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FIXED POINTS OF ENDOMORPHISMS
OF VIRTUALLY FREE GROUPS

PEDRO V. SILVA

A fixed point theorem is proved for inverse transducers, which leads to an
automata-theoretic proof of the fixed point subgroup of an endomorphism
of a finitely generated virtually free group being finitely generated. If the en-
domorphism is uniformly continuous for the hyperbolic metric, it is proved
that the set of regular fixed points in the hyperbolic boundary has finitely
many orbits under the action of the finite fixed points. In the automorphism
case, it is shown that these regular fixed points are either exponentially sta-
ble attractors or exponentially stable repellers.

1. Introduction

Throughout the paper, the ambient groups are assumed to be finitely generated.
Gersten [1987] proved that the fixed point subgroup of a free group automorphism

ϕ is finitely generated. Using a different approach, Cooper [1987] gave an alternative
proof, proving also that the fixed points of the continuous extension of ϕ to the
boundary of the free group is, in some sense, finitely generated. Bestvina and
Handel [1992] achieved a major breakthrough with their innovative train track
techniques, bounding the rank of the fixed point subgroup and the generating set
for the infinite fixed points. Their approach was pursued by Maslakova [2003],
who considered the problem of effectively computing a basis for the fixed point
subgroup. The paper turned out to contain some errors, and subsequently a new
paper by Bogopolski and Maslakova [2012] was posted on arXiv with the purpose
of correcting these errors.

Gersten’s result was generalized to further classes of groups and endomorphisms
in subsequent years. Goldstein and Turner extended it to monomorphisms of free
groups [1985] and to arbitrary endomorphisms [1986]. Collins and Turner extended
it to automorphisms of free products of freely indecomposable groups [1994];
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see the survey by Ventura [2002]. With respect to automorphisms, the widest
generalization is to hyperbolic groups and is due to Paulin [1989].

Sykiotis [2002] extended Collins and Turner’s result to arbitrary endomorphisms
of virtually free groups using symmetric endomorphisms; see also [Sykiotis 2007]
for further results on symmetric endomorphisms. In [Silva 2012], we generalized
Goldstein and Turner’s automata-theoretic proof to arbitrary endomorphisms of free
products of cyclic groups. In the present paper, this result is extended to arbitrary
endomorphisms of virtually free groups, providing an automata-theoretic alternative
to Sykiotis’ result.

This is done by reducing the problem to the rationality of some languages
associated to a finite inverse transducer, and subsequent application of Anisimov
and Seifert’s theorem.

Infinite fixed points of automorphisms of free groups were discussed by Gaboriau,
Jaeger, Levitt, and Lustig [Gaboriau et al. 1998], where it is remarked in particular
that some of the results would hold for virtually free groups with some adaptations.

In [Silva 2010], we discussed infinite fixed points for monomorphisms of free
products of cyclic groups, the group case of a more general setting based on the
concept of special confluent rewriting system. These results are now extended to
endomorphisms with finite kernel of virtually free groups (which are precisely the
uniformly continuous endomorphisms for the hyperbolic metric), and we discuss the
dynamical nature of the regular fixed points in the automorphism case, generalizing
the results of [Gaboriau et al. 1998] on free groups.

The paper is organized as follows. Section 2 is devoted to preliminaries on
groups and automata. We discuss inverse transducers in Section 3, proving a
useful fixed point theorem. In Section 4 we prove that the fixed point subgroup is
finitely generated for arbitrary endomorphisms of a (finitely generated) virtually
free group G.

In Section 5 we get a rewriting system with good properties to represent the
elements of G, and in Section 6 we use it to construct a simple model for the hyper-
bolic boundary of G. We study uniformly continuous endomorphisms in Section 7
and in Section 8 we prove that the infinite fixed points of such endomorphisms are,
in some sense, finitely generated.

The classification of the infinite fixed points of automorphisms is performed in
Section 9, and Section 10 includes an example and some open problems.

2. Preliminaries

Throughout the paper, we assume alphabets to be finite. We start with some group-
theoretic definitions. Given an alphabet A, we denote by A−1 a set of formal
inverses of A, and write Ã = A ∪ A−1. We extend the mapping a 7→ a−1 to an
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involution of the free monoid Ã∗ in the obvious way. As usual, the free group on A
is the quotient of Ã∗ by the congruence generated by the relation {(aa−1, 1) : a ∈ Ã}.
We denote by θ : Ã∗→ FA the canonical morphism.

Let
RA = Ã∗ \

(⋃
a∈ Ã

Ã∗aa−1 Ã∗
)

be the subset of all reduced words in Ã∗. It is well known that, for every g ∈ FA,
gθ−1 contains a unique reduced word, denoted by ḡ. We also write ū = uθ for
every u ∈ Ã∗. Note that the equivalence uθ = vθ ⇔ ū = v̄ holds for all u, v ∈ Ã∗.

A group G is virtually free if G has a free subgroup F of finite index. In view
of Nielsen’s theorem, it is well-known that F can be assumed to be normal, and is
finitely generated if G is finitely generated itself. Therefore every finitely generated
virtually free group G admits a decomposition as a disjoint union

G = F ∪ Fb1 ∪ · · · ∪ Fbm,

where F EG is a free group of finite rank and b1, . . . , bm ∈ G.
We shall need also some basic concepts from automata theory.
Let A be a (finite) alphabet. A subset of A∗ is called an A-language. We say

that A= (Q, q0, T, δ) is a (finite) deterministic A-automaton if

• Q is a (finite) set,

• q0 ∈ Q and T ⊆ Q,

• δ : Q× A→ Q is a partial mapping.

We extend δ to a partial mapping Q× A∗→ Q by induction through

(q, 1)δ = q, (q, ua)δ = ((q, u)δ, a)δ (u ∈ A∗, a ∈ A).

When the automaton is clear from the context, we write qu = (q, u)δ. We can
view A as a directed graph with edges labeled by letters a ∈ A by identifying
(p, a)δ = q with the edge p

a
−→q . We denote by E(A)⊆ Q× A×Q the set of all

such edges.
A finite nontrivial path in A is a sequence

p0
a1
−→p1

a2
−→· · ·

an
−→pn

with (pi−1, ai , pi ) ∈ E(A) for i = 1, . . . , n. Its label is the word a1 · · · an ∈ A∗. It
is said to be a successful path if p0 = q0 and pn ∈ T . We also consider the trivial
path p

1
−→p for p ∈ Q. It is successful if p = q0 ∈ T .

The language L(A) recognized by A is the set of all labels of successful paths
in A. Equivalently, L(A)= {u ∈ A∗ : q0u ∈ T }. If (pi−1, ai , pi ) ∈ E(A) for every
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i ∈ N, we may also consider the infinite path

p0
a1
−→p1

a2
−→p2

a3
−→· · · .

Its label is the (right) infinite word a1a2a3 · · · . We denote by Aω the set of all
(right) infinite words on the alphabet A, and also write A∞ = A∗ ∪ Aω. We denote
by Lω(A) the set of labels of all infinite paths q0−→· · · in A.

Given u ∈ A∗ and α ∈ A∞, we say that u is a prefix of α and write u≤α if α= uβ
for some β ∈ A∞. By convention, this includes the case α ≤ α for α ∈ Aω. For
every n ∈N, we denote by α[n] the prefix of length n of α, applying the convention
that α[n] = α if n > |α|.

It is immediate that (A∞,≤) is a complete ∧-semilattice: given α, β ∈ A∞, α∧β
is the longest common prefix of α and β (or α if α = β ∈ Aω). The ∧ operator will
play a crucial role in later sections of the paper.

The star operator on A-languages is defined by

L∗ =
⋃
n≥0

Ln,

where L0
= {1}. An A-language L is said to be rational if L can be obtained from

finite A-languages using finitely many times the union, product, and star operators
(this is called a rational expression). Alternatively, by Kleene’s theorem [Berstel
1979, Section III], L is rational if and only if it is recognized by a finite deterministic
A-automaton A. The definition through rational expressions generalizes to subsets
of an arbitrary group in the obvious way. Moreover, if we fix a homomorphism
π : A∗→G, the rational subsets of G are the images by π of the rational A-languages.
For obvious reasons, we shall be dealing mostly with matched homomorphisms.
A homomorphism π : Ã∗→ G is said to be matched if a−1π = (aπ)−1 for every
a ∈ A. For details on rational languages and subsets, the reader is referred to
[Berstel 1979; Sakarovitch 2003].

We shall need also the following classical result of Anisimov and Seifert.

Proposition 2.1 [Sakarovitch 2003, Proposition II.6.2]. Let H be a subgroup of a
group G. Then H is a rational subset of G if and only if H is finitely generated.

We end this section with an elementary observation that helps us to establish
that fixed point subgroups are finitely generated.

Proposition 2.2. Let π : Ã∗→ G be a matched epimorphism and let X ⊆ G. Let
A be a finite Ã-automaton such that

(i) L(A)⊆ Xπ−1,

(ii) L(A)∩ xπ−1
6=∅ for every x ∈ X.

Then X is a rational subset of G.
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Proof. It follows immediately that X = (L(A))π , so X is a rational subset of G. �

3. Inverse transducers

Given a finite alphabet A, we say that T= (Q, q0, δ, λ) is a (finite) deterministic
A-transducer if

• Q is a (finite) set,

• q0 ∈ Q,

• δ : Q× A→ Q and λ : Q× A→ A∗ are mappings.

As in the automaton case, we may extend δ to a mapping Q×A∗→ Q. Similarly,
we extend λ to a mapping Q× A∗→ A∗ through

(q, 1)λ= 1, (q, ua)λ= (q, u)λ((q, u)δ, a)λ (u ∈ A∗, a ∈ A).

When the transducer is clear from the context, we write qa = (q, a)δ. We can
view T as a directed graph with edges labeled by elements of A× A∗ (represented
in the form a|w) by identifying (p, a)δ = q, (p, a)λ = w with the edge p

a|w
−→q.

The set of all such edges is denoted by E(T)⊆ Q× A× A∗× Q. If pu = q and
(p, u)λ= v, we also write p

u|v
−→q and call it a path in T.

It is immediate that, given u ∈ A∗, there exists exactly one path in T of the form
q0

u|v
−→q. We write uT̂= v, thus defining a mapping T̂ : A∗→ A∗.
Assume now that T= (Q, q0, δ, λ) is a deterministic Ã-transducer such that

p
a|u
−→q is an edge of T if and only if q

a−1
|u−1

−−−−→p is an edge of T.

Then T is said to be inverse.

Proposition 3.1. Let T= (Q, q0, δ, λ) be an inverse Ã-transducer. Then

(i) δ : Q× Ã∗→ Q induces a mapping δ̂ : Q× FA→ Q by (q, uθ)δ̂ = (q, u)δ,

(ii) T̂ : Ã∗→ Ã∗ induces a mapping T̃ : FA→ FA by uθT̃= uT̂θ .

Proof. (i) Since the free group congruence ∼ is generated by the pairs (aa−1, 1), it
suffices to show that (q, vaa−1w)δ = (q, vw)δ for all q ∈ Q; v,w ∈ Ã∗ and a ∈ Ã.

Since δ is a full mapping, we have a path

(1) q
v|v′

−→q1
a|u
−→q2

a−1
|u′

−−−→q3
w|w′

−→q4

in T. Since T is inverse (in particular deterministic), we must have u′ = u−1 and
q3 = q1. Hence we also have a path

q
v|v′

−→q1
w|w′

−→q4

and so (q, vaa−1w)δ = q4 = (q, vw)δ as required.
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(ii) Similarly to part (i), it suffices to show that (vaa−1w)T̂θ = (vw)T̂θ for all
v,w ∈ Ã∗ and a ∈ Ã.

We consider the path (1) for q = q0. Since u′ = u−1 and q3 = q1, we get

(vaa−1w)T̂θ = (v′uu−1w′)θ = (v′w′)θ = (vw)T̂θ,

as required. �

We now prove one of our main results, generalizing Goldstein and Turner’s proof
[1986] to mappings induced by inverse transducers.

Theorem 3.2. Let T be a finite inverse Ã-transducer and let z ∈ FA. Then

L = {g ∈ FA : gT̃= gz}
is rational.

Proof. Write T= (Q, q0, δ, λ). For every g ∈ FA, let P1(g)= g−1(gT̃) ∈ FA and
write q0g= (q0, g)δ̂, P(g)= (P1(g), q0g). Note that g ∈ L if and only if P1(g)= z.
We define a deterministic Ã-automaton AT = (P, (1, q0), S, E) by

P = {P(g) : g ∈ FA};

S = P ∩ ({z}× Q);

E = {(P(g), a, P(ga)) : g ∈ FA, a ∈ Ã}.

Clearly, AT is a possibly infinite automaton. Note that, since T is inverse, we
have qaa−1

= q for all q ∈ Q and a ∈ Ã. It follows that, whenever (p, a, p′) ∈ E ,
(p′, a−1, p) ∈ E . We say that such edges are the inverses of each other.

Since every w ∈ Ã∗ labels a unique path P(1)
w
−→P(wθ), it follows that

L(AT)= Lθ−1.

In view of Proposition 2.2, to prove that L is rational it suffices to construct a finite
subautomaton BT of AT such that L̄ ⊆ L(BT).

We now fix

M =max{|(q, a)λ| : q ∈ Q, a ∈ Ã}, N =max{2M + 1, |z|}

and
P ′ = {P(g) ∈ P : |P1(g)| ≤ N }.

Since A and T are finite, so is P ′. However, infinitely many g ∈ FA may yield the
same state P(g).

Given g ∈ FA, write gι= ḡ[1]. Given p = (g, q) ∈ P , we also write pι= gι. We
say that an edge (p1, a, p2) ∈ E is

• central if p1, p2 ∈ P ′,

• compatible if it is not central and p1ι= a.
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Lemma 3.3. (i) There are only finitely many central edges in AT.

(ii) If (p1, a, p2) ∈ E is not central, either (p1, a, p2) or (p2, a−1, p1) is compati-
ble.

(iii) For every p ∈ P , there is at most one compatible edge leaving p.

Proof. (i) A and P ′ are both finite.

(ii) Assume that (p1, a, p2) is neither central nor compatible. Write p1 = (g1, q1)

and p2 = (g2, q2). Suppose that g1 = 1. Then g2 = P1(a) = a−1(aT̃) and so
|g2| ≤ 1+M ≤ N , in contradiction with (p1, a, p2) being noncentral.

Thus ḡ1 = bu for some b ∈ Ã \ {a} and u ∈ RA. On the other hand, we have
g2 = a−1g1(q1, a)λ, and so

ḡ2 = a−1bu(q1, a)λ.

If |u|< M , then |g1|, |g2| ≤ 2M+1≤ N and (p1, a, p2) is central, a contradiction.
Thus |u| ≥ M ≥ |(q1, a)λ| and so g2ι= a−1. Thus (p2, a−1, p1) is compatible.

(iii) Any compatible edge leaving p must be labeled by pι, and AT is deterministic.
�

A (possibly infinite) path q0
a1
−→q1

a2
−→· · · in AT is

• central if all the vertices in it are in P ′,

• compatible if all the edges in it are compatible and no intermediate vertex is
in P ′.

Lemma 3.4. Let u ∈ L̄. Then there exists a path

(1, q0)= p′0
u0
−→p′′0

v1
−→p1

w−1
1
−→p′1

u1
−→· · ·

vn
−→pn

w−1
n
−→p′n

un
−→p′′n ∈ S

in AT such that

(i) u = u0v1w
−1
1 u1 · · · vnw

−1
n un ,

(ii) the paths p′j
u j
−→p′′j are central,

(iii) the paths p′′j−1
v j
−→p j and p′j

w j
−→p j are compatible,

(iv) p j /∈ P ′ if both v j and w j are nonempty.

Proof. Since S ⊆ P ′ by definition of N , there exists a path

(2) (1, q0)= p′0
u0
−→p′′0

x1
−→p′1

u1
−→· · ·

xn
−→p′n

un
−→p′′n ∈ S

in AT such that u = u0x1u1 · · · xnun and the paths p′j
u j
−→p′′j (which may be trivial)

collect all the occurrences of vertices in P ′ (and are therefore central).
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By Lemma 3.3(ii), if (p, a, r) occurs in a path p′′j−1
x j
−→p′j , either (p, a, r) or

(r, a−1, p) is compatible. On the other hand, since x j is reduced, it follows from
Lemma 3.3(iii) that p′′j−1

x j
−→p′j can be factored as

p′′j−1
v j
−→p j

w−1
j
−→p′j

with p′′j−1
v j
−→p j and p′j

w j
−→p j compatible. Clearly (iv) holds since no intermediate

vertex of p′′j−1
x j
−→p′j belongs to P ′ by construction. �

We say that a compatible path is maximal if it is infinite or cannot be extended
(to the right) to produce another compatible path.

Lemma 3.5. For every p ∈ P ′, there exists in AT a unique maximal compatible
path Mp starting at p.

Proof. Clearly, every compatible path can be extended to a maximal compatible
path. Uniqueness follows from Lemma 3.3(iii). �

We now define

P ′1 = {p ∈ P ′ : Mp has finitely many distinct edges }

and P ′2 = P ′ \ P ′1. Hence Mp contains no cycles if p ∈ P ′2. By Lemma 3.5, if Mp

and Mp′ intersect at vertex rpp′ , they coincide from rpp′ onwards. In particular, if
Mp and Mp′ intersect, then p ∈ P ′1 if and only if p′ ∈ P ′1. Let

Y = {(p, p′) ∈ P ′2× P ′2 : Mp intersects Mp′}.

For every (p, p′) ∈ Y , let Mp \Mp′ denote the (finite) subpath p−→rpp′ of Mp. In
particular, if p′ = p, Mp \Mp′ is the trivial path at p.

Let BT be the subautomaton of AT containing

• all vertices in P ′ and all central edges,

• all vertices and edges in the paths Mp (p ∈ P ′1) and their inverses,

• all vertices and edges in the paths Mp \Mp′ ((p, p′) ∈ Y ) and their inverses.

It follows easily from Lemma 3.3(i) and the definitions of P ′1 and Mp \Mp′ that
BT is a finite subautomaton of AT. As remarked before, it suffices to show that
L̄ ⊆ L(BT).

Let u ∈ L̄ . Since BT contains all the central edges of AT, it suffices to show
that all subpaths

p′′j−1
v j
−→p j

w−1
j
−→p′j

appearing in the factorization provided by Lemma 3.4 are paths in BT.
Without loss of generality, we may assume that v j 6= 1. If w j = 1, p′′j−1 ∈ P ′1

and we are done. Hence we may also assume that w j 6= 1. Now, if one of the
vertices p′′j−1, p′j is in P ′1, so is the other and we are done, since BT contains all
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the edges in the paths Mp (p ∈ P ′1) and their inverses. Hence we may assume that
p′′j−1, p′j ∈ P ′2. It follows that p j = rp′′j−1,p

′

j
. (Since v jw

−1
j ∈ RA, the paths Mp′′j−1

and Mp′j cannot meet before p j .) Thus p′′j−1
v j
−→p j is Mp′′j−1

\Mp′j and p′j
w j
−→p j

is Mp′j \Mp′′j−1
, and so these are also paths in BT as required. �

4. The fixed point subgroup

We can now produce an automata-theoretic proof to Sykiotis’ theorem.

Theorem 4.1 [Sykiotis 2002, Proposition 3.4]. Let ϕ be an endomorphism of a
finitely generated virtually free group. Then Fixϕ is finitely generated.

Proof. We consider a decomposition of G as a disjoint union

(3) G = Fb0 ∪ Fb1 ∪ · · · ∪ Fbm,

where F = FAEG is a free group with A finite and b0, . . . , bm ∈ G with b0 = 1.
Let ϕ0 : FA→ FA and η : FA→ {0, . . . ,m} be defined by

gϕ = (gϕ0)bgη (g ∈ FA).

Since the decomposition (3) is disjoint, gϕ0 and gη are both uniquely determined
by gϕ, and so both mappings are well defined.

Write Q = {0, . . . ,m}. For all i ∈ Q and a ∈ Ã, we have bi (aϕ) = hi,ab(i,a)δ
for some (unique) hi,a ∈ FA and (i, a)δ ∈ Q. It follows that, for every j ∈ Q,
A j = (Q, 0, j, δ) is a well-defined finite deterministic Ã-automaton. We define
also a finite deterministic Ã-transducer T = (Q, 0, δ, λ) by taking (i, a)λ = hi,a

for all i ∈ Q and a ∈ Ã.
Assume that

i
a|hi,a
−−−→(i, a)δ = j

is an edge of T. Then bi (aϕ)= hi,ab j and so

bi = bi (aϕ)(a−1ϕ)= hi,ab j (a−1ϕ)= hi,ah j,a−1b( j,a−1)δ.

This yields hi,ah j,a−1 = 1 and ( j, a−1)δ = i . Thus there is an edge

j
a−1
|hi,a

−1

−−−−−→( j, a−1)δ = i

in T and so T is an inverse transducer. We claim that T̃=ϕ0. Indeed, let g=a1 · · · an

(ai ∈ Ãi ). Then there exists a (unique) path in T of the form

0= i0
a1|hi0,a1
−−−−−→i1

a2|hi1,a2
−−−−−→· · ·

an |hin−1,an
−−−−−−→in.
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Moreover, i j = (i j−1, a j )δ for j = 1, . . . , n. It follows that

gϕ = bi0(a1ϕ) · · · (anϕ)= hi0,a1bi1(a2ϕ) · · · (anϕ)

= hi0,a1hi1,a2bi2(a3ϕ) · · · (anϕ)= · · · = hi0,a1 · · · hin−1,an bin

and so

gϕ0 = hi0,a1 · · · hin−1,an = (hi0,a1 · · · hin−1,an )θ = gT̃.

Thus T̃= ϕ0.
Note that we have also shown that gη = in = (0, a1 · · · an)δ. Hence

(4) L(A j )= {u ∈ Ã∗ : uθη = j}.

Next let

Y = {(i, j) ∈ Q× Q : b j (biϕ) ∈ FAbi }.

For every (i, j) ∈ Y , let zi, j ∈ FA be such that b j (biϕ)= zi, j bi and define

X i, j = {g ∈ FA : gbi ∈ Fixϕ and gη = j}.

We claim that X i, j is a rational subset of FA for every (i, j) ∈ Y . Indeed, (gbi )ϕ =

(gϕ)(biϕ)= (gϕ0)bgη(biϕ). Hence

X i, j = {g ∈ FA : (gϕ0)b j (biϕ)= gbi and gη = j}

= {g ∈ FA : (gϕ0)zi, j bi = gbi and gη = j}

= {g ∈ FA : gϕ0 = gz−1
i, j } ∩ {g ∈ FA : gη = j}.

Writing

L i, j = {g ∈ FA : gϕ0 = gz−1
i, j },

it follows from (4) that X i, j = L i, j ∩ (L(A j ))θ . Since ϕ0 = T̃, it follows from
Theorem 3.2 that X i, j is an intersection of two rational subsets of FA, and is hence
rational itself; see [Berstel 1979, Corollary III.2.10].

Now it is easy to check that

(5) Fixϕ =
⋃

i∈Q

(⋃
{X i, j : (i, j) ∈ Y }

)
bi .

Indeed, for every (i, j)∈Y , we have X i, j bi ⊆Fixϕ by definition of X i, j . Conversely,
let gbi ∈ Fixϕ for some g ∈ FA and i ∈ Q. Then gbi = (gbi )ϕ = (gϕ0)bgη(biϕ)

and so bgη(biϕ) ∈ FAbi . Hence (i, gη) ∈ Y . Since g ∈ X i,gη, (5) holds. Since the
X i, j are rational subsets of FA and therefore of G, it follows that Fixϕ is a rational
subset of G and is thus finitely generated by Proposition 2.1. �
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Unfortunately, our approach does not lead directly to an algorithm to compute a
basis of Fixϕ (see [Bogopolski and Maslakova 2012]) because it is not clear how
to decide in Section 3 whether p ∈ P ′ belongs to P ′1 or P ′2 and how to compute the
paths Mp and Mp \Mp′ .

5. A good rewriting system

We recall that a (finite) rewriting system on A is a (finite) subset R of A∗ × A∗.
Given u, v ∈ A∗, we write u−→Rv if there exist (r, s) ∈R and x, y ∈ A∗ such that
u = xry and v = xsy. The reflexive and transitive closure of −→R is denoted by
−→

∗

R.
We say that R is

• length-reducing if |r |> |s| for every (r, s) ∈R,

• length-nonincreasing if |r | ≥ |s| for every (r, s) ∈R,

• noetherian if, for every u ∈ A∗, there is a bound on the length of a chain

u−→Rv1−→R · · · −→Rvn,

• confluent if, whenever u−→∗Rv and u−→∗Rw, there exists some z ∈ A∗ such
that v−→∗Rz and w−→∗Rz.

A word u ∈ A∗ is irreducible if no v ∈ A∗ satisfies u−→Rv. We denote by Irr R

the set of all irreducible words in A∗ with respect to R.
We introduce now some basic concepts and results from the theory of hyperbolic

groups. For details on this class of groups, the reader is referred to [Ghys and de la
Harpe 1990].

Let π : Ã∗→ G be a matched epimorphism with A finite. The Cayley graph
0A(G) of G with respect to π has vertex set G and edges (g, a, g(aπ)) for all
g ∈G and a ∈ Ã. We say that a path p

u
−→q in 0A(G) is a geodesic if it has shortest

length among all the paths connecting p to q in 0A(G). We denote by GeoA(G) the
set of labels of all geodesics in 0A(G). Note that, since 0A(G) is vertex-transitive,
it is irrelevant whether or not we fix a basepoint.

The geodesic distance d1 on G is defined by taking d1(g, h) to be the length of
a geodesic from g to h. Given X ⊆ G nonempty and g ∈ G, we define

d1(g, X)=min{d1(g, x) : x ∈ X}.

A geodesic triangle in 0A(G) is a collection of three geodesics

P1 : g1−→g2, P2 : g2−→g3, P3 : g3−→g1
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connecting three vertices g1, g2, g3 ∈ G. Let V (Pi ) denote the set of vertices
occurring in the path Pi . We say that 0A(G) is δ-hyperbolic for some δ ≥ 0 if

∀g ∈ V (P1) : d1(g, V (P2)∪ V (P3)) < δ

for every geodesic triangle {P1, P2, P3} in 0A(G). If this happens for some δ, we
say that G is hyperbolic. It is well known that the concept is independent from both
alphabet and matched epimorphism, but the hyperbolicity constant δ may change.
Virtually free groups are among the most important examples of hyperbolic groups.

We now use a theorem of Gilman, Hermiller, Holt, and Rees [Gilman et al. 2007]
to prove the following result.

Lemma 5.1. Let G be a finitely generated virtually free group. Then there exist a
finite alphabet A, a matched epimorphism π : Ã∗→ G, and a positive integer N0

such that, for all u ∈ GeoA(G) and v ∈ Ã∗,

(i) there exists some w ∈ GeoA(G) such that wπ = (uv)π and

|u ∧w| ≥ |u| − N0|v|;

(ii) there exists some z ∈ GeoA(G) such that zπ = (vu)π and |u−1
∧ z−1

| ≥

|u| − N0|v|.

Proof. (i) By [Gilman et al. 2007, Theorem 1], there exists a finite alphabet A, a
matched epimorphism π : Ã∗→G, and a finite length-reducing rewriting system R

such that GeoA(G)= Irr R. The authors also prove that this property characterizes
(finitely generated) virtually free groups.

Let N0 = 2 max{|r | : (r, s) ∈R}. Suppose that

uv = w0−→Rw1−→R · · · −→Rwn = w

is a sequence of reductions leading to a geodesic w. Then (wv−1)π = uπ and since
u is a geodesic we get |u| ≤ |v|+|w| and so |u|−|w| ≤ |v|. On the other hand, since
R is length-reducing, we get |u|+|v|= |uv|≥ |w|+n and so n−|v|≤ |u|−|w|≤ |v|.
Thus n ≤ 2|v|.

Trivially, |u ∧ w0| ≥ |u|. Since u ∧ wi−1 ∈ GeoA(G), it is immediate that
|u ∧wi |> |u ∧wi−1| − N0/2 and so

|u ∧w| = |u ∧wn| ≥ |u| − n
N0

2
≥ |u| − N0|v|.

(ii) The inverse of a geodesic is still a geodesic. By applying (i) to u−1 and v−1, we
get (u−1v−1)π = xπ for some x ∈GeoA(G) satisfying |u−1

∧x | ≥ |u−1
|−N0|v

−1
|.

Then we take z = x−1. �

We assume for the remainder of the paper that G is a finitely generated virtually
free group, π : Ã∗→G a matched epimorphism, and N0 a positive integer satisfying
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the conditions of Lemma 5.1. Since G is hyperbolic, it follows from [Epstein et al.
1992, Theorem 3.4.5] that GeoA(G) is an automatic structure for G with respect to
π (see [Epstein et al. 1992] for definitions), and so the fellow traveler property holds
for some constant K0 > 0 (which can be taken as 2(δ+ 1), if δ is the hyperbolicity
constant). This amounts to saying that

∀u, v ∈ GeoA(G) : d1(uπ, vπ)≤ 1 ⇒ ∀n ∈ N : d1(u[n]π, v[n]π)≤ K0).

We fix a total ordering of Ã. The shortlex ordering of Ã∗ is defined by

u ≤sl v if
{
|u|< |v|, or
|u| = |v| and u = wau′, v = wbv′ with a < b in Ã.

This is a well-known well-ordering of Ã∗, compatible with multiplication on the
left and on the right. Let

(6) L = {u ∈ GeoA(G) : u ≤sl v for every v ∈ uππ−1
}.

By [Epstein et al. 1992, Theorem 2.5.1], L is also an automatic structure for G
with respect to π , and therefore rational. We note that L is factorial (a factor of a
word in L is still in L).

Given g ∈G, let ḡ denote the unique word of L representing g. This corresponds
precisely to free group reduction if G = FA and π = θ . Since we shall not need free
group reduction from now on, we also write ū = uπ for every u ∈ Ã∗ to simplify
notation.

Theorem 5.2. Consider the finite rewriting system R′ on A defined by

R′ = {(u, ū) : u ∈ Ã∗, |u| ≤ K0 N0+ 1, u 6= ū}.

Then

(i) R′ is length-nonincreasing, noetherian and confluent,

(ii) IrrR′ = L.

Proof. (i) R′ is trivially length-nonincreasing, and that it is noetherian follows from

(7) (u, ū) ∈R′⇒ u >sl ū

and Ã∗ being well-ordered by ≤sl , plus compatibility of ≤sl with multiplication.
Next we show that

(8) u−→∗R′ ū holds for every u ∈ Ã∗.

We use induction on |u|. The case |u| ≤ K0 N0+ 1 follows from the definition
of R′. Hence assume that |u|> K0 N0+ 1 and (8) holds for shorter words. Write
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u = avb with a, b ∈ Ã. If av /∈ L , we have u−→∗R′avb and ū = avb. Hence
u−→∗R′ ū follows from avb−→∗R′avb. Hence we may assume that av ∈ L .

Suppose that u /∈ GeoA(G). By Lemma 5.1(i), there exists some w ∈ GeoA(G)
such that wπ = (avb)π and |av∧w| ≥ |av|−N0 ≥ K0 N0+1−N0 > 0. Hence we
may write w= aw′ and we get (vb)π = (a−1w)π =w′π . Since |w′|< |vb| due to
u /∈ GeoA(G), we get |vb|< |vb|, and so we may apply the induction hypothesis
twice to get

u = avb−→∗R′avb−→∗R′avb = ū.

Thus we may assume that u∈GeoA(G). We claim that ū[1]=a. Let p=K0 N0+1<
|u|. Since u, ū ∈ GeoA(G) and uπ = ūπ , the fellow traveler property yields
d1(u[p]π, ū[p]π)≤ K0, and so u[p]π = (ū[p]x)π for some x of length ≤ K0. Thus,
by Lemma 5.1(i), there exists some w ∈GeoA(G) such that wπ = (ū[p]x)π = u[p]π
and

|ū[p] ∧w| ≥ |ū[p]| − N0|x | ≥ p− K0 N0 = 1.

Hence ū[1] = w[1]. Now av ∈ L by assumption; hence u[p] ∈ L , and so u[p] = u[p].
Since wπ = u[p]π and w ∈GeoA(G), we get a = u[1] ≤w[1] = ū[1] in ( Ã,≤). On
the other hand, ū ≤sl u yields ū[1] ≤ a in ( Ã,≤), and so ū[1] = a as claimed.

Now it follows easily that ū = aa−1u = avb and the induction hypothesis yields
vb−→∗R′vb and therefore u = avb−→∗R′avb = ū. Therefore (8) holds.

Assume now that u−→∗R′v and u−→∗R′w. By (8), we get v−→∗R′ v̄ = ū and
w−→∗R′w̄ = ū. Hence R′ is confluent.

(ii) It follows from (8) that Irr R′ ⊆ L . The converse inclusion follows from the
implication

u−→R′v⇒ u >sl v,

which follows in turn from (7). �

We now establish some technical results which are useful in later sections.

Lemma 5.3. Let u, v ∈ L and letw ∈ Ã∗ be such that vw ∈GeoA(G) and (vw)π =
uπ . Then |u ∧ v| ≥ |v| − K0 N0.

Proof. Let k= |v| and write u= u[k]u′. Since v= (vw)[k], it follows from the fellow
traveler property that d1(vπ, u[k]π)≤ K0. Hence we may write vπ = (u[k]z)π with
|z| ≤ K0. Since u[k] is itself a geodesic, it follows from Lemma 5.1(i) that there
exists a geodesic u[p]z′ satisfying (u[p]z′)π = (u[k]z)π = vπ and

p = |u[k] ∧ u[p]z′| ≥ |u[k]| − N0|z| ≥ |v| − K0 N0.

Now v ∈ L yields v ≤sl u[p]z′, and so v[p] ≤sl u[p]. On the other hand, u ∈ L yields
u≤sl vw, and so u[p]≤sl v

[p]. Thus u[p]= v[p], and so |u∧v| ≥ p≥ |v|−K0 N0. �

Proposition 5.4. (i) Let uv ∈ L and let w ∈ Ã∗ be such that |v| ≥ K0 N0+N0|w|.
Then uvw = uvw.
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(ii) Let u ∈ Ã∗ and let vw, vw′ ∈ L. Then |uvw∧ uvw′| ≥ |v| − K0 N0− N0|u|.

Proof. (i) Write v = v1v2 with |v2| = N0|w|. By Lemma 5.1(i), there exists some
uv1z ∈ GeoA(G) such that (uv1z)π = (uvw)π . Let x = uvw. By Lemma 5.3,
we get |x ∧ uv1| ≥ |uv1| − K0 N0. Since |v1| = |v| − |v2| ≥ K0 N0, u ≤ x and we
may write x = uy for some y. Since L is factorial, we have y ∈ L . In view of
yπ = (u−1x)π = (vw)π , we get y = vw and so uvw = uvw.

(ii) We may assume that |v| > K0 N0+ N0|u|. Write v = v1v2 with |v1| = N0|u|.
Let x = uv1 and write p = |x | + |v2|. By the proof of Lemma 5.1, we have
xv2w, xv2w

′
∈ GeoA(G).

Let y = uvw. Since (xv2w)π = yπ , it follows from the fellow traveler property
that d1((xv2)π, y[p]π)≤ K0. Hence we may write (xv2)π = (y[p]s)π with |s|≤ K0.
Since y[p] is itself a geodesic, it follows from Lemma 5.1(i) that there exists a
geodesic y[p−K0 N0]s ′ satisfying (y[p−K0 N0]s ′)π = (y[p]s)π = (xv2)π . To complete
the proof, it suffices to show that

(9) |y ∧ xv2| ≥ p− K0 N0.

Indeed, together with the corresponding inequality for y′ = uvw′, this implies

|uvw∧ uvw′| ≥ p− K0 N0 ≥ |v2| − K0 N0 = |v| − K0 N0− N0|u|

and we obtain the desired inequality.
To prove (9), we consider the geodesic y[p−K0 N0]s ′. Since (y[p−K0 N0]s ′)π =

(xv2)π , we get xv2 ≤sl y[p−K0 N0]s ′, and so xv2
[p−K0 N0] ≤sl y[p−K0 N0]. On the

other hand, xv2w is also a geodesic. Hence y = uvw = xv2w ≤sl xv2w yields
y[p−K0 N0] ≤sl xv2

[p−K0 N0]. Therefore y[p−K0 N0] = xv2
[p−K0 N0], so (9) holds. �

6. A new model for the boundary

We can now present a new model for the boundary of a finitely generated virtually
free group which proves useful in studying infinite fixed points. The notion of
boundary is indeed one of the important features associated to hyperbolic groups. To
present it, we define a second distance in G by means of the Gromov product (taking
1 as basepoint). We keep all the notation introduced in Section 5. In particular, G
is a finitely generated virtually free group and L = Irr R′.

Given g, h ∈ G, we define

(g|h)= 1
2(d1(1, g)+ d1(1, h)− d1(g, h)).

Fix ε > 0 such that εδ ≤ 1/5, where δ is the hyperbolicity constant from Section 5.
Write z = eε and define

ρ(g, h)=
{

z−(g|h) if g 6= h,
0 otherwise
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for all g, h ∈ G. In general, ρ is not a distance because it fails the triangular
inequality. This problem is overcome by defining

d2(g, h)= inf{ρ(g0, g1)+ · · ·+ρ(gn−1, gn) : g0 = g, gn = h; g1, . . . , gn−1 ∈ G}.

By [Väisälä 2005, Proposition 5.16] (see also [Ghys and de la Harpe 1990, Propo-
sition 7.10]), d2 is a distance on G and the inequalities

(10) 1
2ρ(g, h)≤ d2(g, h)≤ ρ(g, h)

hold for all g, h ∈ G.
In general, the metric space (G, d2) is not complete. Its completion (Ĝ, d̂2) is

essentially unique, and ∂G = Ĝ \G is the boundary of G. The elements of the
boundary admit several standard descriptions, such as equivalence classes of rays
(infinite words whose finite factors are geodesics) where two rays are equivalent
if the Hausdorff distance between them is finite [Ghys and de la Harpe 1990,
Section 7.1]. We won’t need precise definitions for these concepts or d̂2 since, as
we shall see next, we can get a simpler description of Ĝ for virtually free groups.

Lemma 6.1. There exists some M0 > 0 such that, for all g, h ∈ G,

(i) |ḡ| ≤ |ḡ∧ gh| + K0 N0+ N0|h|,

(ii) d1(g, h)≥
|ḡ| − |ḡ∧ h|

N0
− K0,

(iii) |ḡ∧ h| ≤ (g|h)≤ |ḡ∧ h| +M0.

Proof. (i) By applying Lemma 5.1 to the product ḡh, there exists some factorization
ḡ = vz and some geodesic vw ∈ (gh)π−1 such that |v| ≥ |ḡ| − N0|h|. Now we
apply Lemma 5.3 to u = gh and vw to get |u ∧ v| ≥ |v| − K0 N0. Hence

|ḡ∧ gh| = |u ∧ v| ≥ |v| − K0 N0 ≥ |ḡ| − N0|h| − K0 N0.

(ii) Let u = ḡ∧ h. Applying (i) to g and g−1h, and in view of d1(g, h)= |g−1h|,
we get

|ḡ| ≤ |ḡ∧ h| + K0 N0+ N0d1(g, h).

(iii) We define M0=δ+(2δ+1+K0)N0−1/2, assuming that 0A(G) is δ-hyperbolic.
Let u = ḡ∧ h, and write ḡ = uv, h = uw. It is easy to check that

(g|h)= 1
2(d1(1,g)+d1(1,h)−d1(g,h))=1

2(|u|+d1(uπ,g)+|u|+d1(uπ,h)−d1(g,h)).

Since d1(g, h)≤ d1(g, uπ)+ d1(uπ, h), we get |ḡ∧ h| = |u| ≤ (g|h).
Consider now the geodesic triangle determined by the paths

P1 : uπ
v
−→g, P2 : uπ

w
−→h, P3 : g

g−1h
−−−→h.
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Since 0A(G) is δ-hyperbolic,

(11) d1(q, V (P1)∪ V (P2)) < δ for every q ∈ V (P3).

Assume that P3 : g = q0
a1
−→· · ·

an
−→qn = h with ai ∈ Ã. Since

d1(q0, V (P1))= 0< δ and d1(qn, V (P2))= 0< δ,

it follows from (11) that there exist some j ∈ {0, . . . , n − 1} and p1 ∈ V (P1),
p2 ∈ V (P2) such that d1(q j , p1), d1(q j+1, p2)≤ δ. Since P1 and P2 are geodesics,
we get

(g|h)= 1
2(d1(1, g)+ d1(1, h)− d1(g, h))

=
1
2(|u| + d1(uπ, p1)+ d1(p1, g)

+ |u| + d1(uπ, p2)+ d1(p2, h)− d1(g, q j )− 1− d1(q j+1, h))

= |ḡ∧ h| + 1
2(d1(uπ, p1)+ d1(uπ, p2))

+
1
2(d1(p1, g)− d1(g, q j ))+

1
2(d1(p2, h)− d1(q j+1, h))− 1

2 .

Since d1(p1, g)≤ d1(p1, q j )+ d1(q j , g)≤ δ+ d1(q j , g), we have

1
2(d1(p1, g)− d1(g, q j ))≤

δ

2
.

Similarly,
1
2(d1(p2, h)− d1(q j+1, h))≤ δ

2
.

Out of symmetry, it suffices to show that d1(uπ, p1)≤ (2δ+ 1+ K0)N0.
Applying (ii) to p1 and p2, we get

d1(p1, p2)≥
|p1| − |p1 ∧ p2|

N0
− K0.

Since p1 (respectively p2) is a prefix of ḡ (respectively h), it follows easily that
p1 ∧ p2 = u and |p1| − |p1 ∧ p2| = d1(uπ, p1). Hence

d1(uπ, p1)

≤ (d1(p1, p2)+ K0)N0 ≤ (d1(p1, q j )+ d1(q j , q j+1)+ d1(q j+1, p2)+ K0)N0

≤ (2δ+ 1+ K0)N0. �

The language L introduced in (6) was noted to be rational. We recall that an
automaton is said to be trim if every vertex occurs in some successful path. Let
A= (Q, q0, T, E) be a finite trim deterministic Ã-automaton recognizing L (for
example, the minimal automaton of L; see [Berstel 1979]). Since L is factorial, we
must have T = Q. Let

∂L = {α ∈ Ãω : α[n] ∈ L for every n ∈ N}.
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Equivalently, since A is trim and deterministic and T = Q, we have ∂L = Lω(A).
Write L̂ = L ∪ ∂L . We define a mapping d3 : L̂ × L̂→ R+0 by

d3(α, β)=

{
2−|α∧β| if α 6= β,
0 otherwise.

It is immediate that d3 is a distance in L̂ . Indeed, an ultrametric distance since

|α∧ γ | ≥min{|α∧β|, |β ∧ γ |}

holds for all α, β, γ ∈ L̂ . We commit a slight abuse of notation by also denoting by
d3 the restriction of d3 to L × L .

Proposition 6.2. (i) The mutually inverse mappings (G, d2)→ (L , d3) : g 7→ ḡ
and (L , d3)→ (G, d2) : u 7→ uπ are uniformly continuous;

(ii) (L̂, d3) is the completion of (L , d3);

(iii) (∂L , d3) is homeomorphic to the boundary of G.

Proof. (i) In view of (10), it suffices to show that

∀M > 0 ∃N > 0 : ((g|h) > N ⇒ |ḡ∧ h|> M),

∀M > 0 ∃N > 0 : (|ḡ∧ h|> N ⇒ (g|h) > M).

Now we apply Lemma 6.1(iii).

(ii) Let (αn)n be a Cauchy sequence in (L̂, d3). For every k ∈ N, the sequence
(α[k]n )n stabilizes when n→+∞. Moreover, limn→+∞ α

[k]
n is a prefix of

lim
n→+∞

α[k+1]
n .

Let β ∈ A∞ be the unique word satisfying β[k] = limn→+∞ α
[k]
n for every k ∈N. It

is immediate that β ∈ L̂ and β = limn→+∞ αn . Hence (L̂, d3) is complete. Since
α = limn→+∞ α

[n] for every α ∈ ∂L , (L̂, d3) is the completion of (L , d3).

(iii) By (i) and (ii), the uniformly continuous mappings (G, d2)→ (L , d3) : g 7→ ḡ
and (L , d3)→ (G, d2) : u 7→ uπ admit (unique) continuous extensions to their
completions (see [Dugundji 1966, Section XIV.6]), say

8 : Ĝ→ L̂, 9 : L̂→ Ĝ.

Hence89 is a continuous extension of the identity on G to its completion Ĝ. Since
such an extension is unique, 89 must be the identity mapping on Ĝ. Similarly,
98 must be the identity mapping on L̂ , and so 8 and 9 are mutually inverse
homeomorphisms. Therefore the restriction 8|∂G : ∂G → ∂L must also be a
homeomorphism. �
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We have just proved that our construction of L̂ constitutes a model for the
hyperbolic completion of G. But we must also import to L̂ the algebraic operations
of Ĝ since we shall be considering homomorphisms soon. Clearly, the binary
operation on L is defined as

L × L→ L : (u, v) 7→ uv,

so that (G, d2) → (L , d3) : g 7→ ḡ is also a group isomorphism. But there is
another important algebraic operation involved. Indeed, for every g ∈ G, the left
translation τg : G→ G : x 7→ gx is uniformly continuous for d2 and so admits a
continuous extension τ̂g : Ĝ→ Ĝ. It follows that the left action of G in its boundary,
G× ∂G→ ∂G : (g, α) 7→ ατ̂g, is continuous. We can also replicate this operation
in L̂ as follows.

Proposition 6.3. Let u ∈ L. Then τu : L→ L : v 7→ uv is uniformly continuous.

Proof. It suffices to show that

∀M > 0 ∃N > 0 : (|v∧w|> N ⇒ |uv∧ uv|> M).

By Proposition 5.4(ii), we can take N = M + K0 N0+ N0|u|. �

Therefore τu admits a continuous extension τ̂u : L̂ → L̂ and the left action
L × ∂L→ ∂L : (u, α) 7→ ατ̂u is continuous. Write uα = ατ̂u . For every α ∈ ∂L ,
we have

uα = u lim
n→+∞

α[n] = lim
n→+∞

uα[n].

Hence (L̂, d3) serves as a model for (Ĝ, d̂2) both topologically and algebraically.
From now on, we pursue our work within (L̂, d3).

7. Uniformly continuous endomorphisms

We keep all the notation introduced in Section 5. In particular, G is a finitely
generated virtually free group and L = Irr R′. Following the program announced
above, we work within (L̂, d3).

Given an endomorphism ϕ of G, we denote by ϕ̄ the corresponding endomor-
phism of L for the binary operation induced by the product in G, that is, uϕ̄= (uπ)ϕ.
To simplify notation, we often write uϕ instead of uπϕ for u ∈ Ã∗.

We say that ϕ satisfies the bounded cancellation property if

{|uϕ̄| − |uϕ̄ ∧ (uv)ϕ̄| : uv ∈ L}

is bounded. In that case, we denote its maximum by Bϕ . This property was
considered originally for free group automorphisms by Cooper [1987].

We also fix the notation Dϕ =max{|aϕ| : a ∈ Ã} and recall that a homomorphism
with finite kernel is called virtually injective.
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Theorem 7.1. Let ϕ be a virtually injective endomorphism ϕ of G. Then ϕ satisfies
the bounded cancellation property.

Proof. Suppose that ϕ does not satisfy the bounded cancellation property. Then

∀m ∈ N ∃umvm ∈ L : |um ϕ̄| − |um ϕ̄ ∧ (umvm)ϕ̄|> m.

Let X0 = (K0+ Dϕ)N0. We claim that

(12) ∀m ∈ N ∃u′mv
′

m ∈ L : (|u′m ϕ̄| − |(u
′

mv
′

m)ϕ̄|> m

and |(u′mv
′

m)ϕ̄| − |u
′

m ϕ̄ ∧ (u
′

mv
′

m)ϕ̄| ≤ X0).

Indeed, let m ∈ N. Take n = m + X0 and write vn = a1 · · · ak (ai ∈ Ã). For
i = 0, . . . , k, let wi = (una1 · · · ai )ϕ̄. Let j denote the smallest i such that

|unϕ̄ ∧wi | ≤ |unϕ̄ ∧ (unvn)ϕ̄|.

Take u′m = un and v′m = a1 · · · a j−1 (since j > 0). Since L is factorial, we have
u′mv

′
m ∈ L .

Now, by the minimality of j , we get

|unϕ̄ ∧w j−1|> |unϕ̄ ∧ (unvn)ϕ̄|.

Since |unϕ̄ ∧w j | ≤ |unϕ̄ ∧ (unvn)ϕ̄|, it follows that

|w j−1 ∧w j | ≤ |unϕ̄ ∧ (unvn)ϕ̄|.

Applying Lemma 6.1(i) to w j−1π and a jϕ, we get

|w j−1| ≤ |w j−1 ∧w j | + K0 N0+ N0|a jϕ| ≤ |w j−1 ∧w j | + X0

≤ |unϕ̄ ∧ (unvn)ϕ̄| + X0 < |unϕ̄| − n+ X0 = |unϕ̄| −m,

and so |u′m ϕ̄| − |(u
′
mv
′
m)ϕ̄| = |unϕ̄| − |w j−1|> m.

Suppose that |w j−1| − |unϕ̄ ∧ w j−1| > X0. Since we have seen above that
|w j−1| ≤ |w j−1 ∧w j | + X0, we get |unϕ̄ ∧w j−1|< |w j−1 ∧w j |, in contradiction
with |w j−1 ∧w j | ≤ |unϕ̄ ∧ (unvn)ϕ̄|< |unϕ̄ ∧w j−1|. Thus

|(u′mv
′

m)ϕ̄| − |u
′

m ϕ̄ ∧ (u
′

mv
′

m)ϕ̄| = |w j−1| − |unϕ̄ ∧w j−1| ≤ X0,

and so (12) holds.
We prove that

(13) ∀m ∈ N ∃u′′mv
′′

m ∈ L : |u′′m ϕ̄|> m and |(u′′mv
′′

m)ϕ̄| ≤ X0+ N0 Dϕ.
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Indeed, let m ∈ N. We have in 0A(G) geodesics

1
p // g

q //

r

''

u′mϕ

(u′mv
′
m)ϕ,

where pq = u′m ϕ̄, pr = (u′mv
′
m)ϕ̄, and p = u′m ϕ̄ ∧ (u

′
mv
′
m)ϕ̄. Assume that u′m =

a1 · · · ak (ai ∈ Ã). Let

I = {i ∈ {0, . . . , k} : there exists a geodesic (a1 · · · ai )ϕ−→g
q
−→u′mϕ in 0A(G)}.

Clearly, 0 ∈ I . We claim that

(14)
(
i − 1 ∈ I and d1((a1 · · · ai−1)ϕ, g) > N0 Dϕ

)
⇒ i ∈ I

holds for i = 1, . . . , k. Indeed, assume i−1∈ I and (a1 · · · ai−1)ϕ
y
−→g

q
−→u′mϕ is

a geodesic with y ∈ L . Applying Lemma 5.1(ii) to the word a−1
i ϕ̄ and the geodesic

u = yq, it follows that there exists some geodesic (a1 · · · ai )ϕ
z
−→u′mϕ such that

z and u share a suffix of length ≥ |yq| − N0|a−1
i ϕ̄| ≥ |yq| − N0 Dϕ > |q|. Since

0A(G) is deterministic, our geodesic (a1 · · · ai )ϕ
z
−→u′mϕ factors through g, and

so (14) holds.
Since k /∈ I due to |q|> 0, it follows from (14) that d1((a1 · · · ai )ϕ, g)≤ N0 Dϕ

for some i ∈{1, . . . , k}. Let j denote the smallest such i . We define u′′m=a j+1 · · · ak

and v′′m = v
′
m . Since L is factorial and u′mv

′
m ∈ L , we also have u′′mv

′′
m ∈ L .

By minimality of j , we have d1((a1 · · · ai )ϕ, g)> N0 Dϕ for i = 0, . . . , j−1. By
(14), we get 1, . . . , j ∈ I and so there exists a geodesic (a1 · · · a j )ϕ−→g

q
−→u′mϕ

in 0A(G). Hence

|u′′m ϕ̄| = d1(1, u′′mϕ)= d1((a1 · · · a j )ϕ, u′mϕ)≥ |q| ≥ |u
′

m ϕ̄| − |(u
′

mv
′

m)ϕ̄|> m.

Finally,

|(u′′mv
′′

m)ϕ̄| = d1(1, (u′′mv
′′

m)ϕ)= d1((a1 · · · a j )ϕ, (u′mv
′

m)ϕ)

≤ d1((a1 · · · a j )ϕ, g)+ d1(g, (u′mv
′

m)ϕ)≤ N0 Dϕ + |r |

= N0 Dϕ + |(u′mv
′

m)ϕ̄| − |u
′

m ϕ̄ ∧ (u
′

mv
′

m)ϕ̄| ≤ N0 Dϕ + X0

and so (13) holds.
Now, since |(u′′mv

′′
m)ϕ̄| is bounded, u′′mv

′′
m ∈ L , and Kerϕ is finite, |u′′mv

′′
m | must

be bounded and so must be |u′′m |. This implies that |u′′m ϕ̄| must be bounded, contra-
dicting |u′′m ϕ̄|> m. Thus ϕ satisfies the bounded cancellation property. �

Proposition 7.2. The following conditions are equivalent for a nontrivial endomor-
phism ϕ of G:
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(i) ϕ is uniformly continuous for d2;

(ii) ϕ is virtually injective.

Proof. (i)⇒ (ii). Suppose that Kerϕ is infinite. In view of (10), it suffices to show
that there exists some η > 0 such that

∀ξ > 0 ∃g, h ∈ G : (ρ(g, h) < ξ and ρ(gϕ, hϕ)≥ η).

By (10), we only need to show that there exists some M ∈ N such that

∀N ∈ N ∃g, h ∈ G :
(
(g|h) > N and gϕ 6= hϕ and ((gϕ)|(hϕ))≤ M

)
.

Take M = (g0ϕ|1)= 0 and fix g0 ∈ G \Kerϕ. We prove the claim by showing that

(15) ∀N ∈ N ∃h ∈ Kerϕ : ((hg0)|h) > N .

Let N ∈N. By Lemma 6.1(iii), we have |hg0∧h|≤ ((hg0)|h) for every h ∈G; hence
we only need to find out h ∈ Kerϕ satisfying |hg0 ∧ h|> N . By Lemma 6.1(i), we
have |hg0∧h|≥ |h|−K0 N0−N0|g0|. Hence it suffices that |h|> N+K0 N0+N0|g0|

for some h ∈ Kerϕ, and that is ensured by Kerϕ being infinite. Thus (15) holds as
required.

(ii)⇒ (i). Suppose that ϕ is not uniformly continuous for d2. In view of (10),
there exists some η > 0 such that

∀ξ > 0 ∃g, h ∈ G : (ρ(g, h) < ξ and ρ(gϕ, hϕ)≥ η).

Hence, by (10), there exists some M ∈ N such that

∀N ∈ N ∃g, h ∈ G :
(
(g|h) > N and gϕ 6= hϕ and ((gϕ)|(hϕ))≤ M

)
.

In view of Lemma 6.1(iii), we have that

∀n ∈ N ∃un, vn ∈ L : (|un ∧ vn|> n and unϕ̄ 6= vnϕ̄ and |unϕ̄ ∧ vnϕ̄| ≤ M).

Let wn = un ∧ vn ∈ L . Then either wnϕ̄ 6= unϕ̄ or wnϕ̄ 6= vnϕ̄. Without loss of
generality, we may assume that wnϕ̄ 6= unϕ̄. Suppose that |wnϕ̄| > M + Bϕ . By
definition of Bϕ , we get |wnϕ̄| − |wnϕ̄ ∧ unϕ̄| ≤ Bϕ , and so |wnϕ̄ ∧ unϕ̄| > M .
Similarly, |wnϕ̄ ∧ vnϕ̄|> M , and so |unϕ̄ ∧ vnϕ̄|> M , a contradiction. Therefore
|wnϕ̄| ≤ M + Bϕ for every n. Since |wn| > n and L is a cross-section for π , it
follows that Kerϕ is infinite. �

Given a uniformly continuous endomorphism ϕ of (G, d2), ϕ̄ : L → L is uni-
formly continuous for d3. Since L̂ is the completion of (L , d3), ϕ̄ admits a unique
continuous extension 8 : L̂→ L̂ . By continuity, we have

(16) α8= ( lim
n→+∞

α[n])8= lim
n→+∞

α[n]ϕ̄.
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Corollary 7.3. Let ϕ be a uniformly continuous endomorphism of G and uα ∈ ∂L.
Then |uϕ̄| − |uϕ̄ ∧ (uα)8| ≤ Bϕ .

Proof. We have (uα)8 = limn→+∞(uα[n])ϕ̄ by (16). In view of Proposition 7.2,
we have limn→+∞ |(uα[n])ϕ̄| = +∞. Hence |uϕ̄ ∧ (uα)8| = |uϕ̄ ∧ (uα[m])ϕ̄| for
sufficiently large m. Since uα[m] ∈ L , the claim follows by definition of Bϕ . �

8. Infinite fixed points

Keeping all the notation and assumptions introduced in the preceding sections, we
fix now a uniformly continuous endomorphism ϕ of the finitely generated virtually
free group G. We adapt notation introduced in [Ladra and Silva 2011] for free
groups, and the proofs are adaptations of proofs in [Silva 2010].

Given u ∈ L , let uσ = u ∧ uϕ̄ and write

u = (uσ)(uτ), uϕ̄ = (uσ)(uρ).

Also define
uσ ′ =

∧
{(uv)σ : uv ∈ L}

and write uσ = (uσ ′)(uσ ′′).

Lemma 8.1. Let uv ∈ L. Then

(i) |uσ ′′| ≤ Bϕ ,

(ii) |uσ | − |uσ ∧ (uv)ϕ̄| ≤ |uσ ′′|,

(iii) (uv)ϕ̄ = (uσ ′)(uσ ′′)(uρ)(vϕ̄),

(iv) (uv)σ ′ = (uσ ′)
( ∧

uvz∈L
((uσ ′′)(uρ)((vz)ϕ̄)∧ (uσ ′′)(uτ)vz)

)
.

Proof. (i) We may assume that |uσ |> Bϕ . Let v denote the suffix of length Bϕ of
uσ and write uσ = u′v. Suppose that uw ∈ L . It suffices to show that u′ is a prefix
of (uw)ϕ̄, and this follows from

|u′v(uρ)| − |u′v(uτ)∧ (uw)ϕ̄| = |uϕ̄| − |uϕ̄ ∧ (uw)ϕ̄| ≤ Bϕ

and |v| = Bϕ .

(ii) uσ ′ is a prefix of uσ ∧ (uv)ϕ̄.

(iii) uσ ′ is a prefix of (uv)ϕ̄ and both sides of the equality are equivalent in G.

(iv) uσ ′ is a prefix of (uv)σ ′ by (iii). �

For every u ∈ L , we define

uξ = (uσ ′′, uτ, uρ, q0u).

Note that there exists precisely one path of the form q0
u
−→q0u in A.
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Lemma 8.2. Let u, v ∈ L be such that uξ = vξ and let a ∈ Ã, α ∈ Ã∞. Then

(i) ua ∈ L if and only if va ∈ L;

(ii) if ua ∈ L , (ua)ξ = (va)ξ ;

(iii) uv−1 ∈ Fix ϕ̄;

(iv) uα ∈ L̂ if and only if vα ∈ L̂;

(v) uα ∈ Fix8 if and only if vα ∈ Fix8;

(vi) if α ∈ L̂ , α = limn→+∞ α[n]u.

Proof. (i) uξ = vξ implies q0u = q0v.

(ii) Clearly, q0u=q0v yields q0ua=q0va. Considering v=a in Lemma 8.1(iii), we
may write (ua)σ = (uσ ′)u′ and deduce that u′, (ua)τ , and (ua)ρ are all determined
by uξ . Hence (ua)τ = (va)τ , (ua)ρ = (va)ρ, and u′ = v′.

Finally, since q0u = q0v, we have uaz ∈ L if and only if vaz ∈ L . It follows
from Lemma 8.1(iv) that there exists a word x ∈ L which satisfies both (ua)σ ′ =
(uσ ′)x and (va)σ ′ = (vσ ′)x . Now (uσ ′)u′ = (ua)σ = ((ua)σ ′)((ua)σ ′′) =
(uσ ′)x((ua)σ ′′). Hence u′ = x((ua)σ ′′). Similarly, v′ = x((va)σ ′′). Since u′ = v′,
we get (ua)σ ′′ = (va)σ ′′, and so (ua)ξ = (va)ξ .

(iii) (uv−1)ϕ = (uϕ)(vϕ)−1 = (uσ)(uρ)(vρ)−1(vσ )−1 = (uσ)(vσ )−1

= (uσ)(uτ)(vτ)−1(vσ )−1 = uv−1.

(iv) We have uα ∈ L̂ if and only if uα[n] ∈ L for every n ∈ N. Now we use (i) and
induction on n.

(v) We have uα = (uσ ′)(uσ ′′)(uτ)α and, in view of Corollary 7.3 and (16), also

(uα)8= (uσ ′) lim
n→+∞

(uσ ′′)(uρ)(α[n]ϕ̄).

Hence uα ∈ Fix8 depends just on uξ and α.

(vi) Let m = K0 N0+ N0|u|. By Lemma 6.1(i), we have |α[n] ∧α[n]u| ≥ n−m for
every n. Hence α = limn→+∞ α

[n−m]
= limn→+∞ α[n]u. �

Given X ⊆ A∞, write

Pref X = {u ∈ A∗ : uα ∈ X for some α ∈ A∞}.
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Recall the finite trim deterministic Ã-automaton A= (Q, q0, Q, E) recognizing L .
We build a (possibly infinite) Ã-automaton A′ϕ = (Q

′, q ′0, T ′, E ′) by taking

Q′ = {uξ : u ∈ Pref Fix8},

q ′0 = 1ξ,

T ′ = {uξ ∈ Q′ : uτ = uρ = 1},

E ′ = {(uξ, a, vξ) ∈ Q′× Ã× Q′ : v = ua ∈ Pref Fix8}.

We note that A′ϕ is deterministic by Lemma 8.2(ii) and is also accessible: if
u ∈ Pref Fix8, there exists a path q ′0

u
−→uξ , and so every vertex can be reached

from the initial vertex.
Let S denote the set of all vertices q ∈ Q′ such that there exist at least two edges

in B′ϕ leaving q . Let Q′′ denote the set of all vertices q ∈ Q′ such that there exists
some path q−→p ∈ S ∪ T ′. We define A′′ϕ = (Q

′′, q ′′0 , T ′′, E ′′) by taking q ′′0 = q ′0,
T ′′ = T ′, and E ′′ = E ′ ∩ (Q′′× Ã× Q′′).

Lemma 8.3. S is finite.

Proof. In view of Lemma 8.1, the unique components of uξ that may assume
infinitely many values are uτ and uρ. Moreover, we claim that

(17) uτ 6= 1⇒ |uρ| ≤ Bϕ

holds for every u ∈ Pref Fix8. Indeed, suppose that uτ 6= 1 and |uρ| > Bϕ .
Write α = uβ for some α ∈ Fix8. In view of Corollary 7.3, |uρ| > Bϕ yields
|(uβ)8∧uϕ̄|> |uσ | and now uτ 6= 1 yields ((uβ)8∧uβ)= (uϕ̄∧u)= uσ . Since
β 6= 1, this contradicts α ∈ Fix8. Therefore (17) holds.

It is also easy to see that

(18) |uρ|> Bϕ⇒ uξ /∈ S

for every u ∈ Pref Fix8. Indeed, if |uρ|> Bϕ and a is the first letter of uρ, then,
by definition of Bϕ , (uσ)a is a prefix of (uα)8 whenever uα ∈ Fix8. Therefore
any edge leaving uξ in A′ϕ must have label a, and so (18) holds.

In view of Proposition 7.2, we can define

W0 =max{|u| : u ∈ L , |uϕ̄| ≤ 2(Bϕ + Dϕ − 1)}.

Let Z0 = Bϕ + N0(K0+W0)Dϕ . To complete the proof, it suffices to prove that

(19) |uτ |> Z0⇒ uξ /∈ S

for every u ∈ Pref Fix8.
Suppose that |uτ |> Z0 and

(uξ, a, (ua)ξ), (uξ, b, (ub)ξ) ∈ E ′
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for some u ∈ Pref Fix8, where a, b ∈ Ã are distinct. We have (ua)ξ = vξ for some
v ∈ Pref Fix8. By Lemma 8.2(v), we get uaα ∈ Fix8 for some α ∈ L̂ . By (16),
we get uaα = limn→+∞(uaα[n])ϕ̄, and so |(uaα[n])ϕ̄| ≥ |u| for sufficiently large
n. Let

p =min{n ∈ N : |(uaα[n])ϕ̄| ≥ |u|}.

Note that p > 0 since |uτ | > Z0 and by (17). Since |(uaα[p−1])ϕ̄| < |u| by the
minimality of p, we get

(20) |(uaα[p])ϕ̄| ≤ |(uaα[p−1])ϕ̄| + Dϕ < |u| + Dϕ.

On the other hand,

(21) |u| − |(uaα[p])ϕ̄ ∧ u| ≤ Bϕ.

Otherwise, by definition of Bϕ , uaα and (uaα)8 would differ at position

|(uaα[p])ϕ̄ ∧ u| + 1.

Similarly, ubβ ∈ Fix8 for some β ∈ L̂ . Defining

q =min{n ∈ N : |(ubβ[n])ϕ̄| ≥ |u|},

we get

(22) |(ubβ[q])ϕ̄|< |u| + Dϕ

and

(23) |u| − |(ubβ[q])ϕ̄ ∧ u| ≤ Bϕ.

Write u=u1u2 with |u2|= Bϕ . Then by (20) and (21) we may write (uaα[p])ϕ̄=u1x
for some x such that |x |< Bϕ+Dϕ . Similarly, (22) and (23) yield (ubβ[q])ϕ̄ = u1 y
for some x such that |x | < Bϕ + Dϕ . Writing w = (β[q])−1b−1aα[p], it follows
that wϕ = (y−1x)π , and so |wϕ̄| ≤ 2(Bϕ + Dϕ − 1). Hence |w| ≤ W0. Applying
Lemma 6.1(i) to g = (ubβ[q])π and h = wπ , we get

|ubβ[q]| ≤ |ubβ[q] ∧ uaα[p]| + N0(K0+ |w|)≤ |u| + N0(K0+W0),

and so q < N0(K0+W0). Hence, in view of (17), we get

|uτ | = |u| − |uσ | ≤ |(ubβ[q])ϕ̄| − |uσ | ≤ |uϕ̄| + |(bβ[q])ϕ̄| − |uσ |

≤ |uρ| + N0(K0+W0)Dϕ ≤ Bϕ + N0(K0+W0)Dϕ,

contradicting |uτ |> Z0. Thus (19) holds and the lemma is proved. �
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We say that an infinite fixed point α ∈ Fix8∩ ∂L is singular if α belongs to
the topological closure (Fixϕ)c of Fixϕ. Otherwise, α is said to be regular. We
denote by Sing8 (respectively Reg8) the set of all singular (respectively regular)
infinite fixed points of 8.

Theorem 8.4. Let ϕ be a uniformly continuous endomorphism of a finitely gener-
ated virtually free group G. Then

(i) the automaton A′′ϕ is finite;

(ii) L(A′′ϕ)= Fix ϕ̄;

(iii) Lω(A′′ϕ)= Sing8.

Proof. (i) The set T ′ is finite and S is finite by Lemma 8.3. On the other hand, by
definition of S, there are only finitely many paths in A′ϕ of the form ν j : p′−→q ′

with p′, q ′ ∈ S ∪ T ′ ∪ {q ′0} and no intermediate vertex in S ∪ T ′ ∪ {q ′0}. Now recall
that A′ϕ is accessible. Hence every path of the form q

u
−→p∈ S∪T ′ can be extended

to some path q ′0
v
−→q

u
−→p ∈ S ∪ T ′ which is itself a concatenation of the finitely

many paths ν j . Therefore Q′′ is finite and so is A′′ϕ .

(ii) Every u ∈ L labels at most a unique path q ′0= 1ξ
u
−→uξ out of the initial vertex

in A′ϕ . On the other hand, if q ′0 = 1ξ
u
−→q ′ is a path in A′ϕ , the fourth component

of ξ yields a path q0
u
−→q in A, and so u ∈ L . Hence

L(A′ϕ)= {u ∈ L : uξ ∈ T ′} = {u ∈ L : uτ = uρ = 1} = Fix ϕ̄.

Since L(A′′ϕ)= L(A′ϕ), (ii) holds.

(iii) Let α ∈ Lω(A′′ϕ). Then there exists some q ′′ ∈ Q′′ and some infinite sequence
(in)n such that q ′′0

α[in ]

−−−→q ′′ is a path in A′′ϕ for every n. Write u = α[i1] and let

vn = α[in]u−1. By Lemma 8.2(iii), we have vn ∈ Fix ϕ̄ for every n. It follows from
Lemma 8.2(vi) that α = limn→+∞ vn . Thus α ∈ Sing8.

Conversely, let α ∈ Sing8. Then we may write α = limn→+∞ vn for some
sequence (vn)n in Fix ϕ̄. Let k ∈ N. For large enough n, we have α[k] = v[k]n , and
so there is some path

q ′′0
α[k]

−−→q ′′k
w
−→t ′′k ∈ T ′′,

where α[k]w = vn . Thus α ∈ Lω(A′′ϕ) as required. �

Recall now the continuous extensions τ̂u : L̂→ L̂ of the uniformly continuous
mappings τu : L→ L : v 7→ uv defined for each u ∈ L (see Proposition 6.3). As
remarked before, this is equivalent to saying that the left action

L × ∂L→ ∂L : (u, α) 7→ uα

is continuous. Identifying L with G and ∂L with ∂G, we have a continuous action
(on the left) of G on ∂G. Clearly, this action restricts to a left action of Fixϕ on
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Fix8∩ ∂G: if g ∈ Fixϕ and α ∈ Fix8∩ ∂G with α = limn→+∞ gn (gn ∈ G),

(gα)8= (g lim
n→+∞

gn)8= ( lim
n→+∞

ggn)8= lim
n→+∞

(ggn)ϕ

= lim
n→+∞

(gϕ)(gnϕ)= (gϕ) lim
n→+∞

gnϕ = g( lim
n→+∞

gn)8

= g(α8)= gα.

Moreover, the (Fixϕ)-orbits of Sing8 and Reg8 are disjoint: if α ∈ Sing8, we
can write α = limn→+∞ gn with the gn ∈ Fixϕ and get gα = limn→+∞ ggn with
ggn ∈ Fixϕ for every n; hence α ∈ Sing8⇒ gα ∈ Sing8 and the action of g−1

yields the converse implication.
We can now prove the main result of this section.

Theorem 8.5. Let ϕ be a uniformly continuous endomorphism of a finitely gener-
ated virtually free group G. Then Reg8 has finitely many (Fixϕ)-orbits.

Proof. Let P be the set of all infinite paths s ′0
a1
−→s ′1

a2
−→· · · in A′ϕ such that

s ′0 ∈ S ∪ {q0}, s ′n /∈ S ∪ {q0} for every n > 0, s ′n 6= s ′m whenever n 6= m.

By Lemma 8.3, there are only finitely many choices for s ′0. Since A is finite and A′ϕ
is deterministic, there are only finitely many choices for s ′1, and from that vertex
onwards, the path is uniquely determined due to s ′n /∈ S (n ≥ 1). Hence P is finite,
and we may assume that it consists of paths p′i

αi
−→· · · for i = 1, . . . ,m. Fix a path

q ′0
ui
−→p′i for each i and let X ={u1α1, . . . , umαm}⊆ ∂L . We claim that X ⊆Reg8.
Let i ∈ {1, . . . ,m} and write β = uiαi . To show that β ∈ Fix8, it suffices to

show that limn→+∞ β
[n]ϕ̄ = β. Let k ∈ N. We must show that there exists some

r ∈ N such that

(24) n ≥ r ⇒ |β[n]ϕ̄ ∧β|> k.

In view of Proposition 7.2, there exists some r > k such that

n ≥ r ⇒ |β[n]ϕ̄|> k+ Bϕ.

Suppose that |β[n]ϕ̄ ∧ β| ≤ k for some n ≥ r . Then |β[n]σ | ≤ k. Since k < r ≤ n,
it follows that β[n]τ 6= 1. On the other hand, since |β[n]ϕ̄| > k + Bϕ , we get
|β[n]ρ|> Bϕ . In view of (17), this contradicts β[n]ξ ∈ Q′. Therefore (24) holds for
our choice of r and so X ⊆ Fix8. Since the path

q ′0
β
−→· · ·

can visit only finitely often a given vertex, β /∈ Lω(A′′ϕ), and so X ⊆ Reg8 by
Theorem 8.4(iii).
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By the previous comments on (Fixϕ)-orbits, the (Fixϕ)-orbits of the elements
of X must be contained in Reg8. We complete the proof of the theorem by proving
the opposite inclusion.

Let β ∈ Reg8. By Theorem 8.4(iii), we have β /∈ Lω(A′′ϕ), and so there exists a
factorization β = uα and a path

q ′0
u
−→p′

α
−→· · ·

in A′ϕ such that p′ signals the last occurrence of a vertex from S ∪ {q ′0}. We claim
that no vertex is repeated after p′. Otherwise, since no vertex of S appears after p′,
we would get a factorization of p′

α
−→· · · as

p′
v
−→q ′

w
−→q ′

w
−→· · ·

and by Lemma 8.2(iii) and (iv) we would get (uvwnv−1u−1)π ∈ Fixϕ and

β = lim
n→+∞

uvwnv−1u−1,

contradicting β ∈ Reg8. Thus no vertex is repeated after p′, and so we must
have p′ = p′i and α = αi for some i ∈ {1, . . . ,m}. It follows that β = uαi . By
Lemma 8.2(iii), we get

uu−1
i ∈ Fix ϕ̄,

and we are done. �

Theorem 8.5 is somehow a version for infinite fixed points of Theorem 4.1,
which we proved before for finite fixed points. Note however that Sing8 does not
in general have finitely many (Fixϕ)-orbits since Sing8 may be uncountable (take
for instance the identity automorphism on a free group of rank 2).

Since every finite set is closed in a metric space, we obtain the following corollary
from Theorem 8.5.

Corollary 8.6. Let ϕ be a uniformly continuous endomorphism of a finitely gener-
ated virtually free group G with Fixϕ finite. Then Fix8 is finite.

9. Classification of the infinite fixed points

We can now investigate the nature of the infinite fixed points of 8 when ϕ is an
automorphism. Since, by Proposition 7.2, both ϕ and ϕ−1 are then uniformly
continuous, they extend to continuous mappings 8 and 9 which turn out to
be mutually inverse in view of the uniqueness of continuous extensions to the
completion. Therefore 8 is a bijection. We say that α ∈ Reg8 is

• an attractor if ∃ε > 0 ∀β ∈ L̂ : (d3(α, β) < ε⇒ limn→+∞ β8
n
= α);

• a repeller if ∃ε > 0 ∀β ∈ L̂ : (d3(α, β) < ε⇒ limn→+∞ β8
−n
= α).
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The latter amounts to saying that α is an attractor for 8−1. There exist other types,
but they do not occur in our context as we shall see.

We say that an attractor α ∈ Reg8 is exponentially stable if

∃ε, k, ` > 0 ∀β ∈ L̂ ∀n ∈ N : (d3(α, β) < ε⇒ d3(α, β8
n)≤ k2−`nd3(α, β)).

This is equivalent to saying that

(25) ∃M, N , ` > 0 ∀β ∈ L̂ ∀n ∈ N :

(|α∧β|> M⇒ |α∧β8n
| + N > `n+ |α∧β|).

A repeller α ∈ Reg8 is exponentially stable if it is an exponentially stable
attractor for 8−1.

Theorem 9.1. Let ϕ be an automorphism of a finitely generated virtually free group
G. Then Reg8 contains only exponentially stable attractors and exponentially
stable repellers.

Proof. Let α ∈ Reg8 and write α = a1a2 · · · with ai ∈ Ã. Then there exists a path

1ξ
a1
−→α[1]ξ

a2
−→α[2]ξ

a3
−→· · ·

in A′ϕ . Let Y0 = Bϕ(Dϕ−1 + 1)+ Bϕ−1(Dϕ + 1) and let

V = {uξ ∈ Q′ : |uτ |> Y0 or |uρ|> Y0}.

It is easy to see that Q′ \ V is finite. We saw in the proof of Theorem 8.5 that there
are only finitely many repetitions of vertices in a path in A′ϕ labeled by a regular
fixed point. Hence there exists some n0 ∈ N such that

(26) α[n]ξ ∈ V for every n ≥ n0.

Now we consider two cases.

Case I: α[n0]τ = 1. We claim that

(27) α[n]τ = 1 for every n ≥ n0.

The case n = n0 holds in Case I, so assume that α[n]τ = 1 for some n ≥ n0. Then
α[n]ξ ∈ V , and so |α[n]ρ|> Y0 > 2Bϕ . Since |α[n+1]ϕ̄| ≥ |α[n]ϕ̄|− Bϕ by definition
of Bϕ ,

|α[n+1]ρ| ≥ |α[n+1]ϕ̄| − |α[n+1]
| ≥ |α[n]ϕ̄| − Bϕ − |α[n]| − 1= |α[n]ρ| − Bϕ − 1

> Y0− Bϕ − 1> Bϕ.

By (17), we get α[n+1]τ = 1, and so (27) holds.
Next we show that

(28) ((α[n]γ )8)[n+1]
= α[n+1]
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if n ≥ n0 and α[n]γ ∈ L̂ . Indeed, by (27) we have α[n]ϕ̄ = α[n](α[n]ρ) and |α[n]ρ|>
Y0 > Bϕ . By the definition of Bϕ and Corollary 7.3, we get ((α[n]γ )8)[n+1]

=

α[n](α[n]ρ)[1]. Considering the particular case γ = an+1, we also get

(α[n+1]ϕ̄)[n+1]
= α[n](α[n]ρ)[1] = ((α[n]γ )8)[n+1].

Since α[n+1]τ = 1 by (27), we have (α[n+1]ϕ̄)[n+1]
= α[n+1], and so (28) holds.

Hence we may write (α[n]γ )8 = α[n+1]γ ′ whenever α[n]γ ∈ L̂ . Iterating, it
follows that, for all k ≥ n0 and n ∈ N, α[k]γ ∈ L̂ implies (α[k]γ )8n

= α[k+n]γ ′ for
some γ ′. By considering β = α[k]γ and α[k] = α∧β, we deduce that

|α∧β| ≥ n0⇒ |α∧β8
n
| ≥ n+ |α∧β|

holds for all β ∈ L̂ and n ∈N. Therefore (25) holds, and so α is an exponentially
stable attractor in this case.

Now, if |α[t]τ | = 1 for some t > n0, we can always replace n0 by t and deduce
by Case I that α is an exponentially stable attractor. Thus we may assume the
following.

Case II: α[n]τ 6= 1 for every n≥ n0. By replacing n0 by a larger integer if necessary,
we may assume that (26) is also satisfied when we consider the equivalents of ξ
and V for ϕ−1.

Since ϕ is injective, there exists some n1 ≥ n0 such that

|α[n1]ϕ̄| ≥ n0+ Bϕ.

Since α[n1]τ 6= 1, it follows from (17) that |α[n1]ρ| ≤ Bϕ; hence α[n1]σ = α[n2] for
some n2 ≥ n0. Write x = α[n1]ρ. Then α[n1]ϕ̄ = α[n2]x yields

α[n1] = (α[n2]ϕ−1)(xϕ−1),

and so

n1 = |α
[n1]| ≤ |α[n2]ϕ−1| + |xϕ−1| ≤ |α[n2]ϕ−1| + BϕDϕ−1 .

On the other hand, |α[n1]ρ| ≤ Bϕ < Y0 and α[n1] ∈ V together yield Y0 < |α
[n1]τ | =

n1− n2, and so

n2+ Bϕ−1 < n1− Y0+ Bϕ−1 < n1− BϕDϕ−1 ≤ |α[n2]ϕ−1|.

In view of (17), we can apply Case I to ϕ−1. Hence α is an exponentially stable
attractor for ϕ−1 and, therefore, an exponentially stable repeller for ϕ. �

10. Example and open problems

We include a simple example which illustrates some of the constructions introduced
earlier.
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Example. Let G=Z×Z2 and let A={a, b, c}. We note that this is not the canonical
set of generators, which would not work. Then the matched homomorphism
π : Ã∗→ G defined by

aπ = (1, 0), bπ = (0, 1), cπ = (1, 1)

yields

GeoA(G)= (a ∪ c)∗ ∪ (a−1
∪ c−1)∗ ∪ {b, b−1

},

and we can take

R= {(xx−1, 1) : x ∈ Ã}∪{(aεbδ, cε), (bδaε, cε), (cεbδ, aε), (bδcε, aε) : δ, ε=±1}

∪ {(ac−1, b), (c−1a, b), (a−1c, b), (ca−1, b), (b2, 1), (b−2, 1)}

to get GeoA(G)= Irr R. Ordering Ã by a < c < a−1 < c−1 < b < b−1, we get

L = a∗(1∪ c)∪ (a−1)∗(1∪ c−1)∪ b,

recognized by the automaton A depicted by

q0//oo a //

b,c,c−1

))
a−1

��

q1

c
��

//

a

��

q2oo
c−1

//

a−1

VV
q3 // .

Hence ∂L = Lω(A)= {aω, (a−1)ω}.
Let ϕ be the endomorphism of G defined by (m, n)ϕ = (2m, n). Then ϕ is

injective and therefore uniformly continuous, admitting a continuous extension 8
to L̂ . Since Bϕ = 0, it is easy to check that A′ϕ is the automaton

bξ //

· · · a−2ξ
a−1
oo a−1ξ

a−1
oo 1ξ

a−1
oo

a
//

b

OO

!!

aa

aξ a
// a2ξ a

// · · ·

and

1ξ= (1, 1, 1, q0), bξ= (1, 1, 1, q3), anξ= (1, 1, an, q1), a−nξ= (1, 1, a−n, q2)

for n ≥ 1. Note that, in general, we ignore how to compute A′ϕ , our proofs being
far from constructive!

It is immediate that Fix8 = {1, b, aω, (a−1)ω}. Moreover, the regular infinite
fixed points aω and (a−1)ω are both exponentially stable attractors.
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Finally, we end the paper with some easily predictable open problems.

Problem 10.1. Is it possible to generalize Theorems 4.1, 8.5, and 9.1 to arbitrary
finitely generated hyperbolic groups?

Paulin proved [1989] that Theorem 4.1 holds for automorphisms of hyperbolic
groups.

Problem 10.2. Is Fixϕ effectively computable when ϕ is an endomorphism of a
finitely generated virtually free group?

For the moment, only the case of free group automorphisms is known; see
[Bogopolski and Maslakova 2012].

Another natural question to ask in this context is whether similar results hold for
equalizers. Given homomorphisms ϕ,ψ : G→ G ′, let

Eq(ϕ, ψ)= {x ∈ G : xϕ = xψ}.

Problem 10.3. Given homomorphisms ϕ,ψ :G→G ′ of finitely generated virtually
free groups with ϕ injective, is Eq(ϕ, ψ) finitely generated?

This question has been solved by Goldstein and Turner for free groups [1986].
The restriction to the case where at least one of the homomorphisms is injective
is required even in the free group case (see [Gersten 1987] and [Ventura 2002,
Section 3] for counterexamples).
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