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REALIZATIONS OF BCr -GRADED
INTERSECTION MATRIX ALGEBRAS WITH
GRADING SUBALGEBRAS OF TYPE Br , r ≥ 3

SANDEEP BHARGAVA AND YUN GAO

We study intersection matrix algebras im
(

A[d]
)

that arise from affinizing a
Cartan matrix A of type Br with d arbitrary long roots in the root system
1Br , where r ≥ 3. We show that im

(
A[d]

)
is isomorphic to the universal

covering algebra of so2r+1
(
a, η,C, χ

)
, where a is an associative algebra

with involution η, and C is an a-module with hermitian form χ . We provide
a description of all four of the components a, η, C , and χ .

1. Introduction

Peter Slodowy [1984; 1986] discovered that matrices like

M =


2 −1 0 1
−1 2 −1 1

0 −2 2 −2
1 1 −1 2


encode the intersection form on the second homology group of Milnor fibers for
germs of holomorphic maps with an isolated singularity at the origin. These matrices
were like the generalized Cartan matrices of Kac–Moody theory in that they had
integer entries, 2’s along the diagonal, and Mi j was negative if and only if M j i

was negative. What was new, however, was the presence of positive entries off the
diagonal. Slodowy called such matrices generalized intersection matrices:

Definition 1 [Slodowy 1986]. An n× n integer-valued matrix M is called a gener-
alized intersection matrix (gim) if the following conditions are satisfied. whenever
1≤ i, j ≤ n with i 6= j :

Mi i = 2;
Mi j < 0 ⇐⇒ M j i < 0;
Mi j > 0 ⇐⇒ M j i > 0.
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Slodowy used these matrices to define a class of Lie algebras that encompassed
all the Kac–Moody Lie algebras:

Definition 2 [Slodowy 1986; Berman and Moody 1992]. Given an n×n generalized
intersection matrix M =

(
Mi j

)
, define a Lie algebra over C, called a generalized

intersection matrix (gim) algebra and denoted by gim(M), with

generators: e1, . . . , en , f1, . . . , fn , h1, . . . hn ,

relations:
(R1) For 1≤ i, j ≤ n,

[hi , e j ] = Mi j e j ,
[hi , f j ] = −Mi j f j ,
[ei , fi ] = hi .

(R2) For Mi j ≤ 0,
[ei , f j ] = 0= [ fi , e j ],
(ad ei )

−Mi j+1 e j = 0= (ad fi )
−Mi j+1 f j .

(R3) For Mi j > 0, i 6= j ,
[ei , e j ] = 0= [ fi , f j ],
(ad ei )

Mi j+1 f j = 0= (ad fi )
Mi j+1e j .

If the M that we begin with is a generalized Cartan matrix, then the 3n generators
and the first two groups of axioms, (R1) and (R2), provide a presentation of the
Kac–Moody Lie algebras [Gabber and Kac 1981; Kac 1990; Carter 2005].

Slodowy [1986] and, later, Berman [1989] showed that the gim algebras are also
isomorphic to fixed point subalgebras of involutions on larger Kac–Moody algebras.
So, in their words, the gim algebras lie both “beyond and inside” Kac–Moody
algebras.

Further progress came in the 1990s as a byproduct of work on the classification
of root-graded Lie algebras [Berman and Moody 1992; Benkart and Zelmanov
1996; Neher 1996], which revealed that some families of intersection matrix (im)
algebras, which are quotient algebras of gim algebras, were universal covering
algebras of well-understood Lie algebras. For instance the im algebras that arise
from multiply affinizing a Cartan matrix of type Ar , with r ≥ 3, are the universal
covering algebras of sl(a), where a is the associative algebra of noncommuting
Laurent polynomials in several variables (the number of indeterminates depends
on how many times the original Cartan matrix is affinized). A handful of other
researchers also began engaging these new algebras. For example, Eswara Rao,
Moody, and Yokonuma [Rao et al. 1992] used vertex operator representations
to show that im algebras were nontrivial. Gao [1996] examined compact forms
of im algebras arising from conjugations over the complex field. Peng [2002]
found relations between im algebras and the representations of tilted algebras via
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Ringel–Hall algebras. Berman, Jurisich, and Tan [Berman et al. 2001] showed
that the presentation of gim algebras could be put into a broader framework that
incorporated Borcherds algebras.

The chief objective of this paper is to continue advancing our understanding
of gim and im algebras. We construct a generalized intersection matrix A[d] by
adjoining d long roots to a base of a root system of type Br , where r ≥ 3. This is
exactly the analogue of the affinization process in which a single root is adjoined
to a Cartan matrix of a finite-dimensional Lie algebra to arrive at a generalized
Cartan matrix and, eventually, an affine Kac–Moody algebra. The matrix A[d] is
used to define a gim algebra gim(A[d]). Since gim(A[d]) may possess roots with
mixed signs, we quotient out by an ideal r that is tailor-made to capture all such
roots. The quotient algebra is called the intersection matrix algebra and is denoted
by im(A[d]).

We show that im(A[d]) is a BCr -graded Lie algebra, which, in turn, allows us to
invoke Allison, Benkart, and Gao’s recognition theorem [Allison et al. 2002] and
relate im(A[d]) to an algebraic structure that is better understood. Combining their
theorem with the knowledge that im(A[d]) is centrally closed, we conclude that, up
to isomorphism, im(A[d]) is the universal covering algebra of so2r+1(a, η,C, χ).
The algebra so2r+1(a, η,C, χ) is like the usual matrix model so2r+1 (C) of a finite-
dimensional Lie algebra of type Br , except that we now replace the field C with an
associative algebra a, which possesses an involution (that is, period two antiautomor-
phism) η, and we involve a right a-module C that has a hermitian form χ :C×C→a.
The defining relations of the generalized intersection matrix algebra and, hence,
the intersection matrix algebra, in concert with the existence of a central, graded,
surjective Lie algebra homomorphism ψ from im(A[d]) to so2r+1(a, η,C, χ) allow
us to understand each of a, η, C , and χ . For example, we get (i) two generators
of a, namely x and x−1, for every long root of the form ±(εi + εi+1), and (ii) four
generators of a, namely y, y−1, z, and z−1, for every other type of long root that we
adjoin. We are also able to study the relations among the generators, determine the
action of the involution η, and discover that C = 0 and χ = 0. Through constructing
a surjective Lie algebra homomorphism ϕ : gim(A[d])→ so2r+1(a, η,C, χ) we
verify that we indeed have a complete description of the “coordinate algebra” a.

Our work continues the line of research initiated by Berman, Moody, Benkart
and Zelmanov. Berman and Moody [1992] were the first to find realizations of
intersection matrix algebras over Lie algebras graded by root systems of types Ar

(r ≥ 2), Dr , E6, E7, and E8. Benkart and Zelmanov [1996] found realizations of
intersection matrix algebras over Lie algebras graded by root systems of types A1,
Br , Cr , F4, and G2. In this paper, we find realizations of intersection matrix algebras
over Lie algebras graded by root systems of type BCr with grading subalgebras of
type Br (r ≥ 3).



260 SANDEEP BHARGAVA AND YUN GAO

2. Multiply affinizing Cartan matrices

In this paper, we focus on generalized intersection matrix algebras that arise from
multiply affinizing a Cartan matrix of type Br , where r ≥ 3, with long roots in the
root system 1Br .

Consider a root system of type Br . Up to isomorphism, 1Br may be described as

1Br =
{
±εi ± ε j : 1≤ i 6= j ≤ r

}
∪
{
±εi : i = 1, . . . , r

}
.

Once we fix an ordering of the simple roots α1, . . . , αr in a base 5, the Cartan
matrix A is described by

Ai j =
2(αi , α j )Killing

(αi , αi )Killing
for 1≤ i, j ≤ r.

Choose any d long roots in 1Br , say αr+1, . . . , αr+d , and consider the r + d by
r + d matrix A[d] given by

A[d]i j =
2(αi , α j )Killing

(αi , αi )Killing
for 1≤ i, j ≤ r + d,

with respect to the ordering (α1, . . . , αr , αr+1, . . . , αr+d) of the r roots in the
base 5 plus the d “adjoined” roots. The axioms of a root system tell us that all
the entries of A[d] are integers. Moreover, since the Killing form is symmetric, we
have A[d]j i = 0 if A[d]i j = 0, or if A[d]i j and A[d]j i are nonzero, then they share the same
sign. In other words, A[d] is a generalized intersection matrix.

Since the “d-affinized” Cartan matrix A[d] is a generalized intersection matrix,
gim(A[d]) is a generalized intersection matrix algebra.

Note that if we affinize the Cartan matrix A of type Br with the negative of the
highest long root of 1Br then the resulting generalized intersection matrix algebra
gim(A[1]) is the affine Kac–Moody Lie algebra of type B(1)r .

3. Intersection matrix algebras

Fix a Cartan matrix A of type Br (r ≥ 3) with, say, α1, α2, . . . , αr being the simple
roots in a base of 1Br that were used to form A. Let

• �= set of all long roots of the form ±(εi + εi+1) that we adjoin,

• 2= set of all remaining long roots that are adjoined,

• Nµ = the number of copies of the long root µ we have adjoined, and

• d =
∑

µ∈�∪2 Nµ.

Let A[d] be the resulting generalized intersection matrix and gim(A[d]) the cor-
responding generalized intersection matrix algebra.
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We begin a move towards a quotient algebra of gim(A[d]) using a slight general-
ization of the work done by Benkart and Zelmanov [1996]. Let 0 be the integer
lattice generated by the 1, where

1= {±εi ± ε j : 1≤ i 6= j ≤ r} ∪ {±εi ,±2εi : i = 1, . . . , r}

is a root system of type BCr .
We define a 0-grading on gim(A[d]) as follows:

deg ei = αi =− deg fi , deg hi = 0

for i = 1, . . . , r , and

deg eµ,i = µ=− deg fµ,i , deg hµ,i = 0

for µ ∈�∪2 and i = 1, . . . , Nµ.
Next, we define the radical r of gim(A[d]) to be the ideal generated by the

root spaces gim(A[d])γ where γ /∈1∪ {0}. Since the ideal r is homogeneous, the
resulting quotient algebra

im(A[d])= gim(A[d])/r

is also 0-graded. Moreover,

im(A[d])γ = 0 if γ /∈1∪ {0}.

We call im(A[d]) the intersection matrix (im) algebra corresponding to the general-
ized intersection matrix algebra gim(A[d]).

3.1. im(A[d]) is BCr -graded. Allison, Benkart, and Gao gave the following defi-
nition of a Lie algebra graded by a root system of type BC .

Definition 3 [Allison et al. 2002]. Let r be a positive integer greater than or equal
to 3. A Lie algebra L over C is graded by the root system BCr or is BCr -graded
with a grading subalgebra of type Br if

(i) L contains, as a subalgebra, a finite-dimensional simple Lie algebra g whose
root system relative to a Cartan subalgebra h= g0 is 1Br ,

(ii) L =
⊕

µ∈1∪{0} Lµ, where Lµ = {x ∈ L | [h, x] = µ(h)x for all h ∈ h} for
µ ∈1∪ {0}, and 1 is the root system of type BCr , and

(iii) L0 =
∑

µ∈1[Lµ, L−µ].

Proposition 4. The algebra im(A[d]) is BCr -graded with a grading subalgebra of
type Br .
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Proof. The subalgebra in im(A[d]) generated by e1 + r, . . . , hr + r, due to the
relations on these elements induced by the relations on their preimages in gim(A[d]),
is isomorphic to a finite-dimensional simple Lie algebra g of type Br . We have
already shown in Section 3.1 that im(A[d]) is 0-graded with im(A[d])γ = 0 if
γ /∈1∪ {0}. That is,

im(A[d])=
⊕

µ∈1∪{0}

im(A[d])µ.

Finally, our initial degree assignments for the generators of gim(A[d]), the gim

algebra relations like hi =[ei , fi ] and hµ=[eµ, fµ], and the fact that movement into
the 0 root space can only occur by bracketing an element from an im(A[d])µ space
with one from the im(A[d])−µ space all combine to lead us to the conclusion that

im(A[d])0 =
∑
µ∈1

[
im(A[d])µ, im(A[d])−µ

]
. �

3.2. im(A[d]) is centrally closed. Recall that a Lie algebra L is said to be perfect
if it equals its derived algebra, that is, L = [L , L]. Furthermore, if L is perfect and
is its own universal covering then we say that L is centrally closed [Moody and
Pianzola 1995].

Proposition 5. The algebra gim(A[d]) is a perfect Lie algebra.

Proof. Being a Lie algebra, gim(A[d]) is closed under the operation of taking brack-
ets; hence

[
gim(A[d]), gim(A[d])

]
⊂ gim(A[d]). To show the reverse inclusion, it

suffices to show that all of the generators of gim(A[d]) lie in
[
gim(A[d]), gim(A[d])

]
.

But this is indeed the case because the generators ei , fi , hi (for 1≤ i ≤ r ) and the
eµ,i , fµ,i , hµ,i , which arise from adjoining the i-th copy of a long root µ, satisfy
the relations (R1) of Definition 2. �

Our next theorem is Proposition 1.6 in [Benkart and Zelmanov 1996] adapted to
our context.

Theorem 6. The algebra im(A[d]) is centrally closed.

Proof. Let
(
Ũ , φ

)
be the universal covering algebra of im(A[d]). Let g be the

simple finite dimensional subalgebra of type B contained in im(A[d]) with Cartan
subalgebra h whose root space decomposition induces a BC-gradation on im(A[d]).
The preimage φ−1(h) of h contains kerφ. Since φ is a central map, kerφ lies in
the center of Ũ . So

h′ = φ−1(h)/ kerφ

acts on Ũ via the adjoint action. If h′ ∈ h′, φ(h′) = h ∈ h, and µ(t) ∈ C[t] is the
minimal polynomial of adUL (h), then

µ
(
adŨ (h

′)
)(

Ũ
)
⊂ kerφ.
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So adŨ (h
′) satisfies the polynomial tµ(t). Therefore Ũ is a sum of root spaces

with respect to adŨ h′, and Ũγ 6= (0) if and only if γ ∈ 1 ∪ {0}. So φ induces
an isomorphism between the nonzero root spaces of Ũ and those of im(A[d]).
Moreover,

Ũ0 =
∑
γ∈1

[
Ũ−γ , Ũγ

]
+ kerφ implies that

[
Ũ0, Ũ0

]
⊂

∑
γ∈1

[
Ũ−γ , Ũγ

]
.

Since Ũ =
[
Ũ , Ũ

]
, it follows that

Ũ0 =
[
Ũ0, Ũ0

]
+

∑
γ∈1

[
Ũ−γ , Ũγ

]
=

∑
γ∈1

[
Ũ−γ , Ũγ

]
.

Consequently, φ is an isomorphism. �

4. Recognition theorem

The following construction, given in Example 1.23 of [Allison et al. 2002], is a
more general version of the classical construction of so2r+1 (C), the simple Lie
algebra of type Br .

Let r be a positive integer, a be a unital associative algebra over C with an
involution (that is, period two antiautomorphism) η, C be a right a-module with a
hermitian form χ : C ×C→ a, that is a biadditive map χ : C ×C→ a satisfying

χ(c, c′ · a)= χ(c, c′) · a, χ(c · a, c′)= η(a) ·χ(c, c′), χ(c, c′)= η
(
χ(c′, c)

)
,

for c, c′ ∈ C , a ∈ a, and G be the (2r + 1)× (2r + 1) matrix

G =


0 0 · · · 0 1
0 0 · · · 1 0
...
...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0

 .

Also, given any c ∈ C , define χc ∈ C∗ by χc(c′) := χ(c, c′), for any c′ ∈ C , and
given any

c =

c1
...

cn

 ∈ C2r+1, define χc :=

χc1
...

χcn

 ∈ (C∗)2r+1
.

Now set

A(χ) :=
{

N ∈ Enda(C) : χ(Nc, c′)+χ(c, Nc′)= 0 for all c, c′ ∈ C
}
,

A :=

{[
M χc

ct G N

]
: M ∈M2r+1(a), (Mη)t G+G M = 0, c ∈ C2r+1, N ∈ A(χ)

}
.
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It can be checked that A is a Lie algebra that contains a simple Lie algebra

g=

{[
M 0
0 0

]
: M ∈M2r+1(C),M t G+G M = 0

}
,

of type Br . If h denotes the Cartan subalgebra of diagonal matrices in g, then the
adjoint action of h on A induces a root space decomposition

A=
⊕

µ∈1∪{0}

Aµ, where Aµ =
{
T ∈ A : [h, T ] = µ(h) T for all h ∈ h

}
.

The following abbreviated notation helps describe these root spaces:

for v =

 v1
...

v2r+1

 ∈ C2r+1 and c ∈ C, let vc :=

 v1c
...

v2r+1c

 ∈ C2r+1.

Then C2r+1
=
⊕2r+1

i=1 ei C , where e1, . . . , e2r+1 is the standard basis for C2r+1.
Letting B denote the set of skew-symmetric elements of a relative to the involution
η, we have

Aεi−ε j=
{

Ei, j (a)+ E2r+2− j,2r+2−i (−η(a)) : a ∈ a
}
, 1≤ i 6= j ≤ r,

Aεi+ε j=
{

Ei,2r+2− j (a)+ E j,2r+2−i (−η(a)) : a ∈ a
}
, 1≤ i, j ≤ r,

A−εi−ε j=
{

E2r+2−i, j (a)+ E2r+2− j,i (−η(a)) : a ∈ a
}
, 1≤ i, j ≤ r,

Aεi=

{[
0χei c

(e2r+2−i c)t 0

]
: c ∈ C

}
+
{

Ei,r+1(a)+ Er+1,2r+2−i (−η(a)) : a ∈ a
}
, 1≤ i ≤ r,

A−εi =

{[
0 χe2r+2−i c

(ei c)t 0

]
: c ∈ C

}
+
{

Er+1,i (a)+ E2r+2−i,r+1(−η(a)) : a ∈ a
}
, 1≤ i ≤ r,

A0 =

{ r∑
i=1

Ei i (a)+ E2r+2−i,2r+2−i (−η(a)) : a ∈ a
}
+

{[
0 0
0 N

]
: N ∈A(χ)

}

+
{

Er+1,r+1(b) : b ∈ B
}
+

{[
0 χer+1c

(er+1c)t 0

]
: c ∈ C

}
.

The subalgebra

so2r+1(a, η,C, χ) :=
∑
µ∈1

Aµ+
∑
µ∈1

[Aµ,A−µ]
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of A has the root spaces

so2r+1(a, η,C, χ)0 = so2r+1(a, η,C, χ)∩A0,

so2r+1(a, η,C, χ)µ = Aµ for µ ∈1.

In particular,

so2r+1(a, η,C, χ)0 =
∑
µ∈1

[
so2r+1(a, η,C, χ)µ, so2r+1(a, η,C, χ)−µ

]
.

Remark. In [Allison et al. 2002] the notation L is used to refer to the Lie algebra
that we are calling so2r+1(a, η,C, χ).

To shorten the description of elements in so2r+1(a, η,C, χ), we use the following
notation: Given any 1≤ k ≤ r and a ∈ a, let

Ek,r+1(a) := Ek,r+1(a)+ Er+1,2r+2−k(−η(a)),

Er+1,k(a) := Er+1,k(a)+ E2r+2−k,r+1(−η(a)),

and for any 1≤ p, q ≤ r and a ∈ a, let

E p,q(a) := E p,q(a)+ E2r+2−q,2r+2−p(−η(a)),

E p,2r+2−q(a) := E p,2r+2−q(a)+ Eq,2r+2−p(−η(a)),

E2r+2−p,q(a) := E2r+2−p,q(a)+ E2r+2−q,p(−η(a)).

We often also denote the involution η on a by ·̄ . So, for example, we would
write

E2r+2−p,q(a) (above) as E2r+2−p,q(a)+ E2r+2−q,p(−a).

Allison, Benkart, and Gao’s classification results on BCr -graded Lie algebras
[Allison et al. 2002] say the following in our setting:

Theorem 7 [Allison et al. 2002, Theorem 3.10]. Let r ≥ 3. Then L is BCr -graded
with grading subalgebra g of type Br if and only if there exists an associative
algebra a with involution η, and an a-module C with a hermitian form χ such that
L is centrally isogenous to the BCr -graded Lie algebra so2r+1(a, η,C, χ).

Since im(A[d]) is BCr -graded with a grading subalgebra of type Br and is
centrally closed, we have the following result.

Corollary 8. The intersection matrix algebra im(A[d]) is isomorphic to the uni-
versal covering algebra of the Lie algebra so2r+1(a, η,C, χ). In particular, there
exists a graded, central, surjective Lie algebra homomorphism

ψ : im(A[d])→ so2r+1(a, η,C, χ).
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5. Arriving at a “minimal” understanding of a, η, C, and χ

The graded nature of the map ψ : im(A[d])→ so2r+1(a, η,C, χ) along with the
relations among the generating elements of im(A[d]) allow us to study each of
components a, η, C , and χ involved in so2r+1(a, η,C, χ).

Since the elements e1+ r, . . . , er + r, f1+ r, . . . , fr + r, h1+ r, . . . , hr + r in
im(A[d]) generate a subalgebra isomorphic to a simple Lie algebra of type Br , and
since ψ is a graded homomorphism, we may assume without loss of generality that
(after relabeling the ei + r, fi + r, and hi + r as ei , fi , and hi , respectively)

ψ(ei )= Ei,i+1(1) for 1≤ i ≤ r − 1, ψ(er )= Er,r+1(
√

2),

ψ( fi )= Ei+1,i (1) for 1≤ i ≤ r − 1, ψ( fr )= Er+1,r (
√

2),

ψ(hi )= Ei,i (1)+ Ei+1,i+1(−1) for 1≤ i ≤ r − 1, ψ(hr )= Er,r (2).

Remark. Here we are using the notation established in Section 4. The generators
of im(A[d]) coming from a simple root α j ∈5 are denoted by e j , f j , and h j , while
the generators coming from an i-th copy of an adjoined root α ∈1Br are denoted
by eα,i , fα,i , and hα,si .

5.1. Understanding the invertibility of some coordinates of a.

Proposition 9. (i) Let eεp−εq ,i , fεp−εq ,i , hεp−εq ,i be the generators of im(A[d])
that result from adjoining the i-th copy of a long root εp − εq (1 ≤ p, q ≤ r ,
p 6= q). If

ψ(eεp−εq ,i )= E p,q(a)

for some a ∈ a, then a is an invertible element and

ψ( fεp−εq ,i )= Eq,p(a
−1).

(ii) Let eεp+εq ,i , fεp+εq ,i , hεp+εq ,i be the generators of im(A[d]) that result from
adjoining the i-th copy of a long root εp + εq (1≤ p, q ≤ r , p 6= q). If

ψ(eεp+εq ,i )= E p,2r+2−q(b)

for some b ∈ a, then b is an invertible element and

ψ( fεp+εq ,i )= E2r+2−q,p(b
−1).

(iii) Let e−εp−εq ,i , f−εp−εq ,i , h−εp−εq ,i be the generators of im(A[d]) that result
from adjoining the i-th copy of a long root −εp − εq (1≤ p, q ≤ r , p 6= q). If

ψ(e−εp−εq ,i )= E2r+2−p,q(c)
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for some c ∈ a, then c is an invertible element and

ψ( f−εp−εq ,i )= Eq,2r+2−p(c
−1).

Proof. (i) Since ψ is a graded homomorphism,

ψ(eεp−εq ,i )= E p,q(a) and ψ( fεp−εq ,i )= Eq,p(a
′)

for some a, a′ ∈ a. Without loss of generality, assume that p < q . Then[[
ψ(eεp−εq ,i ), ψ( fεp−εq ,i )

]
, ψ(eq)

]
=

{[[
E p,q(a), Eq,p(a

′)
]
, Eq,q+1(1)

]
if q < r,[[

E p,q(a), Eq,p(a
′)
]
, Er,r+1(

√
2)
]

if q = r,

=

{
Eq,q+1(−a′a) if q < r,

Er,r+1(−
√

2 a′a) if q = r.

But since[
eεp−εq ,i , fεp−εq ,i

]
=hεp−εq ,i =

[
hεp−εq ,i , eq

]
=

{
Aεp−εq ,εq−εq+1 eq if q < r,
Aεp−εq ,εr eq if q = r

=−eq

and ψ is a homomorphism,

[[
ψ(eεp−εq ,i ), ψ( fεp−εq ,i )

]
, ψ(eq)

]
=−ψ(eq)=

{
Eq,q+1(−1) if q < r,

Er,r+1(−
√

2) if q = r,

So whether q < r or q = r , we have

(1) a′a = 1.

We show that aa′ also equals 1. Indeed,[[
ψ(eεp−εq ,i ), ψ( fεp−εq ,i )

]
, ψ(ep)

]
=
[[

E p,q(a), Eq,p(a
′)
]
, E p,p+1(1)

]
=

{
E p,p+1(aa′) if q − p ≥ 2,

E p,p+1(aa′+ a′a) if q = p+ 1.

But because[[
eεp−εq ,i , fεp−εq ,i

]
, ep

]
= Aεp−εq ,εp−εp+1ep

= (1+ δq,p+1)ep =

{
ep if q ≥ p+ 2,
2ep if q = p+ 1,
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we have

[[
ψ(eεp−εq ,i ), ψ( fεp−εq ,i )

]
, ψ(ep)=

{
E p,p+1(1) if q ≥ p+ 2,

E p,p+1(2) if q = p+ 1.

So if q ≥ p+2, then aa′= 1. If q = p+1, then aa′+a′a = 2. But, by (1), a′a = 1.
Hence, in either case, aa′ = 1.

(ii) Since ψ is a graded homomorphism,

ψ(eεp+εq ,i )= E p,2r+2−q(b) and ψ( fεp+εq ,i )= E2r+2−q,p(b
′)

for some b, b′ ∈ a. Again without loss of generality, we may assume that p < q.
Then

[[
ψ(eεp+εq ,i ), ψ( fεp+εq ,i )

]
, ψ(eq)

]
equals{[[

E p,2r+2−q(b), E2r+2−q,p(b
′)
]
, Eq,q+1(1)

]
if q < r,[[

E p,2r+2−q(b), E2r+2−q,p(b
′)
]
, Er,r+1(

√
2)
]

if q = r,

=

{
Eq,q+1

(
η(b) η(b′)

)
if q < r,

Er,r+1

(√
2η(b) η(b′)

)
if q = r.

But it also equals

ψ
([[

eεp+εq ,i , fεp+εq ,i
]
, eq

])
= ψ(eq)=

{
Eq,q+1(1) if q < r,

Er,r+1(
√

2) if q = r,

whence η(b) η(b′)= 1. Applying (the antiautomorphism) η to both sides, we get
that

(2) b′b = 1.

To show that bb′ = 1, we first compute that

[[
ψ(eεp+εq ,i ), ψ( fεp+εq ,i )

]
, ψ(ep)

]
=

{
E p,p+1(bb′) if q ≥ p+ 2,

E p,p+1(bb′− η(b) η(b′)) if q = p+ 1.

Since[[
eεp+εq ,i , fεp+εq ,i

]
, ep

]
= Aεp+εq ,εp−εp+1 ep=(1−δq,p+1)ep=

{
ep if q ≥ p+ 2,
0 if q = p+ 1,

we also have

[[
ψ(eεp+εq ,i ), ψ( fεp+εq ,i )

]
, ψ(ep)

]
=

{
E p,p+1(1) if q − p ≥ 2,
0 if q = p+ 1.
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So if q ≥ p+2, then bb′= 1. If q = p+1, then bb′−η(b) η(b′)= 0, which implies,
using (2), that

bb′ = η(b) η(b′)= η(b′b)= η(1)= 1.

In either case, bb′ = 1.

(iii) The proof follows using similar calculations as above. �

5.2. Understanding the involution η on a.

Proposition 10. (i) If

ψ(eεp+εp+1,i )= E p,2r+2−(p+1)(a)

for some 1≤ p ≤ r − 1 and a ∈ a, then η(a)= a.

(ii) If
ψ(e−εp−εp+1,i )= E2r+2−p,p+1(b)

for some 1≤ p ≤ r − 1 and b ∈ a, then η(b)= b.

Proof. We prove (i). The proof of (ii) is similar. Observe that[
ψ(eεp+εp+1,i ), ψ(ep)

]
=
[
E p,2r+2−(p+1)(a), E p,p+1(1)

]
= E p,2r+2−p(a).

But Aεp+εp+1,εp−εp+1 = 0 implies that (ad eεp+εp+1,i )
−0+1ep =

[
eεp+εp+1,i , ep

]
= 0,

which, in turn, implies that
[
ψ(eεp+εp+1,i ), ψ(ep)

]
= 0. So

E p,2r+2−p(a)= E p,2r+2−p(a− η(a))= 0

and thus

(3) η(a)= a. �

5.3. Understanding the relations on generators of a.

Proposition 11. If , as a consequence of adjoining an i-th copy of the long root
εp − εq and a j-th copy of the long root εp + εq , where 1≤ p, q ≤ r with p 6= q,

ψ(eεp−εq ,i )= E p,q(s) and ψ
(
eεp+εq , j

)
= E p,2r+2−q(t),

for some s, t ∈ a, then:

(a) If |p− q| = 1, the elements s, t , and η(s) in a satisfy the relation

s · t = t · η(s).

(b) If |p− q| ≥ 2, the elements s, t, η(s), and η(t) in a satisfy the relation

s · η(t)= t · η(s).
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Proof. Observe that[
ψ(eεp−εq ,i ), ψ(eεp+εq , j )

]
=
[
E p,q(s), E p,2r+2−q(t)

]
= E p,2r+2−p(−s · η(t))

= E p,2r+2−p(−s · η(t)+ t · η(s))

=

{
E p,2r+2−p(−s · t + t · η(s)) if |p− q| = 1,
E p,2r+2−p(−s · η(t)+ t · η(s)) if |p− q| ≥ 2.

(The division into two cases in the last step follows from the use of (3).) But since
Aεp−εq ,εp+εq = 0, the generalized intersection matrix algebra relations tell us that(

ad eεp−εq ,i
)−0+1eεp+εq , j = 0.

That is,
[
eεp−εq ,i , eεp+εq , j

]
= 0. So we must have

[
ψ(eεp−εq ,i ), ψ(eεp+εq , j )

]
= 0.

This implies that

−s · t + t · η(s)= 0 if |p− q| = 1,

−s · η(t)+ t · η(s)= 0, if |p− q| ≥ 2. �

Similarly:

Proposition 12. If , as a consequence of adjoining an i-th copy of the long root
εp − εq and a j-th copy of the long root −εp − εq , where 1≤ p, q ≤ r with p 6= q ,

ψ(eεp−εq ,i )= E p,q(s) and ψ(e−εp−εq , j )= E2r+2−p,q(t),

for some s, t ∈ a, then:

(a) If |p− q| = 1, the elements s, t , and η(s) in a satisfy the relation

η(s) · t = t · s.

(b) If |p− q| ≥ 2, the elements s, t , η(s), and η(t) in a satisfy the relation

η(s) · t = η(t) · s.

5.4. A description of the module C. Since ψ is a graded, surjective homomor-
phism from im(A[d]) to so2r+1(a, η,C, χ) and we are only adjoining long roots,
we can examine the image of im(A[d]) under ψ to help us understand C .

Proposition 13. The module C is zero.

Proof. The generators of ψ
(
im(A[d])

)
all have the form

[
M 0
0 0

]
, M ∈ M2r+1(a).

Since the matrices of this form in so2r+1(a, η,C, χ) form a subalgebra and since
ψ is surjective, we have C = 0. �



REALIZATIONS OF BCr -GRADED INTERSECTION MATRIX ALGEBRAS 271

6. Achieving a “sufficient” understanding of a, η, C , and χ

In the previous section we used the homomorphism

ψ : im(A[d])→ so2r+1(a, η,C, χ),

given by the recognition theorem of [Allison et al. 2002] to get a sense (i) of what
the generators of a ought to be, (ii) of what the involution η on a ought to be, (iii) of
what the relations on the generators of a ought to be, and (iv) that C = 0 and χ = 0.

In this section, we show that the understanding we have arrived at is complete.
We do so as follows:

1. Take the 4-tuple of associative algebra, involution, module, and hermitian form
as we presently understand it. That is:

(i) Let �= the set of all long roots of the form±(εi+εi+1) that we have adjoined,
2= the set of all long roots in 1B which we have adjoined but that are
not in �,

and let

Xe =
⋃
ω∈�

{
xω,1, . . . , xω,Nω

}
, X f =

⋃
ω∈�

{
x−1
ω,1, . . . , x−1

ω,Nω

}
,

Ye =
⋃
θ∈2

{
yθ,1, . . . , yθ,Nθ

}
, Y f =

⋃
θ∈2

{
y−1
θ,1, . . . , y−1

θ,Nθ

}
,

Ze =
⋃
θ∈2

{
zθ,1, . . . , zθ,Nθ

}
, Z f =

⋃
θ∈2

{
z−1
θ,1, . . . , z−1

θ,Nθ

}
,

denote collections of indeterminates indexed by the sets � and 2. Let b be
the unital associative C-algebra generated by the indeterminates in

Xe ∪ X f ∪ Ye ∪ Y f ∪ Ze ∪ Z f ,

subject to the relations

yεp−εq ,i xεp+εq , j = xεp+εq , j zεp−εq ,i ,

yεp−εq ,i zεp+εq , j = yεp+εq , j zεp−εq ,i ,

zεp−εq ,i x−εp−εq ,k = x−εp−εq ,k yεp−εq ,i ,

zεp−εq ,i y−εp−εq ,k = z−εp−εq ,k yεp−εq ,i ,

where i =1, . . . , Nεp−εq for εp−εq ∈2, j =1, . . . , Nεp+εq for εp+εq ∈�∪2,
and k = 1, . . . , N−εp−εq for −εp − εq ∈�∪2.

(ii) Define an involution, which we also call η and sometimes denote by ·̄ , on b by

η(xω,i )= xω,i if ω ∈� and 1≤ i ≤ Nω,
η(yθ,i )= zθ,i if θ ∈2 and 1≤ i ≤ Nθ ,
η(zθ,i )= yθ,i if θ ∈2 and 1≤ i ≤ Nθ .
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(iii) Let C = 0 be the trivial b-module.

(iv) Let χ = 0 be a hermitian form on C .

Remarks. (a) The indeterminates in Xe ∪ X f ∪ · · · ∪ Z f are intended to capture
the elements of the form a, a′, b, b′, c, and c′ of a that we studied in Section 5,
which arose from the images of the map ψ .

(b) In the relations listed above, our use of the indeterminates xεp+εq , j and x−εp−εq , j

signals that we are working with roots in � and, hence, |p− q| = 1 in this
setting. Likewise, our use of the indeterminates yεp+εq , j , zεp+εq , j , y−εp−εq , j ,
and z−εp−εq , j signals that we are working with roots in 2 and p, q such that
|p− q| ≥ 2.

2. Construct a map

ϕ : gim(A[d])→ so2r+1(b, η,C, χ)

sending the generators

e1, . . . , er ,
⋃
ω∈� {eω,1, . . . , eω,Nω},

⋃
θ∈2 {eθ,1, . . . , eθ,Nθ },

f1, . . . , fr ,
⋃
ω∈� { fω,1, . . . , fω,Nω},

⋃
θ∈2 { fθ,1, . . . , fθ,Nθ },

h1, . . . , hr ,
⋃
ω∈� {hω,1, . . . , hω,Nω},

⋃
θ∈2 {hθ,1, . . . , hθ,Nθ },

of gim(A[d]) to

ẽ1, . . . , ẽr ,
⋃
ω∈� {ẽω,1, . . . , ẽω,Nω},

⋃
θ∈2 {ẽθ,1, . . . , ẽθ,Nθ }

f̃1, . . . , f̃r ,
⋃
ω∈� { f̃ω,1, . . . , f̃ω,Nω},

⋃
θ∈2 { f̃θ,1, . . . , f̃θ,Nθ },

h̃1, . . . , h̃r ,
⋃
ω∈� {h̃ω,1, . . . , h̃ω,Nω},

⋃
θ∈2 {h̃θ,1, . . . , h̃θ,Nθ },

respectively, where

ẽi := Ei,i+1(1), 1≤ i ≤ r − 1,

ẽr := Er,r+1(
√

2),

ẽω,i :=

E p,2r+2−(p+1)(xω,i ) if ω = εp + εp+1,

E2r+2−p,p+1(xω,i ) if ω =−εp − εp+1,
for ω ∈� and 1≤ i ≤ Nω,

ẽθ,i :=


E p,q(yθ,i ) if θ = εp − εq ,

E p,2r+2−q(yθ,i ) if θ = εp + εq ,

E2r+2−p,q(yθ,i ) if θ =−εp − εq ,

for θ ∈2 and 1≤ i ≤ Nθ ,
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f̃i := Ei+1,i (1), 1≤ i ≤ r − 1,

f̃r := Er+1,r (
√

2),

f̃ω,i :=

E2r+2−(p+1),p(x
−1
ω,i ) if ω = εp + εp+1,

E p+1,2r+2−p(x
−1
ω,i ) if ω =−εp − εp+1,

for ω ∈� and 1≤ i ≤ Nω,

f̃θ,i :=


Eq,p(y

−1
θ,i ) if θ = εp − εq ,

E2r+2−q,p(y
−1
θ,i ) if θ = εp + εq ,

Eq,2r+2−p(y
−1
θ,i ) if θ =−εp − εq ,

for θ ∈2 and 1≤ i ≤ Nθ ,

h̃i := Ei,i (1)+ Ei+1,i+1, 1≤ i ≤ r − 1,

h̃r := Er,r (2),

h̃ω,i :=

E p,p(1)+ E p+1,p+1(1) if ω = εp + εp+1

E p,p(−1)+ E p+1,p+1(−1) if ω =−εp − εp+1

for ω ∈�, 1≤ i ≤ Nω,

h̃θ,i :=


E p,p(1)+ Eq,q (−1) if θ = εp − εq ,

E p,p(1)+ Eq,q (1) if θ = εp + εq ,

E p,p(−1)+ Eq,q (−1) if θ =−εp − εq ,

for θ ∈2 and 1≤ i ≤ Nθ .

3. We show that ϕ is

(a) a Lie algebra homomorphism (Theorem 14),

(b) that is surjective (Proposition 15), and

(c) graded (Proposition 16).

4. We show that the radical r of gim(A[d]) lies in the kernel of this map ϕ (see just
before Proposition 17), hence inducing a surjective, graded, Lie algebra homomor-
phism

φ : im(A[d])→ so2r+1(b, η,C, χ).

5. Finally, we show that φ is a central map and that b∼= a (Proposition 18).

Theorem 14. The map ϕ : gim(A[d])→ so2r+1(b, η,C, χ) is a Lie algebra homo-
morphism.

Proof. We show that the images in so2r+1(b, η,C, χ) of the generators of gim(A[d]),
under the map ϕ, satisfy the relations (R1)–(R3) of Definition 2 with respect to
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the same (r + d) × (r + d) generalized intersection matrix A[d] as used in the
construction of the algebra gim(A[d]).

While working with the various long roots in our proof, we use labels like u or
v to denote the indeterminates xω,i or yθ,i .

The reason that we can substitute u or v for the actual indeterminates is that the
result of taking a bracket like[

ẽ−εp−εq ,i , ẽ−εk−εl , j
]
=
[
E2r+2−p,q(y−εp−εq ,i ), E2r+2−k,l(y−εk−εl , j )

]
depends primarily on the indices p, q , k, and l rather than on the particular elements
of the algebra b being housed at these sites.

If we agree on this convention of using substitute variables like u, then we must
recognize that

u =
{

xω,i if u = xω,i ,
zθ,i if u = yθ, j .

That is, the involution ·̄ applied to u depends on whether u is substituting for a
variable associated to a root in � or a root in 2.

We show the computations for the interactions between the generators corre-
sponding to the long roots εp − εq and εk − εl . The remaining computations are
similar.

Let 1 ≤ p, q, k, l ≤ r with p 6= q and k 6= l, u, v ∈ {xω,i , xω, j , yθ,i yθ, j }

and u−1, v−1
∈
{

x−1
ω,i , x−1

ω, j , y−1
θ,i y−1

θ, j

}
, where ω ∈ �, θ ∈ 2, and 1 ≤ i, j ≤ Nω

or 1≤ i, j ≤ Nθ .
Using the definition of Aεp−εq ,εk−εl , we see that

Aεp−εq ,εk−εl = δp,k − δp,l − δq,k + δq,l =



0 if p, q /∈ {k, l},
1 if p = k but q 6= l,
−1 if p = l but q 6= k,
−1 if p 6= l but q = k,

1 if p 6= k but q = l,
2 if p = k and q = l,
−2 if p = l and q = k.

A.
[
ẽεp−εq ,i , ẽεk−εl , j

]
=
[
E p,q(u), Ek,l (v)

]
= δq,k E p,l (uv)+ δl,p Ek,q (−vu)

=


Ek,q (−vu) if p = l but q 6= k,

E p,l (uv) if p 6= l but q = k,

E p,p(uv)+ Eq,q (−vu) if p = l and q = k,
0 otherwise.

• If p = l but q 6= k, then
[
E p,q(u), Ek,q (−vu)

]
= 0 because q 6= k and q 6= p.
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• If p 6= l but q = k, then
[
E p,q(u), E p,l (uv)

]
= 0 because q 6= p and l 6= p.

• If p = l and q = k, then[
E p,q(u), E p,p(uv)+ Eq,q (−vu)

]
= E p,q(−uvu)+ E p,q(−uvu)

= E p,q(−2uvu).

So (
ad ẽεp−εq ,i

)1+1ẽεk−εl , j =

{
E p,q(−2uvu) if p = l and q = k,
0 otherwise.

Since
[
E p,q(u), E p,q(−2uvu)

]
= 0, we get

(
ad ẽεp−εq ,i

)2+1ẽεk−εl , j = 0.

B.
[

f̃εp−εq ,i , f̃εk−εl , j
]
=
[
Eq,p(u

−1), El,k (v
−1)
]

= δp,l Eq,k (u
−1v−1)+ δk,q El,p (−v

−1u−1)

=


Eq,k (u

−1v−1) if p = l but q 6= k,

El,p (−v
−1u−1) if p 6= l but q = k,

E p,p(−v
−1u−1)+ Eq,q (u

−1v−1) if p = l and q = k,
0 otherwise.

• If p = l but q 6= k, then
[
Eq,p(u

−1), Eq,k (u
−1v−1)

]
= 0 because p 6= q

and k 6= q .

• If p 6= l but q = k, then
[
Eq,p(u

−1), El,p (−v
−1u−1)

]
= 0 because p 6= l

and p 6= q .

• If p = l and q = k, then[
Eq,p(u

−1), E p,p(−v
−1u−1)+ Eq,q (u

−1v−1)
]

= Eq,p(−u−1v−1u−1)+ Eq,p(−u−1v−1u−1)

= Eq,p
(
−2u−1v−1u−1) .

So(
ad f̃εp−εq ,i

)1+1 f̃εk−εl , j =

{
Eq,p(−2u−1v−1u−1) if p = l and q = k,
0 otherwise.

Since
[
Eq,p(u

−1), Eq,p(−2u−1v−1u−1)
]
= 0, we get that

(ad f̃εp−εq ,i )
2+1 f̃εk−εl , j = 0.
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C.
[
h̃εp−εq ,i , h̃εk−εl , j

]
=
[
E p,p(1)+ Eq,q (−1), Ek,k (1)+ El,l (−1)

]
= δp,k E p,p([1,1])+δp,l E p,p([1,−1])+δq,k Eq,q([−1,1])+δq,l Eq,q([−1,−1])

= δp,k E p,p(0)+ δp,l E p,p(0)+ δq,k Eq,q (0)+ δq,l Eq,q (0)

= 0

D.
[
ẽεp−εq ,i , f̃εk−εl , j

]
=
[
E p,q(u), El,k (v

−1)
]

= δq,l E p,k
(
u v−1)

+ δk,p El,q
(
−v−1 u

)

=


El,q (−v

−1u) if p = k but q 6= l,

E p,k (uv
−1) if p 6= k but q = l,

E p,p(uv
−1)+ Eq,q (−v

−1u) if p = k and q = l,
0 otherwise.

• If p= k but q 6= l, then
[
E p,q(u), El,q (−v

−1u)
]
= 0 because q 6= l and q 6= p.

• If p 6= k but q = l, then
[
E p,q(u), E p,k (uv

−1)
]
= 0 because q 6= p and k 6= p.

• If p = k and q = l, then[
E p,q(u), E p,p(uv

−1)+ Eq,q (−v
−1u)

]
= E p,q(−uv−1u)+ E p,q(−uv−1u)

= E p,q(−2uv−1u).

So (
ad ẽεp−εq ,i

)1+1 f̃εk−εl , j =

{
E p,q(−2uv−1u) if p = k and q = l,
0 otherwise.

Since
[
E p,q(u), E p,q(−2uv−1u)

]
= 0, we get that

(
ad ẽεp−εq ,i

)2+1 f̃εk−εl , j = 0.

E.
[

f̃εp−εq ,i , ẽεk−εl , j
]
=
[
Eq,p(u

−1), Ek,l (v)
]

= δp,k Eq,l (u
−1v)+ δl,q Ek,p (−vu−1)

=


Eq,l (u

−1 v) if p = k but q 6= l,

Ek,p (−v u−1) if p 6= k but q = l,

E p,p(−v u−1)+ Eq,q (u
−1 v) if p = k and q = l,

0 otherwise.

• If p= k but q 6= l, then
[
Eq,p(u

−1), Eq,l (u
−1v)

]
= 0 because p 6= q and l 6= q .
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• If p 6= k but q = l, then
[
Eq,p(u

−1), Ek,p (−v u−1)
]
= 0 because p 6= k

and p 6= q .

• If p = k and q = l, then[
Eq,p(u

−1), E p,p(−vu−1)+Eq,q (u
−1v)

]
= Eq,p(−u−1vu−1)+Eq,p(−u−1vu−1)

= Eq,p(−2u−1vu−1).

So (
ad f̃εp−εq ,i

)1+1ẽεk−εl , j =

{
Eq,p(−2u−1vu−1) if p = k and q = l,
0 otherwise.

Since
[
Eq,p(u

−1), Eq,p(−2u−1vu−1)
]
= 0, we get

(ad f̃εp−εq ,i )
2+1ẽεk−εl , j = 0.

F.
[
h̃εp−εq ,i , ẽεk−εl , j

]
=
[
E p,p(1)+ Eq,q (−1), Ek,l (v)

]
= δp,k E p,l (v)+ δl,p Ek,p (−v)+ δq,k Eq,l (−v)+ δl,q Ek,q (v)

= δp,k Ek,l (v)− δp,l Ek,l (v)− δq,k Ek,l (v)+ δq,l Ek,l (v)

= (δp,k − δp,l − δq,k + δq,l)Ek,l (v)

= Aεp−εq ,εk−εl ẽεk−εl , j .

G.
[
h̃εp−εq ,i , f̃εk−εl , j

]
=
[
E p,p(1)+ Eq,q (−1), El,k (v

−1)
]

= δp,l E p,k (v
−1)+ δk,p El,p (−v

−1)+ δq,l Eq,k (−v
−1)+ δk,q El,q (v

−1)

= δp,l El,k (v
−1)− δp,k El,k (v

−1)− δq,l El,k (v
−1)+ δq,k El,k (v

−1)

=−(δp,k − δp,l − δq,k + δq,l)El,k (v
−1)

=−Aεp−εq ,εk−εl f̃εk−εl , j �

Proposition 15. The map ϕ : gim(A[d])→ so2r+1(b, η,C, χ) is a surjective Lie
algebra homomorphism.

Proof. Let B = Im(ϕ) ⊆ L , where L = so2r+1(b, η,C, χ). We show that B = L
in a sequence of steps.

#1. Let g=
{

M ∈M2r+1(C) : M t G =−G M
}

and

s=
{

M ∈M2r+1(C) : M t G = G M, tr(M)= 0
}
.
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Let A = {a ∈ b : ηa = a} and B = {b ∈ b : ηb =−b}. If 0 6= a ∈ A, then ag is an
irreducible g-submodule of B with highest weight ε1+ ε2. If 0 6= b ∈B, then bs is
an irreducible g-submodule of B with highest weight 2ε1. These g-modules are
not isomorphic.

#2. B is a subalgebra of L containing g, so B is a g-submodule of L .
#3. For 1≤ p, q ≤ 2r + 1, p 6= q , p 6= 2r + 2− q , let

Ipq =
{

x ∈ b : E pq(x)− E2r+2−q,2r+2−p(ηx) ∈B
}
.

Notice that Ipq is a subspace of B.
#4. Ipq is invariant under η. Indeed, let x ∈ Ipq , in which case

X := E pq(x)− E2r+2−q,2r+2−p(ηx) ∈B.

But X = X1+X2, where X1=
1
2(x+ηx)

(
E pq(1)−E2r+2−q,2r+2−p(1)

)
∈ (x+ηx)g

and X2 =
1
2(x − ηx)

(
E pq(1)+ E2r+2−q,2r+2−p(1)

)
∈ (x − ηx)s. Thus, by #1 and

#2, X1, X2 ∈B. So x + ηx, x − ηx ∈ Ipq , which implies that ηx ∈ Ipq .
#5. By #4, Ipq = Ipq ∩ A+ Ipq ∩ B. But by #1 and #2, Ipq ∩ A and Ipq ∩ B are

independent of p, q . So I := Ipq is independent of p, q .
#6. We have[

E12(x)−E2r,2r+1(ηx), E23(y)−E2r−1,2r (ηy)
]
=E13(xy)−E2r−1,2r+1

(
(ηy)(ηx)

)
.

So, by #5, I is a subalgebra of B, and, by #4, I is invariant under η.
#7. The action of ϕ on the generators of gim(A[d]) tells us that I contains the

elements xω,i , x−1
ω,i , yθ,i , y−1

θ,i . So by #6, I =B.
#8. By #7, we have Ag+ Bs ⊆B. But since C = {0}, we have

∑
α∈1 Lα ⊆

Ag+ Bs. So
∑

α∈1 Lα ⊆B. Hence, since B is a subalgebra of L , B= L . �

Continuing our plan laid out on page 273, we next show that ϕ : gim(A[d])→
so2r+1(b, η,C, χ) is a graded homomorphism and that it induces a map from
im(A[d]) to so2r+1(b, η,C, χ).

We saw in Sections 3 and 4, respectively, that gim(A[d]) and so2r+1(b, η,C, χ)
are both 0-graded Lie algebras, where

0 =
⊕
µ∈1

Zαµ.

The map ϕ : gim(A[d])→ so2r+1(b, η,C, χ) is engineered so that, for all α ∈ 0,

ϕ
(
gim(A[d])α

)
⊂ so2r+1(b, η,C, χ)α.

That is, the following result holds by design.

Proposition 16. The map ϕ : gim(A[d]) → so2r+1(b, η,C, χ) is also a graded
homomorphism.
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Moreover, since so2r+1(b, η,C, χ)γ = 0 for γ /∈1∪{0}, we get that the radical r
of gim(A[d]) lies in the kernel of ϕ.

Proposition 17. There exists a surjective, graded Lie algebra homomorphism

φ : im(A[d])→ so2r+1(b, η,C, χ)

given by φ(u+ r)= ϕ(u) for any u+ r ∈ im(A[d]), where u ∈ gim(A[d]).

We now turn to centrality. Let so(a) and so(b) be shorthand for so2r+1(a, η,C, χ)
and so2r+1(b, η,C, χ), respectively.

Since the elements of a satisfy the defining relations of b, by universality, there
exists a surjective associative algebra homomorphism g : b→ a. In particular,
g(xω,i ) = a ∈ a if ψ(eω,i ) = E pq(a)− E2r+2−q,2r+2−p(ηa), and g(yθ,i ) = b ∈ a
if ψ(eθ,i )= E pq(b)− E2r+2−q,2r+2−p(ηb). This algebra homomorphism respects
the involution and induces a surjective Lie algebra homomorphism

g̃ : so(b)→ so(a) such that g̃φ = ψ.

Hence kerφ ⊂ kerψ ⊂ z
(
im(A[d])

)
, where z

(
im(A[d])

)
denotes the center of

im(A[d]). Thus kerφ ⊂ z
(
im(A[d])

)
, implying the following result:

Proposition 18. The map φ : im(A[d])→ so(b) is a central homomorphism.

We also know that ψ : im(A[d])→ so(a) is a universal central extension: so
there exists a Lie algebra homomorphism f̃ : so(a)→ so(b) such that f̃ψ = φ.
Since ψ is surjective, the generators of a are of the form a, a−1, η(a), where a is
the element in a corresponding to the image ψ(eλ,i ) of the i-th copy of a long root
λ in 1B which was adjoined.

Since f̃ψ = φ, the map f̃ induces an associative algebra homomorphism
f : a→ b given by

f (a)=



xω,i if a is the element in a corresponding to
the image ψ(eω,i )= E pq(a)− E2r+2−q,2r+2−p(ηa)
for some 1≤ p, q ≤ 2r + 1 with p 6= q, p 6= 2r + 2− q
and ω ∈�, 1≤ i ≤ Nω,

yθ,i if a is the element in a corresponding to
the image ψ

(
eθ,i
)
= E pq(a)− E2r+2−q,2r+2−p(ηa)

for some 1≤ p, q ≤ 2r + 1 with p 6= q , p 6= 2r + 2− q
and θ ∈2, 1≤ i ≤ Nθ .

We define f (ηa) to be η f (a) so that f preserves the involution.
But then g ◦ f = ida and f ◦ g = idb, that is, a∼= b as associative algebras.
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