TOPOLOGICAL PRESSURES FOR
ϵ-STABLE AND STABLE SETS

XIANFENG MA AND ERCAI CHEN
TOPOLOGICAL PRESSURES FOR
\(\epsilon\)-STABLE AND STABLE SETS

XIANFENG MA AND ERCAI CHEN

In this paper, topological pressures of the preimages of \(\epsilon\)-stable sets and certain closed subsets of stable sets in positive entropy systems are investigated. It is shown that the topological pressure of any topological system can be calculated in terms of the topological pressure of the preimages of \(\epsilon\)-stable sets. For the constructed closed subset (W. Huang, Commun. Math. Phys. 279, 535–557 (2008)) of the stable set or the unstable set of any point in a measure-theoretic “rather big” set of a topological system with positive entropy, especially for the weakly mixing subset contained in the closure of the stable and unstable sets, it is proved that topological pressures of these subsets can be no less than the measure-theoretic pressure.

1. Introduction

Let \((X, T)\) be a topological dynamical system (TDS) in the sense that \(X\) is a compact metric space with a compatible metric \(d\) and \(T : X \rightarrow X\) is a homeomorphism. A TDS is said to be noninvertible if the map is surjective and continuous but not one-to-one. For \(x \in X\) and \(\epsilon > 0\), the \(\epsilon\)-stable set of \(x\) under \(T\) is the set of points whose forward orbit \(\epsilon\)-shadows that of \(x\):

\[
W^s_\epsilon(x, T) = \{y \in X : d(T^n x, T^n y) \leq \epsilon \text{ for all } n \geq 0\}.
\]

The preimages of these sets can be nontrivial and hence disperse at a nonzero exponent rate. The dispersal rate function \(h_s(T, x, \epsilon)\) was introduced in [Fiebig et al. 2003]. The relationship between \(h_s(T, x, \epsilon)\) and the topological entropy \(h_{\text{top}}(T)\) was also investigated. It was proved that when \(X\) has finite covering dimension, for all \(\epsilon > 0\),

\[
\sup_{x \in X} h_s(T, x, \epsilon) = h_{\text{top}}(T).
\]
In [Huang 2008], the finite-dimensionality hypothesis turns out to be redundant. This equality is proved to be always true for any noninvertible TDS.

It is known that certain results concerning topological entropy can be generalized to topological pressure. For any \(f \in C(X, \mathbb{R}) \), consider the topological pressure of the preimages of the \(\epsilon \)-stable set of \(x \):

\[
P(T, f, x, \epsilon) = \lim_{\delta \to 0} \limsup_{n \to +\infty} \frac{1}{n} \log P_n(T, f, \delta, T^{-n}W_{\epsilon}^s(x, T)),
\]

where

\[
P_n(T, f, \delta, T^{-n}W_{\epsilon}^s(x, T)) = \sup \left\{ \sum_{x \in E} \exp f_n(x) : E \text{ is an} (n, \delta)\text{-separated subset of} T^{-n}W_{\epsilon}^s(x, T) \right\},
\]

and \(f_n(x) = \sum_{i=0}^{n-1} f \circ T^i(x) \). We show that the topological pressure of any non-invertible TDS with positive metric entropy can be calculated in terms of the topological pressure of the preimages of \(\epsilon \)-stable sets. That is, for all \(\epsilon > 0 \),

\[
\sup_{x \in X} P(T, f, x, \epsilon) = P(T, f),
\]

where \(P(T, f) \) is the standard notion of the topological pressure. For the null function \(f \), this equality is the above one for the topological entropy.

For \(x \in X \), the stable set \(W^s(x, T) \) and the unstable set \(W^u(x, T) \) of \(x \) are defined as

\[
W^s(x, T) = \{ y \in X : \lim_{n \to +\infty} d(T^n x, T^n y) = 0 \},
\]

\[
W^u(x, T) = \{ y \in X : \lim_{n \to +\infty} d(T^{-n} x, T^{-n} y) = 0 \}.
\]

For Anosov diffeomorphisms on a compact manifold, pairs belonging to the stable set are asymptotic under \(T \) and tend to diverge under \(T^{-1} \). However, Blanchard et al. [2002] showed that in most case, this phenomenon does not happen in a TDS with positive metric entropy. N. Sumi [2003] investigated the stable and unstable sets of \(C^2 \) diffeomorphisms of \(C^\infty \) manifolds with positive metric entropy. He showed that the closure of the stable set \(W^s(x, T) \) of “many points” is a perfect *-chaotic set and the closure of the unstable set \(W^u(x, T) \) contains a perfect *-chaotic set. W. Huang [2008] got further information in the general noninvertible TDS with positive metric entropy. He proved that there exists a measure-theoretically “rather big” set such that the closure of the stable or unstable sets of points in the set contains a weakly mixing set. The Bowen entropies of these sets were also estimated there. It was proved that the lower bound is the usual metric entropy \(h_\mu(T) \) for the ergodic invariant measure \(\mu \).

By introducing the topological pressure for the closed subset and using the excellent partition formed in Lemma 4 of [Blanchard et al. 2002], we show that,
for the constructed closed subsets of stable and unstable sets in [Huang 2008], the
topological pressure of these sets can also be estimated. More precisely, we prove
that if μ is an ergodic invariant measure of a TDS (X, T) with $h_\mu(T) > 0$, then,
for μ-a.e. $x \in X$, the closed subsets

$$A(x) \subseteq W^s(x, T), \quad B(x) \subseteq W^u(x, T)$$

and the weakly mixing subset

$$E(x) \subseteq W^s(x, T) \cap W^u(x, T)$$

constructed in [Huang 2008] have the following properties:

(a) $\lim_{n \to +\infty} \text{diam} T^n A(x) = 0$ and $P(T^{-1}, f, A(x)) \geq P_\mu(T, f)$,
(b) $\lim_{n \to +\infty} \text{diam} T^{-n} B(x) = 0$ and $P(T, f, B(x)) \geq P_\mu(T, f)$,
(c) $P(T, f, E(x)) \geq P_\mu(T, f)$ and $P(T^{-1}, f, E(x)) \geq P_\mu(T, f)$,

where $P_\mu(T, f)$ is the measure-theoretic pressure.

The paper is organized as follows. In Section 2, the topological pressure for
the closed subset of a TDS is introduced. Some related notions and results about
entropy are also listed. In Section 3, the topological pressure of the preimages of
an ϵ-stable set is introduced. Using the tool formed in [Blanchard et al. 2002], we
show that the topological pressure of any TDS can be calculated in terms of the
topological pressure of the preimages of an ϵ-stable set. As a generalization of
the entropy point, the notion of the pressure point is also introduced. In Section 4,
results (a)–(c) above are proved. In Section 5, the results in sections 3 and 4 are
stated and proved for the noninvertible TDS.

2. Preliminaries

Let (X, T) be a TDS and \mathcal{B}_X be the σ-algebra of all Borel subsets of X. Recall
that a cover of X is a finite family of Borel subsets of X whose union is X, and
a partition of X is a cover of X whose elements are pairwise disjoint. We denote
the set of covers, partitions, and open covers, of X by \mathcal{X}_X, \mathcal{P}_X, and \mathcal{E}_X.
Given a partition α of X and $x \in X$, denote by $\alpha(x)$ the atom of α containing x.
For two given covers $\mathcal{U}, \mathcal{V} \in \mathcal{X}_X$, \mathcal{U} is said to be finer than \mathcal{V} (denoted by $\mathcal{U} \succeq \mathcal{V}$) if each
element of \mathcal{U} is contained in some element of \mathcal{V}. Let

$$\mathcal{U} \vee \mathcal{V} = \{ U \cap V : U \in \mathcal{U}, V \in \mathcal{V} \}.$$

Given integers M, N with $0 \leq M \leq N$ and $\mathcal{U} \in \mathcal{E}_X$, we set

$$\mathcal{U}^N_M = \bigvee_{n=M}^{N} T^{-n} \mathcal{U}.$$
Given $\mathcal{U} \in \mathcal{C}_X$ and $K \subset X$, put
\[N(\mathcal{U}, K) = \min \left\{ \text{the cardinality of } \mathcal{F} : \mathcal{F} \subset \mathcal{U}, \bigcup_{F \in \mathcal{F}} F \supset K \right\} \]
and $H(\mathcal{U}, K) = \log N(\mathcal{U}, K)$. Then the topological entropy of \mathcal{U} with respect to T for the compact subset K is
\[h_{\text{top}}(T, \mathcal{U}, K) = \lim_{n \to \infty} \frac{1}{n} H(\mathcal{U}^{n-1}, K) = \inf_{n \geq 1} \frac{1}{n} H(\mathcal{U}^{n-1}, K). \]
The topological entropy of T for the compact subset K is defined by $h_{\text{top}}(T, K) = \sup_{\mathcal{U} \in \mathcal{C}_X} h_{\text{top}}(T, \mathcal{U}, K)$; and the topological entropy of T is defined by $h_{\text{top}}(T) = \sup_K h_{\text{top}}(T, K)$.

Let (X, T) be a TDS, K a closed subset of X, $\mathcal{U} \in \mathcal{C}_X$, and $f \in C(X, \mathbb{R})$, where $C(X, \mathbb{R})$ is the Banach space of all continuous, real-valued functions on X endowed with the supremum norm. We set
\[P_n(T, f, \mathcal{U}, K) = \inf \left\{ \sum_{V \in \mathcal{V}} \sup_{x \in V \cap K} \exp f_n(x) : \mathcal{V} \in \mathcal{C}_X \text{ and } \mathcal{V} \supseteq \mathcal{U}^{n-1} \right\}, \]
where $f_n(x) = \sum_{j=0}^{n-1} f(T^j x)$. When $V \cap K = \emptyset$, we let $\sup_{x \in V \cap K} \exp f_n(x) = 0$. Then the above definition is well defined. It is clear that if f is the null function, $P_n(T, 0, \mathcal{U}, K) = N(\mathcal{U}^{n-1}, K)$.

For $\mathcal{V} \in \mathcal{C}_X$, we let α be the Borel partition generated by \mathcal{V} and define
\[\mathcal{P}^*(\mathcal{V}) = \{ \beta \in \mathcal{P}_X : \beta \supseteq \mathcal{V} \text{ and each atom of } \beta \text{ is the union of some atoms of } \alpha \}. \]

Lemma 2.1 [Ma et al. 2010, Lemma 2.1]. Let M be a compact subset of X and let $f \in C(X, \mathbb{R})$, $\mathcal{V} \in \mathcal{C}_X$. Then
\[\inf_{\beta \in \mathcal{C}_X} \sum_{\beta \supseteq \mathcal{V}} \sup_{B \in \beta, x \in B \cap M} f(x) = \min \left\{ \sum_{\beta \in \mathcal{P}^*(\mathcal{V})} \sup_{B \in \beta, x \in B \cap M} f(x) : \beta \in \mathcal{P}^*(\mathcal{V}) \right\}. \]

Let $\mathcal{H}(X)$ be the collection of all nonempty closed subsets of X. For any nonempty subset A of X and $\varepsilon > 0$, let $N(A, \varepsilon) = \{ x \in X : \text{dist}(x, A) < \varepsilon \}$, where $\text{dist}(x, A) = \inf \{d(x, y) : y \in A \}$. The *Hausdorff metric* H_d on the space $\mathcal{H}(X)$ induced by the metric d is defined as
\[H_d(A, B) = \inf \{ \varepsilon : A \subset N(B, \varepsilon) \text{ and } B \subset N(A, \varepsilon) \} \text{ for any } A, B \subset X. \]
Then $(\mathcal{H}(X), H_d)$ constitutes a compact metric space.

Lemma 2.2. Let (X, T) be a TDS, $\mathcal{U} \in \mathcal{C}_X$, and $f \in C(X, \mathbb{R}^+)$. Then the function
\[F : K \to \inf \left\{ \sum_{V \in \mathcal{V}, x \in V \cap K} f(x) : \mathcal{V} \in \mathcal{C}_X \text{ and } \mathcal{V} \supseteq \mathcal{U} \right\} \]
is measurable from $\mathcal{H}(X)$ to \mathbb{R}^+, where $\sup_{x \in V \cap K} f(x) = 0$ for $V \cap K = \emptyset$.
Proof. By Lemma 2.1 it suffices to prove that for each \(B \in \beta \), where \(\beta \in \mathcal{P}^*(\mathcal{U}) \), the function \(F_{B} : K \to \sup_{x \in B \cap K} f(x) \) is measurable.

For each \(r \in \mathbb{R} \), let \(\mathcal{E}_r = \{ K : \sup_{x \in B \cap K} f(x) > r \} \). Let \(U = f^{-1}(r, +\infty) \). Then \(U \) is an open subset of \(X \). For \(r \geq 0 \), if \(B \cap U = \emptyset \), \(\mathcal{E}_r = \emptyset \). If \(B \cap U \neq \emptyset \), \(\mathcal{E}_r = \{ K : K \cap (B \cap U) \neq \emptyset \} \). Let \(\alpha \) be the Borel partition generated by the open cover \(\mathcal{U} = \{ U_i \}_{i=1}^s \). Then each \(A \in \alpha \) has the form \((\bigcap_{i \in L} U_i) \cap (\bigcap_{j \in M} U_j^c) \), where \(L, M \subset \{ 1, \ldots, s \} \) and \(L \cap M = \emptyset \). Note that, for each open subset \(W \) of \(X \), the sets \(\{ K : K \cap (W \cap U) \neq \emptyset \} \) and \(\{ K : K \cap (W^c \cap U) \neq \emptyset \} \) — which equals \(\{ K : K \cap U \neq \emptyset \} \cap (\mathcal{H}(X) \setminus \{ K : K \subset W \}) \) — are both measurable subsets of \(\mathcal{H}(X) \). Then the set \(\{ K : K \cap (A \cap U) \neq \emptyset \} \) is measurable for each \(A \in \alpha \). Since each atom \(B \) of \(\beta \) is the finite union of elements of \(\alpha \), it follows that \(\mathcal{E}_r \) is a measurable subset of \(\mathcal{H}(X) \). For \(r < 0 \), \(\mathcal{E}_r = \mathcal{E}_0 \cup \{ K : \sup_{x \in B \cap K} f(x) = 0 \} = \mathcal{E}_0 \cup \{ K : B \cap K = \emptyset \} \).

Since \(\{ K : B \cap K = \emptyset \} = \mathcal{H}(X) \setminus \{ K : B \cap K \neq \emptyset \} \) and \(\{ K : B \cap K \neq \emptyset \} \) is measurable, \(\mathcal{E}_r \) is also measurable. Thus \(F_{B} \) is a measurable function. \(\square \)

Let \(K \in \mathcal{H}(X) \), \(\mathcal{U} \in \mathcal{E}_0^\alpha \), and \(f \in C(X, \mathbb{R}) \). We define \(P(T, f, \mathcal{U}, K) = \lim \sup_{n \to \infty} (1/n) \log P_n(T, f, \mathcal{U}, K) \).

Let \((X, T) \) be a TDS. Denote by \(\mathcal{M}(X) \) the set of all Borel probability measures on \(X \), by \(\mathcal{M}(X, T) \) the set of \(T \)-invariant measures, and by \(\mathcal{M}^e(X, T) \) the set of ergodic measures. Then \(\mathcal{M}^e(X, T) \subset \mathcal{M}(X, T) \subset \mathcal{M}(X) \), and \(\mathcal{M}(X, T) \) are convex, compact metric spaces endowed with the weak*-topology.

Since the map \(f \) is a homeomorphism, it induces in a natural way a homeomorphism \(\hat{T} : \mathcal{H}(X) \to \mathcal{H}(X) \) by \(\hat{T}(A) = T(A) \) for each \(A \in \mathcal{H}(X) \). Then \((\mathcal{H}(X), \hat{T}) \) constitutes a TDS induced by \((X, T) \).

For each \(\hat{\mu} \in \mathcal{M}(\mathcal{H}(X), \hat{T}) \), the following lemma shows that the limit superior in the above definition can be obtained by the limit for \(\hat{\mu} \)-a.e. \(K \in \mathcal{H}(X) \).

Lemma 2.3. Let \((X, T) \) be a TDS, \(\mathcal{U} \in \mathcal{E}_0^\alpha \), \(f \in C(X, \mathbb{R}) \), and \(\hat{\mu} \in \mathcal{M}(\mathcal{H}(X), \hat{T}) \). Then, for \(\hat{\mu} \)-a.e. \(K \in \mathcal{H}(X) \), \(P(T, f, \mathcal{U}, K) = \lim_{n \to \infty} (1/n) \log P_n(T, f, \mathcal{U}, K) \) exists.

Proof. For any \(n, m \in \mathbb{N} \), \(\forall_1 \geq \mathcal{U}_0^{n-1}, \forall_2 \geq \mathcal{U}_0^{n-1} \), we have \(\forall_1 \vee T^{-n} \forall_2 \geq \mathcal{U}_0^{n+m-1} \). It follows that

\[
P_{n+m}(T, f, \mathcal{U}, K) \leq \sum_{V_1 \in \forall_1} \sum_{V_2 \in \forall_2} \sup_{x \in V_1 \cap T^{-n} V_2 \cap K} \exp f_{n+m}(x)
= \sum_{V_1 \in \forall_1} \sum_{V_2 \in \forall_2} \sup_{x \in V_1 \cap T^{-n} V_2 \cap K} (f_n(x) + f_m(T^n x))
\leq \left(\sum_{V_1 \in \forall_1} \sup_{x \in V_1} \exp f_n(x) \right) \left(\sum_{V_2 \in \forall_2} \sup_{z \in V_2} \exp f_m(z) \right).
\]
Since $\forall_i, i = 1, 2$ is arbitrary,
\[
P_{n+m}(T, f, \mathcal{U}, K) \leq P_n(T, f, \mathcal{U}, K) \cdot P_m(T, f, \mathcal{U}, T^n K).
\]
By the definition of \widehat{T} and Lemma 2.2, we have that
\[
\log P_n(T, f, \mathcal{U}, K) : \mathcal{H}(X) \to \mathbb{R} \cup \{-\infty\}
\]
is a subadditive sequence of measurable functions. Then, by Kingman’s subadditive ergodic theorem (see [Walters 1982]), we complete the proof. □

When $K = X$, $P(T, f, \mathcal{U}, X) = P(T, f, \mathcal{U})$, which is the local topological pressure defined by Huang and Yi [2007], clearly, $P(T, 0, \mathcal{U}, K) = h_{\text{top}}(T, \mathcal{U}, K)$.

Given a partition $\alpha \in \mathcal{P}(X)$, $\mu \in \mathcal{M}(X)$ and a sub-σ-algebra $\mathcal{C} \subseteq \mathcal{B}_\mu$, let
\[
H_\mu(\alpha) = \sum_{A \in \alpha} -\mu(A) \log \mu(A),
\]
\[
H_\mu(\alpha | \mathcal{C}) = \sum_{A \in \alpha} \int_X -E(1_A | \mathcal{C}) \log E(1_A | \mathcal{C}) d\mu,
\]
where $E(1_A | \mathcal{C})$ is the expectation of 1_A with respect to \mathcal{C}. One standard fact states that $H_\mu(\alpha | \mathcal{C})$ increases with respect to α and decreases with respect to \mathcal{C}. The measure-theoretic entropy of μ is defined as
\[
h_\mu(T) = \sup_{\alpha \in \mathcal{P}(X)} h_\mu(T, \alpha),
\]
where
\[
h_\mu(T, \alpha) = \lim_{n \to +\infty} \frac{1}{n} H_\mu(\alpha^{n-1}) = \inf_{n \geq 1} H_\mu(\alpha^{n-1}).
\]
For each $f \in C(X, \mathbb{R})$, the measure-theoretic pressure of μ is defined as
\[
P_\mu(T, f) = h_\mu(T) + \int_X f d\mu.
\]

For a given $\mathcal{U} \in \mathcal{C}_X$, set
\[
H_\mu(\mathcal{U}) = \inf_{\beta \in \mathcal{P}_X, \beta \geq \mathcal{U}} H_\mu(\beta) \quad \text{and} \quad H_\mu(\mathcal{U} | \mathcal{C}) = \inf_{\beta \in \mathcal{P}_X, \beta \geq \mathcal{U}} H_\mu(\beta | \mathcal{C}).
\]
When $\mu \in \mathcal{M}(X, T)$ and \mathcal{C} is T-invariant (that is, $T^{-1}\mathcal{C} = \mathcal{C}$), $H_\mu(\mathcal{U}^{n-1} | \mathcal{C})$ is a nonnegative subadditive sequence for a given $\mathcal{U} \in \mathcal{U}$. Let
\[
h_\mu(T, \mathcal{U} | \mathcal{C}) = \lim_{n \to +\infty} \frac{1}{n} H_\mu(\mathcal{U}^{n-1} | \mathcal{C}) = \inf_{n \geq 1} H_\mu(\mathcal{U}^{n-1} | \mathcal{C}).
\]
For $\mathcal{C} = \{\emptyset, X\}$ (mod μ), we write $H_\mu(\mathcal{U} | \mathcal{C})$ and $h_\mu(T, \mathcal{U} | \mathcal{C})$ as $H_\mu(\mathcal{U})$ and $h_\mu(T, \mathcal{U})$, respectively. Romagnoli [2003] proved that

$$h_\mu(T) = \sup_{\mathcal{U} \in \mathcal{C}_X} h_\mu(T, \mathcal{U}).$$

It is well known that, for $\beta \in \mathcal{P}_X$, $h_\mu(T, \beta) = h_\mu(T, \beta | P_\mu(T)) \leq H_\mu(\beta | P_\mu(T))$, where $P_\mu(T)$ is the Pinsker σ-algebra of $(X, \mathcal{B}_\mu, \mu, T)$.

Lemma 2.4 [Huang 2008, Lemma 2.1]. Let (X, T) be a TDS, $\mu \in \mathcal{M}(X, T)$, and $\mathcal{U} \in \mathcal{C}_X$. Then

$$h_\mu(T, \mathcal{U}) = h_\mu(T, \mathcal{U} | P_\mu(T)).$$

For $\mathcal{U} \in \mathcal{C}_X$, $\mu \in \mathcal{M}(X, T)$ and $f \in C(X, \mathbb{R})$, we define the measure-theoretic pressure for T with respect to \mathcal{U} as

$$P_\mu(T, f, \mathcal{U}) = h_\mu(T, \mathcal{U}) + \int_X f \, d\mu.$$

Obviously,

$$P_\mu(T, f) = h_\mu(T) + \int_X f \, d\mu = \sup_{\mathcal{U} \in \mathcal{C}_X} h_\mu(T, \mathcal{U}) + \int_X f \, d\mu = \sup_{\mathcal{U} \in \mathcal{C}_X} P_\mu(T, f, \mathcal{U}).$$

Let (X, T) be a TDS, $\mu \in \mathcal{M}(X, T)$, and \mathcal{B}_μ be the completion of \mathcal{B}_X under μ. Then $(X, \mathcal{B}_\mu, \mu, T)$ is a Lebesgue system. If $\{\alpha_i\}_{i \in I}$ is a countable family of finite partitions of X, the partition $\alpha = \bigvee_{i \in I} \alpha_i$ is called a measurable partition. The sets $A \in \mathcal{B}_\mu$, which are unions of atoms of α, form a sub-σ-algebra of \mathcal{B}_μ by $\hat{\alpha}$ or α if there is no ambiguity. Every sub-σ-algebra of \mathcal{B}_μ coincides with a σ-algebra constructed in this way (mod μ).

Given a measurable partition α, put $\alpha^- = \bigvee_{n=1}^{\infty} T^{-n}\alpha$ and $\alpha^T = \bigvee_{n=-\infty}^{\infty} T^{-n}\alpha$. Define in the same way T^- and T^T if \mathcal{F} is a sub-σ-algebra of \mathcal{B}_μ. It is clear that for a measurable partition α of X, we have

$$\hat{\alpha}^- = (\hat{\alpha})^- \quad \text{and} \quad \hat{\alpha}^T = (\hat{\alpha})^T \quad (\text{mod } \mu).$$

Let \mathcal{F} be a sub-σ-algebra of \mathcal{B}_μ and α be the measurable partition of X with $\alpha^- = \mathcal{F}$ (mod μ). μ can be disintegrated over \mathcal{F} as $\mu = \int_X \mu_x \, d\mu(x)$, where $\mu_x \in \mathcal{M}(X)$ and $\mu_x(\alpha(x)) = 1$ for μ-a.e. $x \in X$. The disintegration is characterized by two properties:

(a) For every $f \in L^1(X, \mathcal{B}_X, \mu)$, $f \in L^1(X, \mathcal{B}_X, \mu_x)$ for μ-a.e. $x \in X$, and the map $x \mapsto \int_X f(y) \, d\mu_x(y)$ is in $L^1(X, \mathcal{F}, \mu)$.

(b) For every $f \in L^1(X, \mathcal{B}_X, \mu)$, $\mathbb{E}_\mu(f | \mathcal{F})(x) = \int_X f \, d\mu_x$ for μ a.e. $x \in X$.

Then, for any $f \in L^1(X, \mathcal{B}_X, \mu)$,

$$\int_X \left(\int_X f \, d\mu_x \right) \, d\mu(x) = \int_X f \, d\mu.$$
The topological pressure of T for the closed subset K is defined as

$$P_{\mu}(T, K) = \lim_{n \to +\infty} \frac{1}{n} \log P_n(T, f, \epsilon, K).$$

Clearly, for $f \equiv 0$, we can write $P_n(T, 0, \epsilon, K) = s_n(d, T, \epsilon, K)$. It follows that $P(T, f, K) = h(T, K)$, where $h(T, K)$ is the Bowen entropy for the closed subset K defined in [Walters 1982]; see also [Huang 2008]. When $K = X$, $P(T, f, x) = P(T, f)$, where $P(T, f)$ is the standard notion of topological pressure defined in [Walters 1982]. Moreover, it is not hard to verify that $P(T, f, K) = \sup_{\mu \in \mathcal{M}} P(T, f, \mu, K)$.

3. ϵ-stable sets

Let (X, T) be a TDS with a compatible metric d. Given $\epsilon > 0$, the ϵ-stable set of x under T is the set of points whose forward orbit ϵ-shadows that of x:

$$W_\epsilon^s(x, T) = \{ y \in X : d(T^n x, T^n y) \leq \epsilon \text{ for all } n = 0, 1, \ldots \}. $$

Since the preimages of these sets can be nontrivial, we can consider the following function. For each $x \in X$, $f \in C(X, \mathbb{R})$, and $\epsilon > 0$, let

$$P_s(T, f, x, \epsilon) := \lim_{\delta \to 0} \lim_{n \to +\infty} \frac{1}{n} \log P_n(T, f, \delta, T^{-n} W_\epsilon^s(x, T)).$$

$P_s(T, f, x, \epsilon)$ is called the topological pressure of the preimages of the ϵ-stable sets of x. For $f \equiv 0$, $P_s(T, 0, x, \epsilon) = h_s(T, x, \epsilon)$, where the latter is the dispersal rate function defined in [Fiebig et al. 2003]. It was proved in [Huang 2008] that $\sup_{x \in X} h_s(T, x, \epsilon) = h_{\text{top}}(T)$ for all $\epsilon > 0$. In the present section, we show that this is also true for the functions $P_s(T, f, x, \epsilon)$ and $P(T, f)$. By proving that,
for any \(\mu \in \mathcal{M}(X, T) \) with positive entropy, \(\lim_{\epsilon \to 0} P_\epsilon (T, f, x, \epsilon) \geq P_\mu (T, f) \) for \(\mu \)-a.e. \(x \in X \), we can obtain the result. We need the following lemmas.

Lemma 3.1. Let \((X, T) \) be a TDS, \(f \in C(X, \mathbb{R}) \), and \(\{K_n\} \) be a sequence of nonempty closed subsets of \(X \). Then

\[
\lim_{\delta \to 0} \limsup_{n \to +\infty} \frac{1}{n} \log P_n(T, f, \delta, K_n) = \sup_{\mathcal{U} \in \mathcal{C}_X^0} \limsup_{n \to +\infty} \frac{1}{n} \log P_n(T, f, \mathcal{U}, K_n).
\]

Proof. For a fixed \(\delta > 0 \), choose \(\mathcal{V} \in \mathcal{C}_X^0 \) with \(\text{diam} \mathcal{V} < \delta \). For \(n \in \mathbb{N} \) let \(A \) be an \((n, \delta) \)-separated set of \(K_n \). Since \(B \cap K_n \) contains at most one element of \(A \) for each \(B \) of \(\bigvee_{i=0}^{n-1} T^{-i} \mathcal{V} \), for every \(\mathcal{W} \in \mathcal{C}_X \) with \(\mathcal{W} \geq \mathcal{V}^{n-1} \), each element of \(\mathcal{W} \) also contains at most one element of \(A \). We get \(\sum_{x \in A} \exp f_n(x) \leq P_n(T, f, \mathcal{V}, K_n) \). That is \(P_n(T, f, \delta, K_n) \leq P_n(T, f, \mathcal{V}, K_n) \). Then

\[
\limsup_{n \to +\infty} \frac{1}{n} \log P_n(T, f, \delta, K_n) \leq \limsup_{n \to +\infty} \frac{1}{n} \log P_n(T, f, \mathcal{V}, K_n) \leq \sup_{\mathcal{U} \in \mathcal{C}_X^0} \limsup_{n \to +\infty} \frac{1}{n} \log P_n(T, f, \mathcal{U}, K_n).
\]

Letting \(\delta \to 0 \), we get

\[
\lim_{\delta \to 0} \limsup_{n \to +\infty} \frac{1}{n} \log P_n(T, f, \delta, K_n) \leq \sup_{\mathcal{U} \in \mathcal{C}_X^0} \limsup_{n \to +\infty} \frac{1}{n} \log P_n(T, f, \mathcal{U}, K_n).
\]

In the following, we show the converse inequality. For any fixed \(\mathcal{U} \in \mathcal{C}_X^0 \), let \(\delta \) be the Lebesgue number of \(\mathcal{U} \). For \(n \in \mathbb{N} \), let \(E \) be an \((n, \delta/2) \)-spanning set of \(K_n \) with the largest cardinality. Then \(E \) is also an \((n, \delta/2) \)-spanning set of \(K_n \). From the definition of spanning sets, we know that

\[
\bigcup_{x \in E} \bigcap_{i=0}^{n-1} T^{-i} B_{\delta/2}(T^i x) \supset K_n, \quad \text{where} \quad B_{\delta/2}(T^i x) = \left\{ y \in X : d(T^i x, y) \leq \frac{\delta}{2} \right\}.
\]

Now, for each \(x \in E \) and \(0 \leq i \leq n-1 \), \(B_{\delta/2}(T^i x) \) is contained in some element of \(\mathcal{U} \) since \(\delta \) is the Lebesgue number of the open cover \(\mathcal{U} \). Hence, for each \(x \in E \), the intersection \(\bigcap_{i=0}^{n-1} T^{-i} B_{\delta/2}(T^i x) \) is contained in some element of \(\bigvee_{i=0}^{n-1} T^{-i} \mathcal{U} \). Let \(\mathcal{W} = \bigcap_{i=0}^{n-1} T^{-i} B_{\delta/2}(T^i x) : x \in E \big] \). Then \(\mathcal{W} \in \mathcal{C}_X \) and \(\mathcal{W} \geq \mathcal{U}^{n-1} \). Let

\[
Q_n(T, f, \mathcal{U}, K_n) = \inf \left\{ \sum_{\mathcal{V} \in \mathcal{C}_X} \inf \left\{ \exp f_n(x) : \mathcal{V} \in \mathcal{C}_X \text{ and } \mathcal{V} \geq \mathcal{U}^{n-1} \right\} \right\}.
\]

Then

\[
Q_n(T, f, \mathcal{U}, K_n) \leq \sum_{x \in E} f_n(x) \leq P_n \left(T, f, \frac{\delta}{2}, K_n \right).
\]

Let \(\tau_\mathcal{U} = \sup \{ | f(x) - f(y) | : d(x, y) \leq \text{diam } \mathcal{U} \} \). Then

\[
\exp(-n \tau_\mathcal{U}) P_n(T, f, \mathcal{U}, K_n) \leq Q_n(T, f, \mathcal{U}, K_n).
\]
Lemma 3.2. Let $n \in 0, \delta > 0$ containing $\mu \in 0, \epsilon > 0$. So

$\frac{1}{n} \log P_n(T, f, \mathcal{U}, K_n) \leq \frac{1}{n} \log P_n(T, f, \frac{\delta}{2}, K_n) \leq \lim_{\delta \to 0} \limsup_{n \to +\infty} \frac{1}{n} \log P_n(T, f, \frac{\delta}{2}, K_n)$.

Since \mathcal{U} is arbitrary, we get

$\sup_{\mathcal{U} \in \mathcal{C}_X} \limsup_{n \to +\infty} \frac{1}{n} \log P_n(T, f, \mathcal{U}, K_n) \leq \limsup_{\delta \to 0} \limsup_{n \to +\infty} \frac{1}{n} \log P_n(T, f, \delta, K_n)$. \hfill \Box

An immediate consequence of Lemma 3.1 is the following.

Lemma 3.3 [Walters 1982, Lemma 9.9]. Let a_1, \ldots, a_k be given real numbers. If $p_i \geq 0, i = 1, \ldots, k$, and $\sum_{i=1}^k p_i = 1$,

$$\sum_{i=1}^k p_i (a_i - \log p_i) \leq \log \sum_{i=1}^k e^{a_i},$$

and equality holds if and only if

$$p_i = \frac{e^{a_i}}{\sum_{i=1}^k e^{a_i}} \quad \text{for all } i = 1, \ldots, k.$$

Let (X, T) be a TDS, $\mu \in \mathcal{M}(X, T)$, and \mathcal{B}_μ be the completion of \mathcal{B}_X under μ. The Pinsker σ-algebra $P_\mu(T)$ is defined as the smallest sub-σ-algebra of \mathcal{B}_μ containing $\{\xi \in \mathcal{P}_X : h_\mu(T, \xi) = 0\}$. It is well known that $P_\mu(T) = P_\mu(T^{-1})$ and $P_\mu(T)$ is T-invariant, that is, $T^{-1}(P_\mu(T)) = P_\mu(T)$.

Lemma 3.4 [Huang 2008, Lemma 3.5]. Let (X, T) be a TDS, $\mu \in \mathcal{M}(X, T)$, and $\delta > 0$. Then there exist $\{W_i\}_{i=1}^\infty \subset \mathcal{P}_X$ and $0 = k_1 < k_2 < \cdots$ such that

(a) $\text{diam } W_i < \delta$ and $\lim_{i \to +\infty} \text{diam } W_i = 0$,

(b) $\lim_{k \to +\infty} H_\mu(P_k | \mathcal{P}^-) = h_\mu(T)$, where $P_k = \bigvee_{i=1}^k T^{-ki} W_i$ and $\mathcal{P} = \bigvee_{k=1}^\infty P_k$,

(c) $\bigcap_{n=0}^\infty T^{-n} \mathcal{P}^- = P_\mu(T)$.

Lemma 3.5. Let (X, T) be a TDS, $\mathcal{U} \in \mathcal{C}_X, f \in C(X, \mathbb{R})$, and $K \in \mathcal{H}(X)$. Then, for each $n \in \mathbb{N}$,

$$P_n(T, f, \mathcal{U}, T^{-n} K) = P_n(T, f \circ T^{-n}, T^n \mathcal{U}, K).$$
Proof. For each $V \in \mathcal{E}_X$ and $\mathcal{V} \supseteq \bigvee_{i=1}^n T^i \mathcal{U}$, obviously, $T^{-n} \mathcal{V} \in \mathcal{E}_X$ and $T^{-n} \mathcal{V} \supseteq \bigvee_{i=0}^{n-1} T^{-i} \mathcal{U}$.

Since for each $V \in \mathcal{V}$,

$$\sup_{x \in T^{-n} V \cap T^{-n} K} \exp f_n(x) = \sup_{x \in V \cap K} \exp f_n(T^{-n} x),$$

it is easy to see that $P_n(T, f, \mathcal{U}, T^{-n} K) \leq P_n(T, f \circ T^{-n}, T^n \mathcal{U}, K)$. From the homeomorphism of T, the inverse inequality holds. Then $P_n(T, f, \mathcal{U}, T^{-n} K) = P_n(T, f \circ T^{-n}, T^n \mathcal{U}, K)$.

Recall that a set-valued map F from X to $\mathcal{H}(X)$ is said to be measurable if $\{x \in X : F(x) \cap A \neq \emptyset\} \in \mathcal{B}_X$ for every Borel (open or closed) subset A of X.

Lemma 3.6. Let $G : X \to \mathcal{H}(X)$ be a measurable set-valued map, $f \in C(X, \mathbb{R}^+)$, and $\mathcal{U} \in \mathcal{E}_X$. Then

$\displaystyle F : x \mapsto \inf \left\{ \sum_{V \in \mathcal{V}} \sup_{y \in V \cap G(x)} f(y) : \mathcal{V} \in \mathcal{E}_X \text{ and } \mathcal{V} \supseteq \mathcal{U} \right\}$

is Borel-measurable, where $\sup_{y \in V \cap G(x)} f(y) = 0$ for $V \cap G(x) = \emptyset$.

Proof. By Lemma 2.1, for each $x \in X$, we have

$$\inf \left\{ \sum_{V \in \mathcal{V}} \sup_{y \in V \cap G(x)} f(y) : \mathcal{V} \in \mathcal{E}_X \text{ and } \mathcal{V} \supseteq \mathcal{U} \right\} \geq \min \left\{ \sum_{V \in \mathcal{V}} \sup_{y \in V \cap G(x)} f(y) : \mathcal{V} \in \mathcal{P}^+(\mathcal{U}) \right\}.$$

It is sufficient to prove that, for each $V \in \mathcal{V}$, where $\mathcal{V} \in \mathcal{P}^+(\mathcal{U})$, the function

$$H_V : x \mapsto \sup_{y \in V \cap G(x)} f(y)$$

is Borel-measurable.

For each $r \in \mathbb{R}$, let $E_r = \{x : \sup_{y \in V \cap G(x)} f(y) > r\}$. Note that $U = f^{-1}(r, +\infty)$ is an open subset of X. For $r \geq 0$, if $V \cap U = \emptyset$, $E_r = \emptyset$. If $V \cap U \neq \emptyset$, then $E_r = \{x : V \cap G(x) \cap U \neq \emptyset\}$. Since $V \cap U \in \mathcal{B}(X)$, by the set-valued measurability of G, it is clear that E_r is a Borel subset of X. For $r < 0$, $E_r = E_0 \cup F$, where $F = \{x : \sup_{y \in V \cap G(x)} f(y) = 0\}$. Since

$$F = \{x : V \cap G(x) = \emptyset\} = X \setminus \{x : V \cap G(x) \neq \emptyset\}$$

is Borel-measurable, E_r is also a Borel subset of X; thus H_V is Borel-measurable.

The next theorem clearly implies the main result of this paper.

Theorem 3.7. Let (X, T) be a TDS, $f \in C(X, \mathbb{R})$, and $\mu \in \mathcal{M}_\varepsilon(X, T)$ with $h_\mu(T) > 0$. Then, for μ-a.e. $x \in X$, $\lim_{\varepsilon \to 0} P_{\varepsilon}(T, f, x, \varepsilon) \geq P_\mu(T, f)$.

Proof. It suffices to prove that, for a given $\varepsilon > 0$, $P_{\varepsilon}(T, f, x, \varepsilon) \geq P_\mu(T, f)$ for μ-a.e. $x \in X$.

Fix $\varepsilon > 0$. Since T is a homeomorphism on X, there exists $\delta \in (0, \varepsilon)$ such that $d(T^{-1} x, T^{-1} y) < \varepsilon$ when $d(x, y) < \delta$. By Lemma 3.4, there exists $\{P_i\}_{i=1}^\infty \subset \mathcal{P}_X$ satisfying $\text{diam } P_i \leq \delta$, $\bigcap_{n=0}^\infty T^{-n} P_i = P_\mu(T)$, and $H_\mu(P_i | P^-) \to h_\mu(T)$ when
Let $k \to +\infty$, where $\mathcal{P} = \bigvee_{i=1}^{\infty} P_i$. Since diam $P_1 \leq \delta$, it is clear that $\mathcal{P}^-(x) \subseteq W^s_\delta(x, T)$ for each $x \in X$.

Let $\mu = \int_X \mu_x \, d\mu(x)$ be the disintegration of μ over \mathcal{P}^-. Then

$$\text{supp}(\mu_x) \subseteq \mathcal{P}^-(x) \subseteq W^s_\delta(x, T) \quad \text{for } \mu \text{-a.e. } x \in X.$$

Let $k \in \mathbb{N}$. By inequality (3.3) in [Huang 2008], we know that there exists $\mathcal{U}_k \in \mathcal{C}^o_X$ such that

$$\limsup_{n \to +\infty} \frac{1}{n} H_{\mu} \left(\bigvee_{i=0}^{n-1} T^{-i} \mathcal{U}_k \mid T^{-n} \mathcal{P}^- \right) \geq H_{\mu} (P_k \mid \mathcal{P}^-) - \frac{1}{k}. \tag{2}$$

For $n \in \mathbb{N}$, let $F_n(x) = (1/n) \log P_n(T, f \circ T^{-n}, T^n \mathcal{U}_k, W^s_\delta(x, T))$. Noting that the map $x \to W^s_\delta(x, T)$ is upper semicontinuous, it follows from Lemma 3.6 that F_n is a Borel-measurable function. Let $F(x) = \limsup_{n \to +\infty} F_n(x)$ for $x \in X$. Then F is also Borel-measurable. Since $T W^s_\delta(x, T) \subseteq W^s_\delta(Tx, T)$ for each $x \in X$, we have

$$P_n(T, f \circ T^{-n}, T^n \mathcal{U}_k, W^s_\delta(x, T))$$

$$\leq \inf \left\{ \sum_{V \in \mathcal{V}} \sup_{y \in V \cap T W^s_\delta(x, T)} \exp f_n \circ T^{-(n+1)}(y) : \forall V \in \mathcal{C} \text{ and } \forall \mathcal{V} \geq \bigvee_{i=2}^{n+1} T^i \mathcal{U}_k \right\}$$

$$\leq \inf \left\{ \sum_{V \in \mathcal{V}} \sup_{y \in V \cap W^s_\delta(Tx, T)} \exp f_n \circ T^{-(n+1)}(y) : \forall V \in \mathcal{C} \text{ and } \forall \mathcal{V} \geq \bigvee_{i=1}^{n+1} T^i \mathcal{U}_k \right\}$$

$$= P_{n+1}(T, f \circ T^{-(n+1)}, T^{n+1} \mathcal{U}_k, W^s_\delta(Tx, T)).$$

Then

$$F(x) = \limsup_{n \to +\infty} \frac{1}{n} \log P_n(T, f \circ T^{-n}, T^n \mathcal{U}_k, W^s_\delta(x, T))$$

$$\leq \limsup_{n \to +\infty} \frac{n+1}{n} \cdot \frac{1}{n+1} \log P_{n+1}(T, f \circ T^{-(n+1)}, T^{n+1} \mathcal{U}_k, W^s_\delta(Tx, T))$$

$$= F(Tx).$$

Thus, $F(x) \leq F(Tx)$ for each $x \in X$. Since $\mu \in \mathcal{M}(X, T)$, $\int_X F(Tx) \, d\mu(x) = \int_X F(x) \, d\mu(x)$, we have, $F(Tx) = F(x)$ for μ-a.e. $x \in X$. Moreover, $F(x) \equiv a_k$ for μ-a.e. $x \in X$ as μ is ergodic, where $a_k \geq 0$ is a constant.

From Lemma 2.1, there exists a finite partition

$$\beta \in \mathcal{P}^* \left(\bigvee_{i=1}^{n} T^i \mathcal{U}_k \right)$$

such that

$$P_n(T, f \circ T^{-n}, T^n \mathcal{U}_k, W^s_\delta(x, T)) = \sum_{B \in \beta} \sup_{x \in B \cap W^s_\delta(x, T)} \exp f_n \circ T^{-n}(x).$$
It follows from Lemma 3.3 that
\[
\log P_n(T, f \circ T^{-n}, T^n \mathcal{A}_k, W_\epsilon^s(x, T)) = \log \sum_{B \in \beta} \sup_{x \in B \cap W_\epsilon^s(x, T)} \exp f_n \circ T^{-n}(x)
\]
\[
\geq \sum_{B \in \beta} \mu_x(B \cap W_\epsilon^s(x, T)) \left(\sup_{x \in B \cap W_\epsilon^s(x, T)} \exp f_n \circ T^{-n}(x) - \log \mu_x(B \cap W_\epsilon^s(x, T)) \right)
\]
\[
= H_{\mu_x}(\beta) + \sum_{B \in \beta} \sup_{x \in B \cap W_\epsilon^s(x, T)} f_n \circ T^{-n}(x) \cdot \mu_x(B) \quad (\sup(\mu_x) \subseteq W_\epsilon^s(x, T)
\]
\[
\geq H_{\mu_x}\left(\bigvee_{i=1}^n T^i \mathcal{A}_k \right) + \int_X f_n \circ T^{-n} \, d\mu_x
\]

Then
\[
a_k = \int_X F(x) \, d\mu = \int_X \limsup_{n \to +\infty} F_n(x) \, d\mu \geq \limsup_{n \to +\infty} \int_X F_n(x) \, d\mu
\]
\[
\geq \limsup_{n \to +\infty} \int_X \frac{1}{n} \left(H_{\mu_x}\left(\bigvee_{i=1}^n T^i \mathcal{A}_k \right) + \int_X f_n \circ T^{-n} \, d\mu_x \right) \, d\mu(x)
\]
\[
= \limsup_{n \to +\infty} \left(\int_X \frac{1}{n} H_{\mu_x}\left(\bigvee_{i=1}^n T^i \mathcal{A}_k \right) \, d\mu(x) + \frac{1}{n} \int_X \int f_n \circ T^{-n} \, d\mu_x \, d\mu(x) \right)
\]
\[
= \limsup_{n \to +\infty} \left(\int_X \frac{1}{n} H_{\mu_x}\left(\bigvee_{i=1}^n T^i \mathcal{A}_k \right) \, d\mu(x) + \frac{1}{n} \int_X f \, d\mu(x) \quad (\text{since } \mu \in \mathcal{M}(X, T)) \right)
\]
\[
= \limsup_{n \to +\infty} \frac{1}{n} H_{\mu_x}\left(\bigvee_{i=1}^n T^i \mathcal{A}_k \mid \mathcal{P}^- \right) + \int_X f \, d\mu(x) \quad (\text{by Lemma 2.5(a)})
\]
\[
= \limsup_{n \to +\infty} \frac{1}{n} H_{\mu_x}\left(\bigvee_{i=1}^{n-1} T^{-i} \mathcal{A}_k \mid T^{-n-1} \mathcal{P}^- \right) + \int_X f \, d\mu(x)
\]
\[
\geq H_{\mu}(P_k \mid \mathcal{P}^-) - \frac{1}{k} + \int_X f \, d\mu(x) \quad (\text{by inequality (2)}).
\]

Since $P_{\lambda}(T, f, x, \epsilon) \geq F(x)$ for each $x \in X$, we have
\[
P_{\lambda}(T, f, x, \epsilon) \geq \lim_{k \to +\infty} \left(H_{\mu}(P_k \mid \mathcal{P}^-) - \frac{1}{k} + \int_X f \, d\mu(x) \right)
\]
\[
= h_{\mu}(T) + \int_X f \, d\mu(x) = P_{\mu}(T, f)
\]
for μ-a.e. $x \in X$. \qed
We introduce the \(\epsilon \)-pressure point and pressure point for a TDS. Let \((X, T)\) be a TDS, \(f \in C(X, \mathbb{R}) \). For \(\epsilon > 0 \), we call \(x \in X \) an \(\epsilon \)-pressure point for \(T \) if
\[P_s(T, f, x, \epsilon) = P(T, f), \]
and we call it a pressure point if \(\lim_{\epsilon \to 0} P_s(T, f, x, \epsilon) = P(T, f) \). The function \(P_s(T, f, x, \epsilon) \) is decreasing in \(\epsilon \). It follows that every pressure point is also an \(\epsilon \)-pressure point for each \(\epsilon > 0 \). Note that, while the notion of an \(\epsilon \)-pressure point depends on the choice of the metric, that of pressure point does not. Denote by \(\mathcal{P}(T, f) \) the set of all pressure points of \((X, T)\) for \(f \in C(X, \mathbb{R}) \). For \(f \equiv 0 \), the \(\epsilon \)-pressure point and pressure point are the \(\epsilon \)-entropy point and entropy point, respectively, which are introduced in [Fiebig et al. 2003]. Moreover, \(\mathcal{P}(T, 0) = \mathcal{E}(T) \), where \(\mathcal{E} \) is the set of all entropy points of \((X, T)\).

Remark 3.8. Let \((X, T)\) be a TDS, \(f \in C(X, \mathbb{R}) \). If there exists \(\mu \in \mathcal{M}^\epsilon(X, T) \) such that \(P(T, f) = P_\mu(T, f) \), \(\mathcal{P}(T, f) \neq \emptyset \).

4. Stable sets

The main results of the present section are Theorems 4.1 and 4.5. Recall that, for a TDS \((X, T)\) and \(x \in X \),

\[
W^s(x, T) = \{ y \in X : \lim_{n \to +\infty} d(T^n x, T^n y) = 0 \}.
\]

\[
W^u(x, T) = \{ y \in X : \lim_{n \to +\infty} d(T^{-n} x, T^{-n} y) = 0 \}.
\]

\(W^s(x, T) \) is called the stable set of \(x \) for \(T \), and \(W^u(x, T) \) is called the unstable set of \(x \) for \(T \). Obviously, \(W^s(x, T) = W^u(x, T^{-1}) \) and \(W^u(x, T) = W^s(x, T^{-1}) \).

Theorem 4.1. Let \((X, T)\) be a TDS, \(f \in C(X, \mathbb{R}) \), and \(\mu \in \mathcal{M}^\epsilon(X, T) \) with \(h_\mu(T) > 0 \). Then, for \(\mu \)-a.e. \(x \in X \),

(a) there exists a closed subset \(A(x) \subseteq W^s(x, T) \) such that

\[
\lim_{n \to +\infty} \text{diam } T^n A(x) = 0 \quad \text{and} \quad P(T^{-1}, f, A(x)) \geq P_\mu(T, f);
\]

(b) there exists a closed subset \(B(x) \subseteq W^u(x, T) \) such that

\[
\lim_{n \to +\infty} \text{diam } T^{-n} B(x) = 0 \quad \text{and} \quad P(T, f, B(x)) \geq P_\mu(T, f).
\]

Proof. Since \(\mu \in \mathcal{M}^\epsilon(X, T) \), \(P_\mu(T^{-1}, f) = P_\mu(T, f) \), and \(W^s(x, T^{-1}) = W^u(x, T) \),

(a) implies (b). It remains to prove (a).

By Lemma 3.4, there exist \(\{W_i\}_{i=1}^\infty \subset \mathcal{P}_X \) and 0 = \(k_1 < k_2 < \cdots \) satisfying

(a) \(\text{diam } W_1 < \delta \) and \(\lim_{i \to +\infty} \text{diam } W_i = 0 \),

(b) \(\lim_{k \to +\infty} H_\mu(P_k | \mathcal{P}^{-}) = h_\mu(T) \), where \(P_k = \sqrt[k]{\bigvee_{i=1}^{k} T^{-k_i} W_i} \) and \(\mathcal{P} = \bigvee_{k=1}^\infty P_k \),

(c) \(\bigcap_{n=0}^\infty T^{-n} \mathcal{P}^{-} = P_\mu(T) \).
Let $Q_i = \bigvee_{j=1}^i T^{-j} (P_1 \vee P_2 \vee \cdots \vee P_i)$ for $i \in \mathbb{N}$. Then $Q_i \in \mathcal{P}_X$, $Q_1 \leq Q_2 \leq \cdots$, and $\bigvee_{i=1}^\infty Q_i = \mathcal{P}^-$.

For $x \in X$, let $A(x) = \bigcap_{i=1}^\infty \overline{Q_i(x)}$. Then $A(x)$ is a closed set and $A(x) \supseteq \overline{\mathcal{P}^-(x)}$. The set $A(x)$ also has the properties $\lim_{n \to +\infty} \text{diam} T^n A(x) = 0$ and $A(x) \subseteq W^s(x, T)$ (see the proof of [Huang 2008, Theorem 4.2] for details).

Moreover, the set-valued map $A : x \to A(x)$ is measurable. In fact, for each open set U of X,

$$\left\{ x : \bigcap_{n=1}^\infty \overline{Q_i(x)} \subseteq U \right\} = \bigcup_{n \geq 1} \bigcap_{k \geq n} \{ A \in Q_k : \tilde{A} \subseteq U \}$$

is a Borel set of X. Then, for each closed set V of X, $\{ x : \overline{Q_i(x)} \subseteq X \setminus V \}$ is a Borel set. It follows that $\{ x : \overline{Q_i(x)} \cap V \neq \emptyset \}$ is Borel and then $A : x \to A(x)$ is set-valued measurable.

Let $\mu = \int_X \mu_x \, d\mu(x)$ be the disintegration of μ over \mathcal{P}^-. Then

$$\text{supp}(\mu_x) \subseteq \overline{\mathcal{P}^-(x)} \subseteq A(x) \quad \text{for } \mu\text{-a.e. } x \in X. \tag{3}$$

We now prove that, for μ-a.e. $x \in X$, $P(T^{-1}, f, A(x)) \geq P_\mu(T, f)$. Since $\lim_{k \to +\infty} H_\mu(P_k | \mathcal{P}^-) = h_\mu(T)$, it is sufficient to prove that, for each $k \in \mathbb{N}$, $P(T^{-1}, f, A(x)) \geq H_\mu(P_k | \mathcal{P}^-) - 1/k + \int_X f \, d\mu(x)$ for μ-a.e. $x \in X$.

For a given $k \in \mathbb{N}$, there exists $q_k \in \mathcal{C}_X^0$ such that

$$\limsup_{n \to +\infty} \frac{1}{n} H_\mu\left(\bigvee_{i=0}^{n-1} T^{-i} q_k | T^{-n} \mathcal{P}^- \right) \geq H_\mu(P_k | \mathcal{P}^-) - \frac{1}{k} \quad \text{for each } n \in \mathbb{N} \tag{4}$$

(see [Huang 2008] for details).

Let $F_n(x) = (1/n) \log P_n(T^{-1}, f, q_k, A(x))$, where

$$P_n(T^{-1}, f, q_k, A(x)) = \inf \left\{ \sum_{V \in \mathcal{V}} \sup_{y \in V \cap A(x)} \exp f_n \circ T^{-(n-1)}(y) : \mathcal{V} \in \mathcal{C}_X \text{ and } \forall \mathcal{V} \geq \bigvee_{i=0}^{n-1} T^i q_k \right\},$$

and $f_n(z) = \sum_{i=0}^{n-1} f(T^i z)$. By Lemma 3.6, F_n is a Borel-measurable function. Let $F(x) = \limsup_{n \to +\infty} F_n(x)$ for each $x \in X$. Then F is also a Borel-measurable function on X.

For each $\forall \geq \bigvee_{i=0}^{n-1} T^i q_k$, $T^{-1} \forall \geq \bigvee_{i=0}^{n-1} T^i q_k$. Since $T(A(x)) \subseteq A(T(x))$ (see the proof of [Huang 2008, Theorem 4.2]), for each $V \in \mathcal{V}$,

$$\sup_{y \in T^{-1} V \cap A(x)} \sum_{i=0}^{n-1} f(T^{-i} y) \leq \sup_{y \in T^{-1} (V \cap A(Tx))} \sum_{i=0}^{n-1} f(T^{-i} y) = \sup_{y \in V \cap A(Tx)} \sum_{i=1}^{n} f(T^{-i} y) \leq \sup_{y \in V \cap A(Tx)} \sum_{i=0}^{n} f(T^{-i} y),$$
it is not hard to see that $P_n(T^{-1}, f, \mathcal{U}_k, A(x)) \leq P_{n+1}(T^{-1}, f, \mathcal{U}_k, A(Tx))$. Hence

$$F(x) = \limsup_{n \to +\infty} \frac{1}{n} \log P_n(T^{-1}, f, \mathcal{U}_k, A(x))$$

$$\leq \limsup_{n \to +\infty} \frac{n + 1}{n} \cdot \frac{1}{n + 1} \log P_n(T^{-1}, f, \mathcal{U}_k, A(Tx)) = F(Tx).$$

Thus $F(x) \leq F(Tx)$ for each $x \in X$. Since $\mu \in \mathcal{M}(X, T)$, we have

$$\int_X (f(Tx) - f(x)) \, d\mu(x) = 0.$$

Then $F(Tx) = F(x)$ for μ-a.e. $x \in X$. From the ergodicity of μ, there exists a constant $a_k \geq 0$ such that $F(x) \equiv a_k$ for μ-a.e. $x \in X$.

By Lemma 2.1, there exists a partition $\beta \in \mathcal{P}(\mathcal{U}^n \cup X)$ such that, for μ-a.e. $x \in X$,

$$\log P_n(T^{-1}, f, \mathcal{U}_k, A(x))$$

$$= \log \sum_{B \in \beta} \sup_{y \in B \cap A(x)} \exp \sum_{i=0}^{n-1} f(T^{-i}y)$$

$$\geq \sum_{B \in \beta} \mu_x(B) \left(\sup_{y \in B \cap A(x)} \exp \sum_{i=0}^{n-1} f(T^{-i}y) - \log \mu_x(B) \right) \quad \text{(by (3) and Lemma 3.3)}$$

$$= H_{\mu_x}(\beta) + \sum_{B \in \beta} \sup_{y \in B \cap A(x)} \exp \sum_{i=0}^{n-1} f(T^{-i}y) \cdot \mu_x(B)$$

$$\geq H_{\mu_x} \left(\bigvee_{i=0}^{n-1} T^i \mathcal{U}_k \right) + \int_X f_n \circ T^{-(n-1)} \, d\mu_x.$$

Then

$$a_k = \int_X F(x) \, d\mu = \int_X \limsup_{n \to +\infty} F_n(x) \, d\mu(x) \geq \limsup_{n \to +\infty} \int_X F_n(x) \, d\mu(x)$$

$$\geq \limsup_{n \to +\infty} \frac{1}{n} \int_X \left(H_{\mu_x} \left(\bigvee_{i=0}^{n-1} T^i \mathcal{U}_k \right) + \int_X f_n \circ T^{-(n-1)} \, d\mu_x \right) \, d\mu(x)$$

$$= \limsup_{n \to +\infty} \frac{1}{n} \left(\int_X H_{\mu_x} \left(\bigvee_{i=0}^{n-1} T^i \mathcal{U}_k \right) \, d\mu(x) + \int_X f_n \circ T^{-(n-1)} \, d\mu(x) \right)$$

$$= \limsup_{n \to +\infty} \frac{1}{n} \int_X H_{\mu_x} \left(\bigvee_{i=0}^{n-1} T^i \mathcal{U}_k \right) \, d\mu(x) + \int_X f \, d\mu(x) \quad \text{(since } \mu \in \mathcal{M}(X, T)\text{)}$$
\[
\limsup_{n \to +\infty} \frac{1}{n} H_\mu \left(\bigcup_{i=0}^{n-1} T^i \mathcal{U}_k \right) + \int_X f \, d\mu(x) \quad \text{(by Lemma 2.5(a))}
\]
\[
\limsup_{n \to +\infty} \frac{1}{n} H_\mu \left(\bigcup_{i=0}^{n-1} T^i \mathcal{U}_k \right) + \int_X f \, d\mu(x)
\geq H_\mu (P_k | \mathcal{P}^-) - \frac{1}{k} + \int_X f \, d\mu(x) \quad \text{(by (4)).}
\]

Therefore, for \(\mu \)-a.e. \(x \in X \),
\[
P(T^{-1}, f, A(x)) \geq P(T^{-1}, f, \mathcal{U}_k, A(x)) = F(x) \geq H_\mu (P_k | \mathcal{P}^-) - \frac{1}{k} + \int_X f \, d\mu(x)
\]
for each \(k \in \mathbb{N} \).

Then
\[
P(T^{-1}, f, A(x)) \geq \lim_{n \to +\infty} \left(H_\mu (P_k | \mathcal{P}^-) - \frac{1}{k} \right) + \int_X f \, d\mu(x)
\]
\[
= H_\mu (T) + \int_X f \, d\mu(x) = P_\mu(T, f).
\]

This completes the proof of Theorem 4.1.

A direct consequence of Theorem 4.1 is the following.

Corollary 4.2. Let \((X, T)\) be a TDS, \(f \in C(X, \mathbb{R}) \). If there exists \(\mu \in \mathcal{M}^f(X, T) \) with \(P_\mu(T, f) = P(T, f) \), there exists \(x \in X \), a closed subset \(A(x) \subseteq W^s(x, T) \), and a closed subset \(B(x) \subseteq W^u(x, T) \) such that

(a) \(\lim_{n \to +\infty} \text{diam } T^n A(x) = 0 \) and \(P(T^{-1}, f, A(x)) = P(T, f) \);

(b) \(\lim_{n \to +\infty} \text{diam } T^{-n} B(x) = 0 \) and \(P(T, f, B(x)) = P(T, f) \).

A TDS \((X, T)\) is transitive if, for each pair of nonempty open subsets \(U \) and \(V \) of \(X \), there exists \(n \geq 0 \) such that \(U \cap T^{-n} V \neq \emptyset \); and it is weakly mixing if \((X \times X, T \times T)\) is transitive. These notions describe the global properties of the whole TDS. Blanchard and Huang [2008] give a new criterion to picture “a certain amount of weakly mixing” in some consistent sense. The notion of a weakly mixing set was introduced as follows.

If \(X, Y \) are topological spaces, denote by \(\mathcal{C}(X, Y) \) the set of all continuous maps from \(X \) to \(Y \).

Definition 4.3. Let \((X, T)\) be a TDS and \(A \in 2^X \). The set \(A \) is said to be weakly mixing for \(T \) if there exists \(B \subseteq A \) satisfying

(a) \(B \) is the union of countably many Cantor sets;

(b) the closure of \(B \) equals \(A \);

(c) for any \(C \in B \) and \(g \in \mathcal{C}(C, A) \), there exists an increasing sequence of natural numbers \(\{n_i\} \subseteq \mathbb{N} \) such that \(\lim_{i \to +\infty} T^{n_i} x = g(x) \) for any \(x \in C \).
Denote by $WM_s(X, T)$ the family of weakly mixing subsets of (X, T). The system (X, T) itself is called partially mixing when it contains a weakly mixing set. The whole space X is a weakly mixing set if and only if TDS (X, T) is weakly mixing [Xiong and Yang 1991]. The following result (See [Blanchard and Huang 2008, Proposition 4.2]) gives an equivalent characterization of the weakly mixing set in another way.

Proposition 4.4. Let (X, T) be a TDS and A be a nonsingleton closed subset of X. Then A is a weakly mixing subset of X if and only if (see [Huang 2008, Theorem 4.6] for details).

Let μ be the disintegration of μ over $P_{\mu}(T)$. Then, for μ-a.e. $x \in X$, there exists a closed subset

$$E(x) \subseteq W^s(x, T) \cap W^u(x, T)$$

such that

(a) $E(x) \in WM_s(X, T) \cap WM_s(X, T^{-1})$, i.e., $E(x)$ is weakly mixing for T, T^{-1};

(b) $P(T, f, E(x)) \geq P_{\mu}(T, f)$ and $P(T^{-1}, f, E(x)) \geq P_{\mu}(T, f)$.

Proof. Let \mathcal{B}_μ be the completion of \mathcal{B}_X under μ. Then $(X, \mathcal{B}_\mu, \mu, T)$ is a Lebesgue system. Let $P_{\mu}(T)$ be the Pinsker σ-algebra of $(X, \mathcal{B}_\mu, \mu, T)$. Let $\mu = \int_X \mu_x d\mu(x)$ be the disintegration of μ over $P_{\mu}(T)$. Then, for μ-a.e. $x \in X$,

$$\text{supp}(\mu_x) \subseteq \overline{W^s(x, T) \cap W^u(x, T)}$$

and

$$\text{supp}(\mu_x) \in WM_s(X, T) \cap WM_s(X, T^{-1})$$

(see [Huang 2008, Theorem 4.6] for details).

We now prove that, for μ-a.e. $x \in X$,

$$P(T, f, \text{supp}(\mu_x)) \geq P_{\mu}(T, f) \quad \text{and} \quad P(T^{-1}, f, \text{supp}(\mu_x)) \geq P_{\mu}(T, f).$$

By the symmetry of T and T^{-1}, $P_{\mu}(T, f) = P_{\mu}(T^{-1}, f)$. It remains to prove that, for μ-a.e. $x \in X$, $P(T, f, \text{supp}(\mu_x)) \geq P_{\mu}(T, f)$.

Since $P_{\mu}(T)$ is T-invariant, $T\mu_x = \mu_{T_x}$ for μ-a.e. $x \in X$. Therefore, there exists a T-invariant measurable set $X_0 \subset X$ with $\mu(X_0) = 1$ and $T\mu_x = \mu_{T_x}$ for $x \in X_0$.

Now we prove the following theorem. Part (a) of Theorem 4.5 was already proved in [Huang 2008]. For completeness, we state it in the theorem.

Theorem 4.5. Let (X, T) be a TDS and $\mu \in M^e(X, T)$ with $h_{\mu}(T) > 0$. Then, for μ-a.e. $x \in X$, there exists a closed subset

$$E(x) \subseteq W^s(x, T) \cap W^u(x, T)$$

such that

(a) $E(x) \in WM_s(X, T) \cap WM_s(X, T^{-1})$, i.e., $E(x)$ is weakly mixing for T, T^{-1};

(b) $P(T, f, E(x)) \geq P_{\mu}(T, f)$ and $P(T^{-1}, f, E(x)) \geq P_{\mu}(T, f)$.

Proof. Let \mathcal{B}_μ be the completion of \mathcal{B}_X under μ. Then $(X, \mathcal{B}_\mu, \mu, T)$ is a Lebesgue system. Let $P_{\mu}(T)$ be the Pinsker σ-algebra of $(X, \mathcal{B}_\mu, \mu, T)$. Let $\mu = \int_X \mu_x d\mu(x)$ be the disintegration of μ over $P_{\mu}(T)$. Then, for μ-a.e. $x \in X$,
For each \(\mathcal{U} \in \mathcal{C}_X^0 \), \(x \in X_0 \), and \(n \in \mathbb{N} \), by Lemma 2.1, there exists a \(\beta \in \mathcal{P}^*(\mathcal{U}_0^{n-1}) \) such that

\[
(5) \quad \log P_n(T, f, \mathcal{U}, \text{supp}(\mu_x))
\]

\[
= \log \inf \left\{ \sum_{\mathcal{V} \supseteq \mathcal{W} \cap \text{supp}(\mu_x)} \sup_{y \in \mathcal{V} \cap \text{supp}(\mu_x)} \exp f_n(x) : \mathcal{V} \in \mathcal{C}_X \text{ and } \mathcal{V} \supseteq \mathcal{U}_0^{n-1} \right\}
\]

\[
= \log \sum_{B \in \beta} \sup_{y \in B \cap \text{supp}(\mu_x)} \exp f_n(x)
\]

\[
\geq \sum_{B \in \beta} \mu_x(B) \left(\sup_{y \in B \cap \text{supp}(\mu_x)} f_n(x) - \log \mu_x(B) \right) \quad \text{(by Lemma 3.3)}
\]

\[
= H_{\mu_x}(\beta) + \sum_{B \in \beta} \mu_x(B) \sup_{y \in B \cap \text{supp}(\mu_x)} f_n(x)
\]

\[
\geq H_{\mu_x}(\mathcal{U}_0^{n-1}) + \int_X f_n \, d\mu_x.
\]

Fix \(\mathcal{U} \in \mathcal{C}_X^0 \) and \(n \in \mathbb{N} \). Denote \(F_n(x) = H_{\mu_x}(\sqrt[1]{i=0}\ T^{-i}\mathcal{U}) + \int_X f_n \, d\mu_x \) for each \(x \in X_0 \). Then

\[
F_{n+m}(x) = H_{\mu_x}\left(\sqrt[1]{i=0} T^{-i}\mathcal{U}\right) + \int_X f_{n+m} \, d\mu_x
\]

\[
\leq H_{\mu_x}\left(\sqrt[1]{i=0} T^{-i}\mathcal{U}\right) + H_{\mu_x}(T^{-n} \sqrt[1]{i=0} T^{-i}\mathcal{U}) + \int_X f_n \, d\mu_x + \int_X f_{m \circ T^n} \, d\mu_x
\]

\[
\leq F_n(x) + H_{T^n \mu_x}\left(\sqrt[1]{i=0} T^{-i}\mathcal{U}\right) + \int_X f_{m \circ T^n} \, d\mu_x
\]

\[
= F_n(x) + H_{T^n \mu_x}\left(\sqrt[1]{i=0} T^{-i}\mathcal{U}\right) + \int_X f_{T^n \mu_x} \, d\mu_x
\]

\[
= F_n(x) + H_{T^n \mu_x}\left(\sqrt[1]{i=0} T^{-i}\mathcal{U}\right) + \int_X f_{m T^n} \, d\mu_x
\]

\[
= F_n(x) + F_m(T^n x),
\]

that is, \(\{F_n\} \) is subadditive. Since the map \(x \to \mu_x(A) \) for each \(A \in \mathcal{B} \) is measurable on \(X_0 \), it follows that \(F_n(x) \) is measurable on \(X_0 \). By Kingman’s subadditive ergodic theorem, \(\lim_{n \to \infty}(1/n)F_n(x) \equiv a_{\mathcal{U}} \) for \(\mu \)-a.e. \(x \in X \), where \(a_{\mathcal{U}} \) is a constant. Then, by (5),

\[
P(T, f, \mathcal{U}, \text{supp}(\mu_x)) \geq a_{\mathcal{U}}
\]
for each \(\mathcal{U} \in \mathcal{C}_X^0 \) and \(\mu \)-a.e. \(x \in X \). Therefore

\[
\alpha_{\mathcal{U}} = \int_X \lim_{n \to \infty} \frac{1}{n} F_n(x) \, d\mu = \lim_{n \to \infty} \frac{1}{n} \int_X F_n(x) \, d\mu
\]

\[
= \lim_{n \to \infty} \frac{1}{n} \int_X \left(H_{\mu_x} (\mathcal{U}_0^{n-1}) + \int_X f_n \, d\mu_x \right) \, d\mu(x)
\]

\[
= \lim_{n \to \infty} \frac{1}{n} H_{\mu} (\mathcal{U}_0^{n-1} | P_\mu(T)) + \int_X f \, d\mu
\]

\[
= h_{\mu}(T, \mathcal{U} | P_\mu(T)) + \int_X f \, d\mu
\]

\[
= P_\mu(T, f, \mathcal{U}) \quad \text{(by Lemma 2.4)}.
\]

It follows that

\[
P(T, f, \mathcal{U}, \text{supp}(\mu_x)) \geq P_\mu(T, f, \mathcal{U})
\]

for each \(\mathcal{U} \in \mathcal{C}_X^0 \) and \(\mu \)-a.e. \(x \in X \).

Choose a sequence of open covers \(\{\mathcal{U}_m\}_{m=1}^\infty \) with \(\lim \text{diam} \{\mathcal{U}_m\} = 0 \). Then

\[
\lim_{n \to \infty} P_\mu(T, f, \mathcal{U}_m) = \lim_{n \to \infty} \left(h_{\mu}(T, \mathcal{U}_m) + \int_X f \, d\mu \right)
\]

\[
= h_{\mu}(T) + \int_X f \, d\mu = P_\mu(T, f).
\]

Since for each \(m \in \mathbb{N} \) and \(\mu \)-a.e. \(x \in X \), \(P(T, f, \mathcal{U}_m, \text{supp}(\mu_x)) \geq P_\mu(T, f, \mathcal{U}_m) \), we have

\[
P(T, f, \text{supp}(\mu_x)) = \sup_{m \in \mathbb{N}} P(T, f, \mathcal{U}_m, \text{supp}(\mu_x)) \geq \sup_{m \geq 1} P_\mu(T, f, \mathcal{U}_m) = P_\mu(T, f)
\]

for each \(\mu \)-a.e. \(x \in X \).

It is not hard to see that the following corollary holds.

Corollary 4.6. Let \((X, T) \) be a TDS and \(f \in C(X, \mathbb{R}) \). Then

(a) \(\sup_{x \in X} P(T, f, W^s(x, T) \cap W^u(x, T)) = P(T, f) \);

(b) if there exists \(\mu \in \mathcal{M}^s(X, T) \) with \(P_\mu(T, f) = P(T, f) \), then, for \(\mu \)-a.e. \(x \in X \), there exists a closed subsets \(E(x) \subseteq W^s(x, T) \cap W^u(x, T) \) such that

(i) \(E(x) \in WM^s(X, T) \cap WM^s(X, T^{-1}) \),

(ii) \(P(T, f, E(x)) = P(T^{-1}, f, E(x)) = P(T, f) \).
5. Noninvertible case

In this section, we generalize the results in Sections 3 and 4 to the noninvertible case. Let \((X, T)\) be a noninvertible TDS, that is, \(X\) is a compact metric space, and \(T : X \to X\) is a surjective continuous map but not one-to-one.

Set \(\tilde{X} = \{(x_1, x_2, \ldots) : T(x_{i+1}) = x_i, x_i \in X, i \in \mathbb{N}\}\). It is clear that \(\tilde{X}\) is a subspace of the product space \(\prod_{i=1}^{\infty} X\) with the metric \(d_T\) defined by

\[
d_T((x_1, x_2, \ldots), (y_1, y_2, \ldots)) = \sum_{i=1}^{\infty} \frac{d(x_i, y_i)}{2^i}.
\]

Let \(\tilde{T} : \tilde{X} \to \tilde{X}\) be the shift homeomorphism, that is,

\[
\tilde{T}(x_1, x_2, \ldots) = (T(x_1), x_1, x_2, \ldots).
\]

We refer to the TDS \((\tilde{X}, \tilde{T})\) as the inverse limit of \((X, T)\). Let \(\pi_i : \tilde{X} \to X\) be the natural projection onto the \(i\)-th coordinate. Then \(\pi_i : (\tilde{X}, \tilde{T}) \to (X, T)\) is a factor map.

Lemma 5.1. Let \((X, T)\) be a noninvertible TDS, \(f \in C(X, \mathbb{R})\). Then, for each \(\mathcal{U} \subset \mathcal{C}_X\) and \(K \in \mathcal{H}(X)\),

\[
P_{n+m}(T, f, \mathcal{U}, K) \leq P_m(T, f, \mathcal{U}, K) \cdot P_n(T, f \circ T^m, T^{-m}\mathcal{U}, K)
\]

for each \(n, m \in \mathbb{N}\).

Proof. Since for each \(\mathcal{V}_1 \subset \mathcal{U}_0^{m-1}\) and \(\mathcal{V}_2 \subset \mathcal{U}_0^{n-1}\) we have \(\mathcal{V}_1 \vee T^{-m}\mathcal{V}_2 \subset \mathcal{U}_0^{m+n-1}\), it follows that

\[
P_{n+m}(T, f, \mathcal{U}, K) \leq \sum_{V_1 \in \mathcal{V}_1} \sum_{V_2 \in \mathcal{V}_2} \sup_{x \in V_1 \cap T^{-m}V_2 \cap K} \exp f_{n+m}(x)
\]

\[
= \sum_{V_1 \in \mathcal{V}_1} \sum_{V_2 \in \mathcal{V}_2} \sup_{x \in V_1 \cap T^{-m}V_2 \cap K} \exp(f_m(x) + f_n(T^m x))
\]

\[
\leq \sum_{V_1 \in \mathcal{V}_1} \sum_{V_2 \in \mathcal{V}_2} \sup_{x \in V_1 \cap K} \exp f_m(x) \cdot \sup_{x \in T^{-m}V_2 \cap K} \exp(f_n(T^m x))
\]

\[
= \sum_{V_1 \in \mathcal{V}_1} \sup_{x \in V_1 \cap K} \exp f_m(x) \cdot \sum_{V_2 \in \mathcal{V}_2} \sup_{x \in T^{-m}V_2 \cap K} \exp(f \circ T^m)_n(x).
\]

By the arbitrariness of \(\mathcal{V}_1\) and \(\mathcal{V}_2\), we have

\[
P_{n+m}(T, f, \mathcal{U}, K) \leq P_m(T, f, \mathcal{U}, K) \cdot P_n(T, f \circ T^m, T^{-m}\mathcal{U}, K).
\]

\(\square\)
Lemma 5.2. Let (X, T) be a noninvertible TDS, $f \in C(X, \mathbb{R})$. Then, for each $\mathcal{U} \in \mathcal{C}_X^0$ and $K \in \mathcal{H}(X)$,

$$P_n(T, f \circ T^m, T^{-m}\mathcal{U}, T^{-m}K) = P_n(T, f, \mathcal{U}, K) \quad \text{for each } n, m \in \mathbb{N}.$$

Proof. Fix $n, m \in \mathbb{N}$. For each $\mathcal{V} \supseteq (T^{-m}\mathcal{U})_0^{n-1}$,

$$\sum_{V \in \mathcal{V}} \sup_{x \in V \cap T^{-m}K} \exp(f \circ T^m)_n(x) = \sum_{V \in \mathcal{V}} \sup_{x \in V \cap T^{-m}K} \exp f_n(T^m x) = \sum_{V \in \mathcal{V}} \sup_{x \in T^m \mathcal{V} \cap T^{-m}K} \exp f_n(x).$$

Since $T^m\mathcal{V} \supseteq \mathcal{U}_0^{n-1}$,

$$P_n(T, f \circ T^m, T^{-m}\mathcal{U}, T^{-m}K) \leq P_n(T, f, \mathcal{U}, K).$$

Conversely, for each $\mathcal{V} \supseteq \mathcal{U}_0^{n-1}$, $T^{-m}\mathcal{V} \supseteq (T^{-m}\mathcal{U})_0^{n-1}$ and

$$\sum_{V \in \mathcal{V}} \sup_{x \in V \cap K} \exp f_n(x) = \sum_{V \in \mathcal{V}} \sup_{x \in T^{-m}(V \cap K)} \exp f_n(T^m x) = \sum_{V \in \mathcal{V}} \sup_{x \in T^m V \cap T^{-m}K} \exp(f \circ T^m)_n(x).$$

Then

$$P_n(T, f \circ T^m, T^{-m}\mathcal{U}, T^{-m}K) \geq P_n(T, f, \mathcal{U}, K),$$

which completes the proof.

Lemma 5.3. Let (\tilde{X}, \tilde{T}) be the inverse limit of a noninvertible TDS (X, T). Let $f \in C(X, \mathbb{R})$ and let $\pi_1 : \tilde{X} \to X$ be the projection to the first coordinate. Then, for any sequence of nonempty closed subsets K_n of \tilde{X},

$$\lim_{\delta \to 0} \lim_{n \to +\infty} \frac{1}{n} \log P_n(\tilde{T}, f \circ \pi_1, \delta, K_n) = \lim_{\delta \to 0} \lim_{n \to +\infty} \frac{1}{n} \log P_n(T, f, \delta, \pi_1(K_n)).$$

Proof. Let $\mathcal{U} \in \mathcal{C}_X^0$. For each $\mathcal{V} \in \mathcal{C}_X$ with $\mathcal{V} \supseteq \mathcal{U}_0^{n-1}$ and $x \in V \cap \pi_1(K_n)$, obviously, $\pi_1^{-1}\mathcal{V} \supseteq (\pi_1^{-1}\mathcal{U})_0^{n-1}$ and

$$(f \circ \pi_1)_n(\tilde{x}) = \sum_{j=0}^{n-1} (f \circ \pi_1)(\tilde{T}^j(\tilde{x})) = \sum_{j=0}^{n-1} f \circ T^j(\pi_1\tilde{x}) = f_n(\pi_1\tilde{x}) = f_n(x),$$

where $x = \pi_1\tilde{x}$. Then

$$\sum_{V \in \mathcal{V}} \sup_{\tilde{x} \in \pi_1^{-1}V \cap K_n} \exp(f \circ \pi_1)_n(\tilde{x}) = \sum_{V \in \mathcal{V}} \sup_{x \in \pi_1^{-1}V \cap \pi_1(K_n)} \exp f_n(x).$$

It follows that

$$P_n(\tilde{T}, f \circ \pi_1, \pi_1^{-1}\mathcal{U}, K_n) \leq P_n(T, f, \mathcal{U}, \pi_1(K_n)).$$

(6)
On the other hand, for each $\tilde{V} \in \mathcal{C}_X$ with $\tilde{V} \geq (\pi_1^{-1} \mathcal{U})_0^n$, $\tilde{x} \in \tilde{V} \cap K_n$, $\pi_1 \tilde{V} \geq \mathcal{U}_0^n$, and
\[
\sum_{\tilde{V} \in \tilde{V}} \sup_{\tilde{x} \in \tilde{V} \cap K_n} \exp(f \circ \pi_1)(\tilde{x}) = \sum_{\tilde{V} \in \tilde{V}} \sup_{x \in \pi_1(\tilde{V} \cap K_n)} \exp f_n(x)
= \sum_{\tilde{V} \in \pi_1 \tilde{V}} \sup_{x \in \pi_1 \tilde{V} \cap K_n} \exp f_n(x),
\]
where $x = \pi_1 \tilde{x}$. Then we get the opposite part of the inequality of (6), and consequently
\[
(7) \quad P_n(\tilde{T}, f \circ \pi_1, \pi_1^{-1} \mathcal{U}, K_n) = P_n(T, f, \mathcal{U}, \pi_1(K_n)).
\]

Now we have
\[
\limsup_{n \to \infty} \frac{1}{n} \log P_n(\tilde{T}, f \circ \pi_1, \pi_1^{-1} \mathcal{U}, K_n) = \limsup_{n \to \infty} \frac{1}{n} \log P_n(T, f, \mathcal{U}, \pi_1(K_n)).
\]

From Lemma 3.1, we get
\[
\lim_{\delta \to 0} \limsup_{n \to \infty} \frac{1}{n} \log P_n(\tilde{T}, f \circ \pi_1, \delta, K_n) \geq \lim_{\delta \to 0} \limsup_{n \to \infty} \frac{1}{n} \log P_n(T, f, \delta, \pi_1(K_n)).
\]

Conversely, let $\pi_i : \tilde{X} \to X$ be the projection to the ith coordinate and $\tilde{\mathcal{U}} \in \mathcal{C}_X^\circ$. By the definition of \tilde{X}, it is easy to see that there exists some $\mathcal{U} \in \mathcal{C}_X^\circ$ such that $\pi_i^{-1}(\mathcal{U}) \geq \tilde{U}$. Since for any two closed subsets C and D of X, $P_n(T, f, \mathcal{U}, C) \leq P_n(T, f, \mathcal{U}, D)$ and $\pi_i(K_n) \geq T^{-(i-1)} \pi_i(K_n)$, by (7), we have
\[
\limsup_{n \to \infty} \frac{1}{n} \log P_n(\tilde{T}, f \circ \pi_1, \tilde{\mathcal{U}}, K_n)
\leq \limsup_{n \to \infty} \frac{1}{n} \log P_n(\tilde{T}, f \circ \pi_1, \pi_i^{-1} \mathcal{U}, K_n)
= \limsup_{n \to \infty} \frac{1}{n} \log P_n(T, f, \mathcal{U}, \pi_i(K_n))
\leq \limsup_{n \to \infty} \frac{1}{n} \log P_n(T, f, \mathcal{U}, T^{-(i-1)} \pi_i(K_n))
= \limsup_{n \to \infty} \frac{1}{n+i-1} \log P_{n+i-1}(T, f, \mathcal{U}, T^{-(i-1)} \pi_i(K_n))
\leq \limsup_{n \to \infty} \frac{1}{n+i-1} \log (P_{i-1}(T, f, \mathcal{U}, T^{-(i-1)} \pi_i(K_n)) \cdot P_n(T, f \circ T^{i-1}, T^{-(i-1)} \mathcal{U}, T^{-(i-1)} \pi_i(K_n))) \quad \text{(by Lemma 5.1)}
= \limsup_{\delta \to 0} \limsup_{n \to \infty} \frac{1}{n} P_n(T, f, \mathcal{U}, \pi_1(K_n)) \quad \text{(by Lemma 5.2)}
\leq \lim_{\delta \to 0} \limsup_{n \to \infty} \frac{1}{n} P_n(T, f, \delta, \pi_1(K_n)).
By Lemma 3.1, we get
\[
\lim_{\delta \to 0} \limsup_{n \to \infty} \frac{1}{n} \log P_n(\widetilde{T}, f \circ \pi_1, \delta, K_n) \leq \lim_{\delta \to 0} \limsup_{n \to \infty} \frac{1}{n} \log P_n(T, f, \delta, \pi_1(K_n)). \tag{\square}
\]

Now we can prove the following theorem.

Theorem 5.4. Let \((X, T)\) be a noninvertible TDS, \(f \in C(X, \mathbb{R})\), and \(\mu \in \mathcal{M}^e(X, T)\) with \(h_\mu(T) > 0\). Then, for \(\mu\)-a.e. \(x \in X\), \(\lim_{\epsilon \to 0} P_s(T, f, x, \epsilon) \geq P_{\mu}(T, f)\).

Proof. Let \((\widetilde{X}, \widetilde{T})\) be the inverse limit of \((X, T)\). For \(\epsilon > 0\), \(n \in \mathbb{N}\), and \(\widetilde{x} \in \widetilde{X}\), denote \(K_n = \widetilde{T}^{-n} W_{\epsilon/2}^{s}(\widetilde{x}, \widetilde{T})\). Then, from the definitions of \(d_T\) and \(\widetilde{X}\), it is easy to see that \(\pi_1(K_n) \subseteq T^{-n} W_{\epsilon}^{s}(x, T)\), where \(x = \pi_1(\widetilde{x})\). By Lemma 5.3, we have
\[
P_s(T, f, x, \epsilon) = \lim_{\delta \to 0} \limsup_{n \to +\infty} \frac{1}{n} \log P_n(T, f, \delta, T^{-n} W_{\epsilon}^{s}(x, T))
= \lim_{\delta \to 0} \limsup_{n \to +\infty} \log P_n(T, f, \delta, \pi_1(K_n))
= \lim_{\delta \to 0} \limsup_{n \to +\infty} \log P_n(\widetilde{T}, f \circ \pi_1, \delta, K_n)
= P_s(\widetilde{T}, f \circ \pi_1, \widetilde{x}, \frac{\epsilon}{2}).
\]

It follows that, for each \(\widetilde{x} \in \widetilde{X}\),
\[
\lim_{\epsilon \to 0} P_s(T, f, \pi_1(\widetilde{x}), \epsilon) \geq \lim_{\epsilon \to 0} P_s(\widetilde{T}, f \circ \pi_1, \widetilde{x}, \frac{\epsilon}{2}). \tag{8}
\]

Let \(\widetilde{\mu} \in \mathcal{M}^e(\widetilde{X}, \widetilde{T})\) with \(\pi_1(\widetilde{\mu}) = \mu\). Then, by Theorem 3.7, there exists a Borel subset \(\widetilde{X}_0 \subseteq \widetilde{X}\) with \(\widetilde{\mu}(\widetilde{X}_0) = 1\) such that, for any \(\widetilde{x} \in \widetilde{X}_0\),
\[
\lim_{\epsilon \to 0} P_s(\widetilde{T}, f \circ \pi_1, \widetilde{x}, \frac{\epsilon}{2}) \geq P_{\widetilde{\mu}}(\widetilde{T}, f \circ \pi_1) = h_{\widetilde{\mu}}(\widetilde{T}) + \int_{\widetilde{X}} f \circ \pi_1 d\widetilde{\mu}
\geq h_{\mu}(T) + \int_{X} f d\mu = P_{\mu}(T, f).
\]

Let \(X_0 = \pi_1(\widetilde{X}_0)\). Then \(X_0 \in \mathcal{B}_{\mu}\) and \(\mu(X_0) = 1\). By the inequality (8) and (9), we have
\[
\lim_{\epsilon \to 0} P_s(T, f, x, \epsilon) \geq P_{\mu}(T, f) \quad \text{for each} \ x \in X_0. \tag{\square}
\]

Theorem 5.4 immediately leads to the following corollary.

Corollary 5.5. Let \((X, T)\) be a noninvertible TDS and \(f \in C(X, \mathbb{R})\). If there exists a \(\mu \in \mathcal{M}^e(X, T)\) such that \(P_{\mu}(T, f) = P(T, f)\), \(\mathcal{P}(T, f) \neq \emptyset\).

Lemma 5.6. Let \((\widetilde{X}, \widetilde{T})\) be the inverse limit of a noninvertible TDS \((X, T)\). If \(A \subseteq \widetilde{E}\) is weak mixing, so is \(\pi_1(A)\) and \(P(\widetilde{T}, f \circ \pi_1, A) = P(T, f, \pi_1(A))\).
Proof. The fact that \(\pi_1(A) \) is weak mixing follows from Lemma 4.8 in [Blanchard and Huang 2008]. The latter follows from Lemmas 5.3 and 3.1.

The following theorem shows that Theorem 4.5 also holds for noninvertible TDS.

Theorem 5.7. Let \((X, T)\) be a noninvertible TDS and \(\mu \in \mathcal{M}^e(X, T)\) with \(h_{\mu}(T) > 0\). Then, for \(\mu\)-a.e. \(x \in X\), there exists a closed subset \(E(x) \subseteq W^s(x, T)\) such that \(P(T, f, E(x)) \geq P_\mu(T, f)\) and \(E(x) \in WM_s(X, T)\).

Proof. Let \((\tilde{X}, \tilde{T})\) be the inverse limit of \((X, T)\). Then there exists \(\tilde{\mu} \in \mathcal{M}^e(\tilde{X}, \tilde{T})\) with \(\pi_1(\tilde{\mu}) = \mu\), where \(\pi_1\) is the projection to the first coordinate. Obviously,

\[
P_{\tilde{\mu}}(\tilde{T}, f \circ \pi_1) = h_{\tilde{\mu}}(\tilde{T}) + \int_{\tilde{X}} f \circ \pi_1 \, d\tilde{\mu} \geq h_{\mu}(T) + \int_X f \, d\mu = P(T, f).
\]

By Theorem 4.5, there exists a Borel set \(\tilde{X}_0 \subseteq \tilde{X}\) with \(\tilde{\mu}(\tilde{X}_0) = 1\) such that, for each \(\tilde{x} \in \tilde{X}_0\), there exists a closed subset \(E(\tilde{x}) \subseteq W^s(\tilde{x}, \tilde{T})\) such that

\[
P(\tilde{T}, f \circ \pi_1, E(\tilde{x})) \geq P_{\tilde{\mu}}(\tilde{T}, f \circ \pi_1) \quad \text{and} \quad E(\tilde{x}) \in WM_s(\tilde{X}, \tilde{T}).
\]

Let \((X_0) = \pi_1(\tilde{X}_0)\). Then \(X_0 \in \mathcal{B}_\mu\) and \(\mu(X_0) = 1\). For each \(x \in X_0\) let \(E(x) = \pi_1(E(\tilde{x}))\), where \(x = \pi_1(\tilde{x})\). Then \(E(x) \subseteq \pi_1(W^s(\tilde{x}, \tilde{T})) \subseteq W^s(x, T)\). By Lemma 5.6, we have

\[
P(T, f, E(x)) = P(\tilde{T}, f \circ E(\tilde{x})) \geq P_{\tilde{\mu}}(\tilde{T}, f \circ \pi_1) \geq P_{\mu}(T, f)
\]

and \(E(x) \in WM_s(X, T)\).

The following result is immediate.

Corollary 5.8. Let \((X, T)\) be a noninvertible TDS. Then

(a) \(\sup_{x \in X} P(T, f, W^s(x, T)) = P(T, f)\);

(b) if there exists \(\mu \in \mathcal{M}^e(X, T)\) with \(P_\mu(T, f) = P(T, f)\), then, for \(\mu\)-a.e. \(x \in X\), there exists a closed subset \(E(x) \subseteq W^s(x, T)\) such that \(E(x) \in WM_s(X, T)\) and \(P(T, f, E(x)) = P(T, f)\).

Remark 5.9. From the proof of Theorem 4.5, we know that \(E(x) = \text{supp}(\mu_x)\), where \(\mu_x\) is a probability measure determined by the disintegration of \(\mu \in \mathcal{M}^e(X, T)\) over the Pinsker \(\sigma\)-algebra \(P_\mu(T)\).

Acknowledgements

We thank the reviewers for constructive comments and valuable suggestions.
References

XIANFENG MA
DEPARTMENT OF MATHEMATICS
EAST CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY
SHANGHAI 200237
CHINA
xianfengma@gmail.com

ERCAI CHEN
SCHOOL OF MATHEMATICAL SCIENCES AND INSTITUTE OF MATHEMATICS
NANJING NORMAL UNIVERSITY
NANJING 210023
CHINA
and
CENTER OF NONLINEAR SCIENCE
NANJING UNIVERSITY
NANJING, 210093
CHINA
ecchen@njnu.edu.cn
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biharmonic hypersurfaces in complete Riemannian manifolds</td>
<td>1</td>
</tr>
<tr>
<td>Luis J. Alías, Carolina García-Martínez and Marco Rigoli</td>
<td></td>
</tr>
<tr>
<td>Half-commutative orthogonal Hopf algebras</td>
<td>13</td>
</tr>
<tr>
<td>Julien Bichon and Michel Dubois-Violette</td>
<td></td>
</tr>
<tr>
<td>Superdistributions, analytic and algebraic super Harish-Chandra pairs</td>
<td>29</td>
</tr>
<tr>
<td>Claudio Carmeli and Rita Fioreni</td>
<td></td>
</tr>
<tr>
<td>Orbifolds with signature ((0; k, k^{n-1}, k^n, k^n))</td>
<td>53</td>
</tr>
<tr>
<td>Angel Carocca, Rubén A. Hidalgo and Rubí E. Rodríguez</td>
<td></td>
</tr>
<tr>
<td>Explicit isogeny theorems for Drinfeld modules</td>
<td>87</td>
</tr>
<tr>
<td>Imin Chen and Yoonjin Lee</td>
<td></td>
</tr>
<tr>
<td>Topological pressures for (\epsilon)-stable and stable sets</td>
<td>117</td>
</tr>
<tr>
<td>Xianfeng Ma and Ercai Chen</td>
<td></td>
</tr>
<tr>
<td>Lipschitz and bilipschitz maps on Carnot groups</td>
<td>143</td>
</tr>
<tr>
<td>William Meyerson</td>
<td></td>
</tr>
<tr>
<td>Geometric inequalities in Carnot groups</td>
<td>171</td>
</tr>
<tr>
<td>Francesc Paolo Montefalcone</td>
<td></td>
</tr>
<tr>
<td>Fixed points of endomorphisms of virtually free groups</td>
<td>207</td>
</tr>
<tr>
<td>Pedro V. Silva</td>
<td></td>
</tr>
<tr>
<td>The sharp lower bound for the first positive eigenvalue of the</td>
<td>241</td>
</tr>
<tr>
<td>Folland–Stein operator on a closed pseudohermitian ((2n + 1))-manifold</td>
<td></td>
</tr>
<tr>
<td>Chin-Tung Wu</td>
<td></td>
</tr>
<tr>
<td>Remark on “Maximal functions on the unit (n)-sphere” by Peter M. Knopf (1987)</td>
<td>253</td>
</tr>
<tr>
<td>Hong-Quan Li</td>
<td></td>
</tr>
</tbody>
</table>