REMARK ON
“MAXIMAL FUNCTIONS ON THE UNIT n-SPHERE”
BY PETER M. KNOPF (1987)

HONG-QUAN LI
REMARK ON
“MAXIMAL FUNCTIONS ON THE UNIT n-SPHERE”
BY PETER M. KNOPF (1987)

HONG-QUAN LI

Volume 129:1 (1987), 77–84

The article in question contains an important result on the behavior of the
Hardy–Littlewood maximal function \(M_{S^n} \) on the unit \(n \)-sphere, providing
a weak-type linear bound that has not been improved on in the intervening
decades. Unfortunately, the proof has a gap, since it relies on an incorrect
intermediate result (Lemma 3). We correct the proof by providing a sharper
lower bound for a trigonometry integral than the one used by Knopf.

1. Introduction

Let \(S^{n-1} \) \((n \geq 2)\) denote the unit sphere of dimension \(n - 1 \), i.e., the \(n - 1 \) dimen-
sional, simply connected Riemannian manifold of constant sectional curvature 1.
Let \(d_{S^{n-1}} \) be the induced distance and \(\mu_{S^{n-1}} \) be the induced measure.

Consider the centered Hardy–Littlewood maximal function, \(M_{S^{n-1}} \), on \(S^{n-1} \),
i.e.,

\[
M_{S^{n-1}} f(x) = \sup_{0 < r \leq \pi} \frac{1}{\mu_{S^{n-1}}(B_{S^{n-1}}(x, r))} \int_{B_{S^{n-1}}(x, r)} |f(y)| \, d\mu_{S^{n-1}}(y),
\]

where \(B_{S^{n-1}}(x, r) \) is the open ball with center \(x \) and radius \(r > 0 \).

In [Knopf 1987], the following theorem is presented:

Theorem 1.1. There exists a constant \(A > 0 \) such that

\[
\|M_{S^{n-1}}\|_{L^1 \rightarrow L^{1,\infty}} \leq An \quad \text{for all } n \geq 2.
\]

The author is partially supported by the NSF of China (grant no. 11171070), NCET-09-0316 and
“The Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of
Higher Learning”.

MSC2010: 42B25, 43A85.

Keywords: Hardy–Littlewood maximal function, sphere.
For other results concerning the estimates of type (1-1), see for example [Stein and Strömberg 1983] in the setting of \mathbb{R}^n, [Li 2009; Li and Qian 2011] in the setting of H-type groups, [Li 2010] for Grushin operators, [Li and Lohoué 2012] for the case of real hyperbolic spaces and [Naor and Tao 2010]. There is also a bound of type

$$\lim_{n \to +\infty} \|M_{\text{Cube}}\|_{L^1 \to L^{1,\infty}} = +\infty$$

about the centered maximal function associated to cubes in \mathbb{R}^n; see [Aldaz 2011] or [Aubrun 2009] for details.

Let ω_{n-1} denote the area of the unit sphere of \mathbb{R}^n; i.e., $\omega_{n-1} = 2\frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2})}$. Recall that, for $x \in S^{n-1}$, $0 < t \leq 2$,

$$S(x, t) = \left\{ y \in S^{n-1} \subset \mathbb{R}^n; |x - y| \leq t \right\},$$

$$|S(x, t)| = \mu_{S^{n-1}}(S(x, r)).$$

There exist some mistakes in [Knopf 1987]. For example, near the end of the proof of Lemma 3, take

$$t = \sqrt{2(1 - n^{-\frac{1}{2}})},$$

and we find that Lemma 3 is wrong. Knopf uses the estimate that

$$|S(x, t)| = \omega_{n-2} \int_{0}^{2\arcsin(t/2)} \sin^{n-2} u du \geq \omega_{n-2} \int_{0}^{2\arcsin(t/2)} \sin^{n-2} u \cos u du,$$

which gives the lower bound

$$|S(x, t)| \geq \frac{c\omega_{n-1}}{\sqrt{n}} \left[t^2 \left(1 - \frac{t^2}{4} \right) \right]^{\frac{n-1}{2}}$$

for all $0 < t \leq \sqrt{2}$, $n \geq 2$.

This estimate is not sharp enough to obtain the desired result. In order to make the proof in [Knopf 1987] effective, we need the sharper and sufficient lower bound:

Lemma 1.2. There exists a constant $c > 0$ such that, for all $n \geq 2$ and $0 < t \leq \sqrt{2}$, we have

$$|S(x, t)| \geq c\omega_{n-1} \left[n \left(1 - t \sqrt{1 - \frac{t^2}{4}} \right) + t \sqrt{1 - \frac{t^2}{4}} \right]^{-\frac{1}{2}} \left[t^2 \left(1 - \frac{t^2}{4} \right) \right]^{\frac{n-1}{2}}.$$

More specifically, using the bound (1-3) instead of (1-2) in the proof of Knopf’s Lemma 1 yields an improved result to replace Lemma 1:
\(M_{S^{n-1}} f(x) \) \leq c \max \left\{ \sup_{n^{-\frac{1}{2}} \leq t \leq \sqrt{2(n-1)}} \left[\frac{u \left(1 - t \sqrt{\frac{1-t^2}{4}} \right)}{t} + \sqrt{\frac{n-1}{n}} \sin \left(1 - \frac{t}{\sqrt{n}} \right) \right], \sup_{0 < t \leq n^{-\frac{1}{2}}} \left[n \sup_{0 < t \leq n^{-\frac{1}{2}}} \left(1 - t \sqrt{\frac{1-t^2}{4}} \right) u \left(1 - t \sqrt{\frac{1-t^2}{4}} \right) \right] \right\}.

Using (1-4) instead of the original Lemma 1 estimate at the end of the proof of Lemma 3 in [Knopf 1987] gives

\(M_{S^{n-1}} f(x) \) \leq c \max \left\{ \sup_{n^{-\frac{1}{2}} \leq t \leq \sqrt{2(n-1)}} \left[\frac{u \left(1 - t \sqrt{\frac{1-t^2}{4}} \right)}{t} + \sqrt{\frac{n-1}{n}} \sin \left(1 - \frac{t}{\sqrt{n}} \right) \right], \sup_{0 < t \leq n^{-\frac{1}{2}}} \left(1 + \sqrt{n \ln \left(1 - \frac{1-t^2}{2} \right)} \right) \right\} \left(1 + \sqrt{n \ln n} \right) M_T f(x).

It is trivial to check that the right side of (1-5) is at most \(cn M_T f(x) \), and using this inequality the rest of the original proof works and gives the correct result.

2. Proof of Equation (1-3)

For \(0 < t \leq \sqrt{2} \), set \(r = 2 \arcsin(t/2) \); then

\[
|S(x,t)| = \int_0^r \omega_{n-2} (\sin s)^{n-2} ds = \omega_{n-2} \int_0^{\sin r} y^{n-2} \frac{dy}{\sqrt{1-y^2}} = \omega_{n-2} (\sin r)^{n-1} \int_0^1 \frac{u^{n-2}}{\sqrt{1-u \sin r}} du.
\]

Observe that

\[
\int_0^1 \frac{u^{n-2}}{\sqrt{1-u \sin r}} du \geq \int_{1-\frac{1}{n}}^1 \frac{du}{\sqrt{1-u \sin r}} = 2e^{(n-2) \ln(1-\frac{1}{n})} \frac{1}{n} \sqrt{1-\sin r} + \sqrt{1 - (1 - \frac{1}{n}) \sin r} > c \frac{1}{\sqrt{n} \sqrt{n(1 - \sin r) + \sin r}}.
\]

Then Stirling’s formula implies (1-3).
Remark. By (1-3), a simple computation then leads to

\[(2-1) \quad |S(x, t)| \geq c \omega_{n-1} \] whenever \(\sqrt{2(1-n^{-1})} \leq t \leq 2 \) and \(n \geq 2 \).

Acknowledgement

The author would like to thank Jian-Gang Ying for the help in English and the referee for helpful suggestions.

References

Received April 3, 2012. Revised September 6, 2012.

HONG-QUAN LI

SCHOOL OF MATHEMATICAL SCIENCES

FUDAN UNIVERSITY

220 HANDAN ROAD

SHANGHAI 200433

CHINA

hongquan_li@fudan.edu.cn
Biharmonic hypersurfaces in complete Riemannian manifolds
Luis J. Alías, S. Carolina García-Martínez and Marco Rigoli

Half-commutative orthogonal Hopf algebras
Julien Bichon and Michel Dubois-Violette

Superdistributions, analytic and algebraic super Harish-Chandra pairs
Claudio Carmeli and Rita Fioresi

Orbifolds with signature \((0; k, k^{n-1}, k^n, k^n)\)
Angel Carocca, Rubén A. Hidalgo and Rubí E. Rodríguez

Explicit isogeny theorems for Drinfeld modules
Imin Chen and Yoonjin Lee

Topological pressures for \(\epsilon\)-stable and stable sets
Xianfeng Ma and Ercai Chen

Lipschitz and bilipschitz maps on Carnot groups
William Meyerson

Geometric inequalities in Carnot groups
Francesco Paolo Montefalcone

Fixed points of endomorphisms of virtually free groups
Pedro V. Silva

The sharp lower bound for the first positive eigenvalue of the Folland–Stein operator on a closed pseudohermitian \((2n + 1)\)-manifold
Chin-Tung Wu

Remark on “Maximal functions on the unit \(n\)-sphere” by Peter M. Knopf
Hong-Quan Li