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REALIZATIONS OF BC,-GRADED
INTERSECTION MATRIX ALGEBRAS WITH
GRADING SUBALGEBRAS OF TYPE B,,r >3

SANDEEP BHARGAVA AND YUN GAO

We study intersection matrix algebras im (Al“) that arise from affinizing a
Cartan matrix A of type B, with d arbitrary long roots in the root system
Ag,, where r > 3. We show that im(A'¥)) is isomorphic to the universal
covering algebra of s0;,.41 (u, n, C, x), where a is an associative algebra
with involution #, and C is an a-module with hermitian form y. We provide
a description of all four of the components a, 5, C, and .

1. Introduction

Peter Slodowy [1984; 1986] discovered that matrices like

2-1 0 1
-1 2 -1 1
M= 0-2 2 -2
1 1 -1 2

encode the intersection form on the second homology group of Milnor fibers for
germs of holomorphic maps with an isolated singularity at the origin. These matrices
were like the generalized Cartan matrices of Kac—Moody theory in that they had
integer entries, 2’s along the diagonal, and M;; was negative if and only if M ;
was negative. What was new, however, was the presence of positive entries off the
diagonal. Slodowy called such matrices generalized intersection matrices:

Definition 1 [Slodowy 1986]. An n x n integer-valued matrix M is called a gener-
alized intersection matrix (gim) if the following conditions are satisfied. whenever
1 <i,j<nwithi # j:
Mi; = 2;

M,‘j <0 <= Mj,' < 0;

M,'j>0 — Mji>0-
Funding from the National Sciences and Engineering Research Council of Canada is gratefully
acknowledged.
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Slodowy used these matrices to define a class of Lie algebras that encompassed
all the Kac—-Moody Lie algebras:

Definition 2 [Slodowy 1986; Berman and Moody 1992]. Given an n x n generalized
intersection matrix M = (M,- j), define a Lie algebra over C, called a generalized
intersection matrix (gim) algebra and denoted by gim(M), with

generators: ey, ..., €n, f1, ... fns h1s ... hp,
relations:
(R1) For 1 <i, j <n,
[hi,ej] = M;je;,
hi, fi]1=—M;; [,
lei, fil = h;.

(R2) For M;; <0,
lei, fi1=0=1fi e;l,
(ade;) Mitl ¢; =0 = (ad f;)"Mit! f;.

(R3) For M;; > 0,i # j,

lei,e;1=0=1Lfi, f;l.
(ade)Mit! f; =0 = (ad fi)Mitle;.

If the M that we begin with is a generalized Cartan matrix, then the 3n generators
and the first two groups of axioms, (R1) and (R2), provide a presentation of the
Kac-Moody Lie algebras [Gabber and Kac 1981; Kac 1990; Carter 2005].

Slodowy [1986] and, later, Berman [1989] showed that the gim algebras are also
isomorphic to fixed point subalgebras of involutions on larger Kac—-Moody algebras.
So, in their words, the gim algebras lie both “beyond and inside” Kac—Moody
algebras.

Further progress came in the 1990s as a byproduct of work on the classification
of root-graded Lie algebras [Berman and Moody 1992; Benkart and Zelmanov
1996; Neher 1996], which revealed that some families of intersection matrix (im)
algebras, which are quotient algebras of gim algebras, were universal covering
algebras of well-understood Lie algebras. For instance the im algebras that arise
from multiply affinizing a Cartan matrix of type A,, with r > 3, are the universal
covering algebras of sl(a), where a is the associative algebra of noncommuting
Laurent polynomials in several variables (the number of indeterminates depends
on how many times the original Cartan matrix is affinized). A handful of other
researchers also began engaging these new algebras. For example, Eswara Rao,
Moody, and Yokonuma [Rao et al. 1992] used vertex operator representations
to show that im algebras were nontrivial. Gao [1996] examined compact forms
of im algebras arising from conjugations over the complex field. Peng [2002]
found relations between im algebras and the representations of tilted algebras via
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Ringel-Hall algebras. Berman, Jurisich, and Tan [Berman et al. 2001] showed
that the presentation of gim algebras could be put into a broader framework that
incorporated Borcherds algebras.

The chief objective of this paper is to continue advancing our understanding
of gim and im algebras. We construct a generalized intersection matrix Al“! by
adjoining d long roots to a base of a root system of type B,, where r > 3. This is
exactly the analogue of the affinization process in which a single root is adjoined
to a Cartan matrix of a finite-dimensional Lie algebra to arrive at a generalized
Cartan matrix and, eventually, an affine Kac—-Moody algebra. The matrix Al“! is
used to define a gim algebra gim(A[4)). Since gim(A!“!) may possess roots with
mixed signs, we quotient out by an ideal v that is tailor-made to capture all such
roots. The quotient algebra is called the intersection matrix algebra and is denoted
by im(Al4]),

We show that im(A[d]) is a BC,-graded Lie algebra, which, in turn, allows us to
invoke Allison, Benkart, and Gao’s recognition theorem [Allison et al. 2002] and
relate im(A4)) to an algebraic structure that is better understood. Combining their
theorem with the knowledge that im(A[41) is centrally closed, we conclude that, up
to isomorphism, im(Al9) is the universal covering algebra of soy,+1(a, 1, C, x).
The algebra soy,+1(a, n, C, x) is like the usual matrix model sop,11 (C) of a finite-
dimensional Lie algebra of type B,, except that we now replace the field C with an
associative algebra a, which possesses an involution (that is, period two antiautomor-
phism) 1, and we involve aright a-module C that has a hermitian form x : C xC — a.
The defining relations of the generalized intersection matrix algebra and, hence,
the intersection matrix algebra, in concert with the existence of a central, graded,
surjective Lie algebra homomorphism v from im(A“!) to sos, 11 (a, 1, C, x) allow
us to understand each of a, 1, C, and x. For example, we get (i) two generators
of a, namely x and x !, for every long root of the form (¢; + €;11), and (ii) four
generators of a, namely y, y~!, z, and z ™!, for every other type of long root that we
adjoin. We are also able to study the relations among the generators, determine the
action of the involution n, and discover that C =0 and x = 0. Through constructing
a surjective Lie algebra homomorphism ¢ : gim(A“!) — soo,,1(a, 1, C, x) we
verify that we indeed have a complete description of the “coordinate algebra” a.

Our work continues the line of research initiated by Berman, Moody, Benkart
and Zelmanov. Berman and Moody [1992] were the first to find realizations of
intersection matrix algebras over Lie algebras graded by root systems of types A,
(r =2), D,, Eg, E7, and Eg. Benkart and Zelmanov [1996] found realizations of
intersection matrix algebras over Lie algebras graded by root systems of types Aj,
B,, C,, F4, and G». In this paper, we find realizations of intersection matrix algebras
over Lie algebras graded by root systems of type BC, with grading subalgebras of
type B, (r > 3).
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2. Multiply affinizing Cartan matrices

In this paper, we focus on generalized intersection matrix algebras that arise from
multiply affinizing a Cartan matrix of type B,, where r > 3, with long roots in the
root system Ap .

Consider a root system of type B,. Up to isomorphism, Ap may be described as

Ap, ={feite;:1<i#j<rfUlxe:i=1,...,r}

Once we fix an ordering of the simple roots «;, ..., «, in a base I, the Cartan
matrix A is described by

_ 2(a;, oj)Killing

= for 1 <i,j<r.
(@i, @i )Killing

ij
Choose any d long roots in Ap,, say &1, ..., Qr4+q, and consider the r +d by
r +d matrix Al given by
l[?] _ 2(a;, @j)Killing for 1<i.j<r+d.
(@i, o;)Killing

with respect to the ordering (o, ..., &, &1, ..., %+q) Of the r roots in the
base IT plus the d “adjoined” roots. The axioms of a root system tell us that all
the entries of Al?] are integers. Moreover, since the Killing form is symmetric, we
have AB.‘f] =0if Al[;” =0, or if AE?] and Ag.‘f.] are nonzero, then they share the same
sign. In other words, A4l is a generalized intersection matrix.

Since the “d-affinized” Cartan matrix A“! is a generalized intersection matrix,
gim(Al4) is a generalized intersection matrix algebra.

Note that if we affinize the Cartan matrix A of type B, with the negative of the
highest long root of Ap, then the resulting generalized intersection matrix algebra
gim(A1) is the affine Kac—-Moody Lie algebra of type B'".

3. Intersection matrix algebras

Fix a Cartan matrix A of type B, (r > 3) with, say, «y, oy, .. ., o, being the simple
roots in a base of Ap, that were used to form A. Let

o Q = set of all long roots of the form +(¢; 4 €;41) that we adjoin,

o ® = set of all remaining long roots that are adjoined,

» N, = the number of copies of the long root ; we have adjoined, and
ed= ZMEQU@) Ny.

Let Al“] be the resulting generalized intersection matrix and gim(A“!) the cor-
responding generalized intersection matrix algebra.
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We begin a move towards a quotient algebra of gim(A?l) using a slight general-
ization of the work done by Benkart and Zelmanov [1996]. Let I" be the integer
lattice generated by the A, where

A={tete;j:1<i#j=<riU{te, £2¢:i=1,...,r}

is a root system of type BC,.
We define a I'-grading on gim(A[41) as follows:

dege; =a; = —deg fi, degh; =0
fori=1,...,r,and
degeu’i =u= —deg fu’i, deghﬂ’,' =0

forpeQUO®andi=1,...,N,.

Next, we define the radical ¢ of gim(Al4l) to be the ideal generated by the
root spaces gim(A[‘”)y where y ¢ A U{0}. Since the ideal v is homogeneous, the
resulting quotient algebra

im(A“) = gim(A“9) /¢
is also I'-graded. Moreover,
im(Alh), =0 if y ¢ AU{0).

We call im(A!9) the intersection matrix (im) algebra corresponding to the general-
ized intersection matrix algebra gim(A“l).

3.1. im(A¥) is BC r-graded. Allison, Benkart, and Gao gave the following defi-
nition of a Lie algebra graded by a root system of type BC.

Definition 3 [Allison et al. 2002]. Let r be a positive integer greater than or equal
to 3. A Lie algebra L over C is graded by the root system BC, or is BC,-graded
with a grading subalgebra of type B, if

(1) L contains, as a subalgebra, a finite-dimensional simple Lie algebra g whose
root system relative to a Cartan subalgebra ) = go is Ap,,
@i1) L = ®MEAU{O} L,, where L, = {x € L | [h,x] = u(h)x forall h € b} for
u € AU{0}, and A is the root system of type BC,, and
(iii)) Lo = ZMGA[L,L, L_,l

Proposition 4. The algebra im(Al) is BC,-graded with a grading subalgebra of
type B;.
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Proof. The subalgebra in im(A“)) generated by e; +t, ..., h, + t, due to the
relations on these elements induced by the relations on their preimages in gim(A“!),
is isomorphic to a finite-dimensional simple Lie algebra g of type B,. We have
already shown in Section 3.1 that im(Al]) is ['-graded with im(A[d])y =0if
y ¢ AU{0}. That is,

imA) = @ im@A),.
neAU{0}

Finally, our initial degree assignments for the generators of gim(Al4)), the gim
algebrarelations like h; =[e;, f;1and h, =[e,, f.], and the fact that movement into
the 0 root space can only occur by bracketing an element from an im(A“)) . space
with one from the im(A[d])_M space all combine to lead us to the conclusion that

im(A)g =) [im(AM),,, im(al")_,]. O
HEA

3.2. im(A9) is centrally closed. Recall that a Lie algebra L is said to be perfect
if it equals its derived algebra, that is, L = [L, L]. Furthermore, if L is perfect and
is its own universal covering then we say that L is centrally closed [Moody and
Pianzola 1995].
Proposition 5. The algebra gim(A9)) is a perfect Lie algebra.
Proof. Being a Lie algebra, gim(A!“)) is closed under the operation of taking brack-
ets; hence [gim(A[d]), gim(A[‘”)] C gim(Al9). To show the reverse inclusion, it
suffices to show that all of the generators of gim(A9)) lie in [gim(A[‘”), gim(A[‘”)].
But this is indeed the case because the generators ¢;, f;, h; (for 1 <i <r) and the
€ui» fu,i> hy i, which arise from adjoining the i-th copy of a long root u, satisfy
the relations (R1) of Definition 2. O
Our next theorem is Proposition 1.6 in [Benkart and Zelmanov 1996] adapted to
our context.

Theorem 6. The algebra im(A)) is centrally closed.

Proof. Let (U, ¢) be the universal covering algebra of im(Al/)). Let g be the
simple finite dimensional subalgebra of type B contained in im(A“l) with Cartan
subalgebra ) whose root space decomposition induces a BC-gradation on im(A“1).
The preimage ¢! (h) of b contains ker ¢p. Since ¢ is a central map, ker ¢ lies in
the center of U. So

h' =¢ ' (h)/kerg

acts on U via the adjoint action. If i’ € b/, ¢(h') = h € b, and u(t) € C[¢] is the
minimal polynomial of ady, (h), then

u(adg(h/))(ﬁ) C ker¢.
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So adj (k') satisfies the polynomial 74(r). Therefore U is a sum of root spaces
with respect to adg b’, and ﬁ}, # (0) if and only if y € A U{0}. So ¢ induces
an isomorphism between the nonzero root spaces of U and those of im(Al4),
Moreover,

Up = Z [l~]_y, lNJV] +ker¢g implies that [ﬁo, (70] C Z [l~]_y, ﬁy]
yeA vEA

Since U = [ﬁ , U ], it follows that
Uo = [170’ [70] + Z [ﬁ—yv ﬁy] = Z [ij—y’ ﬁy]-
yeA yEA

Consequently, ¢ is an isomorphism. (]

4. Recognition theorem

The following construction, given in Example 1.23 of [Allison et al. 2002], is a
more general version of the classical construction of soy,4; (C), the simple Lie
algebra of type B,.

Let r be a positive integer, a be a unital associative algebra over C with an
involution (that is, period two antiautomorphism) 7, C be a right a-module with a
hermitian form x : C x C — a, that is a biadditive map x : C x C — a satisfying

x(e.c~a)=x(c,cN-a, x(c-a,c)=n@-x.c), x.c)=n(xc o),
forc,c¢’ € C,a € a, and G be the 2r +1) x (2r + 1) matrix

00 --- 017
00---10
G=|:: . i
0100
(10 00]

Also, given any ¢ € C, define x. € C* by x.(c’) := x(c, ¢'), for any ¢’ € C, and
given any

1 Xey
c=|:|ec™!, define x.:=| : |¢€ (C*)er.
Cn Xen
Now set

A(x) := {N € Enda(C) : x(Nc, ')+ x(c, Ny =0forall ¢, ¢’ € C},

o e {[;‘2 ;ﬁ,] {M €My 41(@), (MG +GM=0,ce C* N e %(x)}.
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It can be checked that 2l is a Lie algebra that contains a simple Lie algebra

g= {[1\04 8} :M € My, 41(C), M’G+GM=0},

of type B,. If h denotes the Cartan subalgebra of diagonal matrices in g, then the
adjoint action of h on 2l induces a root space decomposition

A= P A, where A, ={T €A:[h, T]=u(h) T forall h € h}.
neAU{0}

The following abbreviated notation helps describe these root spaces:

V1 vi1C
forv=| : |[eC¥" and ceC, letvc:= : el
V2r+1 V2r+1€
Then C¥+! = @12:1” e;C, where ey, ..., ey is the standard basis for C* 1.

Letting B denote the set of skew-symmetric elements of a relative to the involution
n, we have

Ae,—e; = {Ei j(@) + Ezrga—jors2-i(—n(a)) :a € a}, l<i#j=r
Ae,4e; = {Eizrs2-j(@) + Ejoria-i(—n(a)) :a € a}, I<i,j=<r,
A_¢;—c;= {Ezrg2-ij(@) + Ezrqa—ji(—n(a)) s a € a}, 1<i,j=<r,

[ Oxeic } }
A, = i ceC
“ | (e2r42-i¢)" O
+{Eirr1(@) + Erp10r42-i(—n(@)) ta €a}, 1<i=<r,

_ [ 0 Xezrqo—ic | .
A_e, =  (erc)' 0 iceC

+{Er10(@) + Exryairi(—n(@) ta€al, 1<i<r,
%A = {ZE,-,-@  Eario i i(—n(@)a € a} + { [8 2] N e%o}
i=1

0 Xeuc].
+{Er+1,r+1(b):beB}—|—H:(erHC), 6" i|.ceC}.

The subalgebra

502418, 7, C, x) = D A+ D [ Ay, A

HEA HEA
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of 2 has the root spaces

s02,41(a, 1, C, x)o =s02,.41(a, 1, C, x) NAo,
so2,41(a, 1, C, X)/L = Ql[L for peA.

In particular,
502-1(8, 1, C, x)o = Y _ [$0211(a, 0, C, x)pus 8020 41(a 0, C, x) -
HEA

Remark. In [Allison et al. 2002] the notation L is used to refer to the Lie algebra
that we are calling soo,+1(a, n, C, x).

To shorten the description of elements in soy,11(a, 1, C, x), we use the following
notation: Given any 1 <k <r and a € qa, let

ES (@) = Exr11(@) + E1 ar424(—0(@)),
ES (@) 1= Eri14(@) + Exriairi1 (=),

and forany 1 < p,qg <r and a € a, let

EM® (@)= E, (@) + Esriag 212 p(—(@),

E[[L—_.]2r+2—q (a) = Ep,2r+27q (a) + Eq,2r+27p(_77(a))s
ERL, (@)= Esirpg(@) + Earya g p(—1(@).

We often also denote the involution 1 on a by -. So, for example, we would
write

ER, (@) (above) as Exsap (@) + Ezrsa—q p(—a).

Allison, Benkart, and Gao’s classification results on BC,-graded Lie algebras
[Allison et al. 2002] say the following in our setting:

Theorem 7 [Allison et al. 2002, Theorem 3.10]. Let r > 3. Then L is BC,-graded
with grading subalgebra g of type B, if and only if there exists an associative
algebra a with involution n, and an a-module C with a hermitian form y such that
L is centrally isogenous to the BC,-graded Lie algebra sos.y1(a, n, C, x).

Since im(Al“ly is BC,-graded with a grading subalgebra of type B, and is
centrally closed, we have the following result.

Corollary 8. The intersection matrix algebra im(Al) is isomorphic to the uni-
versal covering algebra of the Lie algebra soy.1(a, n, C, x). In particular, there
exists a graded, central, surjective Lie algebra homomorphism

¥ im(A) — so5,41(a, n, C, X).
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5. Arriving at a “minimal”’ understanding of a, n, C, and y

The graded nature of the map ¥ : im(A“)) — s05,.41(a, n, C, x) along with the
relations among the generating elements of im(A“1) allow us to study each of
components a, 1, C, and x involved in soy,4+1(a, 1, C, x).

Since the elements ey +t, ..., e, +7t, fi+v, ..., fr+v, h1+v,...,h+vin
im(Al9l) generate a subalgebra isomorphic to a simple Lie algebra of type B,, and
since v is a graded homomorphism, we may assume without loss of generality that
(after relabeling the e¢; +t, f; +t, and h; 4+ v as e;, f;, and h;, respectively)

Ve =EM (1) forl<i<r—1, Vi) =ELL (VD)
v =EM () for1<i<r—1, v(f) = ES (V)

vy =ERO+ER L chfori<i<r—1, von=EX@).

Remark. Here we are using the notation established in Section 4. The generators
of im(Al4l) coming from a simple root ; € IT are denoted by e;, f;, and & ;, while
the generators coming from an i-th copy of an adjoined root & € Ap, are denoted
by €q,i, ftx,i’ and hot,si-

5.1. Understanding the invertibility of some coordinates of a.

Proposition 9. (i) Let Cep—cgis Jep—e,.is Ne,—e,.i De the generators of im(Aldl)
that result from adjoining the i-th copy of a long root €, —€, (1 < p,q <r,

p#q-If
I -
d’(ee,,—eq,l) = p,q(a)
for some a € a, then a is an invertible element and
U(feyep) = ELB@™).

(i1) Let Ceptey.is Jepteg.is Peyte,.i De the generators of im(Al9) thar result from
adjoining the i-th copy of a long root €, +¢€, (1 < p,q <r, p #q). If

Vleeyrep) = Eyino(b)

for some b € a, then b is an invertible element and

U (foyrep) = EXy (b7,

(ii1) Let €cp—cgiis S—ep—eqiis N—e,—e,.i be the generators of im(AY that result
from adjoining the i-th copy of a long root —€, —€, (1 < p,q <r,p #q). If

Yle—eyepi) = EXL,_, ,(©)
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for some c € a, then c is an invertible element and

]/f(f_ep_éq»i) = ELI,[—_.IZr—O—Z—p(c_l)-
Proof. (1) Since ¥ is a graded homomorphism,
Ve =EM@ and ¥(fe,—c.)=EB()

for some a, a’ € a. Without loss of generality, assume that p < ¢g. Then
[[W(eep—eq,i)» w(fep—eq,i)]a lp(eq)]

[ ] .
[EM@. EM @) EM. 0] ifg<r,

[ ] .
(R @, ER @] EZ (VD) ifg=r,

_ {Etgﬂ(—a’a) ifg<r,
Er@+l(—ﬁa’a) ifg=r.

But since

eq ifg<r,

Ae —€4,€0—€4+1
P~ €q:€q€q =—e,

[eep_éq’i’ fé!'_eq’i] :hep_éqvi = [hfp_fq’i’ eq] - {Ae €€ €q lfq =r
p—€q€r

and i is a homomorphism,

-1 if ,
[[Wee,,gq,i>,w(fepeq,,->],w<eq>]=—w<eq>={ gD =
E . (—V2) ifg=r,

So whether g < r or g =r, we have
(1) aa=1.

We show that aa’ also equals 1. Indeed,

[[E% @, EPS @], Ex% (1]

:[EgH(aa’) ifqg—p=>2,
Egﬂ(aa/—i—a/a) ifg=p+1.

[[w(ee,,—eq,i)a w(fep—e,,,i)]» 1;l’(ep)]

But because
[[eep_éq*i’ fep_eqﬂi]’ el’] = Aep_eq’ep_epﬂel’

e ifg>p+2,
:(1+84,p+1)ep:{1’ q=r

2e, ifg=p+1,
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we have

5 .
([ eyt 9 ety D). Wl = | etV 0 =072
EM @ ifg=p+1.

Soifg>p+2,thenaa’=1.If g=p+1, thenaa’+a’a=2. But, by (1),d’'a=1.
Hence, in either case, aa’ = 1.

(i1) Since 1 is a graded homomorphism,

V(Ceprey) = Enpiag®) and Y(fopre,) = EML, ()

for some b, b’ € a. Again without loss of generality, we may assume that p < g.

Then [[V(ec,+e,.0), ¥ (fe,4e,.i) ] ¥ (eq)] equals

{[[E%wrz —¢(D), Ey[_]@ q,p(b/)], qq+1(1)] ifg<r,
([E;3io o ®) ERL, D] ESL (VD) ifg =,
_ {EEH( nbyn®))  ifg <r,

ELL (V20 n@)) itg=r.

But it also equals
E£+1(1) ifg<r,
r, r+1(\/_) if q=r,

whence n(b) n(b’) = 1. Applying (the antiautomorphism) 7 to both sides, we get
that

w([[eeereq,i, feereq,i]s eq]) =Y(eg) = {

) b'b=1.
To show that bb" = 1, we first compute that
(bb') ifg>p+2,
[[¢(66p+eq,i)7 Iﬁ(fePJreq,i)]s 1p(ep)] = { lan , .
EM b —n®)n®)) ifg=p+1.

Since

e, ifg>p+2,

[[e€p+€q’i’ fep"‘fq»i]’ el’] :Afp"'eqaep_éﬁ+l €p= (1—8q,p+l)ep: {0 ifg=p+1

we also have

o .
[[¥ ey ie i) ¥ ey e, )]s Yrlep)] = {EwH(” itg=p=2
0 ifg=p+1.
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Soifg > p+2,thenbd’ =1.If ¢ = p+1, then bb’ —n(b) n(b") = 0, which implies,
using (2), that
bb' =n(b) n(b") =n®b'b) =n(1) = 1.
In either case, bb' = 1.
(iii) The proof follows using similar calculations as above. ([l
5.2. Understanding the involution 13 on a.
Proposition 10. (i) If
L
‘//(eepqLepH,z)— p,2r+2_(p+1)(a)
forsome 1l < p<r—1anda € a, then n(a) =a.
(ii) If
) =EM b
w(e—ép—ép_HJ) - 2r+27p,p+l( )
forsomel <p<r—1andb c a, then n(b) =b.
Proof. We prove (i). The proof of (ii) is similar. Observe that

™ "] ™
[‘/’(eep+ep+1,i)» ‘/f(ep)] = [Ep,2r+27(p+l)(a)’ Ep,p+1(1)] =E, 50 pa).
But A, yc,,1.c,—c,,; = O implies that (ad ec, yc,,,.i)) " e, = [ec,1epi1.ir €p] =0,
which, in turn, implies that [ (ec, +c,.,.i), ¥ (¢p)] = 0. So
Ep3inp(@ = Epariapa—n(@) =0
and thus
3) n(a) =a. O
5.3. Understanding the relations on generators of a.

Proposition 11. If, as a consequence of adjoining an i-th copy of the long root
€, —€q and a j-th copy of the long root €, +€,, where 1 < p, q <r with p #q,

Wlee, ) = ER(s) and v (eere,. ;) = Ebmpin_y (),
for some s, t € a, then:

(@) If |p — q| =1, the elements s, t, and n(s) in a satisfy the relation
s-t=t-n(s).
®) If |[p—q| = 2, the elements s, t, n(s), and n(t) in a satisfy the relation

s-n(t) =1-n(s).
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Proof. Observe that

[V (eepey.)s Vleeyiey. )] = [EDR () Ebyiny ]
— B (=5 0(0)
= Epariap(=s 1) +1-1(s))
={Ep,2r+2p(_s't+t'n(s)) if|p_Q|:1,
Eparia—p(=s -0 +1-0(s)) if |p—ql = 2.

(The division into two cases in the last step follows from the use of (3).) But since
Ac,—¢,.e,+¢, = 0, the generalized intersection matrix algebra relations tell us that

)—O—H

(ad eep_eq,i eEereq,j =0.

That is, [eep_eq,,-, Cepte,. 7] =0. So we must have [w(eep_eq,,-), V(e te,. N]=o.
This implies that

—s-t+t-n(s)=0 if [p—gq|=1,
—s-nt)+t-nis)=0, if |[p—q|=>2. O
Similarly:

Proposition 12. If, as a consequence of adjoining an i-th copy of the long root
€, —€q and a j-th copy of the long root —€, —€,, where 1 < p,q <r with p #q,
Ve, ) =EM(s) and Wecy e, )=EM, 0,

for some s, t € a, then:
(@) If |p —q| =1, the elements s, t, and n(s) in a satisfy the relation
n(s)-t=t-s.
®) If|p—q| =2, the elements s, t, n(s), and n(t) in a satisfy the relation
n(s)-t=mn()-s.

5.4. A description of the module C. Since  is a graded, surjective homomor-
phism from im(Al9) to so2r41(a, n, C, x) and we are only adjoining long roots,
we can examine the image of im(A!?!) under v to help us understand C.

Proposition 13. The module C is zero.

Proof. The generators of w(im(A[d])) all have the form [1‘6[ 8], M € My, 41(a).
Since the matrices of this form in soy,.4+(a, n, C, x) form a subalgebra and since
Y is surjective, we have C = 0. U
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6. Achieving a “sufficient” understanding of a, 5, C, and
In the previous section we used the homomorphism
¥ im(A) — 505,41 (a0, C, 1),

given by the recognition theorem of [Allison et al. 2002] to get a sense (i) of what
the generators of a ought to be, (ii) of what the involution 1 on a ought to be, (iii) of
what the relations on the generators of a ought to be, and (iv) that C =0 and x = 0.

In this section, we show that the understanding we have arrived at is complete.
We do so as follows:

1. Take the 4-tuple of associative algebra, involution, module, and hermitian form
as we presently understand it. That is:

(1) Let 2= the set of all long roots of the form +-(¢; +¢;41) that we have adjoined,
©® = the set of all long roots in Ap which we have adjoined but that are

not in €2,
and let

X.=U {xw,l,...,xw,Nw}, Xr=U {x;’ll,...,x;’le},
we weN

Ye=U{vorsovom)s  Yr=Uat-van s
6e® 6e®

Ze: U{Z@J,...,Z@,Ng}, Zf:U{ZG_,%""’ZQ_,}Vg}’
6e® 6e®

denote collections of indeterminates indexed by the sets €2 and ®. Let b be
the unital associative C-algebra generated by the indeterminates in

X UX;UY UY,UZ UZy,
subject to the relations

Yep—eq.iXepteq,j = Xepteg, jlep,—eqiio
Yep—eg.ileptey,j = Vepteq, jlep—eq.is
Zep—eq,iX—€,—€g.k = X—ep—€q,k Yep—eg,is
Tep—eq,iV—€p—eq.k = Z—€p—eq.k Ve, —€q.is
wherei =1, ..., Ne,—e, fore,—€, €0, j=1,..., Ne,+e, fore,+€, € QUO,
and k = 1,...,N_Ep_€q for —e, —¢, € QUO.
(i) Define an involution, which we also call  and sometimes denote by -, on b by
N(Xwi) =Xp; HweQand1 <i <N,
n(ve.i) =2z0; if6c®andl<i<Ng,
N(zgi)=yp; ifOe®andl <i<Ng.
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(iii)) Let C =0 be the trivial b-module.

(iv) Let x = 0 be a hermitian form on C.

Remarks. (a) The indeterminates in X, U X ¢ U---U Z are intended to capture
the elements of the form a, a’, b, b’, ¢, and ¢’ of a that we studied in Section 5,
which arose from the images of the map .

(b) Inthe relations listed above, our use of the indeterminates x gjandx_e e j
signals that we are working with roots in €2 and, hence, |p — ¢g| = 1 in this
setting. Likewise, our use of the indeterminates Vepteg.js Lepteq.is Y—€p—egnis
and z_¢,—¢,.j signals that we are working with roots in ® and p, g such that
lp—ql=2.

2. Construct a map
¢ : gim(A") — 505,11 (b, 7, C, %)

sending the generators

et, ..., e, Upealeot, -neon,t, Useoleot, ... eon,},

fiooooi fro Upea tfots o fon,t, Upeo o1, -0 fong)s

hls---ahr7 UweQ {ha),l""vha),Nw}’ Uge@ {h0,19~"ah’0,N9}5
of gim(Al“) to

él! ’ EI" Uweg {éa),lv ARSI éa),Nw}v U96® {59,17 MR EQ,NQ}

fla- '7fr7 Ua)EQ {fa),l»---»fa),Nw}v U@e@ {f@,l?"'?f@,Ng}a

hisoooshry Upeathots - hon), Upeo thot, ... hon,},

respectively, where
&=EM (1), 1<i<r-1,
& = E- (V2

s [E[[L]2r+2*(p+l)(sti) ifo=¢€p+epi,

€w.i ‘= foroeQand1<i<N,,
EM, (e ifo=—€—epi,
EM (3.0 if0=¢, ¢

o= E[[),er-i—Z—q(yesi) if0=c,+e, for0e®andl<i<Ny,
EM, o) if0=—¢,—¢,
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fi=ER ), 1<i<r-1,

fr = Erg]l,r(\/j)’

] 1y e
o (p1) p o) To=€p+¢€pp1,

fw,,- = L forweQand 1 <i <N,
-1 .
E o (6,0 ifo=—€,—¢€pi,
EP o5 ifo=c,— e,
foi= Ezr[]Jrz—q,p(yeZ}) if0 =€, +¢, for € ® and 1 <i < Ny,

Eq%rﬂ—p()@?) if§ =—€, —¢g,

ho—ERO+ER L 1<izr-,

hy=EM (),

i ENM O+l () ifw=e, +e

B = g’ ”*5*‘ PEEL orwe, 1<i<N,,

EMm+EMCn  ife=c,—¢,

hoi=1EM ) +EM)  ifo=c,+e, foréc@andl<i<N,.
EMn+EM) ifo=—c, ¢,

3. We show that ¢ is

(a) a Lie algebra homomorphism (Theorem 14),

(b) that is surjective (Proposition 15), and
(c) graded (Proposition 16).
4. We show that the radical v of gim(A[41) lies in the kernel of this map ¢ (see just
before Proposition 17), hence inducing a surjective, graded, Lie algebra homomor-
phism
¢ im(A) — 505,41 (b, 1, C, 1)

5. Finally, we show that ¢ is a central map and that b = a (Proposition 18).

Theorem 14. The map ¢ : gim(A[d]) — 802,+1(b, n, C, x) is a Lie algebra homo-
morphism.

Proof. We show that the images in 505,41 (b, 1, C, x) of the generators of gim(A“)),
under the map ¢, satisfy the relations (R1)—(R3) of Definition 2 with respect to
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the same (r + d) x (r + d) generalized intersection matrix Al as used in the
construction of the algebra gim(A“1).

While working with the various long roots in our proof, we use labels like u or
v to denote the indeterminates x,, ; or ys ;.

The reason that we can substitute u# or v for the actual indeterminates is that the
result of taking a bracket like

5 5 "1 "1
[e—e,,—eq,i , e—ek—el,j] = [E2r+2_p’q (Y—e,,—eq,i)a E2r+2_k,[(y—ek—e1,j)]
depends primarily on the indices p, g, k, and [ rather than on the particular elements

of the algebra b being housed at these sites.

If we agree on this convention of using substitute variables like «, then we must
recognize that

_ {xw,i if u=xy.,
u= i
20, ifu=yp;.
That is, the involution - applied to u depends on whether u is substituting for a
variable associated to a root in €2 or a root in ®.
We show the computations for the interactions between the generators corre-

sponding to the long roots €, — €, and € — ¢;. The remaining computations are

similar.

Let 1 < p,q,k,l <r with p # g and k # [, u,v € {x4,i, X0 j, Y6.i¥0,;}
and u=', v e {x b x L yp e ) where 0 € 2,0 € @, and 1 < i, j < N,
orl <i,j<Ny.

Using the definition of A, ,.cc—e» We see that

0 if p,g¢ik 1},

1 ifp=kbutg #1,
—1 if p=1I1butqg #k,
Aép_eq,ek_el =5p,k_8p,1_5q,k+5q,l= —1 ifp#Ilbutg =k,

1 ifp£kbutg=I,

2 ifp=kandqg=I,
—2 if p=Iland g =k.

A [ epinioei] = [ED8 . E¥ )] = 8, ED¥ o) + 51, £ (o)

EM (—uu) if p=1Ibutq #k,
EM (o) if p£ibutqg =k,
EN Gy + EM Cowy ifp=iandg=k

p.p q.9 ’
0 otherwise.

o If p=1but g #k, then [Eg(u), Eg(—vu)] =0 because g # k and g # p.
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« If p #1 but g =k, then [E'® (u), ED¥ (uv)] = 0 because ¢ # p and 1 # p.
o If p=1[and g =k, then
[E5% ), EM® vy + I (—ow)] = £ —uvw) + M (<o
_
= Ep’q(—2uvu).
So

H .
. 141 EM (=2 fp=1land g =k,
(ad2e, ) %0, = Op,q( uvu) ;tferWisz;n q

Since [E(u), E(—2uvu)] =0, we get (ad 'éep_eq,i)ﬂléek_e,,j =0.
B. [fepféq*i’ f;qu,j] = [ECIEE’(M_I)’ El,Eki (v_l)]
=8, ED o) o B (—o )

Lp
EX¥ @ v if p=1butq #k,
_ Eg(—v‘lu‘l) if p£1butqg =k,
EH(—U_IM_I)-FEE(M”U“) if p=1and g =k,
0 otherwise.

«If p=1Ibutq #k, then [E[® ™), EX¥ (u='v™")] = 0 because p # g
and k #q.

« If p # 1 but g = k, then [ED8 "), ¥ (—v="u=")] = 0 because p # I
and p #gq.
o If p=1and g =k, then

" w® -1, - ™ I R
[ES ™), ESN(—v u™ )+ EJ (™ 'vh]
=Eq%(—u_lv_lu_l)+Eq%(—u_lv_lu_l)
:Eq’ﬂi7 (—2u_1v_]u_l).
So

47 oy EM Yy it p=1and g =&,
(a fereq"-) Ja—aj = 0 ’ otherwise

Since [EX8 (1), E2 (—2u=1v=1u=1)] = 0, we get that

(ad fepffqﬂi)z_H fzk*ﬂaj =0.
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C. [ﬁgp—eq,l.y ]:lequ,j]
— M+ My, mR o)+ £ )
[ ]
_ SP,kE([l, 1) +8p,lEE;([l’_1]) +8q,kEE1([_1’ 1]) +5q,1Eq%([—1,—1])

=8, E® (0)+5,,E8 0) + 5, E40) +5,, 40
=0

D. [2e, e is forerj] = [ETB o), LR 071)]

= 5, D (uv™") 5, E (—v )

Lg
EDS (—v ) if p=kbutg #£1,
_JEB G if p£kbutg=1
B Eﬂ -1 " -1 :
Ep’p(uv )+Eq’q(—v u) ifp=kandqg=I,
0 otherwise.

« If p=kbutq #1, then [ES% (u), E/¥ (—v=1u)] = 0 because ¢ #1 and g # p.

o If p £k but g =1, then [EEE](M), Eﬂ(uv—l)] =0 because ¢ # p and k # p.
o If p=kand g =/, then

(£ . B ™)+ B (<o) = Bl (cuv™ )+ 8 (—uv )

_ M —1
_Ep’q(—2uv u).
So

iz 1y _ | EM oty it p=kandg =1,
(a eép_eq’i) Jo-a.i = 0 ’ otherwise

Since [ED8 (), ED¥ (—2uv="1)] = 0, we get that (adé,—c,.i)*" fiumar; = 0.
B [foyoeis bamey] = [EB ™), EF¥ )]

— Sk ELN 4™ 0) + 8. ELB (—ou™)

Eq%(“_lv) if p=kbutqg #1,

— E;EE,(—UM_I) if p#£kbutg =1,
EE,(—UM_I)+E£(M_1U) if p=kandg =1,
0 otherwise.

e If p=kbutq #1, then [E[® (™), ED¥ (u=1v)] = 0 because p ¢ and 1 # .
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«If p # k but g = I, then [E® @), E/® (—vu=")] = 0 because p # k
and p #¢q.
o If p=k and g =1, then
(EP ), B cou )+ EB o)) = BN oy + I o
_ M -1, —1
= Eq’p(—2u vu ).
So

EM(—2u=tvu ) if p=kandg =1,

~ 14+1 -
(adfe —€ i) Cer—er,j =
P e 0 otherwise

Since [Eq%(u_l), Eq%(—%t_]vu_l)] =0, we get

3 2415
(ad Jep—eq.i) * ee—e.j =0

F [fie,-episée-arj] = [EDR (D) + EDR (1), E% ()]

= Sk E () 48, EL8 (—v) + 8,k ELN (—v) + 61, EL (v)

=5, EL (w) — 6, E8 (v) — 5, EPR (0) + 5, E]8 (v)

= Gyt — Bps — Sgk + 84 ELR (v)
= Aep_eq,ek_q Cer—e,j-
G. [i:le,,—eq,ia fe—erj]
—ER o+ Ry 0]

=8, ) 48, B8 (—o ) 45, BN <o) 5 B 0
=, B0 s, ED 0 — s, B 0 ) o BB 0

= —Bpx—8ps — g i+, NEDR @)
J

= _Ae,,—e,,,ek—e; ];ek—él,j
Proposition 15. The map ¢ : gim(A“)) — s05,41(b, 1, C, ) is a surjective Lie

algebra homomorphism.

Proof. Let B = Im(¢) C L, where L = s09,4+1(b, n, C, x). We show that 8 = L
in a sequence of steps.
#1. Letg={M € Mp,41(C): M'G =—-GM} and

s={MeMy1(C): M'G=GM, (M) =0}.
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Let A={aceb:na=aland B={beb:nb=—-b}. If 0#a € A, then ag is an
irreducible g-submodule of B with highest weight €] + €,. If 0 = b € *B, then bs is
an irreducible g-submodule of B with highest weight 2¢;. These g-modules are
not isomorphic.

#2. ‘B is a subalgebra of L containing g, so B is a g-submodule of L.

#3. For 1 <p,q<2r+1,p#q,p#2r+2—gq,let

Ipq = {x €b: qu(x) - E2r+2—q,2r+2—p(77x) € SB}

Notice that I, is a subspace of B.
#4. I,, is invariant under 7. Indeed, let x € I,,, in which case

X:= qu(x) - E2r+2—q,2r+2—p(77x) €’B.

But X = X+ X, where X| = § (x+7x)(E pg (1) = Ezr42—g,2r42-p(1)) € (x +1x)g
and Xo = 3 (x — nx)(Epg (1) + Ezr42-g.2r42-p(1)) € (x — nx)s. Thus, by #1 and
#2, X1, X, € B. So x +nx, x —nx € I,,, which implies that nx € I,,.

#5. By #4,1,,=1,,NA+1,,NB. Butby #1 and #2, I,, N A and I,, N B are
independent of p, g. So I := I, is independent of p, q.

#6. We have

[E12(0) = E2r2r41(1%), E23(3)—E2r—1.2- ()| = E13(xy)— Ezr—1 2041 ((ny) ().

So, by #5, I is a subalgebra of 23, and, by #4, I is invariant under 7.
#7. The action of ¢ on the generators of gim(A!“)) tells us that I contains the
elements x,, ;, x;’li, Yo.is yefl.l. So by #6, I =*B.
#8. By #7, we have Ag+ Bs C B. But since C = {0}, we have ) , ., Lo C

Ag+ Bs. So ), Lo CB. Hence, since B is a subalgebraof L, B=L. [

Continuing our plan laid out on page 273, we next show that ¢ : gim(Al“l) —
s02,41(b, n, C, x) is a graded homomorphism and that it induces a map from
im(Al) to s05,41(b, 1, C, x).

We saw in Sections 3 and 4, respectively, that gim(Al)y and 500,41 (b, 1, C, x)
are both I"-graded Lie algebras, where

The map ¢ : gim(A“) — s0,,,1(b, n, C, x) is engineered so that, for all « € T,
o (gim(A)y) C 502,116, 1, C. x)a-
That is, the following result holds by design.

Proposition 16. The map ¢ : gim(Al9) — s02,4+1(b, 1, C, x) is also a graded
homomorphism.



REALIZATIONS OF BC,-GRADED INTERSECTION MATRIX ALGEBRAS 279

Moreover, since 502,41 (b, n, C, x),, =0 for y ¢ AU{0}, we get that the radical ¢
of gim(A!“) lies in the kernel of ¢.

Proposition 17. There exists a surjective, graded Lie algebra homomorphism
¢ - im(A) — 50241 (b, 7. C, )
given by ¢ (u +v) = @(u) foranyu+rv € im(AY)), where u € gim(A[d]).

We now turn to centrality. Let so(a) and so(b) be shorthand for soy,+1(a, 1, C, x)
and soy,41(b, 1, C, x), respectively.

Since the elements of a satisfy the defining relations of b, by universality, there
exists a surjective associative algebra homomorphism g : b — a. In particular,
g(xw,i) =a€aif Yley,) = qu (a) — E2r+2—q,2r+2—p(na)a and g(yp;)) =b€a
if Y(eq,i) = Epg(b) — E2r 124 2r+2— p(nb). This algebra homomorphism respects
the involution and induces a surjective Lie algebra homomorphism

g :so(b) — so(a) such that g¢ = .

Hence ker¢ C kery C 3(im(A[d])), where 5(im(A[d])) denotes the center of
im(Al9). Thus ker¢ C 5(im(A[d])), implying the following result:

Proposition 18. The map ¢ : im(Al9) — so(b) is a central homomorphism.

We also know that ¥ : im(Al“]) — so(a) is a universal central extension: so
there exists a Lie algebra homomorphism f so(a) — so(b) such that f U= ¢.
Since i is surjective, the generators of a are of the form a, a™, n(a), where a is
the element in a corresponding to the image (e, ;) of the i-th copy of a long root
A in A which was adjoined.

Since f Y = ¢, the map f induces an associative algebra homomorphism
f 1a— b given by

Xe,i if a is the element in a corresponding to
the image lz”(ea),i) = qu (a) - E2r+2—q,2r+2—p(na)
forsome 1 < p,g <2r+1withp#gq,p#2r+2—gq
andweQ,1<i<N,,

vo.; if a is the element in a corresponding to
the image ¥/ (36,1') = qu (a) — E2r+2—q,2r+2—p(na)
forsome 1 < p,qg <2r+1withp#gq,p#2r+2—gq
and 0 €O, 1 <i <Ny.

fla) =

We define f(na) to be nf (a) so that f preserves the involution.
But then g o f =1id, and f o g = idy, that is, a = b as associative algebras.
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STABLE FLAGS, TRIVIALIZATIONS
AND REGULAR CONNECTIONS

ELIE COMPOINT AND EDUARDO COREL

We study stalkwise modifications of a holomorphic vector bundle endowed
with a meromorphic connection on a compact Riemann surface. We in-
troduce the notion of Birkhoff-Grothendieck trivialization, in the case of
the Riemann sphere, and show that its computation corresponds to shortest
paths in some local affine Bruhat-Tits building. We use this to compute
how the type of a bundle changes under stalk modifications, and give several
corresponding algorithmic procedures. We finally deduce from these results
some applications to the Riemann-Hilbert problem.

Introduction

The motivation of this article originates in the Riemann—Hilbert problem on a
compact Riemann surface, and the present work follows it as a guideline. The
results presented herein are however not directly related to this problem. The reader
who is exclusively interested in new advances on the Riemann—Hilbert problem
will nevertheless find a couple of improvements on already known results. The real
interest of the present paper in the eyes of its authors consists in translating this
classical problem in a “new” setting (the setting of Bruhat-Tits buildings). In this
new context, the Riemann—Hilbert problem reveals new geometric objects (such as
Birkhoff-Grothendieck trivializations), whose study appears to be interesting by
itself, and seems also promising for the original problem.

The Riemann—Hilbert problem (RHP) has a long and distinguished history, not
even devoid of suspense, for it has been solved several times, using different tools,
in a seemingly complete and positive way. It was finally A. A. Bolibrukh, in a
celebrated series of papers at the beginning of the 1990s, who clarified the situation,
by rigorously defining (and exhibiting a counterexample to) the strongest version of
the RHP, thereby showing that people before him had either committed a mistake,
or solved in reality a weaker problem.

MSC2010: primary 51N30, 34MO03; secondary 34M50.
Keywords: meromorphic connection, vector bundle, Birkhoff-Grothendieck theorem, Bruhat-Tits
building, Riemann-Hilbert problem.
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The modern approach to the RHP was initiated by H. Rohrl in the 1950s, who
used the theory of vector bundles in a way that has been conserved since. First,
one constructs a vector bundle € outside the singular points, whose cocycle mimics
the monodromy. We call this the fopological RH problem, since the monodromy
is so much encoded in the topology of the constructed bundle, that construction
of the required connection becomes essentially trivial. The second step consists
of extending the bundle (and the connection) to the singular points by means of
a local solution to the inverse monodromy problem. It has been exposed in great
generality in [Deligne 1970] how to extend a holomorphic vector bundle €, defined
over the complement of a divisor % and endowed with a holomorphic connection V
having a prescribed monodromy about %, into a logarithmic connection (€, V) with
singularities on the divisor.

In this way, we get all logarithmic extensions of € with nonresonant residue
(the Deligne lattices). These two steps are sufficient to solve positively the weak
Riemann—Hilbert problem (i.e., with regular singularities). Note, however, that
in this second level, two different types of problems have been mixed. The con-
nection constructed is essentially unique up to meromorphic equivalence whereas
the holomorphic vector bundle setting already introduces much finer holomorphic
equivalence problems. This fact can contribute to explain some of the confusions
that have surrounded the precise formulation of the RHP.

The strong Riemann—Hilbert problem asks for a logarithmic bundle (with the
prescribed monodromy) which is moreover trivial. So, to solve the Riemann—Hilbert
problem in this way, one must modify the constructed Deligne bundle, over the
support of the singular divisor exclusively (to keep the singular set invariant), while
conserving its logarithmic character, until a trivial bundle is eventually found. Until
Bolibrukh’s celebrated counterexample [1990], it was widely acknowledged that
this was possible, and it is indeed so in several “generic” instances, although some
mistakes in the seemingly general solution by Plemelj had already been pointed out
(e.g., in [Treibich Kohn 1983]).

The counterexample found by Bolibrukh to the strong Riemann—Hilbert problem
requires the knowledge of all the logarithmic extensions of a regular connection, in
order to prove that none is trivial. Despite the production of both counterexamples
and sufficient conditions for a positive answer, no general necessary and sufficient
conditions for the solubility of the strong Riemann—Hilbert problem have been
given in terms of the monodromy representation only, except for the remarkable
case of an irreducible representation [Bolibrukh 1990; Kostov 1992].

As already stated, the strong Riemann—Hilbert problem admits a solution if and
only if the stalks of the Deligne bundle over the singular set can be replaced by
logarithmic lattices in such a way that the resulting bundle is trivial. To tackle this
problem, one should be able to
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(a) determine the set of all logarithmic lattices above a given point, and

(b) get a criterion for the triviality of the modified bundle.

Problem (a) can be considered classical, in the sense that it has been repeatedly
solved, under different guises, going back as far as [Gantmacher 1959], and including
[Levelt 1961; Babbitt and Varadarajan 1983; Bolibrukh 1990; Sabbah 2002]. In
this paper, we give a complete description of the logarithmic lattices in terms
of flags stabilized under the action of the residue of the connection; in a way,
our contribution is to make the solution to problem (a) given in [Sabbah 2002]
completely explicit and effective. We also give a partial answer to problem (b).
In the case of P!(C), the type of a vector bundle gives such a triviality criterion.
In our approach, starting with the Deligne bundle ©, we perform a modification
of a finite number of stalks, resulting in the bundle ©™°¢. The question is then to
compute the type of the modified bundle D™°. Generalizing a result by Gabber and
Sabbah (Proposition 28), we show how to determine the type of ©™°¢ from the type
of ®. Thus, problem (b) is reduced to computing the type of the Deligne bundle.
In a second step, we show that this problem in turn is reduced to the well-known
problem of connection matrices.

With these problems in mind, we introduce and study in this paper the notion of
Birkhoff—-Grothendieck trivialization of a bundle €, which is a pointwise modification
of € such that

(1) the resulting bundle % is holomorphically trivial, and
(i) the relative elementary divisors of the stalks give the fype of the bundle €.

The paper is organized as follows. In a first section, we define the category in
which we will work, and what we precisely mean by “modifying a bundle over one
or several points”. In a second part, we describe the geometry on the local lattices in-
volved. We describe this geometry in terms of the affine Bruhat-Tits building of SL,,.

The third part contains the main results of the paper. We use the previously
introduced setting to give an effective method to compute how the type of an arbitrary
bundle E is modified under certain pointwise modifications. This algorithm can also
be applied to compute the type of the bundle E. This third section concludes with
a generalization of an essential result originally due to Bolibrukh, the permutation
lemma, for which we provide an interesting geometric interpretation. This result
allows us to give a quite complete insight into the structure of Birkhoff—Grothendieck
trivializations, which we sum up as follows.

Theorem 1. Let A° be the set of pointwise modifications over x € P1(C) of a
bundle € that give a trivial bundle. Then M € A° is a Birkhoff-Grothendieck
trivialization of € if and only if M realizes the minimum of the canonical metric
between € and A° in the local affine Bruhat=Tits building of SL, at x.
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The fourth section gives the complete description of the set of logarithmic lattices
in terms of flags which are stable under the action of the residue of the connection
on the Deligne bundle!.

In the last part, we use these tools for study of the Riemann—Hilbert problem.
After recalling the construction of the classical Rohrl-Deligne bundle, we give a
very short proof of Plemel;j’s theorem on the Riemann—Hilbert solubility. This well-
known result becomes an immediate consequence of the geometrical interpretations
of the permutation lemma and the set of logarithmic lattices. We describe all
trivializations of the Deligne bundle over an arbitrary point, and we give a concise
proof of the Bolibrukh—Kostov theorem on the solvability of Riemann—Hilbert in
the irreducible case. Finally, we give algorithmically effective procedures that allow
to search the space of weak solutions.

1. Holomorphic vector bundles

Let X be a compact Riemann surface and let = : £ — X be a holomorphic vector
bundle of rank n. The sheaf € of holomorphic sections of E is a locally free
sheaf of O y-modules of the same rank n, where O x denotes as usual the sheaf of
holomorphic functions on X. There is a well-known equivalence between these
two categories. However, this equivalence does not hold for subobjects of the same
rank. Therefore we will privilege the sheaf-theoretical formulation.

Meromorphic connections. Let 9 = Zf’zl m;x; be a positive divisor on X . Let Og
be the sheaf of meromorphic functions on X having pole orders bounded by %,
and |9| = {xy, ..., xp} be the support of %. For any finite set S = {y1,..., ¥},
let (S)=y1+-+y:.

LetV:€ —€Qqy 521‘, (2) be a meromorphic connection with singular divisor &
on a vector bundle € of rank n. Sometimes for simplicity we’ll just say “connection’
for the pair (€, V). If we assume that 9 is the smallest possible (as we will do), then
the Poincaré rank of V at x € X is the integer p, (V) = max(0, m, — 1). We will
omit V whenever possible. If p,, = 0, the sheaf € is said to be logarithmic at x. Let
¥ = |9| be the singular, and F1oe = {x € ¥ | px = 0} the logarithmic singular sets
of V. If S1og # &, then one can define the residue map ResV € End(€/€_(g,,,))-
We will specify in parentheses the bundle if necessary.

’

The meromorphic bundle. Let M x be the sheaf of meromorphic functions on X and
let V' = € ®g¢, Jlx be the sheaf of meromorphic sections of £. A meromorphic
connection V on € has a canonical extension to V. Since the sheaf € can be

Independently, P. Boalch [2011] has taken a similar view on local logarithmic lattices, in terms of
stable filtrations and Bruhat-Tits buildings, albeit on the more general setting of a complex reductive
group. Restricting to GL; and SL;, enables us to give however more explicit formule; see Sections 3.2
and 3.3.
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embedded into V', we consider from now on the set
loc.
— ) Op O ~v n
H={FCV|F 0%}

of holomorphic vector bundles of V'. Each such bundle & € ¥ is automatically
endowed with a meromorphic connection induced by V. For simplicity, we won’t
make any notational difference between all these connections.

We say that F € ¥ is trivial if F ~ 0", or, equivalently, if F is generated by its
global sections, and quasitrivial if there exists a line bundle &£ such that ¥ ®¢, £
is trivial. Let 3y C ¥ be the subset of trivial holomorphic bundles in V. The
following result is well known (e.g., [Sabbah 2002, p. 134]).

Lemma 2. Let & € #y be a trivial holomorphic vector bundle in (V,V). The
space F(X) = ' (X, F) of global sections is a C-vector space of dimension n. For
any logarithmic singularity s € $10g(F), the residue Res;}V induces a well-defined
endomorphism ¥g € Ende (%F(X)).

Stalks and lattices. For & € 3, the stalk % at any x € X is a free (O x ) x-submodule
of rank n (or lattice) of V', which is a vector space of dimension n over (M )x.
Let Oy = (6/‘/\))c be the formal completion of (O x)x, and K = Frac(Oy) its field
of fractions. Similarly, the formal completion 9'/”; =%Fx ®y), Ox is a latticAe in
the vector space Vx = V'x ®(uy), Kx. This operation is harmless, as A = A is
a bijection between the sets of lattices in V', and Vy (cf. [Malgrange 1996]). We
define an equivalence relation ~, on # as

F ~x g; if and only if ng\{x} = gle\{x}-

For simplicity, we will drop the index x as soon as no ambiguity can arise. Let A
be the set of lattices in Vy. Any coset [¥] of #/ ~ can be identified with the
set Ay, by identifying & € [¥] with its formal stalk @ € A at x. Since X is
compact, two vector bundles €, F € ¥ have equal stalks outside a finite set.

Lemma 3. Let € € ¥ be a holomorphic vector bundle. For any family of formal
lattices My € Ay for x in a discrete set &, there exists a unique vector bundle
€M ¢ % such that
M €x le ¢Ef)7
(€7 )x = .
MNVyx ifxed.

Conversely, for any F € ¥, there exists a discrete set & and a family (Mx € A x)xey
of lattices such that F = €M . If € is endowed with a meromorphic connection V,
there is a canonical extension VM of V| x\g as a meromorphic connection on eM.
In particular, a bundle € € ¥ is completely determined by its coset [€] € #/ ~«
and the lattice %; €Ay
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The sheaf V" is trivial (as a meromorphic bundle), and the group G of (mero-
morphic) automorphisms of the space I'(X, V) is isomorphic to GL,(C(X)). Let
A% = A, N%, be the set of trivial bundles in the coset A . The subgroup Gx C G
of automorphisms of I'(X, V) that leave A globally invariant is called the group
of monopole gauge transforms at x. Each element of G, sends a trivial sheaf %

a trivial sheaf F such that F| x\(x} = J+’| X\{x}- An element of Gx modifies at most
the stalk .

2. Lattices and the affine building of SL,

2.1. Flags and filtrations. Let V be a vector space over a field K of characteristic 0.
Given a flag F of vector spaces 0= Fo C F; C---C Fy =V, with length |F | =s and
signature o (F) = (ny,...,ns) where n; = dimyx(F;/ F;—1), amap u € Endk (V)
stabilizes the flag F if u(F;) C F; for all 0 <i < |F|. Let §I(V') denote the set
of flags of V, and 1, (V) the subset of flags that are stabilized by u. A flag F’ is
transversal to F if |[F'| = |F| =s and F; @ Fs_; =V for 1 <i <. In this case,
the signature of F’ is equal to 6~ = (ng, ..., n1). The left action of the permutation
group Sy, on a sequence a = (ay,...,dy) is given by ta = (a¢(1), . . ., dg(n)) for
7 € Sy. Let s; be the transposition (i,7 + 1) exchanging i and i + 1. The set
S ={s1,...,5,—1} makes (S, S) into a Coxeter group of type A,_1.

Let (e) be abasis of V, and let 6 = (11, ..., ns) be a signature. Let F? (e) be the
flag with elements F{ (e) = (ey, ..., ey;) where v; =ny +---+n;. The basis (e) is
said to be adapted to F if any element of the flag is spanned by a subfamily of (e),
strictly adapted if F = F°(e), and transversal to F if F; @ (ey;+1,...,en) =V
for all i. The parabolic subgroup stabilizing a flag F (for the action on a strictly
adapted basis) is the subgroup Wg = (s; |i € I) of S, generated by the generators
corresponding to the missing dimensions I = [n]\{dimy F; | | <i < n}. These
properties depend in fact only on the KK-vector subspaces spanned by the vectors
of (e). The opposite flag F —(©) js then defined as the unique flag transversal to F
for which (e) is adapted. This last notion does not even depend on the order in
which the vectors of (e) are taken. A flag F’ is transversal to F if and only if
there is a basis (e) of V strictly adapted to F such that F’ = F ~©) A K-frame is
an unordered set ® = {L, ..., L,} of one-dimensional K-vector subspaces of V'
such that L{ +---+ L, = V. The notions defined in the previous paragraph make
sense for a frame (with a fixed order on the lines for some of them). The relative
position p(F, F') € S, of two flags F and F' is the? permutation t € S, such that

2Strictly speaking, p is only unique when both flags are complete. Otherwise, we shall a bit
imprecisely consider p either as its double coset in Wg/pWg modulo the parabolic subgroups
attached to F and F’, or to the unique minimal length representative of this coset (or possibly even to
any such representative).
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there exists a basis (e) strictly adapted to F for which (te) = (eq(1), ..., er@)) is
strictly adapted to F’.

Similarly, a flag S of length s in [r] = {1,...,n} is an increasing sequence
S : Sy =2 CS; C---CSs = [n] of subsets of [r], whose signature is the
sequence o(S) = (ny,...,ns) where n; = |S;| —|S;—1|. For a given signature
o = (ny,...,ny), the standard ascending flag S~ (o) of signature o is the flag
composed of initial segments of [r] of lengths ny +---+n; for 1 <i <.

Given a sequence D = (dy, . ..,dy,) € 7", let D~ be the sequence of the elements
of D arranged in increasing order. Define the ascendent flag S (D) of D as the
sequence of subsets of indices corresponding to blocks of equal elements of D~
Let also (Z™")” denote the set of nondecreasing integer sequences. Finally, let

(1) D=~D' if D" = (D).

We denote with a ™~ symbol all similarly defined descending quantities. Note that
D™ = wo (D) where the permutation wg = (n,n—1, ..., 1) is the largest element
of S}, in the Bruhat order.

We further define D+ £ = (d; +¢,...,d, +{), Dy = D —min D € N” and
DY =maxD—DeN" LetTrD = Z?:l d;i and AD = max D — min D, and
finally

n

2 n
||D||=Z(dj—Tl;D) and i(D):Z(maxD—dj)eN.

Jj=1

ji=1
We list some useful and obvious properties in the following lemma.
Lemmad. For D € 7" and £ € Z, we have

(i) A(D+{¢)=ADandi(D+{)=i(D),

(i) A(=D)=AD andi(—D)=i(D°) =Y"}_,(dj —min D),
(iii) i (D) +i (D% =nAD.

An F -admissible sequence is an integer sequence whose ascending flag is equal
to the standard ascendent flag of signature o (F) = (ny, ..., ng); in more concrete
terms, an integer sequence

D=(dy,....d1,d>,...,d>,...,ds,...,ds) withd; <---<d.
AR

nj times no times ng times

Let Z"(F ) be the set of integer F -admissible sequences, and let
E(V)={(F,D)|F €3l(V)and D € 7"(F)}

be the set of F -filtrations of V.
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2.2. Lattices. In the remainder of the section, we fix a point x € X and a coset
A € H/ ~5. We drop the index x for simplicity. The field K = (/JIZX\)X is local, and
endowed with the discrete valuation v = ord,, whose valuation ring and maximal
ideal we denote by O and m. Let V be the K-vector space 'y ®u ), K of
dimension 7.

Let £(u) denote the free O-module spanned by a family () of vectors in V. An
O-module M € V is alattice if there exists a K-basis (e) of V such that M = £(e).
Let

va(x) =max{k eZ|x € mkA}

be the natural valuation of V' induced by A. For any lattices M C A in V, we
define the interval [M, A] as

[M,A]={N €A |M CN CA}.

Let mp : A — A = A/mA ~ C” denote the canonical surjection on the quotient
module.

Elementary divisors. Let z be a uniformizing parameter of K. For any two lattices A
and M in V, there exists a unique increasing sequence of integers d; <--- < d,
(the elementary divisors of M in A) and an O-basis (e, ..., e,) of A such that
(z%ey,...,z%e,) is a basis of M. Such a basis (e) is called a Smith basis of A
for M. We will write them dl.A (M) if we want to specify the respective lattices,
and we put

EDA(M) = (dM(M),...,d>M(M)).
Note that dlA(M) = vp(M) and EDp (zKM) = EDA (M) + k. Let also
Mp=z"""Mpr and  pa (M) = dime M /mA.

If P € GL,(K) is a basis change from A to M, the sequence EDj (M) =

(di,...,dy) can be computed in the following manner. For a subset / C [n] of
cardinality |7|, let S = ) ;<7 s, and for [I| = |J| = k, let Py sy denote the
(I, J)-submatrix of P. The sequence (d,...,dy) satisfies
2) dip = ey —ep_1 whereey = " HEI? k{v(det Pr.y)}and eg = 0.
It is convenient to be a bit more lax in the definition, and allow the elementary
divisors to appear in another order. To avoid ambiguities, we will specify that (e)
is an ascending Smith basis of A for M, if the vectors in (e) are ordered according
to EDA (M)~

We say that a matrix P is D-parabolic if P;j #0 = d; <dj for1 <i,j <n.
For any commutative ring R, put Gp(R) for the group of D-parabolic matrices of
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GLy(R). The subgroup of GL, (0) that acts on the set of Smith bases of A for M
is the subgroup of Yp-parabolic matrices

Yp ={P € GL,(0) |v(Pij) = d; —d;}.

Being % p-parabolic is stronger than D-parahoric, which only stabilizes the induced
D-flag in A/mA, and weaker than D-parabolic, which stabilizes a K-flag of
signature o (D). For any sequence D = (dj, . .., dy), let zP be the diagonal matrix
diag(z"'l Lo,z We will frequently use the following type of diagram:

A:(e)Z—D>M:(8)

P, e

A:(e/)Z—D>M:(8/)

which means that (¢) and (e’) are two Smith bases of A for M . Note that in this case
P € GL,(0) is §p-parabolic. Since Gp(C) C $p holds, the obvious factorization
P = Py Py of alattice gauge P € GL,(0) into a constant term Py = P(0) € GL,(C)
and a term Py = I + zU with U € gl,(0) tangent to [ satisfies the property

Pe%p < (PeGp(C)and P; €%p).

We can therefore usually assume that P is tangent to /. Note that this also holds
for a right factorization P = P; P.

Sometimes, we will find it more convenient to consider the elementary divisors
with their multiplicities. In this case, we will put dy, ..., d for the distinct ele-
mentary divisors of M in A and let n; be their respective multiplicities. The set
[n] ={1,...,n} of indices of ordinary (simple) elementary divisors is partitioned
into the subsets /; corresponding to a single value of the elementary divisors:

Ij ={1<{<n|d;=d;} forl<j<s.

2.3. Relative flag of a lattice. Any lattice M induces a natural flag in A = A /mA.
For any k € Z, let

My = (™ M NA)+mA €[mA, Al

Lemma 5. Let A, M be latticesin V. Let dq,...,ds be the distinct elementary
divisors of M in A. The flag in A

FA(M)i()C]TA(Mdl) C "'C?TA(MdS) CA
has signature o (ED p (M)).

Proof. Let (e) be a basis of elementary divisors of A for M, and I = {1 <i <
n|d; <k}. Then M} admits (1) as basis where u; = ¢; ifi € [ and u; = ze; ifi € 1.
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The spaces M}, are thus embedded lattices, all belonging to the interval [mA, A],
so they take at most n + 1 different values. Their images M ; = w (M) in the

quotient space A form a flag FA (M), and it is clear that M _, C My if and
only if k is an elementary divisor of M. If dy, ..., d are the distinct elementary
divisors of M in A, with multiplicities n;, the subset of indices corresponding to d;

can be written as
Ii=[m+-+njn+-+njp1—1].

The lattices My, M, coincide if and only if there exists i suchthatd; <k, <d;
(with the conventions dy = —oo and dyy; = +00). Therefore the flag FA (M)
has exactly length s, and its signature is equal to the sequence (11, ...,n5). O

The components of FA (M) can be indexed either as M d;» by the value of the
elementary divisor d; to which it is attached (if known), or as M, by its index in
the flag (here 7). In this latter case, we will also use the notation F’ l.A (M). Tt will
hopefully be always clear which convention we are using.

Lemma 6. Let A, M, N be lattices in V. Let D = EDA(M)” and D' =
EDA (N)”. If either

(i) there exists a common Smith basis for A, M and N, or
(ii) the flags FA(N) and FA(M) are transverse,

then we have
EDy(N)= D' —oD,

where o =p(F2(N), FA(M)) is the relative position of the induced flags in A JmA.

A similar formula holds for the descending sequences D™, but with woow
instead of o.

Proof. We summarize the setting by means of the following scheme:

ZS/
A:i(e) ——= M : (¢)

L

As(e) Z M)

If there is an apartment containing A, M, N, then one can assume that P is a
permutation matrix, namely IT —1. In the second case, it is possible to choose P =
My, (I +zU) with U € gl(0). Let Q =I+zU. Then we have I~’,~j = Qjjzli TS+,
According to formula (2), we have d; = min;<; j<,(V(Pij) +1j — Sp+1—i). The
minimum of #; — s,41—; is attained for (i, j) = (1,1), and by assumption we
have v(P;1) = 0. Therefore, we get di = t; — s5,. Let us prove by induction that
di = ti —spy1—i forall i. Assume that e; = Ty iy — Sgng1—i,... 0y fori <k —1.
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Formula (2) yields e = min|7|=|s|=x{v(det Pr y)+ Ty —(woS);}. The minimum
for Ty — (woS)y is attained for I = J = {1,...,k}, while by assumption the
principal minor Py ; has valuation 0. Hence e = Tx] — (woS)«] and thus dy =
ex —€k—1 =ty —Spy1—k for all k. O

For a flag F = (F;)1<j<s of K-vector spaces, and a lattice A, let Fp =
(F NA)/mA be the flag ((F; N A)/mA);<;<s induced in A/mA. The following
result is easily established.

Lemma 7. Let F and F' be two K-flags of V. For any basis (e), adapted for F
and F', one has

p(F,F"y=p(Fp,Fp), where A =%(e).

2.4. The affine building of SL(V'). For this section, good references are [Garrett
1997; Ronan 1989], and especially [Abramenko and Brown 2008]. The affine
building By naturally attached to SL(V) is the following (n — 1)-dimensional
simplicial complex. Two lattices A and M are homothetic if there exists @ € K*
such that M = aA. Let [A] be the homothety class of the lattice A in V. Two
classes L and L’ are adjacent if and only if there exist representatives A of L
and M of L’ such that mA C M C A. Consider a graph whose vertices are the
homothety classes of lattices in V', and edges connect all adjacent vertices. The
affine building By, is the flag simplicial complex associated with this graph, or in
other terms, its cligue complex. A simplex A4 is a set {L1,..., L} of mutually
adjacent vertices, and the face relation B < A is defined by the inclusion B C A of
these sets.

Lemma 8. Let L, L', L" be vertices in B,. If L' and L" are adjacent, then for
any representatives A € L, M € L' and N € L", the flags FA(M) and FA(N)
are compatible (in the sense that their components are all pairwise comparable). In
particular, a maximal simplex C induces a complete flag in A /mA.

Proof. One can find representatives A € L, M € L' and N € L”, and a basis (¢) of A
such that M = £(zPe) and N = £(zP"¢), and that D'— D € {0, 1}". Indeed, let ()
be a basis of M/mM which is adapted to both flags F M (A) and FM (N). There
exists a lifting (¢) of (1) in M which is a Smith basis of M for A. Since M and N
are adjacent, any lifting of () is a Smith basis for N. Then (e) = (zFPM A)g) ig
a common Smith basis of A for M and N. By definition of adjacency, one can
ensure that the representatives satisfy mM C N C M ; thatis, D' — D € {0, 1}".
Letnow [y ={l <i <n|d; <k}and I} ={l <i <n|d<k}. Then we have
Iy C I,’c C Iy for all i. Since FA(M) is spanned by the subfamilies (@i)ier,
for k € Z, the claim follows. O
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Simplices and chambers. A maximal simplex, or chamber in B, is an n-chain C
of vertices Ly, ..., L,—1 with representatives A; for 0 <i < n — 1 satisfying

mAg CA; C---C Ay CAy.
A basis (e) is a fundamental basis for C at L; if
Litjymodn =[£L(e1,...,¢j,z€j11,...,z¢ey)] for0<j<n-—1.

Lemma 9. The set of chambers which contain a given vertex L is in bijection with
the set of complete flags in A /mA with A € L. A basis (e) is fundamental for C
at L if and only if its image in A /mA is strictly adapted to the flag F*(C).

A (partial) flag F in A/mA can be lifted (by 71[11]) to a uniquely defined simplex
in B, containing the vertex L = [A].

Definition 10. The graph-theoretic distance, canonical metric and index on B, are
defined, respectively, by

d(L,L') = A(EDA(A)), d(L,L")=|EDy(A)]

. [L:LT=i(EDA(A)°)
for any representatives A, A" of L, L’.
Note that d(L, L") = —va (A") —va/(A) also holds, and that these three maps

are indeed symmetric. The d metric makes the geometric realization of By into a
CAT(0) space [Abramenko and Brown 2008, Theorem 11.16, p. 555].

Apartments. Let ® = {d;,...,d,} be a K-frame of V. The set
Ap ={A =41+ -+ £, |{; is alattice in d;}

of lattices spanned over multiples of the vectors in ® induces a simplicial subcom-
plex in the affine building B, called the apartment spanned by ®. For any lattice
A € A, a A-basis of the apartment A is a collection (¢) = (eq, ..., e,) of vectors
such that e; spans d; and v (¢;) = 0. Such a family is unique up to permutation
and to multiplication of each e; by a scalar A; € 0*. The lattice is an element of
the apartment s if and only if the family (¢) = (eq, ..., ey) is actually a basis of
the lattice A. Equivalently, and without reference to a basis, this means that

A=é/\ﬂdl’.

i=1
In the general case, the lattice Ay = @7=1 A N d; is the largest sublattice of A in
the apartment ${¢. The homothety class Lo = [A¢] is therefore the closest point
projection of L =[A] on g, and the map
P By — Ao
A Aq;
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is the retract onto d .

Galleries and type. Two chambers C and C’ are adjacent if they share n— 1 vertices
in common (a so-called panel). A gallery T from C to C’ of length £(T") = £ is
a sequence of chambers I' = (Cy = C, Cy,...,C; = C’) such that C; is adjacent
to Cjy1. The gallery distance is defined as

£(C, D) =min{{(T") | T is a gallery from C to D}.

The vertices in the building B, can be labelled by Z/nZ, which we assume given
from now on. Let S = {sy, ..., s,—1}. The affine Weyl group W of the building
then has a presentation

W =(S|sf =1and (sisit1)* = 1),

where the indices are understood modulo 7. Every chamber has exactly one vertex
labelled i, that we denote M;(C), for every i € Z/nZ. Two chambers are called
i-adjacent when their common panel precisely does not contain those vertices
labelled i. Two i-adjacent chambers C and C’ are then said to have W -distance
5(C,C" =s;. UT = (C,Cy,...,Ci—1,C’) is any gallery from C to C’ lying
inside an apartment, the W -distance §(C, C’) is defined as the product

§(C,C") = 8(C,Cy)-+-8(Cy_y, C).

There is a bijection between minimal galleries between C and C’ and minimal
length decompositions of the W -distance §(C, C’) € W into products of generators
in §. Let Zg be the set of n-tuples of integers summing to 0. A labelling of the
vertices by Z/nZ induces an isomorphism

¢(si) = ((,i +1),0) forl<i<n,
#(s0) = ((1,n),(1,0,...,0,—1)).

Let § = §(C,C’) be the W-distance between two chambers C and C’. Let
L = My(C) and L' = My(C’) be the respective unique vertices of type 0 of C
and C’. Then ¢ (8) = (0, K) is the unique couple such that there exists a fundamental
basis (e) of C at L for which (zKe,) = (z%1 €o(1)s- - zkn €5 (n)) 18 a fundamental
basis of C" at L’.

Walls. Let (e) be a basis of V, and let & be the apartment spanned by (¢). In
the basis (e), any lattice L in ${ can be represented by a unique (up to an integer
multiple of (1,..., 1)) n-tuple (x;(L),...,xn(L)) € Z". The set ¥ of walls of V
for W is the set of hyperplanes

w g SpxZy  given by {

3) Hl.(];.)={xe[R”|xi—xj=k} forl<i<j<nandkeZ.

Define the corresponding half-spaces
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HY = (x e R" | x; —x; 2 k},
PIiE];)_ ={x eR"|x; —x; <k}.

For a hyperplane H € # and a simplex A4, let
+ ifACHT\H™,

og(A)=4— ifACH \HT,
0 fACHYNH".
A wall H separates the simplices A and B if og(A)og(B) = — for the usual

sign product rule. Any simplex A4 is completely defined by its sign sequence
(orr(A)) gese. However, there is only a finite number of them which are relevant
(i.e., whose defining equations or inequalities are not redundant). If we define

the fundamental chamber as Cy = (Lo, ..., Ly—1), where L; = [£(eq,..., ¢,
zej4+1,...,zey)], the (essential) walls of Cy are the hyperplanes Hi((()z?modn)ﬂ

for 1 <i <mn, and its sign sequence is
+ forl<i<mn—landk <Oori=nandk >0,
O'H.(k} CO) = . .
.G modm)+1 — forl<i<n—landk>=0ori =nandk <0.
Definition 11. Let A, B be simplices in B,. The gallery distance £(A4, B) is defined
as ming<c,p<p ¢(C, D).

Lemma 12. For two simplices A, B we have
€(A.B) = {H € % |og(A)or(B)=—}|.
If A =[A] and B = [M] are vertices, we have
(A, B) = Z max(0,d; —d; —1), where (dy,...,dn) =EDA(M)”.

1<i<j<n
Proof. The first assertion is known (see [Abramenko and Brown 2008, p. 32]). Take
a basis (¢) of V where A has coordinates @ and B coordinates b. The description (3)
of walls shows that 4 and B are separated by Hl(];) ifandonly ifa; —a; <k —1
and b; —bj = k + 1. Taking for (e) a Smith basis of A for M gives a = 0 and
b= (di,...,dy). The result is then a straightforward count. |

2.5. Forms. For L € By, let L = A/mA ~ C" for A € L. This definition is
independent of the choice of A as there is a canonical isomorphism between A /mA
and m¥ A / mk+1A for any k. For L' € By, let N be the unique representative of L’
such that vp (V) = 0, and define

4) 7 (L) = (N +mA)/mA € L.

The map 77, induces an isomorphism of simplicial complexes between the link k(L)
of L =[A] and the set E of chains of linear subspaces of L. A form in a lattice A is
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a C-vector subspace Y of A spanned by an O-basis (¢) of A. For any x € A, there
is a unique representative xy of the coset x +mA in Y. This induces a well-defined
isomorphism

¢y Y = A/mA.

We will say that Y C A is a Smith form for M if there is a basis of ¥ which is a
Smith basis of A for M.

Lemma 13. Let A be a lattice in V and Y be a form in A.

(1) For any basis (e) of the lattice A, there exists a unique C-basis (ey) of the
form Y whose image in A /mA coincides with the image of (e). We call (ey)
the Y -basis of (e).

(ii) Given a filtration (F, D) in B(A/mA), there exists a unique lattice M =
Ly (F, D) such that FA(M) = F and ED (M) = D that admits a Smith
basisinY.

(iii) For any lattice M such that d(A, M) = 1, let (e) a basis of A /mA respecting
A (M) = M/mA. Then the Y -basis (ey) is a Smith basis for M .

Proof. The basis (¢) obtained by putting &; = (¢;)y = ¢;1(nA (e;)) obviously
satisfies the conditions of (i). For any C-basis (¢) of Y which respects the flag F,
put M = @7_, z%e;. Let (¢) be another basis of ¥ and M = @/, z%&;. The
matrix of the change of basis from (zPe) to (zP¢) is equal to P =zPCz~P, where
C € GL,(C) is the matrix of the change of basis from (e) to (¢). By definition
of the parabolic subgroup P, one has z2Cz~P € GL,(0) <= C € Pr; hence
M = M if and only if (e) and (&) both respect the flag F. Note that the gauge
from the basis (e) to its Y -basis is always of the form P = I + zU € GL,(0). Let

W =maA(M) and let
0, O
T =
(v )
be the elementary divisors of M =z7vA (M) A1 with respect to A. Assume that (e)

satisfies the assumptions of (iii). Then the Y -basis (ey) is obtained by a gauge
P =1+zU € GL,(0). Putting

Ui UIZ)
U= ,
(Uzl Uz,

we have
T A
Y :(ey) My
1+zUT ]LNJGGLH(@‘)
T

A:(e) —=—= My
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since 5
~ I, +zUqq z2Uq,
U=zTI+4:zU ( ) :
( =" Uit In—r+zUz
The basis (ey) is therefore indeed a Smith basis of A for M. |

For any two forms Y and Y in A, the set of gauges between bases of Y and Y is
an element of the double coset GL, (C)\GL,(0)/GL,(C). Let z be a uniformizing
parameter. With the convention that deg, P = oo if P € GL,(0)\gl(C[z]), the
following definition makes sense.

Definition 14. Let Y, Y be two forms in A. Define the z-distance as
§:(Y,Y) = min(deg, P,deg, P~') e NU {oc}
for any gauge P from a basis of Y to a basis of Y.

Lemma 15. If t = d(A, M), then for any form Y of A, and any uniformizing
parameter z, there exists a Smith form Y for M at a z-distance 6;(Y,Y) <t —1.

Proof. There exists a Smith form Y’ of A for M. Let P = Py+ Piz+---€GL, (@)
be a gauge correspondmg to a basis change from Y to Y'. Let P = Py+---+ sz
for some k = 0, and let ¥ be the form obtained by this gauge transformation, as
explained in the following scheme:

vy vy oy

|- |-

M M
0

We have Q =z~ P p~1p;D = (ﬁ,-jzdf —di) where P=P'P. By construction,
we have P = P~Y(P — (P = P)) = I + zK+1U with U € gl(0). As soon as
k>=1t—1, we have Q € GL,(0); hence the form Y is a Smith form for M . O

2.6. Shortest paths and elementary splittings. A shortest path is a path I" in By,
such that for any vertices L, L’ € T', the length of the path between L and L’
induced by T is equal to d(L,L’). For a path T' = (Lg,...,L;) in By, and
a representative Ay € Lo, let the Ag-normalized sequence of I" be the unique
sequence of lattices A; € L; such that vp,(A;) = 0.

Lemma 16. Let A, M € A. The A-normalized sequence (A, Aq,..., Ay = Mp)
of a shortest path from [A] to [M ] satisfies A D Ay D---D Ay D z'A.

Proof. LetT' = (A = Ay, Ay, ..., Ai—1, M = A;) be a path of minimal length 7,
and let us prove that A D Ay D--- D A, by induction on ¢. For ¢ = 1, this is the very
definition of adjacency in B,. Assuming that the claim is established for any pair of
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lattices at distance <¢—1,wehave M CADA; D---D A,;_; for the normalized
sequence of I'. Since A;_; and M are adjacent, there exists a unique k € Z such
that zZKA,_; D M > z¥T1A,_;. We know that d(A, A,_;) = — 1, and hence we
have A D A;_; Dz~ A; therefore we get

ELIN DzkAt_l oM Dzk'HA,_l > itk

If £ > 0, then vp (M) = k > 0, which was excluded by assumption. But if k < 0,
then d(A, M) < t, which is also excluded. Thus we have k = 0, and the claim is
proved. O

The following result explains how to construct some shortest paths algebraically.

Proposition 17. Let L, L' € B,, and let t = d(L,L’). For k € N, let L} =
[N +wkA], and My = [A Nk~ A'], where A € L and N’ € L' are such that
VA(N)=0. Thend(Ly, Lxy1) =1for0<k <t—1and L; = L'. The paths

Cowin(L, L'y = (Lo, L1,....Ly) and Tya(L,L")= My, My,..., My)

are shortest paths from L to L', respectively called the min- and the max-shortest
path from L to L'. For any A-normalized sequence (Ng = A, Ny,...,N;y = M)
of a shortest path T’ from L to L', one has

L;CN,CM; forO<i<t.

Proof. The existential part of the lemma is easy to verify by using Smith bases of the
representatives A € L and M € L', and is left to the reader. First note that the min-
and max-shortest paths are in correspondence under the duality map A — A* =
homg (A, 0), so we only need to prove claims on one type of path. Note that the
shortest path interval is symmetric. Indeed, letting I'(L’, L) = (Lj, L)..... L}),
we have Ly = [Ma +z5A] and L', =[Am+ z'=% M. By definition we have

App+z 5 M= 270N o oAM=k p —on (=K (kA g =0y,

Therefore L’ Ly.

-k = ‘ .
Now we turn to the proof of A; = M +m!A C N; C ANm'~' M = M; for the
shortest path I = (Nj, ..., N;), which we will prove by induction on the distance

t =d(L, L’). For convenience, let any path ((A]= Lo, Ly,...,L;—1,[M]= L;)
be represented by its A-normalized sequence (A, Aq,...,A;—1, Ay = M) of
lattices A; € L; such that vp (A;) =0. The claim is obvious for # = 1. Let us assume
it holds for any shortest path between pairs of vertices in B, whose distance is at
most ¢ — 1. Suppose then that d(A, M) =t. Let A=A¢g DA D---DA_1 DM
be the min-shortest path from A to M andlet AD A’} D---D A’,_; D M represent
the path T' of minimal length. By assumption, d(A, A’,_;) =t — 1, therefore
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we have A D A/, D z/~1A, and by definition, we have A,_; = M + z/71A.

t—1
Therefore, we get

A1 NAN,_ =M +27TA) N A,
=M+ E"'ANAN,_;) (because M C A,_))
=M +71A (since ' 'A C A,_))
= A1

Thus A;_; C A’t_1 holds. On the other hand, M;_; = ANm~' M is by construction
the largest lattice containing M, contained in A and adjacent to M. Therefore
A1 C A’t_1 C M;_,. By the induction assumption, the claim is established. [J

If D=(dy,...,d,) are the elementary divisors of Mp in A, then the lattices
A on the (normalized) min-shortest path from A to M have elementary divisors
Dy = (min(dy, k), ..., min(dy,, k)) in A. The differences Ay, = Dy — Dj_; are
the intermediate elementary divisors as explained in the following:

A A Ay A VA (M)
z21 z22 z2t—1 t ZVA
&) A Ay Ay A

Ay

Let for simplicity 7 = (1,...,1)and £1 = (£, ..., 0).
Definition 18. For D = (dy,...,d,) € 7", let v = min D, let t = max D and
D; = (min(d1 —v,i),...,min(dy —v,i)) forl <i <t.
The elementary splitting of D is the unique decomposition D = Ag+ A +---+ Ay
where Ag =vl € Z" and Ay, = Dy, — Dy, €{0,1}" for 1 <k <t.

We write A; (D) if we need to specify the sequence D. The next straightforward
lemma is left to the reader.

Lemma 19. Let EDpA(M) = Ao + Ay + -+ + A; be the elementary splitting
of EDA(M) for A, M € A. Then we have Ay = va(M)I and the following
statements hold:

(1) 6; =TrA; = upr(A;), where Aj € Tin(A, M) as in (5).
(ii)) A;(EDp(A)) =1 —Ag_it1(EDA(M)) for 1 <i <t. In other terms,
EDp(A) =(—t —vaMNI+ T —A)+--+T—Ay)
is the elementary splitting of EDps (A).
(iii) Let A =[A]and B =M. The gallery distance £(A, B) is given by

t—1

(A B) =) (n—5)8is1.

i=1
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Note that the sequence 81, ..., d; is nonincreasing, and that we also have

Si=[{1<j<nl|di=i+va(M)}]

3. Birkhoff-Grothendieck trivializations

The central result in the theory of holomorphic vector bundles on P! (C) is the
Birkhoff-Grothendieck theorem, which states that any such bundle is isomorphic
to a direct sum of line bundles. In this section, we take X = P!(C), and we
investigate what properties of the vector bundle can be retrieved by considering
only the Bruhat-Tits building at a point x € X.

3.1. The Birkhoff-Grothendieck property. According to Lemma 3, a holomorphic
vector bundle € € ¥ is completely described by the coset A =[€] € #/ ~ and the
lattice A =€, € A. Let us take up the notations of Section 2 again. Let V' denote
the formalized meromorphic stalk °l7; and let B be the corresponding Bruhat-Tits
building. Let By = {{M]|é™ is trivial} be the subset of trivializing lattices of B.

Note 20. Strictly speaking, L € By contains exactly one lattice M € L such that the
extension €M is trivial. Any other MelL gives a quasitrivial vector bundle M
There is no real need to make the difference, since one gets a trivial bundle by
simply tensoring with a line bundle.

Lemma 21. By # @ forany x € X and A € ¥/ ~.

The existence of an analytic trivialization outside of an arbitrary point is a very
general result on holomorphic bundles over complex analytic manifolds. This
much more restrictive algebraicity statement follows easily from the Birkhoff—
Grothendieck theorem.

Proof. Let € € A be a representative of the coset A. Let X* = X'\{x}, and
A a neighborhood of x. The Birkhoff—Grothendieck theorem implies that there
exists a sequence of integers (ay,...,a,) € Z", and linearly independent sections
O1.s...,0, € D(X*,€)and 7, ...,0, € ['(A,€) such that 5; = z~% o; for a local
coordinate z at x. The section ¢; admits therefore a meromorphic extension at x,
that we still denote ;. The trivial bundle & € H spanned by (o ...,05) is a
trivialization of € at x as required. O

We say that any such bundle % is a Birkhoff~Grothendieck trivialization of € at x.
We’ll often write BG for short. Let BG(€) C ¥ for the set of BG trivializations
of € at x. Note that any F € BG,(€) corresponds uniquely to a decomposition
of € as a direct sum of line subbundles (a BG decomposition)

(6) %:@gei.

i=1
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Note 22. A line bundle on P is characterized by its degree. Recall that, for any
decomposition (6), if the integers a; = deg &; satisfy a; = --- = a,, then the
sequence 7' (€) = (ay,...,ay) is unique and called the rype of €.

In the case where the coset [€] = A € #/ ~ is fixed, we write
BG(A) = {M € A° |¢M € BG,(¥)},

and T(A) instead of T'(€). The global sections %(X) of a trivial bundle & € [¢]
induce, by taking stalks at x, a form Y3z in the corresponding lattice M = %, € A,
that we call the global form of M . The link between the Birkhoff—Grothendieck
theorem and the algebraic structure of the local lattices is then given by the following
straightforward characterization.

Lemma 23. The trivial lattice M is in BG(A) if and only if there exists a Smith

basis (e) of M with respect to A that is simultaneously a C-basis of the global
form Yar of M.

In this case, the basis (¢) will be called a BG basis for A. We state now the
following result separately for further reference.

Proposition 24. Let € € ¥ be a holomorphic vector bundle. For any BG trivializa-
tion F of € at any x € P1(C), the type T (€) of the bundle € is equal to the sequence
of elementary divisors EDx (M) of the stalk M = % with respect to A = €y
(viewed as lattices in V).

The BG trivializations of a bundle € are as a rule not unique, nor is any trivializa-
tion of € necessarily BG. One of the aims of this section is to prove the following
local characterization of BG trivializations. Recall that the Bruhat-Tits building is
endowed with three distance maps: the graph-theoretical distance d, the canonical
metric d and the gallery distance £ (which is actually a pseudodistance on the
vertices).

Theorem 25. Let A = €. Let Xiex be the lexicographic, and X\exrev the reverse
lexicographic orderings on 7". Then we have:

() T(€) = min<, {EDA(M)™ | M € A%} = max,, {(ED(M)™| M € A%},
(i) If M € A° then the following conditions are equivalent:

(a) M € BG(A);

(b) EDA(M) = T (€); )
() d(A,M)=ming _,od (A, M);
(d) £(A. M) =ming_,o L(A, M).

(iii) Moreover, if M € BG(A) then d(A, M) = min 0 d(A, M).
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In other terms, in the set of elementary divisors on A° with respect to €, ordered
by decreasing values, the minimum by direct lexicographic ordering coincides with
the maximum by reverse lexicographic ordering, and this value is exactly the
type T (€). Moreover, any trivial lattice having 7' (€) as elementary divisors is a
BG trivialization of €. Finally, the BG trivializations of a lattice A are exactly
the geodesic projections of A onto A° for both metrics d and £. This result will
be proved in two steps: Section 3.2 is dedicated to proving the first item and the
implications (a) = (b), (¢), (d), (iii), and Section 3.3 to the converse implications.

3.1.1. Monopoles and BG trivializations. Recall from Section 1 that the group
of monopole gauge transforms at x sends a trivial sheaf & to a trivial sheaf F
such that F| x\ (x} = §| x\{x}- This group is described by the group of unimodular
polynomial matrices GL, (C[T]), that is, matrices of the form

P=Py+ P,T+-+ P, T* where o € C*,det P = a.

More precisely, assuming that x = 0, a matrix IT is a monopole at x if and only
IT1 = P(1/z) with P € GL,(C[X]) and z is the standard coordinate on P! (C).

A trivial bundle % € ¥ is a trivialization of € € ¥ at x if any basis (o) =
(01, ...,0p) of global sections of & spans the stalk €,, over the local ring 0y, = (O x),
for every y # x. Any other basis of meromorphic sections (¢') spans a trivializa-
tion F of € at x if and only if the gauge II from (o) to (&) is a monopole at x. In
particular, since the group of units of C[X]is C*, a line bundle & admits a unique
trivialization £ at x.

Lemma 26. Two BG bases for A are related by a —T (A\)-parabolic monopole
gauge.

Proof. Consider two BG trivializations M, M of A, as in the following diagram,
where D = T (A):

,D
A ——=Yu

Since v(P;;) = 0, the gauge IT satisfies v(I1;;) = d; — d;. Therefore I1;; = 0 as
soon as d; > d;, which means that IT is (—D)-parabolic. O

According to the previous section, & is a BG trivialization of € at x if there
exists a basis (o) = (01, . ..,0,) of global sections of & and an integer sequence
D = (dy,...,dy,), such that (¢) = (t~%0y,...,t %0,) spans the stalk €, over
the local ring O = (O ), where ¢ is a local coordinate at x. This coordinate ¢
can be arbitrarily chosen, since the local behavior of € only depends on the local
ring 0. If we choose as coordinate ¢ a meromorphic function on X, then the sections
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(e) = (t %oy, ...,t7%0,) form a basis of global (meromorphic) sections of V.
The O y-module % spanned by (e) in this case does coincide with € at x, and differs
from it at most on the support of the divisor of the function ¢.

When X = P!(C), we can obviously find a function # with divisor (1) = x — y
for any arbitrary point y # X, that we call a global coordinate at x. In this case,
the bundle ¥ is a BG trivialization of € at y. It is clearly independent of the
global basis (o) of %, which is defined up to a (—D)-parabolic constant matrix
C € GL,(C), and of the specific meromorphic function ¢z, which is only defined up to
a nonzero constant. We call ¢, (%) = F the transport at y of the BG trivialization %
of € at x.

Understood otherwise, this is the description of a nontrivial bundle € by means
of two trivial bundles % and % coinciding outside {x, y}, and glued along the
cocycle g = 1P, where (1) = x — .

3.1.2. The Harder—Narasimhan flag. The Harder—Narasimhan filtration HN(€)
of € over P! (©) can be obtained (see [Sabbah 2002, p. 65]) from a BG decom-
position € = @;_; ¥; of € as a direct sum of line bundles &¥; >~ O(a;) of the

appropriate degree, by
Fkeey= @ .

ilaj=k

Locally, the Harder—Narasimhan filtration can be described as follows. Let (e) be a
BG basis for A = €. The Harder—Narasimhan flag HN 5 of V = V', defined by

(7) Fk= P Ke

is independent of the BG basis for A. For a lattice M, define the residual HN flag
HM = (HNp N M)/mM and, for simplicity, H? = H}.

Lemma 27. Let A € A and let HN p be the HN flag of V.

(1) If M € BG(A), then Hﬁ/[ = FM(A), hence H” is transversal to F*(M).

(ii) Conversely, for any flag F' which is transversal to H™, there exists M € BG(A)
such that FA(M) = F’.

Proof. Let T = T (A) =diag(a; I, ....asln,) with a; > a; 1 be the type of the
lattice A, so that
ZT
A—M
sends the basis (e) of A into the global basis (¢) = zT (e) of Y. Let v; =
Y 1<k<i Ni» and let generically X denote the class modulo m of a vector x. The i-th
component of the flag Hf\” is spanned by (€1, ..., &y,), SO H[]\"[ = FM(A) indeed
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holds. Conversely, the (n—i + 1)-th component of FA (M) is F; = (€v;+1,---.€n)
while the i-th component H; of H? satisfies H; = (4, - -- , €y, ); hence both flags
are transversal to each other. Any other BG trivialization M is obtained from (e)
by a monopole gauge transform IT such that P = zT I1z=T e GL,(0). According
to Lemma 26, II is block-upper-triangular with respect to the blocks of equal
elements of 7, hence so is P. Let P € G7(C). If z is a global coordinate, the
matrix z=7 PzT is a monopole. The orbit of (¢) under the set of the constant
T -parabolic matrices covers the set of all flags in £ which are transversal to the
image of HN(%€), in E. O

For any BG trivialization & of € at x, let Y = ['(X, %) be the C-vector space
of global sections of %. The Harder—Narasimhan filtration HN(€) also induces
a canonical filtration HN 4 (Y) of C-vector spaces of Y. To avoid defining new
concepts, we will also refer to this filtration as the Harder—Narasimhan filtration
of Y. Note that it depends solely on the lattice A € A.

3.2. Modification of the type. We wish to answer algebraically the following ques-
tion: “what does the type of € become when the stalk €, = A at x is replaced by
another lattice A?” It turns out that the question can be very explicitly answered
when the lattice A is not too far from A, namely at distance 1 in the graph-theoretic
distance of the Bruhat-Tits building. The following proposition generalizes a result
of Gabber and Sabbah.

Proposition 28. Let € ~ @7_, 0(a;) be a holomorphic vector bundle on X =
PY(C), withay = --- = ap, and let x € X. Let A € A be a lattice such that
Mxéx C A CEy. Let E =€ /my€y be the local fiber at x, let

H:Hy=0CH C---CHy=E

be the residual HN flag in E, and W = A /mxEx the image of A. Assume that the
type of € is written as

a=(ay,...,ay,dz,...,da,...,dg,...,dg).
—_———
n times ny times ng times

Then the modified bundle & = %7\ has type

a=(ay,...,ar,a1—1,...,a1—1,...,a5,...,a5,a5—1,...,a5—1)
~——
m times ni1—mj times mg times ng—my times

where m; = dimg H;i "N W —dime H;_1 N W.

Proof. This is explained in the following scheme. Let A = €4, and let ¢ be a
local coordinate at x (that we assume without loss of generality to be co). Let
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D = diag(ay,...,ay) be the elementary divisors of the BG trivialization M in A
(or, in this case, the type of €).

t—D pyt D

(D-T
tD tD
PO tT ~

A (e) (¢) @) : A

X i

E=AJiA: @) — (u): W

®)

Let (¢) be a basis of A, such that (o) = (¢Pe) is a basis of the form Y3,. Under
the canonical projection 7 : A — E = A/tA, the HN filtration of A descends
to a flag of C-vector spaces H : 0 = Hy C --- C Hy = E, and the quotient
basis (e) is a basis respecting this flag. Let tA C A C A be the new lattice,
and let W C E be the subspace it is projected upon by 7. Let (1) be a basis
respecting both W and the flag H, and let Py be a change of basis from (e) to
(u). Consequently, the matrix Py belongs to the parabolic subgroup Py stabilizing
the flag H ; therefore it is block-upper-triangular, with blocks given by the equal
elements among the a;. Define now the basis (g) of A as the image of (¢) under
the constant gauge Py. Here is where d (A, K) < 1 is important: the basis (&) is
a Smith basis of A (this would be not necessarily true if the lattices were further
apart). Let 7' =diag(¢y, . .., ty) be the diagonal matrix such that; =0 if w(g;) e W
and #; = 1 otherwise. Then (@) = tT (¢) is a basis of A. Let now () = 1P (¢) be
the basis of M deduced from (¢). The matrix of the basis change from Ato M
corresponding to the bases (o) and (€) is equal to Q = t~P PytP = (PO),Jt j—di
Now, since Py € Py, we have (Py);; = 0 whenever d; —d; < 0. Therefore this
gauge O = thQk + .-+ 4 Qy is a Laurent polynomial in ¢ with only nonpositive
terms, where moreover Q¢ € GL,(C). Since X = P!(C), it is possible to choose
as local coordinate at co a meromorphic function with divisor (co) — (0), namely
t = 1/z. Accordingly, Q is a polynomial in z, whereas det Q = det Py € C*. Hence
0 € GL,(CJz]) is a monopole gauge. Since (o) was a basis of global meromorphic
sections of E, then (%) also is. Therefore M e By is a trivializing lattice. Moreover,
M is a BG trivialization of both € and F = €%, because the basis (¢) is a Smith
basis for A and A. Therefore, we can explicitly compute the new elementary
divisors of A in M, which are given by the matrix D — 7. Summing up, we see that
the change of lattice has subtracted 1 from all the elementary divisors corresponding
to the vectors of the basis (¢) whose image under 7 do not fall into the subspace W'.
We obtain the Harder—Narasimhan filtration of the modified bundle by reordering
the type by decreasing values. O
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Proposition 28 generalizes the construction given by Sabbah based on an idea of
O. Gabber in [Sabbah 2002, Proposition 4.11] (where only the case where W is
one-dimensional is tackled). This result is independent of the valuation of A, and
can thus be formulated as follows.

Corollary 29. Let A, A €A, andlet H = (HNA NA)/mA be the residual HN
flag and F = FA(A) = (0 C W C AJmA) the flag induced by A in A/mA. If
d(A,N) =1, then we have

T(A) = T(A)>—0(EDA(A))

where o € p(F, H~) represents the relative position of F and H. Actually, one can
even say, putting H = (HNz N A)/mA, that

T(A)™ = p(H,H)T(A)>—p(F, H)(EDA(A)”).

Proof. With the notations of the diagram (8), the basis (7) is a common BG basis for
A and A. Therefore, the HN flags are spanned in (3) over K by the flags of indices
S \(D) and S (D —-T), respectively. By applying any representative of the coset
p(H, H) to D—T, one gets T(A). Therefore, T(A)™ = p(H, H) T(A)™—

p(H, H )o(F, H)(EDy (A)/ ). Take as representatives of the cosets p(H, H )
and p(F, H) their minimal length element (see, e.g., [Abramenko and Brown 2008,
Proposition 2.23, p. 83]). Since the quotient basis (€) of A/mA is adapted to the
three flags H H and F, we get p(H , H),o(F H) = p(F, H) [Abramenko and
Brown 2008, Lemma 5.55, p. 236]. O

Corollary 30. Let A € A. Then we have
(i) BG(A) # @,
(ii) for any adjacent lattice A, we have BG(A)N BG(K) #* o,
(ii1) all the elements in a chamber of B, have a common BG trivialization.

Proof. According to Proposition 28, if a lattice A admits a BG trivialization, so
does M for any adjacent lattice M. However, according to Proposition 17, two
lattices are always connected by a path of adjacent lattices. Since a trivial lattice
is its own BG trivialization, the two first results are simultaneously established.
The third stems from the fact that any chamber appears as a complete flag in the
quotient space of any representative. According to Bruhat’s lemma, there is a
basis respecting simultaneously two flags, in this case the one corresponding to the
chamber and the one induced by the HN filtration. O

3.2.1. An algorithm to compute a Birkhoff-Grothendieck trivialization. Let x € X,
and let A = [€] be the ~x-equivalence class of €. Let A =€, and M = F, € A
where & is an arbitrary trivialization of € at x. In this local setting, we “see” the
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global sections of F as the global form Y C M. An arbitrary trivialization of € is
not necessarily BG. The following result is easily established.

Lemma 31. Let M € BG(A). Then we have
(i) M € BG(zKA) fork €z,
(i) M € BG(A') for any lattice A’ on the shortest path Tyin (A, M).

Proposition 28 allows to construct effectively from an arbitrary trivialization M a
BG one, by following shortest paths in the Bruhat-Tits building from M to €. The
following result shows how to start the construction. We can assume that vas(A) =0.

Lemma 32. Let M € A° be a trivial lattice in By. For any lattice A € A such that
d(A, M) =1, we have M € BG(A). More precisely, let Y C M be the global
form of M. For any basis (e) respecting W = A/mM , the Y -basis (ey) is a Smith
basis for A.

Proof. Assume that (e) satisfies the assumptions of the lemma. Then, accord-
ing to Lemma 13, the Y -basis (ey) is a Smith basis of M for A. Since it is a
basis of the global form of M, the result follows, and in particular, the Harder—
Narasimhan filtration of the corresponding bundle is equal to the Y -lifting of the
flag(OCW C M/mM). |

If there existed a Smith basis of M for A which spanned simultaneously Y3y,
the lattice M would be a BG trivialization of A, and the sequence ED 5 (M) would
represent the type of €.

Theorem 33. Let A € A =[€], and let M € A° be an arbitrary trivial lattice. Let
EDA (M) = Ay +---+ A; be the elementary splitting of ED A (M). There exists a
sequence of permutations wy € Sy, such that the type T (M) satisfies

TA) = Ag+wi Ay +waAy+---+weAg.

Proof. We prove the result first on the sequence D = EDjs(A) = —EDj (M).
LetI' =(M = My, My, ..., M; = Aps) be (a normalized representative of) the
min-shortest path from [M] to [A]. Let D = EDps(Apr) = (kilpy, ... . ksly,)
where 0 = k| <--- < kg =t. Consider the elementary splitting of D

9 D=Ay+---+A; where Aj = (0y—m;, Im;)
for a nonincreasing sequence (m2;). Recall that
Dy = Ay +---+ A = EDpg (Mpg).

Let (¢) be a Smith basis of M for A, and let (e®)) = zPx(¢) for 0 < k <t
(with Dy = 0 by convention). The induced basis @®) of Ex = My JmM;
respects both flags F Mk (M) and FMk(A). With the help of Proposition 28,
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we construct a BG trivialization Mk-l—l of the k-th element M} of the shortest
path T, which is simultaneously a BG trivialization of Aps + mM; = Apr +
m(Ap —I—mkM) = M.

Let us describe this in more detail. By assumption, there exists a BG basis (o)
of Mk for Mj. Let

T = EDMk (]\/[k)/v and T/ = EDMk (AM)/.

Let (y) = zT (o) be the corresponding basis of My, and (&) a Smith basis of M},
for Aps. The gauge U from () to (¢) can be factored as

(10) U =Uy(I+1tU") with Uy € GL,(C).

Since (0) is a basis of the global form Y 7, the basis (y) of E = My /mMj, is
strictly adapted to the HN flag

H® = (HNyy, N My)/mM;.

Similarly, (€) is strictly adapted to the flag F®) = FMxk(A,,). Let B be the
standard Borel subgroup of GL,(C). By the Bruhat decomposition, the group
GL,(C) is a disjoint union of double cosets:

GL,(C) = ]_[ BwB
wew

where W is the Weyl group W = S,,. The constant term Uy of the gauge U belongs
to only one such cell: let w € S, be the label of the corresponding Schubert cell.
We have a decomposition Uy = QP,, Q' with Q, Q' € B, where Py, is the matrix
representation of the permutation w. Accordingly, the gauge transforms Q and Q’
respect, respectively, the flags H = H ®) and F = F® _In the quotient space E,
we have:

E:() 2= E: ()

lUO lpw
4

Ei@®) L= E: @)

The gauge Uy represents geometrically the change of a basis that spans the Harder—
Narasimhan flag H to one that spans the flag F induced by A; therefore w is a
representative of the relative position p(H , F).

Let 7= Agy1+---+A; be the elementary splitting of 7. Since (&) respects the
flag F, it will in particular respect the trace of the first element My = A +mMj
of the shortest path 'y, (M, A); therefore any lifting of () will be a Smith basis
of My with elementary divisors Ay (. Put T” = T’ — Aj 1. The previous
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scheme gets thus lifted to the following complete picture.

gy o :
YMk (o) —— MkJrl (o) (THw™ Mg
T T

(0] wl Apyy
My 2 (y) —— My : (') —— Miy

Uy Py Py
- o k1
Ul Mi:(p) M, My 11
I+:U’ 1+:0"'u’ Q' UeGL,(0)

o’ , A k+1
My : () —— My : (&) ——— My

/ / 1’
tT tT tT

Ay An Ay

As a result, the elementary divisors of My with respect to the common BG
trivialization Mk+1 of My and My, are not T4 Ag ¢ (as with respect to My),
but 7 +w= A k+1, namely, the elements of Ay ; have been twisted according to
the permutation w™" = p(F, H) mdexmg the Bruhat cell that contains the matrix
Uy € GL,,(C). The resulting matrix T=T+w ~! Ak 41 is not necessarily ordered
by increasing values: therefore we cannot ensure that wgq = p(F, H), since
the ordered diagonal has the form 0T + ocw ™! Ay . According to Corollary 29,
however, we know that we can take

o —,O(HMA HMk+1

) = ,O(HNMk, HNMk_H)'
Thus
M, .
7 = p(HNag, HNag )T + p(HMe Hy ) p(F O HME) A 4.
Putting Ty = ED (M), we get
) M,
(11) Tk+l = /O(HNMkv HNM](_;_])T/( + IO(FMk (A)’ HMI:(—FI)A](-FI'

At the end of at most ¢ steps, the lattice M ¢+ 1s a BG trivialization of A 5, and
thus of A. Wehave T'= w; Ay + wy Ay +--- + w; Ay such that

7 20M ()

M, A
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Since T'(A) = EDy (M;) = -T-— vpr (A), we get

T(A)=—Ap—wiAy —waAy—--—wrAy
=—Ao—tI+wi(I-A)+ T —wrAr)+-+ (1 —wiAyf)
=(Ao—tD)+w(I —Ap)+wi—1(I —Ap—1) +---+wi (I —Ayp).

By Lemma 19, the result is established. Note that a similar relation holds for
EDjs(A), and that if T(A) = Ag+ w1 Ay +waAy+ -+ ws Ay, then T(Ag) =
Ao+ Wi41Df41 + -+ ws Ay for the normalized elements Ay of the shortest
path T'nin(A, M). O

We can even specify an actual (noneffective) formula for the permutations w;
appearing in T(A)” = Ag+wi Ay +wyAy +---+w; Ay, attached to the shortest
path

zA1 z82 z81—1 z At

z20
A Ay As Ay My — M,

namely,
' Ai_
w; = p(HNA,,HNR) -+ p(HN4,_,, HNp, ,)p(F ™ (A), Hy'™").

The formula cannot be reduced as in Corollary 29 since there is not necessarily an
apartment adapted for three such consecutive flags.

3.2.2. The abacus. Theorem 33 has a nice combinatorial interpretation in terms
of Young diagrams. For any integer sequence D = (dy,...,d,) € 7", let D =
Ag+---+ A; be the elementary splitting of D. For w = (wy, wa, ..., w;) € (Sy)’,
let w(D) = Ag +wi1Ay +wrAy + -+ ws Ay, The abacus of D is the set of
sequences

ab(D) ={A €Z" |3w € (Sy)", 4 = w(D)}.

The name comes from the following analogy. Let Y (D) be the Young diagram
with n rows whose respective lengths are the elements of Dy = D —min D € N,
assumed to be arranged in increasing order (rows of length 0 are included). Assume
from now on that min D = 0. Let d = |{1 < j < n|d; > i}| be the number
of boxes in the i-th column of Y (D). The sequence D* = (d},...,d;) where
t = max D is the dual sequence of D. The elementary splitting of D is given by
A; = (On—di*’ Idi*)' In view of Lemma 19, put

t—1
UD) = (n—df)d},,.

i=1
Any sequence A in the abacus ab(D) of D € 7" comes from a box diagram
obtained from Y (D) by allowing to move some boxes only vertically inside the
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Figure 1. The Young diagram Y (D) of the sequence D =
(0,1,1,2,4,4), and an element 4 = (2,2,2,1,2,3) € ab(D),
featuring the moved boxes (in shades of gray), so that 47 =
(1,2,2,2,2,3). The complement (thin gray line) corresponds
to the sequence DO = (0,0,2,3,3,4), and the bijection from
Lemma 35, to reversing the arrows.

whole corresponding column of length n. The diagram thus obtained, that we call
an abacus diagram, can have nonadjacent boxes (as shown in Figure 1). For any
such diagram, the sequence (a1, ..., a,) of number of boxes contained in each of
the n rows is the required element of ab(D).

Lemma34. Let D= A{+---+ A; be the elementary decomposition of D € (Z")”,
andlet A =w Ay +---+w;A; € ab(D). There exist wy, ..., w; € Sy such that

WA+ wiA; = (Wi A+ -+ wiA)T foralll <i<d.

Proof. We proceed by induction on the number s of columns in Y (D). Let Y
be the Young diagram for D = (dy,...,dy) and Y the one obtained from Y by
erasing the last column, i.e., correspondlng to the sequence T = (Aq,..., A \;—1).
Let D = (dl, ..., dp) be the associated sequence. Then we have d; = = d; for
1<i<n-—-df andd =d;+1forn—d*+1<i <n. Anelement A € ab(D) given
by the permutations w = (w5, ..., w;) corresponds uniquely to the pair (A, Wy)
where 4 € ab(13) is given by the restriction W = (wa, ..., Ww;—1).

The claim is clear for # = 1, so assume that it is established for any D such that
AD<t—1. Wehave D=A;+---+A; =5+At where D = Ai+---+A;_qisthe
elementary decomposition of D.LetAe ab(D) be described by the number a; of

boxes in the i-th row for 1 <i <n, and let A= (ai,...,an) be the restriction of A4 to
the 7—1 first columns. Let § ={i|a; =a;+1}. Note that § = w,;({n—d ;[ +1,...,n}),
and thus |$| = d;. According to the assumption, we can find w1, ..., w;_, such

that wi Ay 4+ w/A; = (w Ay +---+w; A;)” forall 1 <i <t—1. In particular,
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we can assume that @; < --- < a,. If there exists an index i such that a; > a; 41
holds, then we have necessarily a¢; = d;11 = a;4; anda; = a; +1,s0i € §
and i 4+ 1 ¢ $. Exchanging i and i 4+ 1 will not change the resulting sequence A
when reordered, so one can avoid the inversion by putting w} = (i,i + 1)wy, so
thati ¢ $ and i + 1 € $ instead. By repeating this procedure for all the inverted
indices, we get the claimed result for 7. O

For an n x t rectangular matrix M = (M, ;), define the row sum vector

n
r(M)=(r1,....1¢), 1j :ZM,-J,

i=1

and column sum vector
t
c(M)=(c1,....¢cn), ¢ = ZM,-,J-.
|

An element A € ab(D) in the abacus of D can also be seen as a (0, 1) rectangular
n x t matrix i = (A4;,j) where 4; j = 1 whenever i € w;j({n —d;‘ +1,...,n})
holds. This matrix ${ has row sum vector r(s{) = D*, and column sum vector
c(sA) = A. Recall that for two sequences p = (p1,..., pn) and ¢ = (q1,...,4¢)
having the same sum, one says that p dominates g when 25;1 qi < Zf;l p; for
all integers k, where one completes the missing elements with 0. The following
lemma sums up the behavior of the quantities introduced in Section 2.1 under the
abacus transformations.

Lemma 35. Let D € 7".

(1) The maps max, A, i, £ and || -|| all attain their maximum over ab(D) at D.
The map min attains its minimum at D.

(ii) For any sequence A € ab(D), the following hold:
(a) max A =max D <= i(A) =i(D),
(b) AA=AD <= max A = max D and min A = min D,
© [[All=1ID| <= {(4) =4(D) < A~ = D".

Moreover, the map A — max D — A is a bijection between ab(Dg) and ab(D°).

Proof. We will only prove the claims about £(D) and || D ||, since the others are easily
derived from their definitions. Although the assertions are similar, the methods
of proof will be different. Let us start with £. Assume without loss of generality
that min D = 0. According to Lemma 34, one can also assume that 4 = A holds.
Define the integers k; by induction as k1 =aj—d{ and k; =a} —d +k;_ fori = 2.
Since A can be seen as a (0, 1) matrix & with r(sd) = D* and ¢(sA) = A, the Gale—
Ryser theorem [Krause 1996] implies that ¢(#)* = A* dominates r(#) = D*.
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Therefore
k k
* *
E d;i < E a;
i=1 i=1

for all integers k. Hence k; = 0 for all i. Putting kg = k; = 0, we then have
=d¥ —kj_y +k; for 1 <i <d. According to the definition, we have

t_
LA) = (n—a})af,, = Z(n dF + ko1 —ki) (L —ki+kig1)

i=1 i=1

—Z(n diydf |+ (kioy —ki)(dfy —ki+kig1) — (ki —kiy)(n—d])

i=1
t—1

= UD) =Y (ki—kip1)(n—df +dy +kip1—ki).

i=1

After some algebraic manipulation, we get

0(A)—£(D) = —k,; (n—d*+d*—k1 +hy—(d} —ky+ks3))
—Zkz f kit ki —(df —kip ki) +d —d])
"_kt—l(dt —kt—1+kt+d* —di )

= —ki(n—d{ +a5—a3) - Zk (a7 —aiy,+di —df)
—kt—l(a;k+dt*—2 1)

Since both sequences (d;*) and (a}) are nonincreasing, we get £(A) < £(D). More-
over, if £(A) = £(D) holds, then all these terms must be zero. Let us prove then
by induction that k; = 0 for all i. If k; # 0, then one has n = d and a3 = aj.
Since a1 > d *, one must therefore have aT = n, so k1 = 0 holds, and hence
we get d{ = aj. Assume now that k; = 0 and aj* = d* hold for j <i — 1.

If k; # 0 then one has a} > d;* and d}* | = d;* (and alJrl = ;"+2 also). But
thend’ | =d} =a}_| = a} /d* ) wehave df | =d =a} | =aj. Thus
ki=af—d +ki_ =0, and so the result for £ is estabhshed

Let us turn now to || -||. We can assume here that w; = id. We proceed by
induction on the number ¢ of columns in the Young diagram Y (D). Like in the
proof of the previous result, the restricted column sequence 77" = (A, ..., As—1)

corresponds to the Young diagram Y (D’) of D’ = (dy,...,d,) with d; = d for
1<i<n—d}andd; =d]+1forn—df+1<i <n. By the Konig-Huygens
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identity, we have

n

. - TrD 2_ " 5 (Tr D)?
o1 =3 (- 22) =Y ap-

i=1

T D/ d* 2
R N/ D SR A LR UL £
i=1 i=n—d}+1 "
n n
Tr D)2 2d* Tr D' + (dF)?
=Z(d;)2—( rn) +df+2 > di-— ! - /)
i=1 i=n—dj+1

2d* Tr D' + (dF)?
=|D'|| +d} +2df(t—1)— ¢ T +(’).

Let A = w(D) € ab(D) with w = (w3, ...,w;) and A’ = w’(D’) € ab(D’) where

= (wy, ..., Ws—1).

For t = 1, the claim is clear, for |w(D)| = || D] and w(D)” = D for any
w € (Sy)". Assume then that for any diagram Y’ = Y (D’) with at most 7 — 1
columns, we have ||A’|| < || D’|| for A’ € ab(D’), and || A’|| = || D’|| if and only if
(A")” = D'. Let Y = Y(D) have ¢ columns. Let 4 € ab(D) be described by the
number a; of boxes in the i-th row for 1 <i <n, and let A’ = (a],....a;) be the
restriction of A to the r — 1 first columns. Let again § = {i |a; = a} + 1}. Then
one has

v WA? o e (TrA +df)?
”A”_Zai_ " —Z(ai+1) +Z(ai) S —

i=1 ieg ity
Tr A 2d} TrA’—l—(d”‘)2
—Z( D? - +|§|+2Z
i=1 iey
2d¥ Tr A’ + (d)? “
= |4l +df - —— () +2) 4]
ie$

By construction, we have Tr A’ = Tr D’, so, under the induction assumption, we
get

2d¥ Tr D' + (d)? "
Jal <0/ +d7 - 24T +22a§=||D||+2(Za§—d,*(t—1)).
icg icg

Since a; <¢—1=max D’ holds by construction, and |§| = d, we get || A|| < || D|.
Moreover, || A|| = || D|| can only happen when a; =t — 1 for i € $. In this case,
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we get

= D'|.

* * 2d* Tr D' + (d¥)?
||A’||:||D||—(dt +2df(t—1)— t df) )

By the induction assumption, we have (4")” = D’, and by the definition of ¢, we
geta; =a;+1=d =max D fori € §. Therefore, we get d;* elements in A which
are equal to d, and hence A~ = D. O

3.2.3. Local criteria for BG trivializations. In this section, we use the fact that the
type T'(A) is an element of ab(ED 5 (M)) for any trivial M € A° to derive local
criteria satisfied by the BG trivializations. Let d (A, A®) = miny,c p0 d(A, M).

Lemma 36. Let A € A be a lattice. For any M € A°, we have

d(A, M) =d(A, A% < vpA(M) = max vaA (M) and vpr(A) = max v (A).
MeA° MeAY

If M € BG(A), then §(A, M) =min g0 8(A, M) for § € {d. d  £}.

_ D
Proof Let A 5 M Z5A represent the elementary divisors of an arbitrary trivial-
ization M of A. The BG algorithm of Section 3.2.1 can be applied to M to obtain
M € BG(A), as in the following scheme, where A = w(D) € ab(D):

~ D A
A°> M < — A2 M eBG(A).
By definition, we have T(A) 2 A. By Lemma 35, for any M € A°, we have

vA(M) =min D <min A =vp(M)and vy; (A) =—max D < —max A =vp(A).
This holds for any trivial M ; hence, for any BG trivialization M € BG(A), we get

vA(M)=]glaj\<ovA(M) and vM(A)=Mnla§O(vM(A)).

On the other hand, we have, for any M € A9,
d(A, M)=—vA(M)—v5(A)=—vaA(M)—vpr(A)=d(A, M) for M e BG(A).
The rest in a direct consequence of Lemma 35. |

Proposition 37. Let A € A. Then
T(A) = max{EDp (M) | M € A% = min {EDA (M) | M € A%

—lex —lexrev
Proof. Let M € A°, and let D = (dy,...,d,) = EDA(M)”. By Theorem 33,
there exists w = (wy,...,w;) € (Sy)! such that w(D) = T(A), and we can,
by Lemma 34, ensure that w(D) = T(A)”". Representing D as its Young dia-
gram Y (D), the sequence 7'(A) is given by an abacus diagram A4 € ab(D) derived
from Y (D) by moving boxes vertically (downwards), and such that the number
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of boxes #; in row i weakly increases with the row index (i.e., ;41 = ¢;). Then
we have di = vA(M) < f; = max ;0 vA(M). Suppose that d; = ¢1, and
assume that d, > t, holds. Accordingly some boxes from the second row must be
lowered. Therefore, we necessarily have ¢y > d;. This contradicts the maximality
assumption on vA (M). Thus dy < £, and 50 £ = MaxXprep0 4, (M)=t, dzA(M).
Let i = max{j | dy = t; for k < j} and assume that d;{ > #;41 holds. The
same argument holds and shows that d;+1 < #;4;. Therefore we have proved
that 1; = MaXpre A0 dA (M=t 1<k<i—1 dl.A (M). A similar argument starting from
dy = —max vps(A) proves the second relation. O

This result establishes the first part of Theorem 25. The proof will be complete
when we prove that M is indeed a BG trivialization of A if and only if M € A°
and EDj (M) = T (A). This will be established in the next section.

3.3. The permutation lemma. In the previous section, we showed how to construct
a lattice M whose global form Y3s contains a Smith basis for a given lattice A.
The following result allows us to give a fairly complete geometric view of the set
of BG trivializations. We recall that a principal minor of a matrix 4 € gl,(C) is a
minor Ay ; where I C [n] obtained by deleting rows and columns whose indices
are not elements of /.

Proposition 38 (permutation lemma). Let D = (dy,...,d,) € 7" be an integer
sequence and P € GL,(C[t]) a lattice gauge.

(1) (Bolibrukh) There exist a permutation t € S, and a lattice gauge P €
GL,(C[t]) such that

O=:PpP 1P P cGL,(C[t]),
where tP = diag(ld' ooty and tD = (de(rys -+ deqmy)-

(2) There exists moreover a lattice gauge Q € GL,(0) such that tPT1 = Q1 P.

(3) Furthermore, one can choose o = 1 in item (1) if and only if all principal
minors of P(0) indexed by the elements of the ascending flag D" are nonzero.

We will give a self-contained proof of this result, following for the first item, due
to Bolibrukh, the same lines as the proof of this lemma given in [Ilyashenko and
Yakovenko 2007]. Item (2) is, up to our knowledge, new, as well as the necessity
statement in (3) (sufficiency appears in the cited work). The proof proceeds by
induction, using the following simple lemma.

Iy 0
T = .
(4 or)

Lemma 39. Let d < n and
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Let H= (g g) € GL, (C[t]) be a lattice gauge matrix, decomposed as a 2 x 2-block
matrix according to the blocks of T. If det A(0) # 0, then there exists a monopole

gauge matrix
M= I; t -1
(U P

with T1 a constant matrix, such that H = t~T HtT 1 is a lattice gauge matrix; that
is, H € GL,(0).

Proof. For simplicity, put Moy = M (0) for a holomorphic matrix M . One checks
that putting 0= —Ay 1By, we have

~ A B
H=tTHTn = ~ ).
(zC D)

where
B=1""(B+All) and D= D+CIl.

By construction, the residue of B is equal to By — AOA 1By = 0, and hence B
is holomorphic; therefore H also is. To check that H € GL,(0), it is sufficient to
check the invertibility of

i — (4o By
7\ 0 Dy—Cod;'By)"
By assumption Ay is invertible, and it is well-known that the Schur complement

D —CA™!' B is invertible when (£ B) € GL,(C) and A4 both are so. O

Note that the upper-left block of H appears unchanged in H. Note also that

— tly ﬁ
H=tT1= .
( 0 In—d)

Geometrically, we can summarize the construction of Lemma 39 as the following
H T

1, s

We need two technical lemmata before giving the actual proof of the permutation
lemma. Let D denote the integer sequence

M

(dy,....dy,....ds,....ds)
N—— ———

np times ng times
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with d; > d; 1. We say that a matrix H is strongly D-parabolic if it has the form
L, P;i
H= 1, .
0 195 I,
where P;;j is an; xn; polynomial matrix in ¢ satisfying deg P;; < d; and v(P;;) = d;.

Lemma 40. Let H be strongly D-parabolic, and let

tl, 1
H/ — m ,
( 0 In_m)
where Tl is a constant matrix and m < ny. Then the product HH' is strongly
D’-parabolic, where D' = (dy +1,...,d; +1,dy,....dy,....ds, ..., ds).
N—

m times ni—m times ng times
Proof. Let D = (d3,...,da,...,ds,...,ds). The matrix H can be written as
——— N—
ny times ng times

g (I P
0 H)’
where H is strongly D-parabolic, and P = (P, --- Py) where the blocks P; satisfy
deg P; < dy and v(P;) = d;. Then, if m = ny, the product HH’ is simply

LIRED SRNTI | P)

HH' =
( 0 H

Otherwise, we split the matrices in 3 x 3-blocks, as

"L, 0 P\ (tI, T, T,
HH' =| 0 "l Po|| O Iyyom O
0 0 HJ)\NO0 0 Iy

ld1+llm ldlﬁl ld1ﬁ1+P1
= 0 NIy —m P,
0 0 H

In both cases, we see that the product H H' is strongly D’-parabolic as requested. [J

In the following lemma, we prove that the factorization in Proposition 38 exists
if and only if the condition on the minors of the constant term holds.

Lemma 41. Let P, Q € GL,(0), and let

D:(dl,...,dl,...,ds,...,ds)
N——’ ——
ni times ng times
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with d; > d; 1. Assume that TI = z=P PzP Q e gl,(C[1/z]). Decomposing a

matrix M in blocks M; ; according to the multiplicities (ny, ... ,ns) of D, let
0 0
Pij -+ Pig l(1) " Hg,s)
P = and TI; = : .. :
Pai o Prs n® ... n®

Then T1; has maximal rank if and only if P;(0), ..., Ps(0) are all invertible.

Proof. We prove this result by induction. We put M =) ,., M © 2t for a formal
series matrix, with M® = 0 when needed. Let M; k) = My j -+ M)
for j <k, and M; e = M, (y.5), and put further

Mj(O.) Mj(’f)
(0) U+dj—dj+1)
Mj = Mitie and MJ{(Z) = [ M+, 'J ] ,
Ms(g) MS(’K. +dj —dy)
so that
)
M/(K) Mjs.
J 1(+dj—dj 1)
Mj+1 r

Let P=z"2p:D, By construction, we have P = (Iv’i,j) where

5 _ pdi—di _ N pO _tdi—di _ (E+di~dp) e
Pij = Pijz™ '—Z i 2 T = Z P

£=0 L=d;—d;

Since IT = P Q holds, we have Mie=)Y i P, kOk,e- With Qr e =3 459 Q(z) 2.
After some algebra, we get

(12) H,-,.:Z(Z Z Pi(’fjd’ W ot “)z since TI € gl,, (C[1/z]).

t<0 “k=14{=d)—

We will establish the main claim (MC) of the lemma by proving simultaneously
the following two additional results. If the assumption of the lemma holds, then we
have
(A) Qj is in the row span of ﬁj fori <j <s,

(B) fori < j < s and £ < dj_; —dj — 1, there exists a matrix Xj; such that

4
019 = x;,0;.
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Assume first that i = 5. According to formula (12), we have
(+ds—dy) (t 0)
M= (X X AGaor)s
t<0 “k=1{=d;—ds

Since dy —dy > 0 for k # s, we have that Il o is a constant, and the formula
reduces to ¢t = 0 and k& = s; thus Hg?.) = P(O) Q(O) Since rk Q§02 = ng, we get

k1% =ny < det PO 0,

which establishes (MC) and (A) fori = 5. For 0 <t < dg_; — d;, formula (12)
reduces to

ne — ZP(@) (-0 _ g

since IT® = 0 for 7 > 0. We can arrange all these equations into the large matrix
equation

Ps(g) 0 --- 0 go.) Hg?.)

1 0 . 1
rY PO : 0 |0
pl=d o pO |\ ped—dn 0

It follows easily that Q ) is then a left multiple of Q§0.) for0<fl<dg_1—ds—1,

and also for £ < 0, since Qs o = 0, which establishes the claim (B) fori = s.
Assume now that (MC), (A) and (B) hold fori +1< j <sand{<dj_;—d;—1.
Formula (12) gives

H(t) Z Z (f+dj—dk)Q(t )

k=1{=d;—d;
_ZZ (é) (t+dj—dk—€)
(20 k=1

with the convention that Q® = 0 when £ < 0. Considering exponents 7 = d; —d i +m
fori<j<sand0<m<d;i_1—d;i—1, we get

(di—d; +m) (() (m+di —di—10)
Hj,o ! Z Z
£=0 k=i

(f) 1(m—1£)
- Z j,(: s)Qi ’

£=0
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since k < i implies m + d; — dj < 0. Therefore, we get

H(-di_dj +m)
() o (m— Z) ) 1m~+di—di+1—1£)
ZP Q P] (i+1:5) Qi+1
£=0
m
_ £) H(m—1) ) 1m~+d;—d;11—L) ®) 1m+d;—d;+1—1)
_Z(Pj,i Q +P (+1: S)Ql+1 )+ZPJ (1+1:s)Qi+1
=0 {>m
(f) 1(m—~£) ) rm+d;i—di41—L)
B (l S)Q +ZP (1+1s)Qi+1 .
=0 {>m

r(m+d;—d; 1—4)

According to the induction Q;,, is a left multiple of é i+1 for £ > m,

so we have
(di—dj+m) = Y4
i—adjTm 4 4 - A ; :
(13 ;0 = Z(Pj(,i) Pj(’s))Q;.(m )+[Q,-+1] fori < j <s.
£=0

where we let, for notational simplicity, 4 = B + [Q] mean “there exists a matrix X
such that A — B = XQ”. Assume m = 0 first. The equation for j =i is then

0 0) (0 (di—d; A
(14) H( ) P( )Q( )+ (Pz((z)ltl Pi(,g))Q:'—i—l + +[Qit1]
The remaining equations,

H;fi.i_d ) P(O) Q(0)+(P(0)

0 "(di—di+1) ~ . .
i+1 'Pj(,s))QiH TU4[Qi41]=0, i+1<j<s,

can be rewritten as

(0) (0) (0)
Jod Pi+1,i _ Pl+11+1 Pl+1s
PO = 00 +[Di4]. where BY) =
(0) (0) (0)
F; B g+1 T Fys

is invertible by the induction assumption. Put

O
i+1,i P( ) B
B = (P(OzH Pi((s))) and C = : so that P(O) o |-
! ’ p© c Py
s,0
Thus, we get

d,’—d,’ ~ ~
Q;'(+1 = _(Pi(-({)-)l) CQ(O) +XQiv1=X'0i:



STABLE FLAGS, TRIVIALIZATIONS AND REGULAR CONNECTIONS 323

hence Q:.(O) is a left multiple of Qi. Moreover, substituting in (14), we get
1s) M) = (P = B(ED) ' C) Qi +10i41]
By assumption Qi+1 is in the row space of
mo.
H:§?2

Hence rk HI(O.) = n; if and only if rk(Pl.(?) — B(Pi(g)l)_lC) QI(O.) = n;; that is,
det(Pi(?) — B(Pi(i)l)_l C ) = (. This matrix is the Schur complement of

0
pO _ (Pi,i ﬁ)) )
1 b
¢ Py

which is invertible exactly when Pi(2)1 is. Therefore (MC) is established in general,
and by (15), Qi is in the row span of I;, so claim (A) is proved. Similarly,
for a given 0 < m < d;—1 —d; — 1, we can stack the remaining equations, (13),
corresponding to i < j <,

m

di—dj+m) _ ) 1(m—~) ~ B

e - ZPj,(iZS)Qi +[Qi+1]1=0,
£=0

to get the relation

(di—d;+m)
ie . i P(z) Q/(m—z) _ {Hi if m =0,
: - i i = )
[ (di=d;+m) /=0 0  otherwise.
s,

Putting for notational simplicity d = d;_1 — d;, we finally get

0)
0 . ~
PO 0 ... 0 9, m i,
1) p0) o] .
A o (= . |+10is1] where TT) =
P .. .. pO Q/(.Zz_l) 0 0
i

Accordingly, Q;.(e) is a left multiple of Q;.(O) for 0 < £ < k — 1. Since we have
established that Q:.(O) is a left multiple of Qi, this ends the proof of claim (B). O
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Proof of Proposition 38. Assume for simplicity that D = diag(d; Iy, ..., dsIn,)
is written by blocks, and that d; > d, > --- > ds. Then there exist m = d; — d;
matrices 771, . .., Ty, of the type

_ (1 O
fi= ( 0 On—bi) ’

where every b; is equal to some 1y + --- + ny; for some decreasing sequence ;,
such that D = T + - - - + T;,. Secondly, assume that all left-upper square blocks
of P(0) of sizes b; are invertible. Letting P = Hy, according to Lemma 39, there
exists a sequence of monopole matrices

—1 1 .
0 In—b,-
with a constant matrix I1;, and a sequence of lattice gauge transforms H; € GL,,(0)
such that

(16) Hipy =t T H T .

Let

— . tlp. ﬁ,‘
Hi=lim; =75 :
== (T 1)

It follows from Lemma 40 that H = H; --- H, is strongly D-parabolic. It follows
then, as a remarkable consequence, that the diagonal matrix 2 can be both factored
from the matrix H on the left as H = tPTI with a monopole matrix IT, and
simultaneously from the right as H = Qt? with a lattice gauge Q € GL,(0). Since
tDHd_H = HH holds, we get on the one hand that t P P~1tPH,, ., =Tl
GL,,(C[t™"]) as required for the first claim of the permutation lemma. However,
and this was not stated in [Bolibrukh 1990] or [Ilyashenko and Yakovenko 2007],
we also have the relation 2 TT = QP which yields the second claim.

For the third claim, the sufficiency of the minors condition has just been estab-
lished. For the converse, assume that we have the following diagram, which we have
completed with a monopole IT and a lattice gauge Q such that z=P PzP Q = IT:

ZD
Aie) Z=YyCM

JEN

D ~ ~
Ai(e) —m i1 By M

Let 0 =00+ Q1z+---€GL,(0),and I1 =g +---+ M,z e GLn(C[Z_l]).
Recall that if IT is a monopole, then one must in particular have ITy € GL,(C). Then
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Lemma 41 implies that such a factorization only exists if the matrix Py satisfies
the condition on the minors. O

The following scheme sums up this construction.

P=H, tTl tTZ tTn‘l

N A M, M- My —YCM
n , y
My — e e 2 Yy M2
7 H y
i, M3 Ty e M
. s y

~ Hpy— ~ tTm

Mm—l —— Mm—l - Ym—l C Mr’:_l
o m|
My —2>¥ C My

The first row corresponds to a min-shortest path I' = (A, M1,..., M) from A to
a given BG trivialization M. This path I" is included in an apartment %, namely
the one spanned by a BG basis (e) of A corresponding to the trivialization M . By
definition, the apartment % goes through the global form Y of M. The gauge H !
does not map the shortest path I' onto anything special. However, if we call
A = H~1(B) the image of the apartment spanned by (e), the permutation lemma
tells us how to construct a shortest path I'” in ¢ whose end point is also a BG
trivialization of A. Lemma 39 gives the step-by-step modification of the shortest
path I'. Row i of the diagram corresponds indeed to a partial shortest path I'; =
(M;, Mii e M,;) whose end-point is a BG trivialization of the i-th element M;
of the shortest path I'" = (A, Ml, el Mm). Even if the end-point Mm is a BG

trivialization of A, note that the apartment s{ does not contain the global form Y
of M,,, and that we still need the gauge transform Hp, to obtain it.

3.3.1. Consequences of the permutation lemma. As stated in [Ilyashenko and
Yakovenko 2007], one can assume that T = id if all leading principal minors
of P are holomorphically invertible; that is, the corresponding minors of P(0) are
nonzero. This condition can always be ensured by a permutation of the columns
of P. Actually, as stated in Proposition 38(3), it is sufficient that this condition
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holds only for the leading principal minors of orders ny, ny +ns,, ..., ny+---+ng_1
of P(0). We then say that P respects the minors condition with respect to D (or to
o = (ny,...,nyg)). Recall the following well-known result.

Lemma 42. Let P € GL,(C), let (e) be the standard basis of C" and (e) be the
column vectors of P. Then P respects the minors condition with respect to a
signature o if and only if (e) is transversal to the flag F° (¢).

Definition 43. Let s be an apartment induced by the K-frame ® in V. Consider
A € A. Let H be the Harder—Narasimhan flag of A in £ = A/mA. Let W C S,
be the parabolic subgroup of S, associated to H, and W’ be the set of right
cosets W\S,. Let (¢) be a basis of A in the frame ® whose image (e) in E is
transversal to H . The integer

ta(sd) = |{T € W' | t(e) transversal to H }|

is independent of (¢) and is called the transversality index of si with respect to A.

Theorem 44. Let € be a holomorphic vector bundle over X, and let A =€ € A
be its stalk at x € X.

(i) For any apartment HA in the Bruhat-Tits building B at x such that [A] € A,
there exists a BG trivialization of A in A.

(ii) More precisely, the number of BG trivializations of A in A is exactly
|4 NBG(A)| = ta(A).

Proof. Let (e) be a BG basis of A, and M € BG(A). Let (¢) be a basis of the
lattice A which spans the apartment . Since « is invariant under S;, we can
assume that the matrix P € GL,(0) of the basis change from (¢) to (e) has invertible
principal leading minors. According to the permutation lemma, there exists a matrix
P € GL,(0) such that

N=z?pP 2P P cGL,(Cz7").

The gauge IT sends the basis of global sections (¢') = (zPe) of the BG trivialization
of €, given at x by M, into a basis (¢) of M. Since I is a monopole, the basis
(¢) is also a global basis of sections, but spans another trivializing bundle, namely
% = ¢M . Therefore the arbitrary apartment s spanned by (¢) indeed contains a
trivial bundle. Now the matrix H = z? IT admits a right factorization H = QzP.
As a consequence, if we let (£) be the basis of A obtained from (e) by the matrix
0, then zP (€) is also a basis of Y ;- The following scheme sums up the situation.
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A (8) ,D
zD I1 ~
Ai(e) Z>YyCM —=Y CM

|,

A (e) — M

Therefore the lattice M is also a BG trivialization of A.
The monopole gauge IT is block-upper-triangular according to D, and its block
matrices IT;; satisfy

dj —d; <v(Il;;) < degIl;; <O0.

This means that IT respects the Harder—Narasimhan filtration HN 5 of V' correspond-
ing to the lattice A. Conversely, the lattice gauge Q has a lower D-block-triangular
constant term Q. Since z~P PQzP € GL,(0), the matrix PQ has an upper D-
block-triangular constant term Po Q. Therefore, if we put Pp, P, for the pair
of opposite D-parabolic standard subgroups of GL,(C), the matrix Py satisfies
Py € Py, Pp. This means exactly that P satisfies the minors condition with respect
to D. If we permute the vectors of (¢) with t € S, in such a way that D1 # D,
the permutation lemma ensures that £(z2 (e;)) # M is again a BG trivialization
of A. This establishes the second claim of the theorem. O

Corollary 45. For any apartment 4 > A, there exists an ordered basis (&) of A
and a BG basis (e) of A such that the gauge P from (e) to (¢) has a lower block-
D-triangular unipotent constant term Py, and that the following picture holds.

D
A:(e) =M
P=P0+z(7T Pr=I+zU
D
A:(e) —= Yy

The number of BG trivializations in & can hence be computed from a matrix
Py € GL,(C) with a simple structure:
Iy, -+ 0
Po=1| : -
Xij - In,

as the number of permutations not leaving D invariant whose action on the columns
of Py preserve the minors condition. The following result completes the proof of
Theorem 25.
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Corollary 46. Let A € A and T = T (A).

(i) For any basis (¢) of A, let M = L(zT (¢)). Then either M € BG(A) or
M ¢ A°.

(ii) For any flag F' in A/mA transversal to HNp, and any form Y in A, the
lattice M = Ly (F', T) is a BG trivialization of A.

In particular, if M € BG(A), then M = Ly (FA(M), T) € BG(A) for any form Y
in A.

Proof. For (i), if M is trivial, then, by Lemma 41, the gauge from (e) to (¢)
satisfies the minors condition; hence M is BG. According to Lemma 27, there
exists M € BG(A) such that F/ = FA(M). Let (e) be a Smith basis of A for
M . The lattice M is spanned by z7 (ey) where (ey) is the Y -basis of (¢). The
gauge P from (e) to (ey) has invertible principal minors, since it is tangent to /.
Item (ii) follows. |

The permutation lemma is a sort of converse to the Birkhoff—Grothendieck
theorem. It can also be seen as a lifting and factorization lemma. For a standard
parabolic subgroup P C GL,(C), let

$={D€Zn|di<dj:>Aij =0 forall 4 € P}.

Corollary 47. Let A € GL,(0). Let P, P~ be a pair of opposed standard parabolic
subgroups of GLy,(C). Then we have, for w € Sy,

VD e 7%, 31 € GL,(C[z™"]), 3B € GL,(0)

Ag € PP~ &
0 v { such that A = zPTIBz~%D,

Moreover, if this holds, then B € 9_p and I1 € P hold, where P stands here for
the subgroup of upper- D-triangular matrices of GL, (C[z™1]).

This result means that there is a cell decomposition of GL,(0) whose cells
(defined by the right-hand side of the previous relation) are mapped surjectively
(by the canonical surjection GL,(0) — GL,(C)) on the Schubert-Bruhat cells
of GL,(C). Finally, a last consequence of Proposition 38 is that the lattices involved
in the Birkhoff—Grothendieck algorithm given in Section 3.2.1 can be taken inside
a single apartment.

Corollary48. Let A€ A. Forany M € A°, letT'(M,A)=(Ag=M,...,A;=A)
be the min-shortest path from M to A. For any apartment 4 > A, M, there exist
M, ..., M; € AN A° such that M; € BG(Aj) for1 <i <¢t.

Proof. Since i > A, M, we have A; € o for 1 <i <t. By Theorem 44, any lattice
in o admits a BG trivialization in . O
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4. Local meromorphic connections

Let Derc(K) be the K-vector space of dimension one of C-derivations of K and
Q= Q}:(K) the dual composed of differentials of K. The valuation v extends
naturally to these spaces by the formule v(d) = v(f) and v(w) = v(g) if ¥ =
fd/dz and v = g dz for any uniformizing parameter z of K. The space Q is
naturally filtered by the rank-one free 0-modules Q(k) = {w € Q | v(w) = —k}.

Let V be a K-vector space of finite dimension 7 and let Q(V) =V Qg Q ([lj(K ).
We fix a meromorphic connection V on V. This is an additive map V : V — Q(V)
satisfying the Leibniz rule

V(fv)=v®df + fVv forall fe KandallveV.

For any basis (¢) = (eq, ..., ey) of V, the matrix Mat(V, (e)) of the connection V
in the basis (e) is the matrix A = (A4;j) € Mp(£2) such that

n
Vej:—Zei@)Aij forall j = 1,...,n.

i=1

If the matrix P = Mat(idy, (g), (¢)) € GL,(K) is the basis change from (¢) to any
other basis (&), then the matrix of V in (¢) is given by the gauge transform of A:

(17) Apy=P'AP—PldP.

For any derivation 7 € Der(K/C), the contraction of V with 7 induces a differential
operator Vg on V. The connection V is regular whenever the set of logarithmic
lattices

Aog ={A € A|V(A) CA®c (D}

is nonempty. For any logarithmic lattice A € Ay, the connection V induces a
well-defined residue endomorphism Resp V € Endc(A/mA). Note that, since the
set Ajog is closed under homothety and module sums and intersections [Corel
2004, Lemma 2.5], it induces a path-convex subset of the Bruhat-Tits building:
if L, L" € Ao, then every shortest path between L and L' is a subset of Ajog. This
applies in particular to both Ty (L, L) and Tyin (L, L').

4.1. The Deligne lattice. As is well known, the choice of a matrix logarithm of the
monodromy corresponds to fixing a special lattice in the space V. More precisely,
let VV C V ®g H be the C-vector space of horizontal sections on any Picard—
Vessiot extension H of K. Let g = gyg, € End(V'V) be the multiplicative Jordan
decomposition of the corresponding local monodromy map. Then the logarithm of
the unipotent part g, is canonically defined (by the Taylor expansion formula for
log(1 + x)), but there are several ways to define the logarithm of the semisimple
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part g5. Namely, one must fix a branch of the complex logarithm for every distinct
eigenvalue of g;.

A well known result (variously attributed to Deligne, Manin, ...) says that this
choice uniquely defines a lattice in V. In Deligne’s terms, for any section o of
C — C/Z, there is a unique logarithmic lattice A, such that the eigenvalues of the
residue map Resa V are in the image Imo of 0. As a habit, one usually takes
Re(Imo) C [0, 1[. In fact, such a habit is not as arbitrary as it seems.

Proposition 49. Assume that the connection V admits an apparent singularity (i.e.,
the monodromy map is trivial). Then the matrix Mat(V, (e)) is holomorphic if
and only if the lattice spanned by (e) is equal to the Deligne lattice A attached to
Re(Imao) C [0, 1].

Proof. Since the monodromy map is trivial, its normalized logarithm with respect
to A is 0. Hence, there is a basis of A where the connection has matrix 0. In any
other basis (e) of A, the connection has matrix A = P~1dP with P € GL,(0),
which is holomorphic. Let M be another lattice, and let (¢) be a Smith basis of A
for M. Then the matrix in a basis of M is given by the gauge equation
~ ke d
A=zP4zP _7P4:P) = (A,'jzkf_k’) _p&.
z
The nonzero diagonal terms of the matrix D of elementary divisors of M give
necessarily rise to a pole of order 1 in 4. Therefore, A is the only lattice where the
connection has a holomorphic matrix. O

As a result, we will call A the Deligne lattice of V.

4.1.1. Birkhoff forms. According to a very classical result (see, e.g., [Gantmacher

1959, p. 150)), if
dz
Q = Mat = g
al(V. (€)= ) Az
k=0
is the series expansion in z of the matrix of V in a basis (e) of A, the gauge
P=3 >0 Pi.z* € GL,(0) defined recursively by

{Po =1,

Pe=a3! (k). where O =3 Ai Pr_y,

transforms 2 into Agdz/z. Here we put &y p(X) = XU — VX. Recall that
the map @y, is an automorphism of gl(C) when the spectra of U and V are
disjoint. The gauge P thus defined is uniquely determined; moreover, the set of
bases where V has matrix L% where L € M,(C) is a constant matrix spans a
form Y, of A, that we call the Birkhoff form of the Deligne lattice A. The gauge
transform P sends in fact the basis (e) to its Y,-basis, that we denote here for
simplicity by (e;).

(18)
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As it results from the proof of Proposition 49, when the singularity is apparent,
the Birkhoff form is uniquely defined. Otherwise, however, the form Y, depends
on the choice of the local coordinate z. Two Birkhoff forms are nevertheless
canonically isomorphic.

Lemma 50. Let z, t be two local coordinates, and let « € O* such that z = ot.
Let P, and P; be the gauge transforms that send (e) to (e;) and (e;), respectively.
There is a unique gauge transform P that sends (e;) to (ey).

Proof. One has 42 = y9t with u = 1 + %% where 6, = tdr Putu =Y 52, u;t’.
Accordingly, the matrlx of the connectlon in (e;) satisfies

Mat(V., (¢,)) = Aod— = AO(Z uit )Cit.

i=0

There exists therefore a uniquely defined gauge transform P= > Pit! that
transforms the expression Agdz/z into Aydt/t, as explained in the following
scheme.

The matrix series P is determined recursively by the equations (18) applied to the
series Z?io Aou;t'. The coefficients P; are even polynomials in Ag, defined by
the induction rule

Po=1 Py= k Zu,AoPk " O
i=1

4.2. Logarithmic lattices and stable flags. When two lattices A, M are adjacent,

all the relevant information on M can be retrieved from the quotient M /mA. This

is also true in presence of a connection.

Lemma 51. Let A € Aoy be a logarithmic lattice. For any adjacent lattice M €
[mA, A], we have M € Ao if and only if M /mA is Resp V-stable.

Proof. In any basis (¢) of A such that the images of the first m = dim W vectors
span W = M /mA, the connection matrix 2 = Mat(V, (¢)) has a residue of the
form (A B) € M,;,(C), where A € My, (C). Putting T = diag(0y,, In—m), the basis
(¢) = zT (e) spans M. It is then straightforward that the matrix z=7 QzT — T dzz
of V in (¢) has a simple pole. d

When the lattices are further apart, this correspondence fails. However, there
is also a complete description of the logarithmic lattices as follows. Let A be
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the Deligne lattice, and let 5o = ResaV be the residue C-endomorphism on
D= A/mA. Let T be the Birkhoff form of A attached to a uniformizing parameter
z. Logarithmic lattices can then be characterized as stable flags (as already remarked
in [Sabbah 2002, Theorem III.1.1]).

Proposition 52. The set Ay of logarithmic lattices is in bijection with the sub-
set Eo(Y) of filtrations of Y which are stable under the residue, namely

Eo(T) ={(F.D) e E(T)| F €Fls,}.

Proof. According to a classical, although not so well known, result (which can be
found for instance in [Babbitt and Varadarajan 1983; Bolibrukh 1990]), a lattice
A € A is logarithmic if and only if

(i) there exists a basis (¢) of Y such that (zP¢) is a basis of A, with D =ED (A),
(ii) z7PLzP e M, (0), where L = Mat(VZ%, (e)).

It results from (ii) that in this case, the matrix L is D-parabolic. Since the
flag F2(A) induced by A on D = A /mA is spanned by the images of the basis
(e) in D, it is stable under § 5. Conversely, it is simply a matter of computation to
show that any lattice in the Y-fiber of a 6 -stable flag of D is logarithmic. |

A difference between our result and Sabbah’s is that he only states this result
as an equivalence of categories between the set of stable filtrations of D and the
logarithmic lattices, whereas we give the explicit correspondence based on the
lifting of D to a Birkhoff form. Although it would seem that the previous result has
little value to effectively determine all logarithmic lattices, it is always possible to
determine them in finite terms.

Lemma 53. Let M € Ay and let (F, D) = TIA(M). Let Y be a form of A,
and let (¢) be a basis of Y respecting the flag F. Fix a coordinate z, and let
P =1+ Piz+--- be the gauge from (e) to its Y ,-basis (e;). Then the Laurent
polynomial gauge O € gl(C[z, z']) defined by

o=U+---+ Pd_lzd_l)zD, where d = d(A, M),
sends the basis (e) of A to a basis of M.
Proof. This is an almost direct consequence of Lemma 15. O

Note that the polynomial gauge Q can be explicitly computed from formula (18).
On the other hand, one can also explicitly describe the set Eo(Y'). For a linear map
f € End(C"), say that an apartment A is a diagonalizing apartment of f if the
frame @ is composed of eigenlines of f.
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Lemma 54. Let A = 0 + n be the additive Jordan decomposition of the residue
map §Ao = Resa V. The pair (F, D) € E(Y) is an element of Eo(Y) if and only
if F admits a complete flag refinement F such F $§l, and there is a diagonalizing
apartment A for 0 that respects the flag F.

Proof. F is §-stable if and only if it is stable under both 0 and n. It is known that F
is stable under 0 if and only if every component F; of F is a direct sum of d-stable
lines, and under n if and only if it admits a complete flag refinement F € §[,. O

5. The Riemann-Hilbert problem

This problem is by now very well-known, so we will just state the necessary
notations and definitions, and refer to the classical paper of Bolibrukh [1990] and
to the account he gives of the construction of the Deligne bundle (see [Sabbah
2002; Ilyashenko and Yakovenko 2007] and also [André and Baldassarri 2001] for
a purely algebraic construction).

Let ¥ = {s1,...,5p} be a prescribed set of singular points, zo € ¥ be an arbitrary
base point, and let y denote a representation
(19) x w1 (X\¥, z9) = GL,(C).

The Riemann—Hilbert problem asks informally for a linear differential system
having x as monodromy representation. In the terms used in this paper, it asks
for a regular meromorphic connection V with singular set ¥ and monodromy x
on a holomorphic vector bundle €. If the bundle is required to be logarithmic
with respect to V one speaks of a weak solution to RH. In its strongest form,
the Riemann—Hilbert problem asks for a differential system Y’/ = A(z)Y having
simple poles on & as only singularities, and whose monodromy representation is
globally conjugate to x. This amounts to asking for a weak solution (€, V) which
is moreover trivial.

5.1. The Rohrl-Deligne construction. We briefly recall H. Rohrl’s construction
(as presented, for instance, in [Bolibrukh 1990; Bolibrukh et al. 2006]). Let
= (U;)iey be afinite open cover of X * = X'\ ¥ by connected and simply connected
open subsets U; C X* such that their intersection has the same property, and all
triple intersections are empty. Consider arbitrary points z; € U; and z;; € U; N Uj,
and paths y; : zo — z; and y;j : z; = zjj, so that 8;; = y;Vij yﬁlyj_l is a positively
oriented loop around z; having winding number 1. Then the cocycle g = (gij)
defined over 4 by the constant functions g;; = x([8;;]) defines a flat vector bundle
F over X*. Define the connection V over U; by the (0) matrix in the basis of
sections corresponding to the cocycle g. The V-horizontal sections of % have by
construction the prescribed monodromy behavior. This solves what we called the
topological Riemann—Hilbert problem in our introduction.
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Now add a small neighborhood D of each singular point s € & to the cover 4, in
such a way that D\{s} is covered by k pairwise overlapping sectors ¥; = DNUj,,
..., 2 = DNUj,. On an arbitrarily chosen sector among the ;, say, X, let
&s1 = zL where z is a local coordinate at s and

L= L log x(8).

2im
normalized with eigenvalues having their real part in the interval [0, 1[. Since the
open subset X1 only intersects X, and Xy, the only necessary cocycle relations
to satisfy are g5 = g51212 and gy = Z5181%, Which we take as definition of the
cocycle elements g5, and g. Define in this way the remaining elements of the
cocycle g on D N Uj;. By construction, the result defines a holomorphic vector
bundle © on the whole of X, and the connection V can be extended as L% in the
basis of sections (o) of © over D chosen to construct g51. The pair (D, V) is called
the Deligne bundle of x. This construction solves simultaneously the meromorphic
and the weak Riemann-Hilbert problem.

Note 55. The basis (o) is, in our terms, a basis of the Birkhoff form attached to
the coordinate z at s.

5.2. Weak and strong solutions. The Riemann—Hilbert problem can be seen as
involving three different levels. The topological level is only governed by the
(analytic) monodromy around the prescribed singular set. The meromorphic level is
essentially based on the solution of the /ocal inverse problem. The third one, that we
call holomorphic is global and asks for the existence of a trivial holomorphic vector
bundle. In fact, separating these three aspects is not so easy to do, because the
Rohrl-Deligne construction in fact yields a particular holomorphic vector bundle €
with a connection V that already respects the holomorphic prescribed behavior.

What makes the strong Riemann—Hilbert problem a difficult one is precisely this
third level. The local meromorphic invariants added to the topological solution of the
inverse monodromy specify up to meromorphic equivalence class the connection V
on X. In this respect, the natural category to state this construction is not the
category of holomorphic vector bundles with meromorphic connections, but the
meromorphic vector bundles, that is, pairs (7, V) where V" is locally (but in fact
globally) isomorphic to Jl’. This is why we call the second step meromorphic.
The Riemann—Hilbert problem with the given data solved here corresponds to the
very weak Riemann—Hilbert problem (as coined in [Sabbah 2002]): any subsheaf %
of locally free Oy -modules contained in the (trivial) meromorphic bundle V" is
endowed naturally with the connection V, and therefore is a holomorphic vector
bundle with a regular connection having the prescribed monodromy. As stated by
the next result (and otherwise well known), all solutions to the weak problem are
obtained as local modifications of the Deligne bundle.
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Proposition 56. Let 7 : E—> XandV :€ - € Q¢ Q be a weak solution to the
Riemann—Hilbert problem. Then there exist a finite set S C X, and local lattices My
for x € S such that the pair (€, V) is holomorphically isomorphic to (O™ | V).

The last step of the strong Riemann—Hilbert problem consists of searching the set
of holomorphic vector bundles endowed with the connection V for a bundle which
at the same time has the required holomorphic invariants and is holomorphically
trivial. A negative answer requires to know all the holomorphic vector bundles
with this prescribed logarithmic property. Note that up to this point, the discussion
presented in this section holds over an arbitrary compact Riemann surface.

5.2.1. Plemelj’s theorem. In 1908, the Slovenian mathematician J. Plemelj (see
[Plemelj 1964]) proved a first version of the strong Riemann—Hilbert problem, under
the assumption that at least one monodromy is diagonalizable. Whereas his first
proof used an analytic approach (Fredholm integrals) to construct the actual matrix
of solutions, to thence deduce the differential system and prove that it has only
simple poles, the general framework of vector bundles recalled so far allows to
establish this fact in an amazingly concise way.

Theorem 57 (Plemelj). If one of the elementary monodromy maps from represen-
tation x : w1 (X\Y, z9) — GL,(C) is diagonalizable, then the Riemann—Hilbert
problem has a strong solution.

Proof. Let (®, V) be the Rohrl-Deligne bundle attached to the representation .
Let, say G = x(y) around s € ¥, be diagonalizable. Let Y be a Birkhoff form at s,
and let (e) be a basis of T where G is diagonal. According to condition (ii) in
Section 4.2, the whole apartment s spanned by (e) consists of logarithmic lattices,
whereas Theorem 44 implies that s{ contains a trivializing lattice M . The vector
bundle ®M is therefore both logarithmic and trivial. O

Note 58. Here we have a solution by modifying the Deligne bundle only at one point.
Note that the lattice M corresponds to a BG trivialization of ® (see Theorem 59
below). Also note that this result also holds replacing ® with any other weak
solution to Riemann—Hilbert.

5.2.2. Trivializations of weak solutions. Let € be a weak solution of the Riemann—
Hilbert problem, and let & be a trivialization of € at x ¢ &¥. In a global basis
of sections (e) of the bundle %, the connection V is expressed by the matrix of
global meromorphic 1-forms €2, which has a simple pole at every s € &, and an a
priori uncontrolled pole at x. Assuming for simplicity that x ¢ ¥ is the point at
infinity co € P1(C), there exist matrices 4; € M,(C) for 1 <i < p and a matrix

B(z)=By+---+ B,Z'
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such that the connection has the matrix

P A
Q= (Z - _’Si + B(z))dz.
i=1

The most surprising consequence of the permutation lemma, as we state it, concerns
the analytic invariants of the weak solutions to the Riemann—Hilbert problem.

Theorem 59. Let € be a weak solution to the Riemann—Hilbert problem for .
Then, for any x € &, there exists a BG trivialization & of € at x which is also
logarithmic at x. Let Y = I'(X, %) and let Y5 = Res;‘}V € End(Y).

(1) Themap ¥ =) oy Vs = —Res, V is semisimple, and has integer eigenvalues,
which are equal to the type of the bundle €.

(2) The image of the Harder—Narasimhan filtration of € in Y is equal to the flag
induced by the eigenspaces of ¥ ordered by increasing values.

Proof. If x € &, the monodromy at x is trivial, and the stalk €, of € coincides
with © . The Birkhoff form Y of D (which is then unique) is equal to the space Vv
of horizontal sections at x. All flags in D =9, /m,®, are stable under Res?V =0.
According to Corollary 46, the Y-lifting of the flag induced by any BG trivialization
of € at x is a logarithmic BG trivialization of € at x. In a global basis of sections (e)
of %, the connection has the matrix

A= Z 4s + B (WhCrCB:—ZAsifx;éoo>

Sey)\{oo}z—s z—X ses
A

=Y = ifx=00¢Y,
z—S

SEY

since V has no other singularities outside ¥ U {x}. The eigenvalues of —B =
Y sey As are therefore equal to the type of €, and the Harder—Narasimhan filtration
is defined by the blocks of equal eigenvalues ordered by increasing values. O

As a consequence, we deduce the following new sufficient condition for the
solubility of the strong Riemann—Hilbert problem.

Corollary 60. Let € € 3 and let ® be the Deligne lattice of (V,V). Let x € X,
such that €y = Dy = A. Let D = A/myA. Let F € BGx(€), and M = Fy. If
the flag F 2 (M) induced in D is stable under Rest € End(D), then there exists
F € BGy (€) which is moreover logarithmic at x.

Proof. Let M be the Y -lifting of the flag F 2 (M), where Y is a Birkhoff form of A.
According to Proposition 52, the lattice M is logarithmic, and by the permutation
lemma, it is a BG trivializing lattice. Therefore, the bundle e¢M gatisfies the
conclusions of the corollary. O
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At this point, we would like to sum up our findings about trivial bundles in the
following proposition.

Proposition 61. Let & € ¥y be a trivial bundle in V', and let Y = F(X) be the
C-vector space of global sections. Let x € X, and € € H such that & ~x €. Let
moreover A = €y and M = F.

(1) Y has a well-defined flag HNy induced by the Harder—Narasimhan filtration
of @.
(1) IfF € BGx(€), then T (€) =ED A (M) and any Smith basis of Y for A ordered
according to K™ is strictly adapted to HNg.
(i) If & is additionally logarithmic at x, and the stalk € coincides with the
Deligne lattice Dy, then the type T (€) is given by the integer parts of the

eigenvalues of the residue Resffv € End(Y), that is, of the exponents of V
on % at x.

(iv) Finally, if € € RHy is moreover a weak solution to Riemann—Hilbert, then

Z Res?V = 0.
xeX

When (€, F) satisfy (1) to (iv), we say that & is a good RH trivialization of € at x.

Let & be a good RH trivialization of € at x € &¥. Let (o) be any basis of ¥ =
I'(X,%). In (0), the connection has a matrix of the form (21). The identification
of Y to C" by means of (0) endows C” with p + 1 linear maps Y for s € ¥* =
g U {x}, that we can identify with the matrices L for s € 4 and — D ey Ly
for s = x. With these notations, we set the following definition.

Definition 62. The space C", endowed with the maps 5 for s € $*, is called a
linear Fuchsian model of €.

With this notion, we can reduce some questions about vector bundles to linear
algebra statements. For instance we can give the following computable version
of a criterion due to Gabber for the reducibility of the triviality index originally
appearing in [Sabbah 2002, Corollary 1.4.14], that we state here only for the case
of a logarithmic modification.

Corollary 63. Let € € RHy be a weak solution, and consider a linear Fuchsian
model at x ¢ &, given by p matrices As for s € ¥ such that

ZAS = diag(tllnl,. . .,tslns)
seF

where the integers t; satisfy t; > t; 41, in such a way that the flag HN is the flag
0=FyC F, C--- C Fy = C" having signature (ny,...,ns) in the canonical
basis of C". There exists a weak solution €’ adjacent to € at s € X and such that
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i(€') < i(€) if and only if there exists an Ag-stable subspace W C C" such that
W N Fp=(0).

Proof. Let T = diag(t;1p,,...,tsly,) = diag(ty, ..., ) be the type of €. We
have i (€) = Y ;_, ni(t; —t;). According to Proposition 28, any adjacent weak
solution €’ is given by an A-stable subspace W C C”". For any basis (e) of C"
respecting the flag HN, the bundle ¢’ has type T’ = T — K, where k; = 0 when
e; € W and k; = 1 otherwise; therefore i (€') = > ;_, (max(t; — ki) — t; + ki)
where #; represent the elements of 7" without multiplicities. Accordingly, we have

n
(&) —i(8) =) (tn —ki —max(t; — kp)).
i=1
Now, if there exists i such that t; = ¢; and k; = 0, then max(t; — k;) = t1;
thus i (€) —i(€') = Y/, —ki < 0 (because we exclude the trivial case W = C").
Otherwise we have max(f; —k;) =¢;—1, and then i (€)—i (€¢') = > i_, (1—k;) > 0.
Therefore €’ exists if and only if there exists W stable under some Ay such that
WnNnF =0. |

Proposition 64. Let & be a BG trivialization of © at x ¢ &. If there exists a flag F
inY = %(X) which is transversal to HNg, and is moreover stable under the action
of one of the maps Vs for s € &, then the strong Riemann—Hilbert problem has a
solution, which moreover coincides with © outside s.

Proof. Let F be a flag of Y, which is stable under ;. Taking stalks at x of a
C-basis of F, we can see the flag F in D = D;/m®D;. According to Lemma 27(ii),
there exists a BG trivialization € of ® at x, whose image in D = O;/m;9D; is F.
Let (e) be a BG basis of ©; with respect to €. Consequently, its image in D
respects the flag F. Let Y be a Birkhoff form of ®;, and let (ey) be the Y -basis of
(e). Since the gauge from (e) to (ev) is tangent to I, the lattice M induced from
(er) by the elementary divisors K of € in A is also a trivializing BG lattice for
© at s. However, the lattice M is also logarithmic, since by construction it induces
in D the y-stable flag F, and moreover sits inside an apartment that contains the
Birkhoff form Y. Hence, the bundle ©M is both trivial and logarithmic. O

We have represented the weak solutions to the Riemann—Hilbert problem as
points in a product of subvarieties of stable flags.

Theorem 65. Let® be the Deligne bundle, and ¥ a BG trivialization at an apparent
singularity x € <. The set of weak solutions to the Riemann—Hilbert problem for x
is parametrized by the set

RH, = {(F*, Dy)sey | F® € §ly, (Y), Dy € Z"(F*)},
where Y = F(X) and Yy = Res] V € Endc(Y) for s € .
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5.3. The type of the Deligne bundle. The strong version of the Riemann—Hilbert
problem would directly have a solution if the Deligne bundle were trivial. However,
this is not the case, unless all singular points are apparent, since the exponents
of V are normalized in such a way that their sum is nonnegative. This means
that the type of the Deligne bundle as a rule is not trivial. We have seen several
ways to characterize this nontriviality. The fype characterizes the isomorphism
classes of holomorphic vector bundles, so it would seem possible to work with
this sole information. However, we are not in the right category to do so, since we
consider holomorphic bundles with an embedding in a meromorphic one, denoted
by V. This is the reason for which there are several trivial bundles in V. From
another point of view, it is not possible to determine on the sole basis of the sequence
T =(ay,...,an), what the effect of changing the stalk of ® at x will be. Obviously
the geometry of the Harder—Narasimhan filtration will play a decisive role.

5.3.1. Trivializations of the Deligne bundle. Let us examine in further detail the
case of the Deligne bundle ©. Let us say that §; is an elementary generator of the
homotopy group G =71 (X'\¥, z¢), if §; is a closed path based at z, having winding
number +1 around the singularity s; and 0 around the others. Let G; = x(8;) and
L; = ﬁ log G;, normalized as for the Deligne lattice. Let (0;) be a basis of the
Birkhoff form Y; at s; described in Note 55, such that the connection has locally as
matrix 2; = L; %, on a neighborhood, say D; of s;. On the other hand, let Dy be a
neighborhood of zg, and consider a basis (o) of the local Birkhoff form. According
to what precedes, (0¢) is a basis of local V-horizontal sections of ® over Dy. One
can moreover choose this basis in such a way that the monodromy of (o) around
s; is exactly given by the matrix G;.

Assume now for simplicity that x ¢ & is the point at infinity co € P!(C), and
let & be a trivialization of © at x. In a global basis of sections (e) of the bundle %,
there exist matrices B; € M, (C) and a matrix

B(z)=By+---+ B,z and C;eGL,(C)for1 <i<p
such that the connection has the matrix
P 1
C ' L;C;
Q= -+ _— — +B dz.
(; " (z)) z

Note 66. If the bundle % is moreover logarithmic at co — which can be achieved,
for example, by Plemelj’s theorem — then B = 0 and the residue at infinity, Lo, =
— Zf;l Cl._1 L;C;, is semisimple with integer eigenvalues (ssie). At the cost of a
(harmless) global conjugation, we can already assume that

Loo = diag(h1 I, ... bsIy,) with by <--- < by.
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Note that the sequence B = (b11y,,...,bsl,,) coincides with the elementary
divisors of the stalk Foo In D o.

Definition 67. We say that (Cy, ..., Cp) € GL,(C)? is a normalizing p-tuple for
x if Z,P:l Ci_1 L;C; is ssie for some (and therefore any) normalized logarithms
L; of the generators x(y;) of the monodromy group.

Normalizing p-tuples always exist. Putting ¢ as the coordinate 1/z at infinity,

the Taylor expansion of V at x = oo has then the nice expression

D
~ dt ~
20 Q=-Y > sfLi*— with L; = [ L;C;.
(20) kZOI.:lSl it w1 i i iCi

We have thus reduced the computation of the type of the Deligne bundle to the
computation of the matrices C; (the so-called connection matrices, because they
connect the different local expressions of V on the local Birkhoff forms). It is
however well known that the computation of the connection matrices is difficult.
Any other trivialization of ® at infinity is given by a monopole gauge (as coined
in [Ilyashenko and Yakovenko 2007]), namely a unimodular polynomial matrix
IT € GL,(CJz]), that is, a matrix satisfying

MN=~Py+ Piz+---+ szk such that detI1(z) = cst € C*.

Proposition 68. Given a family of points sy, ...,sp € C and invertible matrices
Ci,....Cp € GLy(C), there exists a monopole gauge I1 € GL,(C[z]) such that
I(s;) = Cj for 1 <i < p.

Proof. The group GL,(R) on a ring is generated by transformations 7;;(A) =
I + AE;j where A € R and Ej; is the (i, j) element of the canonical basis of the
vector space gl,,. At the cost of introducing the trivial transformations 7;;(0) = 1,
one can assume that all the matrices C; can be expressed as a product of the same
transformations with different parameters:

Ci=Ty(}) - Ts(ul) with ul e C.

Define then Aj € C[z] such that A (s;) = ,u;'{ for 1 <i < p. By construction, the
product O=T1, (A1) -+ Ts(Ag) € SL,(C[z]) indeed interpolates the matrices C; at
the points s;. O

As a consequence of this result, one can find a trivialization € at infinity of the
Deligne bundle such that the residues of the connection V are expressed in a basis
of Y =TI'(X,¥€) as the actual matrices L; (and not conjugated to them). Although
the point at infinity of € is still an apparent singularity, we have no control on the
Poincaré rank of V at co.
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The results of this section also hold (with the adequate modifications) if the
apparent singularity is assumed to be located at zo &€ & U {oo}. We will refer to the
trivialization € as an adapted trivialization of ® at zy.

5.3.2. A Deligne—Simpson-type problem. We know that there exists a family of
invertible matrices (C;) such that Zf —1 Ci_1 L;C; is semisimple with integer eigen-
values and that these eigenvalues are equal to the type of the Deligne bundle. This
raises two questions:

(1) Does there exist a logarithmic trivialization of ® for any such family (C;)?

(2) If there exist several families with this property, how do we recognize those
that indeed give the type of the Deligne bundle?

This also raises an interesting computational problem akin to the well-known
Deligne-Simpson problem (see, e.g., [Crawley-Boevey 2003]). Let ¢; be the
conjugacy class of L; = ﬁ log G; under GL,(C).

(DS) Determine all conjugates L; €6; such that Zl{;l Li= diag(by,...,by) €2,

5.4. The Bolibrukh—Kostov theorem. The most celebrated recent result on the
Riemann—Hilbert problem is the following fact, proved first independently by
A. Bolibrukh and V. Kostov.

Theorem 69 (Bolibrukh—Kostov). The strong Riemann—Hilbert problem is solvable
for any irreducible monodromy representation .

We give first an algebraic proof of a classical result of Bolibrukh [Anosov and
Bolibrukh 1994, Proposition 4.2.1].

Proposition 70. If the representation ¥ is irreducible, then for any weak solution
€ € RHy, the type T (€) = (11, ..., t,) of € satisfies |t; —tj| < |i — j|(p —2).

Proof. Assume here for simplicity that x = oo ¢ &, and consider again the setting
of Section 5.3.1. Let € be any weak solution to Riemann—Hilbert, and & be a
logarithmic BG trivialization of € at x. Let T = (¢, ..., ;) be the type of €. In a
basis (e) of global sections of %, there exist constant matrices L, fora € & such
that the connection V has in (¢) the matrix

L dz ~ 1
Q) Q=Y —“d:=-T3 @ wih Q=Y *L andz=-.
zZ—d z z

ac¥ k=0 acy

By Proposition 49, the shearing =7 suppresses the singularity at x, since the

basis 77 (e) spans the Deligne lattice. As a consequence, Q@ =7 Q(2)z7T + T%
must satisfy v(ﬁ) > 0. Therefore, the residue matrix B =—3 . Za of Q2 at x is
diagonal and equal to —7". We can assume further that

B :diag(bllnl,...,bslns) with by = —t; <--- < by = —t;
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where (t11y,,, ..., ts1,,) represents the type of € with multiplicities. Partition any
matrix M according to the eigenvalue multiplicities of B, as (M p,) for 1 <£,m <s.
Then the matrix of the connection can be rewritten by blocks as

~ _ dz NP dz
Qem = Q"""+ T = (—Z Q) zittetm 4 5e,mtzlnz)7-
Jj=0

For each (£, m) block, this series must have strictly positive valuation. The sum
Zaeg) L, = T imposes conditions on all blocks of the residues L,, while when
£ > m we get the following equations:

@) Q) = a/(La)eyw=0for0<j <tm—t, whent>m.
acy
For a fixed pair (£, m), let k = max(0, t,, —tg), and let X; € C"¢>*"m be the
(€, m)-block of the matrix Zs,-, for1<i<p.Forl<a=<ngand1 =<8 <ny, let
Vg, € CP be the vector constructed by taking the coefficient of index (a, 8) of Xj,
for 1 <i < p. Then, the equations (22) can be reformulated as

1 --- 1

Sl DY Sp
Vg, p € ker My (s) where My (s) =

S{f 55

The matrix My (s) is an upper-left submatrix of a Vandermonde matrix with

coefficients
s=(s1.....8p) € CP\ | J{xi # x;}.
i#]j

Since all the s; are distinct, this matrix has always full rank. In particular, as soon
as t, —ty > p — 1, it has a null kernel, and so all the blocks X; are zero. Due to
the ordering of the ¢;, we also have t,y, —t;» = p — 1 for m’ <m and ¢’ = ; thus
all matrices L, have a lower-left common zero block. If m = £ + 1, this means
that the representation y is reducible. O

Proof of Theorem 69. Consider the Deligne bundle ® and an arbitrary singularity
s €% Put A =9 and let F be a complete flag in A/mA which is stable
under § = RCS?V. Let D = (0,d,2d,...,(n—1)d). By Proposition 52, the
lattice A obtained by lifting the pair (F, D) in the z-Birkhoff form YT C A is
logarithmic. Let (¢) be a basis of Y respecting the flag F. Since the residue §
is upper-triangular in (e), and the elements of D are distinct, the elements of the
matrix Q = Mat(V, (zPe)) outside the diagonal have valuation at least 4. Hence
Q=(A4+:9U )% where A is diagonal and U holomorphic. By Theorem 44, the
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apartment & spanned by (e) contains a Birkhoff—Grothendieck trivialization M
of A, as in the following figure:

ZD 25
A ——= A €Ay — M €BG(A).

According to Proposition 70, the sequence D satisfies AD < (n—=1(p-2),
while the Poincaré rank p of V on M satisfies p = min(0, —v(z~PQzP)). Since
v(z7PQzP) = d — AD holds, it is sufficient to impose d = (n—1)(p — 2) to
ensure that p = 0, that is, that the lattice M is logarithmic. Then ® is a strong
solution. O

The previous proof holds in fact for any representation x for which there exists
a constant R such that for any weak solution € of RH for yx, the type of € satisfies
AT(€) < R. Finally, as a byproduct of the proof of Proposition 70, we have the
following result.

Corollary 71. Let L; € €; such that ¥.7_, L; = diag(t1....,ts) € Z". Then

the sequence T = (t1,...,t,) represents the type of the Deligne bundle of the

monodromy representation ¥ of the Fuchsian system (with singular locus & =

{s1,...,5p1 CO)

p =

L.

Y = d

>

i=1

Y

if and only if 3P s/ (Zj)g,m =0 holds for 0 < j <k, — kg and £ > m.

i=1"%i

This gives a partial answer to our question (2) from Section 5.3.2. For any
explicit solution L = (L1, ..., Lp) to the generalized Deligne—Simpson problem,
we can generate nontrivial explicit examples of Deligne bundles (and their Harder—
Narasimhan filtrations) corresponding to monodromy representations which are
locally conjugate to the original one. In the following section, we give the algorith-
mic procedures that can then be used to determine effectively if the corresponding
representation admits or not a strong solution to the Riemann—Hilbert problem.
Note that the equations in Corollary 71 show that the set of singular loci & for
which L corresponds to a logarithmic BG trivialization of a Deligne bundle is an
algebraic (projective) subvariety of CP\ | ;. ;{xi = x;}.

5.5. Testing the solubility of the Riemann—Hilbert problem. In this section, we
apply the results of this paper to the experimental investigation of the solubility
of the Riemann—Hilbert problem. We present two ways to search the space of
weak solutions, which are completely effective (up to the known problem of con-
nection matrices): one that follows paths of adjacent logarithmic lattices, based
on Lemma 51, the other that uses the characterization as stable flags given in



344 ELIE COMPOINT AND EDUARDO COREL

Proposition 52. Note that, if any (not necessarily logarithmic) trivial holomorphic
bundle of the meromorphic solution to Riemann—Hilbert is explicitly given, the
procedures that we present, coupled with classical Poincaré rank reduction methods,
implemented on a computer algebra system, allow to make the actual computations.
We however do not know if this bypasses the problem of the connection matrices.

Let © be the Deligne bundle of the representation x. Let x ¢ &, and consider a
logarithmic BG trivialization & of © at x. Let Y = I' (X, %) and choose a basis (o)
of Y in which the residue matrix at x is equal to the diagonal that represents the
type of ©:

Mat(ReSfV, (0)) = —D =diag(—k1Ip,,...,—ksly,) where ks >-- > k;.

In the basis (o), the connection has a matrix of the form (21), and the Harder—
Narasimhan filtration is expressed as the flag HNy of signature (nq,...,ns) of Y.
Let V = I'(X,¥) be the H-vector space of meromorphic sections of ¥, where
H =T (X, My) is the field of meromorphic functions on X'.

For s € &, let ¢ be a coordinate at x with divisor (f) = x —s, and (&) = 12 (0).
Recall that = ! is a coordinate at s. For clarity’s sake, we will put z, = ¢ and
ts =t~ ! when we are dealing with local sections. Let F = tq (%) be the transport
of Fatsand ¥ = (X, %). We regard Y and Y as sub-C-vector spaces of V,
spanned respectively by the -bases (o) and (&) of V. The relation (5) =t~? (o)
induces a well-defined fixed isomorphism between Y and Y.

Claim 72. The trivial bundle F is a BG trivialization of ® at s.
Claim 73. The flag HNy is the flag of signature (ny, ..., ns) spanned by (G).
Claim 74. The germ (o) of the global basis of Y at s is a local basis of Dgs.

Indeed, we have the two dual schematic representations, where (0 ) : €5 means
that (o) is a local basis of € at x and (0) : Y means that (o) is a global basis of the
form Y:

tP tP ~
(0x) : Dx—(0):Y and (0;):Ds—>(7):7Y.

5.5.1. Bolibrukh’s first counterexample. Bolibrukh’s first published counterexam-
ple is the 3 x 3 system

(23) dX/dz = AX,
01 0 0 1o\ (0 0 1 0 -1 -1\
A=10z 0o|5+[0 -5 § +o -1 -4 ]—+[0o-} i]—
00—z \o—1 17t {p 1 1f=! 1 1)73
6 6 102 3 3

Let us show what the different notions introduced in the paper are in this case.
We consider the system (23) to be the expression of the connection V on a trivial
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bundle €, in a basis (o) of global sections. The singular divisoris @ =2-0+1—1 —1—%
and the matrices at 1, —1 and % are nilpotent. The point at infinity is not singular,
since, putting = 1/z, we have

Loy g [
(24) AN =220 1] o,
2 2\ 10

Therefore the stalks € for x € P'(C)\{0} coincide with the Deligne bundle ®
of V: in the terms of Section 1, the bundle € is a trivialization of © at 0. However,
the singular point 0 is not an apparent singularity. The gauge P = diag(1,z, 1/z)
brings the system to the form

- 1 ~ 1 ~ 1 ~
Arpr=—-4 A_ A A B
[P] 0+Z+1 1+Z_1 1+z—% %-I-
where
B 01 1 N { 0-6 0 B { 0 02
Ag=10 0 —1 A_IZE 0 — 1|4;,==z10-11],
00 O 0 — 1 0 —11
{ 0 -6 —24 { 000
A%:E 0 -4 16 and B:§ 000],
0 —1 4 010

The bundle % spanned by the global sections (o) = (07, z03, 03/2) is trivial by
construction, and since all residues over ¥ = {0, 1, —1, 1/2} are nilpotent, F is
a trivialization of ® at co. Moreover, the stalk ®, is spanned by (o), so the
germ of basis (0,) is a Smith basis of D ; hence F is actually a BG trivialization
of the Deligne bundle ©® at x = oco. In general, such a gauge can be found
explicitly by combining a Poincaré rank reducing method at all finite singularities
(e.g., Gérard—Levelt saturation [1973]) and the BG trivialization algorithm from
Section 3.2.1.

Accordingly, the type of the Deligne bundle is 7 = T'(D) = (1,0, —1). However,
an apparent singularity of Poincaré rank 2 appears at co; hence the BG trivial-
ization & is not logarithmic at co. To get one, we apply the permutation lemma
(Proposition 38). We reorder the basis at co as () = (03,01, 0,) according to
the decreasing elements of the type. Putting A = Do and M = F,, for any
lattice gauge Q € GL3(C[¢t]), we can find P’, Q € GL3(CJ¢]) and a monopole
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IT € GL3(CJz]) as in the following diagram:

A (E) ............... S
: E
LT ' ~
A:(@)—=Yy CM =Yy CM
o7
Ql
T oo
A (e) Y

We will get a BG logarithmic trivialization if (&) is a basis of the Birkhoff form
T of D. Since oo is a regular point, the gauge Q is a holomorphic fundamental
matrix of solutions of the system (24). Lemma 15 ensures that we can actually
truncate Q at order AT — 1 = 1; hence we can take

100y (=101
o=010|+5(-10 1}
001 10 1

The gauge P’ is obtained as in the proof of Proposition 38:

t 1
10—35 10 —5
PP=l01 0 sothat IT=101 0
00 1 00 1
Finally, we get
1 1 1 1
Arpryri=—A —A 1 +——4 Ay,
[P1T]= 7 o+2+1 1+Z_1 1+Z_% 1
000 { 20 -1
with Ay = 101], A—1=ﬁ 00 —24],
—100 40 =2
{ 20 1 1 20 -1
A1:§ 80 —4 and A%=§ —-60 0
—4 0 -2 40 -2

This is a Fuchsian linear model of (23) at x = 0o, and we check that the eigenvalues
of

A0+A_1+A1+A

1
2

(e
o o O
|
— N N
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give indeed the type of ©. The residues A are all nilpotent with maximal rank;
hence there is a unique complete flag F ) which is stable by Aj. In the canonical
basis (e) of C3, the Harder—Narasimhan filtration corresponds to the coordinate
flag

H :(0) C (e1) C (e.e2) CC°
and we have

FO = F®:(0) C {e2) C {ea.eq +2e5) € €,
FED 1 (0) C (e2) C (e2,e1 —2e3) C C3,
FO:(0) C (e;) C (e3.e3) C C.

We see that no stable flag under any Aj is transversal to H, which is a necessary
condition to be a counterexample (by Proposition 64). However, the condition of
Corollary 63 is satisfied (at each s € &¥), which means that there is an adjacent weak
solution ‘€ with strictly smaller default i (€) <i(®) = 3.

5.5.2. Adjacent lattices. In this section, we consider a weak solution € € RH,.
In the following proposition, we describe a procedure which allows to read off
at an apparent singularity x € &, fixed once and for all, the effect on the weak
solution € of a change of logarithmic adjacent lattice at any singularity s € ¥. More
precisely, let (o) be a global basis of a logarithmic BG trivialization of € at X,
and Q2 the matrix in Fuchsian form (21) of the connection V in (o), whose residue
at x gives precisely the type of €. Let M be a logarithmic lattice at s that is adjacent
to €5. We determine explicitly a gauge transform I1,, which is a monopole at x,
such that €27, has again Fuchsian form (21). From its semisimple residue at x
we read directly the type of the modified bundle ¢, equal to the eigenvalues,
and the Harder—Narasimhan filtration of €™, spanned by the eigenspaces ordered
by increasing values. This procedure is completely effective once the connection
matrices C; that relate the local residue matrices Ly = ﬁ log G in the Birkhoff
form at s and the global residue matrices L s =Cy 174Cs in the basis (o) have
been determined.

Let M be a lattice at s that is adjacent to €. This lattice is uniquely characterized
by its image W = M /m¥€;, that can be seen as a sub-C-vector space W C Y. It
is logarithmic if and only if W is stable under the map Resfv.

According to Proposition 28, a BG trivialization of M is obtained from a basis
of € that simultaneously respects the space W and the flag HN. Moreover, we can
choose (¢) in the GL,(C)-orbit of (o).

Claim 75. There exists a basis (¢) of Y such that tsD (¢) spans a BG trivialization
of both € and €M at s.
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Claim 76. The matrix P € GL, (C) of the basis change from (o) to (¢) is (—D)-
parabolic.

Claim 77. The gauge t; D PtsD = l)? Pt D is a monopole at s and an element
of GLn(Ox).

—D D
t; P Pt

G):Y -3 :Y

(D-T
)
tsD] tf’{
T

(0): € —F = (6): € —— (0/): M

ln ln
P
E=%s/my€s ——= W

Claim 78. The basis (o) generates M at s and €y at y # x.
Claim 79. The trivial bundle & spanned by (¢”) is a BG trivialization of €™ at x.
Claim 80. The gauge transform from (o) to (¢”) is PtsT = Pt T

Claim 81. The Harder—Narasimhan filtration of €M is given by the flag of Y’
spanned by (¢”) according to D —T.

Indeed, the last arrow on the right implies that at x, we have

tP=T
(x) 1 €x=¢M =~ (¢/): Y’ where Y’ C V is spanned over C by (¢”).

Therefore the type of €M is, as expected, equal to D — T .

Proposition 82. Assume that¥ C C and x = oco. Let ‘€ € RHy be a weak solution
to the Riemann—Hilbert problem. Let the connection V have a matrix Q2 of the
form (21) in a basis (o) of a logarithmic BG trivialization % of € at x. Then,
for any L s-stable subspace Wy of C", there exists a computable monopole gauge
IT € GL,(C|z]), a constant matrix Py € GL,(C) and a diagonal matrix T with
only 0, 1 elements such that Q| p, (,—s) 7 1) has again the form (21) corresponding
to the modification €M , where M is the lattice of Vs adjacent to €z canonically
defined by W;.

Proof. We identify I' (X, %) with C" by means of the basis (). The residue of V
at s is then equal to the matrix L = Ly of formula (21). A logarithmic adjacent
lattice M is uniquely defined by an L-stable subspace W C C”. Let (¢) be a basis
respecting both W and the Harder—Narasimhan flag H, and let P € GL,(C) be
the basis change from (o) to (¢). Assume for simplicity that we have ordered
the vectors €1,...,&, in such a way that if &; € Hy N W and ¢;1; € W then
€i+1 € Hy. Let T = diag(#y,...,1,) be the diagonal integer matrix defined by
t; = 1 if and only if &; ¢ W. With the simplifying assumption, the type of €M
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is equal to D — T, including the ordering condition, and the Harder—Narasimhan
filtration is exactly obtained by putting together the groups of vectors corresponding
to equal values of D — T'. Therefore the basis (6/) = (z — 5)P?~ T (¢) spans a
BG trivialization % of €M at s, and it is simultaneously a global basis of V.
The transport (%) is again a BG trivialization of €M at x, but it needs not
be logarithmic anymore. Since € is a weak solution, we have €, = ‘éi"l = Dy.
Therefore, there exists a lattice gauge transformation P = I + Pyty + Pyt2 +---
which sends the basis (¢”) into its Y-basis (¢'), where Y is the Birkhoff form at x.
The lattice M’ spanned by txD ~T(6") is then necessarily logarithmic, according to
Lemma 15. We can effectively determine M’ by truncating the gauge P at order
d(M’', D) —1 =k, —k —2, and then applying Gantmacher’s classical recursive
formule (18). Then, the permutation lemma yields a monopole gauge transform IT
at x so that the resulting trivialization % is both BG and logarithmic. In this last
basis, the connection has again the form (21), where the spectrum of the residue
at x gives the type of the modified logarithmic bundle €M . O

Proposition 56 implies that iterated applications of this procedure describe the
set of all weak solutions to the Riemann—Hilbert problem. The strong problem is
solvable if and only if one of the bundles & has a 0 residue at x in the orbit under
these transformations.

5.5.3. The general case. For an arbitrary weak solution €, we must start with
the Deligne bundle ®, for we only have the complete description of the local
logarithmic lattices from the Deligne lattice. According to the description given
in Proposition 52, any logarithmic lattice Ny € A is given by an admissible pair
(F,T) where F is a Res‘s@V-stable flag. If we put ourselves in the situation of
Section 5.5.2, and consider a logarithmic BG trivialization & of ®© at x, and identify
Y =T (X, %) to C" by means of the basis (¢), then the flag F can be viewed as
a flag in C” stable under the matrix Ly. As exposed in Theorem 65, the bundle
€ is then described by an element (F*, Ds)sey € RHy such that F* € §ly, (Y)
and Dy € 7Z"(F*®). In order to actually construct the lattice Ny, one should in
principle reach first a Birkhoff form Y, in A = ®j. Since the Deligne lattice is
nonresonant, it is possible to do so by a lattice gauge Ps tangent to the identity, as
described in Section 4.1.1. We know from Definition 14 that if we put dy = ADg—1,
the local gauge Py can be truncated to z;-degree d, as remarked in the proof of
Proposition 82. Assume for simplicity that x = co € &. Taking Q; € GL,(C) that
brings (o) to a basis respecting F ¥, the local gauge can be written as

Po=Qy(I +++ PPz —5)™).

Take a rational interpolation Z € GL,(C(z)) of the local gauges Ps to the
prescribed orders dy, and having only a singularity outside & at x (see, e.g., [van
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Barel et al. 1994]). The global basis of sections (¢) whose matrix in (o) is P

spans by construction a trivialization ¥ of € at x. Everything can be seen at x as
explained in the following scheme. Putting A = D, = €, we have

A:(oy) 27 =T (X, %)

‘P lHl
Y D

A (8) — Y]VI
0 lnz
\ D

A () al Y’

The effect of having changed the stalks over & is translated in a purely local
fashion by a change in the set A?. Indeed, when A represented the class of [D]y,
the germ (o) was a diagonal shift of a global basis. In this scheme however, A
represents the class [€]x, and we have now to apply the gauge Z, considered as
an element of GL,(C((¢x))), to get a basis of global sections of Y = rex, @*).
The monopole IT; corresponds to the construction of a BG trivialization, as in
Section 3.2.1. The second gauge I1,, which can be constructed by the enhanced
permutation lemma (Proposition 38), brings the system to an optional logarithmic
BG trivialization, where the system is again Fuchsian.
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ELLIPTIC ALIQUOT CYCLES OF FIXED LENGTH

NATHAN JONES

Silverman and Stange define the notion of an aliquot cycle of length L for a
fixed elliptic curve E over Q, and conjecture an order of magnitude for the
function which counts such aliquot cycles. In the present note, we combine
heuristics of Lang-Trotter with those of Koblitz to refine their conjecture
to a precise asymptotic formula by specifying the appropriate constant. We
give a criterion for positivity of the conjectural constant, as well as some
numerical evidence for our conjecture.

1. Introduction

Let E be an elliptic curve over @ and fix a positive integer L > 2. In analogy
with the classical notion of an aliquot cycle, Silverman and Stange [2011] define
an L-tuple (p1, p2, ..., pr) of distinct positive integers to be an aliquot cycle of
length L for E if each p; is a prime number of good reduction for E,

p1=|E(F,,)| and piv1 =1E(F,)| forallie{l,2,...,L—1},
which may be more succinctly written as
(1) pi+1=I|E(F,)| forallieZ/LZ.

When L = 2, an aliquot cycle is also referred to as an amicable pair for E. As
observed in [Silverman and Stange 2011, Remark 1.5], there is an intimate connec-
tion between aliquot cycles for E and elliptic divisibility sequences, which relate
to generalizations of classical index divisibility questions about Lucas sequences
(see also [Gottschlich 2012], which studies some distributional aspects of elliptic
divisibility sequences).

It is of interest to know how common such aliquot cycles are, so we presently
consider the function which counts aliquot cycles of fixed length for a fixed elliptic
curve E over Q. More precisely, define an aliquot cycle (p1, p2,..., pr) to be
normalized if py = min{p; : 1 <i < L}, and then write

g L(x) = |{p1 < x :J a normalized aliquot cycle (py, p2, ..., pr) for E}|

Work partially supported by the National Security Agency under grant H98230-12-1-0210.
MSC2010: 11G0s.
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The behavior of mg 1 (x) for large x depends heavily on whether or not E has
complex multiplication (CM), as the following conjecture indicates.

Conjecture 1.1 (Silverman—Stange). Let E be an elliptic curve over @ and L >2 a
fixed integer, and assume that there are infinitely many primes p such that |E(F )]
is prime. Then, as x — oo, one has
_
" (logx)-

~

if E has no CM,
E,L(X)

Ap—— if EhasCMand L =2,
(log x)?

where the implied constants in < are both positive and depend only on E and L,
and Ag is a positive constant.

Remark 1.2. We may interpret the case L = 1 of (1) as describing primes p; for
which py = |E(F,,)|. Such primes are called anomalous primes and have been
considered in [Mazur 1972]. The asymptotic count for anomalous primes up to x is
a special case of a conjecture of Lang and Trotter [1976].

Silverman and Stange [2011] focus on the intricacies of the CM case, proving that
if E has CM, jg # 0 and L > 3, then any normalized aliquot cycle (py, p2, ..., pL)
for E must have p; < 5 (so, in particular, g 1 (x) = O(1)). The case jg =0 is
apparently more complicated, and no proof is given that g ;(x) = O(1) when
je=0and L > 3.

In this note, we refine Conjecture 1.1 to an asymptotic formula in the non-CM
case. Heuristics will be developed which lead to the following conjecture.

Conjecture 1.3. Let E be an elliptic curve over Q without complex multiplication
and L > 2 a fixed integer. Then there is a nonnegative real constant Cg ; > 0
(see (5) below) so that, as x —> o0,

1
——dt.
24/t(log )t
Remark 1.4. It is possible for the constant Cg ;, to be zero, in which case the limit

limy_, oo g 1 (x) is provably finite. Thus, in case Cg ; = 0, let us interpret the
above asymptotic to mean that lim,_, o 7g 1.(x) < 00.

X
g, L(x) ~ CE,L[
2

Remark 1.5. By integration by parts, one has

¥ 1 W Vx
fz 2/t(log )L dr = (log x)& +O((logx)”‘>'

Thus, Conjecture 1.3 is consistent with Conjecture 1.1. In practice, the error term

X 1
T x)—C —— dt
£,L(X) E,L/2 2 Jilog )] ‘
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E x=10° x =10 x =100 x =102 x = 10"}
Ei:y?4+y=x>—x 0 1 16 115 332
Er:y?=x’4+6x—-2 0 32 208 564
E3:y?=x3—3x+4 0 0 0 0 0

Table 1. Values of 7g 2(x).

should be smaller than |7z 7 (x) — Cg Li , just as in the case of the prime
’ " (log )&

number theorem.

Consider Table 1, which lists the values of g 2(x) for a few non-CM curves E
and various magnitudes x. Note that g, »(x) is larger than 7 g, 2(x). This difference
is explained by the associated constants appearing in Conjecture 1.3. Indeed, a
computation shows that

Crn

~ 1.714.
Ei2

Also note that nE3,2(1013) = 0. The additional fact that
|{p < 1012:p is of good reduction for E3 and |E3(F))| is prime}| =715, 698, 540

indicates that there probably are infinitely many primes p for which |E3(F,)| is
prime, in which case the above data suggests that £3 might be a counterexample
to Conjecture 1.1. We will later see that Cg, > = 0, and that E3 is indeed a
counterexample, assuming a conjecture of Koblitz on the primality of |E([F,)].

Remark 1.6. The heuristics which lead to Conjecture 1.3 are in the style of Koblitz
and Lang-Trotter, whose conjectures have been proven “on average over elliptic
curves E” (see [Balog et al. 2011; David and Pappalardi 1999]). It might be
interesting to see if one could also prove an average version of Conjecture 1.3.

1.1. Positivity of Cg,1 and a directed graph 9. In the interest of characterizing
the non-CM elliptic curves which have infinitely many aliquot cycles of length L,
we will state a graph-theoretic criterion for positivity of Cg ;. Recall that a di-
rected graph 4 is a pair (V', €), where V' = V(%) is an arbitrary set of vertices
and € = €(9) C V' x V is a subset of directed edges. The sequence of vertices
(v1, v2, V3, ..., Vy) is a closed walk of length n if and only if (v;, v;+1) € € for each
ieZ/nZ=1{1,2,3,...,n}. Note that closed walks may have repeated vertices.
For instance, if (v, v) € € for some vertex v (i.e., if 9 has a loop at a vertex v),
then 4 has closed walks of any length.

We will associate to an elliptic curve E a directed graph %g. First, consider the
n-th division field Q(E[n]) of E, obtained by adjoining to Q) the x and y-coordinates
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of the n-torsion E[n] of a given Weierstrass model of E. The extension Q(E[n])
is Galois over @, and once we fix a basis over Z/nZ of E[n], we may view

2 Gal(Q(E[n])/Q) € GLa(Z/nZ).

We will now attach to Gal(Q(E[n])/Q) a directed graph g (n). Viewing Galois
automorphisms as 2 x 2 matrices via (2), the vertex set V'(n) of our graph Gg (n) is

V(n):={(t,d)€Z/nZx(Z/nZ)* :3g € Gal(Q(E[n])/Q) with trg=t, detg=d}.

We define the set €(n) € V'(n) x V'(n) of directed edges by declaring that (vy, vp) €
€(n) if and only if d| + 1 — t; = dp, where v; = (¢;, d;) € V'(n).

Let mg denote the torsion conductor of E, which is defined as the smallest
positive integer m for which

Gal(Q(E[n])/Q) = =~ (Gal(Q(E[ged(m, n)])/Q)) for all n € Z-q,

where 7 : GLy(Z/nZ) — GL,(Z/ gcd(m, n)Z) is the canonical projection. (The
existence of a torsion conductor m g for a non-CM elliptic curve E is a celebrated
theorem of Serre [1972].) Finally, we define the directed graph % to be the above
graph at level mg:

g :=Gp(mE).

The following version of Conjecture 1.3 states a criterion for positivity of Cg 1,
in terms of the directed graph Yg.

Conjecture 1.7. Let E be an elliptic curve over Q without complex multiplication
and L > 2 a fixed integer. Suppose that the directed graph g has a closed walk of
length L. Then there are infinitely many aliquot cycles of length L for E. More
precisely, there is a positive constant Cg ; > 0 so that, as x — oo,

1
——dt.
2/t(logt)L

Remark 1.8. If 5 does not have a closed walk of length L, then Cr ; =0 and
there are at most finitely many aliquot cycles of length L for E (see Proposition 2.6).

X
g, (x) ~ CE,L/
2

In Section 2, we will write down the constant Cg_;, explicitly as an “almost Euler
product” and discuss its positivity in terms of the graph 9g. In Section 3, we will
develop the heuristics which lead to Conjecture 1.3. In Section 4, we will provide
some numerical evidence for Conjecture 1.3 by examining the order of magnitude

* 1
of mg 1 (x) —Cg L f
2

————— dt for various elliptic curves E and L € {2, 3}.
2/t (log1)*
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2. The constant

We now describe in detail the constant Cg ;. The next lemma allows us to interpret
(1) in terms of the Frobenius automorphisms' Frobgg[.)) (pi) € Gal(Q(E[n])/Q)
attached to the various primes p;. Recall the trace of Frobenius a,(E) € Z, which
satisfies the equation

IEF)|=p+1—a,(E)
as well as the Hasse bound

3) lay(E)] < 24/p.

Lemma 2.1 [Serre 1968, IV-4-1V-5]. For any positive integer n and any prime p
of good reduction for E which does not divide n, p is unramified in Q(E[n]) and,
for any Frobenius automorphism Frobggp,)) (p) € Gal(Q(E[n])/Q), we have

tr(Frobog)) (p)) =ap(E) modn  and  det(Frobgg[,))(p)) = p mod n.
For any subset G € GL;,(Z/nZ), define
Géli-cycle :={(g1,82.....81) € G":Vi € Z/LZ, det(g;41) = det(g;) + 1 —tr(g)) }.

Note that, by Lemma 2.1, if (p1, p2, ..., pr) is an aliquot cycle of length L for E,
then

“4) (Frob@(E[n])(m), FI'Ob@(E[n])(PZ)v cee FrOb@(E[n])(pL))
€ Gal(Q(E[n])/Q)k

ali-cycle*

Next, let ¢ (x) := %«/1 — x2 be the distribution function of Sato—Tate, which
(assuming E has no CM) conjecturally? satisfies

a,(E)
p=<x:5~=€lC[-1,1]
lim i VP f =/¢(x)dx.
1

x=>00 {p < x}

In other words, ¢ is the density function of a,(E)/2,/p, viewed as a random
variable. Denote by ¢ := ¢ x ¢ * - - - x ¢ the L-fold convolution of ¢ with itself,

The Frobenius automorphism in
Gal(Q(E[n]) /@)

attached to an unramified rational prime p is only defined up to conjugation in Gal(Q(E[r])/Q).
Here and throughout the paper, we understand Frobgg(,,) (p) to be any choice of such a Frobenius
automorphism.

2Assuming E has nonintegral j-invariant, the Sato—Tate conjecture is now a theorem of L. Clozel,
M. Harris, N. Shepherd-Barron, and R. Taylor (see [Taylor 2008] and the references therein).
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which (again assuming the Sato—Tate conjecture) is the density function of the
random variable

L
>y
= 2P
provided the various terms a,, (E)/2,/p; are “statistically independent.” Since the
primes pi, p2, ..., pr belonging to an aliquot cycle must be close to one another

(i.e., within &~ L4/t of one another where p; & t, by the Hasse bound (3)), we
are really assuming statistical independence in short intervals of the various terms
ap,(E)/2,/pi. Finally, for a positive integer k, put

ng = 1_[ pk.
p<k
In Section 3, we will develop heuristics which predict Conjecture 1.3, with

_ ¢ © i |Gal@CETD/ Doy
B k—oo  |Gal(Q(E[ni])/Q)L|

(5 CeL:

2.1. The constant as a product. We will presently prove the following proposition,
which gives a more explicit expression of Cg 1, as a convergent Euler product. Recall
that m g denotes the torsion conductor of E, i.e., the smallest positive integer m for
which

Gal(Q(E[n])/Q) = a7t (Gal(@(E[gcd(m, n)])/@)) foralln € Z-y,
where 1 : GLy(Z/nZ) — GL,(Z/ gcd(m, n)Z) is the canonical projection.
Proposition 2.2. For a positive integer k, let ny =] | p<k p*. Then one has

nk|Gal(Q(E[n]) /D oyere|
lim
oo |Gal(Q(E[ni])/Q)L]

_ m%|Gal(@(E[mE])/@)§li—cycle\ . l—[ lL|GL2(”:l)zIﬁi—cycle|
[Gal@(Elme)/@ 1 [GLaF)Y]
Furthermore,
(6) 0 ZL‘GLZ(ﬂ:l)éli-cycle’ 14+0 <1>
< = =1,
|GLa(F))L] Ve
the infinite product | | IGLo D e bsolutel
so the infinite produc converges absolutely.
|GL(F) |

Umg

The proof of Proposition 2.2 involves the following two lemmas.



ELLIPTIC ALIQUOT CYCLES OF FIXED LENGTH 359

Lemma 2.3. Let n| and ny be relatively prime positive integers, and pick any
subgroups G| C Glo(Z/nZ) and G, € GLo(Z/nyZ). Then, viewing G X G C
GL,(Z/nny2), one has

L L L
(Gl X GZ)ali-cycle = (Gl)ali-cycle X (GZ)ali-cycle‘

Proof. Let 1 : GLy(Z/n1Z) x GLy(Z/n2Z) — GLy(Z/n1nyZ) be the isomorphism
of the Chinese remainder theorem, and set G := (G| x G;). For each L-tuple
(gi)i € G, we have
detg;y; =detg;+1—trg;, (modnny) forallieZ/LZ
detg; 1 =detg; +1—trg; d
etgi =detg;+1-trg; (mo ”‘)} foralli € 7/LZ.
detgii g =detg; +1—trg; (modny)
This implies the conclusion of Lemma 2.3. ]

Lemma 2.4. Let n be a positive integer and n' any multiple of n such that, for
every prime number 1,1 |n' =1 |n. Let w : GLy(Z/n'7) — Glo(Z/nZ) denote the
canonical projection and let G C GLy(Z/nZ) be any subgroup. Then one has

(7) (n/)L|(n_l(G))§li—cycle| _ nLiGgli—cycle|
|7~ 1(G)*| - IGh

Proof. By induction, it suffices to check the case n’ = In, where [ is some prime
dividing n. In this case, since |7 ~1(G)| = I*|G|, (7) is equivalent to

-1 L 3L| L
(8) |(7‘[ (G))ali—cycle| =1 |Gali—cyclei’
which we now show. Fix an element g = (g1, g2, ..., 8L) € Géh_cycle, and note that

any element g’ € 7! (g) has the form

g =(8.8.....80)=(81+nA), &I +nA),...,g(I+nAp)) € (g,

where for each i, g; is any fixed lift to GL,(Z/InZ) of g;, and A; € M,»(F}) is
arbitrary. We will presently determine the exact conditions on the A; which force

(g}: &+ 81) € (TG Fieyele First, since (g1, 82, .-+, 81) € G cyeler WE
must have
©) gi (modl) ¢ {0, 1) foreach i € Z/LZ

and furthermore, the quantity

. detg; ) —detg; —1+trg; c

Vi

[

n
1s well-defined. One checks that

(10) detg;, , =detg;+1—trg; modIn
& y=—detgiy;-trA;j;;+detg; -trA; —tr(g;A;) mod /.



360 NATHAN JONES

The condition on the right-hand side is (affine) linear in the coefficients of A; 4
and A;. We consider the linear transformation

T FF >~ Moo (F)F — FF,
given by
L
(ADy > (—detgipi - tr Ay +detg; - tr A; —tr(giA;)),_ .-

In light of (10), the condition (8) will follow from the surjectivity of the above
linear transformation, which we now verify. Writing coordinates as

(X Vi . (ai bi
gi =: (Zi wi> and A; =: (Ci di)’

we have

T((Ay) = ((det gj—x;)a;+(det g —w;)d; —yic;—zib;—det gi +1a;41 —det g 11di41)-
By (9), at least one of det g; — x;, det g; — w;, y; and z; must be nonzero modulo /,
and so

T ({0} x - - - x {0} x Moo (Fp) x {0} - - - x {0}) = {0} x - - - x {0} x F; x {0} x- - - x {0},

where the nonzero entries correspond to the same index i. In particular, the linear
transformation in question is surjective and we have verified (8), finishing the proof
of Lemma 2.4. U

Proof of Proposition 2.2. Choose k large enough so that mpg | ng, and write
ng = n}{” -n,(f), where n,(cl) is divisible by primes dividing m g and ged(mg, n,Ez)) =1.

By definition of m g, we then have

Gal(Q(E[n4])/Q) ~ 7~ (Gal(Q(E[m£])/Q)) x ]_[ GL,(Z/[*7),

1Ky
HmE

where 7 : GLy(Z/ n,(cl)Z) — GLy(Z/mEgZ) is the canonical projection. By Lem-
mas 2.3 and 2.4, we have
nf |Gal(Q(E[m]) /D ey

|Gal(Q(E[n,])/Q)* |

 m|Gal@EmED /D) oyere] I 1 |Gal(Q(END /D oyere |
[Ga@EmD/ @ L [Gal@END /D" |
l)(mE

Taking the limit as k — oo, we arrive at the product representation of Cg | stated
in Proposition 2.2. We leave the verification of (6) as an exercise. U
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2.2. Positivity of the constant. We will now discuss the positivity of Cg ;. The
following corollary of Proposition 2.2 is immediate.

Corollary 2.5. One has
Ce.L >0 < Gal(Q(E[me])/Q)f; oyere # P-
We will now prove the following proposition, which allows one to deduce
Conjecture 1.7 from Conjecture 1.3.

Proposition 2.6. For any non-CM elliptic curve E over Q, one has
(1D Ce.L >0 < % has a closed walk of length L.

Furthermore, if g has no closed walks of length L, then there are only finitely
many aliquot cycles (p1, pa, ..., pr) of length L for E.

Proof. First we prove (11). By Corollary 2.5, we are reduced to showing that
(12)  Gal(Q(E[mE])/Q)fji cyere # D <= G has a closed walk of length L.

The mapping
Gal(Q(E[mEg])/Q) — V' (GE),

g (trg, detg)

induces a mapping Gal(Q(E[mEg])/ (I;D)aﬁi_cyCle —> {closed walks of length L in §Gg}.
Thus, if Gal(GZD(E[mb~])/<lZD)§1i_cycle # & then 9g has a closed walk of length L.
Conversely, suppose %g has a closed walk (vy, va, v3, ..., vp) of length L. Recall
that V' =Z/mgZ x (Z/mgZ)* and write v; = (t;, d;). Choosing any element g; €
Gal(Q(E[mEg])/Q) with tr g; = ; and det g; = d;, we have then constructed an ele-
ment (g1, g2, ..., &L) € Gal(Q(E[mE])/Q)aﬁi_cyde, SO Gal(@(E[mE])/<D2)§ﬁ_cycle a
&. By Corollary 2.5, we conclude the proof of (11).

To see why the nonexistence of closed walks of length L in 4g implies that

limy_, 0 g, 1 (X) < 00, note that, by (12), one has Gal(@(E[mE])/@)zﬁi_Cycle =gJ.
But then (4) implies that lim,_, o, g 1 (x) < 00, and the proof of Proposition 2.6 is
complete. (I

3. Heuristics

We will construct a probabilistic model in the style of [Koblitz 1988] and [Lang and
Trotter 1976]. We shall call the L-tuple (p;, pa, ..., pr) of distinct prime numbers
an aliquot sequence of length L for E if it satisfies

pis1=|EF,)| forallie{l,2,...L—1}.

Thus, an aliquot cycle of length L is an aliquot sequence of length L which
additionally satisfies p; = |E(F,,)|. Suppose that (py, p2,..., pr) is an aliquot
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sequence of length L for E. By substituting p, = p; +1—a,, (E) into the equation
p3=p2+1—a,,(E), one finds that p3 = p1+2—(a,, (E)+a,,(E)), and continuing
in this manner one obtains

L
(13) pr=IEF,)l < Y a,(E)=L.

j=1
Thus, a given L-tuple (p1, p2, ..., pr) of positive integers is an aliquot cycle of

length L for E if and only if the following conditions hold:
(1.) the L-tuple (p1, p2, ..., pr) is an aliquot sequence of length L for E;
(2,) one has Y7 a, (E) =L.

Consider the following condition, which generalizes condition (2, ) above by re-
placing L with an arbitrary fixed integer r:

(2) one has 30 a, (E) =r.

We now develop the heuristic “probability” that a given L-tuple (py, p2, ..., pr)
of positive integers satisfies (17) and (2} ). First, we must gather some notation. Fix
a positive integer n and elements a, b € Z/nZ. For any subset S € GL,(Z/nZ), let

Sh=q:={geS:det(g)+1—tr(g) =a}={ge S:det({ — g) =a},
§U=i={g e S:det(g) =b}, ST = Sn=a N S*=.

Finally, for L > 1 and G € GL,(Z/nZ), put

Ggli—sequence = {(gl’ 82,---,8L) € G":
foralli €{1,2,..., L —1},det(gi+1) = det(g;) + 1 —tr(g)}.

Note that when L = 1, the defining conditions become empty and we have

GaLlfs]equence =G. Forageneral L > 1, note that any aliquot sequence (py, p2, ..., L)

for E will satisfy

(Frobazgan (p1), Frobaga) (p2), - - -, Frobaka) (pr))
€ Gal(Q(E[n])/Q)5

ali-sequence*

Finally, for a fixed integer r, define

L
LY tu=r L . _
Gali-sequence = {(gl’ 82,5 8L) € Gali—sequence : Ztl’(g,’) =r mod n}

i=1

We will presently derive an expression for the probability

P1,).@,) (1) :=Prob((p1, pa, ..., pr) satisfies (1) and (2}), given that p; ~1).
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Putting %(1,)(¢) for the probability that (p1, p2, ..., pr) satisfies (1,) above, and

P (gzl,v o UL)(I) for the conditional probability that (pi, pa, ..., pr) satisfies (2)),

given that it satisfies (1), we have

(14) P, =Pay®)-25 @),

In Section 3.1 below, we will derive the probability formula

’Gal(@(E[n])/@)ah sequence} 1
|Gal(Q(E[n])/Q)-| (log )L’

(15) Pay )=

Following this, in Section 3.2, we will derive

LY tr=r
(16) 9){glven(lL)(l‘) ~ ¢ ( > . |Gal(@(E n])/Q)dli—sequence| . 1

2y |Gal(@(E[”])/@)ah bequence| 2\/2‘

Before deriving (15) and (16), we will now observe that, taken together, they
lead to Conjecture 1.3. Indeed, using (14), (15) and (16), one concludes

. (r) n"|Gal@(EmD /@5 ZNL
10).2}) NG |Gal(Q(E[n])/Q)L| 2/t(log )t

Just as with (13), one verifies that, for each (g;, g2,...,8L) € GLZ(Z/”Z)L

ali-sequence’
one has

L
det(gr) +1—tr(gy) =detg < Ztr(g,-) = L mod n.
i=1

It follows that Gal(Q(E[n]) /@)% . = Gal(Q(E[n]) /@) 2ol

r = L, n = ny and taking the limit as k — oo, one arrives at

( ) | GaA@EmD D] 1
20i) e [Gal@EmD/D)E| 2J/ilognt

Thus, putting

Py, ) =

Thus, using

1 X
g, L(x) & zf Py, () dt,
2

one arrives at Conjecture 1.3. The reason for the extra factor of L in the denominator
above is that 7g ; (x) counts normalized aliquot cycles, whereas the heuristic
probabilities above do not take normalization into account. Also, since L is fixed,
one verifies that the estimation ¢; (L /(2+/1)) &~ ¢ (0) does not affect the asymptotic.
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3.1. The probability that (p1, p2, ..., pr) satisfies (17). We will now derive a
refined probability formula which implies (15). Fix a vector @ = (az, as, ...,ar) €
((Z/nZ)*)L=1, and consider the probability

97)(a]L)(l‘)
:=Prob((p1, pa, ... p) satisfies (1.) and for all i € {2, 3, ..., L}, pi =a; modn)
and (for any subset G € GL;,(Z/nZ)) the subset

L, . . ;
Gah_‘;equence.:{(gl, g2, ..., gL)eGgh_sequeme. forallie{2,3,..., L}, det(g))=a;}.
In case L =1, the vector a € ((Z/ nZ)*)? is nonexistent, and as before we interpret

the empty condition as Geliiiflsequence = G. Also note the decomposition

L,a _ det=ap det=a3 det=a;_ det=ay
17) Gali—sequence - GN:”Z X GN=a3 X GN=a4 Koo X GN:aL x G :
: : L,a L.a _
Finally, note that if @) # a2, then G i’ quence N G ii-sequence = &> and so we have a
disjoint union
L _ L,a
Gali—sequence - |_| Gali-sequence'
ae((Z/nZ)*)L-1

For similar reasons, we have

Pap)= Y.  PE, 0.

ac((Z/nZ)*)L-1
Thus, (15) will follow from
(18) Qpa (t) ~ nL_l ) {Gal(@<E[n])/@)éﬁi—ZEQUSHCB‘ 1
2 |Gal(Q(E[n])/ Q)" | (log )L’

which we will now derive by induction on L.

Base case: L = 1. Suppose that p; is a positive integer of size about . One may
interpret the prime number theorem as the probabilistic statement that

1
P,_ () =Prob(p; is prime) ~ @,

which is base case L =1 of (18).

Induction step. Assume now that (18) holds for some fixed L > 1, and fix any
vector a = (aa, as, ..., ap41) € (Z/nZ)*)~. Since the statement

(p1, p2, .., pr+1) satisfies (1,41) and for alli € {2,3, ..., L+ 1}, p; =a; modn
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is equivalent to

(p1, p2, ..., pr) satisfies (1) and for all i € {2,3, ..., L}, p; =a; mod n,

prL+1:=prL+1—ap, (E)is prime, and p; 1 =ap41 mod n,
we see that

(19) Pz o A ) (1) = (2 ) (1) L (p),

where P(¢) is the conditional probability that p; 41 := p; +1—a,, (E) is prime,
and that py 11 =ay 41 mod n, given that (1.) holds. To estimate P(¢), let us assume
that (1) holds. First note that, by the Hasse bound |a,(E)| < 2,/p, one has

L
pryi=pi+L—Y ay(E)€[p1+L—2LyPmax, pr+ L +2L/Pruax |,
i=1

where pmax :=max{p;:i=1,2, ..., L}. By induction we have ppn,x = t+ 0. (1),

and so py i1 ~t, with an error of Oy (v/1). Now, if p; 4 were a positive integer of

size about ¢ selected independently of (p1, p2, ..., pr), then

1
(20) Prob(pr4 is prime and py4+; =ap4+) mod n) &8 ———,
@(n)logt

by the prime number theorem in arithmetic progressions. If the positive integer py
were chosen randomly and independently of the previous primes, then the probability
that p;+1 =ar+1 mod n would be 1/n. However, pr 4 is not chosen independently
of (p1, p2, ..., pr); itis related to p; by the formula p; = pp +1—a,, (E).
Thus, the congruence py41 = ap+1 mod n is really the demand that

FI‘Ob@(E[n])(pL) S Gal(@(E[n])/@)N:uM .

Since we assume that (1) holds, we know that Frobg e[}y (pr) € GL2 (Z/nZ)%et=2
It is thus natural to multiply (20) by the correction factor

|Gal(@(E[n])/@)$5" | /|Gal(@(E[n]) /@)= |

N=ap 4
1/n ’
obtaining
Gal(Q(E Q)%=“ | /|Gal(Q(E @)det=az
(1) @(r)m‘ al@(E[)/ D5, | /|Gal(@(E D) /@) ‘ 1
1/n @(n)logt
 n|Gal@(ED /DL | 1

|Gal(Q(E[n])/Q)]  logt’
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By (17), we may rewrite (18) as

det=a;

L1 |GaAl(@EN)/Qyea| (T |Gal@(EIn]/Q)\"
 |Gal(@(EmD/Q)| (11 |Gal(@(E[n])/@)] )
|Gal(Q(E[n])/@)%=a|
- |Gal(@(E[a])/@)]  (ognE

@‘(‘IL)(t) ~n

Plugging this expression and (21) into (19), and using the fact that
|Gal(Q(E[n])/@)*="| = |Gal(Q(E[n])/@)**=++1],
one concludes the induction step, completing the derivation of (18), and thus of (15).

Our analysis has motivated the following conjecture, wherein

ali-sequence

Ty 1 (x) := |{p1 < x : 3 an aliquot sequence (p1, pa, ..., pr) for E}
g |Gal(@(E[nk]) /)5

ali-sequence

’

Cali—sequence o

g = Jim |Gal(@(E[n )/ Q)L

Conjecture 3.1. Let E be an elliptic curve over Q without complex multiplication
and L > 2 a fixed integer. Then, as x —> oo, one has

X
ali-sequence . (~ali-sequence
TEL () ~Cp /2

Similarly to Proposition 2.6, one has

1
dt.
(log )t

C ali-sequence

E.L >0 <= Y has a (directed) walk of length L.

3.2. The conditional probability that (py, p2, ..., pr) satisfies (27). We will
now derive (16), completing the heuristic derivation of Conjecture 1.3. Suppose that
(p1, p2, - .., pr) is an aliquot sequence of length L for E, i.e., that it satisfies (11 ).
What is the conditional probability that ZiL:IaPi(E) =7r? In the case L =1,
condition (1) is empty, and our question becomes identical to the Lang—Trotter
conjecture for fixed Frobenius trace. In what follows, we will develop a probabilistic
model in the same style as theirs.

Fixing a level n, the number f,(r, p) > 0 will estimate the probability of the
event that ZiL:lapi (E)=r, given that (p = p1, p2, ..., pr) is an aliquot sequence
of length L for E. We will model the situation by assuming that the vector

(22)  (Frobgzpay (p1), Froba gy (p2). - - . Froba ey (pr))
€ Gal(Q(E[n])/Q)k

ali-sequence

is randomly distributed according to counting measure, and we will assume that the
various ap, (E)/(2,/p;) are independent at infinity, i.e., that ¢, is the distribution
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function for their sum. We will also assume independence of the random variables
ZiLzla pi (E)/(2/pi) and (22). Finally, in order to simplify our model, we will
also regard all of the various primes p; as having the same size, namely p. These
considerations lead us to the following assumptions about the probabilities f, (r, p):

Ja(r,p)=0 if [r|>2L\/p,

o\ n|Gal@EmD/@5ENT |
” _ _ . if <2L ,
Ja(r, P) ¢L(2«/ﬁ> |Gal(@(E[n])/@)aﬁi—sequence| vl "= \/_

where ¢, is some constant chosen so that ) ., f,(r, p) = 1. Then, similarly to
[Lang and Trotter 1976, pp. 31-32], one concludes that ¢, ~ ﬁﬁ’ as p — oo. This
leads to (16), completing the derivation of Conjecture 1.3.

4. Examples
We will now give some numerical evidence for Conjecture 1.3.

4.1. Elliptic curves with Cg,;, > 0. Table 2 and Table 3 display some data for four
elliptic curves. In each table, the column labeled “predicted” lists the approximate
values of

c /10'3 dt
B aviognt’

“actual” lists the values of mx 7 (10'?), and “% error” lists as a percentage the
approximate values of

1013
C f P AYEN
B L 2 24/t(logt)L BL

c -/-1013 dt
Bl 2ditognt

The first and third curves were already considered in [Silverman and Stange 2011],
and are included here largely to show the contrast with the second curve. For each
of these curves, a detailed list of the aliquot cycles with p; < 10'3 may be found in
an expanded version of this paper [Jones 2012].

E predicted actual % error

yi4y=x—x 318.98 332 —4.08%
yP=x34+6x—-2 54678 564 —2.97%
y:i+y=x>+x2 31897 328 —2.83%
y24+xy+y=x>—x? 31895 331 —3.78%

Table 2. Data on JTE’z(lol?’) for various E.
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E predicted actual % error
yV4+y=x3—x 3.03 3 1.05%
y2=x3+6x-2 12.59 12 4.66%
V24y=x3+x2 3.04 2 34.10%

yi4xy+y=x3—x2 3.02 4  -3248%

Table 3. Data on nE,3(1013) for various E.

The four elliptic curves E under consideration satisfy
(23) [GLz(Z/nZ) : Gal(@(E[n])/@)] <2

for each n > 1 (see [Serre 1972, pp. 309-311; Lang and Trotter 1976, p. 51]). As
shown in [Serre 1972, pp. 310-311], this is the smallest index that one can have for
general n when the elliptic curve E is defined over (0. We call any elliptic curve
E satisfying (23) a Serre curve. Serre curves are thus elliptic curves for which
Gal(Q(E[n])/Q) is “as large as possible for all n,” and it has been shown that,
when ordered by height, almost all elliptic curves are Serre curves (see [Jones 2010;
Radhakrishnan 2008]). One can show that for any Serre curve E, one has Cg 1 > 0.
In fact, if we define the constant C; by

CLI

’

_ o |Gl @/ D eyie| _ pu0) I HGL (D) i cyere|
T L ke [GL@/mDt| L |GL2(F) |

[ prime

then for any Serre curve E one has that Cr ; = Cp - f1(Asr(E)), where Agr(E)
denotes the square-free part of the discriminant of any Weierstrass model of E and
f1 1s a positive function which approaches 1 as |A¢(E)| approaches infinity. For
L =2 one has

c, $2(0) 1 I|GL2 (F) 3 cyee]| _ 8 I P4 =23 =212 +31+3)
2 e [GL@)] W @ =na-np
~ 0.077088124,
whereas for L = 3 one has
Cs= #3(0) l_[ I*|GLa(F; )gli—cycle|
3 I prime |GL (F))3|

 3(0) 1y P[10=3P =31+ 145+ G+ x ()P — (1943 x (1) —10-3x ()]
B H [(>-D(I-DP

[ prime

~ 0.019759298,
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E Ceo Cg3 Asr(E)

V4+y=x3—x ~0.077093 ~0.019841 37
y2=x34+6x—2  ~0.132151 ~0.082365 —3
yvi+y=x34+x2  ~0.077091 ~0.019861 —43
y:i4xy+y=x>—x2 ~0.077088 ~0.019759 —53

Table 4. Values of Cg», Cg 3 and Agp(E).

where x (/) = (_73) denotes the character of conductor 3. Table 4 gives the values
of Cg», Cg 3 and Agr(E) for each of the four curves under consideration. The
reason the second curve has a larger value of Cg ; is that |A¢(E)| is smaller for
this curve than for the others.

4.2. An elliptic curve with Cg,; =0. We will now discuss briefly the elliptic curve
(24) E:y*=x’-3x+4

which was mentioned in the introduction, for which g ; (x) = 0 and whose as-
sociated graph %g contains no closed walks at all. We will presently describe the
Galois group Gal(Q(E[4])/Q), which is an index 4 subgroup of GL,(Z/47). First,
define the subgroup H (4) € GL,(Z/4Z) by

ma={(0).(% ) GO () () Ol

We then have

00\ (11 10) (01
(25) Ga1<@(E[4])/@>=H<4>'(’ +2{<0 o)’(o 1) ’ (1 1)’<1 0)})

(To see that the right-hand expression defines a subgroup of GL,(Z/47), note that

160)-(01)- () (o) £wrerm

is closed under addition and under GL,(Z/27)-conjugation.)

Even though Gal(Q(E[2])/Q) = GL,(Z/27), Gal(Q(E[4])/Q) is a proper sub-
group of GL,(Z/47Z), and so one has 4 | m g. Furthermore, in this case the restriction
map Gal(Q(E[mg])/Q) — Gal(Q(E[4])/Q) induces a graph morphism

(26) Y =9Yp(mg) — Yp(4),

which is surjective in the sense that it carries the vertex set V'(mg) onto V'(4) and
likewise carries €(m g) onto €(4).
On the other hand, using (25), one finds that the directed graph §g (4) is:
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[ J @ < @ » o
27 2,1) 2,-1) (—1,1) 0, —1)

Infinitely many primes p for which |E(F,)| is prime. The non-CM case of a con-
jecture of Koblitz (see [Koblitz 1988] and also [Zywina 2011]) expresses (in our
terminology) that for any non-CM elliptic curve E, the existence of a single directed
edge in g implies the existence of infinitely many primes p for which [E(F,)| is
prime. Taking E to be the elliptic curve given by (24), we see by the surjectivity
of (26) together with (27) that §g contains at least one directed edge. Thus, assuming
Koblitz’s conjecture, there are infinitely many primes p for which |E(F )| is prime.

Finitely many aliquot cycles for E. Continuing with the example (24), by the surjec-
tivity of (26) together with (27), we see that 9 contains no closed walks at all. By
Proposition 2.6, there are only finitely many aliquot cycles (p1, p2, ..., pr) for E.
This particular example may be explained as follows. Whenever p, = |E(F,, )| for
some prime pp, we see from (27) that (tr(Frobgg47) (p1)), det(Frobggpay) (p1))) =
(=1, 1) (otherwise, |E(F,,)| would be even). But then

(tr(Frobgg(4)) (p2)), det(Frobagap (p2))) € {(0, —1), (2, =1},

in which case | E(F,)| must be even. One deduces that E has no aliquot cycles of
length L > 2, and indeed no aliquot sequences of length L > 3.

Remark 4.1. There is a modular curve X of level 4 and genus 0 with | X (Q)| =
0o, whose noncuspidal Q-rational points correspond to elliptic curves E’ for
which —Ap is a perfect square. For almost all such elliptic curves E’, one
may find an appropriate twist E of E’ for which (25) holds, and thus for which
limy 00 g, 1 (x) < 00 for L > 2. The elliptic curve (24) is one such example.
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ASYMPTOTIC L* NORM OF
POLYNOMIALS DERIVED FROM CHARACTERS

DANIEL J. KATZ

Littlewood investigated polynomials with coefficients in {—1, 1} (Littlewood
polynomials), to see how small their ratio of norms || f|4/]l f[l> on the unit
circle can become as deg f — oco. A small limit is equivalent to slow growth
in the mean square autocorrelation of the associated binary sequences of
coefficients of the polynomials. The autocorrelation problem for arrays and
higher dimensional objects has also been studied; it is the natural general-
ization to multivariable polynomials. Here we find, for each n > 1, a fam-
ily of n-variable Littlewood polynomials with lower asymptotic || f |4/ fIl2
than any known hitherto. We discover these through a wide survey, infea-
sible with previous methods, of polynomials whose coefficients come from
finite field characters. This is the first time that the lowest known asymptotic
ratio of norms || f|l4/| f |2 for multivariable polynomials f(z1,...,z,) is
strictly less than what could be obtained by using products f;(zq) - - - fu(zx)
of the best known univariate polynomials.

1. Introduction

1A. History and main result. Littlewood [1966; 1968] pioneered the study of the
L* norm on the complex unit circle of polynomials whose coefficients lie in {—1, 1},
and in particular wanted to know how small their ratio of norms || f||4/| f|l2 can
become as deg f — oo. He suspected, based on calculations of Swinnerton-Dyer,
that this ratio could be made to approach 1 asymptotically, but the smallest limiting
ratio he could find was /4 /3 for the Rudin—-Shapiro polynomials [Littlewood 1968].
The L* norm is of particular interest since it serves as a lower bound for the L>
norm and is easier to calculate than most other L norms. Erd&s [1957, Problem 22;
1962] had conjectured that || f|lo/l f |2 is bounded away from 1 for nonconstant
polynomials with complex coefficients of unit magnitude. This was disproved in
[Kahane 1980], but the modified problem where we restrict to coefficients in {—1, 1}
remains open [Newman and Byrnes 1990], and would be solved if one could prove

The author was supported by funding from an NSERC grant awarded to Jonathan Jedwab.

MSC2010: primary 11CO8; secondary 11T24, 42A05, 11B83.

Keywords: L* norm, Littlewood polynomial, character polynomial, Fekete polynomial, character
sum.
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that || fl4/1l fll2 is bounded away from 1 as deg f — oco. Polynomials in one or
more variables with coefficients in {—1, 1} and small || f||4/]| f ||2 are equivalent to
binary sequences and arrays (that is, those that simply list the coefficients of the
polynomials) with low mean square aperiodic autocorrelation. Such sequences and
arrays are important in the theory of communications' [Golay 1977] and statistical
physics [Bernasconi 1987]. Accordingly, we define a Littlewood polynomial in n
variables to have the form

s1—1 sp—1

j1=0 Jn:0

with coefficient f;, _; in{—1, 1}, and our L" norm for f(zy,...,z,) is

------

1 2 2w p 1/r
||f||r=((2n)nf0 fo | £ (exp(iy), ..., exp(i6y))] del---den) .

Note that || f ||§ =] - - - sy for our Littlewood polynomial.

For univariate Littlewood polynomials, the lowest asymptotic ratio of norms
Il £1l4/1l £ ll2 found by Littlewood himself [1968] was /4 /3 for the Rudin—Shapiro
polynomials. Two decades later, this was improved to /7,/6 by Hgholdt and Jensen
[1988], using modifications of Fekete polynomials. Over two decades later still, in
[Jedwab et al. 2013b], another modification was shown to yield further improvement:

Theorem 1.1 (Jedwab, Katz, Schmidt). There is a family of univariate Littlewood

polynomials that, as deg f — oo, has || fla/| fl2 = Bi, the largest real root of
27x'2 — 498x8 + 1164x* — 722, which is less than /22]19.

Prior to this paper, for each n, the lowest known asymptotic || f|l4/| f |2 for
n-variable Littlewood polynomials

f(zi,...,zx) (inthe limitas deg_ f, ..., deg, f — 00)

was simply the n-th power of the lowest known ratio for univariate polynomi-
als, based on the fact that if f(z1,...,z,) = f1(z1) - fu(zn), then || f|, =
I fillr - - - || full-. For bivariate Littlewood polynomials, Schmidt [2011] obtained an
asymptotic || f |4/ fll2 of +/7/6 in this way (via Hgholdt and Jensen’s univariate
polynomials mentioned above), and foresaw the possibility that the asymptotic
Il f1la/1l £l could be lowered to Blz, contingent upon the conjecture that was later
established as Theorem 1.1. In this paper, we show that one can do better than
this product construction, even when based on the best univariate polynomials now
known (those of Theorem 1.1).

I1n this milieu, results are expressed in terms of the merit factor, defined as || f ||‘2‘/(|| f ||j -\ f ||‘21).



ASYMPTOTIC L* NORM OF POLYNOMIALS DERIVED FROM CHARACTERS 375

Theorem 1.2. For each n > 1, there is a family of n-variable Littlewood polynomials
f(z1, ..., zn) which, as deg, f, ..., deg, f — 00, has || f|la/|l f |2 tending to a
value strictly less than BY.

The lowest known asymptotic || f|l4/|| f || for n-variable Littlewood polynomials
is an algebraic number depending on n, and is specified precisely in Section 1C
after we define in Section 1B the polynomials that are involved.?

1B. Character polynomials. The polynomials used in [Hgholdt and Jensen 1988],
[Jedwab et al. 2013b], and the current paper to break previous records for the lowest
known asymptotic || f||4/|| f|l> are all character polynomials, that is, polynomials
whose coefficients are given by characters of finite fields. The L* norms of character
polynomials have already been studied extensively [Hgholdt and Jensen 1988;
Jensen and Hgholdt 1989; Jensen et al. 1991; Bomer and Antweiler 1993; Borwein
2002; Borwein and Choi 2000; 2002; Jedwab 2005; Hgholdt 2006; Jedwab and
Schmidt 2010; Schmidt 2011], but it took the new methods of this paper to discover
and verify the properties of the polynomials of our Theorem 1.2.

The interrelation between the additive and multiplicative structures of finite fields
endow character polynomials with their remarkable qualities: the coefficients of an
additive character polynomial are obtained by applying an additive character of a
finite field to its nonzero elements arranged multiplicatively (listed as successive
powers of a primitive element), while the coefficients of a multiplicative character
polynomial are obtained by applying a multiplicative character of a finite field to its
elements arranged additively (as Z-linear combinations of the generators, arrayed
in a box whose dimensionality equals the number of generators). Thus an additive
character polynomial has the form

(1) f@ =) vy(+n)7,

jes
where ¥ : F, — C is a nontrivial additive character, the support S is a set of the
form {0, 1, ..., s — 1}, the translation t is an element of Z, and the arrangement «
is a group epimorphism from Z to F. A multiplicative character polynomial has
the form

2) fGiz= > x@G+n)z gl
J=01s e Je)ES

where e is a positive integer, x is a nontrivial complex-valued multiplicative char-
acter of [, = [F,e with p prime, the support S is Sy x --- x S, with each Sy a set of

2Gulliver and Parker [2005] have also studied || f|l4/]| f || for multivariable Littlewood polynomi-
als, but in a very different limit: they let the number of variables tend to infinity while keeping the
degree in each variable less than or equal to one.
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the form {0, 1, ..., sy — 1}, while the translation t = (1, ..., t.) is in Z°, and the
arrangement o is a group epimorphism from Z¢ to F,. We always extend nontrivial
multiplicative characters to take O to 0.

We now define the Fekete polynomials and their modifications used in [Hgholdt
and Jensen 1988] and [Jedwab et al. 2013b]. For an odd prime p, the p-th Fekete
polynomial is a multiplicative character polynomial using the quadratic character
(Legendre symbol) over the prime field [ ,, support S=1{0, 1, ..., p—1}, translation
t =0, and arrangement « : Z— [, given by reduction modulo p. Fekete polynomials
are themselves the subject of many fascinating studies linking number theory and
analysis [Fekete and Pdlya 1912; Pélya 1919; Montgomery 1980; Baker and
Montgomery 1990; Conrey et al. 2000; Borwein et al. 2001; Borwein and Choi
2002].

The polynomials used in [Hgholdt and Jensen 1988] to obtain asymptotic
Il £lla/1l fl2 of &/7/6 have the same character, support, and arrangement, but the
translations ¢ are chosen such that t/p — 1/4 as p — o0, and any coefficient of 0
(arising from the extended multiplicative character) is replaced with 1 to obtain
Littlewood polynomials. To obtain asymptotic || f|l4/| f |2 less than /22/19, we
used in [Jedwab et al. 2013b] a different limit for ¢/ p, and allowed the support
S={0,1,...,s—1} to be of size other than p, and in fact let s/ p tend to a number
slightly larger than 1 as p — oo.

The families of character polynomials used here are based on similar asymptotics:
we say that a family { f;},c; of additive character polynomials is size-stable to mean
that if we write [, and S, for the field and support of f,, then {g, : ¢ € I} is infinite
and |S,|/(g,—1) tends to a positive real number o (called the limiting size) as g, — oo.
Likewise, we say that a family of e-variable multiplicative character polynomials
{fi}ie1 1s size-stable to mean that if we write Fy =, and §, = 8,1 x--- x S,
for the field and support of f,, then the set of primes {p, : ¢t € I} is infinite and
for each k € {1, ..., e}, the ratio |S, |/ p. tends to a positive real number o} as
q,— o0o. Wecalloy, ..., o, the limiting sizes. And we say that a family of e-variable
multiplicative character polynomials { f,},c; is translation-stable to mean that if
we write Fy =F,c and 7, = (1,1, ..., 1, ) for the field and translation of f,, then
the set of primes {p, : ¢ € I} is infinite and for each k € {1, ..., e}, the ratio ¢, s/ p,
tends to a real number 1; as g, = oco. We call 7y, ..., 1, the limiting translations.

1C. Subsidiary results. We discovered the polynomials of Theorem 1.2 via a
survey, enabled by the methods presented in this paper, of the asymptotic L* norms
of both additive and multiplicative character polynomials. Quadratic multiplicative
characters behave differently than nonquadratic ones, so we treat them separately:
we have quadratic families in which every character is quadratic, and nonquadratic
families in which none is. We then have three theorems: one for additive characters
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and two for the different types of multiplicative characters, and we express our
limiting norms in terms of the function

3) Q(x,y) =Y max(0,1—|xn—y|)?,
nez
which is defined and continuous on {(x, y) € R?: x # 0}.

Theorem 1.3. Let { f,},c1 be a size-stable family, with limiting size o, of additive
character polynomials over fields {[Fy },cj.

(i) As g, — oo, we have

4
AL
TE

(1) This limit is globally minimized if and only if o is the unique root in (1, 14 @)
of x3 —12x + 12.

~20+29(1,0).
o

Theorem 1.4. Let { f,},c; be a size-stable family, with limiting sizes oy, ..., 0., of
e-variable nonquadratic multiplicative character polynomials over fields {F, } ;.

(1) As g, — o0, we have

||ﬁ||4 2¢ : 1
||ﬁ||4 ¥l_[0’l+21—[9(;,0)

j=1 j=1 !

(i) This limit is globally minimized if and only if o1, . . ., 0, all equal the unique
root in (1,14 3¢t1/22¢+4) of

e
W= - DG -4+

Theorem 1.5. Let {f,},c; be a size- and translation-stable family, with limiting
sizes o1, ..., 0, and limiting translations ty, . . ., T,, of e-variable quadratic multi-
plicative character polynomials over fields {F 4 },c;.

(1) As g, — 00, we have
e+l € 2
::?::4 -2 ]_[a,+2]_[ (— 0)+]_[ (— 1+ Tf)
AP

@ii) This limit is globally minimized if and only if o1, ..., 0. all equal the unique
rootin (1,14 3¢t1/2%¢43) of

e e
e LR V(CISE IR L e M Ve

and t; € {%(1 —20j)+n/2:n€Z}foreach j €{l,..., e}
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These new theorems are much more general than the compositum of all previous
results on the limiting ratio of L* to L? norm for character polynomials [Hgholdt
and Jensen 1988; Jensen and Hgholdt 1989; Jensen et al. 1991; Borwein and
Choi 2000; Schmidt 2011; Jedwab et al. 2013a; 2013b], and reveal for the first
time the full functional form of the asymptotic ratio of norms as it depends on
choice of character, limiting size, and limiting translation, thus enabling us to find
multivariable Littlewood polynomials with lower asymptotic || f|l4/]| f |2 than any
known hitherto.

For each e > 1, let A, (resp., B.) be the minimum asymptotic ratio of norms
for a family of e-variable nonquadratic (resp., quadratic) character polynomials, as
described in Theorem 1.4(ii) (for A,) and Theorem 1.5(ii) (for B,). Note that A;
is also the minimum asymptotic ratio of norms achievable by a family of additive
character polynomials as described in Theorem 1.3(ii). Rational approximations
of Bf, BE‘ e Bgt are obtained later in Lemma 7.1, and if desired, a computer
may be used to obtain more accurate approximations of values of various A,
and B,. For each e > 1, B, is to date the lowest known asymptotic || f |4/l fl2
for a family of e-variable Littlewood® polynomials f(zy, ..., z.) in the limit as
deg, f,...,deg, f — o0o. For e = 1, this recapitulates Corollary 3.2 of [Jedwab
et al. 2013b], while for e > 1, the ratio obtained here is strictly lower than any
found to date. Until now, the smallest known asymptotic ratio has been whatever
can be obtained from the best univariate polynomials and the product construction
Ifz) - f@Ilr = Il f@I¢, and so we are claiming that B, < B{ for every
e > 1. This will give our main result, Theorem 1.2, but in fact we prove something
more general: one always obtains a lower asymptotic ratio of norms with a single
optimal family of quadratic character polynomials than one does using the product
construction with two or more families of character polynomials (which could draw
coefficients from {—1, 1} or a larger set, depending on the characters involved).

Theorem 1.6. For each e > 1, let A, (resp., B.) be the minimum asymptotic
ratio of L* to L?> norm achievable by families of e-variable nonquadratic (resp.,
quadratic) multiplicative character polynomials, as described in Theorem 1.4(ii)
(resp., Theorem 1.5(ii)).

Then B, < A, for every e > 1 and Be,+¢, < Be, B, for every e, e2 > 1.

1D. Organization of this paper. To prove Theorems 1.3—1.5, we first establish
a general theorem for obtaining the L* norm of a polynomial from its Fourier
interpolation in Section 3, after setting down notational conventions in Section 2.
Our general theorem reduces the problem of computing L* norms of character

3Quadratic character polynomials are not always Littlewood because the extended quadratic
character x has x (0) =0, so we replace each coefficient of O thus produced with a 1, and Corollary A.3
shows that this has no effect on the asymptotic ratio of norms.
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polynomials to a pair of calculations (one for additive and one for multiplicative
characters) involving Gauss sums, which are presented in Section 4. We use these
in Section 5 to prove Theorems 1.3(i), 1.4(i), and 1.5(i). These respectively imply
Theorems 1.3(ii), 1.4(ii), and 1.5(ii), but showing this demands delicate arguments
which are sketched in Section 6. We prove Theorem 1.6 in Section 7. Some
technical results used in Sections 5 and 6 are collected and proved in the Appendix.

2. Notation and conventions

For the rest of this paper p is a prime, and g = p® with e a positive 1nteger For
any group I', we use T to denote the group of characters from T into C: thus [F is
the group of additive characters from [, to C and [F* the group of multlphcatlve
characters from [F* to C. We extend any nontrivial y € [F* so that x (0) =

To write the multlphcatlve character polynomial (2) compactly, we use the
convention that if j = (ji, ..., j.) € Z°, the notation 7/ is a shorthand for z{l .- -zf.
To make it easier to speak about supports of character polynomials (1) and (2), we
call a finite set of consecutive integers a segment, and a finite Cartesian product
of segments a box. If S is a subset of Z" and t € 7", then S + ¢ is the translated
subset {s +1: s € S}.

3. L4 norms via the Fourier transform

If I is a finite abelian group and { F},cr is a family of complex numbers, then for
any n € I', we have the Fourier transform

Fy=>"Fen(g),
gel
with inverse

g |F| Zan(g)
7761"

We express the L* norm in terms of the Fourier interpolation.

Theorem 3.1. Let I' be a finite abelian group, {Fg}eer a famzly of complex numbers,
n a positive integer, and 1 € Hom(Z",T"). For any n € T, let n' e 7" be nom. If

U is a finite subset of 7" and F(z) =),y Frawz" € Clzi, ..., zal, then
IFli=—5 > > K@N®u v @dHk A 1),
abchU K}»MVEF
a+b=c+d
where

H(K, A, M, 1)) = Z ﬁgkﬁg;\ﬁgﬂﬁ@.
Sef
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Proof. By the definition of the L* norm, we have

IF|3= Z Fr@)Faw) Fre) Fr),

a,b,c,deU
a+b=c+d

and thus, using the inverse Fourier transform,

1 AA A~
IF G = e Yo Y EEEF@N bR v ().
ab,c,deU i ). u,vel’
a+b=c+d

Since we are summing k over all T, we can replace k by &k for any given § € T,
and also do likewise with A, u, v to obtain

PG = ﬁ oY FaFaFuFox(@NG)p'(c)v'(d)
a,b,c,deU KkuveF
a+b=c+d

where we have omitted mention of the resulting factor of &’(a)&’(b)E’(c)€’(d),
which equals 1 in view of the constraint in the first summation. Now sum & over I
and divide by |I'| = |I"| to finish. O

We apply this general theorem to additive and multiplicative character polynomi-
als in two corollaries below. Such polynomials have Gauss sums as their Fourier
coefficients, so for any v € ﬁF\q and x € [*, we define the Gauss sum associated
with v and x to be

G, x) =Y _ v@xa),

"
aequ

Corollary 3.2. If f(z) is an additive character polynomial with character W € ﬁq,
support S, translation t, and arrangement o, then

||f||j11 = @1—;1)5 Z Z K (@N D) (v’ (d)H (k, A, i, v)

a,b,c,deS+t i p, ve[F*
a+b=c+d

where for any n € F*, we let ' €7 be noao, and

He, b, v) =Y GO, &G, ENG W, EWG (Y, Ev).

sy

Proof. Our additive character polynomial f(z) =) ¢ ¥ (a(s 41))z’ has the same
L" norms as F(z) =2' f(2) = D, c5qy ¥ (a(u))z", so take I' = o Fo =¥ (2),
n=1,7=a«a,and U = S +¢ in Theorem 3.1, and note that for 5 e I]:* we have
Fy=GW.n). g
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Corollary 3.3. If f(z) is a multiplicative character polynomial with character
x € b}, support S, translation t, and arrangement o, then

=L Y @i eR v @H K %, v)

q a,b,c,deS+t KAp.uE[F
a+b=c+d

where for any n eﬂF:,, weletn’ € 7¢ be noa, and

He, %, o v) = Y GEx, )G EX, )G Ew, )G EV, 1)
Eeﬁ,
Proof. Our multiplicative character polynomial f(z) =) ¢ x (a(s +1))z* has the
same L" norms as F(z) =2' f(z) =D ,c54, X ((u))z", so take T' = [Fq, Fy=x(g),
n=e,7=a«a,and U = S +1 in Theorem 3.1, and note that for n € [F we have
Fy =G, x). 0
The key to L* norms is then the evaluation of the sums H (, A, [, V) in the

above two corollaries, which we take up in the next section.

4. Two propositions on summations of Gauss sums

Here we estimate the values of the summations H that appear in Corollaries 3.2
and 3.3. We begin with some basic facts about Gauss sums, which are proved in
Theorems 5.11 and 5.12 of [Lidl and Niederreiter 1997].

Lemma 4.1. If efF\q and x € [l’:?";, then

(1) G, x) =q — 1 if both characters are trivial,
) G, x) =01ify is trivial and x is not,
(i) G, x) = —1if x is trivial and ¥ is not,
(v) |G, x)| = \/q if both characters are nontrivial, and
V) Lger; V(ba)x(a) =X (BYG (Y, X) for any b € Fy.
We first estimate the summation H appearing in Corollary 3.2.

Proposition 4.2. Let Y be a nontrivial character in ﬁF\q, and kK, A, L,V € [ﬁ’:;. If

H=Y GW,&)GW, NG, ENGY, Ev),

sef,
M= (g—1° iffc, A} ={nm, v},
0 otherwise,

then |H — M| < (q — 1)q./q.
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Proof. First we consider the case where {«x, A} = {u, v}, wherein

H=7) |IGW.s0)PIGW. s

§ely

One can work out from parts (iii) and (iv) of Lemma 4.1 that H = (g — 2)q2 +1if
Kk =x=p=vand H = (¢ —3)q*+2q otherwise. Thus H — M = (g — 1)(q — 2)
orl—gq.

Now we consider the case where {«x, A} # {u, v}, wherein

H=Y" > y+x—y—2&wry 'z Hc@)rxu)ve)

gcfs w,x,y,z€F;

=@—1 Y Y+x—y—2cr)p(ve).

w,x,y,ze[Fj]
wx=yz

Now reparametrize the sum with w = uy and z = ux to obtain
H=(—-1) Y ¥(u—1Dx)yu—Dyev@iv@)ciy),
u,x,ye[FZ

and since {«, A} # {u, v}, we can restrict to u # 1 without changing the value of the
summation. Then Lemma 4.1(v) tells us that when we sum over x and y, we obtain

H=(q—-DGW, kn)G{, AD) Z kv — Dev(u).
u#0,1

Now v and kD cannot both be the trivial character since {k, A} # {u, v}. If
KA is trivial, then the sum over u is —1; if kv is trivial, the sum is —kApuv(—1);
otherwise, let w be a generator of [} and we can write the sum over u as

> o=’
u#0,1

for some nonzero a,b € Z/(q — 1)Z, and use the Weil bound [Weil 1948; Lidl
and Niederreiter 1997, Theorem 5.41] to see that this sum is bounded in mag-
nitude by ,/g. We can use this fact, along with Lemma 4.1(iii), (iv), to see

that |[H| < (¢ — 1)gq./q. g
Similarly, we estimate the summation H appearing in Corollary 3.3.

Proposition 4.3. Let x be a nontrivial character in I]f;‘, and K, \, 4, v € fF\q. If

H=Y" Gx, x)GEL X)GER, )G EV, X)

§ eﬂfq



ASYMPTOTIC L* NORM OF POLYNOMIALS DERIVED FROM CHARACTERS 383

and
@’ iftie,h) = (vl
M = q3 if k = A, w=v,and x is the quadratic character,
0  otherwise,

then |H — M| < 3q°./q.

Proof. Let € be the canonical additive character over [,. Then for any 1 € ﬁF\q, there
is a unique y € [, such that n(z) = €(yz) forall z € F,. Let a, b, ¢, d be chosen
so that k (z) = €(az), AM(z) = €(bz), u(z) = €(cz), and v(z) = e(dz) for all z € [,.
Furthermore, we shall parametrize the sum of & over ﬁq in the definition of H by
a sum over x € [y, and replace §(z) with €(xz) wherever it occurs. Thus, in view
Lemma 4.1(v) and (ii), we have

=1G(e. 01 D X((x +a)x +b)x (x + o) (x +d)),

xely,

and |G (e, x)| = 4/q by Lemma 4.1(iv). Let m be the order of x. Then

H=gq Z x((x4+a)" Hx +b)" N (x + o) (x +d)).

xely

The magnitude of the Weil sum over x is bounded by 3,/q unless the polynomial
(x+a)" L (x+b)" 1 (x+¢)(x+d) is an m-th power in [, [x]. (See [Weil 1948; Lidl
and Niederreiter 1997, Theorem 5.41].) It is an m-th power only if {a, b} = {c, d}
orif m =2, a =>b, and ¢ = d, in which cases the Weil sum is either ¢ — 1 (if
a=b=c=d)org—2 (if there are two distinct roots). O

5. Asymptotic L* norm

We prove Theorems 1.3(i), 1.4(i), and 1.5(i) in this section, by using the propositions
from the previous section with Corollaries 3.2 and 3.3.

Proof of Theorems 1.4(i) and 1.5(i). Let x be a nontrivial character in [f;, let o be an
epimorphism from Z¢ to [, let t € Z¢, and let § = S x - - - X S, be a box where each
S; is a nonempty segment of the form {0, 1, ..., s; — 1}. Recall from Section 2 our
notational convention that z°* is shorthand for z}' - - - zo* when s = (s1, ..., s.) € Z°.
Let f(z) be the multiplicative character polynomial ) _¢ x (a(s +1))z°. We
shall calculate || f ||j first, and then investigate what happens asymptotically to this
quantity in the limits considered in Theorems 1.4(i) and 1.5(i). By Corollary 3.3,
we have

@ =5 Y Y C@iGR v dHE k),

a,b,c,deU I()\.MVG[F
a+b=c+d
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where we let U = S + ¢, and for any 7 eﬁF\q, we let n’ =noa, and

He, &, v) =Y GEx, )G EX, X)GER, )G EV, X).
EeﬁF\q

By Proposition 4.3, we can write H (k, A, i, v) =M (k, A, i, v)+N(k, A, i, v) with

g’ if i, a) = {u, v},
M@, ki, v) =3¢ ifk =X, w=v,and y is the quadratic character,

-

otherwise,

and
) IN(k, &, i1, v)| < 3¢°/q,

forall «, A, u, v € I]?Z
If x is nonquadratic, when we write out separately the contributions from M
and N to (4), we get ||f||j11 =A+ B— D+ E, where

:lz Y Y de—and—b).

a,b,c,deU AG[F
a+b c+d

:iz 3 Zx(d AV (c —b),

a,b,c,deU K)»Eﬂ:
a+b=c+d

2. 2N

a,b,c,deU Keﬂ:
a+b c+d

E= 3 Neiwn Y C@VGR v @.

K,)»,p,,ueﬁfq aﬁbc,dilé
a+b=c

le —_

_Q

Here A accounts for the value of M when (x, ) = (i, v), and B accounts for the
value of M when (x, A) = (v, u), while D corrects for the double counting by A
and Bofthecasexk =L =pu=v.

Note that A = B, and that A counts the number of (a, b, ¢,d) € U* with
c—a=b—dekera. If wewritea=(ay,...,a.),b=(b1,...,b.),c=(c1,...,Ce),
andd =(d,...,d.), then c—a € kerw is equivalenttocy —a; =---=c, —a., =0
(mod p), because « is an epimorphism from Z¢ to F, = [F,c and so factors as
o =y of, with 8: 7¢° — (Z/pZ)¢ coordinate-wise reduction modulo p and
v: (Z/pZ)¢ — Ty a group isomorphism. Now U = U; x --- x U, with each
Uj={tj,tj+1,...,t;+[S;| =1}, so for each n € Z, there are max(0, |S;| — pIn|)
ways for ¢; —a; to equal pn and the same number of ways for b; —d; to equal pn.
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So
A=B=]] > max(.|S;| - pln;D>.

j=1 n(;eZ
On the other hand, ¢ D counts the number of (a, b, ¢, d) € U*withc—a=b—d,
so by the same argument we just used (with modulus 1 instead of p),

gD =[] D max(0,[S;|—In;)?

j=1 }’leZ

from which we can compute

D:ﬁ(—zlsj|3+|sj|>.

j=1 3P

Now we bound E via two bounds: our bound (5) on N, and a technical result,
Lemma A.1 in the Appendix, bounding the inner sum of E. We satisfy the condition
on o demanded by this lemma, since « =y o 8 with 8: Z° — (Z/pZ)°¢ coordinate-
wise reduction modulo p and y : (Z/pZ)° — [, a group isomorphism. With these
two bounds, we obtain

(6) |E| <3-64°g./q Hmax( |pjl> l—[(l—l-logp)3
j=1

Now we divide ||f||jtt =A+B—-D+Eby| f||‘2L and consider the limit where each
|S;j|/p — o as ¢ — oo, that is, consider what happens in a size-stable family of
polynomials. Another technical result, Lemma A.2, shows that we can replace the
denominator || f ||‘2L with | S|? without changing the limit. Then recall the definition
(3) of , and note that A/|S|> and B/|S|? tend to [Ti=1 @1/0;, 0), that D/|S|?
tends to (5)° [, o, and that |E|/|S|* tends to 0 in this limit.

If x is quadratic, the proof is done in the same manner, except that there is
now a contribution from M in the case where k = A and ; = v, and so we get
||f||f1 =A+B+C—-2D+ E, where A, B, D, and E are as defined above, and

:Lz Z Z k'(—a—b)u'(c+d).

a,b,c,deU [LG[F
a+b c+d

Note that we subtract D twice now because A, B, and C count the case where
k = A = u = v three times. C counts the number of (a, b, c,d) € U* with
a+b =c+d e kera. Following the method we used to determine A, write
a=(ay,...,a.),b=(by,...,b.),c=(c1,...,¢c.),andd = (d,,...,d.), and
note that a + b € kera is equivalent to a; + b; = --- = a, + b, = 0 (mod p).
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Since U =U x---x U, witheach U; = {t;,t; +1,...,t; +1S;| — 1}, there are
max (0, |S;|—|np—(2t;+|S;|—1)|) ways to obtaina;+b; =np with (a;, b;) € U]?,
and the same number of ways to obtain c¢; +d; =np with (c;, d;) € U]?, so

e
c=T1 > max(0. 11— 1pn; —IS;1 - 2t; +1])°,

j=1 njez

and if we have both size- and translation-stability, then |S;|/p — o; and t;/p — t;
as ¢ — 00, so that C/|S|2—>]_[j-:152(1/aj, 1+27;/0;). O

Proof of Theorem 1.3(i). The proof is the same, mutatis mutandis, as for the e = 1
case of Theorem 1.4(i), with the roles of F, and F; exchanged. Corollary 3.2
and Proposition 4.2 replace Corollary 3.3 and Proposition 4.3, and Lemma A.2
becomes unnecessary as || f ||§ for an additive character polynomial f is always
precisely equal to the cardinality of the support of f. These, and other attendant
minor changes resulting from the exchange of [, and [}, cause (5) to become
IN(k, A, , v)| < (¢ —1)q/q, and (6) to become

|E| < 64q./gmax(1.15|/(q — D)*(1+log(g — D))",

and any other printed instance of p or ¢ should be replaced with g — 1. U

6. Minimizing the asymptotic ratio of L* to L*> norm

Here we prove Theorems 1.3(ii), 1.4(ii), and 1.5(ii) by finding the limiting sizes
and (for quadratic multiplicative character polynomials) the limiting translations
that globally minimize the ratio of the L* to L? norm.

Proof of Theorem 1.4(ii). In view of Theorem 1.4(i), we are trying to minimize the
limiting ratio of norms, given by the function

e e
26
KG...ox) == [Jau+2[Jow).
j=1 j=1

for xi, ..., x. positive real numbers (the limiting sizes), where for positive x,
we define
™ o0 =2(L.0) = Y max(0.1 - 121)’
x €z ’ . ’
n

which is differentiable for x # 0 and is C* for x ¢ Z.

Step 1. We can assume that each x; > 1 because otherwise the partial derivative of
K with respect to x; would be negative.
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Step 2. We can assume that (xq, ..., x.) € (1, 3)¢: indeed, Lemma A.6 shows that
K(x1,...,x.) > P(x1)--- P(x.), and note that P (x) is increasing for x > 1, that
() =1,03) =~ >2and K({1,...,1) =2 —(3)° < 2. This proves that a
global minimum exists and lies in (1, 3)¢: the closure of (1, 3)¢ is compact and K
is continuous thereupon.

Step 3. Suppose (o1, ...,0.) to be global minimizer of K. Then the partial
derivatives of K must vanish there, whence for each k € {1, ..., e}, we have
2u(oy) ]_[j‘:1 U(oj) = 1, where u(x) = x®'(x)/®(x) and U(x) = 3P(x)/(2x)
for x > 0.

Step 4. Then one can show that U (x) is strictly decreasing on [1, 3], with U (3) = %.

Thus we must have u(oy) < % . (%)e < % forallk € {1, ..., e}. Then examination of
u(x) shows that u(x) strictly increases from 0 to % for x € [1,2 — /2/3], and then
u(x) > % for x € (2 —+/2/3, 3). This then forces oy =--- =0, <2 — «/2/3 < 9

Step 5. Now U(ol) > U(%) > 2, so this forces u(o) < 3-(3)° 5 %, which in

turn forces o < . Then U (0}) > U( ) > 3, so this forces u(ol) <4-(3)°. Since
u(x) > 8(x — 1)/3 for x € [1, 8], this forces oy < 1+ 3¢+1/22¢+4,

Step 6. Now our problem is reduced to the single-variable minimization of

2x\¢ e
OW =K, ....0=—(F) +20)
on the interval (1, 1 43¢*1/22¢+4) Tt is not hard to see that 4® /dx vanishes if and
only if x3¢ — (3¢/2¢73) (x —1)(3x2 —4x +2)°~! vanishes. Meanwhile d’>® /dx? > 0
on our interval: by computing its value and then dropping a nonnegative term, we
can see that d>® /dx? is at least

2”2 3—2x

—e(e—1) + 8¢ = O(x) ! > —e(e—l) +2e>o

24e

This proves that there is a unique minimum: the unique root a, of

T - DGR —ax 2y

lying in (1, 1 4 3¢+1/22e+4)y, O

Proof of Theorem 1.3(ii). This is accomplished exactly as the e = 1 case of the
proof of Theorem 1.4(ii) above, save that Lemma A.5 replaces Lemma A.6. [J

Proof of Theorem 1.5(ii). In view of Theorem 1.5 (i), we are trying to minimize the
limiting ratio of norms, given by the function

2e+1

o el 3
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for xp, ..., x, positive real numbers (the limiting sizes) and yy, ..., y, arbitrary
real numbers (the limiting translations).

Step 1. We invoke Lemma A.4(i) to see that we can confine our search to xq, ..., x,
greater than or equal to % For as long as x; < %, the lemma shows that we can
always arrange for y; to be such that Q(xj_l, 1+ 2xj_1y ) =0, and we note that
Q(x;l, 0)=1forall x; € (0, ]. Thus we can increase x; to % to lower (8) through
the term —(2¢+1/3¢) [15=1 x; while keeping the other terms constant.

Step 2. Now we invoke Lemma A.4(ii) to see that for fixed xy, ..., x,, we minimize
the last term of (8) if and only if we arrange that
1—2x;
yje{ 4x’ +%:mel}
for each j € {1, ..., e}. The problem is thus reduced to the minimization of

2e+1 ¢ ¢ ¢
A, ... = =5 [Txi+2]Jeap+]]¥@n
j=1 j=1 j=1

for xy, ..., x, positive real numbers, where ®(x) is as defined in (7), and
2n+1| >2
Y(x) = -
(x) Zmax(O, 1 7
nezZ

for x > 0. Note that W is differentiable for x # 0 and is C*° for x ¢ Z + %

Step 3. We can assume that each x; > % because otherwise the partial derivative of
A with respect to x; would be negative.

Step 4. We can assume that xq, ..., x, € (%, 3): indeed, Lemma A.6 shows that
A(xy, ..., x0) = P(xy) - D(x.), and note that ®(x) is nondecreasing for x > 1
that () =1, ®3) =L > 2, and A(1,..., 1) =2—-2(3) + (3)° < 2. This

proves that a global minimum exists and lies in (3, 3): the closure of (1,3) is
compact and A is continuous thereupon.

Step 5. Suppose that (o1, ..., 0,) is a global minimizer of A. Then the partial
derivatives of A must vanish there, whence
e e
©) u(on) [[U©@p) + 3o [[ Ve =1.
j=1 j=1
P’ 30 v’ 3w
where u(x) = 2 1y = 32O 1y 2 XV v = 259D g
1 d(x) 2x W (x)
X > 5-
Step 6. We can assume o1, ..., 0, € (1,3): see (9) and note that u(x) = 0 for

xe (5 1], bV < 1forx e (4, 1],and V) < 1forx € (4,3).
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Step 7. It is not difficult to show that U(x) strictly decreases and V (x) strictly
increases on [1, 3] with U(3) = and V(1)=4%,and that 0 < u(x) <1 <v(x)
for x € [1, 3]. Thus (9) shows that we must have u(o*k) < ( ) (1 —3¢/2%+1) for
all k. This forces u(oy) < E for all k, and examination of the function u shows
that u(x) > £ for x € [%,
Now one can repeat the argument on the interval [1, %] to show that every oy, < 2,

3], and so we must have oy < % for all k.

then repeat it again on [1, 2] to show oy < 3. Further repetitions give o; < g,
or <13, and op < 2 L. Since U(x) > 3 whlle v(x) V(x)>0forx € (1, 1), we have
u(oy) < ( ) for all k, and since u(x) >8(x —1)/3 forx € [1 ], this means that

o < 14+3¢T1/22¢%3 for all k.

Step 8. So we have 1 < oy <min(Z, 1+31/22¢3) for all k. Consider the products
in (9): since each o € (1, %), we have

(1) < [TU) < (G, while 3) < [T V(o)) < (D).

j=1 j=1

We now claim that for a given A € [(%‘)e, (%)e] and B € [(%)e, (%)e], there is at
most one solution x € (1, %) to Au(x)+%Bv(x) =1, which will force 61 = - - =o,.
For if we set w(x) = Au(x) + %Bv(x), we can show that w’(x) > 0 for x € (1, %):
on this interval, we have u(x) =4(x — 1)/(3x2 —4x+2) v(x) =2/(2x — 1), and

it is not difficult to show that u’(x) > % and v/(x) > —4, so that

W@ >34-28= (3)(4) -2} >0

Step 9. Now our problem is reduced to the single-variable minimization of
T(x)=A(x,...,x)=—-22x/3)°+2®(x)* + ¥(x)°

forxe (1, 1+ 3€+1/2ze+3). It is not hard to see that d T /dx vanishes if and only if

R e PP I G P P DL

2e He—2 22e
does. Meanwhile we claim that the second derivative of T is strictly positive on
our interval: by dropping some nonnegative terms we see that

2 —
%(x) > —e(e—1) te R A

2etlye=2  8(3—2x) e—1 3
3¢ P D(x) e

Thus for e = 1, the second derivative is at least (27 — 20x)/x*, which is strictly
positive on our interval (1, 1 + 55). For e =2, we can use the fact that

0<V¥(x)<1=d(x)
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on our interval (1, 1+ 2T 3) to show that the second derivative is at least

128
16 , 54—40x
BT
which is strictly positive on our interval. Finally, if e > 3, we have
3e+1 7
I+ 22e+3 < 6’

and so on our interval (1, 1+ 3¢t1/22¢13) we have 8(3 —2x)/x* > 2, d(x) > 1,
3- 4x)/x > —1,and 0 < W(x) <1, so that

d*T e—
W(x)z_g(g) Yele—1)+Be > 0.

This proves that there is a unique global minimum for this single-variable problem:
the unique root b, of

e 36 e— 36 e—
x3 —P(x—l)(3x2—4x+2) l—ﬁ(2x—l)2 !

lying in (1, 1 4 3¢*1/22¢+3) Thus we have found that global minima are obtained
precisely when oy = --- = 0, = b, and t; € {%(1 —2b,) +m/2 : m € Z} for
each je{l,...,e}. O

7. Proof of Theorem 1.6

For A, and B, as defined in Theorem 1.6, we first show that B, < A, for each
e > 1. Given the minimizing conditions described in Theorems 1.4(ii) and 1.5(i1),
it suffices to show that
26 1 1 e 28 e
- i +2sz( o) +sz(x 5) <5 +2sz( o) .
for x € [1, %] This follows if (1/x, 1/2x) < 2x /3, or using the definition (3) of
Q, if 4x3 — 12x2 + 12x — 3 > 0 for x € [1, 3], which is routine to show.
Now we show that B, 4., < B, B., for any e;,e; > 1. We use a technical
Lemma 7.1 below, which provides bounds on the B,. It shows that if e; > 5 or
ey > 5, then B, B,, > V2> B, +¢,- So we may confine ourselves to the case where

1 <e; <epy <4. If we define By = 1, then the bounds in Lemma 7.1 also show
us that

B B B B B

B(l) > B—? > B—z > B—;‘ > B—j.
Thus we note that B, B,, > Be,—1B,,+1. If e1 + €3 > 5, we can repeat this argument
to show that B,, B,, is greater than B, 1.,—5B5, which we have already shown to
exceed B, 4¢,. On the other hand, if e; 4+ e, <5, repetition of the same argument
produces Be, By, > BoBe,+¢, = Bej+e,-
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Lemma 7.1. For each e > 1, let B, be the minimum asymptotic ratio of L* to
L? norm achievable by a family of e-variable quadratic multiplicative character
polynomials as described in Theorem 1.5(ii). Then

(i) V/103/89 < By < /22/19,
(i) /86/65 < By < J/75/56,
(iii) v/142/95 < B3 < J/116/77,
(iv) ~/T00/61 < By < /107/65,
(v) J7/4 < Bs < /128/73, and
(vi) Y7/4 < B, <2 forall e > 6.

Proof. By Section 6 of the proof of Theorem 1.5(ii) (see page 389), for each e > 1
the quantity Bj is the minimum of the function

e+1
T(x) = —%xe + 29(% 0)6 + Q(% %)
on the interval (1, 1 4 3¢H! / 226”), upon which the second derivative of T is shown
to be positive. Thus if we can find x1, x, x3 in this interval with x; < x, < x3 and
T (x3) <min(T (x1), T (x3)), then we will have shown that the minimizing value of
x lies in the interval (x1, x3). Then we can use B;‘ < T (x2) for our upper bound
and, by the monotonicity of Q(1/x,0) and 2(1/x, 1/(2x)), we can use

a2, (L )e (L L)e
B, > 3¢ x5+ 28 x],O +Q PRl

as a lower bound. We use this technique to prove bounds in (i)—(v). The calculations
done by hand are tedious, so here we simply state choices of the triple (x1, x, x3)
that establish stricter bounds than the ones we claim above:

55 128 73 18 17 16 21 20 19
for B; use (5, b1 @), for B, use (ﬁ, 16> B)’ for Bz use (—0, 5 E)’
26 25 24 36 35 34
for B4 use (g, 51 g), and for Bs use (g, eV D ﬁ)

Henceforth assume that e > 6, and let b, be the unique value in the interval
(1,1 4 3¢+1/22¢%3) guch that T(b,) = B*. Now note that Q(1/x,0) > 1 and
Q(1/x,1/(2x)) =  for x > 1, and that 2b,/3 < (215 +37)/(3-2!%) < 1, so that

215 +37

4
B> 2550

6 1 7
) +2+§>Z’
and if e > 7, then
4 215 437\7 7
Be >—2<W) +2>4—1'

This proves our lower bound on B, when e > 6.
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To prove our upper bound on B, when e > 6, write b, = 1+ ¢, with 0 < ¢, <
3¢+1/22¢4+3 " and use the definition (3) of © and the fact that 1/(1+¢,) > 1 —c¢, to
estimate B, = T'(b,) as

2e+1

36
2e+l

B < — +2(142c2)¢ + %(1 +c0)*¢

where the second inequality follows from a crude approximation with the binomial
expansion. Now note that

1
+2+dect +23 ¢t + 51 +co),

4e+4 e 2e+2 e
+3 4 3 2 2 3 5.2
2¢ < 57e59 <¢3e and 4ec; <6246Jr4 I3
so that
7 2° 2
<2_E §+—( + o)™,
which will imply B4 < 2 if we can show that (3(1 + ¢,)?/4)¢ < l Given that
ce <37/215 < &, the quantity being raised to the e-th power on the left hand side
is less than 1, so it suffices to show that (3( 10) /4)6 < 172. O

Appendix A: Proofs of auxiliary results

Here we collect, for the sake of completeness, technical results used in our proofs.
The first is a bound on a character sum used in the proofs of Theorems 1.3(i), 1.4(1),
and 1.5(1) in Section 5.

Lemma A.1. Let ' be a finite abelian group, n a positive integer, and
m,...,7, € Hom(Z,T)

such that immy + - - - 4+ imm, is the internal direct sum of immy,...,imm, in
I' Let 1 € Hom(Z",T") with w(uy,...,u,) = m(uy) + -+ + m,(u,) for all
(uy,...,uy) e, andletU =U| x --- x U, be a boxin7". Then

T= Y | Y. «@@r@®)ui@)wird)

,()Lp_,,er abcdeU
+b=c+d

is no greater than

n 3 n
U; .
64" |T"|* ]_[ max<1, |1L1;z|~|) ]_[(1 +log |im;)>.
J j=1

j=1

Proof. Write K = j_, im7;, so that K=IT" = 11m nz;. Each character of K
extends to [I" : K] characters of I, and for any € imx;, let 5’ € 7 be nom;,
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so that

n
T=m:K1'[] > ’ Do K@i,
/\aj,bj,cj,djer

J= o Wj,vj€imm;
Jo Jo 7T J
aj+bj=c;j+d;

and so it suffices to prove the bound when n = 1 and 7 is surjective. In this case
[ is a finite cyclic group, which we identify with Z/mZ by identifying 7 (1) with
1 € Z/mZ. Then we set €, = exp(2mwia/m) for every a € Z/mZ, and note that r
is the set of maps a +> €y, with x € Z/mZ. Thus,

T = Z Z €—wa—xb+yc+zd

w,x,y,2€Z/mZ ‘a,b,c,deU
a+b=c+d

U is a set of consecutive integers in Z, and note that translation of U does not
influence the magnitude of the inner sum in 7', so without loss of generality, we
assume that U = {0, 1, ..., |U| — 1}. Then reparametrize the outer sum in 7" with
xX'=w—x,y =y—w,7 =z—w, and w to obtain

T=m Z Z €—x'b+y'c+7'd

x'\y',7’eZ/mZ ‘a,b,c,deU
a+b=c+d

’

which is not more than 64m max(m, |U|)>(1 + log m)3 by [Jedwab et al. 2013b,
Lemma 2.2]. U

The next result is used in the proofs of Section 5 to understand the asymptotic
behavior of the L? norm for multiplicative character polynomials.

Lemma A.2. Let { f,}.c; be a size-stable family of e-variable multiplicative charac-
ter polynomials with F,,, S, t,, and a, the field, support, translation, and arrange-
ment, respectively, of f, for each v € 1. Then there is a Q and an N such that for all
el withq, > Q,we have |S,N (kero, — t,)| < N. Thus |S, Nker(e, — 1,)|/|S,| — O
and || f113/18.| = 1 as g, — oc.

Proof. Suppose that the limiting sizes for our size-stable family { f,},c; of multiplica-
tive character polynomials are o1, . . ., 0.. Foreach ¢ € I, let x, be the character of f;,
so that f,(z) = ;s xi(@(s+1,))z°, and let p, = g,'/*, which is the characteristic
of the field [, of f,. Since «, is an epimorphism, its restriction to each p, x - - - X p,
cubical box in Z¢ is a bijection to [, , and by the definition of size-stability, there
is some Q such that for every g, > Q, the support S, = S, x --- x §, . can be
covered with N = ]_[j: | (La i+ 1) such cubes, each of which contains one point
of kero, — ¢, s0 |S, N (kera, —1,)| < N. Since the family is size-stable, |S,| — oo
as ¢, — oo. The squared L? norm of a polynomial is the sum of the squared
magnitudes of its coefficients, and y,(«,(s +1,)) =0 for s € S, N (ker o, — ¢,) while
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|x. (e, (s +1,))| =1 for all other s € S,. Thus ||f[||% =18, (5, N(kero, —1,))|, and
so [ £lI3/1S.] — 1 as g, — oo. O

Recall from footnote 3 of Section 1C that we sometimes wish to obtain a Little-
wood polynomial from a quadratic character polynomial f(z) =) es X(a(s+1))z%,
but f may have some coefficients equal to 0 because an extended nontrivial multi-
plicative character x has x (0) =0. More generally, if x is a nontrivial multiplicative
character (not necessarily quadratic), we may wish to obtain from f a polynomial
with coefficients of unit magnitude. So we replace the zero coefficient for each z*
such that s € S N (kero — ) with a coefficient of unit magnitude. We may choose
each replacement coefficient independently of the others, and any polynomial g
resulting from such replacements is called a unimodularization of f. The following
corollary to Lemma A.2 shows that unimodularizing all the polynomials in a size-
stable family of multiplicative character polynomials does not affect asymptotic

ratio || flla/11 fll2.

Corollary A.3. Let {f,},c1 be a size-stable family of multiplicative character poly-
nomials over fields {F, },e;, and let g, be a unimodularization of f, for each 1 € 1.
If r is a real number withr > 2 or if r = oo, then || f|/lg. |- = 1 as g, — oc.

Proof. If u € C with |[u| =1 and if s = (s1,...,s.) € Z%, then L” norm of
uz® =uzy' - -z, is 1. By Lemma A.2 there is an N and a Q such that whenever
q. > Q, the two polynomials f, and g, differ by the sum of N or fewer such
monomials, and so by the L" triangle inequality, the difference between || f,||,
and ||g, || cannot be greater in magnitude than N. Now || g, ||, > ||g.ll2 = +/]S.] by
monotonicity of L” norms and the fact that the squared L? norm of a polynomial is
the sum of the squared magnitudes of its coefficients, and |S,| — oo as g, — oo for
a size-stable family. ([

The next result is used in Section 6 to find the limiting translations that globally
minimize the asymptotic ratio of L* to L? norm for quadratic character polynomials.

Lemma A.4. Let x be a fixed nonzero value in R and let y vary over R.

1) If |x| = 2, the function Q2(x, y), considered as a function of y, achieves a
global minimum value of O for y € | J,,cz[m|x|+ 1, (m +1)|x| — 1] and for no
other value of y.

(1) If0 < |x| <2, the function Q(x, y), considered as a function of y, achieves a
global minimum value of

Q(x, %) = % maX(O, 1—- ’(n+ %)XDZ

forye {x(m + %) tm € Z} and for no other value of y.
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Proof. For part (i), note that all the terms of Q(x, y) are nonnegative. Since
Q(x,y)=Q(—x, y), we may assume without loss of generality that x > 2, and then
the term max (0, 1—|xn—y|)? is nonvanishing if and only if (y—1)/x <n < (y+1)/x.
Thus we can obtain a global minimum value of 0 if we can arrange that no integer
lie in the interval ((y — 1)/x, (y + 1)/x). If m is the greatest integer lying below
this interval (so that y > mx + 1), then for the next integer m + 1 to lie above the
interval, it is necessary and sufficient that y < (m + 1)x — 1.

For part (ii), it is clear from the definition (3) of 2 that Q(—x, y) = Q(x, y),
Qx, —y)=2(x,y), and Q(x, y) =Q(x, y+x). So without loss of generality we
may restrict our attention to the case where 0 <x <2 and 0 <y < x/2. In this case

Q.y)= > -l-a)?+ Y (+l-nnk

[(y—1)/x]1<n=<0 O<n=|(y+1)/x]

and we reparametrize the sums to obtain

Qx,y)= Z (y—1+nx)2+ Z (y—x+1—nx)2,

0<n=<|(1-y)/x] 0<n<[(I+y—x)/x]
and calculate
0
5Q(x,y): Z 2(y —14+nx)+ Z 2y —x+1—nx)
O0<n<|(1-y)/x] O<n=<|(1+y—x)/x]
+1
— ZV_J 2y — 2y —1 ,
— @y -n)+ > (y — 1 +nx)

[A4+y—x)/x]<n=[(1-y)/x]

because (1—7y)/x is greater than or equal to (14+y—x)/x, and note for the remainder
of this proof that their difference is at most 1. Since 0 <y < x/2 < 1, we can
see that both terms in the last expression for our partial derivative are nonpositive,
with the summation over n strictly negative if y < x — 1, and the other term is
strictly negative if x — 1 < y < x/2. Thus our partial derivative is strictly negative
for 0 <y < x/2, and so for our ranges of x and y values, the unique minimum is
obtained when y = x /2. [

The last two results are used in Section 6 to show that a large limiting size will
make the ratio of L* to L? norm large.

Lemma A.5. If {f,}.c1 is a size-stable family, with limiting size o, of additive
character polynomials over fields {[F },c;, then

4
iming 17lla o sz(l,o).
a0 || fill5 o

Proof. For each ¢ € I, let f, have character v, support S,, translation ¢;, and
arrangement o, so that f,(z) =) . s, Vilau(s +1;))z°. When we confine the values
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of z to the complex unit circle, we have

@)= Wlels+u)z".

SES,

We can consider f,(z) and ]Tz) formally as elements of C[z, z~'], and view || f, ||jtt as
the sum of the squared magnitudes of the coefficients of f,(z) f,(z). The coefficient
of z¥ in f,(z) f,(z) is

PR ACACEE D ACACETE

u,veSs,

U—v=s
Since «, is an epimorphism from Z to [F*L, we see that ¥, (o, (u+1)) =, (a,(V+¢))
whenever u = v (mod ¢, — 1). Thus if s =0 (mod g, — 1), the coefficient of z*
in f,(2) f.(z) is equal to |S,N (s + S)|. Since || £} is the sum of the squared
magnitudes of the coefficients of fl(z)]Tz) while | £, ||% is the coefficient of z° of
the same, we have

A1 _ Ynez 1SN (g — 1)+ S) P2

Ifll; — ME '
and then we note that |S, N (n(q, — 1) + S,)| = max(0, |S,| — |n(g, — 1)|) and apply
the size-stability limit |S,|/(g, — 1) — o as g, = o0. O
Lemma A.6. If {f,}.c1 is a size-stable family, with limiting sizes oy, ..., 0., of

e-variable multiplicative character polynomials over fields {F,, }.c1, then

4 e
iming 1/2lls o I1 Q(i, 0).
oj

a~o IfIE T

Proof. For each « € I, let f, have character x,, support S, C Z¢, translation ¢t; € Z°,
and arrangement «,, so that f,(z1, ..., 2.) = ZseSt X (o, (s +1;))z°, where we write
z* for z‘i‘ ...z when s = (sq,...,S.). Our proof runs the same as that of the
previous lemma for additive character polynomials once we replace i, with y,,
but we must take care of the fact that y,(«,(s +¢;)) = 0 when s € —t; 4+ kera;
otherwise, the coefficients are of unit magnitude. And of course the polynomials
are in e variables and the coefficients have periodicity p in each direction. Thus if
we define V, = S, . (—t; + ker ;) we have

IANE  Pneze VN (np+ VOI?
A3~ Vi[?

but Lemma A.2 can be used to show that the ratio |V, (np, + V,)|/|V.| has the
same limit as |S, N (np, + S))|/1S,| as g, = oc. U

’
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DEGREE-THREE SPIN HURWITZ NUMBERS

JUNHO LEE

Gunningham (2012) calculated all spin Hurwitz numbers in terms of com-
binatorics of the Sergeev algebra. Here we use a spin curve degeneration to
obtain a recursion formula for degree-three spin Hurwitz numbers.

Let D be a complex curve of genus 4 and N be a theta characteristic on D,
that is, N2> = Kp. The pair (D, N) is called a spin curve of genus h with parity
p= hO(N) (mod 2). Fori=1,...,k,letm' = (mil, el mzi) be an odd partition
of d > 0, namely, all components m'; are odd. Fix k points ¢', ..., ¢" in D and
consider degree-d maps f : C — D from possibly disconnected domains C of Euler
characteristic x that are ramified only over the fixed points ¢’ with ramification
data m’. Observe that the Riemann—Hurwitz formula shows

k
(0-1) 2d(1—h)—x+ Y _(E(m')—d) =0,
i=1

where £(m') = ¢; is the length of mt. By the Hurwitz formula, the twisted line
bundle

(0-2) Ly=f"N ®©(Z 2(m - 1>X.’}-)

ij
is a theta characteristic on C where f~!(¢) = {x;}ls j<¢; and f has multiplicity
m’] at x; We define the parity p(f) of a map f by

(0-3) p(f)=h"(Ly) (mod2).

L. .,mFofd, the spin Hurwitz number of genus /& and

Given odd partitions m
parity p is defined as a (weighted) sum of (ramified) covers f satisfying (0-1) with

sign determined by the parity p(f):

(=P

(0-4) Hyl oy = o
et e |Aut(f)|

MSC2010: 14N35, 53D45.
Keywords: local Gromov—Witten invariants, spin curve, Schiffer variation.
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Eskin, Okounkov, and Pandharipande [Eskin et al. 2008] calculated the genus 7 =1
and odd parity spin Hurwitz numbers in terms of characters of the Sergeev group.
Gunningham [2012] calculated all spin Hurwitz numbers in terms of combinatorics
of the Sergeev algebra.

The trivial partition (1¢) of d is a partition whose components are all 1. If
mk = (19), f has no ramification points over the fixed point ¢g* and hence we have

(0-5) H"P —H"

When all partitions m' = (19), denote the spin Hurwitz numbers (0-4) by H 5 P
These are dimension-zero local GW invariants GT;OC’h’p of spin curve (D, N)
that give all dimension-zero GW invariants of Ké&hler surfaces with a smooth
canonical divisor; see [Kiem and Li 2007; 2011; Lee and Parker 2007; Maulik and
Pandharipande 2008]. For notational simplicity, we set H (113’)’; = H3h P and for k > 1
write

h,p
H(3)k

p

for the spin Hurwitz numbers H(h3’) (3 With the same k partitions (3). Since there

.....

are two odd partitions (1%) and (3) of d = 3, by (0-5) it suffices to compute H (};)f
for kK > 0. The aim of this paper is to use a spin curve degeneration to obtain the

following recursion formula.

Theorem 0.1. Ifh = h| + hy and p = p| + p» (mod 2), then, for k| + k, = k,

h.p _ hi,p ha,p hi,p ha,p
(0-6) H 3= 3!H(31)k| . H(32)k22 + 3H(31)k1i1 . H(;),Qil.
One can use Theorem 0.1 and the result of [Eskin et al. 2008] to explicitly
compute the spin Hurwitz numbers of degree d = 3. In Proposition 7.1, we show

that
(0_7) H(]’g,)f — 32h—2[(_1)k2k+h—1 + 1]’

where + and — denote the even and odd parities. When the degree d is 1 or 2, the
dimension-zero local GW invariants are given by the formulas

GT\*"* =+l and GL,™"* =+2""1

see Lemma 2.6 of [Lee 2013]. Since GTK}OC’h’p =H 5 "7 as mentioned above, formula
(0-7) shows
GTS]OC,/’l,i — 32h—2(2h—1 + 1)
This calculation is, in fact, the main motivation for the paper.
In Section 1, we express the degree-d spin Hurwitz numbers (0-4) in terms of
relative GW moduli spaces. We can then apply a degeneration method for a family
of curves %9 — A where the central fiber Dy is a nodal curve and the general fiber
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D, (A #0) is a smooth curve. Section 2 describes the relative moduli space g of
maps f into the nodal curve Dy. In Section 3, we show that the union over A € A
of relative moduli spaces Jil; of maps into D, consists of connected components
%, r — A containing f € lp. Here m is the ramification data of f over nodes of
Dg such that d — £(m) is even.

The (ordinary) Hurwitz numbers are sums of (ramified) maps modulo automor-
phism without sign. One can easily obtain a recursion formula for Hurwitz numbers
by counting maps in the general fiber of &,, ; — A. For spin Hurwitz numbers,
one needs to calculate parities of maps induced from a fixed spin structure on the
family of curves 9.

The novelty of our approach is to apply a Schiffer variation for the parity calcula-
tion. The space &,,  is, in general, not smooth. In Section 4, we construct a smooth
model for %, ; by Schiffer variation. In Section 5, we use the smooth model to
twist the pullback of the spin structure on %. When the degree d equals 3, the
partition m is odd, either (1°) or (3). In this case, a suitable twisting immediately
yields a required parity calculation. We prove Theorem 0.1 in Section 6 and formula
(0-7) in Section 7.

For higher degree d > 4, the partition m may not be odd! A new parity calculation
is needed. In [Lee and Parker 2012], we generalized the recursion formula (0-6) for
higher-degree spin Hurwitz numbers by employing additional geometric analysis
arguments for parity calculations.

1. Dimension zero relative GW moduli spaces

In this section, we express the spin Hurwitz numbers (0-4) in terms of dimension-
zero relative GW moduli spaces. We follow the definitions of [Ionel and Parker
2003] for the relative GW theory.

Let D be a smooth curve of genus 4 and let V = {¢', ..., g} be a fixed set
of points on D. Given partitions m!, ..., m* of d, a degree-d holomorphic map
f : C — D from a possibly disconnected curve C is called V-regular with contact
vectors m!, ..., mF if f*I(V) consists of ) £(m') contact marked points x;. (1<
j < £@m')) with f (x;.) = ¢' such that f has ramification index (or multiplicity)
mlj at x; Two V-regular maps (f, C; {xj.}) and (f, C; {)Ej.}) are equivalent if they
are isomorphic, that is, there is a biholomorphism o : C — C with foo = f and
o(xj.) = )E; for all 7, j. The relative moduli space

(1-1) MY

x.ml, ...,

consists of equivalence classes of V-regular maps ( f, C; {xj.}) with the Euler char-

1

acteristic x (C) = x and with contact vectors m', ..., m*. Since no confusion can
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arise, we regard a point in the space (1-1) as a V-regular map (f, C; {xj.}). For
simplicity, we often write a V -regular map (f, C; {x;.}) simply as f.

The (formal) complex dimension of the space (1-1) is given by the left side of
the Riemann—-Hurwitz formula (0-1):

k
(1-2) 2d(1—h)—x —Z(d—ﬁ(mi)).
i=1
Suppose this dimension is zero. Then, for each V-regular map (f, C; {xi b in (1-1),
forgetting the contact marked points x gives a (ramified) cover f that is ramified
only over fixed points ¢' and satlsﬁes (0-1). The automorphism group Aut(f)
of a (ramified) cover f consists of automorphisms o € Aut(C) with foo = f.
The automorphism group Aut(f, V) of a V-regular map (f, C; {x;'.}) consists of
automorphisms o € Aut(f) with cf(x;) = x;. forall i, j.
For a partition m of d, let Aut(m) be the subgroup of symmetric group S
permuting equal parts of the partition .

Lemma 1.1. Letm', ..., m* be as above and suppose the dimension (1-2) is zero.
@) If m' = (19) for some 1 <i <k, Aut(f, V) is trivial for all f in (1-1).
(b) Ifml, ...,mkareall odd partitions,
hp 1 (=1PH
[_Im1 mk = Tk i Z
"""" [Ti—; |Aut(mi)] [Aut(f, V)|

where the sum is over all f in (1-1) and p(f) is the parity (0-3).

Proof. Let (f, C; {xj.}) be a V-regular map in (1-1) and o € Aut(f, V). If m' = (1),
the set of branch points B of f is a subset of V \ {g’} and the restriction of o to
C\ f~1(B) is a covering transformation that fixes contact marked points xi, R xfi.
Noting f~'(B) is finite, we conclude that o is an identity map on C. This proves
(a). _

As mentioned above, forgetting contact marked points x;. gives a (ramified)
cover f satisfying (0-1). Conversely, given a (ramified) cover f satisfying (0-1),
one can mark a point over ¢’ with ramification index mj as a contact marked
point x . Such marklng gives V -regular maps (f, C; {x D in ]_[ _1 |Aut(m’ )| ways.
Observe that (f, C; {x B and (f, C; {a(x )}) are 1somorph1c for each o € Aut(f)
and that Aut(f, V) is a normal subgroup of Aut(f). Consequently, the quotient
group G = Aut(f)/ Aut(f, V) acts freely on the set of V-regular maps (f, C; {x;})
obtained by the (ramified) cover f. Its orbits give ]_[f;l |Aut(m’)|/|G| points (that
is, equivalence classes of V-regular maps) in the space (1-1), each of which has the
same automorphism group Aut(f, V). Now (b) follows from counting maps with
the parity of map modulo automorphisms. U
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2. Maps into a nodal curve

Let Dy = D; U E U D, be a connected nodal curve of (arithmetic) genus /~ with
two nodes p' and p? such that, for i = 1,2, E = P! meets D; at node p’ and D;
has genus h; with by 4 hy = h. In this section, we consider maps into Dy that are
relevant to our subsequent discussion.

L .., mF of d so that the Riemann—

Below, we fix d, h, x, and odd partitions m
Hurwitz formula (0-1) holds, or equivalently, the dimension formula (1-2) is zero.

For each partition m of d, consider the product space

P =" i P (B D)X (D2 d)
where

Vi={g"".q".....d". ") Vo={p'.d" P M=(p".d" T g gt
and

(2-1) X1+ xo+ x2—4€(m) = x.

For simplicity, let At} , MO, and M2, denote the first, second, and third factors of P,,.

Lemma 2.1. If®,, # @, the spaces M}, M2, and M2, have dimension zero. Con-

m

sequently, xo = 2¢(m) and d — €(m) is even.

Proof. Each (L}, (0 <i <2) has nonnegative dimension by the Riemann—Hurwitz
formula. The formula (2-1) and our assumption that the dimension (1-2) is zero
thus imply that each .l), has dimension zero. The dimension formulas for (%,
and ./l/Lin (i = 1, 2) then show that xo = 2¢(m) and d — £(m) is even because
d—E(m’):Z(m;—l) isevenforall 1 <i <k. O

Let |A| denote the cardinality of a set A.
d!|Aut(m)|
[Tm;

Proof. Let f € M2. Since xo = 2¢(m), the domain of f is a disjoint union of
smooth rational curves E; for 1 < j < £(m), and each restriction f; = f|g; has
exactly one contact marked point over p' (i = 1, 2) with multiplicity m ;, so f; has
degree m .

Consequently, forgetting contact marked points of maps in L0, gives exactly one
map (as a cover) with automorphism group of order [Aut(m)| [ m ;. Here the factor
|Aut(m)| appears because we can relabel maps f; in |[Aut(m)| ways and the factor
[[m; appears because each restriction map f; (as a cover) has an automorphism
group of order m ;. We then argue as in the proof of Lemma 1.1. U

Lemma 2.2. 2 | =
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For each (f1, fo, f>) € P, by identifying contact marked points over p' € D'NE
(i = 1,2), one can glue the domains of f; and fy to obtain a map f : C — Dy
with x (C) = yx. For notational convenience, we often write the glued map f as

f = (f1, fo, f2). Denote by

(2-2) M0

the space of such glued maps f = (f1, fo, f2). Contact marked points are labeled,
but nodal points of C are not labeled. Thus, we have the following.

Lemma 2.3. P, is a cover of My, o of degree |Aut(m)|2.

3. Limiting and gluing

Following [Ionel and Parker 2004], this section describes limiting and gluing
arguments under a degeneration of target curves. Let Dy = D U E U D, be the
nodal curve with fixed points ¢!, ..., g**® as in Section 2. In Section 4, we
construct a family of curves together with k + 3 sections:

)
3-1) i / Lp
“\
A
Here the total space 9 is a smooth complex surface, A C C is a disk with parameter
A, the central fiber is Dy, the general fiber D, (A #~ 0) is a smooth curve of genus #,
and Q' (0) = ¢' for 1 <i <k+3. By Gromov’s convergence theorem, a sequence of

holomorphic maps into D, with A — 0 has a map into Dy as a limit. For notational
simplicity, for A # 0 we set

(32  Mp=M" (D d),  where Vi ={Q'(), ..., 0P (),

x.ml,.

and denote the set of limits of sequences of maps in Jl; as A — 0 by

(3-3) lim J, .
r—0

Lemma 3.1 shows that limit maps in (3-3) lie in the union of spaces (2-2), namely,

(3-4) lim i, € Uil
A—0 m

where the union is over all partitions m of d with d — £(m) even.

Conversely, by the gluing theorem of [Ionel and Parker 2004], the domain of
each map in ., o can be smoothed to produce maps in Jl; for small |A|. Shrinking
A if necessary, for A € A, one can assign to each f; € Jl, a partition m of d by
(3-4). Let M, 5 be the set of all pairs (fi, m). For each f € My, 0, let

(3‘5) Zim,f — A
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be the connected component of | ;. M, — A that contains f, and let
(3-6) En, 1

denote the fiber of (3-5) over A € A. It follows that, for A £ 0,

(3-7) My = || %, i
fe/[/tm‘()
For f = (f1, fo, f2) € My, 0 where m = (my, ..., my), let y;'. be the node mapped

to p' at which f; and fy have multiplicity m j- The gluing theorem shows that one
can smooth each node yj. in m; ways to produce (]_[ mj)2 maps in %, 7,5, SO

(3-8) % 2l = ([Tm))° (L £0).

In order to prove (3-4), we use the following fact on stable maps. An irreducible
component of a stable holomorphic map f is a ghost component if its image
is a point. Write the domain of f as C8 U C where C¢ is a connected curve
whose irreducible components are all ghost components. Then the stability of f
implies that

(3-9) x(C8) —8 —n<—1
where £ = |C8 N C| and #n is the number of marked points on Cé.

Lemma 3.1. Let M, and M, o be as above. Then we have

lim My, € Mo
r—0

m

where the union is over all partitions m of d with d — £(m) even.

Proof. Let f be a limit map in (3-3). The domain C of f can be written as

k+3
(3-10) C=C1UC0UC2U(+C§)chUag

i=1
where Co maps to E, C; and C map to D and D>, Cl‘.g is the union of all ghost
components over qi ,wherei =1, ..., k+3, C8 is the union of all ghost components
over points in Dy \ (Vi U VyU V,), and C¢ is the union of all ghost components
over {p!, p?}. Let fi = flc; for j =0, 1, 2. Observe that f; is V;-regular because
C; has no ghost components. Let /71’ be a contact vector over ¢', ' and m?> be
contact vectors of f and f> over p' and p?, and m%! and 7% be contact vectors
of fo over p! and pz. The Riemann—Hurwitz formulas for fy, f1, and f> give

2 k+3

2
G-11) Y x(C) =2d(1=h)+ Y (@) —d)+ Y (€@ +L@*)).
i=l1 i=1

j=0
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Fori=1,...,k+3,let¥; = |C1UC0UC20Cig| and let n; be the number of
marked points on Cig . Since all marked points are limits of marked points, we have

(3-12) emy =Lm'y —n; + ¢;.

For j =0, 1,2, let Zj =|C;N Ce|. Counting the number of nodes mapped to p'
and p? shows

2 2 2
(3-13) D )~y =) 1C;NCol =) €™ — L.
i=1 i=1 i=1
Let £8 = |C1 UCoU Cr N CE|. Since x(C) = x, by (3-10) and (3-13) we have
2 k+3
G-14) x =) X(Cp+ D (x(CH—28;) + x(C%) — 268
j=0 i=1

2
+X(C8) ==y (L") + ("),
i=1

where ¢ = fo +0,405. By our assumption that formula (0-1) holds, it follows from
(3-11), (3-12), and (3-14) that
k+3
(3-15) X <X+ (X(CH— i —ni)+ x(C?) — 208 + 5 (C*) — L.
i=1
Noting that C$ and C# have no marked points, by (3-9) and (3-15), we conclude
that the domain C of f has no ghost components. Consequently,

e fjis Vj-regular for j =0, 1, 2,
o mi =m% fori =1, 2 (see Lemma 3.3 of [lonel and Parker 2004]) and ' = m’
fori=1,...,k+3.
In particular, the equality in (3-11) holds; otherwise we have a strict inequality in
(3-15). So, we have x (Cp) = £(m') + £(m?). But x(Cp) < 2min{l(m"), £(m>)}.
It follows that

e Co has £(m"') = £(m?) connected components E; with x(E;) =2 forall j,

o iy =deg(folg;) =5 forall j, thatis, ni' = m>.

It follows that the Euler characteristics of Cy, C1, and C; satisfy (2-1) by (3-14).
Therefore, f € My, o for m =m' = m? and d — £(m) is even by Lemma 2.1. [

4. Smooth model by Schiffer variation

A Schiffer variation of a nodal curve (compare [Arbarello et al. 2011, p. 184]) is
obtained by gluing deformations uv = A near nodes with the trivial deformation
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away from nodes. In this section, we use the method of Schiffer variation to
construct a smooth model for the space &,, ¢ in (3-5), which has several branches
intersecting at f unless m 1is trivial.

In this section, we fix an odd partition m = (n*), that is, m = (my, ..., my) with

4-1) my=---=mg=n, wheren=4d/{isodd.

Let f = (f1, fo, f2) be a map in JM,, o in (2-2). As described in Section 2, the
central fiber of p : 9 — A is the nodal curve Dy = D; U E U D, with two nodes
p' € DINE and p*> € D, N E where E =P!. The domain of f is a nodal curve

¢
C=C1UCOUC2, where C(): U Ey,
j=l1
with 2¢ nodes, such that, fori =1,2and j=1,..., ¢,
o f~1(p") consists of the £ nodes y} €eCNE;j,
e C; is smooth and f|c, = f; has ramification index m ; = n at the node y;

e E; = Pl and f|g; = folg;, : E; — E has ramification index m; = n at the
node y}.

The following is the main result of this section.

Proposition 4.1. Let f be as above. Then, for each vector ¢ = (;11, {12, cee, {KI, g}),
where ¢ ]’ is an n™ root of unity, there are a family of curves ¢ 16, — A, with
smooth total space 6., over a disk A (with parameter s) and a holomorphic map
F € — D satisfying:

(a) the central fiber C; o = C and the restriction map F¢|c = f;

(b) the general fiber C; s (s # 0) is smooth and, for A = s" # 0,

(4'2) U{fC,s} = gzm,f,)u
¢

where the union is over all §, fr s = F¢lc,, and Zy, y. is the space (3-6).
Proof. The proof consists of four steps.

Step 1. We first show how to construct the family of curves p : & — A with k + 3
sections. For i = 1, 2, a neighborhood of the node p’ € D; N E can be regarded as
the union U’ U V' of the two disks

U=WueC:lu|<1}cD; and Vi={p'eC:|V|<1}CE

with their origins identified. We may assume that the fixed points ¢!, ..., ¢**3 in
Dy described in (2-1) lie outside these sets. Consider the regions
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Al = {(ui, vi,k) ceU xVixA:u =A},
B= CJ G'U [(DO\O(U" U Vi)) x A],
where - -
G ={w,»)eU xA:lu'|> /MU, ) eV ixA: ] >l
We obtain a smooth complex surface & by gluing A!, A2, and By using the maps
4-3) G' — A’ defined by (ui, A) —> (ui, %, A) and (vi, L) — <$, vi, )\).

Let p: % — A be the projection to the last factor and define k + 3 sections Q' of p
by . .
o'W =(q". M.

Step 2. 'We can similarly construct a family of curves over a 2¢-dimensional
polydisk:

(4-4) Q% — Dog={t =], 17, ....1), 1)) e C**: |1 < 1}.
For each node yj. € C; N E}, choose a neighborhood obtained from two disks
Uj".:{u;e([::|u§.| <1} cC; and V}Z{U?ECZIU§-|<1}CEJ'
by identifying the origins. Consider the regions
A; = {(u}, u;, t) e U; X V} X Aoyp u’]v; =t§},
B =UGiU[(C\UWIUV)H) x A,
i,j iJ
where
Gh={W, 1) € U x Mg : |ul| > VI 1} U{ (). 1) € V] x Ay 1 0] > VIrk]}.

We can then obtain a smooth complex manifold ¥ of dimension 2¢ 4 1 by gluing
U Ail. and By, with the maps

. . . ot . Lo
(4-5) G, — A, defined by (u';, 1) — (uj =, z) and (v, 1) > (—J., vl z).
ul J v J
j j
Let @2 : & — A be the projection to the factor ¢.
Step 3. Since f; and fo|g; have ramification index m; = n at y; we may assume

(after coordinates change) that on U j’ and V} the map f can be written as

(4-6)  Uj—>U'byu;—> ()" and Vi V'byv; > )"
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For each i, j, define a map

47 G, — G by W, n)— ()", )" and W}, 1) — ()", (¢D)").
On the other hand, for each i, j, we have a map

(4-8) A — A" defined by (u';, v, 1) — (@))", W)", (t))").

These two maps (4-7) and (4-8) are glued together under the maps (4-3) and (4-5).
The glued map extends to a holomorphic map f; : &, — D, if and only if

(4-9) ()" =) == @) = )" =0
There are n?¢ solutions ¢ of (4-9) and the extension map f; is given by
(x,1) => (f(x),A) on & —[JAj.

Step 4. For each vector ¢ = ({11, ;12, ce ;Zl, Qz), where each ;‘J‘: is an n'™ root of
unity, define

8¢ A= Ay by s — (¢l's, £25, 0as, E2s, ..., ¢)s, c29).
The pullback 5?% gives a family of curves:
€ =8 — %
(4-10) o l o

8
A Aoy

The central fiber is C; o = C and the general fiber C;; (s # 0) is smooth. A
neighborhood of the node y;'. of C in 6, can be viewed as

(4-11) Al ={@i, vl s) e O ul| < 1, [i| < 1,ul) = i)

It follows that the total space €, is a complex smooth surface. Noting &, (s) is a
solution of (4-9) for A = s", we obtain a holomorphic map F; : 6, — & given by
(o v ) = (@), W', 5" on AF,
. .
(x,8) = (f(x),s") on 6, —JAj.

Since the restriction F;|c = f by (4-6) and (4-12), it remains to show (4-2).
By our choice of fixed points g* on Dy, each contact marked point x;. of f lies in
¢, — U AIJ Thus, by (4-12), the pullback F} Q' of the section Q' of p gives a
section X ’j of ¢, given by le (s) = (x}, s). After marking the points X j (s) in C¢ g,
the restriction map

(4-12)

fes =F¢le,, : Ces —> Dy, where A =s" £0,
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has contact marked points X ’] (s) over Q' (1) with multiplicity m’J This means that
f¢.s lies in the space Jly, in (3-2) for A = s". Therefore, noting that f, ; — f as
s — 0 and that |%,, 1| = n* by (3-8), we conclude (4-2). a

5. Spin structure and parity

The aim of this section is to use a spin structure on a family of nodal curves
[Cornalba 1989] to show the parity calculation in Proposition 5.4. Twisting a bundle
as in (5-6) is a key idea for parity calculation.

We first introduce a spin structure on a family of nodal curves that is relevant to
our discussion. We refer to [Cornalba 1989] for the definition of spin structure and
more details. The relative dualizing sheaf w, of the family of curves p : % — A
in (3-1) is the canonical bundle Kg on the total space %, since & is smooth and
Ky is trivial. For each A # 0, the restriction Kg|p, is the canonical bundle Kp,
on D;, and the restriction Kg|p, is the dualizing sheaf wp, of the nodal curve
Do = D{UEU D,;. As described in Section 4, Dy is locally given by u'vi =0 near
each node p' in D; N E for i = 1, 2. Then the local generators of wp, are du' /u’
and dv' /v’ with a relation du’ /u’ 4+ dv' /v’ = 0; see [Harris and Morrison 1998,
p. 82]. This implies the restriction wp,|p, = Kp, ® O( p'). On the other hand, 1/u’
is a local defining function for the divisor —E on @ near p'. By restricting 1/u’ to
D;, one can see that O(—E)|p, = O(—p'). Consequently, fori =1, 2,

(5-1) Kalp, ® 0(=E)|p, = wp,|p, ® 0(—p') = K.

From Cornalba’s construction [1989, p. 570], there are a line bundle N' — % and
a homomorphism ® : N? — w, = Kg satisfying the following.

o ® vanishes identically on the exceptional component E and N|g = Og(1).

e Since ®|g =0, there is an induced homomorphism o N2> Ko ®O(—E)
such that @ is the composition of ® with tensoring with :

(5-2) N2 Ky @0(—E) 25 Ky,

where 5 is a section of O(E) with zero divisor E. Then, for i = 1, 2, the

restriction .
®|p, : (N|p,)* = Kalp, ®O(—E)|p, = Kp,

is an isomorphism so that the restriction N; = N|p, is a theta characteristic
on D;.

 For each A # 0, the restriction ®|p, : (N| Dx)2 — K p, is an isomorphism so
that the restriction N, = N|p, is a theta characteristic on D;.

The pair (N, ®) is a spin structure on p : @ — A and the restriction N'|p, is a theta
characteristic on the nodal curve Dy.
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Remark 5.1. Atiyah [1971] and Mumford [1971] showed that the parity of a
theta characteristic on a smooth curve is a deformation invariant. Cornalba [1989,
Page 580] used the homomorphism & to extend Mumford’s proof to the case of

spin structure on a family of nodal curves. Thus, if py, ps, and p are the parities of
Ni, Na, and N, (A # 0), we have

p = p1+ p2 (mod 2).

Let ¢, : €; — A be the family of curves in Proposition 4.1. Recall that the
central fiber of ¢, is C = C; U Cy U C;, where Cp = |_|j E; is a disjoint union
of £ exceptional components E; and C; N E; = {yj.} fori=1,2and 1 < j <{.
Similarly as for (5-1), by restricting local defining functions, we have

(5-3) O(£Co)lc, = @(:I: > y;'.> (i=1,2) and O(Cplc,, =0 (s #0).
J

Since any fiber of ¢; is a principal divisor on €, O(C) = 0 and hence 0(Cy) =
O0(—Cq — Cy). We also have

(5-4)  O(xCo)lg; = O(F(C1 + C)lg; =O0F (3} +¥1) =0(F2)(1 < j < 0).

Let f = (f1, fo, f2) and F; : €; — 9 be the maps in Proposition 4.1. The
ramification divisor Ry, of F; has local defining functions given by the Jacobian
of F¢, so (4-12) shows

(5-5) Rg, = 0(X; +(n— 1)C) = 0(X,).

where X, = Zi’ j (m;. —1HX ’J and X ; is the section of ¢, defined in (4-12). Note that
(i) the ramification divisor of f; =%, |c, (i =1,2)is Ry, = X¢|, +Zj (n— l)yj.;
(ii) the ramification divisor of f; s = F¢|c,, (s #0)is Ry, = X¢|c,,-

Now, noting n is odd, we twist the pullback bundle @?N by setting

(5-6) ¥, =T eo(3x + 20 c).

The lemma below shows that the twisted line &, restricts to a theta characteristic
on each fiber of ¢,, including the central fiber C.

Lemma 5.2. Let &; be as above. Then:
@ Llg, =0(1) for1<j<t

(b) Lele, =Ly, Eelc,=Ly, and D?i{lcm =Ly, Jors #0,where Ly, Ly, Ly,
are the theta characteristics on Cy, C, C; ¢ defined by (0-2).
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Proof. Part (a) follows from (5-4) and the fact that each restriction map F;|g; has
degree n. Part (b) follows from (5-3), (i), and (ii). U

Observe that the relative dualizing sheaf w,, is the canonical bundle K¢, since
% is smooth. The Hurwitz formula and (5-5) thus imply that

(5-7) Wy :chZ :9"?[(@ ®@(X§).

¢
Define a homomorphism
(5-8) W, : %7 =F;N?@O0(X; + (n—1)Co)

— F;(Kg ® 0(—E)) @ 0(X; + (n — )Co)

by \i'; = @?é ® Id, where @ is the induced homomorphism in (5-2). Noting that
0(C) =0 and O(Dg) = 0, by (4-12), we have

@?@(—E) = @?@(D] + D) =0(n(Cy + C3)) = 0(=nCy).

Together with (5-7), this implies that the right side of (5-8) is K¢, ® 0(—Co). Now
define a homomorphism W, : 58? — K, to be the composition

2 12 ®¢
(5-9) W, :52{ —> K¢, ® 0(—Co) — K, ,
where £ is a section of O(Cy) with zero divisor Cy.
Lemma 5.3. (¥, V,) is a spin structure on ¢ : 6 — A.

Proof. First, £:|g = 0(1) by Lemma 5.2(a) and W, vanishes identically on each
exceptional component E, since § =0 on Co = |; E;. Second, since ®|p, is an
isomorphism, (5-3) and (i) show that, for i = 1, 2, the restriction

Ule, = f7(@lp) ®1d: (Lele,)” = fFN] ®O(Ry) — f7Kp, ® O(Ry;) = K,

is an isomorphism. Lastly, let A = 5" # 0. Since ®|p, is an isomorphism, so is
dA>|Dk. Thus, by (5-3), (i1), and the facts Kg|p, = Kp, and O(—E)|p, = O, the
restriction

Uele,, = f7,@lp, ®1d: (Ll )’ = [ N;®O(Ry, )~ [ Kp,®0(Rf, ) =K, ,
is an isomorphism. This implies that the restriction
Wele, : (Eele,)* = Kedleo, = Keys

is also an isomorphism. Therefore, we conclude that (£, W,) is a spin structure
on ¢;. O

The following is a key fact for the proof of Theorem 0.1.
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Proposition 5.4. Let f = (f1, fo, f2) and f; s be maps in Proposition 4.1. Then,
forall s #0,

(5-10) p(fes) = p(f1) + p(f2) (mod2).

Proof. Since (£, W;) is a spin structure on ¢, Cornalba’s proof, mentioned in
Remark 5.1, shows that, for all s £ 0,

h'(Lele,,) =h"(Lele) +h°(Lelc,) (mod 2).

This and Lemma 5.2(b) prove (5-10). ]

6. Proof of Theorem 0.1

Proof. Fix a spin structure (N, ®) on p : & — A given in Section 5. Consider the
space M, o in (2-2) where m is a partition of d = 3. In this case, by Lemma 2.1,
either m = (1%) or m = (3). Note that both of them satisfy (4-1). Fix A # 0 and
let f = (f1, fo, f2) be a map in M,, 9. Then (4-2) and (5-10) show that, for all
fu € g{m,f,)u

(6-1) p(fw) = p(fi) + p(f2) (mod2).

Lemma 1.1 and (3-7) show that

6-2) H"“P=pH"?

Gk T TTB3k3)3
(f (f
—ai( T T ey Yen)
Femzy o fu€sasy 1 feMa)o fu€Z3), fa
By (3-8) and (6-1), (6-2) becomes
_ SD+p(f2) 2c_1yp(f)+p(f2)
hop (=17 32(=1)

(6-3) H(3)A - Z (31)3 + (313

S=USo, f)el 3,

f=Uf1. fo, 2)eM@a) 0
It then follows from Lemma 2.3 and (6-3) that

(—1)P+pf2) 32(=1)PUD+rif)

H(};’)IZ = Z (31)5 + Z (3!)3

(f1. fo. 2)€P 13, ’ (f1, fos fz)é@(s)
a5 — Z (— I)P(fl) Z (— 1)17(f2) +— 3' - Z( l)p(fl) Z( 1)17(f2)
fIEM(13) f2€M(13) flEM@) fZEM(3)

_ hi,p1 ha, p2 h1,p1 ha,p2 .
=3Hgy Haypy +3H 000 Higons

the second equality follows from Lemma 2.2 and the last from Lemma 1.1. U
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7. Calculation

Proposition 7.1. H(’f,;)f =322 (= Rk ),

Proof. The proof consists of four steps.

Step 1. We first show the following facts which we use in the computation below.

Lemma 7.2. (a) H(Os’;g —HY =1, H((;)’: ) H(]3’;5 )

Proof. Consider the dimension-zero space Jl/t;/(llj’l, 3) where V = &. The Euler
characteristic x =6 by (0-1), and hence the space contains only one map f : C — P!
where C is a disjoint union of three rational curves and |Aut(f)| = 3!. This shows
(a). Let (f, C) be a map in the dimension-zero space J(/L)‘(/’ (3),(3)’(3)(03’1, 3). Then C
is a connected curve of genus one and the theta characteristic L s on C defined by
(0-2) is

Ly =0(=2x1+x2+x3) =0(x; —2x2 + x3) = 0(x1 +x2 — 2x3),

where x1, xp, and x3 are ramification points of f. This implies L3 =0, and hence
L y = O because sz = L; = 0. We have p(f) = 1. Therefore,

0+ _ 0 _ 1
H(3)3_ H(3)3_ 3’

where H(03)3 denotes the (ordinary) Hurwitz number, which is calculated by us-

ing the character formula; see [Okounkov and Pandharipande 2006, (0.10)]. By
Proposition 9.2 of [Lee and Parker 2007], the spin Hurwitz numbers H!;’p are
the dimension-zero local invariants of spin curve that count maps from possibly
disconnected domains. Let GW;”’J denote the dimension-zero local invariants of
spin curve that count maps from connected domains. Then Hé”p and GW:’p are

related as follows:
1+ Z Hf’ptd = exp(z GW;”ptd)
d>0 d>0

Now (c) follows from GWll’+ =1, GWZI’Jr =1/2,and GW31’+ =4/3; see Section 10
of [Lee and Parker 2007]. (]

Step 2. In this step, we compute H (13’);. For a spin curve of genus one with trivial
theta characteristic. It follows from formula (3.12) of [Eskin et al. 2008] that

(7-1) Hyy =27 1(f3 2D)* = (f 3D
Here the central character f(3) can be written as
fo)=3p3 +axpt +a1p1 +ao

for some a; € Q (0 <i < 2), and the supersymmetric functions p; and p3 are defined
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by
pim)=d—5; and pyom)=Y m — g,
J

where m = (my, ..., my) is a partition of d. For k =0, 1, (7-1) shows
- 1,—
(7-2) H(3)0 =0 and Hgy = -3.

Lemma 7.2(b), (7-2), and formula (0-6) give H (13’)2 = 3H(13’)7 -H (()3’;§ = 3. Together

with (7-1) and (7-2), this yields f(3)(21) = —4 and f(3)(3) = 2. From this and (7-1)
we have, for k > 0,

(7-3) H(g); = (=Dk2F —1.

Step 3. In this step, we compute H(};’)J[ for h =0, 1. For k > 1, (7-2) and formula
(0-6) give H(13’);_1 =3Hj - H(%’;,[ = —32H(03’;{. Combining this with Lemma 7.2(a)
we obtain, for k > 0,

1 ke
(7-4) ng,;:—?((—l)k k=1 1.

Lemma 7.2(c), (7-3), (7-4), and formula (0-6) show

Hiw =3H s, - Hyo +3HG, - H =27,

HEF=3Hy, - Hy +3HG, - Hy, = =27,

HGo =3MH s - Higl +3HG - Hit =24+ 305 H'

HE =3HG - HE 4305 By = 1205+ 305" BT

Hgh =30 Hol +3HG" - Hol =4 — H)'
It follows that H(13’)Jr = —1. Hence, Lemma 7.2(c), (7-4), and formula (0-6) give
(7-5) H(g; - 3!H(13’; : Hg’;,f +3Hg" Hg’;,;l = (—DF2* +1.

Step 4. It remains to compute H (hg’)lk) for h > 2. The formula (0-6) gives

hp h=1.p ,, 1.+ h=1,p pyl+
Hiyl =31Hy - H YT 4+ 3H( " HT

From this, we can deduce that, for & > 2,

h,p 1,+ 1,+ h—1,p
(7-6) Hg)k _ (g 3Hgua \ ((Hgy
gtr )T\ gt 3t 2

(3)k+1 (3)k+l (3)k+2 3)
1,+ 1+ 1.+ L+ \ h—2 Lp
B ( 3!H(13)k 3H(l3)k+1 ) ( 3!H(]3)0 3H(13) ) ( H(13)0 )
- | ,+ ,+ | ,+ ,+ /2
3VH 5k 3Hpg ke J\3IHG 3H ) Hy,
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Therefore, (7-3), (7-5), and (7-6) complete the proof. O
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(Z3)3-COLORINGS AND RIGHT-ANGLED
HYPERBOLIC 3-MANIFOLDS

YOULIN L1 AND JIMING MA

For a compact 3-manifold N with connected nonempty boundary, let I' be
an admissible trivalent graph in d NV that decomposes d N into a set of disks.
As an extension of small covers, from a (Z,)3-coloring A on N — T, one can
get a closed 3-manifold M, that admits a locally standard (Z,)3-action.

Suppose N is irreducible and atoroidal: say, a handlebody. We give a
combinatorial necessary and sufficient condition for a (Z,)3-colorable pair
(N, T) to admit a right-angled hyperbolic structure, which naturally in-
duces a hyperbolic structure on M,.

1. Introduction

In this note, we study polyhedral hyperbolic 3-manifolds admitting (Z)3-colorings
on their connected boundaries, which correspond to closed hyperbolic 3-manifolds
admitting locally standard (Z»)3-actions.

(22)3-colorings and locally standard (Z3)3-actions. Small covers, or Coxeter orb-
ifolds, were studied in [Davis and Januszkiewicz 1991]. They are a class of
manifolds which admit locally standard (Z,)"-actions, such that the orbit spaces
are n-dimensional simple polyhedra. The algebraic and topological properties
of a small cover are closely related to the combinatorics of the orbit polyhedron
and the coloring on its boundary. For example, the (mod 2) Betti number §; of a
small cover M agrees with h;, where h = (hg, hy, ..., h,) is the h-vector of the
polyhedron.

Those manifolds admitting locally standard (Z;)"-actions form a wider class
than small covers. In this paper, we focus on the 3-dimensional case.
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supported by NSFC 10901038 and Shanghai NSF 10ZR1403600.
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A standard representation of the (Z)3-action on R3 is the natural action defined
by

(I-1) er: (x1, x2,x3) = (—=x1, X2, X3),
(1-2) er: (x1, x2, x3) > (x1, —x2, X3),
(1-3) e3: (x1, x2, x3) > (x1, X2, —X3).

The actions e, e, and e3 generate the group (Z»)3. This action fixes the origin
of R? such that its orbit space is the positive cone

R, = {(x1, %2, x3) € R® | x; > 0.

Definition 1.1. An effective (Z,)3-action on a 3-dimensional closed manifold M
is said to be locally standard if it locally looks like the standard representation
of (Z,)3-action on R?. More precisely, if for each point x in M, there is a (Z,)3-
invariant neighborhood U, of x such that U, is equivariantly homeomorphic to an
invariant open subset of the standard (Z5)3-action on R3.

The orbit space of a locally standard (Z5)3-action on a 3-dimensional closed
manifold M is a compact manifold N with corners. In other words, it is a 3-
dimensional compact manifold N with a graph I" on dN. The graph I on dN
induces a cell decomposition on dN. The vertices of I' are the image of fixed
points of the (Z,)3-action, the (open) edges of I' are the image of fixed points of
subgroups (Z»)? < (Z»)? and (open) components of 9N — I are the image of fixed
points of subgroups Z, < (Z5)3.

Definition 1.2. Let N be a 3-dimensional manifold with nonempty boundary, and
I a trivalent graph in N that gives a cell decomposition of N. A (Z»)3-coloring
isamapr:oN —T — (Z»)? — 0 such that A(f1), A(f2) and A(f3) generate (Z,)?
for each triple of faces fi, f» and f3 sharing a common vertex.

Associated to a locally standard (Z»)3-action on M, there is a canonical (Z,)3-
coloring A on N —I' which colors each face f € 9N —TI' by the element e € (Z,)>
that fixes f. For an i-dimensional cell f in the cell decomposition, i = 0, 1, 2,
we have a group Gy = (Z,)3~" which is generated by the colorings in the faces
which are adjacent to f. The locally standard (Z,)3-action on M induces a principal
(Z»)3-bundle over N.

Conversely, by Lemma 3.1 of [Lii and Masuda 2009], from a (22)3—coloring A
on (0N, I') and a principal (Z»)3-bundle over N, we can get a unique closed
3-manifold M. In particular, from a (Z,)3-coloring A and the trivial principal (Z5)3-
bundle over N, we get a 3-manifold M, which depends only on the coloring 1. By
this we take eight copies of N, N x {«} for each o € (Z5)?, and construct a quotient
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space M, under the following gluing rule:

X=y, 0] =dy, if x lies in the interior of N,

1_4 ) ~ ) <~ . . .
(1-4) x,0)~ (3, @2) {x:y, oz]ozz_l € Gy, ifxliesinacell f.

Then it is easy to see M, is a closed 3-manifold. In this paper, we only consider
closed 3-manifolds associated to (22)3-colorings and trivial principal (Z,)3-bundles
over N.

A simple example is that if we consider a coloring of the four faces of a tetrahe-
dron by ey, es, e3, e1 +e3+e3, respectively, then from the above construction, we get
the closed orientable 3-manifold RP?. A tetrahedron admits a unique right-angled
spherical structure, and the spherical structures on eight copies of the tetrahedron,
when glued together, give rise to the unique spherical structure on RP3. This point
of view is applied in this paper.

There are many works on manifolds with locally standard (Z,)3-actions. For
example, 3-dimensional small covers are studied in [Lii 2009; Lii and Yu 2011]. Six
operations on small covers were defined in [Li and Yu 2011], which topologically
behave well, such that every 3-dimensional small cover is obtained from the two
simple small covers RP> and S! x RP? by a sequence of these operations. It should
be noted that the operations in [Lil and Yu 2011] give many disks in a simple convex
polygon P, which intersects the 1-skeleton of P in at most four points but which
is not vertex-linking or edge-linking. So the preimage of these disks are essential
spheres or essential tori in the small cover M in general, and hence M does not
admit a geometric structure [Scott 1983].

Polyhedral hyperbolic 3-manifolds. Andreev [1971] (see also [Roeder et al. 2007])
gives a complete characterization of compact hyperbolic polyhedra in dimension 3
with nonobtuse angles. The boundary of a compact hyperbolic polyhedron inherits a
natural cell decomposition. The 1-skeleton of the cell decomposition is a graph I" on
the boundary of the 3-ball, and a dihedral angle is also given on each edge of I' from
the hyperbolic structure. Andreev’s theorem is given in terms of a set of conditions
on the dihedral angles. Besides its beauty, Andreev’s theorem is also essential in
the proof of Thurston’s geometrization theorem for Haken 3-manifolds. The natural
question is, given a cell decomposition of the boundary of the 3-ball, and a weight
o, € (0, ) attached to each edge e of the cell decomposition, whether there is
a compact hyperbolic polyhedron in H? realizing this cell decomposition whose
dihedral angles coincide with the attached weights. This question is still open now.
A clever approach for working with compact hyperbolic polyhedra having arbi-
trary dihedral angles is to express necessary and sufficient conditions for existence
of a given polyhedron in terms of its polar dual in the de Sitter space; see [Hodgson
and Rivin 1993]. For a generalization of Andreev’s result to ideal and hyper-ideal
hyperbolic polyhedra, see [Rivin 1996; Bao and Bonahon 2002]. Hyperbolic
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structures on topologically more complicated 3-manifold N with boundary are also
studied. See [Schlenker 2002; 2003; 2005; 2006, Fillastre and Izmestiev 2009;
2011; Guéritaud 2009].

Suppose N is a compact 3-manifold with connected and nonempty boundary. In
this note, we consider the right-angled hyperbolic structures on N with compressible
boundary.

Given a graph I in 9N, we call it admissible if the lift T of T in the universal
cover of N, say N, gives a cell decomposition of N such that each of its 2-cells has
a closure homeomorphic to a disk, and each pair of such two disks shares at most one
edge in I". A right-angled hyperbolic realization of (N, T) is a complete compact
hyperbolic manifold N* with right-angled polyhedral boundary (i.e., modeled on
the orthogonal intersection of two half-spaces with totally geodesic boundaries
in A3 and having finite volume), endowed with a homeomorphism to N that sends
the nonsmooth points of N* precisely to the points of I". The nonsmooth points
of N* will be called the singular locus of this structure. From the homeomorphism
between N* and N, I is also called the singular locus for this hyperbolic realiza-
tion. We will call such a structure on N* a hyperbolic structure with right-angled
polyhedral boundary on N. Hence these kinds of hyperbolic structures on N look
locally like compact convex right-angled hyperbolic polyhedra in H3.

Similar to all results above, it is interesting to give a kind of characterization of
hyperbolic structures with right-angled polyhedral boundary on N. Since all the
dihedral angles are right-angled, an easy argument shows that the graph I" defined
above must be trivalent.

It is well known that most 3-manifolds are hyperbolic 3-manifolds [Thurston
1982]. So it is interesting to consider locally standard (Z)*-actions on closed
hyperbolic 3-manifolds. It is natural to ask which closed hyperbolic 3-manifold
admits a locally standard (Z»)3-action. The orbit space of a locally standard (Z,)3-
action is a compact manifold N with a coloring A in dN. If (N, ") admits a
right-angled hyperbolic structure, then it is easy to see that M is hyperbolic. A pair
(N, I') admits a unique right-angled hyperbolic structure. However, it may admit
many different colorings. Each coloring, together with a principle (Z,)3-bundle
over N, gives a manifold with a locally standard (Z5)3-action. So these give many
different hyperbolic manifolds of the same volume. [Inoue 2008] gives a very clear
description of right-angled hyperbolic polyhedra from this point of view.

The most interesting case is that N is a handlebody, or the simplest one, a 3-ball.

Main result. Suppose I' is an admissible graph in dN. For a vertex v of ', we
take a small closed regular neighborhood B of v in N, then B intersects N — int B
in a disk D,,. We call D, a vertex-linking disk. It intersects I" in three points. The
preimage of a vertex-linking disk in M, is a sphere which bounds a 3-ball in M, for
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a (Z,)3-coloring A. For an edge e of I', we also take a small closed neighborhood B
of e in N; then B intersects N —int B in a disk D.. We call D, an edge-linking
disk. It intersects I" in four points. The preimage of an edge-linking disk in M, is a
torus (or a Klein bottle) which bounds a solid torus (or a solid Klein bottle) in M.
We say a properly embedded disk D in the 3-manifold N intersects I efficiently
if D and I" are in general position and there is no bigon in dN — (d D UT"). In this
note we always assume a disk D intersects with I" efficiently.
Our main result is the following:

Theorem 1.3. Let N be an irreducible, atoroidal and compact 3-manifold with
connected nonempty boundary, and I" be an admissible trivalent graph in 0 N which
gives a cell decomposition of N, such that (N, T') admits a (Z»)3-coloring. Then
(N, ) realizes a right-angled hyperbolic structure if and only if every properly
embedded disk D in N has |D NT'| > 5, except when D is a vertex-linking disk or
an edge-linking disk. Moreover, the realization is unique up to isometry.

Remark 1.4. In practice, much attention has been paid to the right-angled hy-
perbolic structures on handlebodies. They are irreducible, atoroidal and compact
3-manifolds with connected nonempty boundaries. So Theorem 1.3 can be applied
to the handlebody case.

Remark 1.5. There are two canonical ways to study polyhedral hyperbolic structure
on 3-manifold M: Alexandrov’s method and the variational method; see, for
example, [Fillastre and Izmestiev 2011]. Our approach in this note uses the doubling
trick. A (Z,)3-coloring helps us find a closed 3-manifold on which we can apply
the geometrization theorem.

2. Preliminaries

If (N, I') admits a right-angled hyperbolic structure, then I" is admissible, and each
of its 2-dimensional faces is a right-angled hyperbolic n-polygon. So n > 5.

Definition 2.1. Let I'* be the dual graph of I' in 0 N. A k-circuit is a simple closed
curve C in I'* consisting of k successive edges of I'* which is contractible in I N.
A circuit is elementary if it bounds a disk D in d N and there is exactly one vertex V
of I" that lies in D. A k-circuit is prismatic if the endpoints of all the edges of I"
which intersect C are distinct.

Obviously, there is a one-to-one correspondence between edges of I" and those
of I'*.

Lemma 2.2. Suppose U is admissible. If C is a 3-circuit which is not prismatic,
then C is isotopic to the boundary of a vertex-linking disk. If I contains no
prismatic 3-circuit, and C is a 4-circuit which is not prismatic, then C is isotopic to
the boundary of an edge-linking disk.
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Proof. The proof is similar to the proofs of Lemmas 1.2 and 1.3 of [Roeder
et al. 2007], by which we have that, if C is a nonprismatic 3-circuit, then it is an
elementary circuit. So it is isotopic to the boundary of a vertex-linking disk. If I
contains no prismatic 3-circuit, then every nonprismatic 4-circuit C separates off
exactly two vertices of I" from the remaining vertices of I", which in turn implies
that C is isotopic to the boundary of an edge-linking disk. Actually, the authors of
[Roeder et al. 2007] proved this for any graph in S2. Since I' is admissible, their
arguments can be extended verbatim in the general case. U

We give a proposition on the orientability of a 3-manifold M, with a locally
standard (Z,)3-action and trivial principal (Z»)3-bundle.

Proposition 2.3. Suppose N is a compact orientable connected 3-manifold with
connected boundary. Then, for a (Z»)3-coloring » on (N, T'), M;, is orientable if
and only if there is a basis {e1, €3, e3} of (Z»)3, such that the image of A is contained
in{er, ez, e3,e1 +ex+e3}.

Proof. For small covers, this proposition has been proved in Theorem 1.7 of
[Nakayama and Nishimura 2005]. Recall that M, is determined by the coloring A
and the trivial principal (Z,)3-bundle over N. So M; is obtained by gluing eight
copies of (N, A), and M, is orientable if and only if H3(M,, Z) = Z. To calculate
Hs(M,,, 7Z), we only need to consider the 3-cells and 2-cells in a cellular decompo-
sition of M, , which is induced by a cellular decomposition of (N, I'). Note that 0 N
is connected, so the arguments of the proof of Theorem 1.7 of [Nakayama and
Nishimura 2005] hold in our case word-by-word. O

3. Proof of Theorem 1.3

Proof of the necessity part of Theorem 1.3. Suppose (N, I') realizes a right-angled
hyperbolic structure. If D C N is a properly embedded disk which intersects I
efficiently, and is not vertex-linking or edge-linking, then by Gauss—Bonnet theorem,
we have |D NT'| > 5. So the necessity part of Theorem 1.3 follows. (]

Proof of the sufficiency part of Theorem 1.3 in the case that M, is orientable.
Recall that a closed orientable 3-manifold M is irreducible if every embedded 2-
sphere S in M bounds a 3-ball; otherwise M is reducible. An embedded 2-sphere S
which does not bound a 3-ball in M is called essential. A closed irreducible
orientable 3-manifold M is atoroidal if every embedded torus 7 in M bounds a
solid torus; otherwise M is foroidal. An embedded torus 7" which does not bound
a solid torus is essential in M. See [Hempel 1976] or [Jaco 1980].

We need the equivariant sphere theorem of Meeks, Simon, and Yau [Meeks et al.
1982], but the reformulation by Dunwoody [1985] is more convenient for us.
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Theorem 3.1. Let G be a finite group that acts on a closed orientable 3-manifold M
by homeomorphisms. Suppose M has a G-equivariant triangulation. If there exists
an essential 2-sphere S in M, then there exists an essential 2-sphere Sy in M which
is in general position with respect to the triangulation, such that g(S1) = S or
g(S) NS =9 forevery g € G.

We also need the following equivariant torus theorem; see [Freedman et al. 1983;
Jaco and Shalen 1979; Johannson 1979].

Theorem 3.2. Let G be a finite group which acts on a closed 3-manifold M by
homeomorphisms. Suppose M is irreducible, orientable and contains an essential
torus. Then either M is Seifert-fibered, or M contains a G-equivariant essential
torus.

First, we show the following lemmas.
Lemma 3.3. M, is irreducible.

Proof. We give a triangulation 7 of N, such that the graph I' is contained in the
1-skeleton of J. So the triangulation I induces a triangulation of M,.

If M, is reducible, then by the equivariant sphere theorem, there is a (Z,)3-
equivariant sphere S which is essential in M;. We denote SN N x {1} by A, which
is a compact surface with nonempty boundary if A # &. We may assume A # &,
otherwise we can use the (Z)3-action to find another (Z5)3-invariant sphere S’
which has nonempty intersection with N x {1}. Since A is obtained from S by the
(Z,)3-action and S is connected, A is connected.

Since S is in general position with respect the triangulation of M;, A is in general
position with respect to the triangulation of 0 NV, in particular, with respect to I". So
there is a cell decomposition of dA: for each face f of 9N —I', f N A is an edge
in dA. Moreover, the coloring on d N — I now induces a coloring on d A, which
we denote by A4, and S is obtained from copies of A by the gluing rule from A 4.

By Definition 1.2, the colorings on any two adjacent edges of d A are different.
So we have a subgroup G of (Z»)? which has index 1 or 2 in (Z,)3, such that for
any g € G we have g(S) = S, and for any 4 € (Z»)> — G we have h(S)N S = @.

In other words, S is obtained by gluing 4 or 8 copies of A, and the edges in 0 A
contribute a 4-valence graph in S. So x(S) =m(x(A)— E/2+ E/4) =2, where E
is the number of edges in 0A, and m =4 or 8. If m =4, then E =2 and x(A) = 1.
So A is a disk with 0 A consisting of 2 edges. This is impossible by the assumption
in Theorem 1.3. If m =8, then E =3 and x (A) = 1. So A is a disk with d A consists
of 3 edges. Moreover, we have that dA N f is connected for each face f. Suppose
otherwise; i.e., suppose that dA N f consists of at least two arcs. We have an edge
e of I which intersects A such that the two sides of e both are in the face f. Then
when we lift 9N to the universal cover N. The closure of the lifting f of the face f
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is not a disk, contradicting the assumption that I" is admissible. So d A is a 3-circuit.
Thus, by the assumption and Lemma 2.2, A is a vertex-linking disk in N. The
preimage of a vertex-linking disk in M, is a sphere which bounds a 3-ball in M;.
This contradicts the assumption that § is essential in M;. So M, is irreducible. [

Lemma 3.4. If M, is a toroidal Seifert manifold, then there is an essential torus
in M, which is (22)3-equivariant.

Proof. Suppose e1, e; and e3 are three orientation-reversing involutions which gener-
ate the (Z,)3-action. Since M, admits orientation-reversing involutions, according
to Theorems 8.2 and 8.5 of [Neumann and Raymond 1978], M, is Seifert-fibered
with Euler number O; i.e., M, contains horizontal incompressible surfaces which
are transversal to each fiber. In other words, M, is a surface bundle over S!
with horizontal incompressible surfaces as surface fibers. We already proved in
Lemma 3.3 that M, is irreducible, so the Euler characteristic of the base orbifold
of M, is negative or zero. Thus M, admits the geometries H> x R or E>. We refer
the readers to [Scott 1983] for the details about these two geometries.

For eachi =1, 2, 3, Fix(e;) contains no nonorientable closed surfaces since the
nonorientable closed surfaces are one-sided in M. According to [Meeks and Scott
1986], for each i =1, 2, 3, ¢; is isotopic to an isometry. So Fix(e;) consists of some
totally geodesic, and hence incompressible, closed surfaces in Mj.

If M) admits the H> x R geometry, then it has unique Seifert fibration structure.
So each homeomorphism sends regular fibers to regular fibers. Then, among Fix (e ),
Fix(e,) and Fix(e3), at least two of them, say Fix(e;) and Fix(e,), consist of vertical
essential tori, and e3 keeps each regular fiber invariant and reverses its orientation.
By the definition of (Z»)3-action, Fix(e;) N Fix(e2) # &, and Fix(e;) intersects
Fix(ep) transversely. Choose a torus component 7 in Fix(e;) which intersects
Fix(e;) nontrivially. For any point p € T, we have ejex(p) = eze1(p) = ez(p). So
e2(T) C Fix(ey). Thus we have that either ex(T) =T or ex(T) N T = &. By the
assumption 7' NFix(ey) # @, we have eo(T) =T. Moreover, e3(T)=T. Hence T is
invariant by e, e> and e3, and hence is invariant by each element of the group (Z5)>.
So it is an essential torus which is (22)3—equivariant.

If M, admits the E* geometry, then according to Theorems 8.2 and 8.5 of
[Neumann and Raymond 1978], it is either the 3-torus T3 or the Seifert manifold
with invariant {0; (2, 1), (2, —1), (2, 1), (2, —1)}. For the former case, we choose
a Seifert fibration structure which is fibred by all circles isotopic to the circles
in Fix(e;) NFix(ey). Then we can apply the same argument as above to obtain a
(22)3—equivariant essential torus. For the latter case, we fix the Seifert fibration
structure given before, and then all horizontal incompressible surfaces in M, are
isotopic essential tori. This is because M, has a unique structure of surface bundles
over S!, since its first Betti number is 1; see [Thurston 1986]. So we can still
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assume that both Fix(e;) and Fix(e,) consist of vertical essential tori, and e3 keeps
each regular fiber invariant and reverses its orientation. The same argument in the
previous paragraph still applies, and the same conclusion still holds. (I

Lemma 3.5. M, is atoroidal.

Proof. By Theorem 3.2 and Lemma 3.4, if M, is toroidal, then there is a (Z5)3-
equivariant essential torus T C M,,.

Similar to the sphere case in Lemma 3.3, we also give a triangulation J of N.
We denote T N N x {1} by A, which is nonempty, and is a compact connected
surface with nonempty boundary. Also, there is a cell decomposition of d A induced
from the triangulation of N.

Similar to the argument in the sphere case in Lemma 3.3, we have x(T) =
m(x(A)— E/2+ E/4) =0, where E is the number of edges in dA, and m is an
integer. So £ =4 and x(A) = 1. Thus A is a disk with d A consists of 4 edges.
Moreover, dA N f is connected for each face f. Suppose otherwise; i.e., suppose
that 9A N f consists of at least two arcs. When we lift dN to the universal cover N,
two of the four edges forming d A belong to the same face. If these two edges are
adjacent in d A, then by the same argument as in the proof of Lemma 3.3, we obtain
a contradiction. If these two edges are not adjacent in d A, then the lift of these
two arcs in the universal cover are identified. So in the universal cover, there are
two disks which share two distinct edges, contradicting the assumption that I" is
admissible. Thus 0 A is a 4-circuit. Therefore, by the assumption and Lemma 2.2, A
is an edge-linking disk. The preimage of an edge-linking disk in M, is a torus (or a
Klein bottle) which bounds a solid torus (or a solid Klein bottle, which is impossible
since we assume M, is orientable in this subsection), so it is not essential. This
contradicts the assumption that 7 is essential. So M, is atoroidal. (I

Lemma 3.6. M, _is not a Seifert manifold.

Proof. Suppose M,, is an orientable Seifert manifold with orientable base orbifold,
and M, is neither a lens space nor S3. Here the lens spaces don’t include S3 or
S? x S'. By Theorem 8.2 of [Neumann and Raymond 1978] and its proof, if there
is an orientation-reversing involution on M,, then the Seifert invariant of M, is
{g; (a1, b1), (a1, =b1), (a2, b), (a2, —=b2), ..., (a:, by), (a;, —D;)}, where g is the
genus of the base orbifold. Since M, is atoroidal, we have g =0 and r = 1, and
hence M, is a lens space. This is a contradiction.

Suppose M, is an orientable Seifert manifold with nonorientable base orbifold,
and M, is not a lens space. By Theorem 8.5 of [Neumann and Raymond 1978] and
its proof, if there is an orientation-reversing involution on M,, then the Seifert in-
variant of M) is {k; (a1, b1), (a1, —b1), (a2, b2), (a2, —b2), ..., (a;, by), (ar, —b1)},
where k is the genus of the nonorientable base orbifold. If ¢ > 1, then M, cannot be
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atoroidal. If r = 0, then M, is either reducible or toroidal. In both cases, we arrive
at contradictions.

Suppose M, is a lens space. By the main result in [Kwun 1970], among all lens
spaces, only RP3 admits orientation-reversing involutions. Moreover, RP* admits
exactly one orientation-reversing involution up to isotopies, and the set of fixed
points of this involution is an RP?, which has Euler characteristic 1. However,
according to the definition of locally standard (Z,)3-action, for any nontrivial
element e € (Z,)3, its fixed point set Fix(e) is a union of k-polygons (k > 5 by our
assumption), and each vertex in Fix(e) is adjacent to 4 edges. Let v be the number
of vertices in Fix(e). Then the number of edges in Fix(e) is 2v, and the number of
faces of Fix(e) is less than or equal to 4v/5. So the Euler characteristic of Fix(e)
is negative — a contradiction.

Suppose M;, is the 3-sphere S>. From the fact that the orientation-preserving
mapping class group of S is trivial, we know S* admits exactly one orientation-
reversing involution up to isotopy, and the set of fixed points of this involution
is an S2, which has Euler characteristic 2. Then similar to the argument in the
previous paragraph, we get a contradiction. So the lemma follows. ]

By Lemmas 3.3, 3.5 and 3.6, M, is a closed, irreducible, and atoroidal manifold
which is not Seifert-fibered. So by Perelman’s proof of Thurston’s geometrization
theorem (see [Cao and Zhu 2006; Bessicres et al. 2010; Kleiner and Lott 2008;
Morgan and Tian 2007]), M, is a hyperbolic 3-manifold. By [Dinkelbach and Leeb
2009], every smooth action of a finite group on a hyperbolic 3-manifold is conjugate
to an isometric action. Since each e € (Z,)? is conjugate to an isometric involution,
its fixed point set is a totally geodesic surface in M,. Since (Z,)? is an Abelian
group, by elementary arguments for the isometric group of hyperbolic 3-space H?,
all these totally geodesic surfaces intersect orthogonally. So the hyperbolic structure
on M, induces a hyperbolic structure on (N, I'). Conversely, each right-angled
hyperbolic structure on (N, I') induces a hyperbolic structure on M,. By Mostow’s
rigidity theorem [1973], there is only one hyperbolic structure on M. So the
right-angled realization of (N, I') is unique. This ends the proof of Theorem 1.3 in
the case that M, is orientable. |

Proof of the sufficiency part of Theorem 1.3 in the case that M, _is nonorientable.
Let 7 : 1\;[,\ — M, be the orientable double cover of M,, and 7 be the covering
transformation of M. Note that 7 is orientation-reversing. By the lifting theorem,
for each i, ¢; lifts to an action, say ¢;, on 1\71)\ such that e; (xg) = xo, where x( € 1\71)\
projects to a vertex of I" in d V.

We show that ¢; and e¢; commute, for 1 <i, j < 3. It is easy to verify that ¢;e; is
the lift of eiej, and Ejé,' is the lift of eje;. Since eej=eje;, and é,’éj (x0)= éjéi (x0),
by the unique lifting property, ¢;¢; = ¢;¢;. We also show that 7 and ¢; commute,
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for 1 <i < 3. Itis easy to verify that both te; and ¢;7 are lifts of ¢;. So either
T¢; = ¢;T or tte; = ¢;T. The latter is ¢; = ¢; T in fact, which is impossible. So
1é; = &;t. Therefore we have an action of (Z,)* on M 5.

If Mk is a toroidal Seifert manifold, then by Lemma 3.4, there is an essential
vertical torus 7 in J\;IA which is fixed by e;, and is invariant by e;, for i = 2, 3.
For any point p € T, we have e;7(p) = tei(p) = t(p). So ©(T) C Fix(ey).
Hence either t(T) =T or t(T)NT = &. It is straightforward to verify that T is
(22)4—equivariant.

Therefore, similar to the previous subsection, we can prove that M 5 18 irreducible
and atoroidal. Moreover, if M is an atoroidal Seifert manifold, then it must be $3
or RP3. The action of t on A7I,\ has no fixed points. However, as stated in the
previous subsection, any orientation-reversing involution on S* or RP? must have
fixed points. We arrive at a contradiction.

So M, is hyperbolic. Similar to the arguments in the previous subsection, (N, I")
admits a unique right-angled hyperbolic structure. O

4. Examples

In this section we give three examples.

Example 4.1. The simplest way to construct a handlebody which admits right-
angled hyperbolic structure is from the Lobell polyhedron L(n) for n > 5 (see, for
example, [Inoue 2008]). A Lobell polyhedron L () admits a right-angled hyperbolic
structure. Gluing two opposite n-gon faces of L(n), we get a solid torus admitting
right-angled hyperbolic structures, and whose boundary consists of 2n octagons.

For instance, from L(5), which is a dodecahedron, we can get three solid tori,
according to the twisting angle of gluing. All these solid tori satisfy Theorem 1.3.
It is easy to see that they admit (Z,)3-colorings, but don’t admit one which satisfies
the orientability criterion in Proposition 2.3.

This kind of right-angled hyperbolic solid tori are “simple”, by which we mean
we can obtain a right-angled hyperbolic polyhedron by cutting along a totally
geodesic right-angled n-polygon P from the solid tori, where P intersects the
boundaries of the solid tori orthogonally.

Example 4.2. A hexagonal tessellation of R? with a coloring is shown in Figure 1.
We assume that the diameter of a hexagon is 1. We take a Z2-action on R?, such
that its fundamental domain is a rectangle R whose vertical edges have length 4.5,
and whose horizontal edges have length 34/3. So there are six hexagons in each
horizontal layer and each vertical layer. Gluing the boundaries of R, we get atorus 7.

We can show that any solid torus bounded by T with coloring shown in Figure 1
satisfies the orientability criterion in Proposition 2.3 as well as the assumption of
Theorem 1.3. So it admits a right-angled hyperbolic structure.
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Figure 1

We fix a homeomorphism from 7 to the boundary of a solid torus J, so it is
natural to ask whether the pair (J, I') admits a right-angled hyperbolic structure.

It is easy to see that any essential simple closed curve C in this T intersects I"
in at least five points, and any curve C which bounds a disk D in T intersects I"
in at least five points, unless that D is a vertex-linking disk or an edge-linking disk.
So for any solid torus J which is bounded by T, (J, I') realizes a right-angled
hyperbolic structure.

If the boundary of the unique essential disk in the solid torus J is the image of a
horizontal line, then the hyperbolic solid torus can be decomposed into three copies
of the Lobell polyhedron L(6) along three totally geodesic right-angled hexagons
in the solid torus. The same claim holds if the boundary of the unique essential disk
in the solid torus is the image of the straight lines which have angles 7 /3 or 27 /3
with the horizontal lines.

Except in these three cases, the right-angled hyperbolic structure cannot be
obtained by gluing two faces of a right-angled hyperbolic polyhedron by an isometry,
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Figure 2

so it is not “simple”. Suppose otherwise; then the totally geodesic right-angled
k-polygon P which decomposes J is in general position with I', and so some faces
of dJ must be decomposed into a set of right-angled hyperbolic n-polygons by 9 P.
Note that n > 5, so if d P enters a face f of dJ —T', then it exits f from the opposite
edge of f from where it enters. It is easy to see that d P is the image of the lines
in R? which have angles 0, /3 or 277/3 with the horizontal lines.

Example 4.3. The graph I' decomposes the torus illustrated in Figure 2 [Chen
2009] into three hexagons, say fi, f>» and f3. We color f; by ¢; € (Z»)? for
i =1,2,3. There are two sets of disks in Theorem 1.3. The first one consists
of boundary parallel disks. The second one consists of essential disks, i.e., not
boundary parallel.

For any embedding of (72, T") of Figure 2 into a solid torus J, the boundary
parallel disks satisfy the assumption of Theorem 1.3. So if we embed (T2, I') into
a solid torus J by a map f so that the unique essential disk D (up to isotopy)
intersects I' in at least 5 points, then by Theorem 1.3, we get a right-angled
hyperbolic structure on (J, f(I')). Note that for a fixed embedding of I' — T2,
there are only finitely many isotopy classes of simple closed curves which intersect I'
in at most 4 points.

In general, if the pair (AN, T') admits a (Z,)3-coloring and N has genus at least
one, then it may admit many colorings for a re-embedding of I" into d N. This in
turn induces many closed 3-manifolds from locally standard (Z5)3-actions.
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REAL CLOSED SEPARATION THEOREMS
AND APPLICATIONS TO GROUP ALGEBRAS

TiM NETZER AND ANDREAS THOM

Dedicated to Konrad Schmiidgen on the occasion of his 65th birthday

In this paper we prove a strong Hahn-Banach theorem: separation of dis-
joint convex sets by linear forms is possible without any further conditions
if the target field R is replaced by a more general real closed extension field.
From this we deduce a general Positivstellensatz for x-algebras, involving
representations over real closed fields. We investigate the class of group
algebras in more detail. We show that the cone of sums of squares in the
augmentation ideal has an interior point if and only if the first cohomol-
ogy vanishes. For groups with Kazhdan’s property (T), the result can be
strengthened to interior points in the £!-metric. We finally reprove some
strong Positivstellensiitze by Helton and Schmiidgen, using our separation
method.

1. Introduction

In this article we combine techniques from real algebraic geometry, convex geometry,
and the unitary representation theory of discrete groups to address various problems
that arise in the emerging field of noncommutative real algebraic geometry [Schmiid-
gen 2009]. Classical results —like Artin’s solution of Hilbert’s 17th problem —
strive for a characterization of natural notions of positivity in terms of algebraic
certificates. For example, Artin proved that every polynomial in n variables that
is positive at every point on R" must be a sum of squares of rational functions.
Much later, Schmiidgen [1991] proved that a strictly positive polynomial on a
compact semialgebraic set must be a sum of squares of polynomials plus defining
inequalities. More recently, similar questions were asked in a noncommutative
context. Typically, the setup involves a *-algebra A and a family of representations .
The question is now: Is every self-adjoint element of A that is positive (semi)definite
in every representation in % necessarily of the form ) ; a*a; for some a; € A?
It turned out— similar to the more classical commutative case — that the cone
$2A={Y;a’a; | a; € A} C A is an interesting object of study in itself. Natural

MSC2010: 46H15.
Keywords: real closed fields, group rings, Kazhdan’s property (T), sums of squares.
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questions are: Is »2(A)N(—%2A) = {0}? Is =2A closed in a natural topology?
Does it contain interior points, in the finest locally convex topology, say?

A point ¢ is called an algebraic interior point of a cone C if the cone intersects
each line through ¢ in an open interval around ¢. A point is an algebraic interior
point if and only if it is an interior point in the finest locally convex topology (see
[Cimpri€ et al. 2011, Proposition 1.3], for example). The question for interior
points of cones has the following motivation. If a cone C has an (algebraic) interior
point g, then for every point a € C¥" from the double dual, one has a +€q € C for
all € > 0 (see [loc. cit.] for a proof of this well known fact). Using the standard
Gelfand—Naimark—Segal construction, this yields the following Positivstellensatz
for unital x-algebras:

Theorem. Assume that q is an interior point of the cone L*A. Ifa =a* € A is
positive semidefinite in each x-representation of A, then a +eq € £°A for all € > 0.

Our first main result is a different Positivstellensatz (Theorem 3.12): we prove
that each element from a real reduced unital x-algebra that is positive in every
generalized representation is necessarily in ©2A. The notion of a generalized
representation involves an extension of the standard real and complex numbers to
more general real- and algebraically closed fields.

A natural and vast class of examples of x-algebras is given by complex group
algebras C[I'] of discrete countable groups. We study the cones %2C[I'] and
>2w(I") in more detail, where (") C C[I'] denotes the augmentation ideal; see
Section 4. The situation for w (I") is much more complicated, as the study is closely
related to questions about first cohomology with unitary coefficients.We prove that
>2w(I) has an interior point if and only if H;(I", C) = 0. The cone >2w(T") has
an interior point in the ¢!-metric if I has Kazhdan’s property (T), and the converse
holds if Hy(I", C) = 0 (see Section 5). In Section 6, we analyze the situation for
free groups more closely and reprove theorems of Schmiidgen and Helton.

Along the way we prove some new and powerful separation theorems in Sections
2 and 3. The Hahn-Banach separation theorems for convex sets only apply if
additional conditions on the involved sets are imposed; sets have to be closed or
have to have nonempty interior, etc. We can remove all additional assumptions
at the expense of enlarging the target R to some real closed extension of the real
numbers; see Theorem 2.1.

2. A real closed separation theorem for convex sets
Throughout, we will work with various real closed fields R and always assume that
R C R. The following is a first general separation theorem for convex cones.

Theorem 2.1. Let V be an R-vector space, C C V a convex cone and x & C. Then
there exist a real closed field R containing R and an R-linear functional ¢: V — R
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such that
ox) <0 and @(y)=>0 forall yeC.

We can even ensure ¢(y) > 0 forall y e C\ (C N —C). Also, R depends only on V,
not on x or C.

Proof. Let us first assume that V' is finite-dimensional. We construct a complete
flag of subspaces V = H; D H, D --- D H, = C N —C, starting with V = Hj,
in the following way. By the standard separation theorem for convex sets (see
for example Theorem 2.9 in [Barvinok 2002]), we choose a nontrivial R-linear
functional ¢; : H; — R such that ¢;(y) > 0 for all y € C N H; and ¢;(x) < 0 (if
x € H;). We then define H;1| := H; N {p; = 0} and iterate the process. We finally
extend each ¢; in any way to V. Now let R be a proper real closed extension field
of R. Choose positive elements

l=€1>e>->¢€¢,_1>0

from R such that k- ¢; < €;_ for all kK € R. For example, €, can be any infinitesimal
element with respect to R, which exists since R is a proper extension of R; the
following €; can be taken as powers of ¢;.
Then define
Qi=€1Q1+- -+ €—10n—1.

One checks that ¢ has the desired properties. This proves the claim in the case of
finite dimension.

In the general case, consider the set & of all finite-dimensional subspaces H
of V. Foreach H € ¥, choose ¢ : H — R, separating x from C N H as desired (if
x € H). Extend ¢y in any way to V. Now let w be an ultrafilter on &, containing
the sets {H € ¥ |y € H} for all y € V. Consider the linear functional ¢: V — R?,
@) = (pu (v)) gey- Here R denotes the ultrapower of R with respect to w. One
checks that ¢ separates x from C as desired, by the theorem of Los (see for example
Theorem 2.2.9 in [Prestel and Delzell 2001]). O

Remark 2.2. In the usual way, one can now also deduce that any two convex
disjoint sets in a vector space can be separated as above with a real-closed valued
affine functional.

It turns out that we can also extend functionals quite often if we allow for an
extension of the real closed field.

Theorem 2.3. Let V be an R-vector space, C C V a convex cone,and H CV a
subspace. Assume (C + H) N —(C + H) = H. Then for any real closed extension
field R of R and any R-linear functional ¢ : H — Rwith ¢ > 0on C N H, there is
a real closed extension field R' of R and an R-linear functional ¢: V — R’ with
@>00nC and g =@ on H. We can even ensure ¢(y) > 0 forall y e C\ H.



438 TIM NETZER AND ANDREAS THOM

Proof. We apply Theorem 2.1 to the convex cone C + H in V and obtain a real
closed field R and an R-linear functional vV —> R with Y=00on H and ¥ (y) >0
for a € C\ H. By amalgamation of real closed fields, we can assume without loss
of generality that R = R. Finally, let R’ be a real closed extension field of R that
contains an element § > R. Extend ¢ to an R-valued functional on V and set

=9+
It is clear that @ coincides with ¢ on H and also that (y) >0 forallye C\ H. [J

We will improve upon the separation results in the case of certain *-algebras in
the next section.

3. Completely positive separation

Throughout this section, let A be a C-algebra with involution *, not necessarily
unital. We consider the cone of sums of hermitian squares

n
2A = {Za;kai |n eN, a; € A}
i=1
contained in the real vector subspace of hermitian elements
={aecA|a* =a)l.

If b € A"\ ©2A, we find an R-linear functional ¢: A" — R, into some real
closed extension field R of R, such that ¢(b) < 0, ¢(a*a) > 0 for all a € A, by
Theorem 2.1. We can extend ¢ uniquely to a C-linear functional ¢: A — R[i]
fulfilling ¢(a*) = ¢(a). We will denote the algebraically closed field R[i] by C
from now on.

The condition ¢(a*a) > 0 for all a € A is called positivity of ¢. We would
now like positive and real-closed valued functionals to fulfill the Cauchy—Schwarz
inequality

lp(@*b)* < ¢(a*a)p(b*b)

for all a, b € A. However, this is not true in general, as the next example shows.

Example 3.1. Let A = CJ[z] be the univariate polynomial ring; * is coefficientwise
conjugation. The cone XA equals the cone of nonnegative real polynomials.
Consider the functional

p:Rt]—= R, pr p0)+ep”(0),

where € € R is positive and infinitesimal with respect to R. One checks that ¢ is
positive, but fora =1+ 2 and b = 1, we have

lp(a*b)|? = 1+4e +4€> > 1 +4e = p(a*a)p(b*b).
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Example 3.2. The last example can be modified to even fulfill p(a*a) > 0if a #0O.
Indeed, let 1 =€g > €; > €, > - - - > 0 be a sequence of elements from R, such that
R-€; <¢€;_; for all i. Then the linear mapping p +— Z?io € -p(Zi) (0) is well-defined
and strictly positive in the desired sense. If we further assume R - €, < 612, then the
same argument as in Example 3.1 shows that the Cauchy—Schwarz inequality is not
fulfilled.

Definition 3.3. A C-linear functional ¢: A — C with ¢(a*) = ¢(a) is called
completely positive if for all m € N, the componentwise defined function

@™ : M,,(A) = M,,(C)

maps sums of hermitian squares to positive semidefinite matrices.

Remark 3.4. It is easily seen that a positive C-linear functional ¢ : A — C with
¢(a*) = ¢(a) is always completely positive.

Example 3.5. The functionals from Examples 3.1 and 3.2 are positive, but not
completely positive. Indeed, with @ = 1 + % and

=)

1 p(a) )
p(a*) p(a*a)

we find that
0@ ) =

is not positive semidefinite, since its determinant is negative in R.

Lemma 3.6. A C-linear functional ¢: A — C with ¢(a™) = ¢(a) is completely
positive if and only if the C-linear extension

d®e: C®cA— C

is positive.

Proof. The condition that id ® ¢ is positive is

0= (id®<p)((j2: Zj ®“/>*<i < ®aj)>

j=1
= (i[d®¢) (Z Zj% ®a;fak>

= ZZjZk “p(ajar)
Jik
forallm e N, z; € C,a; € A. But this just means that the matrix (ajak)j,k is
mapped to a positive semidefinite matrix under ¢, Since every sum of hermitian
squares in M,, (A) is a finite sum of such rank-one squares, this proves the claim. [J
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Corollary 3.7. If ¢: A — C is completely positive, then it fulfills the Cauchy—

Schwarz inequality
lp(@*b)? < ¢(a*a)p(b*b)

foralla,b e A.

Proof. Either consider the positive and C-linear extension id ® ¢ to C®¢c A and use
the standard proof for the inequality, or apply ¢ to the sum of hermitian squares

(a b)*(a b)_ (a*a a*b)
00 00/ \b*a b*b /)’
and use that the obtained matrix is positive semidefinite. U

Remark 3.8. We see from the last proof that in fact only the 2-positivity of ¢ is
needed for the Cauchy—Schwarz inequality.

Corollary 3.9. Let A be a C-algebra with involution and R a real closed field that

contains R. Let ¢: A — C be a completely positive C-linear functional that satisfies

172 satisfies

@(a*) =q(a) forall a € A. The gauge ||a|, := ¢(a*a)
IA-allp = [A]-llally

and
la+blly <-llally,+1blly.

Proof. The first assertion is obvious. Let’s compute
la+bl; = ¢((a+b)*(a+b))
=g(a*a)+@(a*b) + ¢ a)+ ¢(b*b)
< llall; + 1615 + 2l (a*b)]
< llally + 1215+ 2lall,lIbll,
= (lally + 1b1l)°.
This proves the claim. U

It turns out that separation from the cone of sums of hermitian squares can often
be done with a completely positive functional.

Definition 3.10. Let A be a C-algebra with involution, not necessarily unital. Then
A is called real reduced if ) ; a‘a; =0 implies ¢; =0 for all i and q; € A.

Theorem 3.11. Let A be a C-algebra with involution that is real reduced. Let
b e A"\ ©2A. Then there is real closed extension field R of R and a completely
positive C-linear functional ¢ : A — C with p(a™) = ¢(a) such that

o) <0 and ¢(a*a)>0 for aec A\{0).
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Proof. For any finite-dimensional subspace H of A, denote by

»2H = {Za?‘ai |a,- EH}

1
the set of sums of hermitian squares of elements from H. It is well known that
Y2 H is a closed convex cone in a finite-dimensional subspace of A”. This follows
from the fact that A is real reduced, using for example the approach from [Powers
and Scheiderer 2001, Lemma 2.7]. It also follows that £2H is salient, that is, it

fulfills
’HN-X?H = {0)}.

So for each such H, there is an R-linear functional ¢ : A" — R with
o) <0 and ¢g(a*a) >0 forall ae H\{0}.

Let & be the set of all finite-dimensional subspaces H of A, equipped with an
ultrafilter @ containing all sets {H € & | c € H} for ¢ € A. Define

g: A" > R?, 9(a) = (pn (@) pey -

Then ¢ does the separation as desired. We consider the C-linear extension of ¢
to A, and finally show that it is completely positive. The C-linear extension of ¢ g
to A indeed maps a matrix (a;/a;); ; € M, (A) to a positive semidefinite hermitian
matrix, at least if all @; € H, as is easily checked (compare to Remark 3.4). Since
we can check positivity of the matrix (¢(afa;)); ; € M,(R[i]) componentwisely
in M, (R[i]), by the theorem of Los, this finishes the proof. O

Throughout, we will take the freedom to consider *-representations of A on vector
spaces that carry a sesquilinear C-valued inner product, where C = R[i] for some
real closed field R D R. We call these representations generalized representations.
For every completely positive functional ¢ : A — C, we can perform the usual GNS
construction to construct such a representation (see the proof of Theorem 6.1 below
for more technical details). The usual concepts of self-adjointness and positive
semidefiniteness of operators on such a vector space can be defined without any
problems. The first consequence is the following Positivstellensatz (compare to the
standard Positivstellensatz from the introduction):

Theorem 3.12. Let A be a real reduced x-algebra, and a € A". Then a is positive
semidefinite in every generalized representation if and only if a € £ A.

Proof. If a ¢ XA, then there exists a completely positive map ¢: A — C such
that ¢ (a) < 0. Clearly, a will not be positive semidefinite in the generalized GNS
representation associated with ¢. U
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Examples for real reduced *-algebras are group algebras C[I"]. In Section 6, we
will see that for particular groups, the study of generalized representations of C[I']
can be reduced to the study of usual (finite-dimensional) unitary representations,
using Tarski’s transfer principle.

4. Sums of squares in the group algebra

Let I" be a group and let C[I"] denote the complex group algebra. A typical element
in C[I'] is denoted by a = ) ¢ 4g&> Where only finitely many of the a, € C are not
zero. In C[I'] we identify C with C - ¢, where e denotes the neutral element of I.
The group algebra comes equipped with an involution (Z e gg)* => ¢ dg g 'and
atrace 7: C[I'] — C that is given by the formula t (Z ¢ dg g) = a,. The faithfulness
of the trace shows that C[I'] is real reduced. Let £2C[I'] denote the set of sums
of hermitian squares in C[I"]. The following appears for example as Example 3 in
[Cimpri¢ 2009]:

Remark 4.1. [la[|? —a*a € S*C[T] for all a € C[T'], where [|a]|; = Y, |a]-

Remark 4.2. From the identity
2llalli - (lalh —a) = (lall —a)* (lally — a) + (lall} — a*a)

for a € C[I']", we see that 1 is an algebraic interior point of the cone »2C[I'] in
the real vector space C[I']". That means 1+ ea € £2C[I'] for all a € C[I"]* and
sufficiently small € > 0. In fact, the € does only depend on ||a||; here.

Remark 4.3. As explained in the introduction, for any element a € CII]" that
is positive semidefinite in each (usual) x-representation of C[I"], one thus has
a+ e € $2C[T], for all € > 0.

Remark 4.4. Since C[I'] is real reduced and unital, the result of Theorem 3.12
holds here as well. So if a is positive semidefinite in each generalized representation,
then a € £2C[T'].

We now consider the augmentation homomorphism ¢: C[I"'] — C, which is
defined by &(>° ¢ g g)=> ¢ Ag- The augmentation ideal is

w(T) :=ker(s) = {a eCr]| ) ag= o}.
8

We set ¢(g) := g — 1 and note that {c(g) | g € " \ {e}} is a basis of w(I"). The
multiplication satisfies

c(g)c(h) = c(gh) —c(g) —c(h).
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We denote by »*(I) the square of w(I"), that is, o*() = spanc{ab |a, b e o(I')}.
Inside w(I"), we study the cone of sums of hermitian squares

P =Y afa|acom)].

We are interested in interior points of this cone. Note that ¥?w(I") C w*(T") and
a)(F)/a)z(F) =C®gz 'y, where I'y, =T'/[T", I'] and [I", I'] denotes the subgroup
of I' generated by commutators. Hence, if I" has nontorsion abelianization, then
2w (T) is contained in a proper subspace of w(I"). However, we will show below
that 2w (") always has an interior point in o).

Lemma 4.5. For any group T', we have >20() = T2C[I'Nw (D).

Proof. The inclusion ?w(T") C T2C[T']Nw(I") is obvious. If Y, a’a; € w(I)
with a; € C[I'], then ), le(a;)|* =0, and hence (a;) = 0 for all i. This proves the
converse inclusion. O

Remark 4.6. It turns out that we can always extend positive functionals ¢ on w(I")
to positive functionals ¢ on C[I'], at least if we allow for an extension of the real
closed field. Indeed, observe that

(Z2CIM + (") N = (22 CIT] + o)) = w(D)",

which follows immediately from an application of the augmentation homomorphism
&. We can thus apply Theorem 2.3.

Lemma 4.7. Let R be a real closed extension field of R, and ¢: o (I') — C a
completely positive C-linear functional with ¢(a™) = ¢(a) for all a € w(I"). Then
foralls,h eT,

1
lp(c(s)*c(h))| < 5 (p(c()*c($)) + @lc(h) c(h))),

p(c(sh)*c(sh)) <2 (p(c(s)*c(s)) +p(c(h) c(h))).

Proof. The first inequality is an application of the Cauchy—Schwarz inequality
(which is fulfilled by completely positive functionals) and the inequality Apu < (A +
w)?/2. For the second inequality, first apply the triangle identity from Corollary 3.9
to the equation

c(sh) = c(s) + (c(s)c(h) +c(h)),

together with the well-known inequality (a + b)? < 2(a” + b?). Then use the easily
verified identity ||c(s)c(h) + c(h)[|> = llc(h) |1*. U

Since 1 ¢ w(I"), we need to find a different candidate for an interior point of
>2w(I).
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Definition 4.8. Let S C I be a finite symmetric set, that is, S~! = §. We define
the Laplace operator on S to be

A(S) =S| =) s.

ses

Remark 4.9. Note that for every finite symmetric set S C I,

A(S) =1 c(s)*c(s) € ZPo ().

seS

Proposition 4.10. Let I" be a group generated by a finite symmetric set S. Then
for any b € w*(I), there exists a constant C(b) € R such that for any real closed
extension field R of R and any completely positive C-linear functional ¢ : w(I') > C
with ¢(a*) = ¢(a) for all a € »(T), one has

lp(b)| = C (D) - 9(A(S)).

Proof. Every element b € »*(I) is a finite linear combination of c(g)*c(h) for
g, h € '\ {e}. This implies that |@(b)| is bounded by a constant times

max{go(c(s)*c(s)) |s € S},
using Lemma 4.7 several times. However,
max{g(c(s)*c(s)) | s € S} <2-9(A(S))
follows from Remark 4.9. This proves the claim. ]

Theorem 4.11. Let I be a group with finite generating symmetric set S. Then for
every b € w*(D)", there is a constant C (b) € R such that

C(b)-A(S)£b e X0 (D).
In particular, A(S) is an inner point of the cone >2w(T) in 0*(D)". If
H((T,C)=0,
it is an inner point in w (D),
Proof. In view of Proposition 4.10, we find that
C)-AS)LD

is nonnegative under each completely positive real-closed valued C-linear functional
@ on w(I"). In view of Theorem 3.12, this means that C(b) - A(S) &b is a sum of
hermitian squares in @ (I"). Note that we use that w(I") is real reduced. Finally note
that H, (", C) = 0 just means that w*(I") = w(I"). O
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5. Groups with Kazhdan’s property (T)

We want to show that the constant C(b) from Theorem 4.11 can be chosen as a
fixed multiple of ||b||;, in case the group ' has Kazhdan’s property.

Definition 5.1. Let I" be a group and 7w : I' — U(H) a unitary representation on a
Hilbert space H.

(1) A 1-cocycle with respect to the unitary representation 7 isamap é: I’ — H
such that for all g, h € I, we have §(gh) = (g)d(h) +6(g).

(2) A 1-cocycle §: I' — H is called inner if §(g) = w(g)& — & for some vector
EeH.

Definition 5.2. A group has Kazhdan’s property (T) if every 1-cocycle with respect
to every unitary representation is inner.

We will use several results on Kazhdan groups, which can be found, for example,
in [Bekka et al. 2008]. It is well known that groups with Kazhdan’s property (T)
admit a finite generating set S, and that

»*(I') = ()

holds. It is also known that for a fixed finite symmetric and generating set S in
a Kazhdan group I', there is some € > 0 such that for any unitary representation
m: I' - U(H) without nonzero fixed vectors, one has

(A(S)E,€) = €-||&]* forall e H.

Such € is called a Kazhdan constant for S.
Let’s revisit the standard GNS representation in the context of w(I"). Let

¢p:0l)—C

be a positive linear functional with ¢(a*) = ¢(a). We associate to ¢ a Hilbert space
as follows. We define on w(I") a positive semidefinite sesquilinear form

(@, b), = p(b*a)
1/2

and set |ally := (a,a)y . Let N(¢) := {a € w(I') | |lall, = 0} and define
L*(w(I), @) to be the metric completion of w(I")/N (¢) with respect to || - ||,. We
denote the image of ¢(g) in L*(w(), @) by 6(g) and denote by §(I") their complex
linear span, which is dense by definition of L?(w(T"), ¢)). It is standard that the left-
multiplication of w (I') on itself extends to a homomorphism 7% : w(I") — D(§(I")),
where D(5(I")) denotes the algebra of densely defined linear operators mapping
&(I") into itself. Indeed, if a € N(¢) and b € w(I"), then ba € N (¢) since

@((ba)*ba) = p(a*b*ba) < ||b||} - ¢(a*a),
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by Remark 4.1. Note that

7¥(c()é(h) =68(gh) —é(g) —8(h).

Now we define a unitary representation 7, of I' on L?*(w ("), @) by the rule

7p(g) =7 (c(8)) + 12(0mr).¢)-
Lemma 5.3. If 0*(I") = w(I"), then the representation 7, has no fixed vectors.

Proof. Assume 1 € L>(w ("), ¢) is a fixed vector. By definition of 7y, this means
7%(c(g))n =0 forall g € I". Hence,

0= (¢ N, 8(h)), = (n.8(gh) —8(8) — ().

Since c(g)c(h) = c(gh) — c(g) — c(h), the vectors §(gh) — §(g) — §(h) span the
image of w?(I") in 8(I"), and hence §(I"), since w*(I") = w(I"). O

Note that the map g — &(g) satisfies
8(gh) =my(8)8(h) +5(g),

and hence defines a 1-cocycle with respect to the representation 7,. If I' is a
Kazhdan group, then there exists Q2 € L?*(w(I), ¢) such that

5(8) =, ()Q — Q.

Proposition 5.4. Let I" be a Kazhdan group with finite symmetric generating set
S and Kazhdan constant € > 0. Then for every nonzero b € w(I')", every real
closed extension field R of R, and every positive nontrivial C-linear functional
¢: o) — Cwith p(a*) = ¢(a), one has

€-@(b) <2[|b]l1 - 9(A(S)).

Proof. Let us first assume R = R and C = C. We do the GNS construction as just
described, and get some Q € L*(w(I"), ¢) with §(g) = m,(g)2—Q, forall g eT.

We set
9:CII'l = C, 9(a) = (my(a)2, Q)

and compute

Pc(h)*e(8)) = {my(c(8)K2, Ty (c(M)R),, = (8(8), 8(h)y = p(c (M) c(8)).

This shows that ¢ and ¢ agree on »*(I"), and hence on w(I"). If we now do
the standard GNS construction with respect to ¢, we see that there is a natural I'-
equivariant identification of L3(C[T'], ¢) and L*(w(D), ¢). Since the representation
7, has no fixed vectors, we get

P(A(S)) = @(A(S)) = (A9, )g = €-p(1).
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Since ¢ is positive and nontrivial, it follows from Remark 4.2 that (1) > 0. So
finally, again using Remark 4.2, we find

€-gb)=€-@(b) <e€-|blli-o(1) <2|blly - p(A(S)),

the desired result.

Now let R be arbitrary, and let ¢ : w(I") — C be positive and nontrivial. From
Theorem 4.11 it follows that ¢ (A(S)) > 0. So we can assume without loss of
generality that ¢(A(S)) = 1. Again from Theorem 4.11, we see that ¢ now only
takes values in O[i], where O is the convex hull of R in R. It is well known that O
is a valuation ring in R with maximal ideal m, and that G/m = R (see for example
[Prestel and Delzell 2001], especially the appendix on valued fields). The residue
map 0 — O/m maps nonnegative elements to nonnegative elements. So if we
compose ¢ with the residue map on O[i], we get a positive linear functional to C.
Since we know that the desired strict inequality holds now, it was already valid
for ¢. O

Theorem 5.5. Let I" be a group with finite generating symmetric set S. Consider
the statements:

(1) T has Kazhdan’s property (T).

(2) A(S) is an algebraic interior point ofEZa)(F) in the £ -metric of w (D). More
precisely, there exists a constant € > 0 such that for every b € w(I')" with

I1b]lh = 1, we have
A(S)+€-be o).

The following implications hold: (1) implies (2), and (2) implies (1) under the
additional assumption Hy(I", C) = 0.

Proof. The implication (1) = (2) is a direct consequence of Theorem 3.11 and
Proposition 5.4. Let us now prove (2) = (1) under the additional assumption
Hy (T, C) = 0. We first prove two lemmas.

Lemma 5.6. Let I" be a group. There is an exact sequence as follows:
0—- HI,C) - o crol) - o) — H([,C)— 0.
Proof. It is well known that
o) /() =T ®2 C = Hi(T, C).

This shows exactness at w (I"), and it remains to show exactness at w (I') ®¢rj (I').
Since 0 — w(I') — C[I"'] — C — 0 is exact, we have

Hy(T, C) = Hy (T, »(T")) = Tor" " (C, o(T)).
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Again, we get an exact sequence
Tort"(CIT], (1) = Tort(C, () = o (T ®¢irj () = CIM&¢re ().

This finishes the proof, since Tor‘lﬁ[FJ(C[F], o)) =0. O
If A(S) is an algebraic interior point of 20w () in ()", then (') = w*(I),
that is, H(I", C) = 0. Hence H,(I", C) = 0 ensures that the natural map
o) Qcro) = o(T)
is an isomorphism. This is what we are going to use.

Lemma 5.7. Let w: I' — U(H) be a unitary representation and let §: I' — H be
a 1-cocycle with respect to H. Then

p(c(h)* ®c(g)) == (3(g), 8(h))

yields a well-defined positive linear functional on v (I') = o (I') @cr o (I).

Proof. 1t is clear that (c(h)*, c(g)) — (5(g), §(h)) defines a bilinear map on w ("),
that is, a linear map ¢’: (") ®c @ (I') — C. We show that this map passes to
o) @cryw (). Let g, h, k € I'; then
@' (c(h)*k ®c(g)) = ¢'(c(h"Hk®c(g))

=¢'((c(h™ k) — (k) ® ()

=/ (ck™ D) @ c(g) — ¢/ (ck™ ) ®c(g))

= (8(8), 8¢k~ ")) — (8(9), 8k™1)

= (8(8), (k™3 (h))

= (m(k)8(g), 8(h))

= (8(kg), 8(h)) — (8(k), 8(h))

=¢'(c(h)* @ c(kg)) —¢'(c(h)* ®c(k))

= ¢’ (c(h") ® ke(g)).

We can now understand ¢’ as a linear map on w(I") via the above isomorphism
to (I") ®cry w(I'). Since a*a corresponds to a* ® a, one easily checks that ¢ is
positive on w(I"). U

We continue with the proof of Theorem 5.5. Condition (2) in Theorem 5.5 and
Lemma 5.7 imply that any 1-cocycle with respect to any unitary representation is
bounded. This is well known to imply Kazhdan’s property (T) for I'. (]

Remark 5.8. It is not clear whether the condition H,(I", C) = 0 is necessary.
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There is an analogue of the implication (1) = (2) in Theorem 5.5 in

EIF::{Zagg| Zlag|<oo}.

gel gel

— -

We set o' T := w(T) and define

2w () == {Za;ai |ai € wIT1, ) llallt < oo}

i=1 i=1

and

o o0
2Ny = {Zai*ai |a; € €'[T], Z la; ||} < oo}.

i=1 i=1
We note that ||a||; —a € £2'¢! (") for every hermitian element a € £'T". Indeed,

_ a * a
lalli—a =3 2lay|—agg—aee ™ = 3 (Il * =1 Zie) (lael' = 5ie).

geG geG

Hence, for ¢: £'T" — C, C-linear and positive on 2> !¢'T", |¢(a)| < |la||; for all
a € ¢'T. A priori, there is no reason to assume that >!'¢!T or 22!w!T are closed
or have nontrivial interior. Nevertheless, our result shows:

Corollary 5.9. Let I' be a Kazhdan group with finite generating symmetric set S
and Kazhdan constant €. Then for every b € o' (DY" with ||b|l; = 1, we have

AS)+e-be x> w@).

6. Group algebras of free groups

In this section, let I' = F,, be the free group on n generators g;,...,g, or [ =
Fs. Schmiidgen (private communication, 2011) has proven that an element
from the group algebra C[I'] that is nonnegative under each finite-dimensional
s-representation is a sum of squares. We demonstrate how his result can be reproved
with our real closed separation approach. The main idea of our proof is the same as
in Schmiidgen’s work. However, instead of a partial GNS construction, we use a
full GNS construction, but over a general real closed field. We then reduce to the
standard real numbers by Tarski’s transfer principle.

Theorem 6.1 (Schmiidgen). Let I' = F, be the free group on n generators. If
b € C[T')" is mapped to a positive semidefinite matrix under each finite-dimensional
s-representation of C[I'], then b € >2C[T].

Proof. Assume that b ¢ X?C[T"]. By Theorem 3.11, there is a real closed extension
field R of R and a completely positive C-linear functional ¢: C[I'] — C with
¢(a*) = p(a), such that ¢(b) < 0. By Lemma 3.6, the canonical C-linear extension
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of p to A =C®c C[I'] is still positive, and we denote it again by ¢. We apply the
usual GNS construction to A. We note that

N={aecA|¢p(*a) =0}

is a x-subspace of the C-vector space A, which follows from the Cauchy—Schwarz
inequality, as shown in Corollary 3.9. We denote the quotient space A/N by H,

and note that
(a+N,c+N), :=g¢(c*a)

is a well-defined and positive definite C-valued sesquilinear form on H. We also
note that left-multiplication from C[I'] on A is well-defined on H, as explained in
Section 5. So we have a C-linear *-representation

m: C[Tl— Z(H)

with (w(b)§,&), <0, where § =1+ N.

Now let H' be a finite-dimensional x-subspace of H, containing the residue
classes of all words in the generators g; of length at most d, where d is the maximal
word length in b. We can choose an orthonormal basis vy, ... v, of H’, using the
usual Gram—Schmidt procedure over C. So there is an orthogonal projection map
p: H— H’', defined as

m
prhe> Y (h v
i=1

Define
M; = pom(g) e L(H).

It is easy to see that all M; are contractions; thus the linear operators /1 — M M;
and /1 — M; M} exist on H'. Using Choi’s matrix trick [1980, Theorem 7], we

define
U — M; I — M,-Ml.* cH(H & H)
t JI — Mi*Mi —Mi* ’

The U; are checked to be unitary operators, and thus yield a C-linear *x-representation
7 of C[T'] on H' & H'. Since the residue classes of all words occurring in b belong
to H’, and by the definition of the U;, we find

(T D & won = (m(b)E, &)y <0,

where & = (&, 0). Now finally, since H' @ H’ is finite-dimensional, the existence
of such a representation over C implies the existence over C, by Tarski’s transfer
principle. This finishes the proof. U

Remark 6.2. The proof becomes even simpler when considering the x-algebra of
polynomials in noncommuting variables C(y1, ..., yu, 21, ..., 2,) With y* =z;, or
C(z1, ..., zn) With ] = z;, instead of the group algebra of a free group. The reason
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is that one is not forced to make the matrices M; unitary (only hermitian in the
second case). So Theorem 6.1 also holds for these polynomial algebras. This was
first proven by Helton [2002].

It is an interesting problem to study the class of groups I" for which positivity
of a € C[I'] in every finite-dimensional unitary representation implies that a €
X2C[TI']. It is clear that in order for an analogous argument to work, I" has to be
residually finite-dimensional in a very strong sense. Residual finite-dimensionality
of a group means that every unitary representation on a Hilbert space can be
approximated in the Fell topology by finite-dimensional representations; see [Brown
and Ozawa 2008] for details. If —more generally —every generalized unitary
representation of I" on a Hilbert space can be approximated on finitely many vectors
by generalized finite-dimensional unitary representations, then everything works.
With additional work, this can be carried out for virtually free groups (Schmiidgen,
private communication).

Deep results of Scheiderer [2006] imply that the conclusion holds for Z2. By a
classical result [Rudin 1963], however, the group Z> does not satisfy the desired
conclusion, and the same holds for every group containing Z3. This is also implied
by seminal work of Scheiderer [2000, Theorem 6.2], who showed that the existence
of positive elements that are not sums of squares under general assumptions in
dimension > 3.

This shows that the theory of generalized unitary representations is fundamentally
different and new pathologies occur.

An intriguing and possibly manageable case is that of surface groups. Lubotzky
and Shalom [2004] showed that surface groups are residually finite-dimensional.
It is quite possible that their methods extend and lead to a resolution of the case of
surface groups.

Conjecture 6.3. Let I' be a surface group. Every element a € C[T"]" that is positive
semidefinite in every finite-dimensional unitary representation lies in X>C[I].

Similar questions can be studied if one allows the unitary representations to be
infinite-dimensional. Again, the only known obstruction is Z> C T".
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UNIQUENESS THEOREM FOR ORDINARY DIFFERENTIAL
EQUATIONS WITH HOLDER CONTINUITY

YIFEI PAN, METI WANG AND YU YAN

We study ordinary differential equations of the type u™ () = f(u(t)), with
initial conditions #(0) = u’(0) = - - - = u™~V(0) = 0 and u" (0) # 0, where
m > n; no additional assumption is made on f. We establish some unique-
ness results and show that f is always Holder continuous.

1. Introduction

The question of finding criteria for the uniqueness of solutions has been a constant
theme in the study of ordinary differential equations for a very long time, and
a wealth of results have been established. The one most quoted in textbooks
is perhaps the Lipschitz uniqueness theorem, which states that in the equation
y®(x) = f(x,y,y,...,y" D), if the function f(x, 2y, 22, ..., 2,) is Lipschitz
continuous with respect to z1, z2, . . . , Zs, then the initial value problem has a unique
local solution. Generally speaking, to ensure the uniqueness of solutions to an
ODE, we need to assume some condition on the function f besides continuity, the
Lipschitz condition being one example. Most of the research in this topic has been
devoted to finding the appropriate condition, and there are many nice results, such
as the classical theorems by Peano, Osgood, Montel and Tonelli, and Nagumo. An
extensive and systematic treatment of the available results is provided in [Agarwal
and Lakshmikantham 1993].

In this paper, we approach the uniqueness problem from a different perspective
and relate it to the unique continuation problem. We study autonomous ODEs of
the type u"(t) = f(u(t)), where u € C*([0, 1]) and no additional assumption is
made on the function f.

If we assume the initial conditions u(0) = #/(0) = --- = u®Y(0) = 0, the
solution is not unique. The following is a trivial example.

Example 1. u(t) =13 satisfies u” (t) = 6u'/3 and u(0) = u’(0) =0. Another solution
to this initial value problem is u = 0.

The research of Yu Yan was partially supported by the Scholar in Residence program at Indiana
University—Purdue University Fort Wayne.

MSC2010: 34A12.
Keywords: uniqueness of solutions, ordinary differential equations.
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It is no surprise that uniqueness fails in this example, because the function
f(u) = 6u'’3 has fairly strong singularity at 0. From another perspective, this
example shows that if a solution and its derivatives up to order n — 1 all vanish
at 0, it is not guaranteed to be the zero function. On the other hand, even if all its
derivatives vanish at 0, the solution still may not be identically 0.

Example 2. The function
e/t 0<t<1,
1) = -
=5 05
is in C* ([0, 1]), and
(1) u®©)=0 forall keN.

Let

F(s) = {s(lns)2 s >0,

s =0.
Then u(¢) satisfies the equation
u' = f(u).
However, this equation has another solution, u = 0, which also satisfies (1).

This function u(¢) is also a classical example in the study of the unique con-
tinuation problem, which asks when we can conclude that a function is locally
identically zero if its derivatives all vanish at a point. Here is one result in this line:

Theorem 1.1 [Pan and Wang 2008]. Let g(x) € C*([a, b]), 0 € [a, b], and

(k)
@) |g<"><x>|<cz'g Wl v eqan

|nk’

for some constant C and some n > 1. Then
¢®0)=0 forall k>0

implies
g=0 on [a,b].

The order of singularity of |x| at O in (2), that is, n — k, is sharp, as one example
in [Pan and Wang 2008] shows. This theorem is crucial to the proof of our main
theorem below.

The previous two examples suggest that to guarantee uniqueness near 0, the
solution needs to vanish to sufficiently high order, but not to the infinite order. So
we assume that it satisfies the initial conditions #(0) = u’(0) =--- =u™"D(0) =0
and u(”’)(O) =a # 0, where m > n. That is, the order of the lowest nonvanishing
derivative of u at O is no less than the order of the equation. From the equation
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it is not difficult to see that f is differentiable away from 0; however, it is not
differentiable at 0, as shown by Example 1 with m = 3.

Due to the lack of information about the regularity of f, the available uniqueness
theory no longer applies to this type of equation. We will show that because u has
sufficiently high vanishing order at 0, such solutions are unique near 0. Specifically,
we have the following result.

Theorem 1.2. Let u(t) € C°°([0, 1)) be a solution of the differential equation
3) () = f ),

where n > 1 and f is a function. Assume that u satisfies

4) u@=u'0)=---=u™V0)=0 and u"™0)=a+#0,

with m > n. Then such a solution u(t) is unique for t near 0.

The proof of Theorem 1.2 is carried out in two steps. First, we show the following
result concerning the derivatives of u at 0.

Lemma 1.3. Let u(t) be a solution that satisfies Equations (3) and (4). The deriva-
tive of u at 0 of any order equal to or higher than m, that is, u™® (0) for any k > m,
depends only on m, n, and the behavior of the function f near Q.

In the second step, suppose there are two solutions u# and v, both satisfying (3)
and (4); then by Lemma 1.3, the function u(¢) — v(¢) and all its derivatives vanish
at 0. Making use of Theorem 1.1, we can show that u — v =0.

Typically, for an n-th order ODE, we need only » initial conditions. Theorem 1.1
shows that in some sense, the lack of information about f can be compensated by
assuming additional derivative information at the initial point.

Interestingly, it turns out that the solution is unique as long as the vanishing
order is no less than the order of the equation, but the actual vanishing order and
the value of the lowest nonzero derivative are not essential.

Theorem 1.4. Suppose u; and u, are two solutions of (3) that satisfy

©) 0O =uj ()= =u"""0) =0, u"O0)=a#0
and
(6) w0) =uy(0) = =uy "(0)=0,  u0)=b#0,

where m,l > n. Thenm =1, a = b, and uy = u, for small t.

The proof of Lemma 1.3 will be given in Section 2, and the proofs of Theorems
1.2 and 1.4 will be given in Section 3.

Naturally, we would like to ask if the result still holds if one of the solutions in
Theorem 1.4 has vanishing order lower than n, the order of the equation.
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Conjecture. Suppose (3) has a solution u(t) that satisfies (4) with m > n. Then it
cannot possess another solution v(t) that satisfies initial conditions

v(0) =0V (0)=---=v""D0)=0 and vP©0)=b+£0,
where | < n.

We can show that this conjecture is true if m =n + 1 or [ and m are relatively
prime. However, there are some difficulties in the general case and we have not
been able to prove the full conjecture.

Although in Theorems 1.2 and 1.4 we do not need to make any assumptions about
the function f, we can actually obtain interesting information about it. Suppose
there is a function u(¢) that satisfies Condition (4); then as shown in Section 2,
locally ¢ can be expressed as a function of u, and therefore we can express u" (¢)
locally as a function f of u, so u™(t) = f(u). The next theorem shows that the
function f is Holder continuous in an interval [0, 8] for small § > 0.

Theorem 1.5. Suppose a function u(t) satisfies Condition (4); then Equation (3)
holds for some function f, where m > n and there is a constant § > 0 such that f is
uniformly Holder continuous in the interval [0, §].

This theorem is proved after Theorem 1.4 in Section 3.

A summary of Theorems 1.2 and 1.5 is that any smooth function of finite order
vanishing at 0 is a unique local solution of a differential equation in the form
of Equation (3), where f is differentiable in the interior and uniformly Holder
continuous up to the boundary.

In Theorems 1.2 and 1.4, the high-order vanishing condition (4) allows us to
obtain uniqueness results without any extra assumption on f. This phenomenon is
only found in autonomous equations like (3). For general ODEs of the form

n !

such results cannot be expected because there is more than one expression for f.
For example:

Example 3. Let u(¢) = t*. It satisfies the initial conditions
uO)=u'0)=u"0)=u®©0)=0 and u®(0)=24.

Its derivatives are
uW'()=4r and u"(t) = 12¢%.

We can express u” as a function f of u and «’ in different ways, such as

192u? 3(u')?
1 t 1 t
W= W=

u'(6) = 12(3un)?”,
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or
1/4(1, n\1/3
(1) = 120" (Ju') "

In the first two equations f is not continuous at the origin, while in the last two
equations f is Holder continuous at the origin. This simple example shows that
the function f can be expressed in various ways and that in order to study the
uniqueness, we need to impose very specific assumptions on f.

Our work was motivated by that of Li and Nirenberg [2006], who studied a similar
second-order PDE: Au = f(u), where u = u(t, x) € C®(R* 1) has a nonvanishing
partial derivative at O that can be expressed in the form u (¢, x) = at™ + o™,
a#0,teR,and x € RK. They showed that if two solutions u and v satisfy u > v,
then u = v. Theorem 1.2 can be viewed as an improvement of their result in the
one-dimensional case to arbitrary order and without the comparison condition u > v.

2. The proof of Lemma 1.3

Without loss of generality, we can assume that a > 0.
First, we show that a, the m-th derivative of u at 0, only depends on m, n, and
the function f.

Define
- u\Ll/m
7 i= (—) .
a
Then

T=@"+00" M)/ =1t(1+0@)).

This implies that

—1 as t—0.

®)

X
t

We can also write u = ax™. Taking the derivative with respect to ¢, we get

I3
amt™ '+ 0™ = amimfld—);,

tm=l 1" dx
Fm—1 + 0(;111—1) = E

In the second equation above and in the analysis that follows, we formally differen-
tiate the Taylor expansion with the big-O notation. A detailed discussion of this
differentiation is provided in the Appendix.




458 YIFEI PAN, MEI WANG AND YU YAN

In light of (8), it follows that

9 di| =1
dr =0T

By the inverse function theorem, ¢ can be expressed as a function of X:
_ = ~2
t=x+ 0(x").

Then
M — ()E + 0();2))’"_” — im—n(l + 0(2))

Similarly, "+ = ¥m=7+1(1 + O(%)). Thus

10) Q) =u™
=amm—1)...(m—n+ D" "+ 0@ "
=amm—1)...(m—n+DF" "+ O0@GF" "
g)(m—ﬂ)/m+0(u(m—n+l)/m) by (7)
= an/mm(m —1...(m—n+ l)u(m*n)/m 4 O(M(m*'”rl)/m)‘

=am@r4)”(m—n+D<

Therefore,

(11) "™ = lim Q) .
u—0 m(m — 1) N (m —n-+ l)u(mfn)/m

This shows that a is completely determined by m, n, and the behavior of the function
f near 0.

Next, we show that the (m + 1)-th derivative of u at 0 also only depends on m, n,
and f.

Write u as

(12) u(t) = at™ + a1 t"t + 0" ).

We will show that a,,+; only depends on m, n, and the behavior of f at 0.
Express t as

(13) =% +bi*+ 0.

We would like to obtain an expression for b; in terms of the derivatives of u at 0.
To do this, we take the derivative with respect to ¢ on both sides of

dx dt

dr di
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By the product rule and chain rule, we have

d jdx\ dt dx d /dt
(14) () =+ (5%) =0
dt\dt/ dx dt dt\dx
d*x  dt L5 dx (dzt d)?) B
dt2 di ' dt \di* dt ’
d*x  dt (di)l d*t _0
dr? dx  \dt/ dit "
We would like to evaluate (14) at t = 0.
From
i::(Z)Vm::<ﬂﬂ+fﬂihm+l+190m+%)um
a a

—t(1+ Lo ))

459

=t(1+ ¥ (== +0an) + 5-%(%—1)(“’"“t+0(t2)) +0(t3)>

am+1 2

=1+ ——1"+0(),

we know that

d*x 2am-i—l
15 — |, =

From (13) we know that

—tl__l and —2t|__2b
— n — b,
5 =0 72 =0 2

Thus if we evaluate (14) at t = 0, we get

2
Zmtl 4 4 1.2p,y =0,
ma
and therefore
(16) by = —dm+L
ma

Now, from (13) we have

= (R4 byi’ 4 O(F))" "
= F" 1 4+ bk + OFD)]" "
= " [1 4 (m =) (baF + OG) + 0 ()]

—Fmn 4 (m _ n)b2£m7n+l + O(im7n+2)‘
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Similarly,
tm—n—i—l :)'Em—n—s—l + (m —n+ l)bzfm_rH_Z + O(Xm—n—',-?s),

tm—n+2 — O(JEm—rH—Z)‘
Then from (12) and the above expressions for the powers of ¢, we have

u™ =am@m—1)...(m —n+ D" ™"
+ i (m+Dm ... (m—n+2)" " L o)

=amm—1)...(m—n+ 1)(fm_n + (m — n)bzgz’”_”"‘1 + O(Xm—n—i-z))

+apr1m+1)m...(m—n+2)
% (x‘m—n-i-l 4+ (m —n4+ l)bzim_"+2 + O(jzm—n—h’)))

=am(m—1)...(m—n+1Dx""

+(amm —1)...(m = by +awp1(m + Dm ... (m —n+2)) 8" "+
+O@E"",
Thus, in view of f(«) = u" and (7), we have

fw)y=amm—1)...(m—n+1)x""
+(am(m— 1) N (I’i’l—l’l)b2+am+1(l’l’l+l)m . (m—n+2))im—n+1

+ O(imfn+2)

:am(m—l)...(m—n+1)(g>

m—n
m

u m—rg-i-l
+(amn—1)...n=mbs+ans1m+Dm....m—n+2)(*)
m—n+2

() ")

=a%m(m—1)...(m—n+1)u%

n—m—1
m Gy (m+Dm ... (m—n+2))

m—n+1
m

-1
+ (anWm(m -1 ...(m—n)by+a
X U

n O(umfrzerZ).

This means that

—1 n—m—1
ammm—1)...(m—n)br+a M apii(m+Dm...(m—n+2)

f(u)—a"/mm(m—1)...(m—n+1)u%

= lim
m—n+1
u—0 o
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By (16), this can be written as

n=1 Am+1 n—m—1
amm(m—l)...(m—n)<— )—I—a m gy (m+1Dm...(m—n+2)
ma
 fW—anmm—1)...(m—n+Du m
= lim .
U—0 m—n+1
u m

After collecting similar terms, we get

am+1a"7,’n"771((m+1)m...(m—n+2)—(m—1)(m—2)...(m—n))
f(M)—a%m(m—1)...(m—n+1)u%

=1
ul—l;r(l) um—T’H‘]
Consequently,
mentl (. f)—amnmm—1)...(m—n+Du"m
a m lim, ¢ pe—
(A7) ans1 = u_m

m+1m..m—n+2)—(m—1)(m-—-2)...(m—n)

Since we have proved that a only depends on m, n, and f, Equation (17) shows
that a,,+ is also completely determined by m, n, and the behavior of f near 0. By
(16), this also shows that b, depends only on m, n, and f.

Now we will use mathematical induction to show that all the derivatives of u at
0 of order higher than m are completely determined by m, n, and f.

Express u and ¢ as

(18) u(t) = at™ + ap1t™ ™+ -+ it 4 appr ™+ O )

and
(19) t=X4bx* 4 b BT £ b7 0GP,
Suppose that for k > 1, a, ay+1, - - -, Amtk, b2, - . ., by are all determined only
by m, n, and f; we will show that a,,, ¢+ and by, also are determined only by
m,n,and f.

We start by obtaining an expression for by, in terms of a1, ..., dm+r and
Am+k+1-

Taking the derivative with respect to ¢ on both sides of (14), we obtain

3 2 2 ~ - - 0 = 3 ~
~w it wa) aw et (@) G w)
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and
3% dt dx d*x d*t di\3 d*t
3 (o) am

0=—2.—_ (2. .
dr3 d;’é+ dt dt? dié2+ dt dx3

Taking the derivative of both sides of these equations, we get

ooy oo (LE AL LE Lt di
S \dr* dxX  drd dX? dr

di\2 d’% d°t di\3 d*t dx
b (3(Ey LR L 4Ry A AR
dt dr? dx3 dt/ dx* dt
_d'x dt d’% dx d2t+ d’x d’% d*t
~dt* dx dr3 dt di? dr2 dr? dx?
di\2 d’% d’t  dx\4 dMt
o) e ()
dt/ dr> di3
If we take the derivative k times with respect to ¢ and collect the similar terms after

each differentiation as shown above, eventually we arrive at an expression of the
form

21 0= d*2%  dt
- dikt? i
, . d*x dkx dx dt d°t dk+1
+ ( terms involving T Ik g dE di T g
(d)? >k+2 d* 2t

dt Cdikt?

From (19) we know that

(22)

dk+1l

WL:Q = (k+ D!y,

dk+2 t

d)ZT"'Z{[:() = (k+2)! bi4a.
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~ dk—HjC“ dk“i

Then we look at ad d

dt =0’ """ W =0 an By (7) and (18),

2w =0

=
|

1
B (atm a1t a4 0(rm+’<+2)) /m
a

1/m

a a

= t(l + dmtl, + Am+2 2 I L R L S R (tk+2)>
a a a a

1 a a
=t{1+_[am+1t+wt S L m+k+1tk+1+0(tk+2):|
a a a a

2

Am+1 am+2 Am+k Am+k+1

[ P R kg T t"“+0(z"+2)]
a

a a a

e ACRICE

k+1
a 1 am+42 Am+k Am+k+1
[ m+ t+m—+t 4ot m- tk+ m—+k+ tk+l+0(tk+2):|
a a a

+0 (tk+2) }

After collecting similar terms, we can write

Am+k+1

(23) f=t+)»2t2+k3t3+...+)\k+1tk+1+< o

+ )»k+2)l‘k+2 + 0",
where

e A is a constant involving m, a, and a1,

e A3 is a constant involving m, a, da,;+1 and a2,

e Ak+1 1S a constant involving m, a, apm+1, - - ., Qutk—1, Am+k, and
e Ag42 is a constant involving m, a, ay+1, - . ., Qmtk—1, Am+k-
By the inductive hypothesis, Ao, A3, ..., Ag+1, Ar42 are all constants that only

depend on m, n, and the function f.
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From (23), we obtain

dx
E |t:0 =1,
d’x
gz im0 =22
(24)

dk+l)z

WL:O = (k+ D!Ag41,

a2z Am-+k+1
il = R+ (P ).
Now we evaluate (21) at ¢t = 0 and make use of (22) and (24):
0=+ 2! (455 1
ma
+ (terms involving by, ..., bgs1, Ao, ..., Ak+1) +1-(k+2)! biyo.
Thus we obtain

am
(25) by = — 2 L o,
ma

where Q is a constant depending on by, ..., bgt1, A2, ..., Ag+1, Ak+2, and hence
Q is completely determined by m, n, and f.
Next we will analyze a,,4¢+1. From (19) we have

" = FT(L 4 DX + -+ bt B+ b 7T+ 0 FE)T
=i { 1+ (m —n) (ba + - - + b1 75 + b ¥ + 0 (7))

m—n)y(m—n-—1)
2
m—ny(m—-—-n—1)...(m—n—k)
- (k+1)!
(boX + -+ + b B + by + O(J?Hz))k+1

(o + -+ b1 B + b+ OF ) 4

+ 0(5“2)}.

After collecting similar terms, we can express " as

M = jm_n{l + c],m—n-)Z + c2,m—n~)z2 +---+ ck,m—nik

+ ((m —n)biga + g tm—n) ¥ T+ O F D],
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where c1 ,—, is a constant depending on m and by; c2 ,,—, 1S @ constant depending

onm, by, and b3; . ..; ¢k m—n is a constant depending on m, by, . .., bri1; Ckt1,m—n
is a constant depending on m, by, . .., by41.
By the inductive hypothesis, ¢ m—n, C2.m—ns - - - » Ckom—n and Cky1 m—y, are all

determined only by m, n, and f. Thus we have

(26) fmen — gm—n +C1’m_nim—n+l +62’m_nim—n+2 4. +Ck,m—nim_n+k

+ (M = m)bgsn + Chpt ey )T L O (FMHEAD)

where ¢{ m—n, C2m=n> - - - » Ck,m—n and cxy1m—, are constants depending on m, n,
and f.

By the same type of analysis we obtain similar expressions for the other powers
of t:

(27) tm—n+1 — im—n—',—l —n+2 m—n—+3 4.

o .
+Clm—n+1X +C2m—n+1X

em—nk+1 ~m—n+k+2
+ Cloment1 X" (m =+ Db + crgrmon 1) X" HTE

+ 0(£m7ﬂ+k+3)

where €1 m—n+1, C2.m—n+1s - - - » Ck.m—n+1, a0d Cky1.m—n+1 are constants depending
onm,n,and f.

(28) tm—n+2 — im—n+2 —n+3 m—n+4 4.

- -
+ Clm—n+2X + C2,m—n+2X

~m—n+k+2 + (

+ Ckom—nyaX ~m—n—+k+3

(m —n+2)brys + Ck+1,m—n+2)x
4 O(Xm—n+k+4)

where ¢1 m—n+2, C2.m—n+2 - - - » Ckom—n+2 and Cxy1 m—n+2 are constants depending
on m, n, and f. Proceeding inductively,

m—n+k ~m—n+k ~m—n+k+1 ~m—n+k+2
(29) 1t =X + Clm—n+kX + C2m—n+kX +-
+ Clmen kX" 4 (= 1+ K)bign + Copt monsk ) X7 T
4 O(im_n+2k+2)
Where ¢1 m—n+tks C2.m—n—+ks - - - » Ckom—n+k and Cx41 m—n+k are constants depending

onm,n,and f.

(30) tm7n+k+1 — £m7n+k+l +C1,m—n+k+l£min+k+2

~m—n-+k+3 ~m—n—+2k+1
+ C2m—ntk+1% + -+ Chom—ntktr1X

+ (m = n 4k + Dbz + oyt monpign) "I L 0 S

where ¢1 m—ntk+1s - - - Ck.m—n+k+1 and Cx41,m—n+k+1 are constants depending on
m,n,and f.

(31) tm—n+k+2 — O(Xm—n-i-k-i-Z).
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From (18) we obtain

u =amm—1)...(m —n+Dt" " +au(m+Dm ... (m—n42)m "
+ordamrm A+ m+k—1) ... (m—n+k+ D" "k
+amkp1(m+k+1D)m+k) ... (m—n—+k+2)m L omontht2y

Then by (26) to (31), we can write

u™ =am(m—1)...(m—n+ 1){2’"‘” + Clmn X" T ey FTE
+ Clmn X" (= )bpsa + Chr ) F" T 4 0()2’”‘”+k+2)}

+apm+1m...(m—n+ 2){)Em_”+l + cl,m—n+1im_n+2

m—n+3 m—n+k+1

+C2m—n+1X + ot Chom—nt+1X

+ ((m —n+ )b+ Ck+1,m—n+1))?m_”+k+2 + 0()2’”_”+k+3)} 4.

+am+k(m+k)(H1+k—1)...(m+k_n+1){im—n+k

~m—n+k+1

~m—n+k+2
+ Clm—nakX menth+2 4

+ C2.m—n+kX

otk cm—n+2k+1
+ Cmon kX" A (= 1+ B bis + et monti) X

+0 (im—n+2k+2) }

+amkr1m+k+1D)(m+k)...(m+k—n +2){55m—n+k+1
Tt Clmen k1 X TR o e ETRS

+ Ck,m7n+k+1im_n+2k+l

+ ((m —n 4k + Dbjya + gt s 1) X724 0()2'"—"““3)}

+ o (im—n—i-k—i-Z)

=am(@m—1)---(m—n+DF""+C(m,a, ams1, c1m—n) """
+C(m, a, Gms1, A2, Clm—nt1, Com—n) X" "2 4
+ C(m, A, Am+1s - -+ Am+k> Ck,m—n> Ck—l,m—n+15 - -+ > cl,m—n+k—1)£m_n+k
+ (am(m 1) (m—n)brsn
+amipim+k+D(m+k)...(m+k—n+2)
+ C(m, A, A1y -« s Antks Chk+1,m—ns Chom—n+1s « -« » Cl,m7n+k)>im_n+k+1

+ 0(5m7n+k+2)‘
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Here C(m, a, am+1, ¢1,m—n) is a constant depending on m, a, a,,+1, and ¢y ;y—n; We
denote it as py,—,+1 to simplify notations. Since a, a,,+1, and ¢ ,,—, only depend
on m, n, and f, we know that p,,_,+1 only depends on m, n, and f.

Similarly, the other constants C(m, a, Am+1s Am42, Clim—n+1, cz,m_n), ...,and
C(Wl, a,Am41y -+« Amtks Ck+1,m—n> Ck,m—n+1s -+ +» Cl,m—n—i—k) all depend on m,n,
and f only, and can be denoted simply as py—n42, .-, Pm—n+k> a0d Pp—_piit1-

Thus we can rewrite the above equation as

(32) u =amm—1)...(m—n—+DF" "+ pp_p &

~m—n—+2 ~n—
+pm7n+2xm n-+ +"'+pm7n+kxm n+k

+ (am(m —1D...(m—n)bryo
et (MAKADMAK) - (AR =nA2) i piegr)E

+ O(im_n+k+2).

Now because of u™ = f(u) and definition (7) , we have

u>(m—n/'ﬂ) u)(m—n+l/m)

f@ =amm=1)...0n—n+1( + Pt (

a
u )(mfnJrk)/m

a
u\(m—n+2)/m
+ pm—n+2<;> +---+ pnz—n—i—k(
+ (am@m —1)...(m —n)brsa
4+ amik1m+k+1D)(m+k) - (m+k—n—+2)
u)(m7n+k+1)/m

+ pm—n+k+1) (;

a

+ 9] (u(m—n+k+2)/m)‘

Due to (25), we can rewrite this equation as

u)(m—n)/m u>(m—n—|—l)/m

(33) S =amm—1)...m—n+1)( +pm7n+1(5
u)(m—n-i-k)/m

a
u\(m—n+2)/m
+ pm7n+2<a) +---+ pmfnJrk(

+ {((m+k+1)(m+k) . .. (m+k—n—+2)

—(m—-1)(m=2)... (m—n))am+k+1

a

u\(m—n+k+1)/m
+am(m—1)...(m—n)Q+pm—_nii+1 } <E>

+ O(M(m_n+k+2)/m).
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From (33) we get

(m+k+Dm+k)...(m+k—n+2)—(m—1)(m—=2)...(m—n))ami+1
+am(m — 1) (m_n)Q+p1n7n+k+l

u\ m u\ 2ot \ otk
f(u)_am ) (m_n+1)(_) —Pm—n+1 <_) - ‘_Pm—n+k(—)
a a a

= lim m—n+k+1
n

u—0 u
(2)
Note that m+k+1)(m+k)...(Im+k—n+2)—(m—1)(m—-2)...(m—n) #0;
then since the constants Q, a, pjm—n+1, - - - » Pm—n+k+1 all depend only on m, n,
and f, we know that a,, ;4 only depends on m, n, and f. Consequently, by
also only depends on m, n, and f because of (25).

Therefore, by mathematical induction, all derivatives of f at 0 are determined
completely by m, n, and f. This completes the proof of Lemma 1.3.

3. The proofs of Theorems 1.2, 1.4 and 1.5

Proof of Theorem 1.2. Suppose there are two solutions u(¢) and v(¢), both satisfying
Equations (3) and (4). By Lemma 1.3, at t = 0, # and v have the same derivative of
any order. Let w = u — v; then

w®(0)=0 for any integer k > 0.
In order to apply Theorem 1.1, we need to show that w satisfies Condition (2).
w (@) =u™ (@) =" (1) = fu@®) - FO@©).
Without loss of generality, we assume a > 0. By Equation (10), we can write
(34) f(u) = [a"/'”m(m —1)...(m—n+ LHutm—m/m +a(u)]

and
f) =[a""mm—1)...(m—n+ D" " +av)],

where « is a function with the order
a(s) = O(stmthimy,
So we can write
35 w™ @) =a"""mm-1)...(m—n+1) """ —p "M 4 () —a(v)).

If m = n, then

a""mm =1y ... (m—n—+ D@m/m _ym=mimy —
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If m > n, by the mean value theorem,

m

(36) |u(m7n)/m . v(mfn)/m| < — né.fn/mw —vl,

where ¢(¢) is between u(r) and v(¢). Since u(t) = at™ + O ") and v(r) =
at™ + O (t"*1), we know that (1) = at™ 4+ O (t"+1), which implies

é.n/m — an/mtn(l + O(t)) > Ci"

for some constant C > 0 when ¢ is sufficiently small. Thus

—n/ N _1|M_v|
MMy —v| < C e
and by (36), we know that
lu —v|
t}’l

(37) an/mm(m -D...(m—n+ l)lu(m—n)/m _ U(m—n)/m' <C

for another constant C > 0.

Next, we estimate |a (1) — o (v)].

From (3), we know that f is differentiable with respect to ¢, since u™ (¢) is
differentiable with respect to ¢. Condition (4) shows that (du/dt)(¢t) #0 when ¢t > 0
is sufficiently small. Then by the inverse function theorem, 7 is differentiable with
respect to u. Thus, when u is small and positive, f is differentiable with respect to

d
wan df _df di
du dt du’

Then by (34), since f is differentiable on a small interval (0, §), « is also differen-
tiable on a small interval (0, §). By the mean value theorem,

a@) —a) =o' () —v),

where 7(r) is between u(¢) and v(¢). Because u(r) = at™ + O (t"+") and v(¢) =
at™ + 0 (t™*), we know that n(¢t) = at”™ + O(t"+') > Ct" when ¢ is small, and

thus
n—(n—l)/m — 0([_(n_1)).

From a/(s) = O (s +D/my we get o/ (s) = O (s~ =D/m)_Therefore
o« (=00 "M =0a""""D).
Thus for some C > 0,

(38) la(u) —a(v)| < Ct~ "Dy — |

<Ct™Mu—v| since 0<r<l.
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Combining Equations (35), (37), and (38), we conclude

@ —v@l _ w®O
" "

lw™ ()| < C

Finally, extend the domain of w(¢) to [—1, 1] by defining w(#) = w(—t) when
—1 <t <0. Then w € C*°([—1, 1]) and it satisfies Condition (2). By Theorem 1.1,
w = 0, which means u = v.

This completes the proof of Theorem 1.2. (]

Proof of Theorem 1.4. Without loss of generality we assume a > 0. We apply the
same analysis as in the proof of Lemma 1.3 to u; and u,, respectively. Similar to
(11), we have

n/m _ S )
a = lim =
=0 m(m — D...(m—n+u,
—1 f(s)
= lim
s>0m(m—1)...(m—n+1)sm—n)/m
and
bn/l — lim f(u2) . £(s)

= lim .
w01 — 1) (—n+Duy " =0l =1 =n A+ DN

Suppose m # [; without loss of generality we assume m < [. Dividing the two
equations, we get
ampnll IA=1)...0—n+1) lim 5=/ 1=n=n)/m
mm—1)...(m—n+1) s—0
_ II-1D...0d—n+1) ——
mm—1)...im—n+1) s—0

Since m <1, limg_, o s/ "/ = (. However, a”/™b—"/! # 0. This is a contradiction.
Therefore m = [, and consequently a = b. Then by Theorem 1.2, we know that
u; = u, for small 7. O

Proof of Theorem 1.5. The proof of Lemma 1.3 shows that near 0, ¢ is a function
of u, and therefore u™(¢) can be expressed as a function f of u. Thus (3) holds
when ¢ > 0 is small. From Condition (4), we define f(0) = 0.

By the first two equations in (10) and the discussions in the Appendix, we know
that there is a function 4 that is C' on the closed interval [0, €] for some € > 0,

such that
fw)y=amm—1)...(m —n+DX""+h@)x"".

By definition (7), we have
B9 fw)y=amm—1)...(m—n+ 1)<u)(m—n)/m+h(<z>l/m> <Z>(m—n)/m.

a a a
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Since 0 < (m —n)/m < 1and 0 < 1/m < 1, it is well known that x"~"/™ and
ul/™ are Holder continuous on the closed interval [0, 1] with Holder coefficients
(m —n)/m and 1/m, respectively. This implies that the first term in (39) is Holder
continuous on [0, 1].

Since & is C! on [0, €], it is also Holder continuous on [0, €]. Then since the
composition of two Holder continuous functions is Hélder continuous, we know
that 2((u/a)'/™) is Holder continuous with respect to u on a closed interval [0, §]
with § > 0. Next, because the product of two Holder continuous functions is also
Holder continuous, we know that 2((u/a)'/™) - (u/a)™ /™ is Holder continuous.
Thus the second term in (39) is Holder continuous on [0, §].

Therefore, f is Holder continuous on [0, 6] and the theorem is proved. |

Appendix: Differentiation of the Taylor expansion

We will discuss the regularity of the remainder term in the Taylor expansion of
a function that is used in the proof of Theorem 1.5 and the differentiation of the
Taylor expansion that is frequently used in the proof of Lemma 1.3.

In general, consider a function g(x) € CH1([a, b)); by the Taylor theorem, we
can write

40) g()=g@) +g' (@ —a)

" (k)
+E0 w4+ a0 e —a),
where lim A (x) = 0. An explicit expression for A(x) is
(k+1)
g @)
41) h(x) = G D! —(x—a),

where a < & < x.

From (40) we know that 4(x) is C! on (a, b]. Next we show that it is actually
C' up to the boundary, on [a, b].

Taking the derivative on both sides of (40), we get

42) g =g@+g"@x-a)+--

(k)
gv@ 1, Nk k=1
ko 1)!(x a) T +h ) —a) +kh(x)(x —a) .
Define h(a) =0, so h is continuous on [a, b]. Write
1 (k)
P(x)= mm+ngx—m+g;)u a4t ()(— a)*;

g(x) —Px)

then h(x) = Y

. By the definition of limits,
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poy g h)—h(a) . g(x) — P(x)
43) h(a)—}g}l x—a _)}1—9}1 (x —a)kt+l

B g(k-i-l)(a) - P(k'H)(a)

applying I’Hospital’s rule k£ + 1 times

(k+1)!
g(k+1)(a)
T D
where we have used the fact that P*+D () =0,
When x > a,
oo d g(0) = P()
W) = dx( (x —a)k )
() =P ) (x —a)f = (g(x) = P(x)k(x —a)*!
- (x —a)*
_ 8@ =P k(gkx)=—PX)
T (x—a)f (x —a)kt!

By repeatedly applying 1’Hospital’s rule, we know that

i EO =P’ @ - P @) g @)
1 = =

xsa (x—a)k k! k!
and
i k(g(x) — P(x)) _ k(g(k+1)(a) _ P(kH)(a)) _ kg("“)(a).
x—a  (x —a)kt! (k+1)! (k+1)!
Therefore
k41 k+1 k41

Equations (43) and (44) show that h(x) is C ! on the closed interval [a, b].
Furthermore, we know that for any x € [a, b], |h'(x)| < C for some constant Cy,
and thus
1 () (x —a)*| < Cilx —al*.

Since g(x) € C**1([a, b]), from (41) we know that |1 (x)| < C»|x — a| for some
constant C,, and thus

|kh(x)(x — @)~ < kCalx —al”.
Therefore, (42) can be written as

W (a)

= 1)‘(x —a)F '+ 0k —a)k.

45 dW=g@+g'@x-a)+---+
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Since the first, second, . . ., and (k— 1)-th derivatives of g’(x) at a are g"(a), g¥ (a),
..., and g® (a), respectively, Equation (45) is the Taylor expansion of g’(x) at a
to order k — 1.

Usually we write (40) as

46) g(x)=g(a)+g'(@)(x —a)

1 (k)
8D G+ Gt b o -,

2! k!
This shows that we can formally differentiate (46) to get (45).
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AN ANALOGUE TO THE WITT IDENTITY

G. A.T.F. DA COSTA AND G. A. ZIMMERMANN

We solve combinatorial and algebraic problems associated with a multi-
variate identity first considered by Sherman, which he called an analog to
the Witt identity. We extend previous results obtained for the univariate case.

1. Introduction

S. Sherman [1962] considered the formal identity in the indeterminates z1, ..., z,,
R
(1-1) [T a+z"o¥a—zn- oM =T]d +2)%
mi,...,mgr=>0 j=1

where N and N_ are the number of distinct classes of equivalence of nonperiodic
closed paths with positive and negative signs, respectively, which traverse without
backtracking m; times edge i, i = 1,..., R, of a graph Gg with R > 1 edges
forming loops counterclockwise oriented and hooked to a single vertex, > m; > 1.

Sherman [1962] refers to (1-1) as an analog to the Witt identity. The reason
will become clear soon. The Sherman identity, as we call it, is a special nontrivial
case of another identity called the Feynman identity, first conjectured by Richard
Feynman. This identity relates the Euler polynomial of a graph to a formal product
over the classes of equivalence of closed nonperiodic paths with no backtracking in
the graph, and it is an important ingredient in a combinatorial formulation of the
Ising model in two dimensions, much studied in physics. The Feynman identity was
proved for planar and toroidal graphs by Sherman [1960], and in great generality
by M. Loebl [2004] and D. Cimasoni [2010].

Sherman compared (1-1) with the multivariate Witt identity [Witt 1937]:

R
(1-2) l_[ (1= pryftomme) — Zz,',
mi,..., mr=>0 i=l1
wn(g) (N/g)!
mg) = Z

(1-3)  M(my, ...,
g (N/g)mi/g)---(mg/g)!

MSC2010: primary 05C30; secondary 05C25, 05C38.
Keywords: Sherman identity, paths counting, (generalized) Witt formula, free Lie algebras.
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where N =m| +---+mpg > 0, u is the Mobius function defined by the rules
(@) p(+1) =+1,
(b) u(g) =0, for g = pf‘ . --p,?", P1s - .-, Dg Primes, and any e; > 1,
(©) n(pr---pg) =(=D7.

The summation runs over all the common divisors of m1, ..., mg.

Originally, the Witt identity appeared associated with Lie algebras. In this
context the formula gives the dimensions of the homogeneous subspaces of a finitely
generated free Lie algebra L. If L(m, ..., mpg) is the subspace of L generated
by all homogeneous elements of multidegree (mi,...,mg), then dim L = J.
However, formula (1-3) has many applications in combinatorics as well [Moree
2005]. Especially relevant is that Jl can be interpreted as the number of equivalence
classes of closed nonperiodic paths which traverse counterclockwise the edges of
G g, the same graph associated to the Sherman identity (1-1). This property is stated
in [Sherman 1962] without a proof, but this combinatorial interpretation of the Witt
formula can be reinterpreted as a coloring problem of a necklace with N beads with
colors chosen out of a set of R colors such that the colored beads form a nonperiodic
configuration. In other words, M (m 1, ..., mg) is the number of nonperiodic colored
necklaces composed of m; occurrences of the colori,i =1,..., R.

Sherman [1962] called attention to this association of identities (1-1) and (1-2)
to paths in the same graph, which motivated him to consider the problem of finding
a relation between (1-1) and Lie algebras. To interpret (1-1) in algebraic terms
means to relate the exponents Ny to some Lie algebraic data.

An investigation of Sherman’s problem was initiated in [da Costa 1997; da Costa
and Variane 2005] and a solution obtained for the univariate case of identity (1-1).
In the present paper we solve the problem in the multivariate formal case, which
requires important improvements. The counting method developed in [da Costa
1997; da Costa and Variane 2005] is based on a sign formula for a path given in
terms of data encoded in the word representation for the path. It played a crucial
role in getting formulas for N1 in the univariate case. However, the counting
method based on this sign formula is complicated. In the present paper we make
improvements in the counting method in order to apply it to the multivariate case
without depending too much on the sign formula. The formula is used here only to
prove a simple lemma.

S-J. Kang and M-H. Kim [1999] derived dimension formulas for the homoge-
neous spaces of general free graded Lie algebras. We use some of their results
to solve Sherman’s problem. At the same time our results give a combinatorial
realization for some of theirs in terms of paths in a graph.

The paper is organized as follows. In Section 2, we recall the word representation
of a path and some basic definitions. We prove a basic lemma about the distribution
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of signs in the set of words of a given length. In Section 3, we compute formulas
for the number of equivalence classes of closed nonperiodic paths of given length.
The first of these generalizes Witt’s formula in the sense that it counts paths that
traverse the edges of the graph without backtracking. The other formulas give the
exponents in Sherman’s identity (1-1). We also interpret these formulas in terms of
a coloring problem. Sherman’s problem, that is, to give an algebraic meaning to
the exponents in (1-1) is solved in Section 4.

2. Preliminaries

A path in G is an ordered sequence of the edges which does not necessarily respect
their orientation. A path is closed and subjected to the constraint that it never goes
immediately backwards over a previous edge.

Given G, C Gg, denote by ij, ..., i, an enumeration of the edges of G, in
increasing order. A closed path of length N > r in G, is best represented by a word
of the form

€j €j €j
-1 Djll Djz2 o Djll

where [ =r,r+1,..., N, jr €{i1,...,ir}, Jx & Jje+1,> Ji 7 J1, and

[
D leil=N.
k=1

All edges of G, are traversed by a path such that each i; appears at least once in
the sequence S; = (ji1, ja2, ..., ji). The order in which the symbols D;j appear in
the word indicates the edges traversed by p and in which order. If the sign of ¢; is
positive, the path traverses edge j exactly e; times following the edge’s orientation;
if negative, it traverses the edge |e;| times in the opposite direction.

A word is called periodic if it equals
61‘]

€jr . Cia\g
(Djl Djz Dja )

for some g > 1. The number g is called the period of the word if the word in
parentheses is nonperiodic.

Permuting the symbols D;’ in (2-1) cyclically, one gets / words that represent
the same closed path. (For example, DI_ZD;r lDfrlD;r disa cyclic permutation of
D; ! Dle D, 3Dl_z.) Words obtained from one another by a cyclic permutation are
taken to be equivalent for this reason. Although the word (2-1) and its inverse

e e
D, ”"'Djl "

also represent the same path, they are not taken as equivalent here. This is the
reason for the exponent 2 on the right side of (1-1), also present in [Sherman 1962].
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In Section 3 we consider signed paths. The sign of a path is given by the formula
(2-2) sign(p) = (=1)'P),

where n(p) is the number of integral revolutions of the tangent vector of p. From
this definition it follows that if p = (k)% is a periodic path with odd period g, then
sign(p) = sign(h). If g is even, sign(p) = —1. The sign of a path can be computed
from its word representation (2-1) using the formula [da Costa and Variane 2005]

(2_3) (_1)N+I+T+S+1

where T is the number of subsequences in the decomposition of S; into subse-
quences (see [da Costa and Variane 2005] for the definition and an example of a
decomposition) and s is the number of negative exponents in (2-1). It follows from
the previous sign formulas that periodic words with even period have negative sign.

The following lemma is important in the proof of several results in Section 3. It
was assumed in [da Costa 1997; da Costa and Variane 2005] without a proof.

Lemma 2.1. Given G, C Gg, consider all paths that traverse each edge of G, at
least once (no backtracking allowed) and the set of all representative words (periodic
or not, cyclic permutations and inversions included) of fixed length N >r > 1. Then
half of the words have positive sign and the other half have negative sign.

Proof. 1t suffices to consider the subset of words associated to a fixed sequence
S = (Jj1, j2, - - ., ji). For this sequence the numbers N, [, and T are fixed. The
words with these numbers have signs which depend only on s € {0, 1,2, ...,1}.
For N 4+ 1+ T even, the sign of a word is (—=1)**1. If [ = 2k, then, for each odd

lue of s, th
value of s, there are ok
s

words with positive sign. Summing over the odd values of s, we get the total number
of 221 words with positive sign. Summing over the even values of s, we get the
same number of words with negative sign. If [ = 2k 4 1, a similar counting gives
22k words with positive (negative) signs. The case N 41 + T odd is analogous. [J

3. Counting paths in G,

Fix a subgraph G, C Gg. Given distinct edges i1, ..., i, in G, and positive integers
mi,...,m;,withm; +---+m; =N >r,let 0L(m;,, ..., m; ) be the number
of equivalence classes of closed nonperiodic paths of length N with + signs that
traverse each edge i; exactly mi, times, for j =1, ..., r, with no backtracking,
and traverse the edges in G g\ G, zero times. In this section we derive formulas for
6 := 0, +6_ and 6.. Notice that 6, is just another name for the exponents N in
(1-1) showing only the nonzero entries in N4.
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Firstly, we compute 6. In the case r = 1, a path with m; > 1 is periodic. The
nonperiodic ones are two, the path with length N = 1 and its inversion so that
O(m;) =01if m; > 1 and 6(m;) =2 if m; = 1. In other cases, 6 is given as follows.

Theorem 3.1. Forr =2, define

M/
(3-1) g Min iy :Zg& mi /g —1Y\( m,/g—1
g 8 — a \ a-1 a—1 )

where M = min{m; , m;,} and, if r > 3,

(3-2) @(’" ’") Z”‘zn(’"@ )

8 a=r {S4} c=1

where {S,} is the set of sequences (ji, ..., jo) such that j, € {iy,...,i,} and
Jk 7 Jk+1, Ja 7 J1. Number t;, counts how many times edge i, occurs in a sequence
S,. Use is made of the convention that the combination symbol in (3-2) is zero
whenever t;, > m;. /g. Then

(3-3) Omi,....m)= Y w@(’ﬂ’")
glmiy iy, S & §

The summation is over all the common divisors g of m;,, ..., m; , and u(g) is the
Mobius function.
Proof. The number (I, m;,, ..., m; ) of words that have the same values of
mi,...,m; andl e{r,r+1,..., N}1is given by

K, mi, ... m )_2121_[ Mie

’ Ips = - Iy {S (‘ _ 1
, :

Let’s explain this formula a bit. The number ;. counts the number of occurrences of
edge i. in a sequence S; = (J1, . . ., ji). The combination symbol counts the number
of unrestricted partitions of m;, into n;, nonzero positive parts [Andrews 1976];
thus the product times 2/ (there are 2/ ways of assigning =+ signs to the exponents in
(2-1)) gives the total number of words representing paths traversing each edge i; of
G, € Gp exactly m;; times in all possible ways. Then we sum over all sequences
S; with the convention that a combination symbol equals zero when m < n.

In the set of H(I, m;,, ..., m; ) words, there is the subset of nonperiodic words
plus their cyclic permutations and inversions, and the subset of periodic words,
if any, whose periods are the common divisors of /, m;,, ..., m; plus their cyclic
permutations and inversions. Denote by 3 (I, m;,, ..., m; ) the number of elements




480 G. A. T. F. DA COSTA AND G. A. ZIMMERMANN

in the former set. The words with period g are of the form
(D' Dy - D)
where o =1/g and D, kl Dek2 o DZ" is nonperiodic so that the number of periodic

words with period g plus thelr cyclic permutations and inversions is given by
Hd/g,mi /g, ..., m;/g). Therefore,

Hlomiysoooom)= 3 35(2 e m?)

gll,k,mil seens My

The summation is over all the common divisors g of [, m;,, ..., m;,.

r

Applying the Md6bius inversion formula [Apostol 1976], it follows that

[ m; m;
(3-4) Hd,my,....m;) = ( )37{( — ,#>
1 Z Mng g g g

where p is the Mobius function. To eliminate cyclic permutations divide (3-4) by
[. Summing over all possible values of / one gets

N

3{(1, mi ., ..., mir)

(3—5) G(mil,...,mir): E ll .
I=r

Upon substitution of (3-4) into (3-5) one gets, for the case r > 3,

N
O(miy, ... ,mi) =y > w@2E Y 1_[(,:://5:11 )

I=r  gldmi,...mj.) {Si/¢}

~| —

Proceed now as follows. For a given common divisor g of m;,, ..., m;,, sum over
all values of / which are multiples of g. Then sum over all possible divisors of
mi,,...,m; . Writel =ag,andn=tg. If r >3, onehasr/g <a < N/g, but, unless
g =1, it is not admissible to have a < r, because all r edges of the graph should
be traversed. For this reason, r <a < N/g. Result (3-2) follows. If r =2, [ is even
and, for each /, only sequences of the form (i1, iz, ..., i1, i2) with n;, =n;, =1/2
are possible. Put/ =2a,a=1,2,..., M = min{m, m,} to get (3-1). U

Example 1. From (3-1), we have
FA,H)=%1,2)=F2,1)=%1,3)=%3,1)=4
F2,2)=12,
F(1,4H)=%4,1)=%1,5=%G5,1)=4
F2,3)=%@3,2) =
F2,4)=%4,2)=28
%(3,3)=172/3.
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From (3-3),
0(1,1)=6(1,2)=62,1)=06(1,3)
=603,1)=0(1,4)=04,1)=0(1,5=6(,1) =4,
0(2,2) =10, 62,3)=6(3,2)=20, 06(3,3)=>56.
Example 2. From (3-2),

F(1,1,1) =16,

F(1,1,2) =%(1,2,1) =%, 1,1) =32,

F(1,2,2) =%(2,1,2) =%(2,2,1) =112,

F(1,1,3) =%(1,3,1) =%3,1,1) =48,

F(1,1,4)=%(1,4,1)=F4,1,1) = 64,

F(1,2,3)=%(3,1,2) =F2,3, ) =%3,2,1) =%(1,3,2) = F(2, 1, 3) =256,
%(2,2,2) = 1056.

From (3-3),

0(1,1,1) =16,

0(1,1,2)=62,1,1)=06(1,2,1) =32,

0(1,2,2)=6(2,1,2)=60(2,2,1) =112,

0(1,1,3)=6(3,1,1)=6(1, 3, 1) =48,

0(1,1,4)=60(4,1,1)=06(1,4,1) = 64,

0(1,2,3)=63,1,2)=060(2,3,1)=603,2,1)=6(,3,2) =0(2, 1, 3) =256,

0(2,2,2)=1048.
Remark. (a) Notice that 6, and likewise the Witt formula, is given in terms of
the Mobius function. However, formula (3-3) counts closed nonperiodic paths
traversing the edges of G in all directions (without backtracking) and, in that

sense, generalizes the Witt formula. Also, our formula has an algebraic meaning of
a dimension. See Section 4.

(b) If m;,, ..., m; arecoprime, & = 6. Otherwise, % can be rational. For instance,
#@3,3)=172/3. But ¥ := N&, N =m;, +---+m; , is always a positive integer
which counts the number of words of length N. For example, in the case N = 4,
m1 =my =2, F =48. The words are

2 A2 —1 A+l e+l ] +1 =1+l ] —1 =1+l +l1
DDy, D, D, Dy D, , D D, Dy D,, D D, Dy D,
Dl_lD;lD]“Dz_l, DI_IDZ_IDI_ID;”, D1—1D2—1D1+1D2—1,
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plus four cyclic permutations for each of them, and the four periodic words
(DfEIDécl)2 plus two cyclic permutations for each.
In terms of &/,

1 mi mi,
Omiy....omi) =~ ) M(g)9/<?‘,---, )

8

Although the Mobius function is negative for some divisors g, the right hand side is
nevertheless always a positive number because ¥'(m;, /g, ..., m; /g) counts words
in a subset of the words counted by & (m;,, ..., m;).

(c) Given a circular necklace with N beads, consider the problem of counting
inequivalent nonperiodic colorings of these beads with 2r colors {c;, ¢;}, i =
1, ..., r, with m; occurrences of the index i, N = >_ m;, with the restriction that
no two colors ¢; and ¢; (same index) occur adjacent in a coloring. Now, consider an
oriented graph with r loops hooked to a single vertex. Each loop edge corresponds
to a color ¢;. A nonperiodic closed nonbacktracking path of length N in the graph
corresponds to a coloring, and a color ¢; corresponds to an edge being traversed in
the opposite orientation. The presence of a single vertex in the graph reflects the
fact that adjacent to a bead with, say, color c¢;, any other with distinct index may
follow. The number of inequivalent colorings is given by 6.

As a basic test of our counting ideas, we prove Sherman’s statement [1962]
relating the Witt formula to paths in Gg.

Proposition 3.2. Relative to graph G, formula (1-2) gives the number M of
equivalence classes of closed nonperiodic paths of length N > O that traverse each

edge i counterclockwise m; > 0 times (i =1,2, ..., R), where m; +---+mpg = N.
Proof. Denote by m;,,...,m; , r < R, the nonzero entries in M(m, ..., mg), which
we call M, (m;,, . .., m; ). Words representing counterclockwise paths have positive

exponents so that the factors 224 and 2 in formulas (3-1) and (3-2) are not needed.
Hence

(3-6) Mymiy o omi) =Y —“(g)%c(@,...,m"’>
glmi,,....mj, 8 8 §
where
M/g
] g (M M\ _ N~ L ma/g—=1\(mip/g—=1Y) .. _
GD ‘fc(g’ g >_X_:a< a—1 a—1 =2

with M = min{m;,, m;,}, and
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N/g
(3-8) %c<m‘1. m) Z Z]_[(m‘</g ) if >3

8 a=r {Sa} c=1

In the case r =2 suppose m;, < m;,. Using formula (A-3) from the Appendix (with
[ =2), it follows that

mi /g
3 1(mn/g—1><mi2/g—1> :i<mil/g+mi2/g—1)
—a a—1 a—1 mi, mi, /g

_ (N/g)!

— (N/)miy [)lmi /@)
Similarly if m;, <m;,. In the case r > 3 define

(3-9) I= ) @(ﬂm>

m; >0 8 8
mj +--+mj. =N

Upon substituting (3-8) into (3-9) and exchanging the summation symbols, we get

B3 D S (|

m; >0
n111+ +m1r N

Applying Lemma A.2,

N/g N/g
ZIZ N/g—1 Zl N/g—1
I'= a ( a—1 ): — 5( a—1 )rwr(a)
where

rw(a)—Z( ()G =D e

is the number of sequences in {S,} [da Costa and Variane 2005]. Using that

SHLZE g
Za( o )(j—1>“=ﬁ<j £ —1)

and
N/g
N/g at+r __ r+l£
;a< o )( D= (=S
we get
) _8 - iy T )N/
(3-10) 1= 2D (j)] .

j=1
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The Stirling numbers S(N /g, r) of the second kind are given by [Chen and Koh
1992]

r r
N _l k(T N/g_l r+i( 7 \:N/g

G0 s(Ror) = 50 (L)oo =53 ())

k=0 j=0
so that
(3-12) 1=r!§S(ﬁ,r).

N \g

Stirling numbers have the property that

(N/g)! _ (N
(3-13) 2 (mi,/8)! - (mi, /) _F!S<?r>'

Comparing relations (3-12), (3-13), and (3-9),
i i N/g)!

(3-14) %(ﬂ,...,m*):ﬁ (N/g) .
8 8 N (my/g)!---(m,/g)!

Upon substitution of (3-14) into (3-6), the result follows.
In the following we compute formulas for 6 and 6_.

Theorem 3.3. Suppose any of the following conditions is satisfied:

@ N=m;,+---+m; <2r.

(b) mj,, ..., m; are coprime.

(c) mj,, ..., m; are neither all odd nor all even.

(d) mj,,...,m; are all odd.
Then

(3-15) 0_(mj,,...,m;)=04(m;,...,m;).
Proof. The proof is similar to that of [da Costa 1997, Theorem 1] and uses
Lemma 2.1. O
Theorem 3.4. The number 6, (m;,, ..., m; ) is given by
(3-16) Orlmiy, o omi)= Y @%ﬁm)
odd glm,l ..... mj, 8 8 8

where the summation is over all the common odd divisors of m;,, ..., m; , and
G =F/2with F as in (3-1) and (3-2). If m;,, ..., m; are all even numbers, then

m,-, m,-r
(3-17) 0_(7’}’1,'1, ey mir) = 9+(mi1, ey mir) —94_(7, ey 7)
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Proof. First, suppose that all common divisors of m;,, ..., m;, are odd numbers. In
this case,

wu(g) [ mi mi,
Omy.om)= Y T%(?g>

oddg\mi1 AW TH

Since 6 =60, +6_ and 6, = 6_ (Theorem 3.3) it follows that 6 = 26, hence

(3-18) o.=1 Y @%(ﬁm—)
oddglm,-l ..... m 8 8 8
If the numbers m;,, ..., m;, are all even, 6, is again given by (3-18) because, in this

case, the m;’s have common divisors which are even numbers, but since periodic
words with even period have negative sign, only the odd divisors are relevant to
getting 6. The reason one should have the factor % is that, by Lemma 2.1, when
one considers the set of all possible words representing paths of a given length
which traverse the edges of G, m;,, ..., m; times, half of them have positive sign
and the other half have negative sign. To account for the positive half, one needs
the factor % Let’s now compute 6_ in the even case. Write

S NI TR P

oddg\m,l ..... m;,. 8 even g|m;, m;, 8
1 n(g . n(g) n(g)
-l Y M5y 3 M0y, 3 MO
odd glm;,..., mj, 8 oddglmi,,..., mi, eveng\mil,.‘.,;n,,
—20, 4y EE &) g

evenglm,-l ..... m;, 8

Now the relevant even divisors are {2n} where n are the odd common divisors of
{m;}. For the other possible divisors, if any, use that (2/n) =0, j > 2. Using the
equality p(2n) = —u(n), we see that the summation over the even divisors is equal
to —6 (m,-l/2, ey m,-r/2), proving the result. Il

Remark. Like 6, the numbers 61 can be interpreted as the number of inequivalent
nonperiodic colorings of a circular necklace with N beads. However, now these
colorings are classified as positive or negative according to formula (2-3). It is
positive (negative) if the number N + [+ T + s is odd (even). In this case, s is the
number ¢ of colors present in a coloring. Interpret T in terms of the color indices.
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Definition. Let s, ..., s, be arbitrary positive integers. Let the number % be
defined as follows. If 51, ..., s, are all even numbers,
s s
(3-19) Plstoeis)= . @a@(—l,...,—’),
even g|sy,...,. Sy 8 8 8
otherwise, P(s1, ..., s,) = 0. Also, define

(3-20)  F(s1,...,S)

G(s1,...,8) if 51, ..., s, not all even,
= G(s1,...,8)— Z %@(%,,%) otherwise.
K|S1,eeeySr
Lemma 3.5. = Y 1) g g0).
— 8

gl“lv---v‘r
Proof. From the definition, § = ¥ if 51, ..., s, are not all even. Otherwise,
(3-21) G-9= ) l@(s—l,...,s—’).

glsl vvvvv Sr g g g
Now apply Lemma A.1 to get the result. U
Theorem 3.6. Or(mj,,...,m; )= Z @%<& e, &>

glmiy,..., mi, g g g
Proof. When m;,, ..., m;, are not all even, their odd divisors are the only possible
common divisors. In this case, ? = 0 and
wn(g)
(3-22) b= Y = ==
8

Oddglmil sssss mi,

with # =4. If m;, ..., m; are all even, the sum over odd divisors of m;,, ..., m;
can be expressed as

0,= Y g

r

oddglmll ,,,,, m, 8
_ 1(8) e _ 18 _ g
> > Mg o 3 ou
glm,1 ..... mi, evenglm,1 M, glm,l ..... mi,
_ 1(8) g (8 g _5¢) = 1(8) 5 0
)R D 2 5
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Example 3.

0+ (1, 1)=0+(1,2) = 6.(2,1) = 0.(1,3) = 0+:(3,1) =0.(1,4) = 6.(4,1)

= 04(1,5) = 0+(5,1) =2,
0,(2,2) =6, 0_(2,2) =4, 0,(2,3) =05(3,2) =10, 6,.(2,4) = 14,
0_2,4) =12, 6,(4,2)=14, 6_(4,2) =12, 0.(3,3) = 28.

Example 4.

0.(1,1,1) =8,

0.(1,1,2)=0.(2,1,1) =04(1,2,1) = 16,

0.(1,2,2) =04(2,1,2) =04(2,2,1) =56,

0.(1,1,3)=05(3,1,1) =0.(1,3,1) =24,

0.(1,1,4)=04(4,1,1) =0.(1,4,1) =32,

0.(1,2,3)=0.(3,1,2) =04(2,3,1) =60+(3,2,1) =6.(1,3,2) =0, (2, 1,3) = 128,
0.(2,2,2) =524,

0_(2,2,2) =516.

4. Sherman identity and Lie algebras

In this section we relate our previous results with Lie algebras and solve Sherman’s
problem. The solution is provided by the following proposition.

.....

.....

(ki,...,kr) €2, and let

L= @ L,k

(k1,....kr)EZ",

be the free Lie algebra generated by V. Then the dimensions of the subspaces

L,.....k,) are given by
k k
(4-1 dimLy,. = Y @W(—l,...,—’>
Stk 8 g 8
where summation is over all common divisors g of ki, ..., k. and ‘W is given by

@ Wi, k= Y BRI b, gy,
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The exponents s;, .. are the components of s € T,

.....

.....

ir)lsil,...,ir S gzZO,

(4‘3) Z it ir(il,...,ir)=(k19""kr)}’

and

(4-4) Isl=" Y s S'= ] suoil

o0
(4-5) [T a-zf - dyiimbuin =1 ...z
kiy....k,=1
where
o
(4-6) frz)= Y dk, k)
ki,..., k=1

This function is associated with the generating function of the W'’s,

4-7) g1,z = Yy Wik, k)zy 2
ki....ky=1
by the relation
(4-8) e s=1-f. U

Identity (4-5) is a consequence of the famous Poincaré—Birkhoff—Witt theorem for
the free Lie algebra. Computation of the formal logarithm of the left-hand side
of (4-5) and its expansion gives that the infinite product equals the exponential in
(4-8). Raise both members of (4-5) to the power —1, compute the formal logarithm
of both members, and expand them. Identification of the coefficients of the same
order, definition (4-2), and application of the Md&bius inversion give (4-1). See
[Kang and Kim 1999] for details. In [da Costa and Variane 2005], (4-1) is called
the generalized Witt formula, W is called the Witt partition function, and (4-5) the
generalized Witt identity.

Formulas (3-3) and (3-20) have exactly the form of (4-1) with corresponding
Witt partition functions given by F and ¥, respectively, so we interpret 6 and 6.
as giving the dimensions of the homogeneous spaces of graded Lie algebras. In
each case, the algebra is generated by a graded vector space whose dimensions
can be computed recursively from (4-2) as a function of the Witt partition function.
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However, a general formula can be obtained from (4-8) using (4-6) as the formal
Taylor expansion of 1 —e™$. This gives

1 gl _
4- = l—e 8|z mg =
( 9) d(kl’ akr) kl'kr' azllq azl:r( e )|Zl— —Zr—O
with
o0
(4-10) gz i= Y Wik, k)P
ki,...k,=

and W =%, ¥ given by (3-1), (3-2), and (3-20). Furthermore, dim L, ..,
given by (3-3), 3.6 satisfy the generalized Witt identity (4-5) with the corresponding
dimensions given by (4-9). In fact, an explicit formula for (4-9) can be derived:

k) =0, 04

Theorem 4.2. The numbers d(ki, ..., k,) are given by the formula

k|

. |
(Wi, ... L)1
@-11) d(lq,...,kr)zkg;(—l)Hl > 11 a;! ’

p(hk) i=1

where |k|=ki+- - -+k,, q =—1+]_[§=1(k,-+1), Dok isthe setofalla; €{0,1,2, ...}
such that Ziq:] ai = A, Z?:] a;lij = kj, and the vectors l; = (lj1, ..., liy), lij
satisfying 0 < l;j < k;, Vj=1,...,r,Vi=1,...,q and Z;’:llij > 0. Set
W(l;) =0ifl;j =0 for some j; otherwise, W is the Witt partition function.

Proof. A generalization of Faa di Bruno’s relation [Constantine and Savits 1996;
Savits 2006] gives a formula for the |k|-th derivative of the exponential of a function
g(z1, ..., zr). From this formula and (4-9), (4-11) follows. O

Example 5. We compute d(2, 2) explicitly. In this case, k; =k, =2, |[k| =4, g =8.
The possible vectors [ < (2,2) arely = (0,1),1, =(1,0), 13 =(1, 1), 14 = (0, 2),
Is=(02,0),1ls=1(2,1),1; =(1,2), and Ig = (2, 2). Next we give the values of
ai, ...,ag > 0 satisfying

8 8
Zai:)», Zaili:(Z, 2).
i=1 i=1
Define the vector a = (ay, . .., ag). The possible a’s for each A are

forhA=1, a=(@,...,0,1);

forA=2, a=(0,1,0,0,0,0,1,0), (0,0,2,0,0,0,0,0),
0,0,0,1,1,0,0,0), (1,0,0,0,0,1,0, 0);

forA=3, a=(0,2,0,1,0,0,0,0), (2,0,0,0,1,0,0,0), (1,1,1,0,0,0,0,0);

forA=4, a=(2,2,0,0,0,0,0,0).
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We get

d(2,2) =W(2,2) — 3W, D
The dimensions up to d(3, 3) are

2, d(1,1)=W(, 1),

3, d(1,2)=W(,2), d@2,1)=WE2,1),

4, d(1,3)=W(,3), dB,1)=WE3,1),

d(2,2) =W2,2) - wa, n?,

N=5 d(1,4)=Ww{,4), d@4 1)=W41),
d2,3)=WQ2,3)—Wd, HW(,?2),
d(3,2)=W@3,2) =W, DWQ, 1),

N=6, d(1,5=W{,5), dG,1)=WGE,1),

dQ2,4) = W2, 4)— W1, YW, 3) - 1w, 2)?,

d(4,2) =W@&,2) = W1, HW@3, 1) — 1w@, 1)

d(3,3) =W(3,3) — W, DW2,2) =W, 2)W, D)+ Lwa, 3.

zZ2 =2 =2
[

For r = 3, the dimensions up to d(2, 2, 2) are

3, d(1,1,1)=W(,1,1),
4, d(1,1,2) =W(1,1,2), d(1,2,1)=W(1,2,1), d2,1,1)=W(2,1,1),
5, d(1,2,2)=W(1,2,2), d2,1,2)=W(2,1,2), d(2,2,1)=W2,2,1),

d(1,1,3) =W(1,1,3), d(1,3,1)=W(1,3,1), d3,1,1)=W(@3,1,1),
N=6, d(1,1,4 =W(,1,4), d(1,4,1)=W(1,4,1), d@4,1,1)=WH,1,1),
d(1,2,3) =W(1,2,3), d(3,1,2)=W@3,1,2), d(2,3,1)=W2,3,1),
d(3,2,)=W@3,2,1), d(1,3,2)=W(1,3,2), d(2,1,3)=W2,1,3),
d(2,2,2) =W(2,2,2) — Jw(1,1,1).

EA
I

Example 6. Relative to 6 with W = % and applying data from previous examples,
for the case r = 2, we find the dimensions

d1,1)=d(1,2) =d(2, 1) =d(1,3) =d(3,1) =d(1,4) = d(4,1) = d(2,3)
=d(3,2)=d(1,5)=d(5,1) =d(2,2) =d(2,4) =d(4,2) =d(3,3) = 4.
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In the case r = 3, the dimensions are

d,1,1) =8,

d(1,1,2) =d2,1,1) =d(1,2,1) =16, d(1,2,2)=d(2,1,2) =d(2,2,1) =56,

d(1,1,3) =d(3,1,1) =d(1,3,1) =24, d(1,1,4)=d4,1,1)=d(1,4,1) =32,

d(1,2,3)=d(3,1,2)=d(2,3,1) =d(3,2,1) =d(1,3,2) =d(2,1,3) = 128,

d(2,2,2) =496.

Example 7. Relative to 6 with W = ¥, we find for the case r =2

d(1,1)=d(1,2)=d2,1)=d(1,3)=d(3,1)=d(1,4) =d4, 1) =d(2, 3)
=d(3,2)=d(1,5) =d(5,1)=2,

d2,2)=5, d2,4)=d4,2)=9, d(@3,3)=28,

and forr =3

d(1,1,1) =8,

d(1,1,2) =d(2,1,1)=d(1,2,1) =16, d(1,2,2)=d(2,1,2)=d(2,2,1) =56,

d(1,1,3) =d(3,1,1)=d(1,3,1) =24, d(1,1,4)=d4,1,1)=d(1,4,1) =32,

d(1,2,3)=d(3,1,2)=d(2,3,1) =d(3,2,1) =d(1,3,2) =d(2,1,3) = 128,

d(2,2,2) =504.

Remark. In spite of the negative terms in the formulas for the dimensions, they
give positive results. To understand why, consider, for example, the case

d(2,2) =W(2,2) - L, 1)2

with W(a,b) = F = (a+b)%F. So d(2,2) is four times the result in example 6.
In the set of words counted by %' (2, 2) = 48 there is a subset whose elements
are words that are obtained by gluing together the words in the set counted by
W(1, 1) = 8. The gluing produces an overcounting which is corrected by the one
half factor. So d(2, 2) is positive. The same argument can be used to get positivity
for the other formulas.

Theorem 4.3. For each G, C Gg, we have

o0

m; i —g(2,..22 ey ;
(4-12) [T g = s,
My ey mj,. =1
and
o0 2 2
miy mipNO_ 48z Ty )—8(Ziy 5o Ziy)
(4-13) 1_[ (I—zp "o gyl = e85 o)
m; m;. =1
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Proof. To prove (4-12), multiply and divide its left-hand side by

o0
1 mi, m,r 1 mi, M. \6_
[T o= =TT T o=t
M., m;. =1 m; >0

m,l +--+m;.=N

Decompose the product over N into three products, namely, one over all N < 2r,
one over all even N > 2r, and another over all odd N > 2r. Then apply Theorems

3.3 and 3.4 and formula (3-17). O
[e.0]
Theorem 4.4. l_[ (1 +z?11” . -z;':”)9+(l - z?:” . -ZZ”*)Q* =1.
My ey mj,. =1
Proof. Multiply (4-12) and (4-13). U

The left side of (1-1) equals

l_[(l+zj)2l_[l_[ l_[ (1+Z;'l’i1 '“Zgir)9+(l—2:-:lil ,..Z;':ir)Q,'

r=2 G, mj,..mj.>0

The Sherman identity now follows from Theorem 4.4.

Appendix

Lemma A.1. If
wu(d) ng
(A-1) g, ...om)= Y f( d),
dlny,..., ni
then
1 (m ni

(A-2) fu o)=Y 38(;»---,3)-

dny,...,ng
Proof. Set G(ny, ...,ng) =M1 +---+ng)gny,...,ng) and

ni ny n ng
F{—, ..., — e, — .
(d d) <d+ +d)f<d a’)

Then (A-1) can be expressed in the form

Gny,..oon) = u(d)F(%,...,%).

dny,....,ng
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Mbobius inversion gives

n n
Fui,....no= Y. G<glgk>

d|ny,...,ng
Therefore,
ni ng ni ng
cel = —+--- —...,— ). 4
(i) f, . om) =Y (d + +d)g(d d)
diny,...,ng
The converse is also true.
Lemma A.2. Let N>a=n|+---+ny, ny,...,n;, n; >0, be a partition of .
Then
ki—1 N-—-1
a%) > (52 =(22)

Zi:l kl—N i=l
with the convention that a bracket in the left side is zero whenever k; < n.

Proof. Using
q“ - (N -1 )qN
1—¢q)~ =\ o= 1

it follows that

o [ n;

T e [ G TEED DD S | (G T

=1 N=a ki>n; i=lI

ZL]ki:N

Comparison with the previous expression and the convention gives the result. [

Acknowledgements

We thank Professor Peter Moree (Max Planck Institute for Mathematics, Bonn) and
Professor Thomas Ward (University of East Anglia, UK) for email correspondence
regarding the positivity of the Mobius inversion formula.

References
[Andrews 1976] G. E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its
Applications 2, Addison-Wesley, Reading, MA, 1976. MR 58 #27738 Zbl 0371.10001

[Apostol 1976] T. M. Apostol, Introduction to analytic number theory, Springer, New York, 1976.
MR 55 #7892 Zbl 0335.10001

[Chen and Koh 1992] C. C. Chen and K. M. Koh, Principles and techniques in combinatorics, World
Scientific, River Edge, NJ, 1992. MR 93h:05001 Zbl 0786.05002


http://msp.org/idx/mr/58:27738
http://msp.org/idx/zbl/0371.10001
http://msp.org/idx/mr/55:7892
http://msp.org/idx/zbl/0335.10001
http://dx.doi.org/10.1142/9789814355162
http://msp.org/idx/mr/93h:05001
http://msp.org/idx/zbl/0786.05002

494 G. A. T. F. DA COSTA AND G. A. ZIMMERMANN

[Cimasoni 2010] D. Cimasoni, “A generalized Kac—Ward formula”, J. Stat. Mech. 2010 (2010),
Atrticle ID #P07023.

[Constantine and Savits 1996] G. M. Constantine and T. H. Savits, “A multivariate Faa di Bruno
formula with applications”, Trans. Amer. Math. Soc. 348:2 (1996), 503-520. MR 96g:05008
7Zbl 0846.05003

[da Costa 1997] G. A. T. F. da Costa, “Feynman identity: a special case, I, J. Math. Phys. 38:2
(1997), 1014-1034. MR 98b:82012 Zbl 0869.05039

[da Costa and Variane 2005] G. A. T. FE. da Costa and J. Variane, Jr., “Feynman identity: a special
case revisited”, Lett. Math. Phys. 73:3 (2005), 221-235. MR 2007a:82012 Zbl 1101.82007

[Kang and Kim 1999] S.-J. Kang and M.-H. Kim, “Dimension formula for graded Lie algebras
and its applications”, Trans. Amer. Math. Soc. 351:11 (1999), 4281-4336. MR 2000b:17009
Zbl 0926.17002

[Loebl 2004] M. Loebl, “A discrete non-Pfaffian approach to the Ising problem”, pp. 145-154 in
Graphs, morphisms and statistical physics (Piscataway, NJ, 2001), edited by J. NeSetfil and P.
Winkler, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 63, Amer. Math. Soc., Providence, RI,
2004. MR 2005k:05066 Zbl 1069.82003

[Moree 2005] P. Moree, “The formal series Witt transform”, Discrete Math. 295:1-3 (2005), 143-160.
MR 2006b:05015 Zbl 1064.05025

[Savits 2006] T. H. Savits, “Some statistical applications of Faa di Bruno”, J. Multivariate Anal.
97:10 (2006), 2131-2140. MR 2008g:62144 Zbl 1101.62041

[Sherman 1960] S. Sherman, “Combinatorial aspects of the Ising model for ferromagnetism, I: A
conjecture of Feynman on paths and graphs”, J. Math. Phys. 1 (1960), 202-217. MR 22 #10273
Zb1 0123.45501

[Sherman 1962] S. Sherman, “Combinatorial aspects of the Ising model for ferromagnetism, II: An
analogue to the Witt identity”, Bull. Amer. Math. Soc. 68 (1962), 225-229. MR 25 #2003

[Witt 1937] E. Witt, “Treue Darstellung Liescher Ring”, J. Reine Angew. Math. 177 (1937), 152-160.
JFM 63.0089.02

Received May 5, 2012.

G. A. T. F. DA CoSTA

DEPARTAMENTO DE MATEMATICA
UNIVERSIDADE FEDERAL DE SANTA CATARINA
88040-900 FLORIANOPOLIS SC

BRAZIL

gatcosta@mtm.ufsc.br

G. A. ZIMMERMANN

DEPARTAMENTO DE MATEMATICA
UNIVERSIDADE FEDERAL DE SANTA CATARINA
88040-900 FLORIANOPOLIS SC

BRAZIL

graciele@ifsc.edu.br


http://dx.doi.org/10.1088/1742-5468/2010/07/P07023
http://dx.doi.org/10.1090/S0002-9947-96-01501-2
http://dx.doi.org/10.1090/S0002-9947-96-01501-2
http://msp.org/idx/mr/96g:05008
http://msp.org/idx/zbl/0846.05003
http://dx.doi.org/10.1063/1.531881
http://msp.org/idx/mr/98b:82012
http://msp.org/idx/zbl/0869.05039
http://dx.doi.org/10.1007/s11005-005-0019-5
http://dx.doi.org/10.1007/s11005-005-0019-5
http://msp.org/idx/mr/2007a:82012
http://msp.org/idx/zbl/1101.82007
http://dx.doi.org/10.1090/S0002-9947-99-02239-4
http://dx.doi.org/10.1090/S0002-9947-99-02239-4
http://msp.org/idx/mr/2000b:17009
http://msp.org/idx/zbl/0926.17002
http://msp.org/idx/mr/2005k:05066
http://msp.org/idx/zbl/1069.82003
http://dx.doi.org/10.1016/j.disc.2005.03.004
http://msp.org/idx/mr/2006b:05015
http://msp.org/idx/zbl/1064.05025
http://dx.doi.org/10.1016/j.jmva.2006.03.001
http://msp.org/idx/mr/2008g:62144
http://msp.org/idx/zbl/1101.62041
http://dx.doi.org/10.1063/1.1703653
http://dx.doi.org/10.1063/1.1703653
http://msp.org/idx/mr/22:10273
http://msp.org/idx/zbl/0123.45501
http://dx.doi.org/10.1090/S0002-9904-1962-10756-3
http://dx.doi.org/10.1090/S0002-9904-1962-10756-3
http://msp.org/idx/mr/25:2003
http://eudml.org/doc/150011
http://msp.org/idx/jfm/63.0089.02
mailto:gatcosta@mtm.ufsc.br
mailto:graciele@ifsc.edu.br

PACIFIC JOURNAL OF MATHEMATICS
Vol. 263, No. 2, 2013

dx.doi.org/10.2140/pjm.2013.263.495

ON THE CLASSIFICATION OF STABLE SOLUTIONS TO
BIHARMONIC PROBLEMS IN LARGE DIMENSIONS

JUNCHENG WEI, XINGWANG XU AND WEN YANG

We give a new bound on the exponent for nonexistence of stable solutions to
the biharmonic problem A%u = u” in R", where u > 0, p > 1, and n > 20.

1. Introduction
Of concern is the biharmonic equation
(1-1) Au=uf, u>0 inR"

where n > 5 and p > 1. Set

(1-2) Au(p) = |Ago|2dx—p/ uP~1p?dx forall ¢ € H*(R").
R n
The Morse index ind(u) of a classical solution to (1-1) is defined as the maximal
dimension of all subspaces of H 2(R") such that A, (p) <0 in H*(R") \ {0}. We
say u is a stable solution to (1-1) if A,(¢) > 0 for any test function ¢ € H 2(RM);
that is, if the Morse index is zero.

In the first part of the paper, we obtain the following classification result on
stable solutions of (1-1).

*

Theorem 1.1. Letn >20and 1 < p <1+ 554 Then (1-1) has no stable solutions.

Here p* stands for the smallest real root greater than Z_g of the algebraic
equation

5122 —n)x®+4(n® —60n* +670n — 1344)x> —2(13n> — 424n +-3064n — 5408)x*
+2(27n° —572n% 4 3264n — 5440)x> — (491> — 7721 +3776n — 5888) x>

+4(5n° —66n? +288n —416)x —3(n* — 12n* +48n —64) = 0.

The first author was supported from an earmarked grant (“On Elliptic Equations with Negative
Exponents”) from RGC of Hong Kong.

MSC2010: primary 35B20; secondary 35J60.
Keywords: stable solutions, biharmonic superlinear equations.
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Some remarks are in order. Let us recall that for the second-order problem
(1-3) Au+u’=0 u>0inR", p>1,

Farina gave a complete classification of all finite Morse index solutions. The main
result of [Farina 2007] is that no stable solution exists to (1-3) if either n < 10, p > 1
orn>11, p < p,,.Here p,; denotes the Joseph-Lundgren exponent [Gui et al.
1992]. On the other hand, a stable radial solution exists for p > p ;.

For the fourth-order case, the nonexistence of positive solutions to (1-1) is shown
if p < ”*4 , and all entire solutions are classified if p = Z%j. See [Lin 1998; Wei
and Xu 1999] When p > :J“i, radially symmetric solutions to (1-1) are completely
classified in [Ferrero et al. 2009; Gazzola and Grunau 2006; Guo and Wei 2010].
The radial solutions are shown to be stable if and only if p > p/;;, and n > 13, where
p’;, stands for the corresponding Joseph—Lundgren exponent (see [Ferrero et al.
2009; Gazzola and Grunau 2006]). In the general nonradial case, Wei and Ye [Wei
and Ye 2010] showed the nonexistence of stable or finite Morse index solutions
when eithern <8, p>1lorn>9,p < nnTs' In dimensions n > 9, a perturbation
argument is used to show the nonexistence of stable solutions for p < "¢ +¢, for
some &, > 0. However, no explicit value of ¢, was given. The proof of Wei and Ye
[2010] follows an earlier idea of Cowan, Esposito and Ghoussoub [2010] in which
a similar problem in a bounded domain was studied. Theorem 1.1 gives an explicit
value on ¢, for n > 20.

In the second-order case, the proof of Farina uses basically the Moser iterations:
namely multiply (1-3) by the power of u, like u?, g > 1. Moser iteration works

because of the following simple identity

/n uq(—Au)_( +1)2/ |Vu ta 12, VueCO(R")

In the fourth-order case, such equality does not hold, and in fact we have

4q atl o 2 -3 4 2
ud (Au) = / Au'T P—qg—1) / w73\ Vul*, Yu € C3(R").
/w (q+1)? Jpe R 0

The additional term f[R" u?73|Vu|* makes the Moser iteration argument difficult
to use. Wei and Ye [2010] used instead the new test function —Au and showed
that fRZ | Au|? is bounded. Thus the exponent -~ is obtained. In this paper, we
use the Moser iteration for the fourth-order problem and give a control on the term
fR" u?73|Vu|* (Lemma 2.3). As a result, we obtain a better exponent nnTx + e,
where ¢, is explicitly given. As far as we know, this seems to be the first result for
Moser iteration for a fourth-order problem.
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In the second part of this paper, we show that the same idea can be used to
establish the regularity of extremal solutions to

Au=ru+1)?, A>0 in Q,
(1-4) u>0 in Q,
u=Au=0 on 0%2,

where €2 is a smooth and bounded convex domain in R".
For problem (1-4), it is known [Berchio and Gazzola 2005] that for p > %
there exists a critical value A* > 0 depending on p > 1 and 2 such that

o If X € (0, ™), (1-4) has a minimal and classical solution which is stable;
o If A = A*, a unique weak solution, called the extremal solution u* exists for
(1-4);
e No weak solution of (1-4) exists whenever A > A*.
The regularity of the extremal solution of problem (1-4) at A = A, has been
studied in [Cowan et al. 2010; Wei and Ye 2010], where it was shown that the
extremal solution is bounded provided n <8 or p < "5 +&,,n>9 (&, very small).

Here, we also give a explicit bound for the exponent p in large dimensions and our
second result is the following.

Theorem 1.2. The extremal solution u* of (1-4) when A = A* is bounded provided
thatn >20and 1 < p <1+ %, where p* is defined as above.

As n — +o0, the value ¢, is asymptotically 8./8/3/(n — 8)3/2 and thus the
upper bound for p has the expansion

8 8873 |
n—8+0wﬁﬁﬂ+0(m—&ﬂ'

(1-5) 1+

On the other hand, for radial solutions, the Joseph—Lundgren exponent [Gui et al.
1992] has the following asymptotic expansion

1-6 1 8 16 O;
(1-0 T st a_sr T Qmwﬂ)

In this paper, we have only considered fourth-order problems with power-like
nonlinearity. Other kinds of nonlinearity, such as exponential and negative powers,
also appear in many applications; see [Cowan et al. 2010]. However, our technique
here yields no improvements of results of that reference in the case of exponential
and negative nonlinearities.

This paper is organized as follows. We prove Theorem 1.1 and Theorem 1.2
respectively in Section 2 and Section 3. Some technical inequalities are given in
the Appendix.




498 JUNCHENG WEI, XINGWANG XU AND WEN YANG

2. Proof of Theorem 1.1

Lemma 2.1. For any ¢ € Cé(R”) with ¢ > 0, any y > 1 and ¢ > 0 an arbitrary
small number, we have

(2-1) (AW’ @) < | (Au’ ") +e|Vul*o® u® = + Cu® | V(™) ),
Rn R~
(2-2) / (A ¢"))* > / ((Au 97)* — e|Vul*e® u® = — Cu® ||V (™)),
R~ R~
2-3) | (@ip?e® < [ (W ¢")ip)*+e | |Vul*u?p¥
R R R 2 11od, 2
+C | u®|VHe™)I,
Rn

where C is a positive number that only depends on y and €, and |V*(@*")|| is
defined by

IVH @) 12 = @727 V! [* + ¥ (A%97)| + V297 |

In the following, unless said otherwise, the constant C always denotes a positive
number which may change term by term but only depends on y, €.

Proof. Since ¢ is compactly supported, we can use integration by parts without
considering the boundary terms. First, by direct calculation, we get

(2-4) (AW’ 9"))* = [(Au?)p" 1> +4Vu? Vo? Ap” u? +4Vu? V! Au? @7
+4(Vu' Vo) +2Au" u? A" ¢” +u® (Ap?)>.

We now need to deal with the third and fifth terms on the right side of this equality,
up to the integration of both sides.
For the third term, we have

/ Au"Vu'Ve’o” z—/ W”)i")ij (") 9"
n Rn»
- (uy)i(uy)j(ﬁﬂy)ijfpy—/ ")) ;") (@),
Rﬂ R)l
where f; = df/0x; and f;; = 82f/8xj8x,-. (Here and in the sequel, we use the

Einstein summation convention, so for example 9; (u;u j@;) = 1<i,j<n 0 (uiujp;).)
The first term on the right side of the previous equation can be estimated as

2 Rn(”y)i(uy)ij((ﬂy)j(/)y = /Rn 3 ()i )i (9”) ") _/Rn((u)’)i)Z((py)jj(pV

- fR (@)@
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Combining these two equalities, we get

Z/nAuVVuVVW’wV :—/Rnaj((uy)i(uy)i(fﬂy)jf/)y)
_/’12(”y)i(“y)j(¢y)ij(py _/’lz(uy)i(uy)j(ﬁpy)j«oy)i
+ [ @20+ [ @, e,

Rewriting this equality we have

(2-5) 4f Au?Vu¥ V¥ ¢? =2 IVu > Ap” (py+2f IVu ?|Ve” |2

R)l
- 4/ )i (") (@)ije” —4/ (Vu?, Vor)?.
Rl‘l Rf’l
For the fifth term on the right side of (2-4) we have

(2-6) Au’u’ Ap? @7 = —/ u’(Vu”, V(Ap”))p"
Rn n

—/ (Vu?, Vo' u’ Ap? — A IVu? > Ag? ¢” .
Combining (2-4), (2-5) and (2-6), one obtains
@7) / (AW 9"))? / (Au? g
=2/R |Vuy|2|W|2—4f o (V2" (Vu?, Vu?))
+ / u? @? A*(p") —2 / u” (Ag?)?.

Now by the Young equality, for any ¢ > 0, there exists a constant C = C(y, ¢)
such that

Vuy2va2< Vuy4 -2y ZV—I-CV y |4 2y -2y
% %

and
I
o (V2" (Vu?, Vu?))| < §|wy|4u—2y<a” + Cu® V2" .

Thus by (2-7), together with the two estimates above, one gets

(A" = [ (AuY)*¢*
Rn Rn

IVu? [*u=% 2V+6C/ u ||[V4? |2
Rn

n

The estimates (2-1) and (2-2) follow from this easily.
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Next we observe that |V2u? [29? = [JA|Vu”|> — (Vu?, VAu”)]9*. Thus
up to the integration by parts, with the help of (2-5) and the estimates we just
proved, the estimate (2-3) also follows by noticing the identity ./[R" (A(u”goV))2 =
Jn IV?(u? 7)|?. The proof of Lemma 2.1 is thus completed. O

Let us return to the equation
(2-8) A’u=uP, u>0inR"
Fixg =2y —1>0and y > 1. Let ¢ € Cj°(R"). Multiplying (2-8) by u?@? and

integration by parts, we obtain

(2-9) / AulAuip?) = / uPtap? .
For the left side of (2-9), we have:

Lemma 2.2. For any ¢ € C°(R") with ¢ > 0, for any ¢ > 0 and y with q defined
above, there exists a positive constant C depends on y, € such that
2
@10 [ Zaunwrgnz [ @wen- [ crivie
R 4 R® R»

— | Py =D+ eu® " Vulte? .
Rn

Proof. First, by direct computations, we obtain
AuA@? 1) = Au((Zy — Du®" 2 Aug? 422y — Du? 2VuV(p?)
+Qy = D2y = 2u¥ 7| VulPe® +u? " Ag¥),
(Au’ @) = y2u® 2 (D)o +y*(y — D2 | Vul o
+2(y — Dy u® 7| Vul* Aug® .

Combining these two identities, we get
y? y?
(2-11) = AuA @9y =(Au? ") +2y2u® 2 AuVuVe? +—u*> "' Aung?
q q
— ¥ (v = D2 | Vulte? .

For the term u?’ “2AuVuVe?’, we have

u? 2 AuVuVe? = 8w Puiuj () ;) — Qy — 2)u® 7 (ui)u (9?7

22 2 22 2
—u™ " uiui (o) —uT  uiu (97 )i
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We can regroup the term u%” ~2

uiuij (@) as
20 " uiui (02 ;= ;W T ) (@) ) — Qy = 2)u® u () (97
—u? 2 u) (™) ;-
Therefore we get
(2-12)  2u® 2 AuVuVe? =28 Puu (@) ;) — 3; @ ) (9*) ;)
— Qy = uP W) u (@) +u? ) (0
— 2u2y—2u,~uj(g02y),~j.

For the last three terms on the right side of (2-12), applying Young’s inequality, we
get

7 wi)uj (9] < mu”‘ﬂww” +Cu® [V,
_ & _
W i @) 51 = e VUl + Cu 9,

— € —
i (i) < g TVl + Cu [V )
These three inequalities and (2-12) imply

(2-13) 2y2u27’2AuVuV(p27’z—%/

u? Y vulte? —C / u® [V (™).
R)l Rn

n

Similarly we get

2
2-14) | L 'Aung® > —ff
Rt 4 2

Inequality (2-10) follows from (2-11), (2-13) and (2-14). O

u? Y vulte? — C f u? V().
Rn

n

As a result of (2-1) and (2-10), we have
2
@15 [ L auawig) > / (AW @"))? - f Cu | V4|
Rn q R" Rn

— | &P =17+ | Vulle?.
RV!
Next we estimate the most difficult term, [, u?* ~#|Vu|*¢?, in (2-15). This is
the key step in proving Theorem 1.1.

Lemma 2.3. If u is the classical solution to the biharmonic equation (2-8), and ¢
is defined as above, then for any sufficiently small ¢ > 0, we have the following
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inequality

(2-16) (%—e)/

2
VUt < 5 / (AW ¢7))* + / Cu® | V(™)
Y R® n

n

_f 4 r+p=l,2y
re (4y =3+ p)(p+1)

Proof. 1t is easy to see that

(2-17) / =4Vl ZV——/ “H IV Yo,
Rn
and
(2-18) w2 | Vu? |*p?
Rn

=/ w2 \Vu? PVu’ Vu 9*r
:/ —Vu Y |Vu’ PVu? ¥

:f u—V|vuV|2AuV¢2V+/ u V(| Vu? P)Vu? 9*"
n Rn

+ / u”V |Vu’ PVu? V¥,
RI’L

where in the last step we used integration by parts. For the first term in the last part
of this equality, we have
/ w T |\Vu PAur ¥ =y | (= Du TVl +u 7 VP Aug®).
n RVL

Substituting this into (2-18) and combining with (2-17), we obtain

1
(2-19) u? =4 Vulte ZV—/ —u YV (VU )V 9%
R7 R Y

1
+/ u2V3(|Vu|2)Au<p2”+/ —u Y (|Vu? P)Vu? Vo .

R

The first term on the right side of (2-19) can be estimated as

(2-20)  w V(U )V’ =207 ()i )i(w?),)
—2y

<2y W”);j(u”)i; + (”y)i(uy)j(uy)i(”y)j

G — |W|
2y
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As a consequence, we have

1

@221) | —u "V(Vu! )V’ 9
RV
5[ %|v2uy|2<p2V+/ 14 2\ [fe?
n y R)‘l 2
2 _
S/ _2|V2(MV¢V)|2+/ CM2V||V4(¢2}/)”+/ 1+4)1 & 2V|Vu}’|4(p2y
n Y R R” 2
2 1+4y2% _
= [ Zaweni [ et [ v,
n R}’l n

where we used (2-3) in the last step.

For the second term on the right side of (2-19), applying estimate (2.3) from [Wei
and Ye 2010], that is, (Au)? > ﬁu"“, and the fact that Au < 0 from Theorem
3.1 in [Wei and Xu 1999] or Theorem 2.1 in [Xu 2000], we have

(2-22) u? 3 (VulP) Aug? < — / ,/—2 W2 3 (V)
[Rn n p+
V p+1 2y —242H

fn 2y — 2+P+1

E

/n 2y — 2+P+1
p

2 Au(p

oyl
2)/ 2+ VMVQDZV.

2

Using the inequality —Au > i , we get
g q y = p+1 g
L 2
(2-23) Vot 2+ Aup? < _/ P—‘HHMZy-i-p—l(pZy‘
R 2y — 2+p+1 R"2y—2+pT

On the other hand, for the second term on the right side of (2-22), we have

g
(2-24) / uz”_2+pTHVqu02y = —/ %uzy_]"rp%l Ap*

— _/ lu2y—1+"T+lA(p2y
(xlag >0y L

_/ luZV_]"‘pTHA(sz’
(xlag <oy L

where the first equality follows from integration by parts and L =2y — 1 + pTH
As for the first term on the last part of (2-24), using the inequality
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we have

(2-25)

V / W AuAGY < _/ luzy—le“A@zy.
{x|Ap2 >0} {x]Ap? >0} L

Similarly to the proof of Lemma 2.1, it is easy to get

{XIA¢2V>0}

From this and (2-25), we have

‘ / lu2y—1+pTHA(p2y
(xlag2 >0y L

Similarly, we also obtain

1
' / T A | <6 / u? = Vule? + / Cu® | VHe™)|.
X|A§027<0 n n

From the last two inequalities and (2-24), we have

/ s VRV 58/ M2V4|Vu|4<p2V+/ Cu® ||V (™).
n n Rn

Combining (2-22), (2-23) and (2-26), we get the inequality

e / W2Vt + / Cu? [V
n Rn

< / Wl 4 / Cu® IV (™).
R R

(2-26)

(2-27) u? 3\ Vul? Aug? <e f

u? | vulte® + / Cu® | V4 (™)
R R®

n

_/ 4 rdp=ly2r,
re 4y =3+ p)(p+1D

Finally, we apply Young’s inequality to the third term on the right side of (2-19),
and get

1
(2-28) /—3u_y(|VuV|2)VuVV902V
Rt Y
=/ u? 3|\VuPvuv(ep?)
58/ 24y +/ Cu® V4 (7).
By (2-19), (2-21), (2-27) and (2-28), we finally obtain

B 2
(=) [ vty == [ @weri+ [ @ ivien
n R” Rn

_/ 4 u2y+p—1(p2y' 0
re (4y =3+ p)(p+1)
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By (2-9), (2-15) and (2-16), since the number ¢ is arbitrary small in those three
places, we have, for § > 0O sufficiently small,

(2-29) f (1—4(y —1)*=8) (A" ¢"))?
Rn

2 8v2(y—1)2
_/ ( v Y (y—1 >Mp+2y1(p2y5f Csu |[V* ™),
m\2y—1 4y =3+p)(p+1) Re

where C; is a positive constant that depends on § only. Here, we need to require
1 —4(y — 1)?> > 0, since we have assumed that y > 1 in Lemma 2.1. So y is
required be in (1, 2). If we can choose 8 small enough to make 1 —4(y —1)> —$
positive, by the stability property of function u, we obtain

(2-30) / (E — pSuPtip? < f Csu® | V@) I,
n Rn
where E is defined to be
2 8 2 -1 2
(231) E=p(l—ay -1~ 4 =D

g @Gy -=-3+pp+1)

Now we take ¢ = n™ with m sufficiently large, and choose 1 a cut-off function
satisfying 0 <n <1, n =1 for |x| < R and n = O for |x| > 2R. By Young’s
inequality again, we have

(2-32) / WV @) < CsR f u27 pprm=
Rﬂ

n

n

_ 4 _ 4 _
SCS,SR ]_9/ u2n2ym 1—9—|—8C5/ u2y+p 1n2ym’
n

where C; . is a positive constant depends on é and ¢, and 6 is a number such that
20—-0)+QRy+p—1)0 =2y,s0that 0 <0 < 1for2 <2y <2y +p—1. By
(2-30) and (2-32), we get
(233)  (E—ps—eCy) | uPt?=1p2m <5 R T / uln?rm=s

Rﬂ n
Since 6 is strictly less than 1 and will be fixed for given y, p, we can choose m
sufficiently large to make 2ym — & > (. On the other hand, if £ > 0, we can find
small § and then small ¢, such that E — pd — ¢Cs > 0. Therefore, by the definition
of function 7 and (2-33), we obtain

(2-34) (E—ps—sCs) | ult ' <C; RT / 2.
B Bar

By (2.10) of [Wei and Ye 2010], we have / u? < CR"_%, as a result, the

Bar
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left side of (2-34) is less equal than CS,SR"_%_ﬁ, which tends to 0 as R tends
to oo, provided the power n — % — % is negative, which is equivalent to
(p+2y—1)> (p—1)7 according to the definition of 6. So, if (p+2y —1) > (p—1) 7
and £ — pé — Cse > 0, we have u = 0.

Thus, we have proved the nonexistence of stable solution to (2-8) if p satisfies
the condition (p +2y —1) > (p — 1)% and E > 0 (for §, ¢ are arbitrary small). By
Lemma A.2 in the Appendix, the power p can be in the interval (-5, 1 + %).
Combining with Theorem 1.1 of [Wei and Ye 2010], we have proved Theorem 1.1,
thatis, forany 1 < p <1+ %, n > 20, (2-8) has no stable solution.

3. Proof of Theorem 1.2

In proving Theorem 1.2, it is enough to consider stable solutions u; to (1-4), since
u* =1lim,_,;» u;. Now we give a uniform bound for the stable solutions to (1-4)
when 0 < d < A < A*, where d is a fixed positive constant from (0, A*).

First, we need to analyze the solution near the boundary. Specifically, we need
the regularity of the stable solutions of the equation

A’u=A(u+1)?, »>0 in ,
(3-1) u>0 in Q,
u=Au=0 on 0%2.

near the boundary (as well as their derivatives; see remark after the next theorem).

Theorem 3.1. Let Q2 be a bounded, smooth, and convex domain. There exists a
constant C (independent of A, u) and small positive number ¢, such that for stable
solutions u to (3-1) we have

(3-2) ux) <C forall x e 2, :={z€Q: d(z,02) <e¢}.

Proof. This result is well known. See [Guo and Wei 2009]. For the sake of
completeness, we include a proof here. By Lemma 3.5 of [Cowan et al. 2010], we
see that there exists a constant C independent of A, u, such that

(3-3) / (1+u)Pdx <C.
Q
We write (3-1) as
Au+v=0, in 2,
Av+A(1+u)? =0, in Q,
l/l=v=0, in 082.

If we set fi(u,v) =v, fo(u,v) =A(u+ 1)?, we see that df;/dv =1 > 0 and
df>/0u = Ap(u + 1)P~! > 0. Therefore, the convexity of , Lemma 5.1 of [Troy
1981], and the moving plane method near 92 (as in the appendix of [Guo and
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Webb 2002]) imply that there exist #o > 0 and o which depends only on the domain
Q, such that u(x — tv) and v(x — tv) are nondecreasing for ¢ € [0,7)], v eR”
satisfying |[v| =1 and (v, n(x)) > « and x € dQ2. Therefore, we can find p, & > 0
such that for any x € Q. :={z € Q: d(z, 9Q) < &} there exists a fixed-sized cone
I'y (with X as its vertex) with

e meas(I'y) > p,
e ', C{ze: d(z,0) <2¢}, and

e u(y) > u(x) forany y € I'y.

Then, for any x € 2., we have
1 1
(I +ux)? < —f (14+u)? < —/(1+u)P <C.
meas('y) Jr, P Ja

This implies that (1 + u(x))? < C, therefore u(x) < C. [l

Remark. By classical elliptic regularity theory, u(x) and its derivatives up to fourth
order are bounded on the boundary by a constant independent of u. See [Wei 1996]
for more details.

We now turn to the proof of Theorem 1.2 proper, using the ideas of Section 2.
Multiplying (1-4) by (# 4 1)9 and integrating by parts, we have

(3-4) fx(u+1>f’+4=/ A2u<u+1>‘1=f 8(A”)+/ A+ DA+ 1),
Q Q aq on Q

Setting v = u + 1, by direct calculation, we get

/ (AvY)? = / 2o 2 (Av) + / yiy — DR YVl
Q Q

Q
+2f Y2y — Do 3 Av| Vo P,
Q

f AvAv? :/ g(Av)*v?~! +/ q(qg — D|Vv]>Avvi 2.
Q Q Q

From these two equalities and (3-4) we obtain

a5 | <%(M)2_q(y_1)2|W|4Uzy_4)+ [ EER = [
Q\Y 0 Q

Q an

For the second term in (3-5), we have
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(3-6) f|Vv|4 24

1
=—/ v—2V|VvV|4=—/ VoY |PVo? (Vo)
4 4 g

|VUV|2W VIV’ P VY [V PAvY
4 T vY + vY

20V

1
=—4/ v_VV(|VvV|2)VvV+|VUJ/|2AUV__/ 2y 3|VU|
voJe Y Jag on’

A simple calculation yields
1 - 2 y—1 2y—4 4, 1 2y-3 2
BT — [ vTIVVFAY = —— | v Vu[T + — | v Vu[RAw.
viJa 14 Q VJa
Substituting (3-7) into (3-6), we get
a8 [ vurter

1 dv
:/ v2V—3|vU|2Av+—3f v_VV(|VvV|2)VvV—/ |Vo|?—.
Q Y’ Ja a0 on

We now estimate the second term on the right side of (3-8). From the proof of
Lemma 2.3, together with the identity 2A|Vv” |2 = |[V20Y |2+ (VAVY, VoY), we
have

1 1 2
@9 o5 [vrvavetyver =5 [vurrte 2 [ oy
y? Ja 2 vy Ja
1 VP 2 v

y2 Joq  On v Joa on

By (3-8) and (3-9), thanks to the convexity of the domain €2, we get

(3-10) /IVU|4 2y—4

2 9
5/ vz”_3|Vv|2Av+—2/(Av”)z—(Zy—1)/ Vo2
Q v:Ja B1) on

For the first term on the right side of (3-10), since v=u+ 1, we have Av=Au <0
by maximal principle, and the inequality

20 ptl
vz <0,
p+1

by Lemma 3.2 of [Cowan et al. 2010]. Thus

/Uzy_3|VU|2AU§/ _ [P st gy,
Q Q p+1

(3-11) Av < —
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Moreover, we have

[ 2\
./_\/ 2 vz”’HPTHIVvIz / a 1V(v2V*2+%Vv)
o Vp+l @2y —2+4 2=
[ 2A
/ o 2y_2+pT+lAv.
Q

2y =24 p+1
For the second term on the right, using (3-11) again, we have
[ 22 2k
/ ptl 2;/—2+"T+1 Av < _/ p+1 L2y Hr=1
02y —2+4 £ T Je2y 242
Hence, we obtain
[ 5 Py
(3-12) / v 3| vufAv < —/ Gl — v / p—HHUZV-i-P—l’
Q e 2y =2+ 5= an Q2y—2+2-

where we used v|3q = u + 1|3 = 1, for the boundary term in (3-4), (3-10) and
(3-12). By the remark after Theorem 3.1, we find that there exists a constant C (the
constant C appeared now and later in this section is independent of ), such that

8u d(Au) u
(3-13) / <|V 12 ‘ — ) <C.
IR

on on
Combining (3-5), (3-10), (3-12) and (3-13), we get

20 1\2 2
(1—40h—D2)/(AaH4)02+( Syily D —Ay:)/\u+1v+q§c.
Q Q

@y+p-=-3)p+Dh ¢
If 1 —4(y —1)>> 0 and

8y2(y — 1)? y?
3-14 1—4(y — DD + _r
G-19 Py =t o D+ ¢

and u is a stable solution to (1-4), we have
8y2(y —1)? 2 C
Qm—«w4%+ ry-17 v )fw+wﬂs—
4y+p-3)(p+D 2y—-1/Jg A

This leads to u + 1 € L9,
If p+¢g > (p — 1)n/4, then classical regularity theory implies that u € L>(2).
Therefore we have established the bound of extremal solutions of (1-4) if (3-14)
is satisfied and

8y +n—4
<
n—4
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By Lemma A.2 and Theorem 3.8 of [Wei and Ye 2010], we have proved that
the extremal solution u*, the unique solution of (1-4) (where A = 1*), is bounded
provided that one of these conditions hold:

(1) If n <8, then p > 1.
(2) If 9 < n < 19, there exists ¢, > 0 such that forany 1 < p < =< +¢,.

B)Ifn=>20,thenl <p <1 + , Wwhere p* was defined 1mmed1ately after
Theorem 1.1.

Appendix
In this appendix, we study the inequalities

y? 8y2(y — 1)?

A-1 1—4(y - DH -
A Ay T st
and
(A2) Brn—4
n—4

In order to get a better range for the power p from (A-1) and (A-2), we must study
the following equation obtained by letting p = % in (A-1):

8y +n—4 y? 8y(y—1)?

—_— J— J— 2 J—
(A-3) n—da (1 4y 1)) 2y —1 (4J/ 3_|_8)/+n 4)(87/+n 4+1)

=0.

We need only consider the behavior of (A-3) for y € (1, %) Through tedious
computations, we see that the equation at the bottom of page 495 is the simplified
form of (A-3). As a consequence, they have same roots in (1, 3)

We denote the left side of (A-3) by h(y). Notice that if y =
and y — 1 = —. Hence

nS’

h(”_4) — 8 (n*— 1803 — 560 +384n — 512).
n—=_8 n—=_8

In fact, if n = 20, then h(3) = 512 > 0. On the other hand, it is also easy to see
that h(3) < 0, while it is obvious that (4)/ -3+ %)(Syﬂ —4 4 1) > 0 and
2y — 1) >0 when y € (Z g ;) Therefore, by continuity, (A-3) possesses a root
in ( ) We denote the smallest root of (A-3) greater than % by p*. Once we
pick out a y from the interval (n g P™), h(y) is of course positive. By continuity,

we can find a small positive number § such that the inequality
AR i el Vi
4y =3+pp+1D

— — 2_
p =4y =D -3
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holds when p € (8”;1”; 2 _s, 87/;:’4_4). So, we conclude that when y runs in the

whole interval (2=%, p*), the power p can be in the whole interval (-2¢, 1 + %)

n—=_8”’
We summarize the result as follows:

Lemma A.2. When n > 20, the range of p satisfying (A-1) and (A-2) equals
(L. 1+ 3%4), and this interval is not empty.
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