in [Brandolini et al. 1998].

Proposition 5. Let $(M, \langle \cdot, \cdot \rangle)$ be a complete manifold and let $a(x), b(x) \in \mathcal{C}^0(M)$ and suppose that
\[b(x) \geq 0 \]
and
\[\lambda_1^L(M) \geq 0 \quad \text{with } L = \Delta + a(x). \]
Let $u \in C^2(M)$ be a solution of
\[\Delta u + a(x)u - b(x)u = 0 \quad \text{on } M. \]
If $u \in L^2(M)$ then $u \equiv 0$ on $\text{supp}(b(x))$. In particular, if u does not change sign and $b(x) \not\equiv 0$, then $u \equiv 0$.

Proof. We suppose $b(x) \not\equiv 0$ otherwise there is nothing to prove. Next, we reason by contradiction and we assume the existence of $x_0 \in \text{supp}(b(x)) \subset M$ such that $u(x_0) \neq 0$ and $b(x_0) \neq 0$. (Note that if $u(x_0) \neq 0$ and $b(x_0) = 0$ by continuity...
we can always find \(x'_0 \) sufficiently close to \(x_0 \) so that \(u(x'_0) \neq 0 \) and \(b(x'_0) \neq 0 \). Choose \(R \gg 1 \) such that \(x_0 \in B_R \). Let \(\psi \) be a cut-off function \(0 \leq \psi \leq 1 \) satisfying
\[
\psi \equiv 1 \quad \text{on} \; B_R, \quad \text{supp}(\psi) \subseteq B_{R+1}, \quad |\nabla \psi| \leq 2.
\]
Then \(u\psi \in C^2_0(M) \), \(u\psi \neq 0 \) and by the variational characterization of \(\lambda^L_1(B_{R+1}) \) we have
\[
\lambda^L_1(B_{R+1}) \leq \frac{\int_{B_{R+1}} (|\nabla (u\psi)|^2 - a(x)(u\psi)^2)}{\int_{B_{R+1}} (u\psi)^2}.
\]
Since \(\lambda^L_1(M) \geq 0 \) the monotonicity property of eigenvalues yields \(\lambda^L_1(B_{R+1}) > 0 \). Next, we consider the vector field \(W = u\psi^2 \nabla u \). A direct computation using (28) gives
\[
\text{div}(W) = b(x)u^2\psi^2 - a(x)u^2\psi^2 + |\nabla (u\psi)|^2 - u^2|\nabla \psi|^2.
\]
Hence by (29) and the divergence theorem
\[
0 \geq \lambda^L_1(B_{R+1}) \int_{B_{R+1}} u^2\psi^2 - \int_{B_{R+1}} u^2|\nabla \psi|^2 + \int_{B_{R+1}} b(x)u^2\psi^2.
\]
Rearranging, using the properties of \(\psi \) and (26) we obtain
\[
\lambda^L_1(B_{R+1}) \int_{B_R} u^2 - \int_{B_R} b(x)u^2 \leq 4 \int_{B_{R+1}\setminus B_R} u^2.
\]
Letting \(R \to +\infty \) and using the fact that \(u \in L^2(M) \) we deduce
\[
\lambda^L_1(M) \int_{\mathcal{M}} u^2 - \int_{\mathcal{M}} b(x)u^2 \leq 0.
\]
We reach a contradiction by observing that \(\lambda^L_1(M) \geq 0 \) and in a neighborhood of \(x_0 \), \(b(x) \) and \(u^2(x) \) are strictly positive.

The last statement follows immediately from the strong maximum principle and (28) (see the remark after the proof of Theorem 3.5 on page 35 of [Gilbarg and Trudinger 1983]).

Proof of Theorem 3. We apply Proposition 5 to the solution \(H \) of (4a) with \(a(x) = \text{Ric}^N(v, v) \) and \(b(x) = |B|^2 \). By Newton’s inequality (17), \(\text{supp}(H) \subseteq \text{supp}(b(x)) \), which gives a contradiction to the conclusion of Proposition 5 unless \(H \equiv 0 \); thus \(\varphi : M \to (N, \langle , \rangle) \) is minimal.

Corollary 6. Any biharmonic, isometrically immersed, complete oriented hypersurface \(M \) with mean curvature satisfying \(H \in L^2(M) \) in a space with nonpositive Ricci tensor is minimal.
For the proof of this corollary simply observe that since $\text{Ric}^N(v, v) \leq 0$ then $\lambda_1^L(M) \geq 0$ for $L = \Delta + \text{Ric}^N(v, v)$.

With the aid of Theorem 4.6 in [Pigola et al. 2008] we can extend the range of integrability of H as follows.

Theorem 7. Let $\varphi : M \to (N, \langle , \rangle)$ be a biharmonic, isometrically immersed, oriented hypersurface. For some $\Lambda \geq \frac{1}{2}$ let $L_\Lambda = \Delta + 2\Lambda \text{Ric}^N(v, v)$ and suppose that

$$\lambda_1^{L_\Lambda}(M) \geq 0.$$ \hfill (30)

Let $-\frac{1}{2} \leq \beta \leq \Lambda - 1$ and assume that

$$H \in L^{4(\beta+1)}(M).$$ \hfill (31)

Then φ is minimal.

Remark 8. If $\Lambda = \frac{1}{2}$, $L_\Lambda = L = \Delta + \text{Ric}^N(v, v)$ and $\beta = -\frac{1}{2}$ so that condition (31) becomes $H \in L^2(M)$. In this way, we recover Theorem 3.

Proof of Theorem 7. We let $u = H^2$. From the differential inequality (18) and

$$|\nabla H|^2 = \frac{1}{4} \frac{|\nabla u|^2}{u},$$

we deduce that u is a nonnegative solution of

$$u \Delta u + 2 \text{Ric}^N(v, v)u^2 - 2mu^3 \geq \frac{1}{2} |\nabla u|^2.$$ \hfill (32)

By Theorem 1 of [Fischer-Colbrie and Schoen 1980], inequality (30) implies the existence of a positive solution ψ on M of

$$\Delta \psi + 2\Lambda \text{Ric}^N(v, v)\psi = 0.$$

We can thus apply Theorem 4.6 of [Pigola et al. 2008] with $\varphi = \psi$, $A = -\frac{1}{2}$, $|H| = \Lambda$, $K = 0$, $a(x) = 2\text{Ric}^N(v, v)$, $b(x) = 2m$ and $\sigma = 2$. Note that assumption (4.43) of Theorem 4.6 of [Pigola et al. 2008] is true by (31). It follows that $u \equiv 0$, that is, $\varphi : M \to (N, \langle , \rangle)$ is minimal. \hfill \square

We remark that if we let $L_{m/4} = \Delta + (m/2) \text{Ric}^N(v, v)$ and we assume

$$\lambda_1^{L_{m/4}}(M) \geq 0,$$ \hfill (33)

as a consequence of Theorem 7, if $H \in L^m(M)$ then φ is minimal.

As a matter of fact, we can avoid assumption (33) and obtain the same conclusion in case (N, \langle , \rangle) is a Cartan–Hadamard manifold. This is the content of Theorem 4. Towards this end, we observe that if $\varphi : M \to (N, \langle , \rangle)$ is an isometric immersion
of dimension $m \geq 2$, Hoffman and Spruck [1974] have shown the validity of the following L^1-Sobolev inequality: for every $u \in W^{1,1}_0(M)$,

$$S_1(m)^{-1} \left(\int_M |u|^{m/(m-1)} \right)^{(m-1)/m} \leq \int_M (|\nabla u| + m|H||u|)$$

(34)

with

$$S_1(m) = \frac{\pi^{2m-1} (m + 1)^{1+\frac{1}{m}}}{\omega_m^{1/m} m - 1}$$

(35)

where ω_m is the volume of the unit ball of \mathbb{R}^m (observe that in [Hoffman and Spruck 1974] the mean curvature vector field is not normalized). Having fixed $\varepsilon > 0$, from (34) we immediately deduce (see for instance [Pigola et al. 2008, pp. 175–176]) that for every $v \in W^{1,2}_0(M)$

$$S_2(m, \varepsilon)^{-1} \left(\int_M |v|^{2m/(m-2)} \right)^{(m-2)/m} \leq \int_M (|\nabla v|^2 + \frac{\varepsilon^2}{4} \left(\frac{m-2}{m-1} \right)^2 m^2 |H|^2 v^2)$$

(36)

with

$$S_2(m, \varepsilon) = \frac{4(m-1)^2}{(m-2)^2} \frac{1 + \varepsilon^2}{\varepsilon^2} S_1(m)^2.$$

(37)

Proof of Theorem 4. In the assumptions of the theorem and by the above discussion we have the validity of (36) on M. Next, for $u = H^2$ we rewrite (16) in the form

$$u \Delta u + 2 \operatorname{Ric}^N(v, v) u^2 - 2 |B|^2 u^2 = \frac{1}{2} |\nabla u|^2.$$

(38)

Since N is Cartan–Hadamard,

$$2(\operatorname{Ric}^N(v, v) - |B|^2) \leq 0.$$

(39)

From (9) and the fact that $H \in L^m(M)$ we have

$$u \in L^{m/2}(M) \quad \text{with } m/2 > \frac{1}{2},$$

(40)

because $m \geq 3$. Applying Theorem 9.12 of [Pigola et al. 2008] with $\sigma = m/2$, $\alpha = 2/m$ and $A = -\frac{1}{2}$ to (38) we deduce that either u is identically zero or, by formula (9.41) of [Pigola et al. 2008],

$$\left(\int_M |H|^m \right)^{2/m} \geq \frac{1}{(1 + \varepsilon^2)m^2 S_1(m)^2}.$$

Note that to obtain this inequality we use (37). Thus, letting $\varepsilon \downarrow 0^+$ we obtain

$$\|H\|_{L^m(M)} \geq \frac{1}{mS_1(m)} = \frac{\omega_m^{1/m}}{\pi^{2m-1} m(m+1)^{1+\frac{1}{m}}}.$$

(41)
Using (35) in this latter we contradict (9). Thus $u \equiv 0$ and $\varphi : M \to (N, \langle \cdot , \cdot \rangle)$ is minimal.

Acknowledgments.

The authors thank the anonymous referee for valuable suggestions and corrections which contributed to improve this paper.

References

Received April 27, 2012. Revised September 25, 2012.

LUIS J. ALÍAS
DEPARTAMENTO DE MATEMÁTICAS
UNIVERSIDAD DE MURCIA
CAMPUS DE ESPINARDO
30100 ESPINARDO, MURCIA
SPAIN
ljalias@um.es

S. CAROLINA GARCÍA-MARTÍNEZ
DEPARTAMENTO DE MATEMÁTICAS
UNIVERSIDAD DE MURCIA
CAMPUS DE ESPINARDO
30100 ESPINARDO, MURCIA
SPAIN
sandracarolina.garcia@um.es

and

DEPARTAMENTO DE MATEMÁTICA
UNIVERSIDADE DE SÃO PAULO
RUA DO MATÃO 1010
05508-900 SÃO PAULO, SP
BRAZIL

MARCO RIGOLI
DIPARTIMENTO DI MATEMATICA
UNIVERSITÀ DEGLI STUDI DI MILANO
VIA SALDINI 50
I-20133 MILANO
ITALY
marco.rigoli@unimi.it
Biharmonic hypersurfaces in complete Riemannian manifolds

Luis J. Alías, Carolina García-Martínez and Marco Rigoli

Half-commutative orthogonal Hopf algebras

Julien Bichon and Michel Dubois-Violette

Superdistributions, analytic and algebraic super Harish-Chandra pairs

Claudio Carmeli and Rita Fioresi

Orbifolds with signature \((0; k, k^{n-1}, k^n, k^n)\)

Angel Carocca, Rubén A. Hidalgo and Rubí E. Rodríguez

Explicit isogeny theorems for Drinfeld modules

Imin Chen and Yoonjin Lee

Topological pressures for \(\epsilon\)-stable and stable sets

Xianfeng Ma and Ercai Chen

Lipschitz and bilipschitz maps on Carnot groups

William Meyerson

Geometric inequalities in Carnot groups

Francesco Paolo Montefalcone

Fixed points of endomorphisms of virtually free groups

Pedro V. Silva

The sharp lower bound for the first positive eigenvalue of the Folland–Stein operator on a closed pseudohermitian \((2n + 1)\)-manifold

Chin-Tung Wu

Remark on “Maximal functions on the unit \(n\)-sphere” by Peter M. Knopf 253 (1987)

Hong-Quan Li