Pacific Journal of Mathematics

BIHARMONIC HYPERSURFACES IN COMPLETE RIEMANNIAN MANIFOLDS

LUIS J. ALÍAS, S. CAROLINA GARCÍA-MARTÍNEZ AND MARCO RIGOLI

Volume 263 No. 1

May 2013

BIHARMONIC HYPERSURFACES IN COMPLETE RIEMANNIAN MANIFOLDS

LUIS J. ALÍAS, S. CAROLINA GARCÍA-MARTÍNEZ AND MARCO RIGOLI

We consider biharmonic hypersurfaces in complete Riemannian manifolds and prove that, under some additional assumptions, they are minimal.

1. Introduction

According to a definition first given by B. Y. Chen [1991], an isometrically immersed oriented hypersurface in Euclidean space, $\varphi : M \to \mathbb{R}^{m+1}$ is biharmonic if its mean curvature vector field H satisfies

$$\Delta \boldsymbol{H}=0,$$

where Δ denotes the Laplacian on the hypersurface. It is well known that for submanifolds of Euclidean space, trace(*B*) = *m***H** = $\Delta \varphi$, where *B* is the second fundamental form of the immersion. Hence, for any fixed unit vector **a** of \mathbb{R}^{m+1} ,

(1)
$$m\Delta\langle \boldsymbol{H}, \boldsymbol{a} \rangle = \Delta^2 \langle \varphi, \boldsymbol{a} \rangle$$

and the hypersurface is biharmonic if and only if each component of the immersion φ is a biharmonic function. Chen [1991; 1996] conjectured that a biharmonic hypersurface (in fact any biharmonic submanifold) of \mathbb{R}^{m+1} is minimal, the converse being, of course trivially true. This statement is of a local nature and the conjecture holds for hypersurfaces in \mathbb{R}^3 [Chen 1991] and \mathbb{R}^4 [Hasanis and Vlachos 1995; Defever 1998]. However, in general, it has been shown to be true only under some additional assumptions, sometimes of a global nature: see for instance [Akutagawa and Maeta 2013] and [Nakauchi and Urakawa 2011].

MSC2010: primary 53C40, 53C42; secondary 58E20.

This work was partially supported by MICINN (Ministerio de Ciencia e Innovación) and FEDER (Fondo Europeo de Desarrollo Regional) project MTM2009-10418 and Fundación Séneca project 04540/GERM/06, Spain. This research is a result of the activity developed within the framework of the Programme in Support of Excellence Groups of the Región de Murcia, Spain, by Fundación Séneca, Regional Agency for Science and Technology (Regional Plan for Science and Technology 2007–2010). García-Martínez was supported by a research training grant within the framework of the GERM program (Grupos de Excelencia de la Región de Murcia) at Universidad de Murcia. Rigoli was partially supported by MEC Grant SAB2010-0073.

Keywords: mean curvature vector, biharmonic hypersurfaces, Chen conjecture.

This problem can be considered in a more general perspective. Indeed, let (M, g) and (N, h) be Riemannian manifolds and $\varphi : (M, g) \to (N, h)$ a smooth map. Let $\tau(\varphi)$ denote its tension field, that is,

$$\tau(\varphi) = \operatorname{trace}(\nabla d\varphi) = \sum_{i=1}^{m} (\nabla d\varphi)(e_i, e_i), \quad m = \dim M,$$

where $\nabla d\varphi$ is the generalized second fundamental tensor and $\{e_1, \ldots, e_m\}$ is a local orthonormal frame on (M, g). Given a relatively compact domain $\Omega \subset M$ one introduces the bienergy functional $E_{\tau}^{\varphi}(\Omega)$ on Ω by setting

$$E^{\varphi}_{\tau}(\Omega) = \frac{1}{2} \int_{\Omega} |\tau(\varphi)|^2$$

where integration is understood with respect to the volume element of (M, g). Then φ is a biharmonic map (meaning a critical point of this functional on M—i.e., on each relatively compact domain $\Omega \subset M$), if and only if the bitension field

(2)
$$\tau_2(\varphi) = \Delta \tau(\varphi) - \sum_i R^N \big(\tau(\varphi), \varphi_*(e_i) \big) \varphi_*(e_i)$$

vanishes identically. Here \mathbb{R}^N denotes the (3,1) curvature tensor of (N, h).

When $\varphi: (M^m, g) \to (N^{m+1}, h)$ is an isometric immersion of an *m*-dimensional hypersurface and ν is a local unit normal vector field along φ , writing the mean curvature vector as

$$H = H\nu$$

and indicating with *B* the second fundamental form in the direction of ν , a heavy computation shows that (2) is equivalent to the system

(4a)
$$\Delta H - |B|^2 H + \operatorname{Ric}^N(\nu, \nu) H = 0,$$

(4b)
$$2B(\nabla H, \cdot)^{\sharp} + \frac{1}{2}m\nabla H^2 - 2H(\operatorname{Ric}^N(\nu, \cdot)^{\sharp})^T = 0,$$

where $^{\sharp}: TM^* \to TM$ denotes the musical isomorphism, T the tangential component and Ric^N the Ricci tensor of (N, h) [Ou 2010, Theorem 2.1].

At this point one easily verifies that a biharmonic hypersurface in \mathbb{R}^{m+1} in the sense of Chen is exactly a biharmonic hypersurface as defined in this more general setting. In this new perspective Chen's conjecture has been generalized to the following [Caddeo et al. 2001; 2002]:

Let $\varphi : (M, g) \to (N, h)$ be an isometric immersion into a Riemannian manifold of nonpositive sectional curvature. If φ is biharmonic then it is minimal.

This new conjecture has been shown to be true if M is compact [Jiang 1986] or if H is constant [Ou 2010], but false in general [Ou and Tang 2012]. Here we restrict ourselves to complete noncompact biharmonic hypersurfaces and in fact we concentrate our efforts on the consequences of (4a) alone.

To avoid confusion with a terminology used for biharmonic submanifolds, we underline that in what follows by a *proper immersion* we mean an immersion that is topologically proper: preimages of compact sets are compact sets.

2. Statement of main results

Our first main result is the following.

Theorem 1. Let $\varphi : M \to (N, \langle , \rangle)$ be an oriented, proper, isometrically immersed, biharmonic hypersurface in the complete manifold N. For some origin $o \in N$ assume that

$$\varphi(M) \cap \operatorname{cut}(o) = \emptyset.$$

Having set $\rho = \text{dist}_N(\cdot, o)$, suppose that the radial sectional curvature K_{rad}^N of N satisfies

(5)
$$K_{\rm rad}^N \ge -G(\varrho)$$

for $\rho \gg 1$ and some $G \in \mathscr{C}^2(\mathbb{R}^+_0)$ such that G(0) > 0, $G'(t) \ge 0$ and $G(t) = o(t^2)$ as $t \to +\infty$. Let v be a unit normal vector field along φ and suppose

(6)
$$\operatorname{Ric}^{N}(\nu,\nu) \leq 0$$

along φ . Then φ is minimal. In particular if the sectional curvature K_{sect}^N is nonpositive, $\varphi(M)$ is unbounded in N.

As an immediate consequence of Theorem 1, using [Mari and Rigoli 2010] and [Alías et al. 2009], we obtain:

Corollary 2. Let $\varphi : M \to \mathbb{R}^{m+1}$ be an oriented, isometrically immersed, biharmonic hypersurface. If the image $\varphi(M)$ is contained in a nondegenerate open cone of \mathbb{R}^{m+1} or the hypersurface is cylindrically bounded as $\varphi(M) \subset B_r(o) \times \mathbb{R}^{m-1} \subset \mathbb{R}^2 \times \mathbb{R}^{m-1}$, then the immersion cannot be proper.

We recall here that, fixed an origin $o \in \mathbb{R}^{m+1}$, the nondegenerate cone with vertex o, direction a and width θ is the subset

$$\mathscr{C} = \mathscr{C}_{o,a,\theta} = \left\{ p \in \mathbb{R}^{m+1} \setminus \{o\} : \left\langle \frac{p-o}{|p-o|}, a \right\rangle \ge \cos \theta \right\},\$$

where $a \in \mathbb{S}^m$ is a unit vector and $\theta \in (0, \pi/2)$. By nondegenerate we mean that it is strictly smaller than a half-space. On the other hand, following the definition introduced in [Alfas et al. 2009], an immersed hypersurface $\varphi : M \to \mathbb{R}^{m+1}$ is said

to be cylindrically bounded if $\varphi(M) \subset B_r(o) \times \mathbb{R}^{m+1-p} \subset \mathbb{R}^p \times \mathbb{R}^{m+1-p}$, where $p \ge 2$ and $B_r(o) \subset \mathbb{R}^p$ denotes the ball of radius *r*. In particular, p = 2 gives the weakest requirement.

To introduce the next result we consider the operator

(7)
$$L = \Delta + \operatorname{Ric}^{N}(\nu, \nu)$$

where ν is a unit normal vector field along the hypersurface $\varphi : M \to (N, \langle, \rangle)$ and we let $\lambda_1^L(M)$ denote its spectral radius. Clearly if $\operatorname{Ric}^N(\nu, \nu) \leq 0$ then $\lambda_1^L(M) \geq 0$ but this latter fact can be true even if $\operatorname{Ric}^N(\nu, \nu) > 0$ provided this positivity compensate with the geometry of M. (For a detailed discussion see [Bianchini et al. 2012]). Thus $\lambda_1^L(M) \geq 0$ is weaker than $\operatorname{Ric}^N(\nu, \nu) \leq 0$.

Theorem 3. Let $\varphi : M \to (N, \langle , \rangle)$ be a biharmonic, complete, oriented hypersurface with mean curvature *H*. Suppose that the operator *L* in (7) satisfies

(8)
$$\lambda_1^L(M) \ge 0$$

If $H \in L^2(M)$ then φ is minimal.

This result is extended to a different class of integrability for H in Theorem 7 of Section 3 below.

Next, we consider the case when (N, \langle , \rangle) is a Cartan–Hadamard manifold, that is, N is complete, simply connected and with nonpositive sectional curvature. What follows is a gap theorem.

Theorem 4. Let $\varphi : M \to (N, \langle , \rangle)$ be an isometrically immersed, oriented, biharmonic hypersurface of dimension $m \ge 3$ into a Cartan–Hadamard manifold. Suppose that the mean curvature H satisfies

(9)
$$\|H\|_{L^m(M)} < \frac{\omega_m^{1/m}}{\pi 2^{m-1}} \frac{m-1}{m(m+1)^{1+\frac{1}{m}}}$$

where ω_m is the volume of the unit ball of \mathbb{R}^m . Then φ is a minimal hypersurface.

3. Proof of the main theorems and some further results

With the notations of Theorem 1 we consider the function $v = \rho^2 \circ \varphi$. The assumption $\varphi(M) \cap \text{cut}(o) = \emptyset$ implies that v is smooth on M. Clearly,

$$(10) \qquad \qquad |\nabla v| \le 2\sqrt{v}.$$

Since M is complete and noncompact and φ is proper we have

(11)
$$v(x) \to +\infty \text{ as } x \to \infty \text{ in } M$$

To compute Δv we recall (see, for instance, [Jorge and Koutroufiotis 1981]) that

(12)
$$\Delta(\varrho^2 \circ \varphi) = (\operatorname{Hess} \varrho^2) \big(\varphi_*(e_i), \varphi_*(e_i) \big) + \big\langle \nabla \varrho^2, mH \big\rangle$$

with $\{e_i\}$ a local orthonormal frame on M. Let $G \in C^{\infty}(\mathbb{R}^+_0)$ satisfy

(13)
$$G(0) > 0$$
 and $G'(t) \ge 0$ on \mathbb{R}^+_0 .

(In particular, G can be chosen to agree, for t large, with the function ct^d , where 0 < d < 2, or with $ct^2(\log t)^{-\varepsilon}$, where $\varepsilon > 0$.)

If $K_{\text{rad}}^N \ge -G$, by the Hessian comparison theorem (see Theorem 2.3 and Remark 2.3 of [Pigola et al. 2008] for the appropriate statement that we are using here) we get

(14)
$$\operatorname{Hess}(\varrho^2) \le C \varrho \sqrt{G(\varrho)} \langle , \rangle$$

outside a compact set and for some appropriate constant C > 0. Up to modifying C we can assume that (14) is true on M. Hence, from (12) and (14) we deduce that

(15)
$$\Delta v \le C^2 \sqrt{v} \sqrt{G(\sqrt{v})} + 2m \sqrt{v} |H|$$

on *M*. Next, from (4a), letting $u = H^2$ we get

(16)
$$\Delta u = 2H\Delta H + 2|\nabla H|^2 = 2|B|^2 u - 2\operatorname{Ric}^N(\nu,\nu)u + 2|\nabla H|^2.$$

Using Newton's inequality,

$$|B|^2 \ge m|H|^2,$$

we obtain

(18)
$$\Delta u + 2\operatorname{Ric}^{N}(\nu,\nu)u - 2mu^{2} \ge 2|\nabla H|^{2} \ge 0,$$

and we are left with a solution $u \ge 0$ of the differential inequality

(19)
$$\Delta u + a(x)u - 2mu^2 \ge 0$$

with

(20)
$$a(x) = 2\operatorname{Ric}^{N}(\nu, \nu) \circ \varphi(x).$$

Proof of Theorem 1. First observe that since φ is proper and N is complete, the induced metric on M is complete. Next we follow an idea introduced in [Akutagawa and Maeta 2013]. Since φ is proper, for every $T \in \mathbb{R}^+$, the set

$$D_T = v^{-1}([0, T])$$

is compact. Suppose $u \neq 0$. Then there exists $x_0 \in M$ such that $u(x_0) > 0$ and we can suppose to have chosen T sufficiently large that $x_0 \in D_{T/2} \setminus \partial D_{T/2}$.

We define

(21)
$$F(x) = (T - v(x))^2 u(x)$$

on D_T . Note that $F \ge 0$, $F \equiv 0$ on ∂D_T and $F(x_0) > 0$. It follows that there exists a positive absolute maximum for F(x) at some point $\bar{x} \in D_T \setminus \partial D_T$. At this point we have

(22)
$$\frac{\nabla F}{F}(\bar{x}) = 0 \quad \text{and} \quad \frac{\Delta F}{F}(\bar{x}) \le 0.$$

From (22), a straightforward computation yields

(23)
$$\frac{\nabla u(\bar{x})}{u(\bar{x})} = \frac{2}{T - v(\bar{x})} \nabla v(\bar{x})$$

and

$$\frac{\Delta u(\bar{x})}{u(\bar{x})} \le \frac{2}{T - v(\bar{x})} \Delta v(\bar{x}) - \frac{2}{(T - v(\bar{x}))^2} |\nabla v(\bar{x})|^2 + \frac{4}{T - v(\bar{x})} \frac{|\nabla u(\bar{x})|}{u(\bar{x})} |\nabla v(\bar{x})|.$$

We use (23), (15) at \bar{x} with $\sqrt{u} = |H|$, and (10) at \bar{x} into the above inequality to obtain (omitting \bar{x} for the ease of notation)

$$\frac{\Delta u}{u} \leq \frac{2}{T-v} \Big[C^2 \sqrt{G(\sqrt{v})} + 2m\sqrt{u} \Big] \sqrt{v} + \frac{6}{(T-v)^2} |\nabla v|^2 \\ \leq \frac{2}{T-v} \Big[C^2 \sqrt{G(\sqrt{v})} + 2m\sqrt{u} \Big] \sqrt{v} + \frac{24}{(T-v)^2} v.$$

From (19) we then deduce

(24)
$$u \le \frac{a}{2m} + \frac{C^2 \sqrt{v}}{m(T-v)} \sqrt{G(\sqrt{v})} + \frac{2\sqrt{v}}{T-v} \sqrt{u} + \frac{12}{m(T-v)^2} v.$$

Multiplying by $(T - v(x))^2$ both sides of (24) and using that $a(x) = a_+(x) - a_-(x)$, that *G* is nondecreasing, and that $\bar{x} \in D_T$ we have

$$F(\bar{x}) \le \frac{a_+(\bar{x})}{2m} (T - v(\bar{x}))^2 + \frac{C^2 \sqrt{v(\bar{x})}}{m} (T - v(\bar{x})) \sqrt{G(\sqrt{v(\bar{x})})} + 2\sqrt{v(\bar{x})} \sqrt{F(\bar{x})} + \frac{12}{m} v(\bar{x})$$

$$\leq \frac{T^2}{2m}a_+(\bar{x}) + \frac{C^2T^{3/2}}{m}\sqrt{G(\sqrt{T})} + 2\sqrt{T}\sqrt{F(\bar{x})} + \frac{12}{m}T.$$

Therefore

$$F(\bar{x}) - 2\sqrt{T}\sqrt{F(\bar{x})} - TZ(T) \le 0,$$

where

$$Z(T) = \frac{T}{2m} \sup_{D_T} a_+ + \frac{C^2}{m} \sqrt{T} \sqrt{G(\sqrt{T})} + \frac{12}{m}.$$

Note that $Z(T) \ge 0$. Then

$$F(x_0) \le F(\bar{x}) \le T(1 + \sqrt{1 + Z(T)})^2 \le C^2 T(1 + Z(T))$$

and therefore, since $x_0 \in D_{T/2}$,

$$u(x_0) \leq \frac{C^2 T}{(T - v(x_0))^2} \left(T \sup_{D_T} a_+ + \sqrt{T} \sqrt{G(\sqrt{T})} \right)$$

$$\leq \frac{C^2}{T} \left(T \sup_{D_T} a_+ + \sqrt{T} \sqrt{G(\sqrt{T})} \right) = C^2 \left(\sup_{D_T} a_+ + \frac{1}{\sqrt{T}} \sqrt{G(\sqrt{T})} \right).$$

However, by assumption $a_+ \equiv 0$ and using $G(t) = o(t^2)$ as $t \to +\infty$ we have

$$T^{-1/2}\sqrt{G(\sqrt{T})} = o(1)$$
 as $T \to +\infty$

Thus, letting $T \to +\infty$ in (25), we deduce $u(x_0) \le 0$ which contradicts the assumption $u(x_0) > 0$. The contradiction shows that $u = H^2 \equiv 0$ on M, that is, φ is minimal.

Suppose now that $K_{\text{sect}}^N \leq 0$. Since φ is minimal (15) becomes

(25)
$$\Delta v \le C^2 \sqrt{v} \sqrt{G(\sqrt{v})}.$$

This, together with (10) and (11), guarantees the validity of the Omori–Yau maximum principle on M (see Theorem 1.9 of [Pigola et al. 2005]). Now the result follows from Theorem 3.9 of [Pigola et al. 2005].

For the proof of Theorem 3 we need the next proposition which is a version, adapted to the present purposes, of Lemma 3.1 in [Brandolini et al. 1998].

Proposition 5. Let (M, \langle , \rangle) be a complete manifold and let $a(x), b(x) \in \mathscr{C}^{0}(M)$ and suppose that

$$(26) b(x) \ge 0$$

and

(27)
$$\lambda_1^L(M) \ge 0 \quad \text{with } L = \Delta + a(x).$$

Let $u \in C^2(M)$ be a solution of

(28)
$$\Delta u + a(x)u - b(x)u = 0 \quad on \ M.$$

If $u \in L^2(M)$ then $u \equiv 0$ on supp(b(x)). In particular, if u does not change sign and $b(x) \neq 0$, then $u \equiv 0$.

Proof. We suppose $b(x) \neq 0$ otherwise there is nothing to prove. Next, we reason by contradiction and we assume the existence of $x_0 \in \text{supp}(b(x)) \subset M$ such that $u(x_0) \neq 0$ and $b(x_0) \neq 0$. (Note that if $u(x_0) \neq 0$ and $b(x_0) = 0$ by continuity

we can always find x'_0 sufficiently close to x_0 so that $u(x'_0) \neq 0$ and $b(x'_0) \neq 0$. Choose $R \gg 1$ such that $x_0 \in B_R$. Let ψ be a cut-off function $0 \leq \psi \leq 1$ satisfying

$$\psi \equiv 1$$
 on B_R , $\operatorname{supp}(\psi) \subseteq B_{R+1}$, $|\nabla \psi| \le 2$.

Then $u\psi \in \mathscr{C}^2_0(M)$, $u\psi \neq 0$ and by the variational characterization of $\lambda_1^L(B_{R+1})$ we have

(29)
$$\lambda_1^L(B_{R+1}) \le \frac{\int_{B_{R+1}} \left(|\nabla(u\psi)|^2 - a(x)(u\psi)^2 \right)}{\int_{B_{R+1}} (u\psi)^2}.$$

Since $\lambda_1^L(M) \ge 0$ the monotonicity property of eigenvalues yields $\lambda_1^L(B_{R+1}) > 0$. Next, we consider the vector field $W = u\psi^2 \nabla u$. A direct computation using (28) gives

$$\operatorname{div}(W) = b(x)u^{2}\psi^{2} - a(x)u^{2}\psi^{2} + |\nabla(u\psi)|^{2} - u^{2}|\nabla\psi|^{2}.$$

Hence by (29) and the divergence theorem

$$0 \ge \lambda_1^L(B_{R+1}) \int_{B_{R+1}} u^2 \psi^2 - \int_{B_{R+1}} u^2 |\nabla \psi|^2 + \int_{B_{R+1}} b(x) u^2 \psi^2.$$

Rearranging, using the properties of ψ and (26) we obtain

$$\lambda_1^L(B_{R+1})\int_{B_R} u^2 - \int_{B_R} b(x)u^2 \le 4\int_{B_{R+1}\setminus B_R} u^2.$$

Letting $R \to +\infty$ and using the fact that $u \in L^2(M)$ we deduce

$$\lambda_1^L(M) \int_M u^2 - \int_M b(x)u^2 \le 0.$$

We reach a contradiction by observing that $\lambda_1^L(M) \ge 0$ and in a neighborhood of $x_0, b(x)$ and $u^2(x)$ are strictly positive.

The last statement follows immediately from the strong maximum principle and (28) (see the remark after the proof of Theorem 3.5 on page 35 of [Gilbarg and Trudinger 1983]).

Proof of Theorem 3. We apply Proposition 5 to the solution H of (4a) with $a(x) = \text{Ric}^N(v, v)$ and $b(x) = |B|^2$. By Newton's inequality (17), $\text{supp}(H) \subseteq \text{supp}(b(x))$, which gives a contradiction to the conclusion of Proposition 5 unless $H \equiv 0$; thus $\varphi: M \to (N, \langle , \rangle)$ is minimal. \Box

Corollary 6. Any biharmonic, isometrically immersed, complete oriented hypersurface M with mean curvature satisfying $H \in L^2(M)$ in a space with nonpositive Ricci tensor is minimal. For the proof of this corollary simply observe that since $\operatorname{Ric}^{N}(\nu, \nu) \leq 0$ then $\lambda_{1}^{L}(M) \geq 0$ for $L = \Delta + \operatorname{Ric}^{N}(\nu, \nu)$.

With the aid of Theorem 4.6 in [Pigola et al. 2008] we can extend the range of integrability of H as follows.

Theorem 7. Let $\varphi : M \to (N, \langle , \rangle)$ be a biharmonic, isometrically immersed, oriented hypersurface. For some $\Lambda \geq \frac{1}{2}$ let $L_{\Lambda} = \Delta + 2\Lambda \operatorname{Ric}^{N}(\nu, \nu)$ and suppose that

$$\lambda_1^{L_\Lambda}(M) \ge 0.$$

Let $-\frac{1}{2} \leq \beta \leq \Lambda - 1$ and assume that

$$(31) H \in L^{4(\beta+1)}(M)$$

Then φ is minimal.

Remark 8. If $\Lambda = \frac{1}{2}$, $L_{\Lambda} = L = \Delta + \text{Ric}^{N}(\nu, \nu)$ and $\beta = -\frac{1}{2}$ so that condition (31) becomes $H \in L^{2}(M)$. In this way, we recover Theorem 3.

Proof of Theorem 7. We let $u = H^2$. From the differential inequality (18) and

$$|\nabla H|^2 = \frac{1}{4} \frac{|\nabla u|^2}{u}$$

we deduce that u is a nonnegative solution of

(32)
$$u\Delta u + 2\operatorname{Ric}^{N}(v, v)u^{2} - 2mu^{3} \ge \frac{1}{2}|\nabla u|^{2}.$$

By Theorem 1 of [Fischer-Colbrie and Schoen 1980], inequality (30) implies the existence of a positive solution ψ on M of

$$\Delta \psi + 2\Lambda \operatorname{Ric}^{N}(\nu, \nu)\psi = 0.$$

We can thus apply Theorem 4.6 of [Pigola et al. 2008] with $\varphi = \psi$, $A = -\frac{1}{2}$, $|\mathbf{H}| = \Lambda$, K = 0, $a(x) = 2 \operatorname{Ric}^{N}(v, v)$, b(x) = 2m and $\sigma = 2$. Note that assumption (4.43) of Theorem 4.6 of [Pigola et al. 2008] is true by (31). It follows that $u \equiv 0$, that is, $\varphi : M \to (N, \langle , \rangle)$ is minimal.

We remark that if we let $L_{m/4} = \Delta + (m/2) \operatorname{Ric}^{N}(\nu, \nu)$ and we assume

$$\lambda_1^{L_{m/4}}(M) \ge 0,$$

as a consequence of Theorem 7, if $H \in L^m(M)$ then φ is minimal.

As a matter of fact, we can avoid assumption (33) and obtain the same conclusion in case (N, \langle , \rangle) is a Cartan–Hadamard manifold. This is the content of Theorem 4. Towards this end, we observe that if $\varphi : M \to (N, \langle , \rangle)$ is an isometric immersion of dimension $m \ge 2$, Hoffman and Spruck [1974] have shown the validity of the following L^1 -Sobolev inequality: for every $u \in W_0^{1,1}(M)$,

(34)
$$S_1(m)^{-1} \left(\int_M |u|^{m/(m-1)} \right)^{(m-1)/m} \le \int_M \left(|\nabla u| + m|H||u| \right)$$

with

10

(35)
$$S_1(m) = \frac{\pi 2^{m-1}}{\omega_m^{1/m}} \frac{(m+1)^{1+\frac{1}{m}}}{m-1}$$

where ω_m is the volume of the unit ball of \mathbb{R}^m (observe that in [Hoffman and Spruck 1974] the mean curvature vector field is not normalized). Having fixed $\varepsilon > 0$, from (34) we immediately deduce (see for instance [Pigola et al. 2008, pp. 175–176]) that for every $v \in W_0^{1,2}(M)$ (36)

$$S_2(m,\varepsilon)^{-1} \left(\int_M |v|^{2m/(m-2)} \right)^{(m-2)/m} \le \int_M \left(|\nabla v|^2 + \frac{\varepsilon^2}{4} \left(\frac{m-2}{m-1} \right)^2 m^2 |H|^2 v^2 \right)$$

with

(37)
$$S_2(m,\varepsilon) = \frac{4(m-1)^2}{(m-2)^2} \frac{1+\varepsilon^2}{\varepsilon^2} S_1(m)^2.$$

Proof of Theorem 4. In the assumptions of the theorem and by the above discussion we have the validity of (36) on M. Next, for $u = H^2$ we rewrite (16) in the form

(38)
$$u\Delta u + 2\operatorname{Ric}^{N}(v, v)u^{2} - 2|B|^{2}u^{2} = \frac{1}{2}|\nabla u|^{2}.$$

Since N is Cartan–Hadamard,

(39)
$$2(\operatorname{Ric}^{N}(\nu,\nu) - |B|^{2}) \leq 0.$$

From (9) and the fact that $H \in L^m(M)$ we have

(40)
$$u \in L^{m/2}(M)$$
 with $m/2 > \frac{1}{2}$,

because $m \ge 3$. Applying Theorem 9.12 of [Pigola et al. 2008] with $\sigma = m/2$, $\alpha = 2/m$ and $A = -\frac{1}{2}$ to (38) we deduce that either *u* is identically zero or, by formula (9.41) of [Pigola et al. 2008],

$$\left(\int_{M} |H|^{m}\right)^{2/m} \ge \frac{1}{(1+\varepsilon^{2})m^{2}S_{1}(m)^{2}}.$$

Note that to obtain this inequality we use (37). Thus, letting $\varepsilon \downarrow 0^+$ we obtain

$$\|H\|_{L^m(M)} \ge \frac{1}{mS_1(m)} = \frac{\omega_m^{1/m}}{\pi 2^{m-1}} \frac{m-1}{m(m+1)^{1+\frac{1}{m}}}$$

11

Using (35) in this latter we contradict (9). Thus $u \equiv 0$ and $\varphi : M \to (N, \langle , \rangle)$ is minimal.

Acknowledgments.

The authors thank the anonymous referee for valuable suggestions and corrections which contributed to improve this paper.

References

- [Akutagawa and Maeta 2013] K. Akutagawa and S. Maeta, "Biharmonic properly immersed submanifolds in the Euclidean spaces", *Geom. Dedicata* (2013). To appear.
- [Alías et al. 2009] L. J. Alías, G. P. Bessa, and M. Dajczer, "The mean curvature of cylindrically bounded submanifolds", *Math. Ann.* **345**:2 (2009), 367–376. MR 2010i:53104 Zbl 1200.53050
- [Bianchini et al. 2012] B. Bianchini, L. Mari, and M. Rigoli, "On some aspects of oscillation theory and geometry", preprint, 2012, Available at http://hdl.handle.net/2434/170621. To appear in *Mem. Amer. Math. Soc.*
- [Brandolini et al. 1998] L. Brandolini, M. Rigoli, and A. G. Setti, "Positive solutions of Yamabe type equations on complete manifolds and applications", *J. Funct. Anal.* **160**:1 (1998), 176–222. MR 2000a:35051 Zbl 0923.58049
- [Caddeo et al. 2001] R. Caddeo, S. Montaldo, and C. Oniciuc, "Biharmonic submanifolds of *S*³", *Internat. J. Math.* **12**:8 (2001), 867–876. MR 2002k:53123 Zbl 1111.53302
- [Caddeo et al. 2002] R. Caddeo, S. Montaldo, and C. Oniciuc, "Biharmonic submanifolds in spheres", *Israel J. Math.* **130** (2002), 109–123. MR 2003c:53090 Zbl 1038.58011
- [Chen 1991] B.-Y. Chen, "Some open problems and conjectures on submanifolds of finite type", *Soochow J. Math.* **17**:2 (1991), 169–188. MR 92m:53091 Zbl 0749.53037
- [Chen 1996] B.-Y. Chen, "A report on submanifolds of finite type", *Soochow J. Math.* **22**:2 (1996), 117–337. MR 98b:53043 Zbl 0867.53001
- [Defever 1998] F. Defever, "Hypersurfaces of E^4 with harmonic mean curvature vector", *Math. Nachr.* **196** (1998), 61–69. MR 99j:53004 Zbl 0944.53005
- [Fischer-Colbrie and Schoen 1980] D. Fischer-Colbrie and R. Schoen, "The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature", *Comm. Pure Appl. Math.* **33**:2 (1980), 199–211. MR 81i:53044 Zbl 0439.53060
- [Gilbarg and Trudinger 1983] D. Gilbarg and N. S. Trudinger, *Elliptic partial differential equations* of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften **224**, Springer, Berlin, 1983. MR 86c:35035 Zbl 0562.35001
- [Hasanis and Vlachos 1995] T. Hasanis and T. Vlachos, "Hypersurfaces in E^4 with harmonic mean curvature vector field", *Math. Nachr.* **172** (1995), 145–169. MR 96c:53085 Zbl 0839.53007
- [Hoffman and Spruck 1974] D. Hoffman and J. Spruck, "Sobolev and isoperimetric inequalities for Riemannian submanifolds", *Comm. Pure Appl. Math.* **27** (1974), 715–727. MR 51 #1676 Zbl 0295.53025
- [Jiang 1986] G. Y. Jiang, "2-harmonic isometric immersions between Riemannian manifolds", *Chinese Ann. Math. Ser. A* 7:2 (1986), 130–144. In Chinese; An English summary appears in *Chinese Ann. Math. Ser. B* 7:2 (1986), 255. MR 87k:53140 Zbl 0596.53046
- [Jorge and Koutroufiotis 1981] L. Jorge and D. Koutroufiotis, "An estimate for the curvature of bounded submanifolds", *Amer. J. Math.* **103**:4 (1981), 711–725. MR 83d:53041b Zbl 0472.53055

- [Mari and Rigoli 2010] L. Mari and M. Rigoli, "Maps from Riemannian manifolds into nondegenerate Euclidean cones", *Rev. Mat. Iberoam.* 26:3 (2010), 1057–1074. MR 2012b:53126 Zbl 1205.53006
- [Nakauchi and Urakawa 2011] N. Nakauchi and H. Urakawa, "Biharmonic hypersurfaces in a Riemannian manifold with non-positive Ricci curvature", *Ann. Global Anal. Geom.* **40**:2 (2011), 125–131. MR 2012f:53128 Zbl 1222.58010
- [Ou 2010] Y.-L. Ou, "Biharmonic hypersurfaces in Riemannian manifolds", *Pacific J. Math.* 248:1 (2010), 217–232. MR 2011i:53097 Zbl 1205.53066
- [Ou and Tang 2012] Y.-L. Ou and L. Tang, "On the generalized Chen's conjecture on biharmonic submanifolds", *Michigan Math. J.* **61** (2012), 531–542.
- [Pigola et al. 2005] S. Pigola, M. Rigoli, and A. G. Setti, "Maximum principles on Riemannian manifolds and applications", *Mem. Amer. Math. Soc.* **174**:822 (2005). MR 2006b:53048 Zbl 1075.58017
- [Pigola et al. 2008] S. Pigola, M. Rigoli, and A. G. Setti, Vanishing and finiteness results in geometric analysis: a generalization of the Bochner technique, Progress in Mathematics 266, Birkhäuser, Basel, 2008. MR 2009m:58001 Zbl 1150.53001

Received April 27, 2012. Revised September 25, 2012.

LUIS J. ALÍAS DEPARTAMENTO DE MATEMÁTICAS UNIVERSIDAD DE MURCIA CAMPUS DE ESPINARDO 30100 ESPINARDO, MURCIA SPAIN

ljalias@um.es

S. CAROLINA GARCÍA-MARTÍNEZ DEPARTAMENTO DE MATEMÀTICAS UNIVERSIDAD DE MURCIA CAMPUS DE ESPINARDO 30100 ESPINARDO, MURCIA SPAIN

sandracarolina.garcia@um.es

and

DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE DE SÃO PAULO RUA DO MATÃO 1010 05508-900 SÃO PAULO, SP BRAZIL

MARCO RIGOLI DIPARTIMENTO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI MILANO VIA SALDINI 50 I-20133 MILANO ITALY marco.rigoli@unimi.it

PACIFIC JOURNAL OF MATHEMATICS

msp.org/pjm

Founded in 1951 by E. F. Beckenbach (1906-1982) and F. Wolf (1904-1989)

EDITORS

V. S. Varadarajan (Managing Editor) Department of Mathematics University of California Los Angeles, CA 90095-1555 pacific@math.ucla.edu

Don Blasius Department of Mathematics University of California Los Angeles, CA 90095-1555 blasius@math.ucla.edu

Robert Finn Department of Mathematics Stanford University Stanford, CA 94305-2125 finn@math.stanford.edu

Sorin Popa Department of Mathematics University of California Los Angeles, CA 90095-1555 popa@math.ucla.edu

Paul Yang Department of Mathematics Princeton University Princeton NJ 08544-1000 yang@math.princeton.edu

PRODUCTION

Silvio Levy, Scientific Editor, production@msp.org

SUPPORTING INSTITUTIONS

ACADEMIA SINICA, TAIPEI CALIFORNIA INST. OF TECHNOLOGY INST. DE MATEMÁTICA PURA E APLICADA KEIO UNIVERSITY MATH. SCIENCES RESEARCH INSTITUTE NEW MEXICO STATE UNIV. OREGON STATE UNIV. STANFORD UNIVERSITY UNIV. OF BRITISH COLUMBIA UNIV. OF CALIFORNIA, BERKELEY UNIV. OF CALIFORNIA, DAVIS UNIV. OF CALIFORNIA, RIVERSIDE UNIV. OF CALIFORNIA, SAN DIEGO UNIV. OF CALIF., SANTA BARBARA Vyjayanthi Chari Department of Mathematics University of California Riverside, CA 92521-0135 chari@math.ucr.edu

Kefeng Liu Department of Mathematics University of California Los Angeles, CA 90095-1555 liu@math.ucla.edu

Jie Qing Department of Mathematics University of California Santa Cruz, CA 95064 qing@cats.ucsc.edu

UNIV. OF CALIF., SANTA CRUZ UNIV. OF MONTANA UNIV. OF OREGON UNIV. OF SOUTHERN CALIFORNIA UNIV. OF UTAH UNIV. OF WASHINGTON WASHINGTON STATE UNIVERSITY

These supporting institutions contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its contents or policies.

See inside back cover or msp.org/pjm for submission instructions.

The subscription price for 2013 is US \$400/year for the electronic version, and \$485/year for print and electronic. Subscriptions, requests for back issues and changes of subscribers address should be sent to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163, U.S.A. The Pacific Journal of Mathematics is indexed by Mathematical Reviews, Zentralblatt MATH, PASCAL CNRS Index, Referativnyi Zhurnal, Current Mathematical Publications and the Science Citation Index.

The Pacific Journal of Mathematics (ISSN 0030-8730) at the University of California, c/o Department of Mathematics, 798 Evans Hall #3840, Berkeley, CA 94720-3840, is published monthly except July and August. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices. POSTMASTER: send address changes to Pacific Journal of Mathematics, P.O. Box 4163, Berkeley, CA 94704-0163.

PJM peer review and production are managed by EditFLOW® from Mathematical Sciences Publishers.

PUBLISHED BY mathematical sciences publishers nonprofit scientific publishing

http://msp.org/ © 2013 Mathematical Sciences Publishers

Department of Mathematics University of California Los Angeles, CA 90095-1555 balmer@math.ucla.edu

Paul Balmer

Daryl Cooper Department of Mathematics University of California Santa Barbara, CA 93106-3080 cooper@math.ucsb.edu

Jiang-Hua Lu Department of Mathematics The University of Hong Kong Pokfulam Rd., Hong Kong jhlu@maths.hku.hk

PACIFIC JOURNAL OF MATHEMATICS

Volume 263 No. 1 May 2013

Biharmonic hypersurfaces in complete Riemannian manifolds	1
LUIS J. ALÍAS, S. CAROLINA GARCÍA-MARTÍNEZ and MARCO RIGOLI	
Half-commutative orthogonal Hopf algebras	13
JULIEN BICHON and MICHEL DUBOIS-VIOLETTE	
Superdistributions, analytic and algebraic super Harish-Chandra pairs	29
CLAUDIO CARMELI and RITA FIORESI	
Orbifolds with signature $(0; k, k^{n-1}, k^n, k^n)$	53
ANGEL CAROCCA, RUBÉN A. HIDALGO and RUBÍ E. Rodríguez	
Explicit isogeny theorems for Drinfeld modules	87
IMIN CHEN and YOONJIN LEE	
Topological pressures for ϵ -stable and stable sets	117
XIANFENG MA and ERCAI CHEN	
Lipschitz and bilipschitz maps on Carnot groups	143
WILLIAM MEYERSON	
Geometric inequalities in Carnot groups	171
Francescopaolo Montefalcone	
Fixed points of endomorphisms of virtually free groups	207
Pedro V. Silva	
The sharp lower bound for the first positive eigenvalue of the	241
Folland–Stein operator on a closed pseudohermitian $(2n + 1)$ -manifold CHIN-TUNG WU	
Remark on "Maximal functions on the unit <i>n</i> -sphere" by Peter M. Knop (1987)	f 253

HONG-QUAN LI