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AN ANALOGUE TO THE WITT IDENTITY

G. A. T. F. DA COSTA AND G. A. ZIMMERMANN

We solve combinatorial and algebraic problems associated with a multi-
variate identity first considered by Sherman, which he called an analog to
the Witt identity. We extend previous results obtained for the univariate case.

1. Introduction

S. Sherman [1962] considered the formal identity in the indeterminates z1, . . . , zn ,

(1-1)
∏

m1,...,m R≥0

(1+ zm1
1 · · · z

m R
R )N+(1− zm1

1 · · · z
m R
R )N− =

R∏
j=1

(1+ z j )
2,

where N+ and N− are the number of distinct classes of equivalence of nonperiodic
closed paths with positive and negative signs, respectively, which traverse without
backtracking mi times edge i , i = 1, . . . , R, of a graph G R with R > 1 edges
forming loops counterclockwise oriented and hooked to a single vertex,

∑
mi ≥ 1.

Sherman [1962] refers to (1-1) as an analog to the Witt identity. The reason
will become clear soon. The Sherman identity, as we call it, is a special nontrivial
case of another identity called the Feynman identity, first conjectured by Richard
Feynman. This identity relates the Euler polynomial of a graph to a formal product
over the classes of equivalence of closed nonperiodic paths with no backtracking in
the graph, and it is an important ingredient in a combinatorial formulation of the
Ising model in two dimensions, much studied in physics. The Feynman identity was
proved for planar and toroidal graphs by Sherman [1960], and in great generality
by M. Loebl [2004] and D. Cimasoni [2010].

Sherman compared (1-1) with the multivariate Witt identity [Witt 1937]:

∏
m1,...,m R≥0

(1− zm1
1 · · · z

m R
R )M(m1,...,m R) = 1−

R∑
i=1

zi ,(1-2)

M(m1, . . . ,m R)=
∑

g|m1,...,m R

µ(g)
g

(N/g)!
(N/g)(m1/g)! · · · (m R/g)!

(1-3)
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where N = m1+ · · ·+m R > 0, µ is the Möbius function defined by the rules

(a) µ(+1)=+1,

(b) µ(g)= 0, for g = pe1
1 · · · p

eq
q , p1, . . . , pq primes, and any ei > 1,

(c) µ(p1 · · · pq)= (−1)q .

The summation runs over all the common divisors of m1, . . . ,m R .
Originally, the Witt identity appeared associated with Lie algebras. In this

context the formula gives the dimensions of the homogeneous subspaces of a finitely
generated free Lie algebra L . If L(m1, . . . ,m R) is the subspace of L generated
by all homogeneous elements of multidegree (m1, . . . ,m R), then dim L = M.
However, formula (1-3) has many applications in combinatorics as well [Moree
2005]. Especially relevant is that M can be interpreted as the number of equivalence
classes of closed nonperiodic paths which traverse counterclockwise the edges of
G R , the same graph associated to the Sherman identity (1-1). This property is stated
in [Sherman 1962] without a proof, but this combinatorial interpretation of the Witt
formula can be reinterpreted as a coloring problem of a necklace with N beads with
colors chosen out of a set of R colors such that the colored beads form a nonperiodic
configuration. In other words, M(m1, . . . ,m R) is the number of nonperiodic colored
necklaces composed of mi occurrences of the color i , i = 1, . . . , R.

Sherman [1962] called attention to this association of identities (1-1) and (1-2)
to paths in the same graph, which motivated him to consider the problem of finding
a relation between (1-1) and Lie algebras. To interpret (1-1) in algebraic terms
means to relate the exponents N± to some Lie algebraic data.

An investigation of Sherman’s problem was initiated in [da Costa 1997; da Costa
and Variane 2005] and a solution obtained for the univariate case of identity (1-1).
In the present paper we solve the problem in the multivariate formal case, which
requires important improvements. The counting method developed in [da Costa
1997; da Costa and Variane 2005] is based on a sign formula for a path given in
terms of data encoded in the word representation for the path. It played a crucial
role in getting formulas for N± in the univariate case. However, the counting
method based on this sign formula is complicated. In the present paper we make
improvements in the counting method in order to apply it to the multivariate case
without depending too much on the sign formula. The formula is used here only to
prove a simple lemma.

S-J. Kang and M-H. Kim [1999] derived dimension formulas for the homoge-
neous spaces of general free graded Lie algebras. We use some of their results
to solve Sherman’s problem. At the same time our results give a combinatorial
realization for some of theirs in terms of paths in a graph.

The paper is organized as follows. In Section 2, we recall the word representation
of a path and some basic definitions. We prove a basic lemma about the distribution
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of signs in the set of words of a given length. In Section 3, we compute formulas
for the number of equivalence classes of closed nonperiodic paths of given length.
The first of these generalizes Witt’s formula in the sense that it counts paths that
traverse the edges of the graph without backtracking. The other formulas give the
exponents in Sherman’s identity (1-1). We also interpret these formulas in terms of
a coloring problem. Sherman’s problem, that is, to give an algebraic meaning to
the exponents in (1-1) is solved in Section 4.

2. Preliminaries

A path in G R is an ordered sequence of the edges which does not necessarily respect
their orientation. A path is closed and subjected to the constraint that it never goes
immediately backwards over a previous edge.

Given Gr ⊆ G R , denote by i1, . . . , ir an enumeration of the edges of Gr in
increasing order. A closed path of length N ≥ r in Gr is best represented by a word
of the form

(2-1) D
e j1
j1 D

e j2
j2 · · · D

e jl
jl

where l = r, r + 1, . . . , N , jk ∈ {i1, . . . , ir }, jk 6= jk+1, jl 6= j1, and

l∑
k=1

|e jk | = N .

All edges of Gr are traversed by a path such that each ik appears at least once in
the sequence Sl = ( j1, j2, . . . , jl). The order in which the symbols De j

j appear in
the word indicates the edges traversed by p and in which order. If the sign of e j is
positive, the path traverses edge j exactly e j times following the edge’s orientation;
if negative, it traverses the edge |e j | times in the opposite direction.

A word is called periodic if it equals

(D
e j1
j1 D

e j2
j2 · · · D

e jα
jα )

g

for some g > 1. The number g is called the period of the word if the word in
parentheses is nonperiodic.

Permuting the symbols De j
j in (2-1) cyclically, one gets l words that represent

the same closed path. (For example, D−2
1 D+1

2 D+1
1 D+3

2 is a cyclic permutation of
D+1

2 D+1
1 D−3

2 D−2
1 .) Words obtained from one another by a cyclic permutation are

taken to be equivalent for this reason. Although the word (2-1) and its inverse

D
−e jl
jl · · · D

−e j1
j1

also represent the same path, they are not taken as equivalent here. This is the
reason for the exponent 2 on the right side of (1-1), also present in [Sherman 1962].
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In Section 3 we consider signed paths. The sign of a path is given by the formula

(2-2) sign(p)= (−1)1+n(p),

where n(p) is the number of integral revolutions of the tangent vector of p. From
this definition it follows that if p = (h)g is a periodic path with odd period g, then
sign(p)= sign(h). If g is even, sign(p)=−1. The sign of a path can be computed
from its word representation (2-1) using the formula [da Costa and Variane 2005]

(2-3) (−1)N+l+T+s+1,

where T is the number of subsequences in the decomposition of Sl into subse-
quences (see [da Costa and Variane 2005] for the definition and an example of a
decomposition) and s is the number of negative exponents in (2-1). It follows from
the previous sign formulas that periodic words with even period have negative sign.

The following lemma is important in the proof of several results in Section 3. It
was assumed in [da Costa 1997; da Costa and Variane 2005] without a proof.

Lemma 2.1. Given Gr ⊆ G R , consider all paths that traverse each edge of Gr at
least once (no backtracking allowed) and the set of all representative words (periodic
or not, cyclic permutations and inversions included) of fixed length N ≥ r > 1. Then
half of the words have positive sign and the other half have negative sign.

Proof. It suffices to consider the subset of words associated to a fixed sequence
Sl = ( j1, j2, . . . , jl). For this sequence the numbers N , l, and T are fixed. The
words with these numbers have signs which depend only on s ∈ {0, 1, 2, . . . , l}.
For N + l + T even, the sign of a word is (−1)s+1. If l = 2k, then, for each odd
value of s, there are (

2k
s

)
words with positive sign. Summing over the odd values of s, we get the total number
of 22k−1 words with positive sign. Summing over the even values of s, we get the
same number of words with negative sign. If l = 2k+ 1, a similar counting gives
22k words with positive (negative) signs. The case N + l + T odd is analogous. �

3. Counting paths in Gr

Fix a subgraph Gr ⊆G R . Given distinct edges i1, . . . , ir in Gr and positive integers
mi1, . . . ,mir , with mi1 + · · · +mir = N > r , let θ±(mi1, . . . ,mir ) be the number
of equivalence classes of closed nonperiodic paths of length N with ± signs that
traverse each edge i j exactly mi j times, for j = 1, . . . , r , with no backtracking,
and traverse the edges in G R\Gr zero times. In this section we derive formulas for
θ := θ++ θ− and θ±. Notice that θ± is just another name for the exponents N± in
(1-1) showing only the nonzero entries in N±.
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Firstly, we compute θ . In the case r = 1, a path with mi > 1 is periodic. The
nonperiodic ones are two, the path with length N = 1 and its inversion so that
θ(mi )= 0 if mi > 1 and θ(mi )= 2 if mi = 1. In other cases, θ is given as follows.

Theorem 3.1. For r = 2, define

(3-1) F

(
mi1

g
,

mi2

g

)
=

M/g∑
a=1

22a

a

(
mi1/g− 1

a− 1

)(
mi2/g− 1

a− 1

)
,

where M =min{mi1,mi2} and, if r ≥ 3,

(3-2) F

(
mi1

g
, . . . ,

mir

g

)
=

N/g∑
a=r

2a

a

∑
{Sa}

r∏
c=1

(
mic/g− 1

tic − 1

)
where {Sa} is the set of sequences ( j1, . . . , ja) such that jk ∈ {i1, . . . , ir } and
jk 6= jk+1, ja 6= j1. Number tic counts how many times edge ic occurs in a sequence
Sa . Use is made of the convention that the combination symbol in (3-2) is zero
whenever tic > mic/g. Then

(3-3) θ(mi1, . . . ,mir )=
∑

g|mi1 ,...,mir

µ(g)
g

F

(
mi1

g
, . . . ,

mir

g

)
.

The summation is over all the common divisors g of mi1, . . . ,mir , and µ(g) is the
Möbius function.

Proof. The number K(l,mi1, . . . ,mir ) of words that have the same values of
mi1, . . . ,mir and l ∈ {r, r + 1, . . . , N } is given by

K(l,mi1, . . . ,mir )= 2l
∑
{Sl }

r∏
c=1

(
mic − 1
nic − 1

)
.

Let’s explain this formula a bit. The number nic counts the number of occurrences of
edge ic in a sequence Sl = ( j1, . . . , jl). The combination symbol counts the number
of unrestricted partitions of mic into nic nonzero positive parts [Andrews 1976];
thus the product times 2l (there are 2l ways of assigning ± signs to the exponents in
(2-1)) gives the total number of words representing paths traversing each edge i j of
Gr ⊆ G R exactly mi j times in all possible ways. Then we sum over all sequences
Sl with the convention that a combination symbol equals zero when m < n.

In the set of K(l,mi1, . . . ,mir ) words, there is the subset of nonperiodic words
plus their cyclic permutations and inversions, and the subset of periodic words,
if any, whose periods are the common divisors of l,mi1, . . . ,mir plus their cyclic
permutations and inversions. Denote by K(l,mi1, . . . ,mir ) the number of elements
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in the former set. The words with period g are of the form

(D
ek1
k1

D
ek2
k2
· · · Dekα

kα )
g

where α = l/g and D
ek1
k1

D
ek2
k2
· · · Dekα

kα is nonperiodic so that the number of periodic
words with period g plus their cyclic permutations and inversions is given by
K(l/g,mi1/g, . . . ,mir /g). Therefore,

K(l,mi1, . . . ,mir )=
∑

g|l,k,mi1 ,...,mir

K

(
l
g
,

mi1

g
, . . . ,

mir

g

)
.

The summation is over all the common divisors g of l,mi1, . . . ,mir .
Applying the Möbius inversion formula [Apostol 1976], it follows that

(3-4) K(l,mi1, . . . ,mir )=
∑

g|(l,mi1 ,...,mir )

µ(g)K
(

l
g
,

mi1

g
, . . . ,

mir

g

)
.

where µ is the Möbius function. To eliminate cyclic permutations divide (3-4) by
l. Summing over all possible values of l one gets

(3-5) θ(mi1, . . . ,mir )=

N∑
l=r

K(l,mi1, . . . ,mir )

l
.

Upon substitution of (3-4) into (3-5) one gets, for the case r ≥ 3,

θ(mi1, . . . ,mir )=

N∑
l=r

1
l

∑
g|(l,mi1 ,...,mir )

µ(g)2l/g
∑
{Sl/g}

r∏
c=1

(
mic/g− 1
nic/g− 1

)
.

Proceed now as follows. For a given common divisor g of mi1, . . . ,mir , sum over
all values of l which are multiples of g. Then sum over all possible divisors of
mi1, . . . ,mir . Write l=ag, and n= tg. If r ≥ 3, one has r/g≤a≤ N/g, but, unless
g = 1, it is not admissible to have a < r , because all r edges of the graph should
be traversed. For this reason, r ≤ a ≤ N/g. Result (3-2) follows. If r = 2, l is even
and, for each l, only sequences of the form (i1, i2, . . . , i1, i2) with ni1 = ni2 = l/2
are possible. Put l = 2a, a = 1, 2, . . . , M =min{m1,m2} to get (3-1). �

Example 1. From (3-1), we have

F(1, 1)= F(1, 2)= F(2, 1)= F(1, 3)= F(3, 1)= 4,

F(2, 2)= 12,

F(1, 4)= F(4, 1)= F(1, 5)= F(5, 1)= 4,

F(2, 3)= F(3, 2)= 20,

F(2, 4)= F(4, 2)= 28,

F(3, 3)= 172/3.



AN ANALOGUE TO THE WITT IDENTITY 481

From (3-3),

θ(1, 1)= θ(1, 2)= θ(2, 1)= θ(1, 3)

= θ(3, 1)= θ(1, 4)= θ(4, 1)= θ(1, 5)= θ(5, 1)= 4,

θ(2, 2)= 10, θ(2, 3)= θ(3, 2)= 20, θ(3, 3)= 56.

Example 2. From (3-2),

F(1,1,1)= 16,

F(1,1,2)= F(1,2,1)= F(2,1,1)= 32,

F(1,2,2)= F(2,1,2)= F(2,2,1)= 112,

F(1,1,3)= F(1,3,1)= F(3,1,1)= 48,

F(1,1,4)= F(1,4,1)= F(4,1,1)= 64,

F(1,2,3)= F(3,1,2)= F(2,3,1)= F(3,2,1)= F(1,3,2)= F(2,1,3)= 256,

F(2,2,2)= 1056.

From (3-3),

θ(1, 1, 1)= 16,

θ(1, 1, 2)= θ(2, 1, 1)= θ(1, 2, 1)= 32,

θ(1, 2, 2)= θ(2, 1, 2)= θ(2, 2, 1)= 112,

θ(1, 1, 3)= θ(3, 1, 1)= θ(1, 3, 1)= 48,

θ(1, 1, 4)= θ(4, 1, 1)= θ(1, 4, 1)= 64,

θ(1, 2, 3)= θ(3, 1, 2)= θ(2, 3, 1)= θ(3, 2, 1)= θ(1, 3, 2)= θ(2, 1, 3)= 256,

θ(2, 2, 2)= 1048.

Remark. (a) Notice that θ , and likewise the Witt formula, is given in terms of
the Möbius function. However, formula (3-3) counts closed nonperiodic paths
traversing the edges of G R in all directions (without backtracking) and, in that
sense, generalizes the Witt formula. Also, our formula has an algebraic meaning of
a dimension. See Section 4.

(b) If mi1, . . . ,mir are coprime, F= θ . Otherwise, F can be rational. For instance,
F(3, 3)= 172/3. But F′ := NF, N = mi1 + · · ·+mir , is always a positive integer
which counts the number of words of length N . For example, in the case N = 4,
m1 = m2 = 2, F′ = 48. The words are

D±2
1 D±2

2 , D−1
1 D+1

2 D+1
1 D+1

2 , D+1
1 D−1

2 D+1
1 D+1

2 , D−1
1 D−1

2 D+1
1 D+1

2 ,

D−1
1 D+1

2 D+1
1 D−1

2 , D−1
1 D−1

2 D−1
1 D+1

2 , D−1
1 D−1

2 D+1
1 D−1

2 ,
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plus four cyclic permutations for each of them, and the four periodic words
(D±1

1 D±1
2 )2 plus two cyclic permutations for each.

In terms of F′,

θ(mi1, . . . ,mir )=
1
N

∑
g|mi1 ,...,mir

µ(g)F′
(

mi1

g
, . . . ,

mir

g

)
.

Although the Möbius function is negative for some divisors g, the right hand side is
nevertheless always a positive number because F′(mi1/g, . . . ,mir /g) counts words
in a subset of the words counted by F′(mi1, . . . ,mir ).

(c) Given a circular necklace with N beads, consider the problem of counting
inequivalent nonperiodic colorings of these beads with 2r colors {ci , c̄i }, i =
1, . . . , r , with mi occurrences of the index i , N =

∑
mi , with the restriction that

no two colors ci and c̄i (same index) occur adjacent in a coloring. Now, consider an
oriented graph with r loops hooked to a single vertex. Each loop edge corresponds
to a color ci . A nonperiodic closed nonbacktracking path of length N in the graph
corresponds to a coloring, and a color c̄i corresponds to an edge being traversed in
the opposite orientation. The presence of a single vertex in the graph reflects the
fact that adjacent to a bead with, say, color ci , any other with distinct index may
follow. The number of inequivalent colorings is given by θ .

As a basic test of our counting ideas, we prove Sherman’s statement [1962]
relating the Witt formula to paths in G R .

Proposition 3.2. Relative to graph G R , formula (1-2) gives the number M of
equivalence classes of closed nonperiodic paths of length N > 0 that traverse each
edge i counterclockwise mi ≥ 0 times (i = 1, 2, . . . , R), where m1+· · ·+m R = N.

Proof. Denote by mi1 ,. . . ,mir , r ≤ R, the nonzero entries in M(m1, . . . ,m R), which
we call Mr (mi1, . . . ,mir ). Words representing counterclockwise paths have positive
exponents so that the factors 22a and 2a in formulas (3-1) and (3-2) are not needed.
Hence

(3-6) Mr (mi1, . . . ,mir )=
∑

g|mi1 ,...,mir

µ(g)
g

Fc

(
mi1

g
, . . . ,

mir

g

)

where

(3-7) Fc

(
mi1

g
,

mi2

g

)
=

M/g∑
a=1

1
a

(
mi1/g− 1

a− 1

)(
mi2/g− 1

a− 1

)
if r = 2,

with M =min{mi1,mi2}, and
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(3-8) Fc

(
mi1

g
, . . . ,

mir

g

)
=

N/g∑
a=r

1
a

∑
{Sa}

r∏
c=1

(
mic/g− 1

tic − 1

)
if r ≥ 3.

In the case r = 2 suppose mi1 ≤mi2 . Using formula (A-3) from the Appendix (with
l = 2), it follows that

mi1/g∑
a=1

1
a

(
mi1/g− 1

a− 1

)(
mi2/g− 1

a− 1

)
=

g
mi2

(
mi1/g+mi2/g− 1

mi1/g

)
=

(N/g)!
(N/g)(mi1/g)!(mi2/g)!

.

Similarly if mi2 ≤ mi1 . In the case r ≥ 3 define

(3-9) I =
∑
mi>0

mi1+···+mir=N

Fc

(
mi1

g
, . . . ,

mir

g

)
.

Upon substituting (3-8) into (3-9) and exchanging the summation symbols, we get

I =
N/g∑
a=r

1
a

∑
{Sa}

∑
mi>0

mi1+···+mir=N

r∏
c=1

( mic
g − 1
tic − 1

)
.

Applying Lemma A.2,

I =
N/g∑
a=r

1
a

∑
{Sa}

(
N/g− 1

a− 1

)
=

N/g∑
a=r

1
a

(
N/g− 1

a− 1

)
rwr (a)

where

rw(a)=
r∑

j=1

(−1)r+ j
( r

j

)
( j − 1)a + (−1)a+r

is the number of sequences in {Sa} [da Costa and Variane 2005]. Using that

N/g∑
a=r

1
a

(
N/g− 1

a− 1

)
( j − 1)a =

g
N
( j N/g

− 1)

and
N/g∑
a=r

1
a

(
N/g− 1

a− 1

)
(−1)a+r

= (−1)r+1 g
N
,

we get

(3-10) I =
g
N

r∑
j=1

(−1)r+ j
( r

j

)
j N/g.
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The Stirling numbers S(N/g, r) of the second kind are given by [Chen and Koh
1992]

(3-11) S
(N

g
, r
)
=

1
r !

r∑
k=0

(−1)k
( r

k

)
(r − k)N/g

=
1
r !

r∑
j=0

(−1)r+ j
( r

j

)
j N/g

so that

(3-12) I = r !
g
N

S
(N

g
, r
)
.

Stirling numbers have the property that

(3-13)
∑
mi>0

mi1+···+mir=N

(N/g)!
(mi1/g)! · · · (mir /g)!

= r !S
(N

g
, r
)
.

Comparing relations (3-12), (3-13), and (3-9),

(3-14) Fc

(
mi1

g
, . . . ,

mir

g

)
=

g
N

(N/g)!
(m1/g)! · · · (mr/g)!

.

Upon substitution of (3-14) into (3-6), the result follows.
In the following we compute formulas for θ+ and θ−.

Theorem 3.3. Suppose any of the following conditions is satisfied:

(a) N = mi1 + · · ·+mir < 2r .

(b) mi1, . . . ,mir are coprime.

(c) mi1, . . . ,mir are neither all odd nor all even.

(d) mi1, . . . ,mir are all odd.

Then

(3-15) θ−(mi1, . . . ,mir )= θ+(mi1, . . . ,mir ).

Proof. The proof is similar to that of [da Costa 1997, Theorem 1] and uses
Lemma 2.1. �

Theorem 3.4. The number θ+(mi1, . . . ,mir ) is given by

(3-16) θ+(mi1, . . . ,mir )=
∑

odd g|mi1 ,...,mir

µ(g)
g

G

(
mi1

g
, . . . ,

mir

g

)
where the summation is over all the common odd divisors of mi1, . . . ,mir , and
G= F/2 with F as in (3-1) and (3-2). If mi1, . . . ,mir are all even numbers, then

(3-17) θ−(mi1, . . . ,mir )= θ+(mi1, . . . ,mir )− θ+

(
mi1

2
, . . . ,

mir

2

)
.
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Proof. First, suppose that all common divisors of mi1, . . . ,mir are odd numbers. In
this case,

θ(mi1, . . . ,mir )=
∑

odd g|mi1 ,...,mir

µ(g)
g

F

(
mi1

g
, . . . ,

mir

g

)
.

Since θ = θ++ θ− and θ+ = θ− (Theorem 3.3) it follows that θ = 2θ+, hence

(3-18) θ+ =
1
2

∑
odd g|mi1 ,...,mir

µ(g)
g

F

(
mi1

g
, . . . ,

mir

g

)
.

If the numbers mi1, . . . ,mir are all even, θ+ is again given by (3-18) because, in this
case, the mi ’s have common divisors which are even numbers, but since periodic
words with even period have negative sign, only the odd divisors are relevant to
getting θ+. The reason one should have the factor 1

2 is that, by Lemma 2.1, when
one considers the set of all possible words representing paths of a given length
which traverse the edges of Gr mi1, . . . ,mir times, half of them have positive sign
and the other half have negative sign. To account for the positive half, one needs
the factor 1

2 . Let’s now compute θ− in the even case. Write

θ =
∑

odd g|mi1 ,...,mir

µ(g)
g

F+
∑

even g|mi1 ,...,mir

µ(g)
g

F

=
1
2

∑
odd g|mi1 ,...,mir

µ(g)
g

F+ 1
2

∑
odd g|mi1 ,...,mir

µ(g)
g

F+
∑

even g|mi1 ,...,mir

µ(g)
g

F

= 2θ++
∑

even g|mi1 ,...,mir

µ(g)
g

F.

Using that θ = θ++ θ−, we obtain

θ− = θ++
∑

even g|mi1 ,...,mir

µ(g)
g

F.

Now the relevant even divisors are {2n} where n are the odd common divisors of
{mi }. For the other possible divisors, if any, use that µ(2 j n)= 0, j ≥ 2. Using the
equality µ(2n)=−µ(n), we see that the summation over the even divisors is equal
to −θ+

(
mi1/2, . . . ,mir /2

)
, proving the result. �

Remark. Like θ , the numbers θ± can be interpreted as the number of inequivalent
nonperiodic colorings of a circular necklace with N beads. However, now these
colorings are classified as positive or negative according to formula (2-3). It is
positive (negative) if the number N + l + T + s is odd (even). In this case, s is the
number c̄ of colors present in a coloring. Interpret T in terms of the color indices.
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Definition. Let s1, . . . , sr be arbitrary positive integers. Let the number P be
defined as follows. If s1, . . . , sr are all even numbers,

(3-19) P(s1, . . . , sr )=
∑

even g|s1,...,sr

µ(g)
g

G

(
s1

g
, . . . ,

sr

g

)
,

otherwise, P(s1, . . . , sr )= 0. Also, define

(3-20) H(s1, . . . , sr )

=


G(s1, . . . , sr ) if s1, . . . , sr not all even,

G(s1, . . . , sr )−
∑

k|s1,...,sr

1
k

P

(
s1

k
, . . . ,

sr

k

)
otherwise.

Lemma 3.5. P=
∑

g|s1,...,sr

µ(g)
g
(G−H).

Proof. From the definition, G=H if s1, . . . , sr are not all even. Otherwise,

(3-21) G−H=
∑

g|s1,...,sr

1
g

P

(
s1

g
, . . . ,

sr

g

)
.

Now apply Lemma A.1 to get the result. �

Theorem 3.6. θ+(mi1, . . . ,mir )=
∑

g|mi1 ,...,mir

µ(g)
g

H

(
mi1

g
, . . . ,

mir

g

)
.

Proof. When mi1, . . . ,mir are not all even, their odd divisors are the only possible
common divisors. In this case, P= 0 and

(3-22) θ+ =
∑

odd g|mi1 ,...,mir

µ(g)
g

H,

with H= G. If mi1, . . . ,mir are all even, the sum over odd divisors of mi1, . . . ,mir

can be expressed as

θ+ =
∑

odd g|mi1 ,...,mir

µ(g)
g

G

=

∑
g|mi1 ,...,mir

µ(g)
g

G−
∑

even g|mi1 ,...,mir

µ(g)
g

G =
∑

g|mi1 ,...,mir

µ(g)
g

G−P

=

∑
g|mi1 ,...,mir

µ(g)
g

G−
∑

g|mi1 ,...,mir

µ(g)
g
(G−H) =

∑
g|mi1 ,...,mir

µ(g)
g

H. �
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Example 3.

θ±(1,1)= θ±(1,2) = θ±(2,1) = θ±(1,3) = θ±(3,1) = θ±(1,4) = θ±(4,1)

= θ±(1,5) = θ±(5,1) = 2,

θ+(2,2)= 6, θ−(2,2)= 4, θ±(2,3)= θ±(3,2)= 10, θ+(2,4)= 14,

θ−(2,4)= 12, θ+(4,2)= 14, θ−(4,2)= 12, θ±(3,3)= 28.

Example 4.

θ±(1,1,1)= 8,

θ±(1,1,2)= θ±(2,1,1)= θ±(1,2,1)= 16,

θ±(1,2,2)= θ±(2,1,2)= θ±(2,2,1)= 56,

θ±(1,1,3)= θ±(3,1,1)= θ±(1,3,1)= 24,

θ±(1,1,4)= θ±(4,1,1)= θ±(1,4,1)= 32,

θ±(1,2,3)= θ±(3,1,2)= θ±(2,3,1)= θ±(3,2,1)= θ±(1,3,2)= θ±(2,1,3)= 128,

θ+(2,2,2)= 524,

θ−(2,2,2)= 516.

4. Sherman identity and Lie algebras

In this section we relate our previous results with Lie algebras and solve Sherman’s
problem. The solution is provided by the following proposition.

Proposition 4.1 [Kang and Kim 1999]. Let V =
⊕

(k1,...,kr )∈Zr
>0

V(k1,...,kr ) be a
Zr
>0-graded vector space over C with dim V(k1,...,kr ) = d(k1, . . . , kr ) <∞, for all
(k1, . . . , kr ) ∈ Zr

>0, and let

L =
⊕

(k1,...,kr )∈Zr
>0

L(k1,...,kr )

be the free Lie algebra generated by V . Then the dimensions of the subspaces
L(k1,...,kr ) are given by

(4-1) dim L(k1,...,kr ) =

∑
g|(k1,...,kr )

µ(g)
g

W

(
k1

g
, . . . ,

kr

g

)
where summation is over all common divisors g of k1, . . . , kr and W is given by

(4-2) W(k1, . . . , kr )=
∑

s∈T (k1,...,kr )

(|s|−1)!
s!

∞∏
i1,...,ir=1

d(i1, . . . , ir )
si1,...,ir .



488 G. A. T. F. DA COSTA AND G. A. ZIMMERMANN

The exponents si1,...,ir are the components of s ∈ T ,

(4-3)

T (k1, . . . , kr )= {s = (si1,...,ir )|si1,...,ir ∈ Z≥0,

∞∑
i1,...,ir=1

si1,...,ir (i1, . . . , ir )= (k1, . . . , kr )},

and

(4-4) |s| =
∞∑

i1,...,ir=1

si1,...,ir , s! =
∞∏

i1,...,ir=1

si1,...,ir !.

Moreover, the numbers dim L(k1,...,kr ) satisfy

(4-5)
∞∏

k1,...,kr=1

(1− zk1
1 · · · z

kr
r )

dim L(k1,...,kr ) = 1− f (z1, . . . , zr )

where

(4-6) f (z1, . . . , zr ) :=

∞∑
k1,...,kr=1

d(k1, . . . , kr )z
k1
1 · · · z

kr
r .

This function is associated with the generating function of the W’s,

(4-7) g(z1, . . . , zr ) :=

∞∑
k1,...,kr=1

W(k1, . . . , kr )z
k1
1 · · · z

kr
r ,

by the relation

(4-8) e−g
= 1− f. �

Identity (4-5) is a consequence of the famous Poincaré–Birkhoff–Witt theorem for
the free Lie algebra. Computation of the formal logarithm of the left-hand side
of (4-5) and its expansion gives that the infinite product equals the exponential in
(4-8). Raise both members of (4-5) to the power −1, compute the formal logarithm
of both members, and expand them. Identification of the coefficients of the same
order, definition (4-2), and application of the Möbius inversion give (4-1). See
[Kang and Kim 1999] for details. In [da Costa and Variane 2005], (4-1) is called
the generalized Witt formula, W is called the Witt partition function, and (4-5) the
generalized Witt identity.

Formulas (3-3) and (3-20) have exactly the form of (4-1) with corresponding
Witt partition functions given by F and H, respectively, so we interpret θ and θ+
as giving the dimensions of the homogeneous spaces of graded Lie algebras. In
each case, the algebra is generated by a graded vector space whose dimensions
can be computed recursively from (4-2) as a function of the Witt partition function.



AN ANALOGUE TO THE WITT IDENTITY 489

However, a general formula can be obtained from (4-8) using (4-6) as the formal
Taylor expansion of 1− e−g. This gives

(4-9) d(k1, . . . , kr )=
1

k1! · · · kr !

∂ |k|

∂zk1
1 · · · ∂zkr

r
(1− e−g)|z1=···=zr=0

with

(4-10) g(z1, . . . , zr ) :=

∞∑
k1,...,kr=1

W(k1, . . . , kr )zk1 · · · zkr

and W=F,H given by (3-1), (3-2), and (3-20). Furthermore, dim L(k1,...,kr )= θ, θ+

given by (3-3), 3.6 satisfy the generalized Witt identity (4-5) with the corresponding
dimensions given by (4-9). In fact, an explicit formula for (4-9) can be derived:

Theorem 4.2. The numbers d(k1, . . . , kr ) are given by the formula

(4-11) d(k1, . . . , kr )=

|k|∑
λ=1

(−1)λ+1
∑

p(λ,k)

q∏
i=1

[W(li1, . . . , lir )]
ai

ai !
,

where |k|=k1+· · ·+kr , q=−1+
∏r

i=1(ki+1), pλ,k is the set of all ai ∈{0, 1, 2, . . .}
such that

∑q
i=1 ai = λ,

∑q
i=1 ai li j = k j , and the vectors li = (li1, . . . , lir ), li j

satisfying 0 ≤ li j ≤ k j , ∀ j = 1, . . . , r , ∀i = 1, . . . , q and
∑r

j=1 li j > 0. Set
W(li )= 0 if li j = 0 for some j ; otherwise, W is the Witt partition function.

Proof. A generalization of Faà di Bruno’s relation [Constantine and Savits 1996;
Savits 2006] gives a formula for the |k|-th derivative of the exponential of a function
g(z1, . . . , zr ). From this formula and (4-9), (4-11) follows. �

Example 5. We compute d(2, 2) explicitly. In this case, k1= k2= 2, |k| = 4, q = 8.
The possible vectors l ≤ (2, 2) are l1 = (0, 1), l2 = (1, 0), l3 = (1, 1), l4 = (0, 2),
l5 = (2, 0), l6 = (2, 1), l7 = (1, 2), and l8 = (2, 2). Next we give the values of
a1, . . . , a8 ≥ 0 satisfying

8∑
i=1

ai = λ,

8∑
i=1

ai li = (2, 2).

Define the vector a = (a1, . . . , a8). The possible a’s for each λ are

for λ= 1, a = (0, . . . ,0,1);

for λ= 2, a = (0,1,0,0,0,0,1,0), (0,0,2,0,0,0,0,0),
(0,0,0,1,1,0,0,0), (1,0,0,0,0,1,0,0);

for λ= 3, a = (0,2,0,1,0,0,0,0), (2,0,0,0,1,0,0,0), (1,1,1,0,0,0,0,0);

for λ= 4, a = (2,2,0,0,0,0,0,0).
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We get

d(2, 2)=W(2, 2)− 1
2 W(1, 1)2.

The dimensions up to d(3, 3) are

N = 2, d(1, 1)=W(1, 1),

N = 3, d(1, 2)=W(1, 2), d(2, 1)=W(2, 1),

N = 4, d(1, 3)=W(1, 3), d(3, 1)=W(3, 1),

d(2, 2)=W(2, 2)− 1
2 W(1, 1)2,

N = 5, d(1, 4)=W(1, 4), d(4, 1)=W(4, 1),

d(2, 3)=W(2, 3)−W(1, 1)W(1, 2),

d(3, 2)=W(3, 2)−W(1, 1)W(2, 1),

N = 6, d(1, 5)=W(1, 5), d(5, 1)=W(5, 1),

d(2, 4)=W(2, 4)−W(1, 1)W(1, 3)− 1
2 W(1, 2)2,

d(4, 2)=W(4, 2)−W(1, 1)W(3, 1)− 1
2 W(2, 1)2

d(3, 3)=W(3, 3)−W(1, 1)W(2, 2)−W(1, 2)W(2, 1)+ 1
6 W(1, 1)3.

For r = 3, the dimensions up to d(2, 2, 2) are

N = 3, d(1,1,1)=W(1,1,1),

N = 4, d(1,1,2)=W(1,1,2), d(1,2,1)=W(1,2,1), d(2,1,1)=W(2,1,1),

N = 5, d(1,2,2)=W(1,2,2), d(2,1,2)=W(2,1,2), d(2,2,1)=W(2,2,1),

d(1,1,3)=W(1,1,3), d(1,3,1)=W(1,3,1), d(3,1,1)=W(3,1,1),

N = 6, d(1,1,4)=W(1,1,4), d(1,4,1)=W(1,4,1), d(4,1,1)=W(4,1,1),

d(1,2,3)=W(1,2,3), d(3,1,2)=W(3,1,2), d(2,3,1)=W(2,3,1),

d(3,2,1)=W(3,2,1), d(1,3,2)=W(1,3,2), d(2,1,3)=W(2,1,3),

d(2,2,2)=W(2,2,2)− 1
2 W2(1,1,1).

Example 6. Relative to θ with W= G and applying data from previous examples,
for the case r = 2, we find the dimensions

d(1,1)= d(1,2)= d(2,1)= d(1,3)= d(3,1)= d(1,4)= d(4,1)= d(2,3)

= d(3,2)= d(1,5)= d(5,1)= d(2,2)= d(2,4)= d(4,2)= d(3,3)= 4.
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In the case r = 3, the dimensions are

d(1,1,1)= 8,

d(1,1,2)= d(2,1,1)= d(1,2,1)= 16, d(1,2,2)= d(2,1,2)= d(2,2,1)= 56,

d(1,1,3)= d(3,1,1)= d(1,3,1)= 24, d(1,1,4)= d(4,1,1)= d(1,4,1)= 32,

d(1,2,3)= d(3,1,2)= d(2,3,1)= d(3,2,1)= d(1,3,2)= d(2,1,3)= 128,

d(2,2,2)= 496.

Example 7. Relative to θ+ with W=H, we find for the case r = 2

d(1, 1)= d(1, 2)= d(2, 1)= d(1, 3)= d(3, 1)= d(1, 4)= d(4, 1)= d(2, 3)

= d(3, 2)= d(1, 5)= d(5, 1)= 2,

d(2, 2)= 5, d(2, 4)= d(4, 2)= 9, d(3, 3)= 28,

and for r = 3

d(1,1,1)= 8,

d(1,1,2)= d(2,1,1)= d(1,2,1)= 16, d(1,2,2)= d(2,1,2)= d(2,2,1)= 56,

d(1,1,3)= d(3,1,1)= d(1,3,1)= 24, d(1,1,4)= d(4,1,1)= d(1,4,1)= 32,

d(1,2,3)= d(3,1,2)= d(2,3,1)= d(3,2,1)= d(1,3,2)= d(2,1,3)= 128,

d(2,2,2)= 504.

Remark. In spite of the negative terms in the formulas for the dimensions, they
give positive results. To understand why, consider, for example, the case

d(2, 2)=W(2, 2)− 1
2 W(1, 1)2

with W(a, b) = F′ = (a + b)F. So d(2, 2) is four times the result in example 6.
In the set of words counted by F′(2, 2) = 48 there is a subset whose elements
are words that are obtained by gluing together the words in the set counted by
W(1, 1)= 8. The gluing produces an overcounting which is corrected by the one
half factor. So d(2, 2) is positive. The same argument can be used to get positivity
for the other formulas.

Theorem 4.3. For each Gr ⊆ G R , we have

(4-12)
∞∏

mi1 ,...,mir=1

(1+ z
mi1
i1
· · · zmir

ir
)θ+ = e−g(z2

i1
,...,z2

ir )+g(zi1 ,...,zir ),

and

(4-13)
∞∏

mi1 ,...,mir=1

(1− z
mi1
i1
· · · zmir

ir
)θ− = e+g(z2

i1
,...,z2

ir )−g(zi1 ,...,zir ).
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Proof. To prove (4-12), multiply and divide its left-hand side by
∞∏

mi1 ,...,mir=1

(1− z
mi1
i1
· · · zmir

ir
)θ+

and use (4-8). To get (4-13), write
∞∏

mi1 ,...,mir=1

(1− z
mi1
i1
· · · zmir

ir
)θ− =

∞∏
N=r

∏
mi>0

mi1+···+mir=N

(1− z
mi1
i1
· · · zmir

ir
)θ− .

Decompose the product over N into three products, namely, one over all N < 2r ,
one over all even N ≥ 2r , and another over all odd N > 2r . Then apply Theorems
3.3 and 3.4 and formula (3-17). �

Theorem 4.4.
∞∏

mi1 ,...,mir=1

(1+ z
mi1
i1
· · · zmir

ir
)θ+(1− z

mi1
i1
· · · zmir

ir
)θ− = 1.

Proof. Multiply (4-12) and (4-13). �

The left side of (1-1) equals

R∏
j=1

(1+ z j )
2

R∏
r=2

∏
Gr

∏
mi1 ,...,mir>0

(1+ z
mi1
i1
· · · zmir

ir
)θ+(1− z

mi1
i1
· · · zmir

ir
)θ− .

The Sherman identity now follows from Theorem 4.4.

Appendix

Lemma A.1. If

(A-1) g(n1, . . . , nk)=
∑

d|n1,...,nk

µ(d)
d

f
(

n1

d
, . . . ,

nk

d

)
,

then

(A-2) f (n1, . . . , nk)=
∑

d|n1,...,nk

1
d

g
(

n1

d
, . . . ,

n1

d

)
.

Proof. Set G(n1, . . . , nk) := (n1+ · · ·+ nk)g(n1, . . . , nk) and

F
(

n1

d
, . . . ,

nk

d

)
:=

(
n1

d
+ · · ·+

nk

d

)
f
(

n1

d
, . . . ,

nk

d

)
.

Then (A-1) can be expressed in the form

G(n1, . . . , nk)=
∑

d|n1,...,nk

µ(d)F
(

n1

d
, . . . ,

n1

d

)
.
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Möbius inversion gives

F(n1, . . . , nk)=
∑

d|n1,...,nk

G
(

n1

d
, . . . ,

nk

d

)
.

Therefore,

(n1+ · · ·+ nk) f (n1, . . . , nk)=
∑

d|n1,...,nk

(
n1

d
+ · · ·+

nk

d

)
g
(

n1

d
, . . . ,

nk

d

)
. �

The converse is also true.

Lemma A.2. Let N ≥ α = n1 + · · · + nl , n1, . . . , nl , ni > 0, be a partition of α.
Then

(A-3)
∑

∑l
i=1 ki=N

l∏
i=1

(
ki − 1
ni − 1

)
=

(
N − 1
α− 1

)

with the convention that a bracket in the left side is zero whenever ki < ni .

Proof. Using
qα

(1− q)α
=

∞∑
N=α

(
N − 1
α− 1

)
q N ,

it follows that

qα

(1− q)α
=

l∏
i=1

qni

(1− q)ni
=

l∏
i=1

∞∑
ki=ni

(
ki − 1
ni − 1

)
qki =

∞∑
N=α

∑
ki≥ni∑l
i=1 ki=N

l∏
i=1

(
ki − 1
ni − 1

)
q N .

Comparison with the previous expression and the convention gives the result. �
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