THE SHARP LOWER BOUND FOR THE FIRST POSITIVE EIGENVALUE OF THE FOLLAND–STEIN OPERATOR ON A CLOSED PSEUDOHERMITIAN $(2n + 1)$-MANIFOLD

CHIN-TUNG WU
THE SHARP LOWER BOUND FOR THE FIRST POSITIVE EIGENVALUE OF THE FOLLAND–STEIN OPERATOR ON A CLOSED PSEUDOHERMITIAN \((2n+1)\)-MANIFOLD

CHIN-TUNG WU

In this paper, we obtain a sharp lower bound estimate for the first nonzero eigenvalue of the Folland–Stein operator \(L_c, |c| \leq n\), on a closed pseudohermitian \((2n+1)\)-manifold \(M\). This generalizes the first nonzero eigenvalue estimates of the sublaplacian and Kohn Laplacian.

1. Introduction

Let \((M, J, \theta)\) be a closed pseudohermitian \((2n+1)\)-manifold (see the next section for basic notions in pseudohermitian geometry). A. Greenleaf [1985], S.-Y. Li and H.-S. Luk [2004], and H.-L. Chiu [2006] proved the sharp lower bound of the first positive eigenvalue \(\lambda_1^0\) of the sublaplacian \(\Delta_b\) on a pseudohermitian \((2n+1)\)-manifold \(M\). More precisely, it was proved that

\[
\lambda_1^0 \geq \frac{nk}{n+1}
\]

if \(\text{Ric} - \frac{n+1}{2}\text{Tor}(Z, Z) \geq k\langle Z, Z \rangle\) for all \(Z \in T_{1,0}\), some positive constant \(k\), on a closed pseudohermitian \((2n+1)\)-manifold with the nonnegative CR Paneitz operator \(P_0\) if \(n = 1\) (also see [Chang and Wu 2010]).

Very recently, S. Chanillo, H.-L. Chiu and P. Yang [Chanillo et al. 2012] obtained the sharp lower bound of the first positive eigenvalue \(\lambda_1^n\) of the Kohn Laplacian \(\square_b\) on a pseudohermitian \((2n+1)\)-manifold \(M\) with \(n = 1, 2\). Later, S.-C. Chang and the author [Chang and Wu \geq 2013] proved the same result for \(n \geq 3\). They showed that

\[
\lambda_1^n \geq \frac{2nk}{n+1}
\]

if \(\text{Ric}(Z, Z) \geq k\langle Z, Z \rangle\) for all \(Z \in T_{1,0}\), some positive constant \(k\), on a closed pseudohermitian \((2n+1)\)-manifold \(M\) with nonnegative CR Paneitz operator \(P_0\) if \(n = 1\). Note that there is no assumption involving the pseudohermitian torsion.

Research supported in part by NSC.

MSC2010: primary 32V05, 32V20; secondary 53C56.

Keywords: Folland–Stein operator, sublaplacian, Kohn Laplacian, CR Paneitz operator, pseudohermitian manifold, pseudohermitian Ricci curvature, pseudohermitian torsion.
In this paper, we generalize the first nonzero eigenvalue estimates of the sublaplacian Δ_b and Kohn Laplacian \Box_b to the Folland–Stein operator \mathcal{L}_c. First we need some definitions.

Definition 1.1. Let (M, J, θ) be a closed pseudohermitian $(2n + 1)$-manifold. Define

$$P\varphi = \sum_{\alpha=1}^{n} (\varphi_{\overline{\alpha} \beta} + i n A_{\beta \alpha} \varphi^\alpha) \theta^\beta = (P_\beta \varphi) \theta^\beta,$$

which is an operator that characterizes CR-pluriharmonic functions ([Lee 1988] for $n = 1$ and [Graham and Lee 1988] for $n \geq 2$). Here $P_\beta \varphi = \sum_{\alpha=1}^{n} (\varphi_{\overline{\alpha} \beta} + i n A_{\beta \alpha} \varphi^\alpha)$ and $\overline{P} \varphi = (\overline{P}_\beta \varphi) \theta^\overline{\beta}$, the conjugate of P. Moreover, we define

$$P_0 \varphi = \delta_b(P \varphi),$$

which is the so-called CR Paneitz operator P_0. Here δ_b is the divergence operator that takes $(1, 0)$-forms to functions by $\delta_b(\sigma_{\alpha} \theta^\alpha) = \sigma_{\alpha}$ and $\overline{\delta}_b(\sigma_{\overline{\alpha}} \theta^\overline{\alpha}) = \sigma_{\overline{\alpha}}$. If we define $\partial_b \varphi = \varphi_{\alpha} \theta^\alpha$ and $\overline{\partial}_b \varphi = \varphi_{\overline{\alpha}} \theta^\overline{\alpha}$, then the formal adjoint of ∂_b on functions (with respect to the Levi form and the volume form $\theta \wedge (d\theta)^n$) is $\partial_b^* = -\delta_b$.

We observe that P_0 is a real and symmetric operator and

$$\int \langle P \varphi, \partial_b \varphi \rangle = -\int (P_0 \varphi) \overline{\varphi}.$$

Definition 1.2. We say that the Paneitz operator P_0 with respect to (J, θ) is nonnegative if, for all C^∞ smooth functions φ,

$$\int (P_0 \varphi) \overline{\varphi} \geq 0.$$

Remark 1.3. When (M, J, θ) is a closed pseudohermitian 3-manifold with vanishing pseudohermitian torsion, the corresponding CR Paneitz operator is nonnegative [Chang et al. 2007]. Unlike $n = 1$, let (M, J, θ) be a closed pseudohermitian $(2n + 1)$-manifold with $n \geq 2$. The corresponding CR Paneitz operator is always nonnegative as in (3-4).

Definition 1.4 [Graham and Lee 1988]. Let (M, J, θ) be a closed pseudohermitian $(2n + 1)$-manifold. We define the purely holomorphic second-order operator Q by

$$Q\varphi = 2i (A_{\alpha \beta} \varphi_{\alpha}^\beta) .$$

Note that $[T, \Delta_b] = 2 \text{Im } Q$ and

$$4P_0 = \Delta_b^2 + n^2 T^2 - 2n \text{Re } Q = (\Delta_b + inT)(\Delta_b - inT) - 2n Q = (\Delta_b - inT)(\Delta_b + inT) - 2n \overline{Q} .$$

(1-1)
Now we consider, for $c \in \mathbb{R}$, the self-adjoint operators

$$\mathcal{L}_c = \Delta_b + ic T,$$

with $|c| \leq n$. By a result in [Folland and Stein 1974], each \mathcal{L}_c with $|c| < n$, is a subelliptic operator of order $\frac{1}{2}$; hence \mathcal{L}_c has a discrete spectrum tending to $+\infty$.

In the following we can obtain a sharp lower bound for the first nonzero eigenvalue λ_1^c of the Folland–Stein operator \mathcal{L}_c, $c \in \mathbb{R}$ with $|c| \leq n$, on a closed pseudohermitian $(2n + 1)$-manifold.

Theorem 1.5. Let (M, J, θ) be a closed pseudohermitian $(2n + 1)$-manifold. Suppose that

\[
\begin{cases}
\text{Ric} - \frac{(n - c)(n + 1)}{2(n + c)} \text{Tor} (Z, Z) \geq k \langle Z, Z \rangle & \text{if } c \geq 0, \\
\text{Ric} - \frac{(n + c)(n + 1)}{2(n - c)} \text{Tor} (\bar{Z}, \bar{Z}) \geq k \langle Z, Z \rangle & \text{if } c < 0,
\end{cases}
\]

(1-2)

for a positive constant k and for all $Z \in T_{1,0}$. In addition we assume the Paneitz operator P_0 is nonnegative if $n = 1$. Then the first nonzero eigenvalue of \mathcal{L}_c, $|c| \leq n$, must satisfy

$$\lambda_1^c \geq \frac{n + |c|}{n + 1} k.$$

Note that the constant in the torsion tensor term in assumption (1-2) depends on the variable c. In the standard pseudohermitian $(2n + 1)$-sphere $(S^{2n+1}, \hat{J}, \hat{\theta})$ with the induced CR structure \hat{J} from \mathbb{C}^{n+1} and the standard contact form $\hat{\theta}$, we can show that the lower bound in Theorem 1.5 is sharp (see Section 4).

In particular, when (M, J, θ) is a closed pseudohermitian 3-manifold with vanishing pseudohermitian torsion, the corresponding CR Paneitz operator P_0 is nonnegative.

Corollary 1.6. Let (M, J, θ) be a closed pseudohermitian $(2n + 1)$-manifold with vanishing pseudohermitian torsion. Suppose that

\[
\begin{cases}
\text{Ric}(Z, Z) \geq k \langle Z, Z \rangle & \text{if } c \geq 0, \\
\text{Ric}(\bar{Z}, \bar{Z}) \geq k \langle Z, Z \rangle & \text{if } c < 0,
\end{cases}
\]

for a positive constant k and for all $Z \in T_{1,0}$. Then the first nonzero eigenvalue of \mathcal{L}_c, $|c| \leq n$, must satisfy

$$\lambda_1^c \geq \frac{n + |c|}{n + 1} k.$$
Moreover, when \(c = n \), the operator \(\mathcal{L}_n \) is just the Kohn Laplacian: \(\mathcal{L}_n = \Box_b \).

Corollary 1.7. Let \((M, J, \theta)\) be a closed pseudohermitian \((2n+1)\)-manifold. Suppose that

\[
\text{Ric}(Z, Z) \geq k\langle Z, Z \rangle
\]

for a positive constant \(k \) and for all \(Z \in T_{1,0} \). In addition we assume the Paneitz operator \(P_0 \) is nonnegative if \(n = 1 \). Then the first nonzero eigenvalue of the Kohn Laplacian \(\Box_b \) must satisfy

\[
\lambda_1^n \geq \frac{2nk}{n+1}.
\]

When \(c = 0 \), the operator \(\mathcal{L}_0 \) is just the sublaplacian \(\Delta_b \); i.e., \(\mathcal{L}_0 = \Delta_b \).

Corollary 1.8. Let \((M, J, \theta)\) be a closed pseudohermitian \((2n+1)\)-manifold. Suppose that

\[
\left[\text{Ric} - \frac{n+1}{2} \text{Tor} \right](Z, Z) \geq k\langle Z, Z \rangle
\]

for a positive constant \(k \) and for all \(Z \in T_{1,0} \). In addition we assume the Paneitz operator \(P_0 \) is nonnegative if \(n = 1 \). Then the first nonzero eigenvalue of the sublaplacian \(\Delta_b \) must satisfy

\[
\lambda_1^0 \geq \frac{nk}{n+1}.
\]

Further, we study the case when a sharp lower bound estimate of \(\mathcal{L}_c, |c| \leq n \), is achieved in Section 4.

Proposition 1.9. Under the same conditions as in Theorem 1.5, if we assume the first nonzero eigenvalue of \(\mathcal{L}_c, 0 < |c| \leq n \), satisfies

\[
\lambda_1^c = \frac{n + |c|}{n+1} k,
\]

(1-3)

\[
\int A^{\alpha\beta} \varphi_c \bar{\varphi}_c \beta = 0
\]

for a corresponding eigenfunction \(\varphi_c \) of \(\mathcal{L}_c \) with respect to \(\lambda_1^c \) and with \(\int \langle \varphi_c, \varphi_c \rangle = 1 \), then the eigenfunction \(\varphi_c \) will satisfy

\[
|\partial_b \varphi_c|^2 = \frac{n(n+c)}{2(n^2 + c^2)} \lambda_1^c
\]

(1-4)

\[
|\partial_b \varphi_c|^2 = \frac{n(n-c)}{2(n^2 + c^2)} \lambda_1^c;
\]

thus we also have

\[
\int \langle \Delta_b \varphi_c, \varphi_c \rangle = \frac{n^2}{n^2 + c^2} \lambda_1^c \quad \text{and} \quad \int i \langle T \varphi_c, \varphi_c \rangle = \frac{c}{n^2 + c^2} \lambda_1^c.
\]
Letting $c \to 0^+$, we see that $\int |\bar{\partial}_b \varphi_c|^2 = \int |\partial_b \varphi_c|^2 = \frac{1}{2} \lambda_1^0$ and $\int i \langle T \varphi_c, \varphi_c \rangle = 0$ for $c = 0$. When $c = n$, from (1-4), we get that $\partial_b \varphi_n = 0$ and thus $\Box_b \varphi_n = 0$. This implies that the corresponding eigenfunction φ_n of $\mathcal{L}_n = \Box_b$ with respect to λ_n^1 will also satisfy
\[
\Delta_b \varphi_n = \frac{n k}{n + 1} \varphi_n.
\]
This yields that φ_n achieves a sharp lower bound for the first nonzero eigenvalue of the sublaplacian Δ_b. Furthermore, it can be showed the pseudohermitian torsion $A_{\alpha \beta}$ of M is zero; thus (M, J, θ) is the standard pseudohermitian $(2n + 1)$-sphere $(S^{2n+1}, \hat{J}, \hat{\theta})$ (see [Chang and Wu 2013] for details).

2. Basic materials

Let us give a brief introduction to pseudohermitian geometry (see [Lee 1988] for more details). Let (M, ξ) be a $(2n + 1)$-dimensional, orientable, contact manifold with contact structure ξ, $\dim_R \xi = 2n$. A CR structure compatible with ξ is an endomorphism $J : \xi \to \xi$ such that $J^2 = -1$. We also assume that J satisfies the following integrability condition: if X and Y are in ξ, then so is $[JX, Y] + [X, JY]$, and $J((JX, Y) + [X, JY]) = [JX, JY] - [X, Y]$. A CR structure J can extend to $\mathbb{C} \otimes \xi$ and decomposes $\mathbb{C} \otimes \xi$ into the direct sum of $T_{1,0}$ and $T_{0,1}$, which are eigenspaces of J with respect to i and $-i$, respectively. A pseudohermitian structure compatible with ξ is a CR structure J compatible with ξ together with a choice of contact form θ. Such a choice determines a unique real vector field T transverse to ξ, called the characteristic vector field of θ, such that $\theta(T) = 1$ and $\mathcal{L}_T \theta = 0$ or $d\theta(T, \cdot) = 0$. Let $\{T, Z_\alpha, Z_{\bar{\alpha}}\}$ be a frame of $TM \otimes \mathbb{C}$, where Z_α is any local frame of $T_{1,0}$, $Z_{\bar{\alpha}} = \bar{Z}_\alpha \in T_{0,1}$ and T is the characteristic vector field. Then $\{\theta, \theta^\alpha, \theta^{\bar{\alpha}}\}$, which is the coframe dual to $\{T, Z_\alpha, Z_{\bar{\alpha}}\}$, satisfies
\[
d\theta = ih_{\alpha \bar{\beta}} \theta^\alpha \wedge \theta^{\bar{\beta}}
\]
for some positive definite hermitian matrix of functions $(h_{\alpha \bar{\beta}})$. Actually we can always choose Z_α such that $h_{\alpha \bar{\beta}} = \delta_{\alpha \bar{\beta}}$; hence, throughout this paper, we assume $h_{\alpha \bar{\beta}} = \delta_{\alpha \bar{\beta}}$.

The Levi form \langle , \rangle is the Hermitian form on $T_{1,0}$ defined by
\[
\langle Z, W \rangle = -i \langle d\theta, Z \wedge \bar{W} \rangle.
\]
We can extend \langle , \rangle to $T_{0,1}$ by defining $\langle \bar{Z}, \bar{W} \rangle = \overline{\langle Z, W \rangle}$ for all $Z, W \in T_{1,0}$. The Levi form induces naturally a Hermitian form on the dual bundle of $T_{1,0}$, also denoted by \langle , \rangle, and hence on all the induced tensor bundles.
The pseudohermitian connection of \((J, \theta)\) is the connection \(\nabla\) on \(TM \otimes \mathbb{C}\) (and extended to tensors) given in terms of a local frame \(Z_{\alpha} \in T_{1,0}\) by
\[
\nabla Z_{\alpha} = \omega_{\alpha}^{\beta} \otimes Z_{\beta}, \quad \nabla Z_{\bar{\alpha}} = \omega_{\bar{\alpha}}^{\bar{\beta}} \otimes Z_{\bar{\beta}}, \quad \nabla T = 0,
\]
where \(\omega_{\alpha}^{\beta}\) are the 1-forms uniquely determined by the following equations:
\[
d\theta^{\beta} = \theta^{\alpha} \wedge \omega_{\alpha}^{\beta} + \theta \wedge \tau^{\beta}, \quad \tau_{\alpha} \wedge \theta^{\alpha} = 0, \quad \omega_{\alpha}^{\beta} + \omega_{\bar{\alpha}}^{\bar{\beta}} = 0.
\]
We can write \(\tau_{\alpha} = A_{\alpha\beta} \theta^{\beta}\) with \(A_{\alpha\beta} = A_{\bar{\alpha}\bar{\beta}}\). The curvature of the Webster–Stanton connection, expressed in terms of the coframe \(\{\theta = \theta^0, \theta^\alpha, \theta^{\bar{\alpha}}\}\), is
\[
\Pi^\alpha_{\beta} = \nabla^\alpha_{\beta} = d\omega^\alpha_{\rho} - \omega^\beta_{\rho} \wedge \omega^\alpha_{\gamma} + \omega^\gamma_{\beta} \wedge \omega^\alpha_{\rho} = 0,
\]
\[
\Pi^0_\alpha = \Pi^0_{\bar{\alpha}} = \Pi_{\bar{\beta}}^\beta = \Pi^\beta_{\alpha} = \Pi^0_0 = 0.
\]
Webster showed that \(\Pi^\alpha_{\beta}\) can be written as
\[
\Pi^\alpha_{\beta} = R^\alpha_{\beta \rho \sigma} \theta^\rho \wedge \theta^\sigma + W^\alpha_{\beta \rho} \theta^\rho \wedge \theta - W^\alpha_{\beta \rho} \theta^\rho \wedge \theta + i\theta_{\beta} \wedge \tau^\alpha - i\tau_{\beta} \wedge \theta^\alpha,
\]
where the coefficients satisfy
\[
R^\alpha_{\beta \rho \sigma} = \overline{R^\alpha_{\beta \rho \sigma}} = R_{\rho \sigma \beta \alpha} = R^\rho_{\sigma \beta \alpha}, \quad W^\alpha_{\beta \gamma} = W^\gamma_{\alpha \bar{\beta}}.
\]
We will denote components of covariant derivatives with indices preceded by comma; thus write \(A_{\alpha \beta \gamma}\). The indices \(\{0, \alpha, \bar{\alpha}\}\) indicate derivatives with respect to \(\{T, Z_{\alpha}, Z_{\bar{\alpha}}\}\). For derivatives of a function, we will often omit the comma, for instance, \(\varphi_{\alpha} = Z_{\alpha} \varphi, \varphi_{\bar{\alpha}} = Z_{\bar{\alpha}} \varphi - \omega^\gamma_{\bar{\alpha}} (Z^\gamma_{\bar{\beta}})Z_{\gamma} \varphi, \varphi_0 = T \varphi\) for a (smooth) function \(\varphi\). Let the Cauchy–Riemann operator \(\partial_b\) be defined locally by \(\partial_b \varphi = \varphi_{\alpha} \theta^\alpha\), and let \(\partial_{\bar{b}}\) be the conjugate of \(\partial_b\). For a function \(\varphi\), the subgradient \(\nabla_b\) is defined locally by \(\nabla_b \varphi = \varphi^\alpha Z_{\alpha} + \varphi^{\bar{\alpha}} Z_{\bar{\alpha}}\). The sublaplacian \(\Delta_b\), the Kohn Laplacian \(\Box_b\), and the Folland–Stein operator \(\mathcal{L}_c\) on functions are defined by
\[
\Delta_b \varphi = - (\varphi_{\alpha}^\alpha + \varphi_{\bar{\alpha}}^{\bar{\alpha}}), \quad \Box_b \varphi = (\Delta_b + inT) \varphi, \quad \mathcal{L}_c \varphi = (\Delta_b + icT) \varphi.
\]
The Webster–Ricci tensor and the torsion tensor on \(T_{1,0}\) are defined by
\[
\text{Ric}(X, Y) = R_{\alpha \beta} X^\alpha Y^\beta, \quad \text{Tor}(X, Y) = i \sum_{\alpha, \beta} (A_{\alpha \beta} X^\alpha Y^\beta - A_{\alpha \beta} X^\beta Y^\alpha),
\]
where \(X = X^\alpha Z_{\alpha}, Y = Y^\beta Z_{\beta}, R_{\alpha \beta} = R_{\gamma \alpha \beta}\). The Webster scalar curvature is \(R = R_{\alpha}^{\alpha} = h_{\alpha \beta} R_{\alpha \beta}\).
3. Proof of Theorem 1.5

Let \((M, J, \theta)\) be a closed pseudohermitian \((2n+1)\)-manifold. In this section, we can obtain lower bound estimates for the first nonzero eigenvalue of the Folland–Stein operator \(\mathcal{L}_c\), \(|c| \leq n\), on a closed pseudohermitian \((2n + 1)\)-manifold.

First we need the following Bochner formula for the Kohn Laplacian [Chanillo et al. 2012, Equation (2.8)]).

Lemma 3.1. For any complex-valued function \(\varphi\), we have

\[
\begin{align*}
-\frac{1}{2} \Box_b |\bar{\partial}_b \varphi|^2 &= \sum_{\alpha, \beta} (\varphi_{\alpha \bar{\beta}} \bar{\varphi}_{\alpha \beta} + \varphi_{\alpha \bar{\beta}} \bar{\varphi}_{\alpha \beta}) + \text{Ric}((\nabla_b \varphi)_C, (\nabla_b \varphi)_C) \\
&\quad - \frac{1}{2n} \langle \bar{\partial}_b \varphi, \bar{\partial}_b \Box_b \varphi \rangle - \frac{n+1}{2n} \langle \bar{\partial}_b \Box_b \varphi, \bar{\partial}_b \varphi \rangle \\
&\quad - \frac{1}{n} \langle \bar{P} \varphi, \bar{\partial}_b \varphi \rangle + \frac{n-1}{n} \langle P \varphi, \partial_b \varphi \rangle,
\end{align*}
\]

where \((\nabla_b \varphi)_C = \varphi^\alpha Z_\alpha\) is the corresponding complex \((1, 0)\)-vector field of \(\nabla_b \varphi\).

First we derive some useful identities which we need in the proof of Theorem 1.5. Let \(\varphi\) be a smooth complex-valued function on \(M\). By integrating the Bochner formula (3-1), we have

\[
\begin{align*}
0 &= \int \sum_{\alpha, \beta} (\varphi_{\alpha \bar{\beta}} \bar{\varphi}_{\alpha \beta} + \varphi_{\alpha \bar{\beta}} \bar{\varphi}_{\alpha \beta}) - \frac{n+2}{2n} \int \langle \Box_b \varphi, \Box_b \varphi \rangle \\
&\quad + \frac{2-n}{n} \int (P_0 \varphi) \bar{\varphi} + \int \text{Ric}((\nabla_b \varphi)_C, (\nabla_b \varphi)_C).
\end{align*}
\]

We also have

\[
\begin{align*}
\int \sum_{\alpha, \beta} \varphi_{\alpha \bar{\beta}} \bar{\varphi}_{\alpha \beta} &= \int \sum_{\alpha, \beta} \left| \bar{\varphi}_{\alpha \bar{\beta}} - \frac{1}{n} \bar{\varphi} \gamma h_{\alpha \bar{\beta}} \right|^2 + \frac{1}{4n} \int \langle \Box_b \varphi, \Box_b \varphi \rangle \\
&= \frac{n-1}{n} \int (P_0 \varphi) \bar{\varphi} + \frac{1}{4n} \int \langle \Box_b \varphi, \Box_b \varphi \rangle.
\end{align*}
\]

Here we used the following divergence formula [Graham and Lee 1988] for the trace-free part of \(\bar{\varphi}_{\alpha \bar{\beta}}\):

\[
B_{\alpha \bar{\beta}} \bar{\varphi} = \bar{\varphi}_{\alpha \bar{\beta}} - \frac{1}{n} \bar{\varphi} \gamma h_{\alpha \bar{\beta}}.
\]

That is,

\[
\begin{align*}
(B^\alpha_{\bar{\beta}} \varphi)(B_{\alpha \bar{\beta}} \bar{\varphi}) &= (\varphi^\alpha_{\bar{\beta}})(B_{\alpha \bar{\beta}} \bar{\varphi}) = (\varphi^\alpha_{\bar{\beta}} B_{\alpha \bar{\beta}} \bar{\varphi}) + \frac{n-1}{n} \varphi^\alpha P_0 \bar{\varphi} \\
&= (\varphi^\alpha B_{\alpha \bar{\beta}} \bar{\varphi})_{\bar{\beta}} - \frac{n-1}{n} \varphi^\alpha P_0 \bar{\varphi},
\end{align*}
\]
Then we integrate both sides to get

\[(3-4) \quad \int \sum_{\alpha, \beta} |B_{\alpha\beta} \bar{\varphi}|^2 = \frac{n - 1}{n} \int (P_0 \varphi) \bar{\varphi}.
\]

Taking together the two formulas (3-2) and (3-3), we get

\[(3-5) \quad \frac{n + 1}{4n} \int [\square_{b \varphi} \cdot \square_{b \varphi}] = \int \sum_{\alpha, \beta} \varphi_{\alpha\beta} \bar{\varphi}_{\alpha\beta} + \frac{1}{n} \int (P_0 \varphi) \bar{\varphi} + \int \text{Ric}(\nabla_b \varphi, \nabla_b \varphi)_C, (\nabla_b \varphi)_C).
\]

By taking complex conjugate to (3-5) and replacing \(\varphi\) by \(\varphi\), one obtains

\[(3-6) \quad \frac{n + 1}{4n} \int [\square_{b \varphi} \cdot \square_{b \varphi}] = \int \sum_{\alpha, \beta} \varphi_{\alpha\beta} \bar{\varphi}_{\alpha\beta} + \frac{1}{n} \int (P_0 \varphi) \bar{\varphi} + \int \text{Ric}(\nabla_b \varphi, \nabla_b \varphi)_C, (\nabla_b \varphi)_C).
\]

From the formula (1-1), we have

\[(3-7) \quad \frac{4}{n + 1} \int (P_0 \varphi) \bar{\varphi} = \int \langle (\Delta_b + i \nabla T)(\Delta_b - i \nabla T) \varphi - 2n Q \varphi, \varphi \rangle
\]
\[= \int \langle \square_{b \varphi}, \square_{b \varphi} \rangle - 2n \int \langle Q \varphi, \varphi \rangle.
\]

By (1-1), we can also obtain

\[(3-8) \quad \frac{4}{n + 1} \int (P_0 \varphi) \bar{\varphi} = \int \langle \square_{b \varphi}, \square_{b \varphi} \rangle - 2n \int \langle Q \varphi, \varphi \rangle.
\]

Proof of Theorem 1.5. Let \(\varphi_c\) be an eigenfunction of the Folland–Stein operator \(\mathcal{L}_c\), \(c \in \mathbb{R}\) with \(|c| \leq n\), with respect to the first nonzero eigenvalue \(\lambda_c^1\); i.e., \(\mathcal{L}_c \varphi_c = \lambda_c^1 \varphi_c\).

When \(0 \leq c \leq n\), from (3-6) and (3-7) for

\[\mathcal{L}_c = \frac{n + c}{2n} \square_b + \frac{n - c}{2n} \square_b,
\]

we have

\[
\frac{1}{2} \int \langle \square_b \varphi_c, \mathcal{L}_c \varphi_c \rangle = \frac{n + c}{4n} \int \langle \square_b \varphi_c, \square_b \varphi_c \rangle + \frac{n - c}{4n} \int \langle \square_b \varphi_c, \square_b \varphi_c \rangle
\]
\[= \frac{n + c}{n + 1} \int \sum_{\alpha, \beta} \varphi_{c\alpha\beta} \bar{\varphi}_{c\alpha\beta} + \frac{n + 2 - c}{n + 1} \int (P_0 \varphi_c) \bar{\varphi}_c
\]
\[+ \frac{n + c}{n + 1} \int \text{Ric}(\nabla_b \varphi_c)_C, (\nabla_b \varphi_c)_C) + \frac{n - c}{2} \int \langle Q \varphi_c, \varphi_c \rangle
\]
\[= \frac{n + c}{n + 1} \int \sum_{\alpha, \beta} \varphi_{c\alpha\beta} \bar{\varphi}_{c\alpha\beta} + \frac{n + 2 - c}{n + 1} \int (P_0 \varphi_c) \bar{\varphi}_c
\]
\[+ \frac{n + c}{n + 1} \left[\text{Ric} - \frac{(n - c)(n + 1)}{2(n + c)} \text{Tor} \right](\nabla_b \varphi_c)_C, (\nabla_b \varphi_c)_C),
\]
where we used the equation
\[
\int \langle \bar{Q} \phi_c, \phi_c \rangle = - \int \text{Tor}((\nabla_b \phi_c)_C, (\nabla_b \phi_c)_C),
\]

since \(\int \langle \bar{Q} \phi_c, \phi_c \rangle\) is real, and thus \(\int \langle \bar{Q} \phi_c, \phi_c \rangle = 2 \int i A^{\alpha \beta} \phi_c \bar{\varphi} \bar{\varphi}_C = -2 \int i A^{\alpha \beta} \phi_c \bar{\varphi} \bar{\varphi}_C\).

Hence, if \(P_0\) is nonnegative and
\[
[Ric - \frac{(n-c)(n+1)}{2(n+c)} \text{Tor}((\nabla_b \phi_c)_C, (\nabla_b \phi_c)_C) \geq k|\bar{\partial}_b \phi_c|^2,
\]

we have
\[
(3-9) \quad \lambda^c_1 \int |\bar{\partial}_b \phi_c|^2 = \frac{n+c}{n+1} \int \sum_{\alpha, \beta} \phi_c \bar{\varphi} \bar{\varphi}_c + \frac{n+2-c}{n+1} \int (P_0 \phi_c) \bar{\varphi}_c
\]
\[
+ \frac{n+c}{n+1} \int \left[Ric - \frac{(n-c)(n+1)}{2(n+c)} \text{Tor} \right]((\nabla_b \phi_c)_C, (\nabla_b \phi_c)_C)
\]
\[
\geq \frac{n+c}{n+1} k \int |\bar{\partial}_b \phi_c|^2,
\]

which shows that \(\lambda^c_1 \geq \frac{n+c}{n+1} k\).

When \(-n \leq c < 0\), from (3-5) and (3-8), the same computation shows that
\[
\frac{1}{2} \int \langle \square_b \phi_c, \mathcal{L}_c \phi_c \rangle = \frac{n+c}{4n} \int \langle \square_b \phi_c, \square_b \phi_c \rangle + \frac{n-c}{4n} \int \langle \square_b \phi_c, \square_b \phi_c \rangle
\]
\[
= \frac{n-c}{n+1} \int \sum_{\alpha, \beta} \phi_c \bar{\varphi} \bar{\varphi}_c + \frac{n+2+c}{n+1} \int (P_0 \phi_c) \bar{\varphi}_c
\]
\[
+ \frac{n-c}{n+1} \int \left[Ric - \frac{(n+c)(n+1)}{2(n-c)} \text{Tor} \right]((\nabla_b \phi_c)_C, (\nabla_b \phi_c)_C).
\]

Thus, if \(P_0\) is nonnegative and
\[
[Ric - \frac{(n+c)(n+1)}{2(n-c)} \text{Tor}((\nabla_b \phi_c)_C, (\nabla_b \phi_c)_C) \geq k|\bar{\partial}_b \phi_c|^2,
\]

we get
\[
\lambda^c_1 \int |\partial_b \phi_c|^2 = \frac{n-c}{n+1} \int \sum_{\alpha, \beta} \phi_c \bar{\varphi} \bar{\varphi}_c + \frac{n+2+c}{n+1} \int (P_0 \phi_c) \bar{\varphi}_c
\]
\[
+ \frac{n-c}{n+1} \int \left[Ric - \frac{(n+c)(n+1)}{2(n-c)} \text{Tor} \right]((\nabla_b \phi_c)_C, (\nabla_b \phi_c)_C)
\]
\[
\geq \frac{n-c}{n+1} k \int |\bar{\partial}_b \phi_c|^2,
\]

which implies that \(\lambda^c_1 \geq \frac{n-c}{n+1} k\). This completes the proof of Theorem 1.5. \(\square\)
4. Example and proof of Proposition 1.9

In this section, we calculate the eigenvalues of sublaplacian Δ_b, Kohn Laplacian \Box_b, and the Folland–Stein operator \mathcal{L}_c, $|c| \leq n$, of the standard pseudohermitian $(2n+1)$-sphere S^{2n+1}. We show that the lower bound in Theorem 1.5 is sharp. We also study the case when a sharp lower bound estimate of \mathcal{L}_c, $|c| \leq n$, is achieved.

Let $S^{2n+1} = \{(z_0, z_1, \ldots, z_n) | \sum_{j=0}^{n} z_j \bar{z}_j = 1\} \subset \mathbb{C}^{n+1}$ with the induced CR structure from \mathbb{C}^{n+1} and the contact form $\theta = \frac{i}{2} (\partial u - \bar{\partial} u)|_{S^{2n+1}}$ where $u = (\sum_{j=0}^{n} z_j \bar{z}_j) - 1$ is a defining function. It can be shown that the pseudohermitian torsion is free and the Webster–Ricci tensor is given by $R_{\alpha \bar{\beta}} = (n+1) h_{\alpha \bar{\beta}}$.

We write \(\partial_j = \frac{\partial}{\partial z_j}, \quad \bar{\partial}_j = \frac{\partial}{\partial \bar{z}_j} \quad (0 \leq j \leq n), \quad \partial_{j \bar{k}} = \partial_j \partial_{\bar{k}} \quad (0 \leq j, k \leq n), \) and $z = (z_0, z_1, \ldots, z_n)$, $\delta = (\partial_0, \partial_1, \ldots, \partial_n)$. We let \cdot denote the dot product. Then, by the computation in Section 1 of [Geller 1980], we have

$$\mathcal{L}_c = 2 \left(-\Delta + \sum_{j,k=0}^{n} z_j \bar{z}_k \partial_j \partial_{\bar{k}} \right) + (n + c) \bar{z} \cdot \delta + (n - c) z \cdot \delta,$$

where $\Delta = \sum_{j=0}^{n} \partial_j \partial_j$ is the standard Laplacian on \mathbb{C}^{n+1}. In particular, we have

$$\Delta_b = 2 \left(-\Delta + \sum_{j,k=0}^{n} z_j \bar{z}_k \partial_j \partial_{\bar{k}} \right) + n (\bar{z} \cdot \delta + z \cdot \delta),$$

$$\Box_b = 2 \left(-\Delta + \sum_{j,k=0}^{n} z_j \bar{z}_k \partial_j \partial_{\bar{k}} \right) + 2n \bar{z} \cdot \delta.$$

If Y is a bigraded spherical harmonic of type (p, q) on \mathbb{C}^{n+1} (a harmonic polynomial which is a linear combination in terms of the form $z^\rho \bar{z}^\gamma$, where ρ, γ are multiindices with $|\rho| = p$, $|\gamma| = q$), then $\mathcal{L}_c Y = (2pq + (n + c)q + (n - c)p) Y$. Similarly,

$$\Delta_b Y = (2pq + n(p + q)) Y, \quad \Box_b Y = 2q(p + n) Y.$$

This example shows that the lower bound in Theorem 1.5 is sharp.

Now we study the case when a sharp lower bound estimate for the first nonzero eigenvalue of the Folland–Stein operator \mathcal{L}_c, $|c| \leq n$, on a pseudohermitian $(2n+1)$-manifold M is achieved. We only consider the case when the constant c is nonnegative. The same computation follows when c is negative.

First, from (3-9), we have the following observation.
Lemma 4.1. Under the same conditions as in Theorem 1.5, when the first nonzero eigenvalue of L_c, $0 \leq c \leq n$, satisfies

$$\lambda_1^c = \frac{n + c}{n + 1} k,$$

then the corresponding eigenfunction φ_c will satisfy

\begin{equation}
\varphi_{c\bar{\alpha}\beta} = 0 \quad \text{for all } \alpha, \beta,
\end{equation}

\begin{equation}
\left[\text{Ric} - \frac{(n - c)(n + 1)}{2(n + c)} \text{Tor} \right] (\nabla_b \varphi_c, \nabla_b \varphi_c) = k |\bar{\partial}_b \varphi_c|^2,
\end{equation}

\begin{equation}
P_0 \varphi_c = 0.
\end{equation}

Proof of Proposition 1.9. The integral condition (1-3) says that

$$\int \langle Q \varphi_c, \varphi_c \rangle = -2i \int A^{a\beta} \varphi_c \bar{\varphi}_{\bar{c}\beta} = 0,$$

and then by integration by parts, we obtain

\begin{equation}
\int \langle \overline{Q} \varphi_c, \varphi_c \rangle = \int \langle \varphi_c, Q \varphi_c \rangle = \int \langle Q \varphi_c, \varphi_c \rangle = 0.
\end{equation}

From (1-1), one can see that

$$4P_0 = [\Delta_b - i(n^2/c)T][\Delta_b + icT] - \frac{1}{2c} [(2nc + n + c) \overline{Q} + (2nc - n - c) Q].$$

Then, from (4-3) and (4-4), one obtains

$$0 = 4 \int (P_0 \varphi_c) \overline{\varphi}_c = \lambda_1^c \int \langle [\Delta_b - i(n^2/c)T] \varphi_c, \varphi_c \rangle$$

$$= \frac{1}{2} \lambda_1^c \int \langle [(1 - n/c) \square_b + (1 + n/c) \overline{\square}_b] \varphi_c, \varphi_c \rangle$$

$$= \lambda_1^c \int [(1 - n/c) |\bar{\partial}_b \varphi_c|^2 + (1 + n/c) |\partial_b \varphi_c|^2],$$

which is

\begin{equation}
(n - c) \int |\bar{\partial}_b \varphi_c|^2 = (n + c) \int |\partial_b \varphi_c|^2.
\end{equation}

On the other hand, the equation $L_c \varphi_c = (\Delta_b + icT) \varphi_c = \lambda_1^c \varphi_c$ yields

\begin{equation}
\lambda_1^c = \lambda_1^c \int \langle \varphi_c, \varphi_c \rangle = \int \langle L_c \varphi_c, \varphi_c \rangle$$

$$= \frac{1}{2n} \int \langle [(n + c) \square_b + (n - c) \overline{\square}_b] \varphi_c, \varphi_c \rangle$$

$$= \int [(1 + n/c) |\bar{\partial}_b \varphi_c|^2 + (1 - n/c) |\partial_b \varphi_c|^2].$$
The equations (1-4) follow from (4-5) and (4-6) easily.

References

CHIN-TUNG WU

DEPARTMENT OF APPLIED MATHEMATICS

NATIONAL PINGTUNG UNIVERSITY OF EDUCATION

NO. 4-18 MINSHENG RD

PINGTUNG CITY 90003

TAIWAN
Biharmonic hypersurfaces in complete Riemannian manifolds
Luis J. Alías, Carolina García-Martínez and Marco Rigoli

Half-commutative orthogonal Hopf algebras
Julien Bichon and Michel Dubois-Violette

Superdistributions, analytic and algebraic super Harish-Chandra pairs
Claudio Carmeli and Rita Fioresi

Orbifolds with signature $(0; k, k^{n-1}, k^n, k^n)$
Angel Carocca, Rubén A. Hidalgo and Rubí E. Rodríguez

Explicit isogeny theorems for Drinfeld modules
Imin Chen and Yoonjin Lee

Topological pressures for ϵ-stable and stable sets
Xianfeng Ma and Ercai Chen

Lipschitz and bilipschitz maps on Carnot groups
William Meyerson

Geometric inequalities in Carnot groups
Francesco Paolo Montefalcone

Fixed points of endomorphisms of virtually free groups
Pedro V. Silva

The sharp lower bound for the first positive eigenvalue of the
Folland–Stein operator on a closed pseudohermitian $(2n + 1)$-manifold
Chin-Tung Wu

Remark on “Maximal functions on the unit n-sphere” by Peter M. Knopf (1987)
Hong-Quan Li